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Abstract

The goal of this project is to make a system able of executing drop and recovery of sensor
nodes at sea by the use of UAVs.

The sensor node will be a lightweight packet that can contain different sensors depending on
the mission. These sensor nodes will be dropped into the sea where they will float on the
surface. Examples of use for the sensor nodes can be to log temperature, currents, salinity or
water quality. Hence they can be very useful in for instance climate research or for detecting
oil spills.

This project is a continuation of a project executed by the author [Voldsund, 2013] where
a drop and recovery mechanism to be mounted on a multicopter UAV was developed. The
mechanism has been further developed in this project and integrated to an UAV.

A control structure for the UAV has been developed and tested using simulator, software-in-
the-loop tests and tests in the lab. Simulations and software-in-the-loop tests showed that
the control structure was able to execute drop and recovery. But the needed accuracy for
recovery of sensor nodes using the mentioned mechanism was not achieved in the lab tests.
Measures that could be taken to enhance accuracy to make the system able to conduct drop
and recovery of sensor nodes are discussed in this thesis.
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Sammendrag

(Norwegian translation of the abstract)

Målet med dette prosjektet er å lage et system som kan utføre slipp og gjenvinning av
sensornoder til sjøs ved hjelp av UAVer.

Sensornoden vil være en lett enhet som kan inneholde forskjellig sensorer. Eksempler p̊a
bruk kan være logging av temperatur, havstrømmer, saltinnhold eller vannkvalitet. De kan
med andre ord være veldig nyttige til for eksempel klimaforskning eller deteksjon av oljeut-
slipp.

Dette prosjektet er en videreføring av et prosjekt utført av forfatteren [Voldsund, 2013] hvor
en mekanisme for slipp og gjenvinning for bruk montert p̊a en UAV ble utviklet. Denne
mekanismen har blitt videre utviklet og integrert med en UAV i dette prosjektet.

En kontrollstruktur for en UAV har blitt utviklet og testet ved hjelp av simuleringer, software-
in-the-loop tester og tester p̊a laben. Simuleringene og software-in-the-loop testene viste at
kontrollstrukturen er kapabel til å utføre slipp og gjenvinning av sensornoder. Men den
nødvendige presisjonen for slipp og gjenvinning av sensor noder ved bruk av den nevnte
mekanismen ble ikke oppn̊add i lab-testene. Tiltak man kan utføre for å øke presisjonen og
gjøre systemet kapabelt til å utføre slipp og gjenvinning av sensornoder er diskutert i denne
rapporten.
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Chapter 1

Introduction

1.1 Background and Motivation

Unmanned aerial vehicles (UAVs) are aircraft without a human operator on board. They
can fly autonomously or be remotely operated by a pilot on the ground. The use of UAVs
have exploded in recent years. This is due to a lot of ongoing research and development
conducted by companies, scientists and enthusiasts. Some of this research and development
have resulted in open source projects that have made advanced UAV technology available at
very low cost.

The UAV used in this project will be based on one of these open source UAV solutions.
This solution is chosen because it is cost efficient, results of the project will be easy to use
by others, and it is a way to get going fast and still be able to do some customization.

This project is a part of research conducted by the Center of Autonomous Marine Oper-
ations and Systems (AMOS) at NTNU. AMOS is now establishing a new laboratory with
field experimental capabilities (UAV-Lab). This project is related to this lab. To be a part
of the research at AMOS opens up a lot of opportunities, but it also means that some things
are standardized. For instance the choice of UAV and the use of PandaBoard as onboard
computer follows standards decided by AMOS. Use of DUNE as an environment to structure
and develop the software running on the onboard computer and the use of Neptus as a ground
control station are also according to AMOS standards.

1



2 CHAPTER 1. INTRODUCTION

This master project is a continuation of a project carried out in the fall of 2013 by the
author. The goal of that project [Voldsund, 2013] was to create a mechanism that can be
used for sensor node drop and recovery by the use of multicopters. In the mentioned project,
different design solutions were discussed and evaluated before one solution was implemented.
This implemented design solution is the basis of this project. In this project the mechanism
will be further improved and put into a fully operating system with the UAV. Control soft-
ware for the UAV will be developed and different steps towards the goal of sensor node drop
and recovery by the use of a UAV and the mentioned mechanism will be taken.

The sensor node will be a lightweight packet that can contain different sensors depending on
the mission. These sensor nodes will be dropped into the sea where they will float on the
surface. Examples of use for the sensor nodes can be to log temperature, currents, salinity or
water quality. Hence they can be very useful in for instance climate research or for detecting
oil spills.

Both fixed-wing and multicopter UAVs will be part of the sensor node pickup and deployment
system and supplement each other in the UAV-lab. Multicopters will be used in coastal areas
and at relatively good weather conditions, while fixed-wing UAVs have a much greater range
and will be used for longer missions and in rougher weather conditions.

1.2 Previous Work

As already mentioned there has been a lot of research on UAVs in recent years, but most of
this research have focused on fixed-wing aerial vehicles. And the applications have usually
been limited to monitoring and search [Mellinger et al., 2011].

The latest couple of years have shown some research on rotary-wing aircraft interacting
with the environment in different ways. There have been conducted research where the UAV
is used to manipulate its environment. Two examples of this using two different strategies
are [Jiang and Voyles, 2013] and [Lippiello and Ruggiero, 2012]. Lippiello and Ruggiero are
inspired by the use of impedance control in robot manipulation tasks, while Jiang and Voyles
alters a hexacopter by tilting the motors, making it possible to create a horizontal force
without tilting the hexacopter.
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The most relevant applications to highlight in this report are those that use different strate-
gies for drop off and pickup of objects. Possibilities of using an avian catching fish as an
inspiration for a quadcopter based gripper system to be able to execute high speed pickup
have been explored by [Thomas et al., 2013]. A gripper on the end of a link with two joints
is used to replicate an avians leg and claw. Good results were achieved as the quadcopter
was able to grasp targets at speeds up to 3 m/s. The trajectory of the pickup was decided
pre run time to match the trajectory of the avian. Feedback to the controller was given using
VICON1.

The use of a helicopter to grasp objects on the ground are explored in [Pounds and Dol-
lar, 2014]. The ability to grasp objects of different shapes and without a perfect lined up
position is in focus for the gripper design. Tests demonstrated an ability to grasp objects of
different shapes and sizes under human control of the helicopter. The most difficult objects
were grasped 67 % of the time, while the easiest object was grasped 100 % of the time.

Estimation of payload parameters are explored in [Mellinger et al., 2011] as well as me-
chanical design and controller for aerial grasping. Relevant parameters to estimate are mass
and inertia. These estimates can be used to adapt the controller and to check if the object
was successfully picked up or not.

1.3 Contribution and Scope of this Report

Some of the research presented in the previous section picks up objects lying on the ground
(in some of them at exactly known positions). The fact that the aim in this master project
is to pick up sensor nodes that are floating affected by waves, wind and currents add another
dimension to the challenge. Navigation at sea means that one can not rely on external sensor
systems like for instance VICO. This means that accurate positioning above the sensor node
will be a challenge. The UAV will have to rely on poor position measurements and some
added sensor system, for instance camera, to close the loop between the UAV and the sensor
node.

1A very accurate external motion capture system



4 CHAPTER 1. INTRODUCTION

This project aims to connect known techniques and theory from different fields in new ways
to make pickup and deployment of sensor nodes by the use of UAVs at sea possible.

1.4 Organization of this Report

An introduction to the relevant reference frames used for navigation, control and object
tracking, as well as some features of the open source computer vision library OpenCV and
some basic rigid-body kinetics are given in Chapter 2.

The UAV used in this project is described in Chapter 3. This description includes the
most relevant features to give the reader insight into which possibilities that lie within the
UAV. The PandaBoard that is used as onboard computer and some relevant software are
also described for the same reasons.

The pickup and deployment mechanism is presented in Chapter 4. The chapter starts with
an overall description, before going more detailed into both mechanical and electrical design.

Chapter 5 presents the control structure designed. It covers controller design, node tracking
using camera, communication between the different modules and a brief description of the
developed software.

To verify the controller design a simulator running in Simulink was developed. Chapter
6 presents the mathematical model the simulator is built upon, and a description of the
different elements that have been simulated. Results from different simulation scenarios are
presented and discussed.

To be able to verify the control structure using DUNE and ArduPilot Mega 2.6 together,
software-in-the-loop tests were conducted. The setup of these test are given in Chapter 7.
The results from the different tests are presented and discussed.

Final tests are conducted in the lab, the different scenarios tested accompanied with the
results of the tests and some discussion of the results are given in Chapter 8.
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A general discussion of the design that take into account the results from all the differ-
ent tests and test setups are given in Chapter 9, before conclusions are drawn in Chapter 10.

The digital appendix included with this report contains all the source code used in the
control structure. The simulator developed in Simulink and Solidworks models of the 3D-
printed parts are included as a resource. Videos of the tests conducted in the lab are also
included to give the reader a better overview of the results.





