
Precision Airdrop from a Fixed-Wing
Unmanned Aerial Vehicle

Simen Fuglaas

Master of Science in Cybernetics and Robotics

Supervisor: Tor Arne Johansen, ITK

Department of Engineering Cybernetics

Submission date: June 2014

Norwegian University of Science and Technology

Problem Description

Wireless sensor networks sometimes require that beacons are deployed
at quite accurate locations. An example is deployment of tracking
devices for monitoring of drifting sea ice and icebergs in the Arctic in
order to support marine operations and ship traffic.
This task consist of the following steps:

1. Given a known end position for the sensor, calculate the optimal
position and course of the UAV at the sensor deployment point.
Assume that wind speed and direction is known, UAV speed
and altitude are given.

2. Develop an algorithm that is used to control the UAV in an
optimal way to the optimal deployment point.

3. Implement a system, based on the Piccolo SL Autopilot in a
Penguin B UAV. Consider the use of both heading turn rates
and waypoints as the primary control input. For navigation, the
sensors in the Piccolo SL Autopilot should be used. Implement
also an interface to a simple sensor deployment mechanism that
is integrated as a payload on the Penguin B UAV.

4. Test the system using the hardware-in-the-loop simulation setup
in the laboratory, and analyze the performance of the system.

5. Test the system with field experiments.
Supervisor: Professor Tor Arne Johansen
Co-supervisor: PhD Candidate Mariann Merz
Collaborator: MSc Candidate Siri Holthe Mathisen

i

Preface

This thesis concludes my five year long journey towards a degree
in Master of Science at the Department of Engineering Cybernetics,
NTNU. The contents of this thesis does not express the many hours
spent programming and debugging code. Nor does it reflect the joy of
success and the sadness and frustration that followed a failure. Never-
theless, writing this thesis has been the largest project thus far in my
life and it has been an educational experience which I will remember
for the rest of my days.
This thesis could, however, not be completed without the help and
support of many. I would like to thank my supervisors, Tor Arne
Johansen and Mariann Merz, for guidance and support throughout the
duration of the project. Further I would like to thank Øyvind Ulvin
Halvorsen, Erlend Jørgensen, Kristian Stormo, Håkon Bøe, Håkon
Søhoel and Sverre Kvamme, with whom I shared both office and many
good times. I would also like to thank my collaborator, Siri Holthe
Mathisen, for many constructive discussions and for putting up with
me. Lastly I would like to thank the reader whom thus far have con-
sidered reading my thesis, and I do hope that you have been inspired
to continue.
Thank you!

Simen Fuglaas
Trondheim, June 2014

iii

Abstract

Accurate mapping of the polar regions requires reliable placement of
wireless transmitting sensors, also known as beacons, on icebergs and
drift ice. This thesis considers the use of a specific fixed-wing un-
manned aerial vehicle, known as the Penguin B, to accurately deploy
said beacons from the air. An analysis of the possible precision air-
drop methods was conducted and the decision was made to release the
beacon in free fall from the aircraft. The estimated trajectory was cal-
culated and used to decide the optimal release position and direction.
Combined this is known as the release configuration. Moreover, two
different aircraft path planning algorithms were developed in order to
achieve the desired configuration.
The final system, including the necessary hardware and software, was
implemented into the provided framework. This system was further
tested through simulations in the laboratory in addition to some field
testing. The simulations revealed that with the most advanced path
planning algorithm, it was possible to achieve a close to optimal release
configuration. This further resulted in an airdrop where the accuracy
of the impact depended primarily on the altitude of release, in addition
to the unpredictable environmental factors, such as wind gusts. The
field tests displayed that the system was successfully implemented into
the provided framework. However, unforeseen technical difficulties
related to the aircraft, outside the control of this project, prevented
in-air testing.
Under the assumptions made throughout this thesis, the simulations
revealed that the implemented system was able to reliably deploy the
beacon such that it landed within a relatively small perimeter around
the target.

v

Sammendrag

Nøyaktig kartlegging i polarområdene krever pålitelig plassering av
sensorer med radiosendere på isfjell og drivis. Denne oppgaven be-
trakter bruken av et ubemannet fly, av typen Penguin B, til nøyak-
tig utplassering av slike sensorer fra luften. En analyse av mulige
metoder for å gjennomføre et presisjons-slipp fra luften ble gjennom-
ført, og den valgte løsningen var å slippe sensoren i fritt fall fra
flyet. Sensorens estimerte bane ble beregnet og brukt til å bestemme
den optimale slipp-posisjonen og slipp-retningen, samlet definert som
slipp-konfigurasjonen. Videre ble det utviklet to forskjellige bane-
planleggings algoritmer for det ubemannede flyet slik at det ville
oppnå den ønskede konfigurasjonen.
Det endelige systemet, inkludert nødvendig maskinvare og program-
vare, ble implementert og integrert i det ubemannede flyet. Dette to-
talsystemet ble ytterligere testet gjennom simuleringer i laboratoriet,
i tillegg til noe felttesting. Simuleringene viste at, med bruk av den
mest avanserte bane-planleggings algoritmen, var det mulig å oppnå
en nær optimal slipp-konfigurasjon. Dette resulterte videre i et slipp
fra luften, der nøyaktigheten av treffet først og fremst var avhengig
av flyets høyde ved slippet, samt uforutsette forstyrrelser som f.eks.
vind. Felttester på bakken viste at totalsystemet fungerte som forut-
satt. Uforutsette tekniske problemer med flyet, utenfor prosjektets
kontroll, hindret, imidlertid, testing av systemet i luften.
Med de forutsetningene og antagelsene som er gjort i oppgaven, viste
simuleringene at det utviklede og implementerte totalsystemet var i
stand til å utplassere sensoren med radiosender relativt nøyaktig.

vii

Contents

Problem Description i

Preface iii

Abstract v

Sammendrag vii

1. Introduction 1
1.1. About the Project . 1

1.1.1. Motivation . 1
1.1.2. Core Assumptions 2
1.1.3. Approach . 3
1.1.4. Distribution of Work 3

1.2. Related Work . 4
1.3. Outline of the Thesis 5

2. System Description 7
2.1. Coordinate Systems . 7
2.2. Fixed-Wing Aircraft 10

2.2.1. Kinematic Equations of Motion 10
2.2.2. Bank and Turn 12
2.2.3. Airspeed . 14

ix

Contents Contents

2.3. Tools and Equipment 16
2.3.1. Penguin B . 16
2.3.2. Piccolo SL . 18
2.3.3. Software Toolchain 20

3. Analysis and Design 23
3.1. Review of Precision Airdrop Methods 23

3.1.1. Cable-Supported Sliding Payload 24
3.1.2. Parachute Deployment 25
3.1.3. Free Fall . 28
3.1.4. Concluding Remarks on the Precision Airdrop

Methods . 29
3.2. Computed Air Release Point 30

3.2.1. Winds . 30
3.2.2. System Ballistics 31
3.2.3. Airspeed . 32
3.2.4. Calculation of the CARP 33
3.2.5. Release Criteria 37

3.3. Path Planning . 40
3.3.1. Straight Line Approach 40
3.3.2. Dubins Path . 44
3.3.3. Augmented Dubins Path 49

3.4. Path Tracking . 53
3.4.1. Waypoints . 53
3.4.2. Heading . 54
3.4.3. Concluding Remarks on Path Tracking 58

4. Implementation 59
4.1. Payload . 59

4.1.1. Release Mechanism 59

x

Contents

4.1.2. Penguin B Custom Payload 65
4.2. Software Implementation 71

4.2.1. GroundUnit . 71
4.2.2. CARP . 73
4.2.3. Control Algorithms 75
4.2.4. Payload Release 79

5. System Testing 81
5.1. Simulation . 81

5.1.1. Release Criteria 82
5.1.2. Path Simulation 85
5.1.3. Free Fall Simulation 97

5.2. Testing with the Penguin B on Agdenes Airstrip 109
5.2.1. Ground Testing 109
5.2.2. In-Air Testing 110

6. Discussion 111
6.1. Release Criteria . 111
6.2. Path Control . 112
6.3. Free Fall . 113

7. Conclusion 115

8. Further Work 117
8.1. Improved Aircraft Control 117
8.2. UAV Platform . 118
8.3. User Interface . 118

Bibliography 119

Nomenclature 123

xi

Contents Contents

List of Figures 127

List of Tables 133

A. Software and Hardware 135

B. Software Description 137

xii

1. Introduction

1.1. About the Project

This project will consider the use of a fixed-wing Unmanned Aerial
Vehicle (UAV) in order to deploy wireless transmitting sensors, also
known as beacons, accurately on a given target. This target may
reside far from the ground station and it may possibly be located in an
uninhabited area. As such, landing the aircraft is often not an option.
For that reason, it was desirable to develop a way to accurately and
precisely deploy the beacons from the aircraft.

1.1.1. Motivation

In the Arctic regions there are several thousand icebergs which may
pose a threat to both the petroleum industry and the ship traffic. The
largest icebergs can be detected by radar satellite imagery, however,
that is not always the case with the smaller icebergs [1]. Consequently,
a more accurate tracking by the use of deployed beacons may prove
to be quite useful in mapping the Arctic regions.

There are several benefits of using a fixed-wing UAV to perform this
task. Firstly, the use of a fixed-wing aircraft offers a significantly
longer range than a multicopter. Since operations over the ocean

1

Chapter 1 Introduction

often require a long range vehicle, endurance was chosen over the
ability to hover and land. Secondly, it is far cheaper to utilize small
UAVs rather than deploying the beacons from a full-scale helicopter
(or airplane) or from a ship.

It is also worth mentioning that the center for Autonomous Marine
Operations and Systems (AMOS) at the Norwegian University of Sci-
ence and Technology (NTNU) desires, among others, to develop tech-
nology to support mapping and monitoring operations in the remote
regions of the Arctic. Consequently, the results of this thesis may
possibly be used as a part of this operation.

1.1.2. Core Assumptions

This project was restricted to the use of a designated fixed-wing air-
craft system. Consequently, a couple of assumptions and constraints,
related to this system, were specified as a part of the final solution.

First, the aircraft would operate no lower than 30 m above ground
level. However, it was also possible that the aircraft would have to fly
at a higher altitude.

Second, upon choosing an operational altitude, it was, for simplicity,
also assumed that this altitude would remain constant throughout
the precision airdrop operation. This implied that the control of the
vehicle was restricted to the horizontal plane.

Another assumption which had to be considered was that the aircraft
would cruise at a constant speed, namely 28 m/s.

Furthermore, this thesis will primarily consider the initial point of
impact of the beacon, and as such disregard any possible displacement
that may occur after the impact.

2

1.1 About the Project

1.1.3. Approach

The problem was approached by first considering the various possible
ways of accomplishing a precision airdrop from a fixed-wing aircraft.
Further it was necessary to decide which method would be the most
ideal and could provide a sufficiently high degree of accuracy and
reliability. It was also necessary to develop an algorithm that would
control the aircraft throughout the operation.

This system was then implemented into the provided framework. This
task included assembling a payload with the needed hardware to per-
form computations and also integrate the precision airdrop solution
onto the plane. Additionally, it was necessary to develop the required
software, which would perform the necessary computations and pro-
vide the autopilot with the control commands.

Simulations were performed both throughout the development of the
system, and after completing the final system, in order to determine
the achieved performance. Moreover, some field testing was con-
ducted, but due to unforeseen issues with the aircraft, these tests
were of limited value.

1.1.4. Distribution of Work

As mentioned in the preface, the project on which this thesis was
based, was conducted in cooperation with MSc Candidate Siri Holthe
Mathisen. Thus the tasks were divided between Siri Mathisen and
the author in the following way.

Siri Mathisen and the author would both research and determine a
desirable method of precision airdrop. Upon choosing this method,

3

Chapter 1 Introduction

the author would perform the necessary calculations and physical as-
sumptions in order to find the optimal position and course of the UAV
at the time of deployment. Furthermore, the author researched some
possible control strategies and, along with Siri Mathisen, determined
which solution was the most suitable for this operation.

The implementation of the system was in general conducted together.
However, the author focused primarily on the software implementa-
tion of finding the optimal position and course, along with the devel-
opment and implementation of the path planning and path tracking
algorithms. Siri Mathisen was, on the other hand, responsible for
the hardware architecture of the payload, which included both the
on board computer as well as the hardware required by the airdrop
mechanism. Siri Mathisen would also set up the communication link
between the payload and the ground unit and develop the necessary
software to activate the airdrop mechanism.

Siri Mathisen and the author both participated in the simulations at
the UAV laboratory as well as the field testing which was conducted
at Agdenes Airstrip.

1.2. Related Work

Deployment of objects from different fixed-wing aircrafts has previ-
ously been studied extensively for the valuable military purpose it
serves. Ducote and Speelman [2] explained that delivery by air has
existed since the early days of aviation history. However, it was not
until after World War II that the need for precision airdrop expanded.
As the armed forces were capable of moving further and faster, the
need for fast resupply became a problem.

4

1.3 Outline of the Thesis

Many different strategies were considered in order to safely deliver
the airdrops. In some cases the geographical topography allowed for
low-altitude flight, and as such, better accuracy was achieved. Other
cases demanded an airdrop from higher altitudes in order to avoid
radar detection or ground-to-air artillery [2]. Over the years, a large
number of different techniques were developed to accomplish this mis-
sion. However, in many cases the mass of the released object has been
of such magnitude that a larger aircraft was a necessity.

In recent times, the purpose of a precision airdrop has expanded to
also include civilian use, such as the one presented in this thesis. Op-
erations in ice-regions are often very expensive due to their remote
location [1]. This cost can be reduced significantly by utilizing preci-
sion airdrop from a UAV. Tiffin et al. [1] explained that a precision
airdrop from a UAV has been tested on Antarctic icebergs, but there
are, however, no ready-made systems available.

1.3. Outline of the Thesis

This thesis comprises the necessary steps and decisions which were
made throughout this project along with an analysis of the resulting
system. Chapter 2 will present the provided system and framework
around which this thesis was built. In chapter 3 an analysis of a
few different proposed precision airdrop methods is conducted, before
further investigating the necessary calculations in each method along
with the development of the aircraft control. The payload, including
the hardware and other necessary components, is introduced in chap-
ter 4. Furthermore, this chapter presents the implemented software,
along with an explanation of the code structure. Chapter 5 contains
the conducted simulations along with an analysis of the results. The

5

Chapter 1 Introduction

performance of the system as a whole is discussed in chapter 6, and fi-
nal conclusions are made in chapter 7. Lastly, chapter 8 will introduce
some thoughts for possible future work related to this system.

6

2. System Description

The fuselage, the aircraft engine and the flight management system
constitute the main framework within which this thesis was based. As
such it was important to build the thesis around this system. This
means that it was imperative to consider both the strengths of the sys-
tem, as well as the limitations, before any decisions could be made.
This chapter intends to give a brief introduction to some of the phys-
ical properties of the fixed-wing aircraft and provide the reader with
some basic background knowledge of the chosen hardware and soft-
ware.

2.1. Coordinate Systems

A brief introduction to the relevant coordinate systems is in order. It
is common to utilize the American Global Navigation Satellite System
(GNSS), known as the Global Positioning System (GPS), in order to
locate vehicles on, or near, the surface of the Earth. This system
provides an exceptionally good estimate of the position of the vehicle
on a global scale. However, for the purpose of tracking and guiding a
UAV, it is of great help to reduce the global coordinate system down
to a local coordinate system.

7

Chapter 2 System Description

The Earth-centered Earth-fixed (ECEF) frame is a global coordi-
nate system where the origin is fixed in the center of the Earth.
The x-axis points towards the intersection of 0o longitude (Green-
wich meridian) and 0o latitude (Equator). The z-axis is parallel
to the rotational axis of the Earth and the y-axis completes the
right handed orthogonal coordinate system [3]. This coordinate
system can be seen in Fig. 2.1 denoted as (xe, ye, ze). The po-
sitions given by the GPS are most often provided as ellipsoidal
coordinates (latitude, longitude and height) based on the World
Geodetic System 84 (WGS84) ellipsoid.

The North-East-Down (NED) frame is commonly utilized to get a
better resolution of the area of interest, locally. This frame is
defined relative to the Earth’s reference ellipsoid in the following
way. The z-axis points downwards perpendicular to the plane
tangent to the ellipsoid. The x-axis points towards true north1

and the y-axis points to east [3]. This frame is accurate in the
local area of interest, as shown in Fig. 2.1, but the origin of the
NED frame needs to be reset if the vehicle moves too far from
the set NED origin.

The BODY frame of the vehicle is defined to move and rotate in
accordance with the vehicle. The origin of this frame is fixed to
a predetermined point on the vehicle. The axes are chosen so
that x points in the forward direction, y points to the right side
and z points downward. Moreover, the Euler angles, as defined
in Fig. 2.2, relates the BODY frame to the NED frame [3].

1True north, meaning the geodetic north pole, as opposed to the continuously
moving magnetic north pole.

8

2.1 Coordinate Systems

Figure 2.1.: The NED frame (xn, yn, zn) shown relative to the ECEF
frame (xe, ye, ze). [4]

Figure 2.2.: The Penguin B with the chosen BODY frame (xb, yb, zb)
and the associated Euler angles (φ, θ, ψ).

9

Chapter 2 System Description

2.2. Fixed-Wing Aircraft

The fixed-wing aircraft differs in many ways, some of which have pre-
viously been mentioned, from the multicopter. An important differ-
ence to consider is the fact that the multicopter, when hovering2, is a
holonomic system, whereas the fixed-wing aircraft is a non-holonomic
system. What this means is that the multicopter can independently
control all the six degrees of freedom (x, y, z, roll, pitch and yaw)
while it is hovering. The fixed-wing aircraft, on the other hand, is
unable to control the roll, pitch and yaw independently of its x, y
and z positions respectively [5]. As such, it is more difficult to plan a
trajectory for the fixed-wing aircraft.

2.2.1. Kinematic Equations of Motion

Ren and Beard [6] explained that a fixed-wing aircraft equipped with
low-level altitude-hold, velocity-hold and heading-hold autopilots can
be modeled by kinematic equations of motion that are similar to those
of a non-holonomic mobile robot. As previously stated in sec. 1.1.2,
the altitude is assumed to be constant throughout the precision air-
drop mission. As such, modeling the system as a vehicle with three
degrees of freedom, as done by Singh and Fuller [7], by the use of the
kinematic equations of motion is a good approximation.

The states to be modeled are the position (x, y) the speed v and the
heading angle ψ.

2The multicopter is a non-holonomic system when it is not hovering.

10

2.2 Fixed-Wing Aircraft

x =

x

y

v

ψ

 =

x1

x2

x3

x4

 (2.1)

The kinematic equations of motion can then be modeled as seen in
equation 2.2 [7].

ẋ =

ẋ1

ẋ2

ẋ3

ẋ4

 =

v cos(ψ)
v sin(ψ)

v̇

ψ̇

 (2.2)

In order to account for the dependencies in the system, it may be
rewritten as

ẋ =

x3 cos(x4)
x3 sin(x4)

u1

u2

 (2.3)

where u1 = v̇ and u2 = ψ̇ represent the actuators of the vehicle system.
However, due to the inherent properties of the fixed-wing aircraft there
are a few constraints that must be considered. First, the speed of the
vehicle needs to stay above a positive minimum threshold in order to
stay airborne. Nor can the aircraft exceed an upper positive value due
to the limitation in thrust. Moreover, a vehicle is unable to accelerate
infinitely fast and consequently the acceleration must be constrained
to reasonable values. Secondly, the heading turn rate, which will be
revisited in sec. 2.2.2, can saturate due to the limitation in the roll

11

Chapter 2 System Description

angle. [6, 7]

Consequently, the following constraints on the actuators can be posed.

