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Abstract

This thesis describes the use of optical flow and Hough transform in local navigation,
particularly the case of inspecting wind turbines and buildings for damages. The goal is
to create an observer capable of estimating the metric velocity and distance to the blade
from scaled velocity inputs. Furthermore, a controller capable of inspecting wind turbines
and buildings autonomously will be presented and tested.

The first part of the report will address the use of two different computer vision algorithms
in local navigation. Firstly, the optical flow algorithm will be presented, with focus on
the Horn-Schunck and the Lucas-Kanade method. By using a pyramidal representation
of the image, the algorithms were found to provide more accurate optical flow when the
motion is large. Secondly, the Hough transform for finding straight lines in an image was
investigated. The tests showed that Hough transform can be used on wind turbine blades
to estimate the desired velocity vector and the relative angle between the UAV and the
blade.

The observer was simulated in MATLAB with velocity vectors provided by an optical flow
algorithm. Two different case studies has been investigated to verify the mathematical
model and observer. The observer was able to successfully estimate the metric velocity
along with the distance.

The guidance law presented in this report was based on the pure pursuit guidance and
PID controllers. The controllers successfully maneuvered the UAV to the desired position
and kept a constant distance to the object. The height controller was tested with both a
stationary and dynamic desired height. The UAV was able to follow the desired height
in both cases.

Keywords: unmanned aerial vehicle, extended Kalman filter, inertial navigation sys-
tems, inertial measurement unit, visual aided inertial navigation, object tracking, pure
pursuit guidance, PID, optical flow, Lucas-Kanade method, Horn-Schunck method, Hough
transform, wind turbine inspection, building inspection.
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Problem description

The objective of this report is to design a observer and controller capable of local nav-
igation based on input from optical flow or Hough transform. The goal is to inspect
objects for damages, in particular wind turbine blades and building structures. The pos-
sible causes for damage on a wind turbine blade can be birds, lightning strike or erosion.
Any damages to the blade can make the wind turbine unbalanced and at worst destroy
the turbine. For this reason, it’s important to discover any damages as early as possible
to minimize the downtime and cost. In the case of building inspections, the structural
integrity can be affected over time due to lack of maintenance and external forces such
as dry weather. Any cracks or corrosion on a building can be an indicator of reduced
strength in the material and needs to be investigated as soon as possible.

The motivation for using an UAV to inspect the blades and building autonomously, is to
reduce the risk of injuries on operators. The location of the wind turbine and building
may also make it hard and costly to inspect for humans.
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Chapter 1

Introduction

The topic of this thesis is to create an observer capable of using visual and inertial infor-
mation to estimate the relative position and velocity between an unmanned aerial vehicle
(UAV) and an object. In addition, design a controller capable of inspecting wind turbines
and buildings for damages. This chapter will start with a brief overview of the background
and motivation for this thesis, and the existing solutions and recent challenges in this field
of study. Furthermore, the contributions of this thesis are given, along with the objectives
and limitations. Finally, the structure of the thesis is presented.

1.1 Background and motivation
The number of UAVs has increased exponentially in recent years [2, 71, 17]. The develop-
ment and use of UAVs was primarily done by the military, but now the number of civilian
applications have increased. The UAVs are expected to play a significant part in civilian
applications such as aerial footage, search and rescue operations, power line inspections,
wildlife surveillance and operate in hazardous environments were the risk of human lives
are a possibility [31, 70, 38]. With these applications in mind, several papers has been
written in the field of autonomous landing [63, 47, 79] and obstacle avoidance [42, 24].
Recently, EU-funded UAV projects have been created to develop service robots for use in
industry [1].

The use of inertial navigation systems (INS) for estimating the position and attitude of
vehicles operating in a 3D space, e.g. airplanes, helicopters and space shuttles, have been
investigated for many years [56, 35]. These systems have proven to yield good local pose
estimates over a short time, but bias and noise in the measurements will make the system
drift. To reduce this problem, an INS can be integrated with external measurements pro-
vided by another sensor, e.g. radar, star trackers and Global Positioning System (GPS)
[36, 53, 5]. This systems will exploit the complementarity in the different sensors and
provide a better estimate. GPS aided INS has proven to produce accurate estimates with
resolutions within a few meters, and is widely used today in both marine and aircraft
applications [61, 76, 22, 62].

In situations where GPS signals are jammed or not available, i.e. under water, indoors
or in urban environments, the use of cameras as an aiding sensor has been investigated.
Visual aided navigation system (VINS) has become more and more popular in recent
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years, and been a research topic for a long time [77]. The VINS does not rely on satellites
nor any external equipment on the ground, which makes it highly robust. It also comes
with the added benefit that it provides a more accurate local pose estimate. The added
accuracy together with the visual information, makes the VINS able to inspect objects
for damages.

1.2 Previous work
There are several approaches fusing visual information with an INS. A common approach
is to use either a linear Kalman filter (KF) [46] or the nonlinear equivalent, the extended
Kalman filter (EKF) [50, 34]. In [2, 49], the authors showed that the pose estimation of
an UAV improved with the use of information from a camera. The visual information can
also be used to land on a target [37] or to track a moving object in two [71] and three
dimensions [55, 12].

Most of these papers use the cameras to estimate a global position of the UAV itself
and the target it is tracking. In the field of estimating the velocity between the UAV
and an object with a fixed global position, e.g. wind turbines and buildings, it is more
interesting to look at the relative position and velocity. The use of optical flow for hovering
and vertical landing control has also yielded good results [25]. This paper relied on a
base station for doing the necessary computations and also used the non-metric scaled
velocities. In [26] the authors addressed a solution to the scale issue to provide a metric
velocity measurement, but with the use of a sonar. Weiss et al. presented an approach
to estimate the metric scale in a world frame without the use of sonar or other sensors,
but the result was used to initialize a Parallel Tracking and Mapping (PTAM) toolbox
[72]. Finally, in [23] the author uses an EKF and a nonlinear observer to estimate the
metric velocity measurements from the camera. However, this information was only used
to compute the distance to the ground and the relative velocity between the UAV and
the ground. The author did not use this information further in controllers.

1.3 Contribution and scope of this thesis
This thesis will address the use of a monocular camera together with on-board inertial
sensors to inspect wind turbines and buildings for damages. Furthermore, it will estimate
the relative velocity between an UAV and the target in metric velocities. Lastly, design
a controller capable of inspecting the structures autonomously. The controllers will be
implemented and tested on an UAV to verify the design.

1.4 Objectives
The main objectives of this project are

� System modeling - Investigated the different parts of the system and derive a
mathematical model
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� Optical flow - Give an overview of the optical flow algorithm and the two most
used techniques. Describe how optical flow can be used in local navigation, e.g.
object tracking and obstacle avoidance

� Hough transform - Give an overview of the Hough transform and how it can be
used to detect straight lines. Describe how Hough transform can be used in local
navigation, e.g. wind turbine blade inspection

� Design of observer - Create an observer based on the information received from
optical flow and on-board inertial sensors. The observer should be able to estimate
the relative distance and metric velocity of an object

� Design of control law - Design a controller capable of inspecting a wind turbine
blade or a building with velocity vectors as input. The input should be given by
the optical flow or Hough transform algorithms

� Simulate - Simulate the observer and controller to verify the results

� Test - Test the system on a UAV platform to verify the simulations

1.5 Assumptions
This thesis does not cover the stabilization of a multirotor UAV [7, 60], nor the required
algorithms to achieve the optical flow or Hough transform information from one or several
cameras [9, 3]. This report assumes that this is already been done, so the information
from the camera and the autopilot can be used as input to the observer and controller.

1.6 Notation
The notation used in this thesis follows the notation in [18]. The representation of vectors
and matrices are in bold letters, and curly brackets, {}, specifies the reference frame.
Superscript is used to indicate which frame a vector is represented in, e.g. vn is the
velocity expressed in {n}. Relative translation of one frame with respect to another frame
is written with both super- and subscript, e.g vnb is the velocity of frame b expressed in
frame n.

Rotation matrices are used to perform rotations between two coordinate frames, e.g. the
rotation matrix Ra

b is used to transform a vector from {b} to {a}

va = Ra
bvb

Rotation matrices can be combined to perform rotations between multiple frames. The
rotation matrix from {c} to {a} can be expressed as a product of rotation matrix from
{b} to {a} and from {c} to {b}

Ra
c = Ra

bRb
c

Throughout this thesis, the identity matrix, I, and zero matrix, 0, are frequently used.
The subscripts indicates the size of the matrices, e.g. I4 is the 4×4 identity matrix and
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02×4 is a 2×4 matrix filled with zeros.

For a vector λ = [λ1 λ2 λ3]T , S(λ) describes the 3×3 skew-symmetric matrix for a
cross product

λ× a := S(λ)a

where S ∈ SS(3) is

S(λ) = −ST (λ) =

 0 −λ3 λ2
λ3 0 −λ1
−λ2 λ1 0



1.7 Structure of the thesis
The rest of the thesis is structured as follows. Chapter 2 describes the different components
needed to inspect the wind turbine blade and building presented in this project. In
Chapter 3, the necessary equations for the system under consideration are presented.
Chapter 4 will give a brief overview of the computer vision used in this thesis and how
this information can be used in local navigation. These equations are then used to design
an observer in Chapter 5. Afterwards, in Chapter 6, the design of a guidance law and
controller is presented. The system is then simulated in Chapter 7 to verify the model and
observer. Furthermore, in Chapter 8 the system is simulated with the necessary software
in the loop, thus verifying that the controllers are applicable to the UAV. In Chapter 9 the
different parts are tested on a UAV platform. Finally, the results are concluded together
with an overview of the future plans in Chapter 10.



5

Chapter 2

System description

This chapter presents an overview of the different parts of the system used in this thesis.
This includes the necessary hardware, e.g. the UAV, camera, autopilot, on-board com-
puter and distance sensor. A description of the wind turbines and buildings considered in
this thesis is also given. Lastly, the coordinate frames to the respective components are
presented together with the necessary software.

2.1 UAV
The UAV used in this thesis needs to be a vertical take-off and landing (VTOL) vehicle
and be able to move in 6 degrees of freedom (6DOF), e.g. a multicopter. A multicopter
is a rotary-wing aircraft consisting of more than two rotors. The rotors can be controlled
independently to stabilize, provide thrust and control the aircraft. In the case of a hex-
acopter, a multicopter with 6 motors, three of the propellers rotate clockwise while the
rest rotate counter clockwise, see Figure 2.1. This setup will cancel out the rotational
contribution about the z-axis. The multicopter is controlled using an inertial measure-
ment unit (IMU) strapped down to the body.

In this thesis a 3D Robotics hexacopter has been used. The specifications are available
in Table 2.1.

2.2 Camera
To observe the relative motion and compute the optical flow and Hough transform, a
camera is needed. The camera is mounted to the UAV with the optical sensor facing
forward. This thesis considers a pinhole camera, see Figure 2.2. There are several features
to take into account when deciding on a camera, e.g. frames per second (FPS), resolution
and the focus length. The choice of these features depends on the desired capabilities of
the camera and the computational power of the on-board computer.

2.3 Autopilot
The autopilot used in this project is the open source, Arduino based ArduPilot Mega
(APM). The APM stabilizes the UAV with use of a 6DOF IMU, consisting of a 3DOF
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IMU

1

2

3

4

5

6

Figure 2.1: Principle drawing of a hexacopter. Motor 1, 3 and 5 rotates clockwise, while
motor 2, 4 and 6 rotates counter clockwise. The IMU is located in the center of gravity.

Table 2.1: Specifications hexacopter

Components Detailed description
Frame 3DR hexacopter frame with custom 3D printed payload
Motors 880Kv AC2836-358
ESC 20A ESC with SimonK firmware

Autopilot APM 2.6 ArduPilot
USB Low quality camera Econ e-CAM51_USB

HQ Camera GoPro Hero3+ Black Edition
On-board computer Pandaboard ES

GPS 3DR GPS uBlox LEA-6 Board
Power module APM Power Module with XT60 Connectors
Telemetry 3DR Telemtry Kit - 433 MHz (Europe)

RC controller Spectrum DX7s 7 CH Transmitter with AR8000
Battery Hyperion 3s 4000mAh 25C

(a) Camera far away from object (b) Camera closer to object

Figure 2.2: Principle drawing of a pinhole camera
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(a) with enclosure (b) without enclosure

Figure 2.3: Picture of an APM with and without enclosure. The output pins is to connect
the different motors, while the input pins are to connect a receiver. There are also port
for telemetry, GPS and external I2C sensors.

gyroscope and a 3DOF accelerometer. In addition, the APM has a magnetometer and a
barometer to measure the heading and altitude of the UAV. It is also possible to connect
optional external sensors, e.g. GPS, pitot tube and telemetry, via Inter-Integrated Circuit
(I2C) or a serial port. When a GPS is connected, the UAV has the opportunity to return
home when it is out of sight or loses radio control. The pitot tube is used to measure
the wind speed, thus calculated the relative speed of the UAV. Telemetry is a two-way
communication link between the UAV and a ground station running Mission Planner. In
the Mission Planner software, it is possible to set waypoints, tune the parameters in-air
and display on-board video if a camera link is provided. There is also a 4MB onboard
memory capable of logging the mission automatically during flight.