Chapter 2

Background Theory

This chapter gives a short introduction to different reference frames used for navigation and
control. Some basic rigid-body kinematics and computer vision theory are also presented.

2.1 Reference Frames

The main reference frames that are relevant for navigation and control are ECEF, NED
and BODY. A brief introduction to these reference frames based on [Fossen, 2011] and [Vik,
2012] follows. Denavit-Hartenberg convention (DH convention) is a useful tool for defining
reference frames. A brief introduction to DH convention based on [Spong et al., 2005] follows.

ECEF

The Earth-centered Earth-fixed (ECEF) reference frame has its origin fixed to the center of
the earth while rotating with the earth. The x-axis is defined to point at the intersection
between the 0◦ longitude and the 0◦ latitude. The z-axis points along the earths rotation
axis and the y-axis complete the right handed orthogonal coordinate system.

The position in the ECEF frame can be expressed both with Cartesian coordinates (xe,
ye, ze) and with ellipsoidal coordinates (longitude (l), latitude (µ), height (h)). The trans-

7



8 CHAPTER 2. BACKGROUND THEORY

formation from Cartesian ECEF coordinates to ellipsoidal ECEF coordinates is given by


xe

ye

ze

 =


(N + h) cosµ cos l
(N + h) cosµ sin l

(
r2
p

r2
e

N + h) sinµ

 (2.1)

where re = 6378137 m is the equatorial radius of ellipsoid and rp = 6356752 m is the polar
axis radius of the ellipsoid as defined in WGS-84. The parameter N is the radius of curvature
in prime vectorial obtained from [Vik, 2012].

N = r2
e√

r2
e cos2 µ+ r2

p sin2 µ
(2.2)

The transformation from Cartesian coordinates to ellipsoid coordinates is a bit more compli-
cated. Longitude is calculated straight forward as

l = tan−1(ye
xe

) (2.3)

but the calculations of latitude and height are implicit equations

tan(µ) = z

p
(1− e2 N

N + h
)−1 (2.4)

h = p

cos(µ) −N (2.5)

where e is the eccentricity of the Earth given by

e =
√

1− (rp
re

)2 (2.6)

There are several algorithms that can be used to solve these implicit equations, see for
instance Algorithm 2.4 in [Fossen, 2011].

NED

The north-east-down (NED) reference frame is moving with the body. The x-axis is always
pointing north, the y-axis is pointing east and the z-axis i pointing down normal to the Earth
surface.
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BODY

The BODY reference frame is body fixed and rotates and moves with the body. It is usually
defined with the x-axis pointing along the longitudinal axis, the y-axis pointing along the
transversal axis and the z-axis pointing along the normal axis of the body.

Transformation Between ECEF and NED

A vector defined in NED can be transformed to the ECEF frame by the use of a rotation
matrix that defines the relationship between NED and ECEF reference frames.

pe = Re
n(Θen)pn (2.7)

Θen =
[
l µ h

]T
(2.8)

Where Re
n(Θen) is found by first performing a rotation l about the z-axis and then a rotation

(−µ− π

2 ) about the y-axis. This gives

Re
n(Θen) =


− cos(l) sin(µ) − sin(−l) − cos(l) cos(µ)
− sin(l) sin(µ) cos(l) − sin(l) cos(µ)

cos(µ) 0 − sin(µ)

 (2.9)

Transformation Between NED and BODY

A vector defined in BODY can be transformed to the NED frame by the use of the Euler
angle rotation matrix.

pn = Rn
b (Θnb)pb (2.10)

Where Θnb =
[
φ θ ψ

]T
are the Euler angles roll, pitch and yaw.

Rn
b (Θnb) =


cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ

sψcθ cψcφ + sφsθsψ −cψsφ + sθsψcφ

−sθ cθsφ cθcφ

 (2.11)

The notation s and c with an angle as subscript is used to represent sin(angle) and cos(angle)
respectively. This notation is used throughout this report.
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A BODY fixed angular velocity vector ωbb/n = [p q r]T and the Euler rate vector are re-
lated through a transformation matrix according to equation (2.13).

Θ̇nb = TΘ(Θnb)ωbb/n (2.12)

TΘ(Θnb) =


1 sφtθ cφtθ

0 cφ −sφ
0 sφ/cθ cφ/cθ

 (2.13)

Calculate Distance and Bearing Between Two ECEF-Locations

The position of a vehicle is in navigation often given as a longitude and a latitude value. To
be able to use this values in a feedback for a position controller, it could be convenient to be
able to calculate the distance and bearing between the current point and a reference point.
This could be done in multiple ways, depending on the required efficiency and accuracy of
the solution. Different algorithms do also have different performances based on how long the
distance between the points is, i.e. some take the curvature of the earth into account, some
do not. Those which does not consider curvature of the earth are useless over long distances
but can be very effective and accurate over short distances.

In this project only short distances are considered, hence an effective approach using Pythago-
ras theorem on an equirectangular projection given by [Veness, 2014] is used and rendered
here. An equirectangular projection is a map projection where the earth is given as a flat
surface with equally spaced parallel longitude lines. These calculations are inaccurate, but
they are sufficiently good for the applications they are used for in this project.

The distance between the two GPS-positions is calculated by equations (2.14) to (2.16).

x = ∆l cos(µm) (2.14)

y = ∆µ (2.15)

d = R
√
x2 + y2 (2.16)

Here x and y is the position in the equirectangular projection, which is calculated using the
differences in longitude ∆l and latitude ∆µ and the mean value of the latitude φm. R is the
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radii of the earth given in kilometres (6371 km). The bearing β from point one to point two
is given by equation (2.17).

β = atan2(sin(∆l cos(µ2), cos(µ1) sin(µ2)− sin(µ1) cos(µ2) cos(∆l)) (2.17)

Combining the distance and the bearing between the two points gives all the needed infor-
mation to use in for instance a feedback loop of a position controller.

Denavit-Hartenberg Convention

The DH convention is a systematic procedure for relating orientation and position of different
reference frames, and a tool to select frames. The homogeneous transformation Ai (the
transformation matrix from reference system i− 1 to reference system i) is represented as a
product of four basic transformations

Ai = Rotz,θi
Transz,di

Transx,ai
Rotx,α−i

=


cθi
−sθi

0 0
sθi

cθi
0 0

0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 di

0 0 0 1




1 0 0 ai

0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 cαi

−sαi
0

0 sαi
cαi

0
0 0 0 1



=


cθi
−sθi

cαi
sθi
sαi

aicθi

sθi
cθi
cαi

−cθi
sαi

aisθi

0 sαi
cαi

di

0 0 0 1

 (2.18)

where θi is rotation around the z-axis, di is transversal movement along the z-axis, ai is the
transversal movement along the new x-axis direction and αi is the rotation around the new
x-axis direction.

The transformation matrix T i
j expresses the position and orientation of frame ojxjyjzj with
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respect to frame oixiyizi and is calculated as

T i
j =


Ai+1Ai+2...Aj−1Aj if i < j

I if i = j

(T j
i )−1 if j > i

(2.19)

T i
j for i < j contain a rotation matrix Rj

i from frame i to j and the position oij of the origin
of frame j with respect to frame i.

T i
j =

Ri
j oij

0 1

 (2.20)

2.2 Rigid-Body Kinetics

The motion of rigid bodies can be expressed according to [Fossen, 2011] as shown in equation
2.21.

MRBν̇ +CRB(ν)ν = τRB (2.21)

Where MRB is the rigid-body mass matrix, CRB is the rigid-body Coriolis and centripetal
matrix due to rotation about the inertial frame. ν = [u v w p q r]T is the velocity vector
expressed in the BODY frame, and τRB = [X Y Z K M N ]T is the forces and moments
acting upon the body, also expressed in the BODY frame.

Using Newton-Euler equations and assuming center of origin and center of gravity in the
same place, [Fossen, 2011] derives the rigid-body mass matrix and the rigid-body Coriolis
and centripetal matrix as shown in equation 2.22.

MRB =
mI3×3 03×3

03×3 Ig

 CRB =
mS(ω) 03×3

03×3 −S(Igω)

 (2.22)

Here Ig is the inertia matrix, m is the mass, ω = [p q r]T is the rotational velocity and S is
the skew symmetric matrix operator.
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2.3 Computer Vision - OpenCV

OpenCV (Open Source Computer Vision Library) is an open source computer vision and ma-
chine learning software library that has more than 2500 optimized algorithms [OpenCV.org,
2013a]. A few of these algorithms will be briefly explained here. The ones explained are the
most relevant for object recognition.