(ui)min ≤ u(t) ≤ (ui)max i = {1, 2} (2.4)

vmin ≤ v(t) ≤ vmax (2.5)

However, it has also been stated that the speed of the UAV will remain
constant and it is, as such, uncontrollable. Thus, the equations of
motion that will be considered are reduced to

ẋ =

VA cos(x4)
VA sin(x4)

u

 (2.6)

where VA is the constant airspeed, and the controllable inputs have
been reduced to one, namely the heading turn rate u = ψ̇. This gives
the following constraint on the system.

umin ≤ u(t) ≤ umax (2.7)

2.2.2. Bank and Turn

In order for a fixed-wing aircraft to alter its heading it is necessary to
perform a banked turn, i.e. change its roll Φ as illustrated in Fig. 2.3.
Leven et al. [8] suggested that all turn maneuvers can be considered
as coordinated turns. By this term they implied that all turns are
executed at a constant flight speed and that the sum of the forces
along the lateral axis of the aircraft equals zero.

12

2.2 Fixed-Wing Aircraft

Based on the aforementioned statements, the following equation is
proposed [8].

FC = FL sin(Φ) (2.8)

where FC represents the centrifugal force, FL is the lift force and Φ
is the roll angle. Inserting for these values according to Fig. 2.3 gives
the following expression for the heading turn rate ψ̇ with respect to
the roll Φ.

mψ̇VA = mg tan(Φ) (2.9)

ψ̇ = g

VA
tan(Φ) (2.10)

Now, given a known maximum roll angle Φmax it is possible to calcu-
late the maximum heading turn rate ψ̇max by using equation 2.10. VA
is the constant air speed and g represents the gravity acceleration.

Furthermore, with knowledge of the maximum roll angle Φmax it is
possible to calculate the smallest achievable turn radius R i.e. the
sharpest turn possible by the UAV. In the absence of wind and sideslip,
Beard and McLain [9] proposed the following expression for the turn-
ing radius of a coordinated turn.

R = V 2
A

g tan(Φ) (2.11)

However, in order for the minimum turn radius R to be as accurate
as possible, it is necessary to fully account for the effects of the wind.
This can be done in a simple way by claiming that the maximum

13

Chapter 2 System Description

achievable speed is given by the sum of the constant airspeed VA and
the magnitude of the wind Wmagnitude.

R = (VA +Wmagnitude)2

g tan(Φ) (2.12)

Figure 2.3.: An aircraft executing a coordinated, level turn with
constant yaw rate r and pitch rate q. [8]

2.2.3. Airspeed

The definition of the constant airspeed VA may appear somewhat
vague. Thus an elaboration of this definition is appropriate. Ac-
cording to the Federal Aviation Administration (FAA) there are four

14

2.2 Fixed-Wing Aircraft

different kinds of airspeed, each of which will presented below as pro-
vided by the FAA [10].

Indicated Airspeed (IAS) means the speed of an aircraft as shown
on its pitot-static airspeed indicator calibrated to reflect stan-
dard atmosphere adiabatic compressible flow at sea level uncor-
rected for airspeed system errors.

Calibrated Airspeed (CAS) means the indicated airspeed of an air-
craft, corrected for position and instrument error. Calibrated
airspeed is equal to true airspeed in standard atmosphere at sea
level.

Equivalent Airspeed (EAS) means the calibrated airspeed of an air-
craft corrected for adiabatic compressible flow for the particular
altitude. Equivalent airspeed is equal to calibrated airspeed in
standard atmosphere at sea level.

True Airspeed (TAS) means the airspeed of an aircraft relative to
undisturbed air. True airspeed is equal to equivalent airspeed
multiplied by 1

2
ρ0
ρ
.

It is desirable to obtain the true airspeed in order to get the most ac-
curate measurement of the airspeed. However, unlike larger aircrafts,
the UAV intends to fly at a relatively low altitude, which further im-
plies that the indicated airspeed can be approximated equal to the
true airspeed. Thus the following expression will be assumed valid.

IAS = TAS = VA (2.13)

15

Chapter 2 System Description

2.3. Tools and Equipment

2.3.1. Penguin B

The chosen UAV platform is called Penguin B and is manufactured by
UAV Factory. According to the information provided in its datasheet
[11], the Penguin B is a high performance unmanned aircraft, capable
of flying for 26.5 hours with 4 kg payload. This makes the aircraft
ideal for flying to remote locations.

The cruise speed of the Penguin B is set to be 22 m/s, while the max
level speed is 36 m/s. A lower speed can also be achieved, but for
the purpose of this project it will be assumed that the cruise speed,
measured as the IAS, is set to 28 m/s. It will also be assumed that the
Penguin B will takeoff with the use of a Portable Pneumatic Catapult,
as seen in Fig. 2.5. This enables the capability of taking off from
unprepared areas. However, this may also put limitations on the
placement of equipment to be used to deploy the beacons, as this
equipment must not interfere with the launcher.

A closer examination of Fig. 2.4 reveals that the propeller is located
behind the Penguin B, rather than in front. Although this improves
the maneuverability of the aircraft, it may, however, pose a problem
when deploying the beacons. It is highly undesirable to have any
loose objects collide with the propeller. Consequently, any payload
released from the aircraft must either have an initial velocity pushing
the payload away from the aircraft body, to avoid collision with the
propeller, or the payload must be released out of harms way for the
propeller.

Furthermore, it is of importance to notice that the max takeoff weight
may not exceed 21.5 kg. Of this amount, the empty Penguin B weighs

16

2.3 Tools and Equipment

10 kg. This leaves room for 11.5 kg worth of payload and fuel. Natu-
rally, this is a significant constraint to keep in mind when choosing the
deployment mechanism. Moreover, with the possible need to install
exterior equipment on the Penguin B, it is important to place this
equipment in such a way so that it does not alter the controllability
or the stability of the aircraft.

Lastly, the use of a pitot-static tube installed at the front of the Pen-
guin B allows for measurements of the dynamic and static pressure.
The interpretation of this data can provide the system with valuable
data concerning the stream flow, i.e. the wind, and the indicated air-
speed. This device can be seen alone in Fig. 2.6 and as installed on
the Penguin B in Fig. 2.4.

Figure 2.4.: The Penguin B platform. [12]

17

Chapter 2 System Description

Figure 2.5.: Portable Pneumatic Catapult, used to launch the Pen-
guin B. [12]

Figure 2.6.: Pitot-Static Tube. [11]

2.3.2. Piccolo SL

The chosen flight management system for the Penguin B is the Cloud
Cap Technology Piccolo SL. This system offers a complete avionics
solution which includes the flight control processor, inertial sensors,

18

2.3 Tools and Equipment

ported air data sensors, a GPS receiver and a datalink radio [13]. In
short terms this implies that all data concerning tracking and control
must go through the Piccolo SL unit. As such, a brief introduction to
this unit is appropriate.

The Piccolo SL Autopilot is responsible for interpreting the incom-
ing flight controls and applying the appropriate actions to the
flight control surfaces and the engine. The input flight control
may be either waypoints or heading references, both of which
will be examined more closely in sec. 3.4.

The Estimated State is comprised of the information provided by
the inertial sensors, consisting of three accelerometers and three
gyroscopes, and the data provided by the GPS receiver. This
information ensures an accurate tracking of the position and
motion at any time-instant, both in the ECEF frame and in the
NED frame as well as the BODY frame.

The Estimated Stream Velocity is an approximation of the stream
flow, in this case referred to as the wind, in which the vehicle
traverses. As previously mentioned, the pitot-static tube in-
stalled on the Penguin B provides the static and the dynamic
pressure. This data can be interpreted by the air data sensors in
the Piccolo SL, which further is able to create a 3-dimensional
vector describing the average wind. The reliability of this vector
increases by maneuvering the aircraft in a circular pattern.

The Indicated Airspeed is, as the definition explained, based on pitot-
static measurements. Consequently, the Piccolo SL air data sen-
sors are able to calculate the indicated airspeed of the aircraft.

The Piccolo Command Center (PCC) is the command and control
software of the Piccolo System. It provides a human-machine

19

Chapter 2 System Description

interface (HMI) between the operator and the aircraft equipped
with the Piccolo SL. Furthermore, this software makes it possi-
ble to simulate the Penguin B by loading a properly calibrated
model of the Penguin B. The simulator is set up to simulate a
ground station and the Penguin B such that any new control al-
gorithms can be tested in this virtual environment. Due to the
inclusion of the hardware in this simulation, it will hereafter be
known as running a Hardware-in-the-Loop (HIL) simulation. It
is also possible to simply run the simulation without the hard-
ware, a so-called Software-in-the-Loop (SIL), however, this was
mainly done to familiarize the author with the software.

2.3.3. Software Toolchain

The Laboratório de Sistemas e Tecnologias Subaquáticas (LSTS) lo-
cated in Porto, Portugal (in English known as the Underwater Sys-
tems and Technology Laboratory), specializes in designing, construct-
ing and operating unmanned vehicles, both below and above water
[14]. In this thesis it was chosen to utilize the functionality provided
by the LSTS Neptus-IMC-DUNE software toolchain. These three
components will be presented below in order to give the reader an
understanding of the system.

Inter-Module Communication (IMC) is a message-oriented commu-
nications protocol. These messages are placed on an IMC bus
and can be used inter-process, inter-vehicle and operator-vehicle.
In short terms this implies that all communication is passed by
the use of this protocol. Furthermore, all of the IMC messages
are created in a similar way and they are stored in a single XML
file. This allows any user to easily create and add new messages

20

2.3 Tools and Equipment

if deemed necessary. [14]

DUNE: Unified Navigation Environment is the on-board software
runtime environment of the vehicle. DUNE is written in C++
and consists of several tasks which comprise the framework of
the system. Each task has a specific purpose and is able to
communicate with the other tasks over the IMC bus. The tasks
usually run in separate threads of execution [14].

Neptus is a command and control software, written in Java, which
offers a HMI for one or more unmanned vehicles. This function-
ality provides the operator with the possibility of planning and
validating a mission before passing the executing command to
the vehicle. [14]

The complete LSTS toolchain is visualized in Fig. 2.7 where it can
clearly be seen how all of the communication, between Neptus and n
DUNE tasks, is performed via the IMC bus. All of the available sensor
data is dispatched on the IMC bus and can be extracted from any task.
Some tasks may then utilize this data in a navigational algorithm
and control commands are dispatched back on the IMC bus. This
message is then picked up by the Piccolo DUNE task, which acts as an
interpreter between the DUNE software and the Piccolo SL software,
before the Piccolo SL executes the provided control commands.

DUNE task
(1)

DUNE task
(2)

IMC bus

DUNE task
(n)

Neptus

Figure 2.7.: The LSTS toolchain.

21

3. Analysis and Design

This chapter will begin by introducing a couple of different approaches
which may achieve a precise airdrop from a fixed-wing UAV. A brief
analysis of the methods, with respect to the provided framework, will
be conducted and the most suitable method will be further investi-
gated. This investigation includes a couple of important steps. Firstly,
the most probable trajectory of the deployed beacon must be studied
in order to obtain an understanding of where the beacon is likely to
land. Secondly, a path must be generated for the aircraft to track
such that the beacon deployment can be conducted according to the
specifications of the beacon trajectory. Lastly, an analysis must be
performed to achieve the best possible tracking of the aforementioned
path.

3.1. Review of Precision Airdrop Methods

The task of accurately and precisely deploying an object from a fixed-
wing aerial vehicle to a given target has been widely researched and
studied because of its value to the military. In this thesis there were
primarily three different approaches that were considered in order to
deploy the object from the UAV – Cable-Supported Sliding Payload,
Parachute Deployment and Free Fall.

23

Chapter 3 Analysis and Design

3.1.1. Cable-Supported Sliding Payload

In the following method, as presented by Williams and Trivailo [15],
a cable is utilized to deploy the payload. The idea suggests that the
fixed-wing aircraft circles above the target point of impact with a
constant radius while a cable is attached to the aircraft. The cable-
tip approaches the center of this circle due to the natural dynamics
of this system. Demonstrations have revealed that this method can
ensure a cable-tip motion with a radius of approximately 1.5 m [16].
However, this result was obtained by utilizing a light aircraft with a
3 km long cable. Further, this result also required the cable-tip to
have the correct drag-to-weight ratio.

By utilizing an anchor on the ground, as displayed in Fig. 3.1, it is
possible to guarantee an accurate drop. In the case of a drop over
water the cable-tip is submerged in order to provide high damping.
Further studies also revealed that the descending payload needs to be
slowed down in order to avoid unstable cable dynamics.

While this method provides a high degree of accuracy, it does not
appear to be suitable when applied on a UAV. Relatively speaking,
the sheer mass of the cable and the cable-tip object, is expected to
far exceed the desired mass of the payload on the UAV. Furthermore,
the task at hand desires to place the objects on uninhabited icebergs
with neither anchor nor water to aid the accuracy.

24

3.1 Review of Precision Airdrop Methods

Figure 3.1.: Basic concept of cable-supported precision airdrop as
visualized by Williams and Trivailo. [15]

3.1.2. Parachute Deployment

The second possible option involves releasing the payload with a para-
chute as to allow a softer landing. This airdrop technique has been
widely studied for military purposes in order to extract larger cargo
and vehicles from aircrafts [2]. Often military operations are required
to adapt to the situation and the geographical location. Because of
this it was desirable to develop methods of airdrop from different
altitudes. In some cases it is possible for the aircraft to approach the

25

Chapter 3 Analysis and Design

desired target point at a very low altitude, while in other situations the
geographical location makes this approach difficult, if not impossible.
Ducote and Speelman [2] separated the altitudes into the following
four altitude ranges: 0 - 20 ft, 20 - X ft (where X is between 300 -
500 ft), X - 1500 ft and 1500 ft and above.

By focusing on the desirable operational altitude of the UAV it was
possible to narrow down the number of possibilities. For the purpose
of this mission it was most ideal to choose among the methods in
the altitude range of 20-X ft. Lower altitudes would make the UAV
vulnerable to changes in the terrain and high waves. Higher altitudes,
on the other hand, would further complicate the system and provide
less accuracy. Of the methods presented by Ducote and Speelman [2],
two concepts were considered and will consequently be presented for
usage with the UAV.

Parachute Low-Altitude Delivery System In this method the air-
craft deploys a reefed parachute1 as illustrated in Fig. 3.2. When the
aircraft reaches the desired extraction point, the parachute is dis-
reefed. At this point the drag forces will overcome the load restraint
and the payload will be extracted. Given a known airspeed and alti-
tude, this method of airdrop proved to provide a relatively high degree
of accuracy [2]. 90 % of all the payloads landed within 25 ft of the
desired point of impact. It should, however, be mentioned that this
was designed for containers capable of holding 500 - 2000 lbs (approx-
imately 226 - 907 kg).

1A reefed parachute means it is not fully opened. This is done to reduce the
drag force on the parachute.

26

3.1 Review of Precision Airdrop Methods

Figure 3.2.: Concept of the Parachute Low-Altitude Delivery Sys-
tem. [2]

Figure 3.3.: Concept of the High-Speed Container Delivery System.
[2]

27

Chapter 3 Analysis and Design

High-Speed Container Delivery System As visualized in Fig. 3.3,
this method releases the payload at the point of extraction. Upon
release of the payload a pilot parachute is deployed from the tail of the
payload. This parachute further extracts the main parachute which
decelerates the payload before impact. [2]

In this mission the released payload has a far lower mass than the pay-
loads considered by Ducote and Speelman [2]. As such, the payload is
much more susceptible to be affected by wind gusts, and even more so
if it is equipped with a parachute. Although the presented concepts
are viable options, it is assumed that the light weight of the pay-
load combined with a parachute would result in an overall decreased
accuracy and precision.

3.1.3. Free Fall

Finally, the method of releasing the payload from the UAV without
any form of aid was considered. For this method it was necessary to
make a couple of assumptions. It is important that the released pay-
load must be able to withstand a high-speed impact to the ground.
The speed on impact is largely dependent on the altitude at which the
payload was released. This further leads to the second assumption be-
ing that the payload can not be released from a too high altitude. This
is especially important when it comes to determining the accuracy of
the impact as it will almost definitely decrease with an increased al-
titude.

Two possibilities were considered in order to release the payload in free
fall from the aircraft. One way would be to release the payload with
an initial velocity perpendicular to the direction of flight. This way
the payload would quickly be separated from the aircraft and would

28

3.1 Review of Precision Airdrop Methods

not be of potential harm to the aircraft after the separation. Ideally
this initial velocity would be in the downward direction as this would
also aid in increasing the accuracy. The second way to release the
payload would be without any forced initial velocity. In other words,
the payload would only possess an initial velocity in the direction of
flight.

3.1.4. Concluding Remarks on the Precision Airdrop
Methods

A number of different approaches were considered in order to achieve a
high accuracy release of the payload. It should, however, be mentioned
that many of these methods were initially designed for larger objects
dropped from larger planes. Naturally, it was necessary to fit the
methods to a smaller scale. Furthermore, the shape of the Penguin B,
and especially the placement of the propeller, provides a significant
limitation when it comes to choosing the release method. A parachute
may get entangled in the propeller, which ultimately can cause the
plane to crash.

As for the cable-supported method, this one is very interesting and
may be used with a light and thin, yet strong, cable. However, as
the payload needs to be slowed during the descent, this method may
prove to be difficult to realize. Additionally, the cable may also get
entangled in the propeller.

In conclusion, the method of releasing the payload in free fall was con-
sidered the most suitable based on the requirements of this mission.
By releasing the object safely from the aircraft (avoiding impact with
the airframe structure), this method was likely to achieve an accuracy
based primarily on the altitude at which it was released and any un-

29

Chapter 3 Analysis and Design

predictable environmental disturbances. Consequently, this method
is further investigated in this thesis.

3.2. Computed Air Release Point

The technique of releasing the object in free fall requires the calcu-
lation of a point known as the Computed Air Release Point (CARP)
[17]. This is the point at which the released payload must be separated
from the aircraft in order to land in the designated area of impact. The
CARP needs to account for the wind, the system ballistics and the
airspeed in order to be as accurate as possible. This section intends
to present the calculations of this point as well as the possible sources
of error involved. Moreover, two different approaches to confirm that
the aircraft has reached the CARP will also be introduced.

3.2.1. Winds

When releasing the payload in free fall, without any way of control-
ling it after the separation from the aircraft, the wind is naturally of
significant importance when it comes to the accuracy and precision
of the method. The wind affects both the direction of travel in ad-
dition to the time of the fall [17]. Moreover, the wind can be highly
unpredictable and can vary greatly depending on the altitude above
ground level. This makes a payload release from high altitudes more
unpredictable than releasing the payload from a lower altitude.

On the Penguin B the wind is measured as explained in sec. 2.3.2.
This measurement, however, only describes the wind at the current
altitude of the aircraft. Additionally, this measurement is simply a

30

3.2 Computed Air Release Point

mean vector of the wind profile. Regardless, as Wuest and Benney
[17] explained, the CARP is often calculated by assuming a uniform
wind profile from the altitude of release and to the ground. This
simplification will almost certainly be a source of error which increases
with an increasing release altitude. Consequently, the magnitude of
this error will be further investigated in sec. 5.1.3.

In order to reduce the size of this error the choice was made to release
the payload against the direction of the wind. A couple of reasons,
which will now be briefly mentioned, led to this decision. First, the
computation of the CARP requires a given direction of flight for the
aircraft such that the released payload possesses a predictable initial
velocity upon release.

Second, because the Penguin B is a relatively light aircraft, it is very
susceptible to wind disturbances, such as wind gusts. Consequently,
the aircraft would have to compensate for the wind by either banking
or using the rudder or a combination of these. This could further lead
to an undesirable aircraft configuration upon approaching the CARP,
which ultimately may cause the actual point of impact to deviate
significantly from the desired point of impact. Such a disturbance can
be avoided, or at least mitigated, by allowing the airplane to approach
the CARP against the wind direction.