The Mission Planner can also be used as a hardware-in-the-loop (HIL) simulator. HIL
simulation makes it possible to simulate the behavior of the multicopter without the
complexity and risk of flying outdoors. For this reason, new algorithms and software can
be tested without any consequences. The HIL simulation can either be done in FlightGear
or X-plane 9/10.

2.4 PandaBoard
Now that the different components needed to stabilize the UAV and detecting an object
are established, a computer to connect the different modules and interact between them
is necessary. In this thesis this is accomplished using a single-board computer (SBC). A
SBC has all the necessary components on a single circuit board. This includes a central
processing unit (CPU), a graphics processing unit (GPU), random-access memory (RAM)
and the input-output (I/O) needed to communicate with the board. The requirements
for the SBC considered in this thesis is low weight, low power consumption and high
computational power. Frederik Stendahl Leira investigated different SBCs available on
the market and made a decision [40]. The choice fell on the PandaBoard ES and will be
used in the rest of this thesis. A top view of the PandaBoard together with a block dia-
gram is available in Figure 2.4. Besides having presoldered components, e.g. USB, HDMI
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(b) Block diagram

Figure 2.4: Pandaboard. Top view (a) and the block diagram (b) describing the interac-
tions between different components

and ethernet, the PandBoard ES also offer different expansion ports to connect external
sensors and equipment, e.g. I2C sensors, GPS, and camera. The full specifications are
listed in Table 2.2

In order to communicate with the different hardware components, an operating system
(OS) is required. PandaBoard ES supports various Linux-based operating system, e.g.
Android, Firefox OS and an optimized version of Ubuntu. Since the PandaBoard does
not include NAND memory, the operating system needs to be installed on an external SD
memory card.

The integrated SGX540 GPU opens up the possibility of GPU programming, also known
as general-purpose computing on graphics processing units (GPGPU). GPGPU program-
ming is to utilize the GPU to perform numerical calculation usually done by the CPU.
The GPU offers hundreds of cores together with high speed memory to massively parallel
the computation. Prior to OpenCV v.2.4.3, GPU programming was only available using
CUDA on NVIDIA GPUs. As of v.2.4.3, OpenCV has included an OpenCL module which
makes it possible to program on GPUs from multiple vendors, e.g. Apple, Intel, AMD
and ARM. The available GPU accelerated functions which are relevant for this project
are; corner detectors, GoodFeaturesToTrack and optical flow. For a full list of all the
available GPU accelerated functions in OpenCV-CL v.2.4.6 and up, see [20].

2.5 Power supply
In order for the PandaBoard to do the calculations and operations, a power supply is
required. The electric speed controller (ESC) features a built-in battery eliminator circuit
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Table 2.2: PandaBoard ES specification. Courtesy of [54]

Components PandaBoard ES
CPU Dual-core 1.2 GHz ARM R© CortexTM-A9
GPU Imagination Technologies’ POWERVRTM SGX540
RAM 1 GB low power DDR2
Connectivity
Wi-Fi 802.11 b/g/n (based on WiLinkTM 6.0)
Bluetooth v2.1 + EDR (based on WiLinkTM 6.0)
Ethernet Onboard 10/100
Display and Audio output
HDMI v1.3 Connector (Type A)
DVI-D Can drive 2nd display
Audio in/out 3.5mm jack and HDMI (output only)
Expansion
USB OTG 1x USB 2.0 on-the-go port, 2x USB host ports
General purpose expansion header I2C, USB, MMC
Camera Camera expansion header
LCD LCD signal expansion using a single set of resistor

banks
Dimensions
Height 4.5” (114.3mm)
Width 4.0” (101.6mm)
Weight 2.6 oz (81.5 gram)
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(BEC), but it is only designed to deliver power to the RC receiver and servos. Thus, it can
not deliver enough current to power the PandaBoard. Instead, an universal BEC (UBEC)
will be used. An UBEC is a swithcing mode power supply, as opposed to the linear power
supply found in a BEC. Consequently, the UBEC can deliver more power with a significant
lower weight and size. In addition, the heat in an ESC with a built-in BEC, generated
by the current drawn by the motors, can cause loss of power to the PandaBoard. Worst
case scenario, this can result in a crash of the UAV. By using an UBEC with an external
battery, the current drawn by the UAV will not affect the PandaBoard. Likewise, a failure
on the PandaBoard will not cause the UAV to lose power and crash.

2.6 Distance sensor
To be able to measure the distance to the wind turbine blade, a distance sensor is needed.
It is important to know the distance to the blade, so that the hexacopter avoids crashing
into the blade and risking damage to the hexacopter or blade. There are several sensor
with different techniques used to measure distance, e.g. ultrasonic, laser, radar and meth-
ods including trigonometry. Due to weight consideration, availability and price, ultrasonic
sonar and laser will be investigated further in this section.

2.6.1 Sonar
Sound navigation and range (SONAR) uses sound propagation to estimate the distance
to an object. This is the same techniques bats uses to navigate in caves and communicate.
The sonar transmits sound waves and measures the time it takes for the sound waves to
reflect back, see Figure 2.5. Hence the distance can be described by the following equation

D = cat

2 (2.1)

where ca is the speed of sound in air and t is the time the sound wave uses to the object
and back. A sonar can also be used under water by changing the speed of sound in air to
water, cw.

The sonar systems uses a wide spectre of frequencies, from infrasonic1 to ultrasonic2.
Sonar was in the beginning design for, and used by, the military to either communicate
with other vessels or guide submarines in navigation. In recent years, due to reduced size
and cost, sonar has been more and more popular in robotic applications.

When choosing whether or not a sonar is applicable, it is important to consider the pos-
itive and negative aspects of a sonar. First of all, a sonar is low cost, light and uses
very little power. It is also possible to use multiple interfaces to connect to a sonar,
e.g. serial, pulse width modulation (PWM) and analog. On the other hand, a sonar is
sensitive to electric noise, turbulence and reflections from surrounding obstacles. A sonar
also send the sound waves at a specific cone-shaped signal, which may cause misleading
measurements, see Figure 2.7. Lastly, the sonars used in robot applications are not able

1Sound frequency lower than 20 Hz
2Sound frequency greater than 20 kHz
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Figure 2.5: Principle drawing of a sonar. Courtesy of
[68]

Figure 2.6: MaxBotix Max-
Sonar EZ4. Courtesy of [44]

Figure 2.7: Comparison of sonar and laser measuring distance between obstacles.
Courtesy of [30]

to measure objects at great distances (> 10 metres).

The sonar used in this project is the MaxBotix MaxSonar EZ4, see Figure 2.6 and Ta-
ble 2.3. The MaxSonar EZ4 is supported by the ArduPilot out-of-the-box and its appli-
cation is usually to estimate the height above ground to make the take-off and landing
autonomous. In this case, reflections and turbulence is not an issue. Regarding estimating
the distance to a wind turbine, the sonar may experience reflections from the hexacopter
legs and turbulence from the propellers. This will be investigated further in section 9.1
and 9.3.1.

2.6.2 Laser
While a sonar uses sound wave to estimate the distance, a laser range finder (LRF) uses
the speed of light. A LRF emits a laser beam with known wavelength and measures the
number of cycles. Similarly as the sonar, the distance between the LRF and an object is
described as

D = clt

2 (2.2)
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Table 2.3: MaxSonar EZ4 MB1240 specification. Courtesy of [44]

Connections Maxsonar EZ4
Operational voltage 3.3V - 5V
Interface Analog, pulse width and serial.
Features
Update frequency 10Hz (Readings can occur every 100ms)
Range 0 - 765cm
Resolution 1cm
Dimensions
Height 0.78” (19.9mm)
Width 0.870” (22.1mm)
Depth 0.989” (25.11mm)
Weight 0.208 oz (5.9 gram)

where cl is the speed of light. The time it takes for a wave to hit the object and reflect
back is too fast to measure precisely. Hence, another method for measuring the time is
needed. The time can be calculated as [57]

t = φ

ω
(2.3)

where φ is the phase shift and ω is the angular frequency of the light beam. Substituting
(2.3) in (2.2) yields

D = 1
2
cφ

ω
= c

4πf (Nπ + ∆φ) = λ

4 (N + ∆N)

where N is the whole number of wavelengths, ∆N = ∆φ/π is the residual of the wave
and λ = c/f is the wavelength of the laser. From the equation we see that the distance
is calculated as a function of the wavelength of the laser and number of cycles.

As opposed to an ultrasonic sonar, a LRF can measure considerable distances3. In ad-
dition, a LRF estimates the distance using a single point and will not be affected by
reflections or turbulence. The disadvantages of using a LRF is the higher weight, price
and update frequency.

The LRF considered in this thesis is the LightWare SF02, see Figure 2.9 and Table 2.4.
The SF02 is specifically designed for use on UAVs with a range of 40 metres and 1cm
resolution. The module can be connected to the PandBoard either through the analog
pins or by using serial communication.

2.6.3 Discussion
This section has shown that the sonar and the laser module have the same resolution.
When it comes to range, power consumption and size there are noticeable differences.
The SF02 module has longer range and will not be affected by reflections and turbulence.

3Some handheld LRF can measure hundreds of metres
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Laser

Phase

detection

Distance

calculation

Figure 2.8: Principle drawing of a LRF. The clear red
wave is the emitted light and the green is the return
wave. Based on [10]

Figure 2.9: LightWare
SF02. Courtesy of [52]

Table 2.4: LightWare SF02 specification. Courtesy of [52]

Connections SF02
Operational voltage 6.5-9V unregulated or 5V regulated. Also possible to connect both

unregulated and regulated power for redundancy.
Interface Analog and serial.
Features
Update frequency 12Hz
Range 0 - 40m
Resolution 1cm
Dimensions
Length 86mm
Width 59mm
Height 27mm
Weight 75 gram
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Figure 2.10: Modern
wind turbine

(a) Lightning strike (b) Erosion

Figure 2.11: Two examples of damage of a wind turbine
blade. Courtesy of [39]

However, it uses more power, is larger and over ten times heavier. The EZ4 sonar has
shorter range, but with a range of over 7 metres it is far enough in the wind turbine and
building inspection scenario.

2.7 Applications
This thesis will focus on two different inspection applications, wind turbine blades and
buildings. In this section, the two different objects will be presented and the different
types of damage will be discussed.

2.7.1 Wind turbine
The wind turbine considered in this thesis is based on the three bladed modern wind
turbine, see Figure 2.10. Although the wind turbine in the picture is located on land, the
methods and results presented in this thesis are also applicable to wind turbines offshore.
As previously mentioned, damage on the blades can in a worst case scenario destroy
the wind turbine. Consequently, it is important to discover any damages as early as
possible to minimize the cost and maximize the production of electricity. Two of the most
common damages, lighting strike and erosion, are shown in Figure 2.11. Wind turbines
are commonly found along the coastline to utilize the wind. However, this location makes
the wind turbines vulnerable to collisions with large birds of prey.

2.7.2 Building
The other application consider in this thesis, is inspections of buildings for damage. Dam-
age can occur due to natural disasters such as hurricanes and earthquakes, as well as
weather changes. Changes in humidity or temperature can cause concrete buildings to
develop cracks and deep gaps. It is important to detect the cracks as soon as possi-
ble, to prevent further development. Worst case scenario, the damages can be a sign of
foundational failure.
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2.8 Reference frames
In order to represent the relative position between the UAV and an object, the different
coordinate frames need to be defined. The different coordinate frames are explained in
detail below and in Figure 2.12

• BODY {b} - The body-fixed reference frame is a moving coordinate frame fixed to
the UAV with origin at the center of gravity (CG). The linear accelerations and
angular velocities are measured in this frame. The x-axis points in the direction
of forward motion, while the y-axis points to the right. The z-axis points down to
complete orthogonal coordinate system.