Color Recognition

A digital picture is essentially a matrix of values describing the picture. This matrix is
dependent of the color space the picture is defined in. A picture captured from for instance
a webcamera is defined in the BGR (Blue-Green-Red) color space, which means that the
colors in the picture are defined by combinations of these colors. The color is defined by the
relationship between these values, while the brightness is defined by how high these values
are. Hence it could be difficult to select threshold values if one is looking for an object of
a specific color, because different light conditions would give very different values for the
color. To make the thresholding more intuitive one can transform the picture into the HSV
(Hue-Saturation-Value) color space. The hue value is unique for a specific color and describes
the base color. The saturation describes the strength of the color and the value is a measure
of brightness. This makes it simpler to find intuitive thresholds for specific object colors that
can handle different lightning conditions. An visualization of the HSV-color space is found
in Figure 2.1.

Figure 2.1: HSV-color wheel Courtesy of had2know.com

The HSV-picture is thresholded with the desired intervals of the HSV-values. This results in a
binary image where the pixel values are one if the color is found and zero if the color is different
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than the desired color. With good choices of colors for the object and the thresholding values,
one would get a good understanding of where the object is.

Canny Edge Detector and Moments

The Canny Edge Detector uses an algorithm presented in [Canny, 1986] that detects edges.
It can be used to detect contours. If the Canny Edge Detector is used on a binary image
like the one described in the previous section it would find the contour surrounding the area
of the detected object. Then this contour could be fed to the moment function in OpenCV
which calculates the center of moment for the contour, which is the center of the outline of
the object.

Cascade Classifier

The use of cascade classifiers includes two major stages, training and detection [OpenCV.org,
2013b]. Training is executed once only, while detection is executed run time. Training takes
two different sets of samples, positive and negative samples. The positive samples are sam-
ples containing the object, while the negative samples are samples without the object. These
samples are run through a cascade classifier to create a “rule” of what to look for in the
detection phase.

There exists several different cascade classifiers, two of these are implemented in OpenCV.
These are Haar- and LBP-classifiers. They use different features and have different runtime.
Details on these algorithm are outside the scope of this text.

Accuracy of the use of cascade classifiers is dependent on the object to be detected, and
the number of samples used for training. For instance one positive sample can be sufficient
for detection of a rigid object, while detection of for instance faces will need hundreds or even
thousands of positive samples.

There are tools in OpenCV that take the positive samples and creates many new positive
samples of it. This is done by randomly rotating the object around all three axes, changing
the objects intensity and placing it on random backgrounds [OpenCV.org, 2013b].
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SURF

Speeded Up Robust Features (SURF) is a further development and speeded up algorithm on
the basis of SIFT (Scale-Invariant Feature Transform) [Mordvintsev and Abid, 2013]. These
algorithms use a single picture of the object for the recognition. Based on different techniques
beyond the scope of this text, key points are found describing the object. The key points is
assigned an orientation to achieve invariance to image rotation, and the way the key point is
selected make the algorithm scale invariant [OpenCV, 2013].

For commercial use one should note that both SURF and SIFT is patented and part of
a non-free module in OpenCV.





Chapter 3

Description of the UAV

The UAV used in this project as a base for the pickup and deployment mechanism is an
ArduCopter Hexacopter (see Figure 3.1). The ArduCopter uses the ArduPilot Mega 2.6
flight control unit (hereinafter referred to as APM). The UAV will also be equipped with a
PandaBoard as an onboard computer.

Relevant features of the APM and the PandaBoard are described below. Some highly relevant
software for this project are also briefly described.

Figure 3.1: ArduCopter Hexacopter Courtesy arducopter.co.uk
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3.1 APM

The APM is an open source flight control unit supporting multicopters, traditional heli-
copters, fixed wing aircraft and rovers [ArduPilot, 2013]. The software running on the APM
in this project is the ArduCopter project, which is the software solution used for multicopters.
Software is developed and supported by the DIYDrones community. At the moment the com-
munity has more than 50 000 members (June 2014) and an active forum where one could get
help and useful tips and tricks.

3.1.1 Modes of Operation

The APM can operate in many different modes of operation [Ardupilot, 2013]. The most
relevant for this project are:

• Stabilize - Manual flight mode that automaticly levels the UAV and maintains the
current heading

• Auto - The UAV tracks predefined waypoints

• Guided - The next waypoint is defined in flight

• RTL (Return to Launch) - The UAV returns to the position where it was armed and
hovers

• LAND - The UAV lands, shut-down the motors and disarms

In addition to these modes, a DUNE mode has been developed by the Hexacopter group at
AMOS. This is a mode where setpoints for the controllers on the APM can be set from an
external device, i.e. PandaBoard. Control signals in the different modes are given either with
PWM-signals1 or through serial communication using the MAVLink protocol (the MAVLink
protocol will be briefly explained below). The PWM-signals are usually sent from a 2.4
GHz radio via a receiver on the UAV, while the serial communication is usually sent from a
ground station via a telemetry link to the APM. These signals could easily be replicated by the
PandaBoard. A picture of the APM with a voltage regulator and an external magnetometer
and GPS module is found in Figure 3.2.

1Pulse Width Modulated signals
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Figure 3.2: APM 2.6 with a voltage regulator and an external magnetometer and GPS module
Courtesy diydrones.com

3.1.2 Sensors

The APM is equipped with several sensors that are utilized for navigation and control. These
will be briefly explained below.

Barometer

A barometer is an instrument that is used to measure air pressure [Merriam Webster, 2013].
The barometric formula

p(h) = p(0)e
(−
mgh

kT
)

(3.1)

relates the pressure p(h) of an isothermal, ideal gas of molecular mass m at height h to its
pressure p(0) at height h = 0, where g is the acceleration of gravity, k the Boltzmann con-
stant, and T the temperature. This formula applies reasonably well to the lower troposphere.
For altitudes up to 6 km the error is less than 5 % [Berberan-Santos et al., 1997].

The barometer in the APM is based on piezoresistive technology. Piezoresisivity is a common
sensing principle for micro machined sensor [Liu, 2011] that uses the fact that resistivity of
some materials changes with applied stress [Mason and Thurston, 1957]. This feature is used
in the barometer, when the air pressure varies, the pressure on the material in the barometer
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varies which means that resistivity varies. A mapping from resistivity to pressure is used to
calculate altitude referenced to start altitude. Altitude calculations by the use of barometers
can be sensitive to changing weather conditions.

The barometer in the APM is the MS5611-01BA03 by Measurement Specialties, which ac-
cording to the producer has a resolution of 10 cm.

Magnetometer

A magnetometer is an instrument for measurement of magnetic fields. Depending on the
setup they can measure strength of a magnetic field or both strength and direction of the field
[Store Norske Leksikon, 2013]. The magnetometer in the APM is a three-axes magnetometer.
This means that both the strength and direction of the magnetic field can be measured. The
magnetometer measures the force created by the magnetic field on an energized conductor.
This force is called the Lorentz Force and follows the formula

F = qv ×B (3.2)

where q is charge, F is the Lorentz Force andB is the magnetic field. The charge q is assumed
to be known and F can be measured using piezoresistive principles. Then the magnetic field
is easily found using the formula in equation (3.2). This field is pointing towards north (ex-
cluding disturbances from for instance the motors on the UAV), which will be utilized in the
APMs IMU (described in the next section) to get more accurate attitude measurements.

The magnetometer in the APM is a HMC5883L from Honeywell.

Inertial Measurement Unit

The APM contains an Inertial Measurement Unit (IMU). An IMU consists of an ISA (Inertial
Sensor Assembly), hardware and low level software. The ISA is a cluster of three gyroscopes
and three accelerometers that measure angular velocity and acceleration respectively [Vik,
2012]. The IMU can also use magnetometer measurements. In the APM the magnetometer
is not a part of the IMU, but it has an interface where it communicates with the magne-
tometer to make it possible to utilize the magnetometer measurements in the calculations of
the attitude of the UAV.
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Conceptually the accelerometer measures the movement of a damped mass hanging in a
spring. To transform this movement into an electric signal, piezoresistive principles are uti-
lized. In this case is it the acceleration that creates deformation in the piezoresistive material.

The gyroscopes are also based on MEMS technology. MEMS-gyroscopes are usually im-
plemented with a tuning fork configuration. Two masses oscillate in opposite directions of
each other. When these masses experiences angular velocity the Coriolis force act in opposite
directions on the masses. This results in a measurable capacitance change which is propor-
tional to the angular velocity of the UAV [Jay Esfandyari, 2010].

The IMU in the APM is a MPU-6000 from Inven Sense.

GPS

The GPS module that is connected to the APM contains an ublox LEA-6H module [3DRobotics,
2013]. It uses Navstar GPS but can also support GLONASS and Galileo. Communication
to the APM is done via UART2 with an update frequency of 5 Hz. Position accuracy is
given by the datasheet to be 2.5 m CEP3[u blox, 2012]. GPS can also be used for altitude
measurements, but the nature of the GPS is that altitude measurements will have even less
accuracy than position measurements.