Lastly, because the speed of the aircraft is reduced when flying against
the wind, this may aid in achieving a more accurate release. This is
a matter that will be revisited in sec. 3.2.3.

3.2.2. System Ballistics

As a free fall method has been chosen, the system ballistics, or pro-
jectile motion, will simply depend on the physical properties of the

31

Chapter 3 Analysis and Design

released payload in addition to the properties of the medium that it
moves through. A natural simplification here is to assume that the
released payload is a smooth sphere without any means of changing
the direction of flight. This further implies that the only forces acting
on the released payload are the drag force and the gravitational force.

Although easily changed at a later point in time, the air density was
chosen, according to Tab. 3.1 to be ρ = 1.269 kg/m3. Moreover, the
smooth sphere possesses a drag coefficient CD = 0.5 [18], along with
an initially set radius rsphere = 0.05 m and mass msphere = 0.2 kg.
These are all values that can later be fine-tuned to accommodate the
physical properties of the released object.

Temperature, Celsius Air Density, kg/m3

+10 1.246
+5 1.269
0 1.292
-10 1.341

Table 3.1.: Density of air at Standard Atmospheric Pressure. [18]

3.2.3. Airspeed

The IAS of the aircraft has previously been assumed to remain con-
stant throughout the precision drop maneuver as stated in sec. 1.1.2.
Thus, the main inaccuracy provided by the airspeed in the free fall
method comes from the rate at which sensor readings are made. If
the aircraft flies at a lower speed, a higher resolution of the sensor
readings can be achieved. On the other hand, with a higher airspeed,
the distance between each reading increases and the resolution conse-
quently decreases. As mentioned before, flying against the wind will

32

3.2 Computed Air Release Point

decrease the speed relative to the ground, which improves the reso-
lution of sensor readings. Nevertheless, the airspeed, along with the
possible limitation in sensor readings, may still prove to be another
source of error which may decrease the overall accuracy of the airdrop.

3.2.4. Calculation of the CARP

Wuest and Benney [17] explained that the calculation of the CARP
can be done by modeling the released beacon as a free fall with an
initial velocity. Fig. 3.4 visualizes the concept of free fall and the active
forces on the object.

Figure 3.4.: Concept drawing of the free fall model and the active
forces.

It is naturally highly desired to calculate a CARP that is as accurate
as possible. Thus it is necessary to account for both the drag and

33

Chapter 3 Analysis and Design

gravitational forces. Parker [19] explained that in practice the drag
forces can never be neglected, nor can they be modeled linearly as this
only applies to very small spheres. In light of this, the one-dimensional
drag force is modeled quadratically as

FD = bv̄2 (3.1)

with

b = 1
2CDρA (3.2)

Here CD is the drag coefficient, ρ is the air density, A is the cross-
sectional area and v̄ is the velocity of the object relative to the velocity
of the fluid it moves through.

Further, the motion of the projectile can be decomposed into the
horizontal and the vertical direction. Expansion of this system into
the third dimension is trivial.

max = ΣFx (3.3)

maz = ΣFz (3.4)

As has been previously stated, the forces that need to be accounted
for are the drag FD and the gravitational Fg forces. Additionally,
since the acceleration is time-dependent, equations 3.3 and 3.4 can be
expressed as

m
dvx
dt

= −FD (3.5)

34

3.2 Computed Air Release Point

m
dvz
dt

= −FD − Fg (3.6)

By combining equation 3.1 with equations 3.5 and 3.6, the following
expressions can be derived [19].

dvx
dt

= − b

m
vx ‖ v ‖ (3.7)

dvz
dt

= − b

m
vz ‖ v ‖ −g (3.8)

Here the bar refers to relative velocity, g is the gravitational constant
on Earth and ‖ · ‖ is the Euclidean norm. The relative velocities can
be found by accounting for the velocity of the fluid, which in this case
is referred to as the wind w.

dvx
dt

= − b

m
(vx − wx) ‖ v−w ‖ (3.9)

dvz
dt

= − b

m
(vz − wz) ‖ v−w ‖ −g (3.10)

In modeling the free fall it was desired to calculate where the object
would land. In other words, it was not sufficient to just calculate
the velocity at the time of impact, but also compute the position at
the time of impact. This can easily be accomplished by using that
the time-derivative of the position equals the velocity. As such, the
system of ordinary differential equations (ODEs) that must be solved
becomes

35

Chapter 3 Analysis and Design

ẋ =

v̇x

v̇y

v̇z

ẋ

ẏ

ż

=

− b
m

(vx − wx) ‖ v−w ‖
− b
m

(vy − wy) ‖ v−w ‖
− b
m

(vz − wz) ‖ v−w ‖ −g
vx

vy

vz

(3.11)

However, solving this system to obtain the position of impact is not
sufficient as it does not directly deliver the CARP. This was solved by
setting the tentative point of release (x, y)release to equal the desired
point of impact (x, y)impact. Further, zrelease was set to equal the
altitude of the UAV at the time of release. By solving the system of
ODEs in equation 3.11 with (x, y)impact as the initial position it was
possible to obtain a tentative position of impact (x, y)impact.

As shown in Fig. 3.5, (x, y)release, i.e. the CARP, was found by simply
shifting the points. The resulting expressions can be seen in equations
3.14 and 3.15.

∆x = ximpact − ximpact (3.12)

∆y = yimpact − yimpact (3.13)

xrelease = ximpact −∆x (3.14)

yrelease = yimpact −∆y (3.15)

36

3.2 Computed Air Release Point

Figure 3.5.: Finding the CARP (x, y)release by using the tentative
position of impact (x, y)impact.

3.2.5. Release Criteria

Although it is an intuitive observation, it is important to note that
the CARP is defined as a single point in space. However, due to inac-
curacies in measurements, in addition to the unexpected disturbances
that occur in the real world, it is very unlikely that the UAV will ever
be at this exact point. Because of this it is imperative to find a crite-
rion which ensures that the UAV detects that it is sufficiently close to
the desired release point. Furthermore, as previously mentioned, the
altitude will not be controlled in this thesis and will as such also be
omitted in the analysis of the release criteria.

37

Chapter 3 Analysis and Design

3.2.5.1. Circle

The immediate solution, which may appear to be satisfactory, is to
check the distance from the current position to the CARP. If this
distance b is sufficiently small, the flyby will be considered successful,
as seen in the equation 3.16 [9]. Here p ∈ R2 represents the position
at any time instant t and z ∈ R2 equals the CARP.

‖ p(t)− z ‖≤ b (3.16)

This method is, however, prone to tracking errors and requires fre-
quent position updates. Additionally, sudden wind gusts may cause
deviation from the desired path. Consequently, if b is chosen too small,
the release criterion may never be met. On the other hand, with an
increasing b, the accuracy of the criterion decreases. As such the size
of b will have to be tuned appropriately. In the case of deploying the
beacon accurately, it may be desirable to only consider the flyby a
success when the UAV is actually within a certain perimeter.

This release criterion can be seen in Fig. 3.6 as the circle defined by
(x, y)release and the radius Rcircle.

3.2.5.2. Halfplane

The second solution to be proposed also considers the distance from
the UAV to the CARP. However, in this method the release criterion
is successful when a set halfplane H(z,q) is crossed [9]. In equation
3.17, z ∈ R2 equals the CARP and q ∈ R2 is a unit vector pointing
in the direction the halfplane expands into. As before, p ∈ R2 is the
current position of the UAV.

38

3.2 Computed Air Release Point

H(z,q) ,
{
p ∈ R2: (p− z)Tq ≥ 0

}
(3.17)

Utilizing a halfplane as a release criterion ensures a successful release
regardless of wind and tracking errors. However, due to the large area
in which the release criterion is valid, this method desires a control
strategy that keeps the UAV as close to the desired path as possible.

The halfplane is identified in Fig. 3.6 as the area on the right of the
dotted vertical line crossing through (x, y)release.

Figure 3.6.: Conceptual illustration of the difference between the
two release criteria – Circle and Halfplane.

39

Chapter 3 Analysis and Design

3.3. Path Planning

Thus far it has been decided to release the payload at the CARP
and in the direction opposite to that of the wind in order to achieve
the most optimal result. This can only be achieved by controlling
the aircraft into this designated position and direction. For many
cases it is possible to simply look at the transition from one position
to another position, without any consideration for the orientation at
either point. However, it has been presented thus far that it was
necessary to consider a path which also accounted for the orientation
of the vehicle at the end point. Due to the non-holonomic nature
of the fixed-wing aircraft this implies that the vehicle must approach
the desired position with the desired course, combined known as the
desired configuration.

This section will present the different paths which were considered in
order to achieve the desired end configuration.

3.3.1. Straight Line Approach

Initially, this project desired to design a simple algorithm that would
easily guide the UAV into the desired configuration. Consequently, the
first method would be very simple, yet accomplish the desired task,
and as such achieve the desired configuration. This method attempts
to guide the aircraft from any given initial configuration and towards
an intermediate waypoint. This waypoint is located along a straight
line which coincides with the CARP and is aligned with the desired
direction the aircraft needs upon releasing the payload. This path was
named the Straight Line Approach (SLA) and the idea is illustrated
in Fig. 3.7. Here it can be seen that two waypoints are generated. The

40

3.3 Path Planning

final waypoint, WP2, is located at the same position as the point of
release (x, y)release, i.e. the CARP. The first waypoint, WP1, is chosen
a distance d in the direction of the wind away from WP2.

Figure 3.7.: Concept drawing of how waypoints can be used to guide
the aircraft.

3.3.1.1. Choosing the Distance d

The task of choosing the optimal distance between the waypoints is
not trivial as it depends on the airspeed and the heading turn rate
of the aircraft. These two parameters further decide the minimum
turn radius R of the aircraft, as seen in equation 2.12. Furthermore,
d depends on the method used to track the path, as some methods
might have a better performance than others. However, as an initial
guess, it is assumed that d is set according to the constraint provided
by the minimum turn radius R.

41

Chapter 3 Analysis and Design

A further analysis of this distance is conducted in Fig. 3.8. Here
Fig. 3.8a reveals that with d = R the aircraft will only be able to
fulfill the goal by entering WP1 in the desired direction of flight with
only a minor angle offset. If the aircraft enters WP1 at any other angle
it will make the sharpest turn possible and enter WP2 at the wrong
angle. In Fig. 3.8b it can be seen, by following the thick dashed line
and the thin dashed line, that the aircraft can accomplish the goal
by entering WP1 from below and above. However, a quick glance at
the dot-dashed line reveals that an approach from the sides does not
achieve the desired configuration.

Finally, Fig. 3.8c illustrates that it should be theoretically possible to
accomplish the goal by setting d = 3R. At this distance the aircraft
should have enough space to enter WP1 at any angle and still enter
WP2 at the desired angle. Nevertheless, for the purpose of testing, the
distance is chosen to be d = 4R to account for the uncertain behavior
of the autopilot as well as possible wind disturbances.

42

3.3 Path Planning

(a) d = R

(b) d = 2R (c) d = 3R

Figure 3.8.: A brief schematic explaining the necessity of increasing
the distance d by multiplying the minimum turn radius R.

43

Chapter 3 Analysis and Design

3.3.1.2. Concluding Remarks on the Straight Line Approach

It can easily be seen that this method provides a very simple approach
to the problem. Regardless of the initial position and orientation, the
UAV will approach WP1 with an arbitrary angle of attack depend-
ing on the initial configuration. Moreover, with a sufficiently large
d the UAV is able to straighten up before reaching WP2. However,
this method is likely to require a very large d in order to achieve a
satisfactory result, which might not always be desirable.

3.3.2. Dubins Path

Another approach is to use a path known as Dubins path, which,
in this section, will be based on the interpretation and presentation
shown by Beard and McLain [9]. This method assumes an initial
configuration and a terminal configuration, and further attempts to
find the time-optimal path between the two points. This path consists
of a circular arc, followed by a straight line and finally a second circular
arc. The idea of the circular arcs is to define their radius large enough
for the coordinated turn radius constraint, given by equation 2.11, to
be respected.

Under these assumptions there may exist up to four different paths
which all individually connect the two configurations. As illustrated
in Fig. 3.9a, one possible path is given by following the right-handed
arc until reaching the point where the tangent of the first circle crs
coincides with the tangent of the second circle, which here is chosen
to be the right-handed circle cre. Following this straight line and then
the right-handed arc on cre then leads to passing through the chosen
end point with the desired course. It can easily be seen that, given a
sufficiently large radius R of the circles, this will be one possible path

44

3.3 Path Planning

that does not violate the constraints of the system, yet achieves the
desired configuration.

In the same way, the other paths, which can be seen in Fig. 3.9, are
built up of a combination of choosing the right-handed and the left-
handed circles. Although all of these paths are possible solutions to
the problem, only one of them is defined as Dubins path – the one
with the shortest travel distance. As such it is necessary to compute
the lengths of each of the paths in order to determine which is Dubins
path2. In this particular example it can be seen from Fig. 3.9 that
Fig. 3.9b displays the shortest path.

2Computing the lengths of the paths is beyond the scope of this thesis, but this
is thoroughly explained by Beard and McLain [9].

45

Chapter 3 Analysis and Design

(a) Right-handed arc – Straight – Right-handed
arc (RSR)

(b) Right-handed arc – Straight – Left-handed
arc (RSL)

(c) Left-handed arc – Straight – Right-handed
arc (LSR)

(d) Left-handed arc – Straight – Left-handed arc
(LSL)

Figure 3.9.: Given a start and an end configuration, there exists four
paths that each consists of an arc, a straight path and a second arc.

46

3.3 Path Planning

After determining which path is defined as Dubins path, the next
step is to guide the UAV through this path. One way to do this is to
compute the positions at which the vehicle exits and enters the circles.
Such a method makes it possible to simply decide whether to follow
a straight path or to follow a given circle with a constant radius.

One question that may arise is how to determine whether the vehicle
has reached the designated point. Naturally, the ideas presented in
sec. 3.2.5, also cover this matter. As mentioned, the halfplane method
guarantees that the point has been reached. Hence crossing a com-
puted halfplane will here signalize that the position has been reached.
These halfplanes are illustrated in Fig. 3.10 at the points where the
vehicle must change from circle to a straight line and vice versa.

Figure 3.10.: Dubins path with halfplanes given as the positional
success criterion.

Dubins path manages successfully to compute a possible transition
from one configuration to another configuration without violating any
constraints. However, one major drawback of the method, as pre-
sented by Beard and McLain [9], is that it requires the initial and
terminal positions to be separated by at least a distance of 3R if all

47

Chapter 3 Analysis and Design

four paths are to exist. The reason for this limitation can easily be
understood when considering the case displayed in Fig. 3.11. Here it
is only possible to find three different paths. In fact, it is easy to ob-
serve that only two paths, namely RSR and LSL, can be guaranteed
to exist.

(a) Right-handed arc – Straight –
Right-handed arc (RSR)

(b) Left-handed arc – Straight –
Right-handed arc (LSR)

(c) Left-handed arc – Straight –
Left-handed arc (LSL)

Figure 3.11.: Displaying the possible paths when the distance be-
tween the two configurations is less than 3R.

48

3.3 Path Planning

Moreover, there are two degenerate cases which will not be considered
as they are very unlikely to happen. First, there is the case where the
initial and terminal configurations lie on the same line and point in
the same direction. This does not require a movement along an arc.
Secondly, there is the case where both of the configurations lie on the
same circle with the directions both going either clockwise or counter-
clockwise. Here it is not necessary to move along a straight line.

3.3.3. Augmented Dubins Path

As presented, Dubins path, although providing an optimal transition
between two configurations, possessed an important limitation in that
it demanded a minimum distance between the two positions. This had
to be considered if the method was to be used in this system. However,
this limitation could be ignored by, instead of seeking four solutions,
only look for the two solutions that always exist – RSR and LSL.
Under this assumption it was possible to create a path which was
based on the concept of Dubins path, namely the Augmented Dubins
path (ADP).

3.3.3.1. Initial Idea

The idea behind this method was to assume an initial loitering around
the desired point of impact (x, y)target with an arbitrary loitering ra-
dius R, equal to or exceeding the minimum turn radius. Upon initia-
tion, the UAV would continue to follow the initial circle until reaching
the straight line tangential to both of the circles, as seen in Fig. 3.12.
It would then leave the circle c1 and move on to track the line un-
til reaching the intersection between the line and the circle c2. At

49

Chapter 3 Analysis and Design

this point the UAV would continue to track the arc until reaching the
CARP (x, y)release where it would activate the release mechanism.

Figure 3.12.: Initial ADP concept.

The initial idea did, however, possess some potential erroneous be-
havior because the CARP would lie on a circle. This meant that even
though the UAV would have the correct course at the correct position,
it would only stay in this configuration for a small time instant. In
an ideal case, this would be sufficient. However, when considering the
disturbances in the real world, such as wind, and possible deviations
from the desired path, it would seem necessary to improve this path.

50

3.3 Path Planning

3.3.3.2. Improved Path

A possible solution to the aforementioned issue is to simply allow the
UAV to travel along a straight path before approaching the CARP.
This modification of the initial idea has been illustrated in Fig. 3.13a
where it can be seen that a third circle c3 was added. This circle
was placed a length L below c2, where the value of L depends on
how much time the UAV should be allowed to straighten up before
reaching the CARP. It can easily be seen, however, that upon applying
this modification, the circle c2 becomes unnecessary. As such, a final
concept, where the circle c2 is omitted, was developed. This method
can be seen in Fig. 3.13b.

Another improvement that was considered was to compute the radius
R in such a manner that it increased according to the magnitude of
the wind, as shown in equation 2.12. This way, with an increasing
wind, the bank angle would not saturate, which further would make
the aircraft able to track the path more reliably. It was also decided to
increase L in accordance with the wind. This was done by summing
the IAS with the wind magnitude and further multiply this sum by a
constant found through simulations to be sufficiently large.

In the final design the idea was to have the UAV create a path on the
right-handed side or the left-handed side depending on whether the
UAV was initially loitering clockwise or counter-clockwise around c1.

51

Chapter 3 Analysis and Design

(a) Adding a third circle c3 at a distance
L from c2.

(b) Removing c2 to get the final
path.

Figure 3.13.: The ADP was improved by adding a straight line ap-
proach before reaching the CARP.

3.3.3.3. Concluding Remarks on the Augmented Dubins Path

As it was previously explained, this method bases itself upon the
concept used in Dubins path in that it seeks to find a time-optimal
path. However, in order to use this method it is necessary to generate
more intermediate waypoints than the SLA. Nevertheless, in doing so,
this method will, to a much larger degree, be able to control the UAV
along the entire path. Thus it is evident that the ADP is likely to
provide a far higher degree of determination as to what the resulting
path becomes. Consequently, it was assumed that this method would
outperform the SLA.

52

3.4 Path Tracking

3.4. Path Tracking

Following the development of the desired paths, it was necessary to
more closely examine the possible ways of controlling the UAV in order
to track these paths. It was previously mentioned that the Piccolo SL
can receive two different kinds of control inputs which can, individu-
ally, be used in order to control the position and the orientation of the
Penguin B in the horizontal plane. In this section, these two control
inputs, namely waypoints and heading, will be further examined and
considered for usage in the final system.

3.4.1. Waypoints

By providing the Piccolo SL with waypoints it is possible for the
Penguin B to track these waypoints in the order they were received.
However, it is only possible to provide the autopilot with three way-
points at a time. Additionally, the final waypoint is set in the Piccolo
DUNE task by default to be a safe loitering waypoint located a certain
distance off, along the extension of the second waypoint. This further
implies that any control strategy utilizing more than two waypoints,
will need to provide the autopilot with new waypoints throughout the
mission.