• NED {n} - The North-East-Down (NED) coordinate frame is tangential with the
surface of the earth and moves with the UAV. This thesis only considers UAVs that
move at low speed, so the earth’s rotation can be neglected. This means that the
NED frame is seen as an inertial frame in which Newton’s laws of motion applies.
In this frame the x-axis points towards true north, y-axis points towards east and
to complete the orthogonal coordinate system, the z-axis points down.

• CAMERA {c} - The camera-fixed frame is a moving coordinate frame fixed to the
camera with its z-axis expanding positive from the camera to the image. The y-axis
coincides with the body’s y-axis. The x-axis points up to complete the orthogonal
coordinate system.
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points into the xy-plane

Camera

yb

zb

(b) Back view QC. The x-axis points out of
the yz-plane

yc

zc

(c) Top view camera. The x-axis points out
of the yz-plane

yc

xc
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Figure 2.12: Principal sketch of the UAV and camera with coordinate frames
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2.9 Software
The softwares running on-board the UAV and the ground station are DUNE and Neptus,
respectively. The software is developed by The Underwater Systems and Technology
Laboratory (LSTS) in Porto.

2.9.1 DUNE
DUNE: Unified Navigational Environment is the system running on-board the hexacopter.
DUNE handles the interaction between sensors and actuators, and the code used in control
and navigation of the UAV. DUNE works by creating different separate tasks running in
indepentent threads. Each task is responsible for its own function, e.g. read sensor or send
commands. DUNE is operatating system (OS) and CPU architecture independent. This
means that a change in OS and/or architecture of payload will not require any change of
code in DUNE. Hence, the UAV will be highly portable and a change in hardware will
not create additional work. In the DUNE source code, the necassary drivers for a large
number of sensors are included. These are sensors that are related to navigation and
control of a hexacopter or other unmanned vehicles. In addion, DUNE features several
built-in algorithms such as Kalman filter and other navigation filter.

2.9.2 Neptus
Neptus is a ground control station (GCS) for commanding and communicating with one
or several unmanned vehicles. In Neptus, an operator can control and send commands to
individual vehicles. Neptus can be used in different stages of the mission. Firstly, Neptus
can plan missions ahead time and simulate to validate the different parts of the mission,
e.g. battery life, sensors and maneuvers. Secondly, Neptus can be used to receive and
visualize information about several types of unmanned vehicles during the mission and
give maneuver commands to the vehicle. An example of this is to set waypoints, load
plans or command desired speed. Lastly, it can be used to review and analyse previous
missions. The data collected during the mission can be examined in detailed. This is
useful to improve the behavior of the vehicles and do the necessary corrections to the
next mission.

2.9.3 IMC
Inter-Module Communication (IMC) is a protocol used for communicating between vehi-
cles, sensors and operator consoles. The IMC protocol is used by both DUNE and Neptus
to communicate and send commands. IMC also serves as the inter-process communication
in DUNE to allow different tasks to run independently and communicate. The IMC pro-
tocol, in cooperation with DUNE and Neptus, has been comprehensively tested by LSTS,
with successful results [58]. Figure 2.13 shows how IMC connects the vehicles running
DUNE and ground stations running Neptus.
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Figure 2.13: Software tool chain. Courtesy of [59]
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Chapter 3

System modeling

In order to estimate the metric velocity and the distance to an object, the equations of
motion are required. The following chapter addresses the derivation of these equations
using standard kinematics.

3.1 Acceleration
The acceleration of a rigid body can be written as [14]

~ap =
bd

dt
~vo + ~ωib × ~vo +

bd2

dt2
~r + 2~ωib ×

bd

dt
~r + ~αib × ~r + ~ωib × (~ωib × ~r) (3.1)

where ~r is the vector between the IMU and camera. Since the camera is fixed on the body,
~r is constant in {b}. Hence, there is no Coriolis acceleration and (3.1) can be written

~ap =
bd

dt
~vo + ~ωib × ~vo + ~αib × ~r + ~ωib × (~ωib × ~r) (3.2)

Writing (3.2) in coordinate form yields

v̇c = Rc
b

(
ab + S(ωb)vb + S(ω̇b)rb + S2(ωb)rb

)
= Rc

b

(
ab + S(ω̇b)rb + S2(ωb)rb

)
+ S(ωc)vc (3.3)

where v̇c is the acceleration of the UAV expressed in {c} and ωc = Rc
bω

b. The rotation
matrix Rc

b can either be found manually by measure the angles between the camera and
body frame, φc, θc, ψc, or by using a self-calibration algorithm [48, 33]. The self-calibrating
algorithm is beyond the scope of this thesis, thus the rotation matrix is calculated as a
combination of simple rotation around ψc, θc, and φc respectively.

Rc
b = Rz,ψcRy,θcRx,φc

The linear acceleration and angular velocity measured by the IMU is denoted by ωb and
ab, respectively. The IMU will not only measure the acceleration caused by the UAV, but
also the acceleration due to gravity. Hence

ab = f b + gb

= f b + Rb
ngn (3.4)
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with the rotation matrix given by

Rb
n =

 cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ
cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ


where gn = [0 0 g]T is the gravitational vector in {n}, s· = sin(·) and c· = cos(·). Since the
IMU only measure linear acceleration and angular velocity, there is no direct measurement
of the angular acceleration, ω̇. Instead of performing a numerical differentiation, the
assumption ω̇ ≈ 0 is made. Using this approximation together with (3.4), we can rewrite
(3.3)

v̇c ≈ Rc
b

(
f b + Rb

ngn + S2(ωb)pbbc
)

+ S(ωc)vc (3.5)

3.2 Distance
The distance, d, from the image plane to the origin of {c} can be written using the Hessian
normal form [73]

nc ·Pc + d = 0

where nc is the plane unit normal vector and Pc is the principal point, i.e. the intersection
of the optical axis and the image plane. The derivative of the distance can be found
according to [21]

ḋ = ncvc (3.6)

Figure 3.1 shows a graphical interpretation of the Hessian normal form. As the figure
clearly shows, the plane unit normal vector can be expressed in {c} as nc = [0 0 -1]T

nc

Pc

Xc

Zc

Image plane

Camera

d

Figure 3.1: The camera projects the 3D object onto a 2D image plane. The plane unit
normal vector is in the opposite direction of the camera optical axis
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Chapter 4

Computer vision

This chapter describes two different computer vision algorithms. The first is the feature-
based optical flow and the second is the straight line Hough transform. Both of these
approaches will be examined and the applications in local navigation will be discussed.

4.1 Optical flow
This section gives an overview of the optical flow and states the two most popular methods
used today. The first method is the much celebrated Horn-Schunck method and the
second is the least-square based Lucas-Kanade method. The Lucas-Kanade method will
receive the most focus due to its popularity and best overall performance [19]. Finally, a
discussion of how the the optical flow output can be used in local navigation is presented.

4.1.1 Overview
The motion in an image is the real motion of a 3D object projected onto a 2D plane.
Optical flow is the relative motion between an observer (e.g. camera, eye) and the sur-
rounding objects in the field of view. It has been shown that insects use optical flow to
navigate and avoid obstacles [67]. Figure 4.1 shows a plan view of a fly using optical flow
to detect and avoid an obstacle. The same principle can be used by robots to either avoid
obstacles or track objects using a camera. In Figure 4.2, a Rubik’s cube is rotated on
a turntable and the resulting optical flow is calculated. The figure shows that it is not
possible to calculate optical flow on the turntable itself due to lack of features to track.

4.1.2 Calculation
Let E(x, y, t) be the image brightness in a point (x, y) at time t. In optical flow, the
algorithms assume that the brightness of a particular point in the image is conserved
between frames, i.e.

dE(x, y, t)
dt

= 0
∂E

∂x

dx

dt
+ ∂E

∂y

dy

dt
+ ∂E

∂t
= 0
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Figure 4.1: The optical flow, F, experienced by a fly travling past an obstacle. Courtesy
of [29]

(a) First frame (b) Second frame (c) Optical flow

Figure 4.2: Optical flow given by a rotating Rubik’s cube. Courtesy of [16]

Defining u = dx/dt, v = dy/dt and Ex, Ey, Et to be the partial derivatives yields

Exu+ Eyv + Et = 0
∇E · v + Et = 0 (4.1)

where v =
[
u v

]T
and ∇E =

[
Ex Ey

]
. This equation is referred to as the gradi-

ent constraint equation [4]. The equation is linear with two unknowns for each pixel,
v =

[
u v

]T
, and is known as the aperture problem in the optical flow algorithms [69].

The number of unknowns will increase proportional with the number of pixel. Hence,
additional constraints are necessary in order to solve (4.1).

Horn-Schunck method

Horn and Schunck [27] combined (4.1) with a global smoothness constraint to estimate v
by minimizing

∫∫ (
λ2(‖ ∇u ‖2

2 + ‖ ∇v ‖2
2) + (∇E · v + Et)2

)
dxdy (4.2)
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Here, λ is a weighting factor and chosen as the expected noise in the estimates of E2
x+E2

y .
In order to find the velocity that minimize (4.2), an iterative equation is used [65]

u = ū− Ex
Exū+ Eyv̄ + Et
λ2 + E2

x + E2
y

v = v̄ − Ey
Exū+ Eyv̄ + Et
λ2 + E2

x + E2
y

where ūn and v̄n is the average of the velocity estimates un and vn.

Lucas-Kanade method

Lucas and Kanade proposed an alternative solution to the aperture problem by using
least-squares fit [41]. The Lucas-Kanade method considers a small neighbourhood, called
a window, around the pixel and assumes that the optical flow of each pixel within this
window is the same. This is a consequence of the smoothness assumption. The size of the
window can be chosen arbitrary. With a window size of 4 × 4, the optical flow equation
(4.1) can be calculated in each of the 16 pixel [65]

Ex1u+ Ey1v = −Et1
Ex2u+ Ey2v = −Et2

...
Ex16u+ Ey16v = −Et16

The equations above can be organized and stacked to form a linear system


Ex1 Ey1
Ex2 Ey2
... ...

Ex16 Ey16


[
u
v

]
=


Et1
Et2
...

Et16


By writing the above equations on matrix form, the optical flow can be calculated as

Av = Et

ATAv = ATEt

v =
[
ATA

]−1
ATEt

where
[
ATA

]−1
AT is the pseudo inverse. Instead of solving the linear equations above,

the optical flow can be estimated using least-squares fit.

min
∑
i

(Exiu+ Eyiv + Eti)2 (4.3)
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In order to minimize the square error, (4.3) is differentiated and set equal to zero. The
partial derivative with respect to u yields

∂

∂u

∑
i

(Exiu+ Eyiv + Eti)2 = 0∑
i

(Exiu+ Eyiv + Eti)Exi = 0∑
i

E2
xiu+

∑
i

EyiExiv = −
∑
i

EtiExi

Similarly, the partial derivative with respect to v∑
i

ExiEyiu+
∑
i

E2
yiv = −

∑
i

EtiEyi

The two partial derivatives can be written as a linear system on matrix form
∑
iE

2
xi

∑
iEyiExi∑

iEyiExi
∑
iE

2
yi

 [u
v

]
=

−
∑
iEtiExi

−∑iEtiEyi


Here it is easy to see that the matrix in front of the velocity vector is a square matrix,
and consequently can be inverted.

[
u
v

]
=


∑
iE

2
xi

∑
iEyiExi∑

iEyiExi
∑
iE

2
yi


−1 −

∑
iEtiExi

−∑iEtiEyi


= 1∑

iE
2
xi

∑
iE

2
yi − (∑iEyiExi)2


∑
iE

2
yi −∑iEyiExi

−∑iEyiExi
∑
iE

2
xi


−

∑
iEtiExi

−∑iEtiEyi



Hence, the optical flow v =
[
u v

]T
can be found as

u =
−∑iE

2
yi

∑
iEtiExi +∑

iEyiExi
∑
iEtiEyi∑

iE
2
xi

∑
iE

2
yi − (∑iEyiExi)2

v =
∑
iEyiExi

∑
iEtiExi −

∑
iE

2
xi

∑
iEtiEyi∑

iE
2
xi

∑
iE

2
yi − (∑iEyiExi)2

Weighted Lucas-Kanade method

In the Lucas-Kanade algorithm presented above, each of the pixels have equal weight.
It ids reasonable to assume that the pixels closer to the center of the window computes
the optical flow more accurately. Hence, the least-squares fit can be modified to include
weight on each of the pixels within the window

min
∑
i

wi (Exiu+ Eyiv + Eti)2
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where wi is a weight for pixel pi. Using the same procedure as for the least-squares, the
optical flow can be calculated as

u =
−∑iwiE

2
yi

∑
iwiEtiExi +∑

iwiEyiExi
∑
iwiEtiEyi∑

iwiE
2
xi

∑
iwiE

2
yi − (∑iwiEyiExi)2

v =
∑
iwiEyiExi

∑
iwiEtiExi −

∑
iwiE

2
xi

∑
iwiEtiEyi∑

iwiE
2
xi

∑
iwiE

2
yi − (∑iwiEyiExi)2

Lucas-Kanade method with pyramids

Both variations of the Lucas-Kanade algorithm derived above have one problem in com-
mon. In cases where the motion is large, the algorithms fail to produce accurate optical
flow. Pyramids are a very useful representation of an image and is created by using mul-
tiple copies of the same image. Each level in the pyramid is 1/4 of the size of the previous
level. The lowest level of the pyramid is the image with the highest resolution, often the
raw image. Consequently, the highest level is the image with the lowest resolution. For a
visual representation of the pyramid, see Figure 4.3.