3.1.3 Interfaces

The APM has several interfaces that make it flexible and suitable for research and develop-
ment. It has dedicated connection points for GPS and telemetry. These are interfaced using
UART. It also has an unused UART-port available for other units and applications. Input
from the radio and output for the motor controllers have dedicated ports that operates with
PWM-signals. A connection point to access the APMs I2C bus is also available. Several
units can communicate using this bus. It has also a lot of unused I/O-pins available for
further development. These can for instance be used to connect an Ultrasonic Range Finder
(there are several of them that are supported by the APM).

2Universal Asynchronous Receiver/Transmitter
3CEP (Circular Error Probability) defines the radius of a circle centered in the true position containing

50 % of the GPS measurements [iGage, 2013]
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MAVLink

The APM communicates with its surroundings using UART with a subset of the communi-
cation protocol MAVLink4. MAVLink is a lightweight, header-only marshalling library for
micro air vehicles [QGroundControl, 2013]. MAVLink has a lot of predefined messages in
addition to the possibility of creating custom messages. An XML-file contains the definition
of the different message types. An example of one of the message definitions is shown in
Figure 3.3.

Figure 3.3: Message definition of message with ID 24 Courtesy of wikipedia.org

The MAVLink protocol can be used both to get status information from the APM and to
give commands to the APM.

3.2 PandaBoard ES

The version of the PandaBoard used in this project is the PandaBoard ES Revision B2 (here-
inafter referred to as PandaBoard). The PandaBoard is a small but powerful computer based
on an OMAPTM 4 Processor. The OMAPTM 4 Processor is designed for high performance
applications within a low power envelope [Texas Instruments, 2013] and contains a Dual-core
ARM R©1.2 GHz CPU. The PandaBoard has 1 GB RAM and a port to insert a SD-card for
additional memory [pandaboard.org, 2013].

3.2.1 Interfaces

The PandaBoard has several interfaces that make it a good platform for development. It
has two expansion connectors with 28 pins each. The functions of these pins includes gen-
eral purpose I/O, SPI, I2C, USB, UART, audio, power and support for additional memory

4Micro Air Vehicle Communication Protocol
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[pandaboard.org, 2011]. This means that the the PandaBoard is able of communicating with
its surroundings using most of the most popular bus standards.

The PandaBoard does also include a camera header available for development of camera
solutions.

3.3 Software

The software developed in this project is build upon and integrated into IMC, DUNE and
Neptus. These software solutions are developed by the Underwater Systems and Technology
Laboratory (LSTS) research team at the University of Porto. The LSTS research team is
specialized in development and operation of unmanned vehicles and tools for deployment of
vehicles in networked systems [LSTS, 2014a].

3.3.1 IMC

The Inter-Module Communication (IMC) protocol is both used for communication between
the different nodes in the networked systems and for inter-process communication in DUNE
[LSTS, 2014c].

The IMC message definitions are included in a XML file. There exists a wide variety of
predefined messages, and it is also really easy to add custom made messages. An example of
a message definition is shown in Figure 3.4 to show the structure and simplicity of the IMC
message protocol.

Figure 3.4: Example of IMC message definition
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3.3.2 Dune

DUNE: Unified Navigational Environment is software meant to be running on the onboard
computer in the unmanned vehicle. DUNE is responsible for every interaction with sensors,
payloads and actuators. In addition is it used for communications, navigation, control,
maneuvering, plan execution and vehicle supervision [LSTS, 2014b]. A lot of these features
are already implemented, but one of the strong suits of DUNE is how simple it is to create
new tasks that share information using IMC-messages shared over the Message Bus. This
makes a flexible system where code can easily be structured in a modular fashion. This task
interaction is displayed in Figure 3.5.

Figure 3.5: Task interaction using IMC Courtesy lsts.fe.up.pt

The DUNE project is quite huge containing a lot of pre made and specialized tasks. Only
a few of these will be used in each of the applications that use DUNE. To be able to define
which tasks that are run a configuration file is used. Relevant task parameters, vehicle types
etc. are defined in the configuration file. This is a neat way to use the best features of DUNE
and still have good control of the software structure.

3.3.3 Neptus

Neptus is a command and control software used to command and monitor unmanned systems.
Neptus can be used to observe real time data from the vehicles, it can also be used to log
data and revise data from earlier missions. It does also have some useful features that is
used for planning, execution and review and analysis of missions [LSTS, 2014d]. Neptus is
designed in a way that facilitates development and adoption of new features.
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Drop and Recovery Mechanism

The aim of the project leading up to this master project was to explore different mech-
anisms that could be used to facilitate drop and recovery operations of sensor nodes using
UAVs. The project report [Voldsund, 2013] contains a discussion of different solutions, before
concluding upon one solution that was implemented. The implemented solution has been
further developed in this master project. Readers are advised to consult the project report
for discussions concerning the design solution of the drop and recovery mechanism, while the
resulting, though improved mechanism, is presented in this chapter.

4.1 Overall Description

To get sufficient accuracy during recovery it was decided that a solution where a gripper can
be lowered down towards the sensor node was the best approach. The different parts in this
setup was 3D-modeled and 3D-printed. A box was designed to contain the PandaBoard and
to mount the gripper mechanism to. It was designed in such a way that different equipment
can be mounted to it, and it is used in several of the projects conducted by the AMOS
hexacopter-group. The box is displayed in Figure 4.1.

Figure 4.1: Box to contain the PandaBoard
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A system with gears was designed to be able to lower the gripper in an accurate and reliable
fashion. The operation of the mechanism is displayed in Figure 4.2. A camera was mounted
to the gripper-platform to be able to track the sensor node and confirm whether the node
is picked up or not. A description of the mechanical design of the gripper and lowering
mechanism is presented in Section 4.2.

(a) Gripper raised (b) Gripper lowered

Figure 4.2: Drop and recovery mechanism mounted to the hexacopter

4.2 Mechanical Design

To be able to use gears to push the platform up and down, rack gears were used. The rack
gears were fastened to the gripper platform at one end, while the other end went up through
the gear platform. To be sure that all the rack gears move at the same time and with the
same speed, the same motor was used to drive them all. This meant that a transmission
needed to be designed. The platform for the gears and transmission was 3D-modelled and
3D-printed, and the gears was mounted. This can be seen in Figure 4.3.

Figure 4.3: Gear
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A DC motor was chosen to drive the gears. Alternatively a servo could have been used,
but that would have been more spacious in a position where space really matters. It would
require a lot of torque to drive the transmission and lift the gripper platform. Hence torque
was the most important parameter in the process of choosing a motor. The motor chosen
was a 1271 series 188:1 geared DC motor from Mclennan able of providing a torque of 14
Ncm at the same time as its small in size and relatively light weighted. The fact that it is
geared increases the torque at the same time as it decreases the speed of the motor. The
rated speed is 9 rpm, which means that it will use approximately 20 seconds to raise or lower
the gripper platform. This is reckoned to be within acceptable time consumption. To be
able to control the DC motor a H-bridge was needed. The chosen H-bridge is presented in
Section 4.3.2.

Tests of pickup weight limitations was conducted in [Voldsund, 2013]. This tests showed
that the mechanism was able to lift weights of approximately 1 kg. Time consumption in-
creased with the weight, but speed was quite hight when lifting the targeted sensor node
weight of 200 g.

To know when the gripper platform is in the extreme positions a measurement of the plat-
forms position is needed. How this was solved is explained in Section 4.3.1.

Gripper

When designing the gripper mechanism, several points needed to be considered. It should be
as simple, robust and power efficient as possible. At the same time it should not build too
much below the UAV and it should be made sure that the camera gets free sight.

The gripper was designed in a way that it could be controlled using only one servo. This
was possible by using gears. The gripper was 3D-modelled and 3D-printed. See Figure 4.4
to understand how the gripper parts interact. The servo used was a MG-14 from Hextronik.
This servo was chosen due to the fact that it is relatively light and sufficiently strong, while
being metal geared, which is good for robustness.

The gripper needed to be mounted on a platform that is connected to the rack gears to
be able to raise and lower the gripper. The platform is supposed to be raised up as close
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to the UAV as possible. The motor connected to the gear platform sticks down below the
gear platform and is in the way for the gripper platform. This was solved by designing a
hollow cylinder on the gripper platform for the motor to fit into when the gripper platform
is raised. The cylinder is there to have a position to mount the camera that is centred and
have free sight down while searching for the node. This placement of the camera also makes
it possible to use the camera to verify whether the gripper has caught the node or not. The
gripper platform also needed a mount for the rack gear, the gripper and the servo for the
gripper. Also the gripper platform was 3D-modelled and 3D-printed.

Figure 4.4: Gripper mounted on the gripper platform

4.3 Hardware

The pickup and deployment mechanism consists among other things of some hardware to be
able to control the motor and the servo and to be able to be interfaced to the PandaBoard.
Some of this hardware was store bought and some was designed and produced as a part of
this project.