When dispatching waypoints on the IMC bus they will be interpreted
in the Piccolo DUNE task which then sends the waypoints in the
correct format to the Piccolo SL Autopilot. This process allows the
autopilot to control the aircraft with an unknown algorithm. As such
it may be difficult to determine exactly where the UAV intends to fly in
order to reach the waypoints, as the exact path is not displayed in the
PCC HMI. Moreover, it is not always possible to determine at what

53

Chapter 3 Analysis and Design

angle it will approach the waypoint. Another issue that may arise,
when utilizing waypoints as the control input, is that the Piccolo SL
success criterion for reaching a waypoint may not necessarily satisfy
the need for accuracy that this task desires.

3.4.2. Heading

Another way of controlling the aircraft is by continuously providing
new heading references to the Piccolo SL Autopilot. By utilizing the
kinematic model given by equation 2.6, with the input constraint on
the heading turn rate as shown in equation 2.7, it is possible to design
a controller that computes the desired heading.

A PID controller was considered, however, due to the simple nature
of this controller, it was assumed that the Piccolo SL Autopilot way-
point control would outperform such a controller. Consequently, more
advanced methods were pursued.

Ren and Beard [6] explained that the control design of nonlinear
systems subject to input constraints can be approached by using ei-
ther Model Predictive Control (MPC) or Control Lyapunov Functions
(CLFs). Thus, these two methods will be briefly presented in relation
to this project.

54

3.4 Path Tracking

3.4.2.1. Model Predictive Control

The MPC is explained in the following way by Mayne et al. [20].

“Model Predictive Control is a form of control in which
the current control action is obtained by solving, at each
sampling instant, a finite horizon open-loop optimal con-
trol problem, using the current state of the plant as the
initial state; the optimization yields an optimal control se-
quence and the first control in this sequence is applied to
the plant.“

Furthermore, to visualize this idea, Foss and Heirung [21] have for-
mulated a simple MPC algorithm as shown in Algorithm 3.1.

Algorithm 3.1 State feedback MPC procedure
for t = 0, 1, 2, ... do

Get the current state xt.
Solve a dynamic optimization problem on the prediction
horizon from t to t+N with xt as the initial condition.
Apply the first control move ut from the solution above.

end for

Singh and Fuller [7] presented a solution to navigate a UAV through
an urban terrain by the use of MPC. A nominal trajectory was set
which consisted of the initial and the final position, in addition to
an intermediate position. The problem here was to navigate through
these points, while at the same time avoiding collision with the urban
obstacles, i.e. the buildings. This problem was solved by creating
and solving a number of piecewise-convex constrained MPC problems.
Each problem considers the current position and generates a convex
cone in which the vehicle will safely avoid collision with the obstacles.

55

Chapter 3 Analysis and Design

In the same way, a similar strategy was proposed in order to track
one of the given paths. According to Singh and Fuller [7], a linear
quadratic tracker with penalties on the input and the error relative to
the reference trajectory, can be formulated. Thus the following cost
function to be minimized was suggested.

Jt =
t+N−1∑
k=t

(yk+1 − rk+1)TQ(yk+1 − rk+1) + uTkRuk (3.18)

where Q ∈ R2x2 is a symmetric positive semidefinite matrix, which
decides the impact on each controllable variable, while R is a positive
scalar which penalizes the input. The controllable variables are given
as

y = [x1, x2]T

In equation 3.18 each time step is denoted by t while the length of
the predicting time horizon is given by N . u is the heading turn
rate and y is the position, as given by equation 2.6. Furthermore,
as was done by Singh and Fuller [7], the reference trajectory r =
[r0, r1, r2, ..., rM], M ≥ N can be created by interpolating between
the waypoints.

Due to the nonlinear nature of the kinematic model in equation 2.6,
this problem is, however, a nonlinear problem. Thus, Singh and Fuller
[7] suggested that the vehicle model should be linearized about a
nominal trajectory in order to transform this problem into a convex
quadratic programming problem, which is far easier to solve.

56

3.4 Path Tracking

3.4.2.2. Control Lyapunov Function

Ren and Beard [6] studied more closely the use of CLFs to track
a trajectory, given constraints on velocity and heading. This is very
similar to the aforementioned problem, except that the airspeed in this
project was assumed constant. Thus, CLFs may also be considered
for trajectory tracking of a given path in this project.

In general, the Lyapunov theory is of significant use in stability anal-
ysis. The theory can be explained by first assuming an ODE without
any control inputs, and an equilibrium point xequilibrium.

ẋ = f(x) (3.19)

If a continuously differentiable Lyaponuv candidate function V (x) ex-
ists, which satisfies V (x) > 0 and V (xequilibrium) = 0, and the time
derivative V̇ (x) can be shown to be negative for all x except xequilibrium,
i.e. V̇ (x) < 0, ∀x − xequilibrium, then xequilibrium is guaranteed to be
asymptotically stable [22].

The CLF theory is based on the expansion of the Lyapunov theory
to account for a given input u. This implies that the Lyapunov
candidate function becomes V (x, u), which is positive definite, and
the control objective is to find a feasible feedback input u, such that
V̇ (x, u) < 0,∀x [23]. Furthermore, if the reference path satisfies the
constraints in the vehicle model in equation 2.6, as the path planning
design intends to do, it is possible to track the path by the use of a
CLF. In the same way as presented by Ren and Beard [6], the control
objective becomes to find feasible control inputs for uc at every time
instant, such that | xref1 − x1 | + | xref2 − x2 | + | ψref2 − ψ2 |→ 0 as
t→∞.

57

Chapter 3 Analysis and Design

3.4.3. Concluding Remarks on Path Tracking

In order to control the Penguin B by utilizing heading as control
input, it is imperative that the current heading of the aircraft has a
high degree of accuracy. However, Skjong and Nundal [24] discovered
that the heading, which could be extracted from the Piccolo SL, is
based on the GPS measurements. Lack of GPS local precision led to
the conclusion that the heading measurements likely did not provide
a sufficiently high degree of accuracy. As such, it was decided not
to pursue any of the heading reference path tracking methods in this
project.

Consequently, waypoints, although presumably providing a less degree
of accuracy and predictability than heading control, was chosen as the
control input to the Piccolo SL.

58

4. Implementation

This chapter will present the implementation of the system, both on
the hardware side and on the software side. Due to the distribution of
the tasks, as presented in sec. 1.1.4, this section will focus to a larger
degree on the software side of the implementation. For information
about hardware, beyond what is presented here, the reader is referred
to Siri Mathisen [25].

4.1. Payload

The successful deployment of the beacon from the aircraft required
a custom designed payload which could perform the necessary tasks.
Thus a payload, which could easily be mounted on board the plane,
was assembled. This sections intends to introduce the payload which is
comprised of the release mechanism as well as the necessary hardware
to perform computations and activate the release mechanism.

4.1.1. Release Mechanism

As previously explained, the idea was to deploy the beacon from the
aircraft in free fall. Consequently it was necessary to procure a release
mechanism that could reliably release the beacon from the Penguin B.

59

Chapter 4 Implementation

Three different devices were more closely examined in order to deter-
mine which one would prove to be the most suitable for this mission.

The Servoless Payload Release System is a simple release mecha-
nism that can be connected directly to a standard radio re-
ceiver [26]. In other words, it requires a Pulse-Width Modu-
lated (PWM) signal in order to activate. Moreover, as can be
seen in Fig. 4.1a, the device has conveniently placed holes such
that secure installation on the Penguin B, and on the released
beacon, is possible.

The Quanum RTR Bomb System possesses much of the same func-
tionality as the Servoless Payload Release System, but as shown
in Fig. 4.1b, this system is larger, and consequently also heavier.
It can further be seen that accompanying this set is also a plate
which can be mounted on a customized payload instead of using
the included “bomb”. However, the release mechanism does not
possess any secure way of fastening it to the Penguin B.

The Peregrine Exhaustless CO2 Ejection System is designed such
that the released payload would be ejected with an initial ve-
locity caused by puncturing a CO2 cartridge [27]. This initial
velocity creates a swift separation of the released payload and
the aircraft. Moreover, the design of the device, illustrated in
Fig. 4.1c, makes it ideal for installation inside the aircraft as it
does not create a flame, nor does it leave any resulting residue.

60

4.1 Payload

4.1.1.1. Choice of Release Mechanism

As explained in sec. 2.3.1, it was important to release the payload
from the aircraft in such a way that it did not pose a threat to the
aircraft after separation. For this reason the Peregrine Exhaustless
CO2 Ejection System, offering an initial velocity, would be very desir-
able. However, it was decided that this device would possibly create
more complications and was, as such, not chosen.

The remaining two options were both very similar. Still, the Servoless
Payload Release System appeared more sturdy than the Quanum RTR
Bomb System. Furthermore, it offered a practical way of securing the
release mechanism to the aircraft. Consequently, the decision was
made to use the Servoless Payload Release System for the initial test
setup.

61

Chapter 4 Implementation

(a) The Servoless Payload Release
System. [28]

(b) The Quanum RTR Bomb System.
[29]

(c) The Peregrine Exhaustless CO2 Ejection System. [27]

Figure 4.1.: The release mechanisms.

62

4.1 Payload

4.1.1.2. Mounting on the Penguin B

Upon having chosen a simple release mechanism, with no initial ve-
locity, it was necessary to also mount the device safely on board the
aircraft. It was imperative to mount it in a location which ensured
that the deployed beacon would not collide with the propeller after
separation from the aircraft. By mounting the release mechanism un-
derneath the aircraft body, a safe separation could not be guaranteed.
Consequently, the decision was made to mount two release mecha-
nisms, for symmetrical reasons, on a bar which was then attached to
the landing gear. Thus, actual in-air testing would imply dropping
two identical objects simultaneously from the aircraft.

The mass of the release mechanisms, including the pair of drop-test
objects, and the accompanying bar was negligible relative to the mass
of the aircraft. Thus, it was assumed that the maneuverability of the
aircraft was unaffected.

It can be seen in Fig. 4.2a how the release mechanism was secured to
the bar, and further in Fig. 4.2b, how this bar was attached to the
landing gear. The complete system can be seen in Fig. 4.2c. Moreover,
when considering Fig. 4.2d, where the Penguin B is mounted on the
launch catapult, it was possible to determine that the placement of
the bar would not interfere with the launch from the catapult. It was,
however, for landing purposes, desired to adjust the bar such that it
was as close to the aircraft body as possible. In this way it would
intervene as little as possible with the landing.

63

Chapter 4 Implementation

(a) Close-up of one of the installed
release mechanisms (with gray, half-
sphere drop-test object fitted).

(b) The white fasteners secured the bar
to the landing gear on the Penguin B.

(c) Overview of the bar mounted on the
Penguin B.

(d) The Penguin B, with the bar, placed
on the launch catapult.

Figure 4.2.: Overview of how the release mechanisms were mounted
on the Penguin B.

64

4.1 Payload

4.1.2. Penguin B Custom Payload

In sec. 2.3.1 the Penguin B was introduced and Fig. 2.4 reveals a so-
called Universal Payload Mount installed underneath the aircraft.
This mount can be equipped to fit the needs of any particular mis-
sion. As mentioned, there is, however, an upper weight limit to con-
sider when assembling this payload. Moreover, it is also important to
consider the limited space on the mount, as well as the placement of
components, in order to avoid displacing the center of gravity (CG).

4.1.2.1. PandaBoard

The on board computer, responsible for performing the necessary com-
putations, is a single-board computer known as a PandaBoard. The
PandaBoard is booted from a Secure Digital (SD) card in a Linux-
based operating system (OS). This system is intended to run the im-
plemented DUNE software which utilizes the IMC messages to com-
municate both with the Piccolo SL and with the Ground Station.

4.1.2.2. PWM Circuit Board

As previously mentioned, the release mechanism requires a PWM sig-
nal in order to activate. The PandaBoard, however, does not provide
an option to create this signal. As such it was necessary to create a
circuit board that would create a PWM signal based on a high/low
voltage input from a pin on the Pandaboard. This circuit board was
set up to output a PWM signal, which activated the release mech-
anism, for as long as the pin was set to low. Upon changing the
pin to high, the generated PWM signal would deactivate the release
mechanism.

65

Chapter 4 Implementation

4.1.2.3. Communication

In order for all the devices in the system to function together it was
necessary to set up a communication link between all the devices in
the system. The devices are connected as illustrated in Fig. 4.3. It can
here be seen that on board the Penguin B the Piccolo SL is connected
to the PandaBoard via a serial cable, on the Piccolo SL end, and
converted to a USB cable, on the PandaBoard end.

Figure 4.3.: Overview of the communication link between the devices
in the system.

Furthermore, to achieve communication between the PandaBoard and
the laptop, also known as the Ground Station, it was necessary to set
up a wireless link. This communication link was set up by connecting
a Rocket M5 to the PandaBoard and a NanoStation M5, via the Local
Area Network (LAN), to the laptop.

66

4.1 Payload

Rocket M5 features a high-speed and long distance WiFi connection
[30]. It does, however, require the usage of a pair of anten-
nas in order to provide a sufficient range. The Rocket M5 can
communicate both with another Rocket M5 and with a NanoS-
tation M5.

NanoStation M5 acts as a client device and is set up to communicate
with the Rocket M5 [31]. However, the NanoStation M5, unlike
the Rocket M5, does not use external antennas and consequently
it has a much shorter range. For this reason, during test flying
at Agdenes, a Rocket M5 served as the communication unit on
the ground as well.

4.1.2.4. Power Supply

In order to power the payload it was necessary to find appropriate
power supplies for all of the components in the system. Initially it
was assumed possible to power the entire payload with the serial cable
from the Piccolo SL which provides a 12 V output. Thus a power
converting circuit was designed and made in order to provide the
components with the correct input voltage.

However, the PandaBoard requires a stable 5 V input, whereas the lin-
early down converted power from the serial cable was not sufficiently
stable. Consequently, it was decided to power the PandaBoard by
using a 7.4 V battery and further utilize a reliable voltage regulator
to obtain a stable 5 V output. The Rocket M5 and the PWM circuit
board, on the other hand, were powered by the aforementioned power
circuit.

67

Chapter 4 Implementation

4.1.2.5. Hardware Architecture

Lastly it was necessary to assemble the payload and install it on the
Universal Payload Mount. The resulting hardware design would ide-
ally be both well-presented and avoid any unnecessary tension on any
of the cables. Furthermore, it was desirable to place the components
in such a way that, once installed on the Penguin B, it would be easy
to connect and disconnect any cables if deemed necessary.

Initial Setup The initial design was simple and sought to fulfill the
aforementioned criteria, as can be seen in Fig. 4.4a, where the compo-
nents have been installed on the Universal Payload Mount. However,
unforeseen changes in the design of the Penguin B hardware resulted
in the need to alter the initial hardware setup. Still, Fig. 4.4b displays
how the payload appeared when mounted on the Penguin B.

Improved Setup In the improved hardware setup it was decided to
utilize a metal casing fastened to the Universal Payload Mount. The
components would then be installed on this metal casing. This would
not only ensure that the payload could fit in the Penguin B, but also
provide a better framework for future work on the payload. It can
be seen in Fig. 4.5 how the Rocket M5 was installed on top of the lid
for an easy way to connect it to the antennas. The PandaBoard was
placed underneath the lid to avoid any tension on the ethernet cable
to the Rocket M5. Further, the PWM circuit board was installed
on the side of the metal casing. This left room for the battery and
the voltage regulator to be attached with Velcro to the floor of the
Universal Payload Mount.

68

4.1 Payload

(a) Setup of the hardware.

(b) Setup of the hardware when mounted on the Penguin B.

Figure 4.4.: Overview of the initial setup of the hardware.

69

Chapter 4 Implementation

(a) The Rocket M5 installed on top of
the casing.

(b) Overview of the open casing.

(c) The PandaBoard installed under-
neath the lid.

(d) The PWM circuit board installed on
the side of the casing.

Figure 4.5.: Overview of the improved setup of the hardware.

70

4.2 Software Implementation

4.2. Software Implementation

This chapter will more closely examine the necessary software which
was implemented in order to achieve the desired functionality with
the provided framework. As previously mentioned, this software was
implemented in C++ and modulated into classes and DUNE tasks.
A schematic overview of the system can be seen in Fig. 4.6. In this
figure the solid arrows indicate communication via the IMC messages,
while the dotted lines indicate a call to another class. Throughout the
presentation of the implemented software, this figure is intended to
provide a better understanding of how the system, as a whole, is
composed. A more detailed description of the specific classes may be
found in Appendix B.

4.2.1. GroundUnit

The GroundUnit has one simple purpose, namely initiating the pre-
cision airdrop system. In this task the desired point of impact is
set in the WGS84 coordinate system. Furthermore, the IMC::Target
message is generated to contain the given target coordinate and a spe-
cific destination label such that only the chosen control algorithm is
initiated. This label is set to either initiate the SLA or the ADP.

71

Chapter 4 Implementation

P
ic

co
lo

G
ro

u
n

d
U

n
it

S
tr

a
ig

h
tL

in
e

A
u

g
m

e
n

te
d

D
u

b
in

sP
a

th

R
e

le
a

se
C

o
n

fig
u

ra
tio

n

IM
C

::
T

a
rg

e
t

IM
C

::
T

a
rg

e
t

D
ro

p
L

o
a

d

IM
C

::
P

a
yl

o
a

d
R

e
le

a
se

IM
C

::
P

a
yl

o
a

d
R

e
le

a
se

IM
C

::
E

st
im

a
te

d
S

ta
te

IM
C

::
E

st
im

a
te

d
S

tr
e

a
m

V
e

lo
ci

ty

IM
C

::
In

d
ic

a
te

d
S

p
e

e
d

IM
C

::
E

st
im

a
te

d
S

ta
te

IM
C

::
E

st
im

a
te

d
S

tr
e

a
m

V
e

lo
ci

ty

IM
C

::
In

d
ic

a
te

d
S

p
e

e
d

IM
C

::
D

e
si

re
d

P
a

th

IM
C

::
D

e
si

re
d

P
a

th

W
a

yp
o

in
tG

e
n

e
ra

to
r

G
e

n
e

ra
te

A
u

g
D

u
b

in
s

Figure 4.6.: Overview of the relationship between the DUNE tasks
and the classes.

72

4.2 Software Implementation

4.2.2. CARP

This section will introduce how the computation of the CARP was
modulated into two different classes, namely ReleaseVelocity and Re-
leasePoint, and further how these classes were combined to obtain the
class ReleaseConfiguration, as seen in Fig. 4.7.

ReleaseConfiguration

ReleaseVelocity
ReleaseVelocity

*

ReleasePoint
ReleasePoint

*

Figure 4.7.: The ReleaseConfiguration is comprised of the classes
ReleaseVelocity and ReleasePoint.

4.2.2.1. ReleaseVelocity

It was previously explained that the beacon should be released in the
direction opposite to that of the wind. This code will assume that the
wind vector has already been found. Moreover, in accordance with
the assumption made in Equation 2.13, it will also be assumed that
the IAS is known. Following these assumptions, the ReleaseVelocity
class will calculate the inverse wind unit vector, i.e. the unit vector
in the desired direction of flight, and further use this to calculate the
release velocity vector.

4.2.2.2. ReleasePoint

This class intends to solve the system of ODEs, given by equation 3.11,
before applying the translational shifting of the points as explained in

73

Chapter 4 Implementation

equations 3.12 through 3.15. The ODE system was solved by utilizing
functionality in the Boost C++ Libraries along with a defined initial
state vector. This vector is, as shown in equation 3.11, a combination
of the release velocity, acting as the initial velocity of the free fall, and
the target horizontal position, acting as the tentative release position,
along with the release altitude. Additionally, the wind vector was
included in the calculations in order to account for the effects of the
wind during the free fall.