To compute optical flow with Lucas-Kanade pyramids, Algorithm 4.1 can be used [64]

Algorithm 4.1 Lucas-Kanade method with pyramids
n← number of levels in pyramid
for i← n, 1 do

Take flow ui−1, vi−1 from level i− 1
Bilinear interpolate it to create u∗i , v∗i matrices of twice resolution for level i
Multiply u∗i , v∗i by 2
Compute Et from a block displaced by u∗i (x, y), v∗i (x, y)
Apply LK to get u′i(x, y), v′i(x, y) (the correction in flow)
Add corrections u′i, v′i, i.e. ui = u∗i + u′i, vi = v∗i + v′i

end for

The algorithm is explained graphically in Figure 4.4

4.1.3 Local navigation
The optical flow algorithms derived above have many applications in local navigation.
In this section three different applications of the optical flow are discussed. Firstly, the
velocity vector received by an optical flow algorithm and how it can be used in object
tracking is presented. Secondly, the case of object avoidance is discussed. Thirdly, show
the optical flow of two features can be used to estimate the angular velocity of an object
is shown.

Object tracking

The velocity vector received by an optical flow algorithm is [29]

F = −ω + vc

d
sin(θ) (4.4)
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Layer i

Layer i-1

Layer i-2

Figure 4.3: Sketch of a pyramid with three levels. The number of pixels is reduced with
a factor of four between each level. Based on [43]

where F is the optical flow produced by two kinds of motion; rotational, Frot = −ω, and
translational, Ftra = (vc/d) sin(θ). Furthermore, ω is the angular velocity of the observer
and θ is the angle between observer and object (review Figure 4.1). The last remaining
terms, vc and d, are the relative metric velocity and distance to the object, respectively.

The relative velocity vector gives an indication of how fast and in which direction the
object is moving relative to the UAV. This can be used to design a control law capable of
tracking the target, i.e. make the optical flow approach zero.

Obstacle avoidance

The optical flow can also be used to avoid obstacles. With the help of optical flow, an
observer will be notified when an object comes closer or further away. This information
can be used to avoid objects by seeking out where the optical flow is the smallest. This
is particularly useful indoors, as the space is limited by walls and ceiling. In Figure 4.5a,
an UAV uses optical flow to navigate through a narrow corridor. Figure 4.5b shows an
application of the optical flow obstacle avoidance in an outdoor environment.

Estimate angular velocity

If the object taken into consideration is rotating, it is possible to estimate the angular
velocity and feedforward the estimate to a controller. This will enable the system to
predict where the object will be at the next frame and do the necessary corrections, thus
achieve a more robust tracking controller. The angular velocity can be found as

ω = v⊥
r

(4.5)

where r is the distance from the center of rotation to the feature the UAV is tracking,
and v⊥ is the perpendicular velocity. Since a camera is able to capture pictures at a high
frame rate, the displacement of the object between frames will be small. Consequently,
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Level i-1

Level i

(a) The feature in level i−1 is propagated to
level i. Level i has four times the resolution
as level i− 1. The optical flow in level i− 1
is calculated using Lucas-Kanade

Level i-1

Level i

(b) The optical flow obtained in level i− 1
is propagated to level i by multiplying with
two. The resulting optical flow is denoted
u∗i , v∗i . The dotted line represent the true
optical flow.

Level iLevel i

(c) The residual optical flow, u′i, v′i, is cal-
culated by applying Lucas-Kanade in level
i with a window centred around u∗i , v∗i

Level i

ui = u∗i + u′i
vi = v∗i + v′i

(d) The optical flow is achieved by adding
the optical flow from level i− 1 propagated
to level i and the residual optical flow.

Figure 4.4: Step by step Lucas-Kanade with pyramids, idea [64]
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(a) A quadcopter navigating in a cor-
ridor with two cameras. The UAV is
controlled such that the optical flow of
each camera is equal. Courtesy of [80]

(b) A helicopter avoids trees by turn-
ing when the calculated optical flow is
below a threshold. Courtesy of [29]

Figure 4.5: Two different applications of obstacle avoidance

we can assume that v ≈ v⊥, see Figure 4.6. However, v is not only the velocity vector
caused by the wind turbine, but also the UAV, see Figure 4.9. Hence we can write the
relative velocity vector as

v = vO + vUAV (4.6)

where vO and vUAV is the velocity vector caused by the object and the UAV, respectively.
In order to use the velocity vector to estimate the angular velocity, the contribution from
the UAV needs to be cancelled out. Let f be the acceleration of the UAV and ts be the
time between two frames. Thus, the estimated velocity of the UAV can be written

v̂UAV = f · ts

Introducing the above expression in (4.6) yields

vO = v− f · ts

In order to estimate the angular velocity, the radius and thus also the origin is needed.
The origin can be found by tracking two feature points [(x1, y1), (x2, y2)] and adding the
optical flow vector to create two additional points [(x3, y3), (x4, y4)]. By drawing a line
between the two features in each point, the origin can be found where the lines intersect,
see Figure 4.7. Mathematically, it is calculated as [74]

O1 =

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣x1 y1
x2 y2

∣∣∣∣∣ x1 − x2∣∣∣∣∣x3 y3
x4 y4

∣∣∣∣∣ x3 − x4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣x1 − x2 y1 − y2
x3 − x4 y3 − y4

∣∣∣∣∣
O2 =

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣x1 y1
x2 y2

∣∣∣∣∣ y1 − y2∣∣∣∣∣x3 y3
x4 y4

∣∣∣∣∣ y3 − y4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣x1 − x2 y1 − y2
x3 − x4 y3 − y4

∣∣∣∣∣
(4.7)
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v⊥
v

r

Figure 4.6: Comparison of the perpen-
dicular velocity vector and the metric ve-
locity obtained by the EKF. The dotted
line is the trajectory of a rotating object

O

(x1, y1)

(x3, y3)
(x2, y2)

(x4, y4)

Figure 4.7: The origin is where the lines,
created by two features with added op-
tical flow, intersects each other. The
dashed lines are the trajectories of the
two features on a rotating object

where O1 and O2 is the x and y-value of the origin, respectively. Using simple Pythagoras,
the radii are found

r1 =
√

(x1 −O1)2 + (y1 −O2)2 r2 =
√

(x2 −O1)2 + (y2 −O2)2 (4.8)

The angular velocity is then calculated for each of the features using (4.5) and then taking
the average, i.e. ω = (ω1 + ω2)/2. The procedure is summarized in algorithm 4.2 and
graphically in Figure 4.8.

Algorithm 4.2 Estimate angular velocity
for each frame do

Choose two features to track
Store the position of the features and the added optical flow positions
Estimate the origin using (4.7)
Estimate the radii using (4.8)
Estimate the angular velocity using (4.5)

end for

4.2 Hough transform
In cases where there is a lack of features to track and the object consists of one or several
straight lines, Hough transform can be used to calculate the desired velocity vector. This
section will first give a short overview of Hough transform and how it can be used to detect
straight lines in an image. It will then include a discussion of how Hough transform can
be used in local navigation.
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(a) The velocity vectors received from an
optical flow algorithm. Two features were
tracked for a full revolution
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(b) The two feature points were extracted.
The optical flow vector for these two fea-
tures are highlighted in red

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

(c) Two lines were drawn from the four po-
sitions and the origin were found at the in-
tersection, using (4.7)
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(d) The radii were found by using simple
Pythagoras and the angular velocity was
estimated using (4.5)

Figure 4.8: Step by step estimating angular velocity from optical flow measurement

vWT
vUAV

v

vO

Figure 4.9: The estimated velocity vector is a combination of wind turbine and UAV
velocity. The dashed line is the trajectory of a rotating object
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ρ

θ

x

y

Figure 4.10: A line can be expressed in both Cartesian (x, y) and polar (ρ, θ) coordinates

4.2.1 Overview
In 1962, Paul Hough released a patent on recognizing complex patterns using a slope-
intersect parameter space [28]. Duda and Hart investigated this further and presented a
paper where they use polar coordinates to detect any parametric curves, e.g. line, circle,
ellipse [13]. While edge detection will detect the line, it will not give a mathematical
expression. The mathematical expression is necessary to extract information about the
line, e.g. angle, length and intersection between lines.

4.2.2 Detecting straight lines
Given a set of edge points, the Hough transform finds the line(s) which best fit the data.
A straight line can be described mathematically as

y = mx+ c (4.9)
where m is the slope and c is the intersect value. Not every line can be described by this
equation as the slope tends to be infinite. Instead, (4.9) is written in polar coordinates

ρ = xcosθ + ysinθ (4.10)
where ρ is the distance from the image corner perpendicular to the line and θ ∈ (−π/2, π/2)
is the angle, see Figure 4.10. For each pixel detected by the edge detection algorithm,
(4.10) will create a sinusoid. The sinusoids will intersect for those pixels that belongs
to the same straight line, i.e. have the same ρ and θ value, see Figure 4.11. These ρ
and θ values will get a vote, and the pairs with most votes belongs to a straight line.
The number of maxima is the number of straight lines. The procedure is summarized in
Algorithm 4.3.

4.2.3 Local navigation
Hough transform can be used in cases where the object consists of multiple straight lines,
e.g. wind turbines and building structures. By using Hough transform on a wind turbine
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(a) Three points extracted from a edge de-
tection algorithm
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(b) Hough transform of the three points

Figure 4.11: Given a set of points in Cartesian coordinates (a), the Hough transform can
find the equation in polar coordinates, (b). The sinusoid intersects in ρ = 0.8944 and
θ = 2.034 corresponding to the line y = 0.5x+ 1

Algorithm 4.3 Hough transform for fitting straight lines
Quantize the two-dimensional parameter space P [ρmin, . . . , ρmax, θmin, . . . , θmax]
n number of edge pixels
for i=0, i<n, i++ do

for (θ = θmin, θ ≤ θmax, θ + +) do
ρ = xi cos(θ) + yi sin(θ)
P [ρ, θ] + = 1

end for
end for
Find the local maxima on the parameter space
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(a) Wind turbine blade (b) Edge detection
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(c) Hough transform in a (ρ, θ) plot (d) Plot of the detected lines in original im-
age

Figure 4.12: Wind turbine blade before (a) and after (b) edge detection using the canny
edge detection in MATLAB with threshold [0.02 0.09]. The Hough transform is shown
in (c) and merged on the original image in (d). The arrow in (d) points in the direction
of the blade and will be the desired velocity vector for the UAV

blade, the blade can be described mathematically and thus create a vector in the direction
of the blade. The vector can be used in a pure pursuit guidance (see section 6.1), where
the length of the vector, i.e. speed of the UAV, can be set by an operator. Figure 4.12
shows the Hough transform performed on a wind turbine blade.

In addition, Hough transform can be used to detect the angle between straight lines, which
again can be used in yaw control. As illustrated in Figure 4.13, the angle between the
edges of the blade will change according to the orientation of the camera. By using a priori
information about the object, the Hough transform can detect errors in yaw and send this
information back to a yaw controller. It thus ensures that the UAV is perpendicular to
the object at all times. This is applicable in both the case of wind turbine inspection and
building inspection, as a building structure consist of several straight line with known
angle, e.g. windows and bricks.
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(a) Positive heading (b) Neutral heading, camera
perpendicular to the blade

(c) Negative heading

Figure 4.13: The angle between the edges of the blade changes according to the camera
rotation.
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Chapter 5

Filter design

Chapter 3 developed the necessary equations for describing the equation of motion be-
tween the UAV and an object. In Chapter 4 the output from a optical flow algorithm
was discussed. In this chapter the information from these two chapters are combined to
create an observer capable of estimating the metric, non-scaled velocity vector and the
distance.