To be able to know when the gripper platform is in its extreme positions (fully raised or
fully lowered), a position sensor based on IR-LEDs and photodiodes was developed. The
servo of the gripper is controlled by a PWM signal. To make sure that the PWM signal
is accurate enough some circuitry containing a micro controller was developed. The Pand-
aBoards I/O-pins operate at a logical voltage level of 1.8 V while other parts of the hardware
used in this project operates at 5 V. This makes a translation necessary for the PandaBoard
to be able to communicate with the rest of the hardware. This was also designed. The
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reasoning and design of these hardware components in addition to descriptions of a store
bought H-bridge and sonar are included in the following sections.

4.3.1 IR-LED Position Sensor

Holes where drilled in the rack gears and the IR-LED position sensors were placed in such
a way that when the platform is in position the IR light shines through the hole and a
photodiode can sense the light on the other side. Two position sensors were mounted, one
for raised position and one for lowered position. The position sensor mounted using a 3D
modelled and 3D printed mount can be seen in Figure 4.5.

Figure 4.5: Mounting of IR-LED position sensor

The key components of the IR-LED position sensor is the IR-LED and the photodiode. These
need some support circuitry in order to function. The circuit with the LED is fairly simple.
It consists only of the IR-led and a resistor. The resistor is there to limit the current.

The circuit for the photodiode is a bit more complicated. The photodiode chosen is a PIN
type diode from Everlight. It is connected reversed biased, and does normally not conduct,
but starts to conduct when exposed to IR. The more IR the more it conducts. This last fact
means that the signal will wary between 0 and 5 V depending on how much IR it senses. In
this application the LED and the photodiode are mounted in a way that the photodiode only
senses the IR when the gripper platform is in position. Hence the signal could be connected
directly to a digital I/O port to give either a in position or an out of position value. An
opamp used as an voltage follower is included in the design, this isolates the output from the
signal source. The operational amplifier used is an MC3405P from Motorola. A resistor is
used in order to limit current.

A decoupling capacitor was added. Decoupling capacitors are used to give noise a path
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to ground and keep the power in the circuit smooth [Catsoulis, 2005]. The schematics of the
circuit design can be seen in Figure 4.6.

Figure 4.6: Schematics for the IR-LED Position Sensor

4.3.2 H-Bridge

To be able to control direction and speed of the DC-motor lowering and raising the gripper,
a H-bridge is needed. The H-bridge chosen for this is the DRV8801 H-bridge motor driver
from Texas Instruments mounted to a break out board. The simplicity of this design makes
it small in size and very low weight. Nominal output current is rated to 1 A, while it can
handle peaks up to 2.8 A for a few seconds. It operates with motor supply voltages between
8 and 36 V and logic supply voltages between 3.3 and 6.5 volts [pololu.com, 2014]. This
makes it very versatile. The main drawback with the simplicity of this chip and break out
board is that it can quite easily get over heated if driven with high current over time. This
should not be a problem in this application because the nominal current of the chosen motor
is given to be 50 mA and the time used to lower or raise the gripper is limited.
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4.3.3 PWM-Controller

The servo mounted to the gripper is controlled by using a PWM signal. The pulse width of
the signal is translatable to the servos position reference. In the servo used the time period
for the PWM signal is 20 ms. A pulse width of 1 ms mean 0 degrees reference, and 2 ms
mean 180 degrees reference. This means that to be able to control the servo in a stable and
accurate way, the PWM signal needs to be accurate. To get such an accurate signal using the
PandaBoard can be challenging. It is possible to generate PWM signals with the PandaBoard
using GPIO-pins and a real time operating system. But the operating system running on
the PandaBoard in this project is a stripped down version of a Linux kernel without real
time possibilities. In addition the gripper will be controlled through DUNE which further
increases difficulties with timing as DUNE has its own scheduling as well.

To cope with this problems a PWM-controller was designed. The basis for the PWM-
controller is an ATtiny85 8-bit microcontroller. This microcontroller is chosen for its sim-
plicity. The microcontroller is programmed using ISP (In System Programming). To be
able to program the microcontroller in circuit, headers are connected to all the pins of the
microcontroller, even though not all will be used in the application. This will also increase
the possibilities for further developing if needed. A decoupling capacitor was also added to
ensure noise free input voltage for the microcontroller.

Two bits is used to control the PWM-controller with the PandaBoard. One bit turns on
and off the signal, while the other bit gives the desired position of the gripper (either open
or closed). The schematics of this circuit is shown in Figure 4.7, while the code running on
the ATtiny85 is included in the digital appendix.



32 CHAPTER 4. DROP AND RECOVERY MECHANISM

Figure 4.7: Schematics for the PWM-Controller

4.3.4 Level Translator

Communication will go both to and from the PandaBoard. The level translator will need at
least six channels: two for controlling the H-bridge, two for servo control and two for the IR-
LED position sensor signals. For this reason the ADG3300BRUZ eight channel bidirectional
level translator from Analog Devices was chosen. It is a convenient and easy to use level
translator. The desired low voltage level and low voltage signals are connected at one side
and the desired hight voltage level and high voltage signals are connected at the other side.
Two decoupling capacitors are also connected. The schematics of the circuit design can be
seen in Figure 4.8.

Figure 4.8: Schematics for the Level Translator
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4.3.5 Sonar

Accurate height measurements are critical in the pickup of the sensor node. They are both
important to avoid crashing into the water and to get reliable measurements of the position
of the sensor node by the use of camera. The APM has barometric sensors to measure height,
in addition to height measurements from GPS. Neither of these measurements are reliable
enough to by used for this application.

There exists several altitude measurement principles that could be used for this applica-
tion. The most relevant are ultrasound and laser. They both have different pros and cons. A
more in depth analysis of the pros and cons are given in [Voldsund, 2013], but the key points
are rendered here.

Laser range finders can be used for much longer ranges than ultra sound range finders
(sonars), but the fact that this application is meant to be used at sea posts a problem
with lasers. The laser beam can travel through the water and calculate the distance to the
sea floor instead of to the surface. This problem is strongly reduced with sonars. The UAV
will be flying low while searching for the sensor node, so the range of a sonar will be sufficient.

The chosen sonar for this application is the XL-MaxSonar-EZ4 from MaxBotix. It has
several interfaces that can be used to read out the altitude measurements. The interface
used in this application is an analogue voltage between 0 and 5 V. This interface is used
because the APM has built in functionality to read sonar values using its internal ADC. To
avoid noise in the signal from the sonar, the signal is low pass filtered using a simple RC-filter
with a resistor value of 10 Ω and a capacitor of 100 µF and a shielded cable is used for the
signal. The range of the sonar spans from 20 cm to 765 cm and altitude measurements are
read at a 10 Hz rate with a resoltion of 1 cm [MaxBotix, 2014]. This is a perfect range for
this application. MaxBotix has several similar sonars available. The main difference between
them is the beam angle. The EZ4 has the narrowest beam, and is chosen because of that.
The narrow beam makes it possible to mount the sonar on the UAV and still be able to avoid
measuring the distance to the lowered gripper platform instead of the distance to the sea
surface or the ground.
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4.4 Communication Between the Modules

An overview of the different modules and the communication between them is shown in Fig-
ure 4.9.

The camera is connected to the PandaBoard using USB. The APM is also connected by
the use of an USB port, but the communication between the PandaBoard and the APM uses
UART and the MAVLink protocol. Relevant information here will be attitude and position
data, and set points for the controller in the APM.

The rest of the communication to and from the PandaBoard goes via the level translator
described in the previous section.

Figure 4.9: Communication between the modules

4.5 Power Supply

The UAV contains a battery and a voltage regulator that regulates the voltage down to
5 V. It is possible to use this voltage source for the parts developed in this project. But
using the regulated voltage source could easily result in to much current drawn, which will
result in restarts of the APM and the PandaBoard. This could be disastrous for the UAV.
Hence the safest solution is to add a separate battery and voltage regulator. This will increase
weight which will reduce range of the UAV, but this is considered to be a reasonable trade-off.
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Selecting battery is a trade-off between capacity and weight. The battery should be able
to power both the motor and the ICs1. Hence a three cell Lithium-Polymer battery is cho-
sen. These kind of batteries deliver 11.1 V, are able to deliver a lot of power fast and are
able to hold a lot of power in relation to its weight. The specific battery chosen is a 1000
mAh 20-30 C (this means that it is able of delivering an instantaneous current of 20-30 times
the capacity) battery from Haiyin. The battery is able to support the peak currents, but it
might not be able to operate for very long if the servo and motor is used a lot in the mission.
The battery can be replaced by a heavier one with greater capacity if necessary. But the
specifications of the chosen battery seems reasonable according to power demand calculations
conducted in [Voldsund, 2013].

To reduce the chance for unstable voltages and current delivered to the PandaBoard, two
voltage regulators are used, one for the PandaBoard and one for the rest of the equipment.
Especially the servo can be a cause for ripple in the delivered voltage and current. These
choices result in the power circuit for the drop and recovery mechanism as displayed in Figure
4.10.