4.2.2.3. ReleaseConfiguration

The purpose of the ReleaseConfiguration class was primarily to com-
bine the two aforementioned classes into one class. Additionally, how-
ever, it also sought to solve the issue wherein the wind was absent or
negligible. As the direction based itself on the direction of the wind,
this would pose a problem if the wind was not present. Consequently,
this class has a function which solves this issue by choosing the default
wind direction to be from south to north. Thus the default direction
of approach would be from the north.

A call to the ReleaseVelocity class is made to obtain the release veloc-
ity, which along with the target position and release altitude, comprise
the initial state vector. This vector is then used in the ReleasePoint
constructor, which solves for the CARP. The final output of the Re-
leaseConfiguration is a vector consisting of the wind unit vector and
the CARP. Although the release configuration ideally should consist
of the release position and the release direction, it was deemed more
useful to output the wind unit vector instead.

74

4.2 Software Implementation

4.2.3. Control Algorithms

As Fig. 4.6 illustrates, there are two different control algorithms which
may be used to guide the aircraft into the desired configuration. Both
of these options are modulated into one DUNE task and one associated
class.

4.2.3.1. Straight Line Approach

The SLA was implemented as an initial and simple solution to the
primary objective of the project, namely achieving the correct con-
figuration and releasing the beacon at the CARP. It consists of the
WaypointGenerator class and the StraightLine task.

WaypointGenerator TheWaypointGenerator class is responsible for
producing two waypoints that are aligned in the desired direction of
flight. This is accomplished by creating a point which is shifted a
certain distance in the direction of the wind unit vector. The shifting
constant, which along with the minimum turn radius, determines this
distance, was set according to sec. 3.3.1.1.

StraightLine The StraightLine task is initiated by consuming the
IMC::Target message with the SLA destination label. A call to the
ReleaseConfiguration class is made to obtain the CARP, which is used
in the WaypointGenerator to obtain the two waypoints. These way-
points are then dispatched on the IMC::DesiredPath message, which
is picked up in the Piccolo task and forwarded to the Piccolo SL Au-
topilot.

Following the initiation of the path, a function in this task is designed
to continuously check the set release criterion. Upon validating the

75

Chapter 4 Implementation

release criterion, an IMC::PayloadRelease message is sent which acti-
vates the release mechanism.

4.2.3.2. Augmented Dubins Path

The ADP was the second control algorithm which was implemented,
and was designed to be the most optimal control that could be achieved
with waypoints as the control input. This control is comprised of the
GenerateAugDubins class and the AugmentedDubinsPath task.

GenerateAugDubins This class is responsible for creating the de-
sired path in accordance with the previously introduced theory on
the ADP. The circle centers c1, c2 and c3, as seen in 3.13a, are found
according to Algorithm 4.1. Here the radius R of the circles is deter-
mined according to equation 2.12. Furthermore, the rotation matrix
Rz is set to rotate ±π

2 , depending on whether the method is set to
move counter-clockwise or clockwise.

The halfplanes, which constitute the desired path, are then found by
using Algorithm 4.2 on the circle pairs (c1, c3) and (c3, c2). A list
of four elements, wherein each element contains a halfplane and the
associated circle center, is then returned to the executing task.

Algorithm 4.1 Calculating the circle centers
Input: Target position xtarget, Release position xrelease,

Wind unit vector ew, Length L
c1 ← xtarget
c2 ← xrelease +RRzew
c3 ← c2 + Lew

Output: c1, c2, c3

76

4.2 Software Implementation

Algorithm 4.2 Computing the halfplanes
Input: Circle centers cstart, cend

q1 ← cend−cstart

‖cend−cstart‖
q2 ← q1
z1 ← cstart +RRzq1
z2 ← cend +RRzq1
Hstart ← (z1,q1, cstart)
Hend ← (z2,q2, cend)

Output: Hstart, Hend

AugmentedDubinsPath The ADP is, naturally, different from the
SLA, although some of the functionality remains the same. This task,
too, is initiated by the GroundUnit task dispatching an IMC::Target
message with the appropriate destination label. However, upon re-
ceiving this message, the ADP initiates the state machine which can
be seen in Fig. 4.8. An explanation of each state is described below.

m_Initialize m_TrackingCircle m_Wait

m_Loiterm_StraightLinem_Terminate

Figure 4.8.: State machine in ADP.

m_Initialize initializes the control of the Penguin B by calling the
ReleaseConfiguration class to obtain the CARP. Next, it re-
ceives a list, containing the desired path, from a call to the
GenerateAugDubins class. Lastly it sets the vehicle to initialize
loitering around the set target with a radius given by Gener-
ateAugDubins.

77

Chapter 4 Implementation

m_TrackingCircle continuously checks the distance from the current
position to the previously defined loitering circle. As an extra
insurance, this state also checks that the vehicle loiters in the
correct direction. Upon fulfilling these requirements, the state
changes to m_Wait.

m_Wait was included because the ADP uses the halfplane criterion
to check the position relative to the desired position. To avoid
undesirable behavior, the vehicle stays in this state until it loi-
ters at the correct side of the circle, upon which the state changes
to m_Loiter.

m_Loiter ensures that the vehicle tracks the current circle arc until
the designated halfplane has been reached. At this point it
extracts the next element from the list and enters the straight
line segment, consisting of two waypoints, as seen in Fig. 3.13b,
before changing to the state m_StraightLine.

m_StraightLine tracks the current straight line segment until the
designated halfplane has been crossed. Next it generates and
tracks a circle, based on the next extracted list element, and
changes state to m_Loiter. If, however, there is only one el-
ement left in the list of halfplanes, the state is changed to
m_Terminate.

m_Terminate simply indicates that the vehicle has entered the last
straight segment.

After the state machine has been terminated, the task continuously
checks to see if the set release criterion has been fulfilled. Upon val-
idating this criterion, the IMC::PayloadRelease message is sent and
the release mechanism is activated.

78

4.2 Software Implementation

Adjusting halfplanes Testing revealed that the Piccolo SL was al-
ways given three waypoints – an initial waypoint, a final waypoint
and a third default waypoint in the extension of these. Initially, when
crossing a halfplane, the idea was to utilize the halfplane point z as
the initial waypoint. Further, depending on the state, the second way-
point would either be set to a loitering circle or a waypoint creating a
straight line segment. However, due to some unexpected Piccolo SL
behavior, it was not possible to set the initial waypoint in this man-
ner. Thus, the decision was made to move the halfplanes tangentially
to a point before the initial point.

4.2.4. Payload Release

In order to activate the release mechanism, the release criterion has
to be fulfilled. This section introduces the task related to activating
this mechanism as well as a task which was used to test the different
release criteria.

4.2.4.1. DropLoad

The DropLoad task receives an IMC::PayloadRelease message from
either the SLA task or the ADP task, depending on the chosen path.
The contents of this message could either instruct the DropLoad task
to activate or deactivate the release mechanism. Upon receiving the
instruction to release, this task would set the voltage of a designated
pin to low, and consequently the release mechanism would be acti-
vated, in accordance with sec. 4.1.2.2. In a similar way, when the
message instructed the deactivation of the release mechanism, this
task would set the pin to high and the release mechanism was deacti-
vated.

79

Chapter 4 Implementation

4.2.4.2. ReleaseObject

Although not explicitly a part of the final system, the release criteria
functions were tested and implemented in a task known as ReleaseOb-
ject. The two criteria are, as previously mentioned, the circle crite-
rion and the halfplane criterion. This task would simply consume an
IMC::Target message from the GroundUnit. The distance from the
current position to this target position would then be measured, and
the release mechanism would be activated if this distance was suffi-
ciently small. In the same way, a halfplane criterion was implemented
according to equation 3.17.

80

5. System Testing

In order to determine how well the system, as a whole, performed, it
was necessary to conduct some experimental tests. This testing was
carried out by simulations, both in the HIL simulator and in Matlab,
in addition to field testing on the Penguin B at Agdenes Airstrip. In
this chapter the conducted tests will be presented, both in terms of
purpose and method, along with the results and an accompanying
analysis.

5.1. Simulation

Before the Penguin B, and the implemented payload, could be tested
on Agdenes, it was important to simulate the system in a safe envi-
ronment. Through utilization of the HIL simulator it was possible to
obtain a better understanding as to how the system would perform.
This was, naturally, an incredibly useful tool during the implementa-
tion of the software. Upon successfully achieving a desired result, this
data was also analyzed and used to determine the reliability of the
system.

This section intends to first look at a simulation of the two different
release criteria. Next, the performance of the two different control
algorithms is more closely examined. And lastly, the expected ac-

81

Chapter 5 System Testing

curacy and precision of the free fall is presented. Throughout these
tests, the IAS of the Penguin B was set to the desired 28 m/s, and
the altitude was assumed to be constant during flight. Moreover, un-
less otherwise specified, the tests were performed without any form of
wind disturbances.

5.1.1. Release Criteria

As previously mentioned in sec. 3.2.5, there were two different release
criteria which were considered. Moreover, some advantages and disad-
vantages regarding both methods were presented. In this subsection,
a simulation of the two methods will be presented in an attempt to
determine their overall performance.

This simulation was set up in the HIL simulator by creating a flight
path, consisting of multiple waypoints, where three of the waypoints
were aligned in such a way that the aircraft would consistently ap-
proach the CARP as was illustrated in Fig. 3.6. The distance from
the Penguin B to the CARP was logged as long as the vehicle was
within the circle and as soon as the vehicle crossed the halfplane.
This way both of the tests could be conducted simultaneously.

5.1.1.1. Circle

Testing revealed that the simulation sampled the position at a fairly
high rate, and consequently, in order to avoid unnecessary large amounts
of data, it was decided to set the radius of the circle to 10 m. As such,
it can be seen in Fig. 5.1, that the aircraft entered the circle along the
x-axis at -10 m, continuously logged the distance, and exited the circle
at +10 m. A closer examination of Fig. 5.1 reveals that within each

82

5.1 Simulation

circle there are approximately 20 logged samples. This procedure was
repeated several times to ensure that this result was consistent.

Furthermore, the total horizontal distance was of significant impor-
tance in order to determine the smallest and largest achievable dis-
tance from the aircraft to the CARP. As revealed in Fig. 5.2, the min-
imum logged, total horizontal distance was emphasized, and it can
be seen to consistently vary between 0.9 - 1.5 m. This result can be
explained by looking at two different inaccuracies in the system.

First, it can be seen that the vehicle did not fly completely straight
along the x-axis, which caused a deviation in the y-axis. This fur-
ther resulted in a larger total horizontal distance. Secondly, the fre-
quency flogging at which the position was logged limits the achievable
precision. The maximum achievable deviation in the x-axis can be
approximated by

xemax ≈
IAS
flogging

(5.1)

It can be seen in equation 5.1 that xemax → 0 when flogging → ∞.
Consequently, with a higher logging frequency, it is possible to achieve
a higher accuracy in the measurements. In the same way, equation
5.1 also reveals that the accuracy is increased with a lower IAS.

83

Chapter 5 System Testing

0 100 200 300 400 500 600 700 800 900
−10

0

10
Distance from CARP with Circle criteria R = 10m

x
 [
m

]

0 100 200 300 400 500 600 700 800 900
−1.5

−1

−0.5

y
 [
m

]

0 100 200 300 400 500 600 700 800 900
0

5

10

T
o
ta

l
h
o
ri
z
o
n
ta

l
 d

is
ta

n
c
e
 [
m

]

Logged Samples

Figure 5.1.: The measured distance from aircraft to the CARP with
the circle criterion.

0 5 10 15 20 25 30 35 40 45
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
Smallest distance from CARP with Circle criteria R = 10m

Logged Samples

T
o
ta

l
h
o
ri
z
o
n
ta

l
d
is

ta
n
c
e
 [
m

]

Figure 5.2.: The smallest measured total horizontal distance from
the aircraft to the CARP with the circle criterion.

84

5.1 Simulation

5.1.1.2. Halfplane

Unlike the circle criterion, where the closest logged point can appear
both before and after passing the CARP, it is easily understandable
that, with the halfplane criterion, the closest point can only appear
after passing the CARP. It can be seen in Fig. 5.3 that the total hori-
zontal distance ranges from 1.2 - 1.8 m. Here it can readily be observed
that the error in the x-axis is, once again, caused by the limitation in
logging frequency, while the error in the y-axis is caused by the same
deviation from the flight path as previously explained.

0 5 10 15 20 25 30 35 40 45 50
0.5

1

1.5

2
Distance from CARP with Halfplane criteria

x
 [
m

]

0 5 10 15 20 25 30 35 40 45 50
−1.1

−1

−0.9

y
 [
m

]

0 5 10 15 20 25 30 35 40 45 50
1

1.5

2

T
o
ta

l
h
o
ri
z
o
n
ta

l
 d

is
ta

n
c
e
 [
m

]

Logged Samples

Figure 5.3.: The measured distance from the aircraft to the CARP
with the halfplane criterion.

5.1.2. Path Simulation

As will later be shown in sec. 5.1.3, the performance of the system as a
whole, depends largely on the performance of the control strategy used

85

Chapter 5 System Testing

to achieve the desired configuration. Thus, the decision was made
to investigate how well the two implemented control strategies, the
Straight Line Approach and the Augmented Dubins Path, performed
in the HIL simulator.

These tests desired to examine the performance given different initial
configurations. Additionally, by applying an artificial constant wind
in the HIL simulator, it was possible to observe how this disturbance
affected the overall tracking of the path and, more importantly, the
configuration at the CARP. As mentioned before, in the absence of
wind, the vehicle would approach the CARP from north to south. As
such, in order to obtain a result that was easily interpretable, it was
decided to let the simulated wind move from south to north, such
that the aircraft approach would remain the same. The tests looked
at three different scenarios – no wind, 5 m/s wind and 10 m/s wind.

Furthermore, a second set of tests were conducted in order to observe
the consistency of the release configuration with the different control
strategies. These tests were completed over a long time by allowing
the methods to repeat themselves, with approximately the same initial
configuration, after successfully crossing the halfplane defined by the
CARP. Unlike the previous tests, these tests were conducted without
any wind disturbances.

5.1.2.1. Straight Line Approach

The SLA creates two waypoints that are aligned and distanced in such
a way that by letting the Penguin B track these, the vehicle would
ideally approach the CARP at the correct angle. The HIL simulation
of this strategy returned a valuable insight into the performance of
the SLA. Moreover the distance d, as mentioned in sec. 3.3.1.1, was

86

5.1 Simulation

set equal to four times the value of the minimum turn radius, as
defined by equation 2.12.

It can be seen in Fig. 5.4 that regardless of what initial configuration
the vehicle had, it moved towards the first waypoint. This waypoint,
although not marked, can be seen as the upper point where all the
paths coincide. Each of the paths approached this point at different
angles depending on their initial configuration. This further resulted
in different trajectories when transitioning from the first waypoint and
towards the second waypoint, namely the CARP. Although all of the
paths attempt to straighten up prior to arriving at this point, it is easy
to observe that this is difficult to accomplish with the SLA. It is also
worth mentioning that after reaching the second waypoint, i.e. the
CARP, the aircraft moved towards the third automatically generated
waypoint, a behavior which was expected as explained in sec. 3.4.1.

Furthermore, the results from the first wind test with the SLA can be
seen in Fig. 5.5. This plot reveals that when the wind is applied, the
vehicle receives a push when flying north, which consequently makes
the turn at the first waypoint slightly more difficult. However, upon
changing the heading towards south the aircraft is flying against the
wind. Consequently the speed is decreased and the aircraft is able to
maneuver more easily. Nevertheless, by increasing the wind further,
Fig. 5.6 reveals that the vehicle receives a significant push when flying
towards the first waypoint. This further makes it incapable, in some
cases, of straightening up properly before the reaching the CARP.

Additionally, it can be seen from these figures that the end configura-
tion may depend largely on the initial configuration. This is especially
relevant for the cases with a wind disturbance as the initial configura-
tions located south of the CARP achieves a far better end configura-
tion than the initial configurations located north of the CARP. This

87

Chapter 5 System Testing

can be explained by understanding that the push of the wind effec-
tively increases the distance d when flying north. Consequently the
paths starting south of the CARP will have more time to straighten
up before reaching the CARP. This result further supports the theory
that the performance achieved with this method depends, to a large
degree, on the distance d.

Moreover, the choice of approaching the CARP against the wind is
also further supported when considering that the wind slows the air-
craft down, which increases the maneuvering window. However, it
is important to emphasize that this result does not imply that it is
better to release the beacon in windy conditions, a point which will
be further examined in sec. 5.1.3.

37.644

37.646

37.648

37.65

37.652

37.654

37.656

37.658

Longitude

L
a
ti
tu

d
e

Straight Line Approach without wind

−1
22

.3
68

−1
22

.3
66

−1
22

.3
64

−1
22

.3
62

−1
22

.3
6

−1
22

.3
58

−1
22

.3
56

Start

End

CARP

Figure 5.4.: UAV path tracking of the SLA without any wind.

88

5.1 Simulation

37.64

37.642

37.644

37.646

37.648

37.65

37.652

37.654

37.656

Longitude

L
a
ti
tu

d
e

Straight Line Approach with 5 m/s wind (south)

−1
22

.3
7

−1
22

.3
68

−1
22

.3
66

−1
22

.3
64

−1
22

.3
62

−1
22

.3
6

−1
22

.3
58

Start

End

CARP

Figure 5.5.: UAV path tracking of the SLA with 5 m/s wind from
south.

37.642

37.644

37.646

37.648

37.65

37.652

37.654

37.656

37.658

Longitude

L
a
ti
tu

d
e

Straight Line Approach with 10 m/s wind (south)

−1
22

.3
68

−1
22

.3
66

−1
22

.3
64

−1
22

.3
62

−1
22

.3
6

−1
22

.3
58

−1
22

.3
56

−1
22

.3
54

Start

End

CARP

Figure 5.6.: UAV path tracking of the SLA with 10 m/s wind from
south.

89

Chapter 5 System Testing

While the previous plots provided an understanding of how the air-
craft moved, they did not give a proper insight into the actual accu-
racy of the end configuration. However, the following test ran the SLA
several times and gathered the end configuration data which revealed
how well the algorithm performed. From Fig. 5.7, it can be seen that
the aircraft deviates in both the x- and y-axes from the desired po-
sition. As was previously presented, the deviation in x is primarily
caused by the limitation in positional logging frequency.

The error in y is, however, caused by the aircraft being unable to accu-
rately track the desired path and as such pass through the CARP. This
behavior could be caused by the distance d being too small. On the
other hand, another explanation suggests that the Piccolo SL Autopi-
lot accepts a certain deviation from the waypoint and consequently
does not attempt to accurately track the point.

Fig. 5.8 is an estimated normal distribution based on the deviation
from the desired angle at the CARP. It can easily be seen that the
aircraft approaches the CARP at an inaccurate angle. Similar to
what was observed in the previous tests, the aircraft is clearly unable
to approach the CARP with a higher angular accuracy.

Additionally, in both of these plots it appears that the end config-
uration is biased towards one direction. This bias is explained by
understanding that the Piccolo SL desires to find the shortest path
from the current position and to the next waypoint, without any con-
sideration for the angle at which it approaches the waypoint. This
behavior causes the aircraft to follow the same path throughout the
entire simulation, and thus the error is biased to one side.

90

5.1 Simulation

0 100 200 300 400 500 600 700
0

2

4
Distance from PoR

x
 [
m

]

0 100 200 300 400 500 600 700
−15

−14

−13

−12

y
 [
m

]

0 100 200 300 400 500 600 700
12

13

14

15

T
o
ta

l
h
o
ri
z
o
n
ta

l
d
is

ta
n
c
e
 [
m

]

Logged Samples

Figure 5.7.: Long time testing of the deviation from the CARP with
the SLA.