5.1 Introduction
In the last five decades, many research areas, e.g. robotics, weather forecasting and nav-
igation, have investigated how to estimate the system states from noisy measurement
inputs. In 1960, Rudolph E. Kalman published his famous paper on filtering linear prob-
lems in discrete time [32]. The Kalman Filter (KF) is a recursive filter that estimates
unmeasured states and the process output of a linear system. The filter is optimal with
respect to minimizing the mean square error. However, most systems in real life are
nonlinear and in many applications it is not sufficient to linearize the model. Therefore,
additional approaches to estimate the unknown states in a nonlinear system have been
developed.

5.2 Extended Kalman filter
The extended Kalman filter (EKF) is a nonlinear version of the KF and is widely used
today in navigation and object tracking. The EKF was developed by NASA Ames Re-
search Center in the early sixties during studies of navigation and control for the Apollo
space capsule [45]. The EKF linearizes the nonlinear system about its best estimate at
each time step. However, linearization leads to loss of the optimality property. This
means that the EKF can diverge if the system equations are inaccurate or the initial state
predictions are too far from the true states.

Consider a general nonlinear system on the form

ẋ = f (x,u) + w (5.1)
y = h (x) + v (5.2)
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where f(x,u) is a nonlinear vector field and h(x) is a nonlinear measurement function.
The process and measurement noise, w and v, are assumed to be zero mean Gaussian
white noise with covariance matrix Qk = QT

k > 0 and Rk = RT
k > 0, respectively. The

EKF algorithm for estimating the states is presented below and graphically in Figure 5.1

1. The algorithm first computes the Kalman gain at time k, Kk. This gain will mini-
mize the mean-square estimation error. The Kalman gain can be calculated as

Kk = P−k HT
k

[
HkP−k HT

k + Rk

]−1

where P−k is the predicted covariance estimate and Hk is the linearized measurement
vector given as

Hk = ∂h(x)
∂xk

∣∣∣∣∣
xk=x̂−

k

(5.3)

2. The gain is then used to update the estimates with the new measurements.

x̂k = x̂−k + Kk

(
zk − h(x̂−k )

)
Here x̂−k is the predicted state estimate, zk is the new measurement and h(x̂−k ) is
the nonlinear measurement function.

3. The Kalman gain is also used to compute the error covariance for the updated
estimate.

Pk = (I−KkHk) P−k (I−KkHk)T + KkRkKT
k

4. The estimated states and covariance matrix is then projected ahead to time k + 1

x̂−k+1 = F(x̂(k))

P−k+1 = ΦkPkΦT
k + Qk

where F(x̂(k)) and Φk are obtained using forward Euler integration

F(x̂(k)) = x̂k + h [f(x̂k,uk)]

Φk = I + h
∂f(x,u)
∂xk

∣∣∣∣∣
xk=x̂k

(5.4)

These four steps are then repeated ad infinitum, or as long as there are measurements
available. If there are no measurements available, the EKF is able to predict the state
estimate purely on the system model. When a new measurement is available again, it will
correct the estimates accordingly. For a full derivation of the EKF, the reader is referred
to [6].
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Compute the Kalman gain:

Kk = P−
k H

T
k

[
HkP

−
k H

T
k +Rk

]−1

Update estimate with

x̂k = x̂−
k +Kk

(
zk − h(x̂−

k )
)

Compute error covariance

Pk = (I−KkHk)P
−
k (I−KkHk)

T
+KkRkK

T
k

Project ahead:

x̂−
k+1 = F(x̂(k))

P−
k+1 = ΦkPkΦ

T
k +Qk

for updated estimate:

measurements: zk

Enter prior estimate x̂−
0 and

its error covariance P−
0

Figure 5.1: The extended Kalman filter loop. Based on Figure 4.1 p.147 in [6]

5.3 Implementation
It was shown in section 4.1 that the output from an optical flow algorithm can be written
as

F = −ω + vc

d
sin(θ) (5.5)

where F is composed of translational, Ftra, and rotational, Frot, optical flow, ω is the
angular velocity and θ is the angle between the UAV and the object. The angular velocity
is measured by the IMU and can be used to cancel out the rotational contribution of the
optical flow. Hence, only the translational flow

Ftra = vc

d
sin(θ)

is measured. As shown in section 4.2.3 the UAV can be controlled to always face directly
towards the blade. However, this will only work in the case where the blade is horizontal.
When the blade is vertical, rotation about yaw will not have an impact on the angle.
Thus, only the information provided by the autopilot is available. These two methods
can be combined by using the camera to aid the heading estimate provided by the IMU.
As a result, a simple heading controller can be implemented in order to make the camera
and blade perpendicular to each other, i.e. sin(θ) ≈ 1. With these assumptions, the
optical flow output (5.5) can be simplified to

F = vc

d

Defining the state vector x = [vc d]T and with the system equations (3.5) and (3.6), the
system can be written in the form (5.1)-(5.2) with

f (x,u) =
[
Rc
b

(
f b + Rb

ngn + S2(ωb)pbbc
)
− S(ωc)vc

ncvc

]
, h (x) = vc

d
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The Jacobians are calculated according to (5.3)-(5.4)

Φk = I4 + h
∂f(x,u)
∂xk

= I4 + h


∂

∂vc
(−S(ωc)vc) ∂

∂d
(−S(ωc)vc)

∂

∂vc
(ncvc) ∂

∂d
(ncvc)


=
[
I3 − hS(ωc) 03×1

hnc 1

]

Hk = ∂h(x)
∂xk

=
[
∂

∂vc
(vc

d

)
∂

∂d

(vc

d

)]
=
[1
d
I3 −

vc

d2

]
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Chapter 6

Guidance

The following chapter describes the guidance systems for inspecting a wind turbine or
building for damages. The guidance is based on the two-point guidance scheme pure
pursuit with and without feed forward of angular velocity. The last section describes the
different PID controllers used to calculate the desired Euler angles, as well as throttle.
This thesis assumes that there are no acrobatic maneuvers executed. For this reason, the
coupling between the four controllers is ignored.

6.1 Pure pursuit guidance
In pure pursuit guidance the UAV creates a line-of-sight (LOS) vector between the UAV
itself and the object it is tracking, see Figure 6.2. The desired velocity, vd, is aligned with
this vector and can be calculated as [18]

vd = −κ p̃
‖ p̃ ‖

(6.1)

where p̃ = p−pt is the distance between the UAV and object, and ‖ · ‖ is the Euclidean
length of the vector. The design parameter κ > 0 is chosen arbitrary. For a more detailed
description of the pure pursuit guidance, the reader is referred to [18] and [78].

The vector received from one of the previously mentioned computer vision algorithms
can be interpreted as a pure pursuit vector. The vector starts at the camera and with a
direction determined by either optical flow or Hough transform. The vector is continuously
updated as long as there is new information available from the camera. Since the position
of the UAV and the object is unknown, the desired speed in (6.1) is not possible to
calculate. Instead, the velocity of the UAV can be controlled by scaling the length of the
vector, i.e. a longer vector yields higher desired speed.

In the wind turbine scenario, the UAV can also be controlled to always have the blade
in the center of the image. This is achieved by looking at the area above and below the
blade, see Figure 6.1. A larger area below implies that the UAV is too low and needs
to move upwards. This information can be fed into a controller which will make the
necessary adjustments, e.g. compensate the LOS vector by either adding or subtracting
the necessary corrections in z-direction.
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(a) UAV too low (b) Perfect (c) UAV too high

Figure 6.1: The area above and below the blade

6.2 Pure pursuit guidance with feed forward
In section 4.1.3, it was shown how the angular velocity of a rotating object can be es-
timated by tracking two or more features. To take advantage of the estimated angular
velocity, the pure pursuit guidance presented above needs to be modified. Instead of try-
ing to track where the object is at the moment, it will track where the object will be in
the future. Hence, the updated pure pursuit guidance can be written as

v∗d = −κ
(

p̃
‖ p̃ ‖

+ γ
)

where γ is the displacement vector added as a result of including feedforward of angular
velocity, see Figure 6.3.

6.3 PID controller
In order to follow the desired velocity vector, a controller is needed. A PID controller is
one of the most popular controllers due to its simplicity, adaptability and performance
in cases where the system parameters are unknown. The goal of the PID controller is to
minimize the error defined as

e(t) = r(t)− y(t)

where r(t) is the set point and y(t) is the measured state. In order to achieve this, the
controller consist of three terms; proportional, integral and derivative. The proportional
term multiplies the error with a proportional coefficient and is dependent on the current
error. However, the proportional controller will lead to an offset or droop. The integral
term adds up the previous errors and thus removes the offset. An integral controller
is included when the process is exposed to steady disturbances, e.g. ocean currents or
gravity. In most cases, a PI-controller will produce satisfactory results. However, in
processes where there are little measurement noise and a measurement of the derivative
is available, a derivative term is added. The added term decreases the settling time and
improves stability. By using the derivative of the error, the controller is able to predict and
correct future errors. The affect of including the different terms are shown in Figure 6.4.
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Figure 6.2: Desired velocity vectors for
pure pursuit guidance. Courtesy of [18]
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Figure 6.3: The UAV align the desired
velocity vector, vd, with the LOS vector.
The object’s position at time t+1 is pro-
jected using the displacement vector, γ,
calculated using the estimated angular
velocity. The dotted line is the trajec-
tory of the wind turbine
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Figure 6.4: Illustration of the affect of adding a P, I and D term in the controller

The PID controller will be the sum of the proportional, integral and derivative controller
and can be described as

u(t) = Kpe(t) +Ki

∫
e(t)dt+Kdė (6.2)

where Kp, Ki and Kd are user-defined gains. The PID controller is described graphically
in Figure 6.5.

6.3.1 Pitch
As previously mentioned, the distance to the wind turbine blade or a building is measured
using a sonar. The goal is to control the UAV so that it always has a desired distance to
the object. This can be achieved with the use of a PD controller with the error defined as

e = dref − dsonar
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P Kpe(t)

I Ki

∫
e(t)dt

D Kdė

∑e(t) ++
+

u(t)

Figure 6.5: Block diagram of a PID controller

where dref is the desired distance to the object and dsonar is the distance measured by
the sonar. By using the PD controller in (6.2) (Ki = 0) the error, e, will go to zero. The
derivative of the distance is achieved through numerical differentiation of the sonar value.
Since the desired distance is stationary, the derivative of the error can be written

ė = ḋref − ḋsonar = −ḋsonar = −dsonar − dsonar_prev
dt

where dsonar_prev is the previous sonar measurement. The output of the controller is the
desired pitch value. To ensure that the UAV does not receive desired pitch values that
could flip it, the controller saturates the desired pitch values.

6.3.2 Roll
The roll controller receives the desired velocity vector and decomposes the vector in y
(east) and z (down) direction. The y-direction is controlled by roll and the desired roll
angle can be calculated with a PD regulator. The controller receives the estimated velocity
from the optical flow algorithm and the derivative from the accelerometer. The output
of the controller is the desired roll angle in either radians or degrees, dependent on the
autopilot. Similarly to the pitch controller, the roll controller also features saturation on
the desired angle.

6.3.3 Yaw
The angular velocity is used in the in-built yaw controller, so a P controller will be
sufficient. An I-term can be added to reduce static deviation. As shown in section
4.2.3, the Hough transform can detect the angles between the blade or straight lines on a
building. This information can be fed to the controller, which will calculate the necessary
corrections. The output of the controller will be the desired yaw angle given in radians.

6.3.4 Height
The height controller uses the z-component of the decomposed vector to compute the
desired relative height, i.e. how much the UAV should move in relation to the current
height. Unlike the controllers above, the height controller uses a PID controller. The
integral term is included due to the constant force of gravity forcing the UAV down, and
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Figure 6.6: Block diagram of the different components and their interactions

to provide enough thrust when the battery voltage and weight of the payload changes.
The lack of an I-term will lead to static deviation, as shown above. The output of the
controller is the desired change of the current altitude. The altitude is given by the
barometer which will be initialised at take-off. The barometer measures the barometric
pressure and calculates the relative height as follows [75]

hrel = T0

Γ

(Pk
P0

)−Γ R
g

− 1


where T0 and P0 are the initial temperature and pressure, respectively. The initial pres-
sure and temperature are measured at start up by the barometer and the thermometer.
Furthermore, the Γ, R and g is the lapse rate, universal gas constant and gravity con-
stant, respectively. Another possibility is to use a sonar to measure the relative height.
In section 9.3.3 the barometer and sonar is tested to see which is more applicable.