Figure 4.10: Power circuit

1Integrated Circuits





Chapter 5

Control Structure

5.1 Controllers

A position controller (controlling North and East positions) for the UAV was derived us-
ing Newtons second law of motion. The controller is meant to be used for short distance
movements, like in the node pickup phase. The controller calculates reference values for roll
and pitch for the UAV. These reference values are then fed to the low level roll and pitch
controllers in the APM. A mathematical derivation and a description of the implementation
of the controller follows. A waypoint tracking algorithm using a velocity controller was also
developed to be used for long distance movements. In addition to the position and speed
controller, both a altitude controller and heading controller were used.

5.1.1 Position Controller

To be able to use Newtons second law of motion the forces F n acting upon the UAV in
the NED frame are derived. Gravity acts in Down direction, which means that it does not
influence the North or East position of the UAV. Thrust on the other hand acts in negative z
direction referenced in the BODY frame. Hence this value should be transformed to the NED
frame to be able to control the horizontal NED position. This is done using the rotational
matrix given in equation (2.11), and the result is shown in equation (5.1).

F n(Θ, T ) = Rn
b (Θ)


0
0
−T

 = T


−sψsφ − cψcφsθ
cψsφ − sθsψcφ
−cθcφ

 (5.1)

37
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Applying small angle approximation for roll and pitch angles and excluding the Down com-
ponent simplifies equation (5.1) to equation (5.2).

F n(Θ, T ) = T

−sψ −cψ
cψ −sψ

 φ
θ

 (5.2)

Using Newtons second law of motion and defining roll and pitch angles as control variables
used as input (u) to a low level controller results in equation (5.3).

N̈
Ë


︸ ︷︷ ︸
η̈

= T

m

−sψ −cψ
cψ −sψ


︸ ︷︷ ︸

B

φr
θr


︸ ︷︷ ︸
u

(5.3)

Equation (5.3) can be transformed into a forced mass-spring-damper system by setting u
as shown in equation (5.4) and inverting B as shown in equation (5.5). Note that η here
is used as a subset of the NED position vector and is η = [N E]T . The resulting force
mass-spring-damper system is expressed in equation (5.6). The fact that the controller turns
the system into a forced mass-spring-damper system implies stability of the controller.

u = B−1(−Kdη̇ −Kpη +Kpηr) (5.4)

B−1 = m

T

−sψ cψ

−cψ −sψ

 (5.5)

η̈ +Kdη̇ +Kpη = Kpηr (5.6)

Proportional and derivational controller gains can be chosenKp = ω2
0I2x2 andKd = 2ξω0I2x2

according to the demands of the system. Here ω0 is the natural frequency and ξ is the damp-
ing ratio. The damping ratio can be set to 1 to create a critically damped system, and the
natural frequency can be tuned to give the desired response.

Some early stage testing of the control structure in the lab revealed the need for integral
action in the controller. The testing was conducted inside so wind was not an issue, but a
constant deviation was present due to inaccuracies in the sensors and low level controllers of
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the APM. The integral term is

ui = B−1Ki

∫ t

0
(ηr − η) (5.7)

The augmented controller then becomes

u = B−1(−Kdη̇ −Kpη +Kpηr +Ki

∫ t

0
(ηr − η)) (5.8)

Setpoints for roll and pitch are limited to ensure safe operation. This also makes sure that
the small angle approximation is valid.

5.1.2 Altitude and Heading Controllers

The altitude and heading controllers are both fully dependent on low level controllers in
the APM. The reference altitude and heading are sent to the APM. The desired values are
typically found by ramping towards a desired value.

5.1.3 Waypoint Tracking

The position controller should for several reasons only be used to move short distances. For
large distances the controller will reach angle saturation immediately and the UAV will move
faster and faster. The high speeds will lead to massive overshoots when reaching the desired
position. The angle saturation will also mean that the UAV not necessarily will fly the
shortest distance to the desired location, but move in a path with a kink in it. To avoid this
and have full control of the speed even for long distances a velocity controller was developed.
The derivation of the velocity controller follows the same logic as the position controller.
Equation (5.3) describes the system and the control input to create a PI velocity controller
is given in equation (5.9).

u = B−1(Kp(η̇r − η̇) +Ki

∫ t

0
(η̇r − η̇)) (5.9)

The desired velocity η̇r is calculated by using the algorithm in Section 2.1 to find the bearing
β to the next waypoint. And by the use of the predefined desired speed reference |η̇|r as



40 CHAPTER 5. CONTROL STRUCTURE

shown in equations (5.10) and (5.11).

Ṅr = |η̇|r sin (β) (5.10)

Ėr = |η̇|r cos (β) (5.11)

When the UAV reaches a waypoint, operation depending on the current mission is activated.
This means that the UAV will execute either pickup, drop or landing. Then the UAV flies to
the next waypoint, this goes on until all the waypoints is visited and their associated mission
is executed. A more sophisticated operation for the phase where the UAV reaches a waypoint
should be developed as future work. For instance should a search pattern be executed to find
the sensor node when the UAV approaches a pickup waypoint. The pickup waypoint will
only gives an approximate position of the sensor node.

5.2 Camera Application

The main application of the camera is to track the sensor node. The camera will also be used
in the pickup to verify whether the gripper gets hold of the sensor node or not (one could
have used estimation of inertia for this task like [Mellinger et al., 2011], but the position of
the camera makes it very convenient to use for this task). To be able to track the sensor
node the camera will need to recognize the sensor node. This can be done in multiple ways
as described briefly in Section 2.3. The SURF method can be efficient under the right cir-
cumstances, but some simple tests revealed some weaknesses. It turned out that only a few
points on a picture of the pickup mount was marked as corners that it could use to search
for. Of course the pickup mount could be made with more distinct features, but because it
is quite small and it should be possible to detect at a distance this method was discarded. A
classifier could have been developed, but it would have weaknesses when it comes to rotation,
and it would need a lot of example pictures to make it robust. For this reasons the classifier
solution was discarded as well. The much simpler solution of color detection was implemented.

The camera used in this application is the e-CAM51 USB 5MP camera from e-con Sys-
tems. According to the producer it is able to provide HD video at 30 fps, and has a 60◦ field
of view.
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5.2.1 Tracking the Sensor Node

To be able to use color detection the sensor node needs to have some colors that sticks
out. The mount for the sensor node (Figure 5.1) should have two different colors to make it
possible to use color detection to get the orientation of the mount. The ocean is blue, which
means that the sensor node should have colors that are as far away from blue on the HSV-
wheel (Figure 2.1). Yellow is an obvious choice because it is directly opposite of blue and
it has a narrow band, which is good for noise cancellation. The colors next to yellow is red
and green. Red contains both the lowest an highest hue values, which will make calculations
more complex, hence green is chosen for the other color.

Figure 5.1: Mount for sensor node

The picture from the camera is converted to the HSV-color space and copied to create two
pictures. One of the pictures is thresholded with the HSV-values for yellow, while the other
is thresholded with the values for green. This creates two binary pictures where the yellow
and green fields are marked respectively. Then the “center of mass” of the two pictures
are calculated. This centres of masses are used as centres of the two parts of the pickup
mount and used to calculate the orientation of the mount and the center of the mount. This
procedure is demonstrated in Figure 5.2. For the measurements to make sense one need a
mapping from this pixel position to the position of the mount in NED.
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(a) Original image (b) HSV image

(c) Green thresholded (d) Yellow thresholded

(e) Result

Figure 5.2: Use of color recognition to track the mount of the sensor node

For control purposes a position of the sensor node in NED is good because this will be the
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same value as the error in position if the controller is trying to get to the exact position of
the sensor node. For estimator and robustness the sensor nodes position should be referenced
in ECEF. If the position of the sensor node is referenced in ECEF, it will be simpler to filter
out weird measurements, estimation of the movements of the sensor node with current and
waves becomes possible and the controller will have something to navigate towards even if
the camera looses sight of the sensor node for a moment.

To get the position of the sensor node in NED, first a transformation from BODY to NED
is conducted by the use of the rotation matrix from BODY to NED in equation (2.11). DH
convention is used to create consequential reference frames from BODY leading up to a ref-
erence frame in the sensor node. This is done to exploit the fact that the transformation
matrix from BODY to the sensor node reference frame will contain the position of the sensor
node reference frame expressed in BODY as seen in equation (2.20).

The first new frame is defined in the center of the camera lens. The homogeneous trans-
formation A1 from BODY to the camera frame is carried out as a movement d1 along the
BODY z-axis which gives the relation below. This coordinate frame and subsequent frames
are visualized in Figure 5.3. The parameters related to the transformations are also marked
in the same figure.

A1 =


1 0 0 0
0 1 0 0
0 0 1 d1

0 0 0 1

 (5.12)

The next coordinate system is defined with the z-axis pointing towards the sensor node and
the pixel position of the sensor node in the picture frame. This is done by rotating around
the z-axis of α degrees and then rotating around the x-axis of β degrees.