6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7 7.1 7.2
0

2

4

6

8

10

12
Estimated Normal Distribution of the deviation from the desired angle

Angle [deg]

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y
,
p
(A

n
g
le

)

µ̂ = 6.733095
σ̂ = 0.035913

Figure 5.8.: Estimated Normal distribution of the deviation from
the desired angle based on the measurements from the SLA.

91

Chapter 5 System Testing

5.1.2.2. Augmented Dubins Path

Because the ADP based itself on Dubins Path, which is the time-
optimal transition between two configurations, it was assumed that
this method would most likely out-perform the SLA. The length L,
as introduced in sec. 3.3.3.2, was set to equal to five times the sum of
the IAS and the magnitude of the wind. This control strategy was
then tested in the HIL simulator.

Fig. 5.9 reveals how the aircraft, given different initial configurations,
approached and commenced tracking of the first circle. Next, the
aircraft left the circle at the desired point and followed a straight line
until it was sufficiently close to the second circle. It can readily be
seen that the aircraft then tracked this circle before exiting at a point
aligned with the CARP. This way the aircraft was able to approach the
CARP at a near optimal angle. After exiting the circle, the aircraft
attempted to approach the line created by two waypoints. This way it
was possible to straighten up the vehicle, if necessary, before reaching
the CARP.

When wind was applied to the HIL simulator, it can be seen in
Fig. 5.10, that the path did not change noticeably. This behavior
is explained by understanding that the algorithm, to some degree,
adapts to the wind magnitude. With an increase in the wind magni-
tude, the minimum turn radius was increased, and consequently the
radii of the circles were increased. Furthermore, as previously men-
tioned, the size of L was also increased in accordance with the wind
magnitude. This allowed the vehicle a longer time to straighten up
after exiting the final circle.

By increasing the wind further, as shown in Fig. 5.11, it was shown
that the algorithm struggled to track the expected path in the different

92

5.1 Simulation

instances. However, the general shape of the path can still be seen
and upon approaching the CARP, all of the paths coincided and were
able to achieve a satisfactory final configuration.

37.643

37.644

37.645

37.646

37.647

37.648

37.649

37.65

37.651

37.652

37.653

Longitude

L
a
ti
tu

d
e

Augmented Dubins Path without wind

−1
22

.3
76

−1
22

.3
74

−1
22

.3
72

−1
22

.3
7

−1
22

.3
68

−1
22

.3
66

−1
22

.3
64

−1
22

.3
62

−1
22

.3
6

Start

End

CARP

Figure 5.9.: UAV path tracking of the ADP without any wind.

93

Chapter 5 System Testing

37.644

37.645

37.646

37.647

37.648

37.649

37.65

37.651

37.652

37.653

37.654

Longitude

L
a

ti
tu

d
e

Augmented Dubins Path with 5 m/s wind (south)

−1
22

.3
7

−1
22

.3
68

−1
22

.3
66

−1
22

.3
64

−1
22

.3
62

−1
22

.3
6

−1
22

.3
58

−1
22

.3
56

−1
22

.3
54

−1
22

.3
52

−1
22

.3
5

Start

End

CARP

Figure 5.10.: UAV path tracking of the ADP with 5 m/s wind from
south.

37.645

37.646

37.647

37.648

37.649

37.65

37.651

37.652

37.653

37.654

37.655

Longitude

L
a

ti
tu

d
e

Augmented Dubins Path with 10 m/s wind (south)

−1
22

.3
76

−1
22

.3
74

−1
22

.3
72

−1
22

.3
7

−1
22

.3
68

−1
22

.3
66

−1
22

.3
64

−1
22

.3
62

−1
22

.3
6

−1
22

.3
58

−1
22

.3
56

Start

End

CARP

Figure 5.11.: UAV path tracking of the ADP with 10 m/s wind from
south.

94

5.1 Simulation

Although the previous figures display a seemingly good accuracy of
the end configuration in the ADP, it was necessary to perform a long
time simulation to determine whether this result was consistent. It
can be seen from Fig. 5.12 that the deviation in x is approximately
the same as previously seen in Fig. 5.7. This further substantiates the
point that this error is mainly caused by the limit in logging frequency
of the aircraft position.

More importantly, however, is the deviation along the y-axis. Through-
out this test, the aircraft only deviated from the path by no more than
0.5 m. This is a significant improvement compared to the results of
the SLA simulation. In total it can be seen that the horizontal devi-
ation from the desired position is primarily affected by the positional
logging frequency.

In the same way that the positional deviation is improved by using the
ADP, so is the angular deviation. This result can be seen in Fig. 5.13,
which displays an estimated normal distribution of the angular devi-
ation based on measurements from the long time test of the ADP. It
can clearly be seen that the angle deviated by less than one degree,
which is a remarkable improvement from the performance of the SLA.

Much like with the SLA, however, the ADP also possessed a slight
bias to one side. As before, this is caused by the way the Piccolo SL
Autopilot interprets and executes a transition from the current posi-
tion and towards the next waypoint.

95

Chapter 5 System Testing

0 100 200 300 400 500 600 700
0

2

4

6
Distance from PoR

x
 [
m

]

0 100 200 300 400 500 600 700
−0.5

0

0.5

y
 [
m

]

0 100 200 300 400 500 600 700
0

2

4

6

T
o
ta

l
h
o
ri
z
o
n
ta

l
d
is

ta
n
c
e
 [
m

]

Logged Samples

Figure 5.12.: Long time testing of the deviation from the CARP
with the ADP.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
Estimated Normal Distribution of the deviation from the desired angle

Angle [deg]

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y
,
p
(A

n
g
le

)

µ̂ = −0.362191

σ̂ = 0.139462

Figure 5.13.: Estimated Normal distribution of the deviation from
the desired angle based on the measurements from the ADP.

96

5.1 Simulation

5.1.3. Free Fall Simulation

There are several inaccuracies in this method of precision airdrop that
may affect the final outcome, i.e. the actual point of impact. As
mentioned, the physical properties of the released beacon affects the
trajectory of the free fall. Another inaccuracy is caused by the air
density, which here was assumed to be constant. However, the effects
of these sources of error will be neglected in this analysis. Instead,
the focus will be put on the effects of the wind and the initial position
and direction of the free fall.

As mentioned before, the wind can be estimated as a vector based on
the average wind. However, the wind does not act as a uniform vector
field. On the contrary, the wind depends on the geographical topogra-
phy and can vary largely from one altitude to another. Moreover, ran-
dom wind gusts provides an even larger uncertainty in the wind vector.
Thus, in an attempt to estimate the wind uncertainty, it was decided
to utilize Matlab functionality to normally distribute the wind in both
magnitude and direction. This probability distribution, displayed in
Fig. 5.14, assumes that the wind magnitude is normally distributed
with µmagnitude = 5 and σmagnitude = 0.48. These values are based on
the assumption that the wind magnitude varies by 50 %. Moreover,
the wind angle is normally distributed with µdirection = 5

4π (= 225o)
and σdirection = 0.30, which is based on the assumption that the wind
may vary by up to π

2 (or 90o) in both directions.

97

Chapter 5 System Testing

2 3 4 5 6 7 8
2

2.5

3

3.5

4

4.5

5

5.5
Multivariate Normal Distribution of the Wind

Wind Magnitude [m/s]

W
in

d
 A

n
g
le

 (
ra

d
)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 5.14.: A multivariate normal distribution of the wind mag-
nitude and direction.

5.1.3.1. Accurate Release

In the first simulation the beacon is released from the origin and in the
direction opposite to that of the wind, i.e. π

4 (or 45o). This is also the
point and direction used in calculating the expected point of impact.
As such, it can be said that the beacon is released in a perfect manner.
However, assuming that the wind can be estimated by the previously
mentioned multivariate normal probability distribution, the point of
impact is expected to vary accordingly. Throughout these simulations,
based on the release altitude, the calculated point of impact can be
seen in Tab. 5.1.

Fig. 5.15 displays the likely area of impact as a probability distribution
based on the aforementioned criteria. It can here be seen that given a
release altitude of 30 m, the expected area of impact is relatively small,

98

5.1 Simulation

even with the uncertain wind disturbance. Releasing the beacon from
50 m, on the other hand, increased the likely area of impact as shown
in Fig. 5.16. And, as expected, if the release altitude is increased to
100 m, as shown in Fig. 5.17, the size of the likely area of impact
is increased drastically. This result reveals that the accuracy of this
method of precision airdrop is highly correlated with the altitude at
which it was released.

Altitude of Release [m] Expected Point of Impact, (x, y)impact
30 (28.5, 28.5)
50 (32.8, 32.8)
100 (36.4, 36.4)

Table 5.1.: The calculated point of impact based on the release alti-
tude and an assumed 5 m/s wind.

10 20 30 40 50 60
10

15

20

25

30

35

40

45

50

55

60

x [m]

Probability Distribution of Free Fall from 30m

y
 [

m
]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 5.15.: The probability distribution of the area of impact when
the beacon is released from 30 m given a perfect release configura-
tion.

99

Chapter 5 System Testing

10 20 30 40 50 60
10

15

20

25

30

35

40

45

50

55

60

x [m]

Probability Distribution of Free Fall from 50m

y
 [

m
]

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 5.16.: The probability distribution of the area of impact when
the beacon is released from 50 m given a perfect release configura-
tion.

10 20 30 40 50 60
10

15

20

25

30

35

40

45

50

55

60

x [m]

Probability Distribution of Free Fall from 100m

y
 [

m
]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 5.17.: The probability distribution of the area of impact when
the beacon is released from 100 m given a perfect release configu-
ration.

100

5.1 Simulation

5.1.3.2. Release Configuration based on the Straight Line
Approach

The HIL simulations of the SLA and the ADP revealed that releasing
the beacon from a perfect vehicle configuration is very unlikely. Espe-
cially when the SLA is to be considered, as it revealed a severe lack of
ability to accurately achieve the desired release configuration. Con-
sequently, this behavior affects the expected area of impact. As such
it was decided to combine the previously obtained long time data,
displayed in Fig. 5.7 and Fig. 5.8, with the estimated area of impact
based on the wind disturbance. This way the two main contributors
to error were combined and could further provide a picture of how the
likely area of impact would appear.

As displayed in Fig. 5.18, the SLA based release configuration clearly
displaced the expected area of impact to a different location compared
to a perfect release configuration. In Fig. 5.19 the free fall simulation
based on the actual release configuration, from using the SLA, has
been subtracted from the free fall simulation based on the ideal re-
lease configuration, and consequently created a plot that reveals the
difference between the two. Here the aforementioned configuration
bias can be seen to clearly influence the area of impact, even with a
release altitude of only 30 m.

Moreover, when considering Fig. 5.20 and Fig. 5.22, it becomes evident
that the altitude of release impacts the size of the area of impact. Fur-
ther, Fig. 5.21 and Fig. 5.23, displays how the ideal and actual area of
impact differs with an increasing release altitude. However, due to the
consistency of the data collected from the long time simulation, this
method does not increase the expected area of impact significantly.

101

Chapter 5 System Testing

10 20 30 40 50 60
10

15

20

25

30

35

40

45

50

55

60

x [m]

Probability Distribution of Free Fall from 30m with HIL simulated initial value

y
 [

m
]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 5.18.: The probability distribution of the area of impact when
the beacon is released from 30 m based on the SLA release config-
uration.

10 20 30 40 50 60
10

15

20

25

30

35

40

45

50

55

60

x [m]

Difference between ideal and HIL simulated probability distributions

y
 [

m
]

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Figure 5.19.: The difference between the ideal release configuration
and the SLA release configuration from 30 m.

102

5.1 Simulation

10 20 30 40 50 60
10

15

20

25

30

35

40

45

50

55

60

x [m]

Probability Distribution of Free Fall from 50m with HIL simulated initial value

y
 [

m
]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 5.20.: The probability distribution of the area of impact when
the beacon is released from 50 m based on the SLA release config-
uration.

10 20 30 40 50 60
10

15

20

25

30

35

40

45

50

55

60

x [m]

Difference between ideal and HIL simulated probability distributions

y
 [

m
]

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Figure 5.21.: The difference between the ideal release configuration
and the SLA release configuration from 50 m.

103

Chapter 5 System Testing

10 20 30 40 50 60
10

15

20

25

30

35

40

45

50

55

60

x [m]

Probability Distribution of Free Fall from 100m with HIL simulated initial value

y
 [

m
]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 5.22.: The probability distribution of the area of impact when
the beacon is released from 100 m based on the SLA release config-
uration.

10 20 30 40 50 60
10

15

20

25

30

35

40

45

50

55

60

x [m]

Difference between ideal and HIL simulated probability distributions

y
 [

m
]

−0.2

−0.1

0

0.1

0.2

0.3

Figure 5.23.: The difference between the ideal release configuration
and the SLA release configuration from 100 m.

104

5.1 Simulation

5.1.3.3. Release Configuration based on the Augmented Dubins
Path

In sec. 5.1.2.2 it was shown that the ADP displayed a high degree of
ability to track the desired path, and further it managed to achieve the
desired end configuration. By combining the long time simulation of
the ADP, along with the estimated wind disturbance, it was possible
to obtain an estimate of how the area of impact would appear if the
ADP was utilized.

Due to the high achievable accuracy of the release configuration, based
on the ADP, it can be seen in Fig. 5.24 that the expected area of im-
pact is very similar to that found when assuming a perfect initial con-
figuration, shown in Fig. 5.15. In fact, Fig. 5.25 reveals that the ideal
and the actual area of impact differs only by a few meters. Moreover,
it can be seen that the actual area of impact is primarily shifted di-
agonally further away. This happens because the aircraft releases the
beacon after crossing the CARP. And as it was shown in sec. 5.1.2.2,
the primary positional error source of the ADP was along the x-axis in
the BODY frame, which was caused by the limited logging frequency.

Furthermore, like with the SLA, this algorithm also reveals a high de-
gree of consistency. Consequently the area of impact does not change
noticeably in shape or size. However, as previously explained, and as
shown in Fig. 5.26 and Fig. 5.28, the altitude plays a significant role in
determining the possible area of impact. Both Fig. 5.27 and Fig. 5.29
reveals how the deviation from the ideal area of impact increases with
increasing altitude. As such, it can be seen that even with the ADP,
the distance between the expected and the actual point of impact
increases drastically with a release from a higher altitude.

105

Chapter 5 System Testing

10 20 30 40 50 60
10

15

20

25

30

35

40

45

50

55

60

x [m]

Probability Distribution of Free Fall from 30m with HIL simulated initial value

y
 [

m
]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 5.24.: The probability distribution of the area of impact when
the beacon is released from 30 m based on the ADP release config-
uration.

10 20 30 40 50 60
10

15

20

25

30

35

40

45

50

55

60

x [m]

Difference between ideal and HIL simulated probability distributions

y
 [

m
]

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Figure 5.25.: The difference between the ideal release configuration
and the ADP release configuration from 30 m.

106

5.1 Simulation

10 20 30 40 50 60
10

15

20

25

30

35

40

45

50

55

60

x [m]

Probability Distribution of Free Fall from 50m with HIL simulated initial value

y
 [

m
]

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 5.26.: The probability distribution of the area of impact when
the beacon is released from 50 m based on the ADP release config-
uration.

10 20 30 40 50 60
10

15

20

25

30

35

40

45

50

55

60

x [m]

Difference between ideal and HIL simulated probability distributions

y
 [

m
]

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Figure 5.27.: The difference between the ideal release configuration
and the ADP release configuration from 50 m.

107

Chapter 5 System Testing

10 20 30 40 50 60
10

15

20

25

30

35

40

45

50

55

60

x [m]

Probability Distribution of Free Fall from 100m with HIL simulated initial value

y
 [

m
]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 5.28.: The probability distribution of the area of impact when
the beacon is released from 100 m based on the ADP release con-
figuration.

10 20 30 40 50 60
10

15

20

25

30

35

40

45

50

55

60

x [m]

Difference between ideal and HIL simulated probability distributions

y
 [

m
]

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 5.29.: The difference between the ideal release configuration
and the ADP release configuration from 50 m.

108

5.2 Testing with the Penguin B on Agdenes Airstrip

5.2. Testing with the Penguin B on Agdenes
Airstrip

Although the data provided by the software simulations could explain
how the aircraft would, most likely, behave, it was naturally desirable
to test the system in the real world. This meant that the implemented
software had to be set up to work with the payload, which was pre-
sented in sec. 4.1. Furthermore, to ensure that the payload worked as
intended, the full payload system was connected to the HIL simulator
and successfully tested.

5.2.1. Ground Testing

During the first test on Agdenes it was necessary to ensure that the re-
lease mechanism functioned as intended. However, due to unforeseen
technical difficulties out of control for the project team, the aircraft
could not be flown, and consequently the test had to be performed
on the ground. Regardless, because the algorithm simply checked
the distance in the horizontal plane, this would still provide a useful
result.

The Penguin B was taxiing on the ground and approached a given
coordinate in order to activate the release mechanism. Due to the
low achievable speed on the ground, it was sufficient to set the circle
radius to five meters and observe what happened when the aircraft was
within this perimeter. Upon entering the circle, the release mechanism
activated and the test was deemed successful.

109

Chapter 5 System Testing

5.2.2. In-Air Testing

Although airborne tests were highly desired, it became clear late in
the project that this was not possible to accomplish due to a hardware
failure on the aircraft. Thus, a suggestion to change UAV platform to
the smaller X8 was proposed and considered. By changing aircraft it
would be possible to test the final system in the air and obtain some
real data on how the algorithm would perform and how accurately
the beacon would land relative to the given target. The transition
from the Penguin B to the X8 would, however, potentially cause some
problems.

The X8 would be able to utilize the previously developed DUNE soft-
ware. However, because the X8 utilizes a flight control unit known
as ArduPilot instead of the previously introduced Piccolo SL, the ex-
isting code would require some modifications. Additionally, it would
be necessary to alter and install the payload, along with the release
mechanism, on the X8 aircraft.

Lastly, by changing to ArduPilot it would not be possible to obtain
simulated data from the same HIL simulator. Consequently, if the
transition from the Penguin B to the X8 was unsuccessful, there would
not be any results.

After careful consideration it was decided that the change of aircraft
would not be feasible this late into the project and, as such, the con-
tinued use of the Penguin B was chosen.

110

6. Discussion

6.1. Release Criteria

The matter of choosing the most suitable release criterion was im-
portant as it clearly affected the accuracy of the release. The circle
criterion appeared to be the most accurate as it could release the bea-
con both before and after passing the CARP. As such the position of
release would evidently be closer to the CARP compared to the case
where it would only release the beacon after passing the CARP, as
was the case with the halfplane criterion.

Nevertheless, in order to ensure that the accuracy of the circle criterion
was preserved, it was necessary to set the radius of the circle very
small. However, as was previously mentioned, the utilization of a
very small circle may cause the aircraft to never reach the CARP at
all. When considering this, it is evident that the halfplane criterion
could provide a better accuracy and reliability. On the other hand, by
combining the two criteria, with a sufficiently large radius, it may be
possible to achieve both an accurate and reliable result. Flight testing
would provide a way to fine-tune settings such as the size of the circle.

111

Chapter 6 Discussion

6.2. Path Control

Along with the release criterion, it was also important to control the
UAV in the most optimal way in order to approach the CARP with the
most optimal configuration. It was initially desired to control the UAV
by utilizing heading control. However, it was explained in sec. 3.4.3,
that it would not be possible to obtain an accurate measurement of
the heading. Consequently, it was necessary to utilize waypoints as
the control input.