A complete overview of the controllers and their interactions is available in Figure 6.6,
while the communication between the IMC messages is shown in Figure 6.7.
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Figure 6.7: Overview of the IMC messages and the functions where they are used. The
computer vision task is shown in green and is not covered in this thesis
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Chapter 7

Simulation

In the first section of this chapter, the function for finding the origin, radius and angular
velocity is verified using a simulated optical flow output with a stationary camera, i.e.
v = vO. In the next section, two different scenarios are investigated to see how the EKF
is able to estimate the metric velocities and distance to a moving target. These scenarios
will deal with a stationary and moving target. Furthermore, the simulations of the wind
turbine and building inspection scenarios will be presented. All the simulations in the
following sections are done in MATLAB R2013a on a Windows computer.

7.1 Estimate angular velocity
In section 4.1.3, a method for estimating the angular velocity based on optical flow mea-
surements was presented. In this section the method is tested using simulated optical
flow measurements, see Figure 4.8a. As the figure shows, the algorithm tracked two fea-
tures on a rotating object for one full revolution. The position of the two feature points
and the added optical flow positions, (xi, yi), i = 1, 2, 3, 4, were used to create two lines
intersecting in the origin. The radii are estimated by applying Pythagoras. Furthermore,
the angular velocity is calculated according to (4.5).

Algorithm 4.2 was simulated with angular velocity of the object, ω = 0.2rad/s, and with
the two feature points located at 5 and 10 meters from the center of rotation, respectively.
The perpendicular velocity was simulated using (4.5) with added noise

v = rω + nv

where nv is white noise with variance σ2. The result of the simulation can be seen in
Table 7.1 The table shows that the algorithm is able to estimate the angular velocity

Table 7.1: Estimated angular velocity

Added noise [σ]
0 0.01 0.1 1

Angular velocity of feature 1, ω1 [rad/s] 0.2 0.1990 0.1953 0.1378
Angular velocity of feature 2, ω1 [rad/s] 0.2 0.1986 0.1820 0.1323

Estimated angular velocity, ω = (ω1 + ω2)/2 [rad/s] 0.2 0.1988 0.1887 0.1351
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despite of noisy measurements. Even when the noise is 50% of the velocity vector, the
algorithm is still able to estimate the angular velocity within some margin. For this
reason, the controller will be able to use the estimates to improve tracking.

7.2 Extended Kalman filter
In this section, two scenarios are examined to verify the system model and estimator
designed in Chapter 3 and 5. In the following scenarios, the object’s global position is
fixed, e.g. a wind turbine. Thus, the change of estimated distance is due to movement of
the UAV. The code is written and simulated in MATLAB 2013a, and is available in the
digital appendix.

7.2.1 Scenario 1: Constant distance from target
In the first scenario, the UAV is moving in the xy-plane (represented in {c}) with a
constant distance to the target. The goal of this test is to estimate the metric velocity from
the scaled velocity measurement provided by optical flow. The distance is kept constant
in order to only estimate the velocity, thus making it easier to verify the simulations.

The test was conducted as follows

• 0 ≤ t < 50 Hover at constant height

• 50 ≤ t < 100 Fly west with constant velocity and Θ =
[
−10◦ 0◦ 0◦

]T
• 100 ≤ t < 150 Hover at constant height

• 150 ≤ t < 200 Fly up with constant velocity and Θ =
[
0◦ 0◦ 0◦

]T
• 200 ≤ t < 250 Hover at constant height

The result of the simulation is shown in Figure 7.1
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Figure 7.1: Estimating the metric velocity and distance when the UAV is moving with a
constant distance to the object

From the figure we see that the estimated metric velocity in x and y-direction are twice
as high as the measured optical flow. This is expected as the metric velocities are given
as v = d · Ftra, and we can see from the figure that the distance is held at approximately
2 meters. The transient effects on the velocity along the z-axis is a result of noisy IMU
measurements. As a result, the distance estimate is not completely constant. It is impor-
tant to mention that in this scenario the dynamics of an UAV and the object is not taken
into consideration. For this reason, the received scaled velocities is feasible. In reality, an
UAV would not be able to accelerate so quickly.

7.2.2 Scenario 2: Approach object
The second scenario addresses the case were an UAV is approaching the object with
constant acceleration. In this test there will be no measured optical flow, so the estimated
metric velocity will only depend on the accelerometer measurements. The goal of this test
is to see how the observer is able to estimate relative velocity and distance to the target
when no observable velocity is available from the camera.

The test was conducted as follows
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• 0 ≤ t < 50 Hover at constant height

• 50 ≤ t < 100 Fly towards the object with constant acceleration and
Θ =

[
0◦ −10◦ 0◦

]T
• 100 ≤ t < 150 Hover at constant height

• 150 ≤ t < 200 Fly away from the object with constant acceleration and Θ =[
0◦ 10◦ 0◦

]T
• 200 ≤ t < 250 Hover at constant height

The result of the simulation is shown in Figure 7.2
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Figure 7.2: Estimating the metric velocity and distance when the UAV is approaching a
stationary object with constant acceleration

As expected with constant acceleration, the velocity in z-direction increased linearly. After
100s the UAV stopped accelerating and held a constant velocity of 0.05m/s towards the
target. After approaching the object with constant velocity for 50s, the UAV deaccelerated
until it stopped. The figure shows that without any information from an optical flow
algorithm, the distance and velocity estimation in z-direction is only a result of integrating
the accelerometer readings.
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Figure 7.3: Simulated LOS vector received from a camera. The red circle is the UAV and
the red line is the LOS vector. The black line represent the wind turbine blade

7.3 Wind turbine
This section addresses the simulation of inspecting a wind turbine. Due to speed at the
tip1 and turbulence, the UAV will not be able to inspect a rotating wind turbine. As
a consequence, the following simulation will be of a stationary wind turbine blade. The
first step is to simulate the velocity vector received from the camera. The navigation
is divided into four parts. The first part examines the navigation to the hub, while the
second pans the front of the blade at an arbitrary angle. The third part navigates around
the tip of the blade to the back of the blade. Lastly, the different parts are combined to
show a complete inspection of a wind turbine blade.

All the simulations in this section are based on the quadcopter UAV simulator created by
Peter Corke [11]. The simulations were conducted without any external forces, e.g. wind
and measurement noise. The controllers are not tuned perfectly and will only work as a
proof of concept. The controllers need to be tuned individually for the hexacopter.

7.3.1 Camera vector
In the simulations, the camera information will not be available. Thus, the information
received from a camera needs to be simulated. The camera vector is simulated as a LOS
vector from the UAV to the object with a predetermined distance. Since the simulator has
the exact GPS position of the UAV and the position of the object is known, the vector
can easily be created. In Figure 7.3 the LOS vector is shown for three different UAV
positions. The length of the LOS vector can be set in the script to control the speed of
the UAV.

7.3.2 To the hub
In the wind turbine scenario, the first obstacle is to maneuver to the hub. In the following
simulation, the UAV starts on the ground 10 meters from the wind turbine. The result of
the simulation can be seen in Figure 7.4. From the figures we see that the UAV successfully
flies to the hub of the wind turbine. Both the distance and height controllers are designed
so that there is no overshoot, see Figure 7.4a and 7.4c. Closer inspection of the pitch
angle reveals that the UAV pitches forward in order to approach the hub. After a couple

1Example: A wind turbine with 40 meters blades rotating at 10 rpm will have a speed of 150 km/h
at the tip
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Figure 7.4: Plot of the distance, pitch, height and the three-dimensional trajectory as the
UAV approaching the wind turbine

of seconds, the UAV has gains great speed forward and starts pitching the opposite way
to cancel its momentum forward. This leads to a stop at the correct distance from the
hub, in this case 2 meters. In Figure 7.4d, the blue line shows the trajectory of the UAV
with a starting point at the red circle, while the wind turbine is illustrated with black
lines 120◦ apart.

7.3.3 Pan the blade
After the UAV reaches the hub of the wind turbine, the next step is to inspect the front
of the blade for damages. In the simulations, the angle of the blade can be set arbitrary
from 0◦ to 360◦. In this scenario, the angle of the blade is set to 60◦. The result of the
simulation can be seen in Figure 7.5. The UAV is capable of following the desired roll
angle with satisfying results, see Figure 7.5a. In the same way as the UAV pitched the
opposite way to stop the momentum forward, it is clear from the figure that the UAV
uses the same technique with roll at the tip of the blade. The three dimensional plot,
Figure 7.5b, clearly shows that the UAV follows the blade and stops at the end.



7.3. WIND TURBINE 51

0 10 20 30 40
−3

−2

−1

0

1

2

3

Time [s]

A
n
g
le

 [
d
e
g
]

Roll

 

 

Measured

Desired

(a) Measured vs desired roll

−10

0

10 −10
0

10

0

5

10

15

20

Y (East)

XYZ Plot

X (North)

Z
 (

D
o

w
n
)

(b) Three-dimensional plot of the UAV and
wind turbine. The red circle marks the
starting point.

Figure 7.5: Plot of the roll and the three-dimensional trajectory as the UAV inspecting a
wind turbine blade

7.3.4 Around the tip

In order to inspect the back of the blade as well, the UAV needs to maneuver around
the tip of the blade. In the following simulation the UAV starts at the tip of the blade
and flies around in a square with the same distance as the starting point, 2 meters in
this case. When it reaches the back, and the blade is within sight, the UAV stops and
hovers, ready to inspect the back of the blade. The result of the simulation can be seen
in Figure 7.6. From the figure we see that after about 10 seconds, right after the UAV
reaches the back, the desired roll angle experiences some glitches. This is due to the
necessity of simulating the velocity vectors usually provided by a camera. Similarly to
the two other experiments, the roll and pitch angles produces negative desired angles to
stop the momentum sideways and forward, respectively. Figure 7.6c shows the distance
from the UAV to the blade. When the UAV is position behind the blade, the sonar
measures negative distance. This is to simplify the simulation of the sonar readings. In
the last figure, Figure 7.6d, we see that the UAV accomplish the task of navigating around
the tip.

7.3.5 The blade

By connecting the different scenarios described earlier, the UAV can now inspect the front
of the blade, fly around the tip and inspect the back of the blade. Inspection of the back
of the blade is accomplish by reversing the velocity vector used on the front. The result of
the simulation can be seen in Figure 7.7. In Figure 7.7a - c, we see the same phenomenon
as in the previous simulations. The last figure, Figure 7.7d, shows how the UAV starts
at the hub of the wind turbine, inspects the front, flies around the tip and inspects the
back of the blade. After finishing inspecting the back, the UAV hovers at the hub ready
to inspect the next blade.
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7.4 Building inspection

This section addresses the simulation of inspecting a building for structural damages.
The simulation of building inspections has significant similarities to the wind turbine
simulation, as both receive desired velocity vectors from the camera. There are several
different search patterns capable of inspecting a building, e.g. parallel, creeping line,
square, sector [8]. This thesis will consider the two most popular patterns, parallel and
creeping line search.

7.4.1 Parallel search

In parallel search the UAV inspects the building one vertical segment at the time. De-
pendent on the FOV of the camera and distance to the building, the spacing between
the search lines changes. Instead of manually calculating the desired spacing between
the search lines, it can be calculated using information from the camera and sonar. The
desired spacing can be calculated as

ydesired = 2d tan
(
α

2

)
(7.1)

where d is the distance to the building, provided by the sonar, and α is the FOV of the
camera in radians, see Figure 7.8. By using (7.1) the algorithm will not be dependent
on the choice of camera nor the distance to the building. Consequently, the UAV can fly
closer to the building in selected areas where closer inspection is necessary.

Figure 7.9 shows the simulation of an UAV inspecting a building for structural damages
using the parallel search method. In this simulation the height of the building is set to
20 meters and the distance from the UAV to the building is set to 1 meter. By using a
camera with a FOV of 90◦ (π/2 rad), the horizontal distance between the search lines is
2 meters.

In Figure 7.10, a simulation of an UAV inspecting a building with close inspection in a
region is shown. The figure shows that the UAV flies closer to the building to inspect for
damages in more detail. As a result, the horizontal distance decreases from 2 meter to 1,
according to (7.1). After the UAV is done with the close inspection, the distance to the
building again increases to 1 meter. Consequently, the horizontal distance increases to 2
meters.