To find α and β some calculations needs to be done. The origin of the picture plane is
in the topmost left corner. To get the angles to rotate, the origin is moved to the center of
the picture frame by defining δx = xo− xc and δy = yo− yc. The center of the picture frame
is the point (xc, yc) while the pixel position of the sensor node is the point (xo, yo). The
picture frame is defined to be at a distance of one meter away from the camera lens and the
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length between each pixel at this distance (L) is measured using an object of known length.
The angles α and β are then calculated.

α = −atan2(−δy, δx) (5.13)

d = L
√
δx2 + δy2 (5.14)

β = − tan−1(d) (5.15)

(5.16)

The resulting homogeneous transformation matrix is

A2 =


cα −sα 0 0
sα cα 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 cβ −sβ 0
0 sβ cβ 0
0 0 0 1

 =


cα −sαcβ sαsβ 0
sα cαcβ −cαsβ 0
0 sβ cβ 0
0 0 0 1

 (5.17)

The last reference frame is defined in the sensor node. To get there a movement of d2 along the
z-axis is necessary. To calculate this distance, the angle (γ) between the z-axis in NED and
the z-axis in the picture frame reference system needs to be calculated. The transformation
matrix from NED to picture frame is calculated to be able to read out the direction of the
z-axis in the picture frame reference system.

T n
pf = Rn

b (Θnb)A1A2 (5.18)

Out of this transformation matrix one can read out the direction of the z-axis of the picture
frame reference system znpf while the direction of the z-axis of NED is trivial.

znpf =


sαsβcψcθ − cαsβ(−sψcφ + cψsθsφ) + cβ(sψsφ + cψcφsθ)
sαsβsψcθ − cαsβ(cψcφ + sψsθsφ) + cβ(−cψsφ + sθsψsφ)

−sαsβsθ − cαsβcθsφ + cβcθcφ

 znn =


0
0
1

 (5.19)

The angle γ between these two vectors can be calculated using dot product, and the fact that
the vectors in the rotation matrices are normalized. This combined with basic trigonometry
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gives these two relations.

cos γ =
znpf · znn
|znpf ||znn|

= znpf3 (5.20)

cos γ = h− d1cθcφ
d2

(5.21)

These relations combined gives the following expression for d2 and the homogeneous trans-
form.

d2 = h− d1cθcφ
znpf3

(5.22)

A3 =


1 0 0 0
0 1 0 0
0 0 1 d2

0 0 0 1

 (5.23)

T n
obj = T n

pfA3 (5.24)

Calculations of equation (5.24) will read out the position of the origin of the reference frame
in the sensor node (according to equation (2.20)). This gives

pnobj =


d2z

n
pf1 + d1(sψsφ + cψsθcφ)

d2z
n
pf2 + d1(−cψsφ + sψsθcφ)

h

 (5.25)

For the purpose of tracking this vector is then transformed into the ECEF coordinate frame
by the transform in equation (2.8).
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Figure 5.3: Visualization of the different coordinate systems

5.2.2 Velocity Calculations

Testing revealed some major concerns in relation to the velocity measurements from the GPS
of the APM. Good velocity measurements are crucial for the position controller in an appli-
cation that needs to be as accurate as this one. It turned out that the accuracy of the GPS
velocity measurements are very varying. Sometimes the GPS velocity was quite good and
some times the GPS velocity vector was normal to the movement of the UAV. When the
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GPS measurements was at its worst, the damping term of the position controller made the
UAV circle the sensor node until sight of the node was lost.

In order to be as independent of the unreliable GPS velocity measurements as possible,
velocity was calculated using the measurements from the camera frame. These calculations
resulted in very noisy velocity measurements. To handle this a FIR-filter was used to get
smoother measurements.

The velocity measurements calculated using the camera are used when the sensor node is in
the picture frame. When the sensor node is outside the picture frame, GPS velocity mea-
surements are used.

The performance of both the GPS measurements and the filtered calculated velocity mea-
surements are shown in Figure 5.4(a) where the UAV is moved in a square pattern above
the sensor node. The calculated velocity measurements and the filtered calculated velocity
measurements are displayed in Figure 5.4(b).
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Figure 5.4: Velocity measurements

The GPS velocity measurements are actually at its best in this figure, but one can still ob-
serve that the filtered measured velocity follows the direction the UAV much better. There
could be several reasons for this. First of all is the GPS inaccurate with a CEP of 2.5 m,
secondly the position measurements of the UAV is calculated using the heading of the UAV.
The heading is measured by the use of a magnetometer which can be inaccurate, hence the
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GPS could have a different perception of where north is than the camera tracking. This
could lead to an offset in the direction of the GPS velocity.

When the camera tracking is used as a basis for the velocity measurements, all the mea-
surements and the controller uses the same heading in its calculations, hence poor heading
measurements are cancelled out. As one can see from Figure 5.4(b), the calculated velocity
are quite noisy, but the filtered velocities are quite smooth and there is little delay. One can
see that the filtered velocity makes sense from Figure 5.4(a).

5.3 Software Implementation

The system consists of three main software components: the ArduCopter software running
on the APM, OpenCV which is used by the camera application and DUNE running on the
PandaBoard. An overview of the modifications and additions to these components is given
in the following sections.

5.3.1 ArduCopter

A new mode of operation (DUNE mode) was added to the ArduCopter project by the Hex-
acopter group at AMOS. The result of this modification was that when in DUNE mode,
desired roll, desired pitch, desired yaw and desired altitude could be set using the serial in-
terface and the MAVLink protocol.

In this application accurate altitude measurements are necessary for both the altitude con-
troller and the node tracking algorithm. As mentioned the APM has already an interface
for connection of the selected sonar. But sonar measurements were not sent over the serial
bus, hence the code was altered so that it send the sonar measurements every time a position
measurement is sent. In that way DUNE is able to receive the sonar measurements to use
them in the node tracking algorithm. Another alteration made in relation to the sonar was
to use sonar measurements instead of barometric measurements in the altitude controllers of
the UAV. This gave much more accurate altitude control in the relevant altitude span of this
application.
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5.3.2 OpenCV

The OpenCV library is mostly used in its original form, but some issues caused by the Pand-
aBord made it necessary to make a few alterations to the library.

Default camera resolution was defined to be 640 × 480 pixels. The application has no
need for high resolution as the sensor node is just as easy to spot with lower resolution.
Hence a resolution of 320 × 240 pixels was desired to reduce the processing time of the color
recognition by a factor of four for each frame processed. The resolution is normally possible
to alter using OpenCV commands, but these commands had no effect using the cross com-
piled OpenCV library on the PandaBoard. Changing the settings of the camera using the
command line on the PandaBoard had no effect either as OpenCV changed the settings back.
The fix for this problem was to change definitions of default resolution in the cap v4l.cpp
and cap libv4l.cpp files in the OpenCV library. The definitions DEFAULT V4L WIDTH and
DEFAULT V4L HEIGHT was changed to respectively 320 and 240.

Another challenge with the camera stream was that the camera buffered frames when the
PandaBoard was unable to receive the frames at the same rate as the camera captured them.
This lead to a situation where the PandaBoard received frames that were two-three samples
old. The solution to solve this problem became to force OpenCV to drop old frames instead
of buffering them. This was done by changing the parameters MAX V4L BUFFERS and
DEFAULT V4L BUFFERS to 1 in the files mentioned above.

After these changes were done, the library was recompiled and the desired results were
achieved.

5.3.3 DUNE

This section describes the structure and functionality of the DUNE software controlling the
UAV and the drop and recovery mechanism. An overview of the different tasks and how
they communicate is shown in Figure (5.5). An explanation of each task follows. There
are several other tasks that run in the background with some support functionality, as for
instance monitoring of CPU usage and logging of different parameters. These tasks are
omitted in the following explanation to get a better overview of the most relevant tasks.
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Figure 5.5: Software structure

Transports.UDP

The Transports.UDP task consumes messages from the IMC bus and sends them by the use
of UDP. This is used as an interface between DUNE and Neptus. This task is developed by
LSTS.

GetNodePos

This task uses color recognition to track the sensor node according to the procedure described
in Section 5.2.1. It uses the camera in combination with attitude data from the APM and
sonar measurements to calculate the position of the sensor node relative to the UAV. Also
the heading of the mount of the sensor node is calculated. This information and a parameter
telling whether the sensor node is spotted by the camera or not, is put on the IMC-bus in
the nodeRelativePos message.
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The performance of the node tracking algorithm is crucial for the accuracy of the system
as the measurements are used in the feedback for the position controller. The node tracking
is dependent on attitude and altitude measurements that are updated as recently as possible.
Hence extra care needed to be made in the structure of the code to make sure that all IMC
messages available are consumed before running the calculations to get the node position.

Another major concern is the frame rate one can achieve from the camera and the pro-
cessing time of each frame. Unfortunately the frame rate varied quite a lot. To get a stable
and reliable frame rate this task was defined as a periodic task that was run at 10 Hz.