Two different approaches, which could both be implemented by the
use of waypoints, were introduced. The first approach, namely the
Straight Line Approach, consisted simply of two waypoints aligned
in the desired direction of flight. The results from the simulations of
this method revealed that this method struggled to approach the final
configuration in a desired manner. In fact, a consistent and significant
bias, both in the position and angle, was observed. Additionally, it
was seen that the end configuration of the SLA appeared to depend,
to some degree, on the initial configuration. However, the SLA transi-
tioned from the initial position to the terminal position in an efficient
manner.

The Augmented Dubins Path, on the other hand, consisted of several
waypoints, which combined both loitering and straight line flying.
This way it was possible to follow a somewhat predetermined path,
which would continuously guide the aircraft in a more optimal way.
It was evident from the results of the simulations that this method
followed the predetermined path in a highly reliable manner. More-
over, even with the addition of the wind disturbance, this method was
capable of adapting to this disturbance by altering the properties of
the path. Consequently, this method managed to consistently achieve

112

6.3 Free Fall

the desired release configuration with only a minor bias in both the
position and angle, regardless of the initial configuration.

6.3. Free Fall

It has previously been explained that the decided method of precision
airdrop, known as free fall, possesses several sources of error. Of these
errors, two of them were considered to have a larger impact on the
final result, namely the unpredictable wind and the actual release
configuration. Due to the high uncertainty in the behavior of the
wind, caused by different geographical topography, it was decided to
estimate the wind uncertainty as a multivariate normal distribution
based on the magnitude and direction of the wind. The resulting
probability density function could then be used to simulate a free fall
under unpredictable wind conditions.

This simulation revealed that, with an ideal release of the beacon, the
actual point of impact would, in fact, be within a small proximity
of the desired target. However, as the altitude of release increased,
it was easy to observe that the likely area of impact increased along
with it. On the other hand, should the wind prove to be more pre-
dictable and uniform, which could be the case in open waters with
less topography, the likely area of impact may be smaller, and thus
the precision airdrop may be more accurate than visualized here.

As the latter simulations displayed, it was not possible to assume a
perfect release configuration. In fact, the biased release configuration
based on the SLA was of such a magnitude that the resulting area of
impact was changed significantly. The ADP based release configura-
tion, on the other hand, displayed a remarkable resemblance to that

113

Chapter 6 Discussion

of the ideal one. Consequently, the actual area of impact was much
closer to the ideal area of impact. This result clearly visualizes how
important it is to utilize a good control algorithm, and consequently
achieve an optimal release configuration.

114

7. Conclusion

The goal of this project was to achieve an accurate and precise air-
drop from the fixed-wing UAV Penguin B. Based on the provided
framework and the core assumptions, an analysis was conducted and
the method of releasing the beacon in free fall was deemed the most
appropriate. This thesis further described how the point of release,
i.e. the CARP, was calculated, and how the aircraft should approach
this point. It was further concluded that by combining the circle and
the halfplane criteria, it would be possible to achieve an accurate and
reliable release.

Two paths, the SLA and the ADP, which both guided the aircraft to
the desired configuration, were introduced. Furthermore, an evalua-
tion of the control input to the Piccolo SL Autopilot was conducted
which concluded that the use of waypoints was the most suitable for
this project.

The entire system was implemented, both on the software and on
the hardware side, according to the desired specifications. Finally the
system was tested by the use of the HIL simulator in addition to some
limited testing in the field. The simulations revealed that the accuracy
of the free fall method decreased drastically with an increasing release
altitude. However, under the assumption that the aircraft is able to
operate at an altitude of 30 m, the simulations revealed a high degree
of achievable accuracy in the free fall method. It was also shown that

115

Chapter 7 Conclusion

the release configuration played a significant role in the actual point
of impact, which further implied that the path planning and the path
tracking are of huge importance in this system.

In conclusion, based on the results from simulations and the consid-
ered assumptions, the final system, using the ADP to approach the
CARP, is able to achieve a high degree of accuracy in the deployment
of the beacon.

116

8. Further Work

Based on the experience from the conducted project, this chapter
introduces a few suggestions for changes and ideas for future work.

8.1. Improved Aircraft Control

The performance of the ADP, as presented in this thesis, was able
to achieve a release configuration which was very close to the desired
configuration. However, by adding a way of accurately measuring the
heading, it is possible to utilize the heading input control, which may
result in an even more optimal release configuration. The heading
control may be performed by utilizing the theory behind the MPC or
the CLF. As sec. 5.1.3 presented, the accuracy of the free fall method
depends to a large degree on the release configuration. By further
optimizing the control of the aircraft, it is possible to achieve a more
accurate release configuration, and consequently a more accurate re-
sult from the free fall method may be achieved.

It may also be relevant to increase the control of the aircraft from the
horizontal plane to include the vertical axis. Such a change may allow
for the aircraft to quickly descend into the lowest acceptable altitude,
release the beacon, and then ascend to a safer operational altitude.
As was shown in this thesis, the altitude plays a significant role in the

117

Chapter 8 Further Work

accuracy of the free fall, and consequently this solution may increase
that accuracy.

8.2. UAV Platform

It was previously mentioned in this thesis that it was possible to
change UAV from the Penguin B to the smaller, lighter and less expen-
sive X8. The transition between the two was deemed to be possible,
however, it was likely not a straight forward task. Nevertheless, there
may be several benefits of changing UAVs. At the beginning of this
project, the Penguin B was still in the start-up phase and consequently
there was not enough experience with this aircraft. The X8, on the
other hand, has previously been thoroughly tested. Thus, the X8 pro-
vides a more readily available UAV platform. This further leads to the
possibility of testing both the methods implemented as a part of this
thesis, as well as other ways of accomplishing the precision airdrop
task.

8.3. User Interface

Although desirable, a user interface was not implemented in this
project. However, by utilizing the functionality of Neptus it should
be possible to create a user interface in which the target position can
be set on a map, rather than typed into the current Ground Station
task.

118

Bibliography

[1] S. Tiffin, I. Turnbull, T. Sylvestre, and J. Acevedo, “21st iahr
international symposium on ice,” 2012.

[2] R. J. Ducote and R. J. Speelman, “U. s. air force concepts for
accurate delivery of equipment and supplies,” in Aerodynamic
Deceleration Systems Conference, vol. 4, July-August 1966.

[3] B. Vik, “Integrated satellite and inertial navigation systems,”
Department of Engineering Cybernetics, NTNU, 2012.

[4] T. I. Fossen, Handbook of marine craft hydrodynamics and motion
control. John Wiley & Sons, 2011.

[5] S. E. d. N. K. Hrabar, Vision-based 3D navigation for an au-
tonomous helicopter. PhD thesis, Citeseer, 2006.

[6] W. Ren and R. W. Beard, “Trajectory tracking for unmanned
air vehicles with velocity and heading rate constraints,” Con-
trol Systems Technology, IEEE Transactions on, vol. 12, no. 5,
pp. 706–716, 2004.

[7] L. Singh and J. Fuller, “Trajectory generation for a uav in urban
terrain, using nonlinear mpc,” in American Control Conference,
2001. Proceedings of the 2001, vol. 3, pp. 2301–2308, IEEE, 2001.

[8] S. Leven, J.-C. Zufferey, and D. Floreano, “A minimalist control
strategy for small uavs,” in Intelligent Robots and Systems, 2009.

119

Bibliography

IROS 2009. IEEE/RSJ International Conference on, pp. 2873–
2878, IEEE, 2009.

[9] R. W. Beard and T. W. McLain, Small unmanned aircraft: The-
ory and practice. Princeton University Press, 2012.

[10] “Federal aviation administration definitions.”
http://www.ecfr.gov/cgi-bin/text-idx?SID=
a437b47edd5dfc18ae6693d1f6c1ee7a&node=14:1.0.1.1.
1.0.1.1&rgn=div8, May 2014. Accessed on: 2014.05.21.

[11] UAV Factory USA LLC, 50 South Buckhout Street, Irvington,
NY 10533 USA, Penguin B Datasheet, v2.0 ed.

[12] “Uav factory - penguin b.” http://www.uavfactory.com/
product/46.

[13] UTC Aerospace Systems, 202 Wasco Loop, Suite 103, Hood
River, OR 97031 USA, Piccolo SL Datasheet, 2014.

[14] J. Pinto, P. S. Dias, R. Martins, J. Fortuna, E. Marques, and
J. Sousa, “The lsts toolchain for networked vehicle systems,” in
OCEANS-Bergen, 2013 MTS/IEEE, pp. 1–9, IEEE, 2013.

[15] P. b. c. Williams and P. b. Trivailo, “Cable-supported sliding
payload deployment from a circling fixed-wing aircraft,” Journal
of Aircraft, vol. 43, no. 5, pp. 1567–1570, 2006. cited By (since
1996)2.

[16] P. Williams and P. Trivailo, “Dynamics of circularly towed aerial
cable systems, part i: Optimal configurations and their stabil-
ity,” Journal of guidance, control, and dynamics, vol. 30, no. 3,
pp. 753–765, 2007.

[17] M. R. Wuest and R. J. Benney, “Precision airdrop (largage de pre-
cision),” Flight Test Techniques Series, vol. 24, December 2005.

120

http://www.ecfr.gov/cgi-bin/text-idx?SID=a437b47edd5dfc18ae6693d1f6c1ee7a&node=14:1.0.1.1.1.0.1.1&rgn=div8
http://www.ecfr.gov/cgi-bin/text-idx?SID=a437b47edd5dfc18ae6693d1f6c1ee7a&node=14:1.0.1.1.1.0.1.1&rgn=div8
http://www.ecfr.gov/cgi-bin/text-idx?SID=a437b47edd5dfc18ae6693d1f6c1ee7a&node=14:1.0.1.1.1.0.1.1&rgn=div8
http://www.uavfactory.com/product/46
http://www.uavfactory.com/product/46

Bibliography

[18] J. M. Cimbala and Y. A. Çengel, Essentials of fluid mechanics:
fundamentals and applications. McGraw-Hill Higher Education,
2008.

[19] G. Parker, “Projectile motion with air resistance quadratic in the
speed,” Am. J. Phys, vol. 45, no. 7, pp. 606–610, 1977.

[20] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert,
“Constrained model predictive control: Stability and optimality,”
Automatica, vol. 36, no. 6, pp. 789–814, 2000.

[21] B. Foss and T. A. N. Heirung, “Merging optimization and con-
trol.” September 2013.

[22] H. K. Khalil and J. Grizzle, Nonlinear systems, vol. 3. Prentice
hall Upper Saddle River, 2002.

[23] J. W. Curtis and R. W. Beard, “Satisficing: A new approach to
constructive nonlinear control,” Automatic Control, IEEE Trans-
actions on, vol. 49, no. 7, pp. 1090–1102, 2004.

[24] E. Skjong and S. A. Nundal, “Tracking objects with fixed-wing
uav using model predictive control and machine vision,” Master’s
thesis, NTNU, June 2014.

[25] S. H. Mathisen, “High precision deployment of wireless ssensor
from unmanned aerial vehicles,” Master’s thesis, NTNU, May
2014.

[26] E-flite, Servoless Payload Release, 2013.

[27] Tinder Rocketry, Peregrine Exhaustless CO2 Ejection System.

[28] “Servoless payload release.” http://www.horizonhobby.com/
products/servoless-payload-release-EFLA405. Accessed
on: 2014.05.25.

121

http://www.horizonhobby.com/products/servoless-payload-release-EFLA405
http://www.horizonhobby.com/products/servoless-payload-release-EFLA405

Bibliography

[29] “Quanum rtr bomb system.” http://www.hobbyking.com/
hobbyking/store/uh_viewitem.asp?idproduct=10624&aff=
800324. Accessed on: 2014.05.25.

[30] Ubiquiti Networks, Inc., rocket M Datasheet.

[31] Ubiquiti Networks, Inc., NanoStation M Datasheet.

122

http://www.hobbyking.com/hobbyking/store/uh_viewitem.asp?idproduct=10624&aff=800324
http://www.hobbyking.com/hobbyking/store/uh_viewitem.asp?idproduct=10624&aff=800324
http://www.hobbyking.com/hobbyking/store/uh_viewitem.asp?idproduct=10624&aff=800324

Nomenclature

ADP Augmented Dubins Path

AMOS Autonomous Marine Operations and Systems

CARP Computed Air Release Point

CAS Calibrated Airspeed

CG Center of Gravity

CLF Control Lyapunov Function

DUNE Unified Navigation Environment

EAS Equivalent Airspeed

ECEF Earth-centered Earth Fixed

FAA Federal Aviation Administration

GNSS Global Navigation Satellite System

GPS Global Positioning System

HIL Hardware-in-the-Loop

HMI Human-Machine Interface

123

Nomenclature

IAS Indicated Airspeed

IMC Inter-Module Communication

LAN Local Area Network

LSL Left-handed arc - Straight - Left-handed arc (Dubins
Path)

LSR Left-handed arc - Straight - Right-handed arc (Dubins
Path)

LSTS Underwater Systems and Technology Laboratory

MPC Model Predictive Control

NED North-East-Down

NTNU Norwegian University of Science and Technology

ODE Ordinary Differential Equation

OS Operating System

PCC Piccolo Command Center

PWM Pulse-Width Modulated

RSL Right-handed arc - Straight - Left-handed arc (Dubins
Path)

RSR Right-handed arc - Straight - Right-handed arc (Du-
bins Path)

SD Secure Digital

124

Nomenclature

SIL Software-in-the-Loop

SLA Straight Line Approach

TAS True Airspeed

UAV Unmanned Aerial Vehicle

USB Universal Serial Bus

WGS World Geodetic System

WP Waypoint

125

List of Figures

2.1. The NED frame (xn, yn, zn) shown relative to the ECEF
frame (xe, ye, ze). [4] 9

2.2. The Penguin B with the chosen BODY frame (xb, yb, zb)
and the associated Euler angles (φ, θ, ψ). 9

2.3. An aircraft executing a coordinated, level turn with
constant yaw rate r and pitch rate q. [8] 14

2.4. The Penguin B platform. [12] 17
2.5. Portable Pneumatic Catapult, used to launch the Pen-

guin B. [12] . 18
2.6. Pitot-Static Tube. [11] 18
2.7. The LSTS toolchain. 21

3.1. Basic concept of cable-supported precision airdrop as
visualized by Williams and Trivailo. [15] 25

3.2. Concept of the Parachute Low-Altitude Delivery Sys-
tem. [2] . 27

3.3. Concept of the High-Speed Container Delivery System.
[2] . 27

3.4. Concept drawing of the free fall model and the active
forces. 33

3.5. Finding the CARP (x, y)release by using the tentative
position of impact (x, y)impact. 37

127

List of Figures

3.6. Conceptual illustration of the difference between the
two release criteria – Circle and Halfplane. 39

3.7. Concept drawing of how waypoints can be used to guide
the aircraft. 41

3.8. A brief schematic explaining the necessity of increasing
the distance d by multiplying the minimum turn radius
R. 43

3.9. Given a start and an end configuration, there exists
four paths that each consists of an arc, a straight path
and a second arc. 46

3.10. Dubins path with halfplanes given as the positional suc-
cess criterion. 47

3.11. Displaying the possible paths when the distance be-
tween the two configurations is less than 3R. 48

3.12. Initial ADP concept. 50
3.13. The ADP was improved by adding a straight line ap-

proach before reaching the CARP. 52

4.1. The release mechanisms. 62
4.2. Overview of how the release mechanisms were mounted

on the Penguin B. 64
4.3. Overview of the communication link between the de-

vices in the system. 66
4.4. Overview of the initial setup of the hardware. 69
4.5. Overview of the improved setup of the hardware. . . . 70
4.6. Overview of the relationship between the DUNE tasks

and the classes. 72
4.7. The ReleaseConfiguration is comprised of the classes

ReleaseVelocity and ReleasePoint. 73
4.8. State machine in ADP. 77

128

List of Figures

5.1. The measured distance from aircraft to the CARP with
the circle criterion. 84

5.2. The smallest measured total horizontal distance from
the aircraft to the CARP with the circle criterion. . . 84

5.3. The measured distance from the aircraft to the CARP
with the halfplane criterion. 85

5.4. UAV path tracking of the SLA without any wind. . . 88
5.5. UAV path tracking of the SLA with 5 m/s wind from

south. 89
5.6. UAV path tracking of the SLA with 10 m/s wind from

south. 89
5.7. Long time testing of the deviation from the CARP with

the SLA. 91
5.8. Estimated Normal distribution of the deviation from

the desired angle based on the measurements from the
SLA. 91

5.9. UAV path tracking of the ADP without any wind. . . 93
5.10. UAV path tracking of the ADP with 5 m/s wind from

south. 94
5.11. UAV path tracking of the ADP with 10 m/s wind from

south. 94
5.12. Long time testing of the deviation from the CARP with

the ADP. 96
5.13. Estimated Normal distribution of the deviation from

the desired angle based on the measurements from the
ADP. 96

5.14. A multivariate normal distribution of the wind magni-
tude and direction. 98

129

List of Figures

5.15. The probability distribution of the area of impact when
the beacon is released from 30 m given a perfect release
configuration. 99

5.16. The probability distribution of the area of impact when
the beacon is released from 50 m given a perfect release
configuration. 100

5.17. The probability distribution of the area of impact when
the beacon is released from 100 m given a perfect release
configuration. 100

5.18. The probability distribution of the area of impact when
the beacon is released from 30 m based on the SLA
release configuration. 102

5.19. The difference between the ideal release configuration
and the SLA release configuration from 30 m. 102

5.20. The probability distribution of the area of impact when
the beacon is released from 50 m based on the SLA
release configuration. 103

5.21. The difference between the ideal release configuration
and the SLA release configuration from 50 m. 103

5.22. The probability distribution of the area of impact when
the beacon is released from 100 m based on the SLA
release configuration. 104

5.23. The difference between the ideal release configuration
and the SLA release configuration from 100 m. 104

5.24. The probability distribution of the area of impact when
the beacon is released from 30 m based on the ADP
release configuration. 106

5.25. The difference between the ideal release configuration
and the ADP release configuration from 30 m. 106

130

List of Figures

5.26. The probability distribution of the area of impact when
the beacon is released from 50 m based on the ADP
release configuration. 107

5.27. The difference between the ideal release configuration
and the ADP release configuration from 50 m. 107

5.28. The probability distribution of the area of impact when
the beacon is released from 100 m based on the ADP
release configuration. 108

5.29. The difference between the ideal release configuration
and the ADP release configuration from 50 m. 108

B.1. ReleaseConfiguration and its relation to ReleaseVeloc-
ity and ReleasePoint. 137

B.2. Overview of the Object Release test code structure. . . 138
B.3. Overview of the SLA code structure. 138
B.4. Overview of the ADP code structure. 138
B.5. ReleaseConfiguration class. 139
B.6. ReleasePoint class. 140
B.7. ReleaseVelocity class. 141
B.8. GenerateAugDubins class. 142
B.9. WaypointGenerator class. 143
B.10.GroundUnit DUNE task. 144
B.11.StraightLine DUNE task. 145
B.12.AugmentedDubinsPath DUNE task. 146
B.13.ReleaseObject DUNE task. 147
B.14.DropLoad DUNE task. 147

131

List of Tables

3.1. Density of air at Standard Atmospheric Pressure. [18] . 32

5.1. The calculated point of impact based on the release
altitude and an assumed 5 m/s wind. 99

A.1. Overview of the used software. 135
A.2. Overview of the used hardware. 135

133

A. Software and Hardware

This chapter briefly introduces the software and hardware that was
used throughout this project. Although there are more components
that may be mentioned in the hardware table, the idea is primarily
to create an overview of the specific parts used in this project.

Product Purpose
Matlab R2013b Simulation and data analysis

Cloud Cap Technology - Piccolo Command Center Piccolo SL GUI
Cloud Cap Technology - Simulator Piccolo SL Simulator

Eclipse C/C++ C/C++ Integrated Development Environment
LSTS Software Toolchain Software Framework
Boost C++ Libraries Additional C++ functionality

Table A.1.: Overview of the used software.