7.4.2 Creeping line search

In some cases there may be desirable to inspect the building horizontally instead of ver-
tically, dependent on the structural damages and shape of the building. This is achieved
by using creeping line search. The technique described in (7.1) can also be used to make
the inspection more adaptive. Figure 7.11 shows how the UAV can be used in building
inspections by using creping line search.
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7.5 Location of the UAV with respect to the object
In some cases, it may be beneficial for the operator to know where the UAV is relative
to the blade or building. This makes the operator able to locate the damage, and thus
send repairmen to the correct location. As previously mentioned, a wind turbine blade
has a lack of features to track and consequently one can not take advantage of optical
flow algorithms. In order to estimate where the UAV is in relation to the blade, a few
approaches can be utilized. Firstly, the accelerometer readings can be used to estimate
the distance covered by the UAV from the hub. However, the estimates will be highly
influenced by bias and noise, and will drift due to integration, see Appendix A. Secondly,
it is possible to use a priori information about the blade dimension and shape, e.g. width,
length and angle. By using the output of the Hough transform together with the distance
estimate from the sonar, it is possible to estimate the position of the UAV with respect to
the blade. This requires that the thickness of the blade changes according to the position
on the blade, i.e. that every measurement equals a unique position.

In the case of building inspections, there are features to track and other approaches can
be used. The optical flow algorithm will give a relative velocity estimate between the
UAV and the blade. Dependent on the amount of noise, the velocity estimate can be
integrated to give an approximation of the distance travelled. If it turns out that the
velocity estimate is too noisy, it is also possible to use a priori information about the
building, e.g. number of windows, to correct the estimate. However, this method would
have to be adjusted for each individual building as the number of windows and the spacing
between them changes.
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Chapter 8

Software In The Loop Simulation

Software-in-the-loop (SITL) simualtion virtualize the ArduPilot, UAV and environment
with a simulator. The simulator features a dynamic model of the UAV and the environ-
ment. The SITL simulation is conducted to test the software that will be executed on
the UAV. Consequently, the communication and interactions between tasks over the IMC
bus is tested, along with information about run-time and stability.

This chapter will take a closer look at the SITL simulation with external forces. The
external forces are environmental forces, e.g. wind, and sensor errors, e.g. bias, drift
and accuracy of the GPS. The first section tests the pitch controller independently. The
second section connects the height, pitch and roll controller together in the scenario of
inspecting the front of a wind turbine blade. Lastly, a discussion of the results is made.

8.1 Pitch
In the SITL simulations, the position of the UAV is simulated perfectly. Consequently, the
sonar measurements can be simulated in the same manner as in section 7.3.2, i.e. subtract
the position of the UAV and a predefined object. In the simulation, the UAV started 10
meters from the object and flew closer until it was 2 meters away. The height was kept
constant at 10 meters. The result of the simulation can be seen in Figure 8.1. The figure
shows that the UAV is capable of following the desired pitch angle with satisfying results.
Similar to the simulation done in the previous chapter, the UAV successfully maneuvers
to the desired distance of 2 meters. However, the UAV used considerable more time than
previously. This can be improved be tuning the PD parameters more carefully.

8.2 Velocity vector
Similarly to section 7.3.1, the camera vector was simulated using a LOS vector. Fur-
thermore, the vector was decomposed in y and z-direction and sent to their respective
controller. Figure 8.2 shows the result of the simulation. The first figure shows how the
measured roll angle follows the desired angle. As oppose to the pitch controller in the
previous section, the roll controller does not track the desired angle perfectly. The second
figure shows how the pitch controller does small corrections to stay at a constant distance
to the object. The desired height is plotted against the measured height in the third
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Figure 8.1: Plot of the pitch and distance as the UAV approaching an object

figure. The height controller experiences small deviations in the measured height due to
a dynamic desired height. This can be improved by fine-tuning the control parameters.
The two-dimension YZ plot is shown in the last figure. Similarly to the simulations in
the previous chapter, the UAV follows the desired path with high accuracy. There are a
some transients at the beginning due to the necessity of manually switching into DUNE
mode.

8.3 Discussion
This section has presented the SITL simulations of keeping a constant distance and follow
a velocity vector. The simulations have proven to be less accurate than the simulations
done in the previous chapter. This is due to errors on the UAV model, lower update
frequency and roughly tuned parameters. In addition, the necessity of manually switching
into autonomous mode, resulted in different starting points for each simulation. Thus
further complicated the tuning.
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Figure 8.2: Plot of the roll, pitch, height and the two-dimensional trajectory as the UAV
inspecting a wind turbine blade
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Chapter 9

Hardware testing

This chapter addresses the testing of the external components used in this thesis. The
first section will compare the sonar with different connections. The power supply will also
be tested together with an endurance test of the battery. These two sections will use a
Arduino1 micro controller to log the distance estimates and cell voltage of the battery.
The last section addresses the test of the different controllers on the UAV platform and
presents the results.

9.1 Maxsonar

In this section the MaxBotix MaxSonar EZ4 is tested with different connections. The
experiments were conducted using analog, PWM and serial communication. Furthermore,
by mounting the sonar between two legs, the sonar will not experience any reflections. This
is due to the narrow beam width of the chosen sonar. The experiments were conducted
using a Leica DISTO D32 to accurately measure the distance.

The first section addresses the use of analog, while the second take a closer look at PWM.
Finally, the serial communication is tested together with a discussion and a conclusion of
the different connections.

9.1.1 Analog

The sonar was connected as seen in Figure 9.1 and the estimated distance was logged to
a file. The RC filter is included to reduce the amount of electrical noise. The result of the
experiment is available in Table 9.1. The table shows that the sonar is able to estimate
the distances with a accuracy of 2-6 centimetre regardless of the distance.

The main disadvantage of using analog is the accuracy. Analog is the least accurate of
the available connections. On the other hand, the sonar is easily connected to the APM
trough one of the analog inputs.

1Open-source electronics prototyping platform. See www.arduino.cc/ for more information
2Laser range finder with accuracy of 1mm and range of 100m

www.arduino.cc/
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Figure 9.1: Schematic of the Arduino connected to the MaxSonar EZ4 sonar using analog

Table 9.1: Sonar measurement using analog connection

MaxSonar EZ4 [cm] Leica DISTO D3 [cm] Error (absolute value) [cm] Error [%]
50 55 5 10
100 104.5 4.5 4.5
150 154.8 4.8 3.2
200 204.8 4.8 2.4
250 254.1 4.1 1.64
300 305.8 5.8 1.93
350 352.9 2.9 0.83
400 403.2 3.2 0.8
450 454.3 4.3 0.96
500 505.7 5.7 1.14
550 554.5 4.5 0.82
600 603 3 0.5
650 652.6 2.6 0.4
700 704.8 4.8 0.69
750 755.1 5.1 0.68
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Figure 9.2: Schematic of the Arduino connected to the MaxSonar EZ4 sonar using PWM

Table 9.2: Sonar measurement using PWM connection

MaxSonar EZ4 [cm] Leica DISTO D3 [cm] Error (absolute value) [cm] Error [%]
50 52.1 2.1 4.2
100 102.0 2.0 2.0
150 152.4 2.4 1.6
200 201.7 1.7 0.85
250 252.7 2.7 1.08
300 301.7 1.7 0.57
350 352.8 2.8 0.80
400 402.2 2.2 0.55
450 451.1 1.1 0.24
500 501.4 1.4 0.28
550 550.5 0.5 0.09
600 600.6 0.6 0.10
650 649.9 0.1 0.02
700 700.7 0.7 0.10
750 749.4 0.6 0.08

9.1.2 PWM
In the case of connecting the sonar through PWM, the sonar was connected to one of the
digital pins on the Arduino, see Figure 9.2. The distance estimate was logged and the
result of the experiment can be seen in Table 9.2. Unlike the test in the previous section,
the sonar is able to estimate the distance within 1-2 centimetres precision regardless the
distance. The table also reveals higher precision with increased distance. This is due to
the internal clock on the Arduino. At small distances the time between the sound wave
and the echo will be equally short. Hence, it’s easier to measure the time precisely when
the distance is greater.

The main disadvantage of using PWM in this project is the lack of PWM support on the
Pandaboard. One solution could be to add an external circuit to convert the PWM signal
to serial. The update frequency is also lower (≈10Hz) due to the necessity of filter the
measurements using a mode filter.

9.1.3 Serial
The last of the available connections is serial, as shown in Figure 9.3. Since the sonar only
transmits, and not receive, only the transmission (TX) pin is required. The result of the
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Figure 9.3: Schematic of the Arduino connected to the MaxSonar EZ4 sonar using serial
communication

Table 9.3: Sonar measurement using serial connection

MaxSonar EZ4 [cm] Leica DISTO D3 [cm] Error (absolute value) [cm] Error [%]
50 53.5 3.5 7.00
100 102.6 2.6 2.60
150 152.1 2.1 1.40
200 202.0 2.0 1.00
250 251.8 1.8 0.72
300 301.6 1.6 0.53
350 351.0 1.0 0.29
400 401.1 1.1 0.28
450 450.8 0.8 0.18
500 500.2 0.2 0.04
550 548.7 1.3 0.24

Out of bounds - - -

experiment is shown in Table 9.3. By comparing the three tables, we see that precision
wise, the serial is on the same level as PWM. However, the maximum distance decreased
significantly. The maximum distance was 5.5 metres contrary to the 7.5 metres achieved
with analog and PWM. The serial communication can be connected to the PandaBoards
GPIO and will deliver a notably higher update frequency (≈50Hz).

9.1.4 Discussion

This section has shown that there are some differences between the three interfaces when
it comes to precision. The analog interface offered the least precise estimates, but is easily
connected to the APM and DUNE. PWM was highly accurate and was able to measure
the maximum distance of 7.5 meters. However, in order to connect the sonar via PWM
to the PandaBoard, an external circuit is required due to lack of support of PWM on
the PandaBoard. The sonar can be connected to one of the available digital inputs on
the APM, but this will require significant modification of the code. In the case of serial
connection, the precision was comparable to the PWM, but it was not able to measure
the maximum distance.
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Figure 9.4: Discharge of a battery powering the PandaBoard at full stress test (a) and
idle (b)

9.2 Power supply to Pandaboard

The PandaBoard was tested with a 2200 mAh two cells Turnigy battery and a 3A UBEC.
The stress test was conducted using the stress3 command on the PandaBoard. The stress
tool runs the PandaBoard with 100 % CPU and memory usage. A low voltage lipo
alarm was attached to prevent any damages on the battery. The voltage of one of the
battery cells was logged using an Arduino Nano v3. The result of the test can be seen in
Figure 9.4a.

The figure shows that the cell voltage of the battery decreases linearly most of the time.
However, when the voltage went below approximately 3.7V, the voltage decreases a lot
faster. A lipo alarm will output a high pitch sound when the voltage of one of the cells is
lower than 3.3V. The experiment showed that it may be advantageous to give an earlier
warning, to be able to abort the mission and return to launch before the voltage drops
to under 3.3V. This could prevent any damage to the battery. The battery lasted for
roughly five hours.

The test above was conducted to determine the lower bound of the endurance of the
battery. However, when testing out in the field, there will be moments where the UAV is
not on a mission and not running DUNE. To see if the battery would last a whole day of
mixed usage, another test was conducted. In this test, the PandaBoard ran on idle, i.e.
DUNE was not running, only the OS. Figure 9.4b shows the result of the test. The figure
shows that the endurance of the battery did not increased significantly. Hence, the usage
of the PandaBoard does not affect the battery life. Similarly to the full stress test, the
battery voltage decreased linearly before the voltage dropped to 3.7V.

3Stress test: http://manpages.ubuntu.com/manpages/lucid/man1/stress.1.html

http://manpages.ubuntu.com/manpages/lucid/man1/stress.1.html
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9.3 UAV
In the following section the result of the test flying is presented. The experiments were
performed in a lab equipped with a safety net, see Appendix B. The payload was equipped
with a PandaBoard, USB camera and two sonars for measuring the distance to the object
and the height above ground, respectively. This section is structured as follows. Firstly,
the pitch controller using a front facing sonar is presented. Secondly, the roll controller
using camera information was tested with a stationary object. Lastly, a comparison of a
down facing sonar and barometer is made before the throttle controller was tested.

The results of the test are shown as videos in the digital appendix.

9.3.1 Pitch controller
As mention in section 2.6.1, the sonar is highly affected by noise and turbulence. In order
to examine the influence of noise and turbulence, and to test the stability of the sonar in
dynamic applications, the sonar measurements were logged during a manual flight. The
result of the experiment is shown in Figure 9.5. The figure shows that the sonar does not
experience any spikes or noise in the measurements. However, as shown in the magnified
plot, the sonar does not measure one centimetre at the time. The sonar is only able to
give measurements in increments of approximately 10cm. This is due to a low frequency
on the sonar readings and that the pitching of the UAV causes the sonar to measure
diagonally instead of the perpendicular distance.

The pitch controller was tested by manually controlling the throttle, yaw and roll, while
the Pandaboard sent the desired pitch angle to the ArduPilot. The desired distance is
initialized at startup and can be changed through Neptus during flight. The result of the
test can be seen in Figure 9.6. The figure shows that the desired pitch angle is continuous
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Figure 9.6: Plot of the pitch and distance to an object with constant desired distance

without any noise or spikes. However, the pitch controller built-in the ArduPilot software
oscillates around the desired pitch angel, making the UAV unable track the desired angle
perfectly. This can be improved by tuning the PID parameters more carefully.

As shown above, the sonar measurements are given in increments. This, in addition to
roughly tuned PID parameters, led the UAV to oscillate around the set point. Further-
more, the sonar was mounted directly to the payload. Hence, the distance measured by
the sonar will change relative to the pitch angle of the UAV. A solution to this problem is
to mount the sonar on a gimbal, which will always control the sonar so that it is perpen-
dicular to the object, or by correcting the reading using the measured pitch angle. Despite
these inaccuracies, the UAV stayed within the desired distance with a 30 cm error, which
in most cases is satisfactory.

9.3.2 Roll

In section 6.3.2, the roll controller was designed using camera information to calculate
the desired roll angle. Figure 9.7 shows the result of an experiment where the UAV is
controlled to a stationary object. This replicates the scenario of hovering at the hub
ready to inspect the blades. The experiment was conducted to verify that the computer
vision algorithm calculates the correct velocity vector, and that the roll controller is able
to control the UAV to hover at the same location. The figure shows how the measured
roll angle follows the desired angle computed by the controller. Similarly to the pitch
controller, the roll controller is roughly tuned and the measured angle does not follow the
desired angle perfectly. The velocity vector received from the computer vision algorithm
is shown in the figure on the right. The measurements had some noise and the frequency
was lower than the control loop. However, the UAV successfully hovered at the hub, as
indicated by the desired velocity, i.e. fluctuated around zero. The distance to the object
was held constant at approximately 2 meters.
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Figure 9.7: Plot of the roll and camera error as the UAV hovering at the hub

9.3.3 Throttle

In order to measure the height above ground, the built-in barometer or an external sonar
can be applied. Figure 9.8 shows a comparison of the estimated altitude from the barome-
ter and sonar. The experiment revealed that the barometer does not provide the necessary
accuracy at low altitudes (< 0.5m). This is because the propellers generate turbulence
near the ground. The sonar has problems at low altitude as well, but this is limited to
below 20cm. Apart from this, the barometer and sonar readings are similar within a few
centimetres of each other. For the experiments conducted in the net, the sonar was used.
However, when testing outside on a wind turbine, a sonar will not be applicable due to
its limited range. Further investigation needs to be conducted to see if the barometer has
the necessary accuracy at high and windy conditions. The ArduCopter code was changed
to allow a downward-facing sonar as height reference instead of the barometer.

To test the performance of the altitude controller, two different experiments were con-
ducted; stationary and time-varying set point. The result of the tests can be seen in
Figure 9.9. The figure on the left shows how the UAV responds to a unit step response.
The UAV overshoots with approximately 30cm, but stays at the desired altitude with
an error of ±5cm. In the figure to the right, the set point was increased/decreased with
increments of 3cm as soon as the UAV reached the current set point. This ensures that
the climb rate stays low, thus preventing uncontrollable behaviour from the UAV. The
figure shows that the UAV is able to track the desired height with satisfactory results.
However, at the end points and from a ground start, the UAV overshoots. In the case of
a ground start, the sonar is not able to measure lower distances than 20cm and thus the
UAV experiences a step response. The overshoots can be reduced by carefully tuning the
control parameters of the in-built height controller.

9.3.4 Discussion

In this section, the different controllers were tested on the UAV platform. The tests
revealed that the in-built controllers had problems following the desired set points. How-
ever, the UAV maneuvered as it was suppose to, despite roughly tuned controllers. The
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results will serve as a proof of concept and both the in-built controllers and the controllers
used in this section can be tuned and achieve significantly better results. In addition, the
camera information utilized in this thesis was a bit noisy, which affected the stability of
the roll controller. The distance and height controllers can be modified to be more precise
by using a LRF. The LRF will also increase the range of the distance estimate, which is
necessary in the case of wind turbine and building inspection.
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Chapter 10

Conclusion and future work

The following chapter gives a conclusion of the work and results presented in this the-
sis. Moreover, the future work necessary for implementing the observer on the UAV is
presented. The section also gives ideas for further improvements and extensions.

10.1 Conclusion
In this thesis a mathematical model of the velocity and distance to a target has been
investigated and derived from standard kinematics. The necessary simplifications of the
model due to limitations of the sensor has been discussed.

The two most popular optical flow algorithms have been presented, with a primary focus
on the Lucas-Kanade algorithm due to its popularity. The use of pyramids for calculating
optical flow when the motion is large, has been investigated in the case where the Lucas-
Kanade algorithm is applied. Furthermore, how the optical flow output can be used in
local navigation has been shown. The optical flow can be used to avoid collisions with
objects, much like insects do in real life. Another application is the case of tracking a
moving object and estimating the angular velocity.

In cases where there is a lack of features to track, optical flow will not be applicable.
Hough transform was presented as an alternative to optical flow. Hough transform can be
used to detect any parametric curves, but the focus in this thesis was to detect straight
lines. The lines can be used to find relative angles between blades or windows, which again
can be used in a yaw controller. Furthermore, the use of Hough transform to inspect a
building or wind turbine for damages has been discussed.

In addition, an observer capable of estimating the metric velocity and distance to the
target has been derived. Through simulations with two different scenarios, the observer
successfully estimated the unknown states based on the output of an optical flow algo-
rithm and IMU. The simulation showed that the observer is capable of estimating the
unknown states even though the scaled velocity provided by the optical flow algorithm
was noisy. Due to lack of optical flow inputs, the observer was not tested on the UAV.

Furthermore, a controller has been derived. The controller receives a desired velocity
vector from either the observer or the Hough transform. By using a combination of PID
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controllers, one for each output, the controller calculates the desired roll, pitch, yaw and
throttle commands. If the wind turbine blade is not in the center of the image, this can
be compensated by increasing or decreasing the throttle command value.

The two different applications considered in this thesis, wind turbine blade and building
inspection, were simulated. The simulations verified that the controller is able to suc-
cessfully maneuver the UAV to inspect the blade and building for damage. In the wind
turbine blade inspection, the UAV started on the ground and flew to the hub. At the
hub, the UAV started inspecting the front of the blade for damages. When it reached the
tip of the blade, it flew around and began inspecting the back. In the building inspec-
tion simulations, two different search patterns were implemented and tested. The results
showed that the parallel and creeping line search produced satisfying results. The UAV
was able to inspect the building with adaptive line width.

The different controllers were tested on an UAV platform. The pitch controller kept the
UAV at a constant distance with satisfactory result, while the roll controller utilized the
camera information to control the UAV to a stationary location. The height controller
was tested with both a stationary and time-varying set point. Both tests produced satis-
factory results. The in-built controllers did not follow the desired angles perfectly, so the
test will serve as a proof of concept. Further fine-tuning of the PID parameters will much
likely lead to significantly better results.

10.2 Future work
In this thesis, we have seen that the optical flow algorithm tracking a singular point does
not provide any useful information in the case where the UAV moves directly towards or
away from the object. Further investigation can be conducted to look at the possibilities
of tracking multiple features. By tracking multiple features, the optical flow vectors can
be used to sense if the UAV is moving towards or away from the target. The features
will expand or contract relative to the center of the image when the UAV moves closer
or further away from the object. Thus, the optical flow output can be fused with the
accelerometer measurements to provide a more accurate distance estimate.

A pan/tilt system can be installed on the camera without any modification to the code.
The only change necessary is to measure the time-varying angles between the UAV and
camera, φc, θc, ψc. The installation of a pin tilt mechanism makes it possible to remotely
control the camera and thus specify where to inspect for damages. The requirement for
this set up is a ground station equipped with a computer and a monitor. The computer
does not need to be powerful, as all of the necessary computations are done on-board
of the UAV. The main objective of the ground station will be to receive the live camera
stream and send control signals to the pin/tilt mechanism on the camera.

Recently, 3D Robotics released a new autopilot titled Pixhawk. The Pixhawk features
two accelerometers with different sampling frequency. This offers redundancy as well as
preventing aliasing due to vibrations. In addition, the Pixhawk features a faster processor.
The increased processing power made it possible to implement an EKF. The EKF fusions
the readings from the gyroskop, accelerometer, magnetometer, barometer and GPS to
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estimate the position, velocity and attitude of the UAV. Consequently, the EKF handles
sensor glitches better, as well as more accurate attitude estimation.

Due to lack of provided camera information, the yaw controller has not been tested. How-
ever, by manually controlling the yaw, the remaining three controllers can be connected
and tested. A natural continuation will be to pan a blade to test the controllers simulta-
neously. This will also test the ability of the high resolution pictures to detect damages.
Furthermore, due to the limited range of the sonar, the estimated height using barom-
eter needs to be investigated further. If the barometer does not provide the necessary
accuracy, a LRF has to be considered.
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Appendix A

IMU bias and dead reckoning

This appendix will address the source of error in a IMU for position estimates, e.g. bias
and drift. Furthermore, the use of dead reckoning as an aiding sensor will be discussed.

A.1 IMU bias
This section addresses the source of error in accelerometer, i.e. noise and bias. The ac-
celeration measurement received from the IMU is not perfect. The measurement received
from the accelerometer is given as

fmeasured = f + b + v

where f is the acceleration of the UAV. Furthermore, b and v is the bias and noise of
the measurements, respectively. To obtain a position estimate, the acceleration readings
can be integrated twice. In theory this will give the correct position. However, since the
IMU also measures bias and noise, the integration will lead to position drift. The bias can
be estimated using a filter, e.g. Kalman filter, and subtracted from the measurements.
Nonetheless, a small amount of bias will always be present and, coupled with noise, will
be integrated and lead to drift.

A.2 Dead reckoning
Dead reckoning (DR) is to use inertial sensors to estimate the relative position of an
object. DR is self-contained, i.e. not rely on external sensors such as GPS. As shown in
the previously section, the IMU signal is not perfect, but will drift due to noise and bias.
Hence, inertial navigation is only practical for a few seconds [15]. In order to achieve
long term accuracy, additional sensors are required. In global navigation, e.g. air planes,
satellites and ships, GPS is the most popular aiding sensor. In cases where the GPS signal
is unavailable, other approaches are applicable. Zero velocity update is a technique where
the INS is corrected when the velocity is zero, i.e. in a constant position. To determine
when the velocity is zero, camera information can be utilized. The optical flow algorithm
can detect when the velocity is zero by looking at the displacement of pixels to correct
the relative position estimate, see Figure A.1.
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Figure A.1: Block diagram of dead reckoning with zero-
velocity update

Figure A.2: IMU em-
bedded in the heel
of a firefighter boot.
Courtesy of [51]

There are several applications for dead reckoning. The most common is in ship naviga-
tion when GPS signal is lost or when cars drives through tunnels and loose GPS signal.
Recently, DR has been used in human applications, e.g. fire fighters when they search
for survivals in a room filled with smoke. By including an IMU and two force-sensitive
resistors in the shoes for zero-velocity update, the INS accomplish long term accuracy
[66].

A.2.1 DR as aiding information
Even though optical flow and Hough transform are used when camera information is
available, DR can act as an aiding sensor. By fusing the camera information with DR,
the UAV is able to fly back to its last position. This is helpful in cases where wind gusts
forces the UAV camera out of sight of the wind turbine. Furthermore, a camera is easily
affected by sun light. DR can aid the controller in cases where the backlight ruins the
visibility of the wind turbine or building.

A.2.2 Around the tip and corners
DR can also be used when the UAV is about to fly around the tip of the blade or around
building corners. Neither optical flow nor Hough transform will be available around
the tip, thus the UAV can only rely on the estimate velocity and relative position. As
previously discussed, the estimate will not be accurate over a period of time. However,
the time the UAV spends flying around the tip or corner, is within the accuracy of DR.
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Appendix B

Roof lab

The roof lab is a lab on top of A-building at NTNU. The building features a 5×5×3 meter
safety net for controlled flying. The net serves to protect both humans and equipment
from the UAV. The building is constructed of wood, allowing GPS to communicate with
satellites and provides the UAV with navigation data, i.e. position and velocity.

Figure B.1: The UAV lab at the roof
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