Product Purpose Manufacturer
Piccolo SL Flight Control Unit Cloud Cap Technology
Penguin B UAV platform UAV Factory

Universal Payload Mount Payload platform UAV Factory
Servoless Payload Release Release Mechanism E-flite

Release Mech. Bar Attach rel. mech. to Penguin B Workshop (NTNU)
PandaBoard On-board computer pandaboard.org

PWM Circuit Board Create release PWM signal Siri Mathisen
Power Supply Circuit Board Convert 12 V to 5 V Siri Mathisen

UBEC - 5A 5/6 V Voltage Regulator Turnigy
2200 mAh 2S 20C LiPo Battery to power PandaBoard Turnigy

Rocket M5 On-board communications unit Ubiquiti Networks, Inc.
NanoStation M5 Ground communications unit Ubiquiti Networks, Inc.

Table A.2.: Overview of the used hardware.

135

B. Software Description

This appendix presents the implemented C++ and DUNE software
used in this project. An overview of the code is presented first, fol-
lowed by a more accurate description of each class or task.

ReleaseConfiguration

ReleasePoint

ReleaseVelocity

Figure B.1.: ReleaseConfiguration and its relation to ReleaseVelocity
and ReleasePoint.

137

Chapter B Software Description

Task::GroundUnit Task::ReleaseObject

Task::DropLoad

IMC::Target

IMC::PayloadRelease

Figure B.2.: Overview of the Object Release test code structure.

Task::GroundUnit Task::StraightLine WaypointGenerator
IMC::Target

ReleaseConfiguration

ReleaseVelocity ReleasePoint

Task::DropLoad

IMC::PayloadRelease

Figure B.3.: Overview of the SLA code structure.

Task::GroundUnit Task::AugmentedDubinsPath GenerateAugDubins
IMC::Target

ReleaseConfiguration

ReleaseVelocity ReleasePoint

Task::DropLoad

IMC::PayloadRelease

Figure B.4.: Overview of the ADP code structure.

138

Software Description

R
el

ea
se

C
o

n
fi

g
u

ra
ti

o
n

-
a
l
t
:

d
o
u
b
l
e

-
d
i
r
e
c
t
i
o
n
:

R
e
l
e
a
s
e
V
e
l
o
c
i
t
y
*

-
I
A
S
:

d
o
u
b
l
e

-
p
o
i
n
t
:

R
e
l
e
a
s
e
P
o
i
n
t
*

-
r
e
l
e
a
s
e
_
p
o
i
n
t
:

s
t
a
t
e
_
t
y
p
e

-
r
e
l
e
a
s
e
_
v
e
l
:

s
t
a
t
e
_
t
y
p
e

-
t
a
r
g
e
t
:

p
o
s
i
t
i
o
n

-
w
i
n
d
:

s
t
a
t
e
_
t
y
p
e

+
R
e
l
e
a
s
e
C
o
n
f
i
g
u
r
a
t
i
o
n
(
r
e
l
e
a
s
e
_
a
l
t
:
d
o
u
b
l
e
,
w
i
n
d
_
v
e
c
t
o
r
:
s
t
a
t
e
_
t
y
p
e
,
i
n
d
i
c
a
t
e
d
_
a
i
r
_
s
p
e
e
d
:
d
o
u
b
l
e
,
t
a
r
g
e
t
_
p
o
s
:
p
o
s
i
t
i
o
n
)

+
c
a
l
c
_
p
o
i
n
t
_
o
f
_
r
e
l
e
a
s
e
(
)

+
g
e
t
_
r
e
l
e
a
s
e
_
p
o
i
n
t
(
)
:

s
t
a
t
e
_
t
y
p
e

+
s
e
t
W
i
n
d
(
)

Figure B.5.: ReleaseConfiguration class.

139

Chapter B Software Description

ReleasePoint

-A: double

-b: double

-C_D: static const double

-dt: double

-g: static const double

-m: static const double

-pi: static const double

-r: static const double

-rho: static const double

-target_x: double

-target_y: double

-wind: state_type

-x: state_type

+C_D: static const double

+g: static const double

+m: static const double

+pi: static const double

+r: static const double

+rho: static const double

+ReleasePoint(wind_input:state_type,x_input:state_type,delta_time:double)

+calc_release_point(altitude:double): state_type

+get_release_point(): state_type

+operator()(&x:const state_type,&dxdt:state_type,t:double)

+operator()(&x:const state_type,t:const double)

Figure B.6.: ReleasePoint class.

140

Software Description

ReleaseVelocity

-IAS: double

-release_velocity: state_type

-release_velocity_x: double

-release_velocity_y: double

-release_velocity_z: double

-wind: state_type

-wind_magnitude: double

-wind_unit_vector: state_type

-wind_unit_x: double

-wind_unit_y: double

-wind_unit_z: double

+ReleaseVelocity(wind_input:state_type,indicated_air_speed:int)

+calc_release_velocity(): state_type

+calc_release_velocity_decomposed()

+calc_wind_unit()

+create_wind_unit_vector()

+get_wind_magnitude(): double

+get_wind_unit_vector(): state_type

Figure B.7.: ReleaseVelocity class.

141

Chapter B Software Description

G
en

er
at

eA
ug

D
ub

in
s

-c
1:
 p
os
it
io
n

-c
2:
 p
os
it
io
n

-c
3:
 p
os
it
io
n

-c
w:
 b
oo
l

-g
:
st
at
ic
 c
on
st
 d
ou
bl
e

-H
1:
 h
al
fp
la
ne

-H
1_
DR
:
ha
lf
pl
an
e

-H
2:
 h
al
fp
la
ne

-H
2_
DR
:
ha
lf
pl
an
e

-H
3:
 h
al
fp
la
ne

-H
3_
DR
:
ha
lf
pl
an
e

-H
4:
 h
al
fp
la
ne

-H
4_
DR
:
ha
lf
pl
an
e

-H
5:
 h
al
fp
la
ne

-H
6:
 h
al
fp
la
ne

-h
al
fp
la
ne
_l
is
t:
 s
td
::
li
st
<h
al
fp
la
ne
>

-h
al
fp
la
ne
_l
is
t2
:
st
d:
:l
is
t<
ha
lf
pl
an
e>

-m
ax
_b
an
k_
an
gl
e_
de
g:
 s
ta
ti
c
co
ns
t
do
ub
le

-m
ax
_b
an
k_
an
gl
e_
ra
d:
 d
ou
bl
e

-p
i:
 s
ta
ti
c
co
ns
t
do
ub
le

-R
:
do
ub
le

-R
_z
:
ro
t_
ma
tr
ix

-r
ef
:
po
si
ti
on

+g
:
st
at
ic
 c
on
st
 d
ou
bl
e

+m
ax
_b
an
k_
an
gl
e_
de
g:
 s
ta
ti
c
co
ns
t
do
ub
le

+p
i:
 s
ta
ti
c
co
ns
t
do
ub
le

+G
en
er
at
eA
ug
Du
bi
ns
(c
lo
ck
wi
se
:b
oo
l,
IA
S:
do
ub
le
,w
in
d:
do
ub
le
,t
ar
ge
t:
po
si
ti
on
,r
el
ea
se
_p
oi
nt
:s
ta
te
_t
yp
e,
di
sp
la
ce
dC
ir
cl
eD
is
t:
do
ub
le
,r
ef
_n
ed
_f
ra
me
:p
os
it
io
n)

+N
ED
to
WG
S8
4(
x:
do
ub
le
,y
:d
ou
bl
e)
:
po
si
ti
on

+c
al
cR
ot
Ma
tr
ix
(c
lo
ck
wi
se
:b
oo
l)

+c
al
cu
la
te
Du
bi
ns
Pa
th
(s
ta
rt
_c
ir
cl
e:
po
si
ti
on
,e
nd
_c
ir
cl
e:
po
si
ti
on
,&
H1
:h
al
fp
la
ne
,&
H2
:h
al
fp
la
ne
)

+c
al
cu
la
te
Ra
di
us
(I
AS
:d
ou
bl
e,
wi
nd
:d
ou
bl
e)

+d
eg
2r
ad
()

+f
in
dC
ir
cl
eC
en
te
rs
(t
ar
ge
t:
po
si
ti
on
,r
el
ea
se
_p
oi
nt
:s
ta
te
_t
yp
e,
le
ng
th
:d
ou
bl
e)

+f
in
dH
al
fp
la
ne
s(
)

+f
in
dH
al
fp
la
ne
sD
ir
ec
tR
ou
te
()

+g
et
Ha
lf
pl
an
es
()
:
st
d:
:l
is
t<
ha
lf
pl
an
e>
*

+g
et
Ha
lf
pl
an
es
DR
()
:
st
d:
:l
is
t<
ha
lf
pl
an
e>
*

+g
et
Ra
di
us
()
:
do
ub
le

Figure B.8.: GenerateAugDubins class.

142

Software Description

W
ay

po
in

tG
en

er
at

or

-
l
a
t
:

d
o
u
b
l
e

-
l
o
n
:

d
o
u
b
l
e

-
m
a
x
_
b
a
n
k
_
a
n
g
l
e
_
r
a
d
:

d
o
u
b
l
e

-
m
a
x
_
t
u
r
n
_
r
a
d
i
u
s
:

d
o
u
b
l
e

-
p
o
s
t
_
r
e
l
e
a
s
e
:

w
a
y
p
o
i
n
t

-
p
r
e
_
r
e
l
e
a
s
e
:

w
a
y
p
o
i
n
t

-
r
e
f
_
a
l
t
:

d
o
u
b
l
e

-
r
e
f
_
l
a
t
:

d
o
u
b
l
e

-
r
e
f
_
l
o
n
:

d
o
u
b
l
e

-
r
e
l
e
a
s
e
_
p
o
i
n
t
:

w
a
y
p
o
i
n
t

-
T
A
S
:

d
o
u
b
l
e

-
w
i
n
d
_
u
n
i
t
_
v
e
c
t
o
r
:

s
t
a
t
e
_
t
y
p
e

-
w
p
l
:

w
a
y
p
o
i
n
t
l
i
s
t

-
w
p
l
_
w
g
s
8
4
:

w
a
y
p
o
i
n
t
l
i
s
t

+
g
:

s
t
a
t
i
c

c
o
n
s
t

d
o
u
b
l
e

+
m
a
x
_
b
a
n
k
_
a
n
g
l
e
_
d
e
g
:

s
t
a
t
i
c

c
o
n
s
t

d
o
u
b
l
e

+
p
i
:

s
t
a
t
i
c

c
o
n
s
t

d
o
u
b
l
e

+
s
h
i
f
t
_
c
o
n
s
t
:

s
t
a
t
i
c

c
o
n
s
t

d
o
u
b
l
e

+
W
a
y
p
o
i
n
t
G
e
n
e
r
a
t
o
r
(
r
e
l
e
a
s
e
_
p
o
i
n
t
:
s
t
a
t
e
_
t
y
p
e
,
t
r
u
e
_
a
i
r
_
s
p
e
e
d
_
i
n
p
u
t
:
d
o
u
b
l
e
,
r
e
f
_
n
e
d
_
f
r
a
m
e
:
w
a
y
p
o
i
n
t
)

+
c
a
l
c
_
m
a
x
_
t
u
r
n
_
r
a
d
i
u
s
(
)

+
d
e
g
2
r
a
d
(
)

+
g
e
n
e
r
a
t
e
_
p
o
s
t
_
r
e
l
e
a
s
e
_
w
p
(
)

+
g
e
n
e
r
a
t
e
_
p
r
e
_
r
e
l
e
a
s
e
_
w
p
(
)

+
g
e
n
e
r
a
t
e
_
w
p
_
l
i
s
t
(
)

+
g
e
n
e
r
a
t
e
_
w
p
_
l
i
s
t
_
w
g
s
8
4
(
)

+
g
e
t
_
w
p
_
l
i
s
t
(
)
:

w
a
y
p
o
i
n
t
l
i
s
t

+
g
e
t
_
w
p
_
l
i
s
t
_
w
g
s
8
4
(
)
:

w
a
y
p
o
i
n
t
l
i
s
t

Figure B.9.: WaypointGenerator class.

143

Chapter B Software Description

Task::GroundUnit

-m_confirmed: bool

-m_release_position_received: bool

-m_released: bool

-m_tolerance: double

-m_target: IMC::Target

-m_release_pos: IMC::Target

-m_actual_release: IMC::Target

-m_target_pos_ned: IMC::TrajectoryPoint

-m_release_pos_ned: IMC::TrajectoryPoint

-m_actual_release_pos_ned: IMC::TrajectoryPoint

-m_state: IMC::EstimatedState*

-filename: char

-myFile: ofstream

-onResourceInitialization(): void

+consume(msg:const IMC::PayloadRelease*): void

+consume(msg:const IMC::Target*): void

+consume(msg:const IMC::EstimatedState*): void

+onMain(): void

Figure B.10.: GroundUnit DUNE task.

144

Software Description

Task::StraightLine

-m_controlLoop: IMC::ControlLoops

-m_current_pos: IMC::TrajectoryPoint

-m_release_pos_ned: IMC::TrajectoryPoint

-m_wp1_pos_ned: IMC::TrajectoryPoint

-m_release_pos: GeoPosition

-m_wp1_pos: GeoPosition

-m_release_point: state_type

-m_has_released: bool

-m_new_ref_frame: bool

-m_wp1_passed: bool

-m_received_target: bool

-m_received_e_state: bool

-m_release_point_defined: bool

-IAS: double

-m_ref_alt: double

-m_ref_lat: double

-m_ref_lon: double

-m_target_drop_height: double

-m_alt: double

-m_target_lat: double

-m_target_lon: double

-m_tolerance: double

-m_vx: double

-m_vy: double

-m_vz: double

-m_wind_x: double

-m_wind_y: double

-m_wind_z: double

-m_x_pos: double

-m_y_pos: double

-m_z_pos: double

-m_positionLog: LogTxt

-m_logOnPoR: LogTxt

-onResourceInitialization(): void

+consume(e_state:const IMC::EstimatedState*): void

+consume(target:const IMC::Target*): void

+consume(stream_vel:const IMC::EstimatedStreamVelocity*): void

+consume(ind_speed:const IMC::IndicatedSpeed*): void

+calc_point_of_release(): void

+generate_waypoint_trajectory(): void

+release_object(): void

+release_object_halfplane(): void

+NEDtoWGS84(x:double,y:double): GeoPosition

+WGS84toNED(lat:double,lon:double): IMC::TrajectoryPoint

+onMain(): void

Figure B.11.: StraightLine DUNE task.
145

Chapter B Software Description

Task::AugmentedDubinsPath

-m_controlLoop: IMC::ControlLoops

-m_current_pos: IMC::TrajectoryPoint

-m_release_pos_ned: IMC::TrajectoryPoint

-m_release_pos: GeoPosition

-m_wp1_pos: GeoPosition

-m_release_point: state_type

-w: state_type

-m_target_pos: position

-currstate: ControlState

-halfplane_list: std::list< halfplane >

-m_received_target: bool

-m_received_e_state: bool

-m_release_point_defined: bool

-m_new_ref_frame: bool

-m_has_released: bool

-m_ready_for_release: bool

-m_clockwise: bool

-m_target_lat: double

-m_target_lon: double

-m_target_drop_height: double

-m_ref_lat: double

-m_ref_lon: double

-m_ref_alt: double

-m_alt: double

-m_vx: double

-m_vy: double

-m_vz: double

-m_u: double

-m_v: double

-m_w: double

-m_wind_x: double

-m_wind_y: double

-m_wind_z: double

-IAS: double

-m_x_pos: double

-m_y_pos: double

-m_z_pos: double

-wind_magnitude: double

-m_max_turn_radius: double

-m_tolerance: double

-m_positionLog: LogTxt

-m_logOnPoR: LogTxt

-onResourceInitialization(): void

+consume(e_state:const IMC::EstimatedState*): void

+consume(target:const IMC::Target*): void

+consume(stream_vel:const IMC::EstimatedStreamVelocity*): void

+consume(ind_speed:const IMC::IndicatedSpeed*): void

+generate_augmented_dubins(release_point:state_type,target:position): void

+control_uav(): void

+release_object(): void

+release_object_halfplane(): void

+NEDtoWGS84(x:double,y:double): GeoPosition

+WGS84toNED(lat:double,lon:double): IMC::TrajectoryPoint

+onMain(): void

Figure B.12.: AugmentedDubinsPath DUNE task.
146

Software Description

Task::ReleaseObject

-m_tolerance: double

-m_target_received: bool

-m_e_state_received: bool

-m_new_ref_frame: bool

-m_has_released: bool

-passed_halfplane: bool

-m_ref_pos: GeoPosition

-m_target_pos: GeoPosition

-m_current_pos: IMC::TrajectoryPoint

-m_target_pos_ned: IMC::TrajectoryPoint

-m_distanceLog: LogTxt*

-onResourceInitialization(): void

+consume(msg:const IMC::EstimatedState*): void

+consume(msg:const IMC::Target*): void

+consume(msg:const IMC::PayloadRelease*): void

+release_object(): void

+release_object_halfplane(): void

+onMain(): void

Figure B.13.: ReleaseObject DUNE task.

Task::DropLoad

-onResourceInitialization(): void

+consume(msg:const IMC::PayloadRelease*): void

+onMain(): void

Figure B.14.: DropLoad DUNE task.

147

	Problem Description
	Preface
	Abstract
	Sammendrag
	Contents

	1 Introduction
	1.1 About the Project
	1.1.1 Motivation
	1.1.2 Core Assumptions
	1.1.3 Approach
	1.1.4 Distribution of Work

	1.2 Related Work
	1.3 Outline of the Thesis

	2 System Description
	2.1 Coordinate Systems
	2.2 Fixed-Wing Aircraft
	2.2.1 Kinematic Equations of Motion
	2.2.2 Bank and Turn
	2.2.3 Airspeed

	2.3 Tools and Equipment
	2.3.1 Penguin B
	2.3.2 Piccolo SL
	2.3.3 Software Toolchain

	3 Analysis and Design
	3.1 Review of Precision Airdrop Methods
	3.1.1 Cable-Supported Sliding Payload
	3.1.2 Parachute Deployment
	3.1.3 Free Fall
	3.1.4 Concluding Remarks on the Precision Airdrop Methods

	3.2 Computed Air Release Point
	3.2.1 Winds
	3.2.2 System Ballistics
	3.2.3 Airspeed
	3.2.4 Calculation of the CARP
	3.2.5 Release Criteria

	3.3 Path Planning
	3.3.1 Straight Line Approach
	3.3.2 Dubins Path
	3.3.3 Augmented Dubins Path

	3.4 Path Tracking
	3.4.1 Waypoints
	3.4.2 Heading
	3.4.3 Concluding Remarks on Path Tracking

	4 Implementation
	4.1 Payload
	4.1.1 Release Mechanism
	4.1.2 Penguin B Custom Payload

	4.2 Software Implementation
	4.2.1 GroundUnit
	4.2.2 CARP
	4.2.3 Control Algorithms
	4.2.4 Payload Release

	5 System Testing
	5.1 Simulation
	5.1.1 Release Criteria
	5.1.2 Path Simulation
	5.1.3 Free Fall Simulation

	5.2 Testing with the Penguin B on Agdenes Airstrip
	5.2.1 Ground Testing
	5.2.2 In-Air Testing

	6 Discussion
	6.1 Release Criteria
	6.2 Path Control
	6.3 Free Fall

	7 Conclusion
	8 Further Work
	8.1 Improved Aircraft Control
	8.2 UAV Platform
	8.3 User Interface

	Bibliography
	Nomenclature
	List of Figures
	List of Tables
	A Software and Hardware
	B Software Description