GripperControl

The gripper control task consumes gripperControl messages from the IMC-bus and controls
the gripper and gripper platform according to the received commands. The gripper is con-
trolled by setting a gripper enable bit and a gripper position bit on the PandaBards GPIO
port. The position bit is high for open position and low for closed position. The gripper plat-
form is controlled by a motor which lowers and raises the platform. The motor is controlled
by setting an enable bit and a direction bit on the PandaBoards GPIO port. Signals from
the LED-sensor is read from the GPIO port to be able to see when the gripper platform is in
the desired position (either lowered or raised). After executing the commands it dispatches
a gripperState message to the IMC-bus containing the positions of the gripper and gripper
platform.

To be able to control the GPIO ports of the PandaBoard mux-settings needed to be set
on the PandaBoard, and the relevant pins needed to be activated and direction of the pins
needed to be defined. This was done by sending terminal commands using the system func-
tion in C++.

ArduCopter

The ArduCopter task is a result of work done by the Hexacopter group at AMOS. This task
plays the role of a bridge between the APM and DUNE. ArduCopter sets up which messages
that should be received from the APM and sends control messages to the APM. The task
has been further modified to reduce the amount of messages transferred between DUNE and
the APM and to include an interface to receive sonar messages from the APM and put the
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values on the IMC-bus. It is good to reduce the unnecessary communication with the APM
because it is already working close to its limits. An update frequency of approximately 25
Hz was achieved to and from the APM.

Control

The control task is the main task in the control structure. The task is inactive when DUNE
starts up, and is activated when the radio used to control the UAV switches mode into
DUNE-mode. It will also be deactivated if the pilot switches the UAV out of DUNE-mode.
This is a feature that simplifies operation and enhances safety greatly. In this task is it
defined which states that will be controlled by the task and which states the pilot can con-
trol using the radio. During testing in this project the control task had some different goals
and controlled different states. This is better explained where the different test are presented.

This task receives missions from the IMC bus. These missions can be either drop or pickup
at a specified waypoint. The missions are currently sent to the IMC bus by defining the
missions in the configuration file for DUNE. As future work could this missions for instance
be sent from Neptus.

The missions are executed in the order as they are received and when the queue of missions to
execute is empty the UAV will return to the place where DUNE mode was activated and land.

The UAV will fly at an altitude of 7 meters between the waypoints using the waypoint
tracking algorithm. An altitude of 7 meters is chosen because it is in the upper limit of
what the sonar can handle. When reaching a pickup waypoint the UAV will use the camera
tracking algorithm in combination with the position controller to get placed straight above
the sensor node, the gripper will open and the gripper platform will be lowered. While be-
ing sufficiently close to the position straight above the sensor node, the altitude controller
will ramp down until the sensor node can be gripped by the gripper. After the gripper has
gripped the sensor node, the gripper platform will be raised and the UAV will continue to
the next waypoint in the queue (or return and land if the queue is empty).

Velocity measurements are during pickup calculated using the camera as long as the sen-
sor node is in the picture frame. When the sensor node is outside the picture frame, GPS
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velocity mea- surements are used.

When reaching a drop waypoint the UAV will stop and then drop the sensor node by opening
the gripper, before continuing on the next waypoint in the queue. When the UAV reaches the
waypoint where it is supposed to land, the altitude is ramped down until the UAV touches
the ground.

Support Software

In addition to the already mentioned tasks were two tasks developed to support operation.
These tasks are not shown as a part of the software structure as they only support operation
in special phases.

One task that displays a stream of the processed camera stream was developed to be used
to easily verify the camera tracking. This task is run as part of DUNE on a ground control
computer if desired. It receives the stream using a Wi-Fi link to the UAV and displays it.
This stream could for future work be received by Neptus instead.

The other support task that was created was a task that could be used to calibrate the
thresholds for the camera tracking. Using a graphical interface the threshold values for the
HSV values of the mount of the sensor node can easily be found. The code used for this is
strongly based on [Fernando, 2104]. This task is run as part of DUNE on a computer using
the same camera as the camera application. This task is very useful as thresholds for the
camera application needs to be calibrated to fit the environment of operation.





Chapter 6

Simulation of the System

To be able to verify the controller and the general control structure, the system was simulated
using MATLAB and Simulink. This meant that a mathematical model of the hexacopter
needed to be derived and that the low level controllers and thrust allocation of the APM
needed to be simulated using some approximations and assumptions on its behaviour. The
different models are derived below. Then they are put together to a full system including
the controller to be able to put the controller to the test.

6.1 Mathematical Model of the Hexacopter

To model the dynamics of the hexacopter equations (2.21) and (2.22) are used. The key
component that needs to be derived is the torque vector τRB, which is expressed in the BODY
frame. The thrust from each propeller is according to [Alaimo et al., 2013] expressed as a lift
constant times the squared angular speed of the propeller. In addition they approximate the
moment caused around the propeller axis as a drag constant times the squared angular speed
of the propeller plus the inertia moment of the propeller times the angular acceleration of the
propeller. This calculations are shown in equations (6.1) and (6.2). A model of a hexacopter
is shown in Figure 6.1 where forces, torques and angular speed of the propellers are marked.

f i =
[
0 0 kω2

i

]T
(6.1)

τMi
= bω2

i + IMi
ω̇i (6.2)
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Where k is the lift constant, b is the drag constant, Im is the inertia moment of a propeller
and ωi is the angular speed of propeller i.

Figure 6.1: Model of hexacopter Courtesy of [Alaimo et al., 2013]

Equations (6.1) and (6.2) and some simple geometry gives the following force and moment
balances, where φ is the roll angle, θ is the pitch angle and l is the length of the arm from
the center of gravity to the center of the propeller.

τRB =
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
(6.3)

Not considering the different parameters, all the information needed to use equations (2.21)
and (2.22) are present, which gives.

ν̇ = M−1
RB(τRB −CRB(ν)ν) (6.4)

This equation is then transformed to the NED frame using the rotation matrix in equation
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(2.11) and the transformation matrix in equation (2.13) as shown in equation (6.5).

η =
Rn

b (Θnb) 03×3

03×3 TΘ(Θnb)

ν (6.5)

Where η = [pn Θnb]T is the position in NED and the Euler angles.

6.2 Simulation of Low Level Controllers and Thrust
Allocation in the APM

The attitude controllers in the APM are approximated as PD-controllers and the altitude
controller is approximated as a PID-controller. One must assume that the controllers of the
APM follows the references given, the chosen controllers will do this, hence this is a fair
approximation.

The purpose of the thrust allocation algorithm is to convert desired force or moments in the
different degrees of freedom into desired thrust from the different motors. The control vector
given by the height and attitude controllers will contain desired thrust in negative z-direction
and desired moments around the different axes. This vector is given by τ c = [Tc τφc τθc τψc ]T .
Using equation (6.3) combined with the control vector gives the following relationship.

τ c =
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= Au (6.6)

The desired input to each motor is calculated using

u = A+τ c (6.7)
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where the pseudo inverse of A is calculated

A+ = AT (AAT )−1 (6.8)

6.3 Simulation of the Camera Algorithm

To simulate the measurements from the camera, the algorithm given in Section 5.2.1 was
used to find the position of each of the corners of the camera frame. Then a ray casting
algorithm [Franklin, 2014] was used to determine if the position of the sensor node is within
the camera frame. The ray casting algorithm is outside the scope of this report.

If the sensor node is within the camera frame, perfect measurements of both node posi-
tion in relation to the hexacopter and the heading of the node should be sent back to the
control algorithm.

6.4 Simulink Model

All the components for the simulator explained above, in addition to a PandaBoard compo-
nent containing the controller described in the previous chapter are put together to create
the Simulink model shown in Figure 6.2.

Figure 6.2: Simulink model
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6.5 Test of Controller

The main scenario simulated is as close to the lab tests that will be conducted as possible.
As the main challenge of the hexacopter controller is the pickup phase, the simulation will
focus on this phase. In each of the simulations the hexacopter ramps up from a ground start
to a height of 4 m. The sensor node is assumed to be lying 0.5 m North and 0.5 m East of
the starting point. As the hexacopter is flying, the simulated camera will give measurements
of the position of the sensor node, but only if the sensor node is in the camera frame. If
the camera is unable to spot the sensor node, the position reference used for the controller
will be the current position. The hexacopter will also try to maintain the same heading as
the sensor node. If the sensor node is in the camera frame, the reference heading for the
hexacopter will be updated. If the view of the sensor node is lost, the reference will be the
last measured node heading.

Four scenarios was simulated: first a simulation with no disturbances, then a simulation
with constant disturbance, then a simulation with varying disturbances and finally a simu-
lation with disturbances affecting both the sensor node and the hexacopter.

6.5.1 Simulation Without Disturbances

The scenario was first simulated using the proposed controller from equation (5.4) without
any disturbances present.

Results

The North-East-Down position of the sensor node is plotted in Figure 6.3. It can be seen
from the figure how the reference position is updated when the camera spots the sensor node.
One should also note that the hexacopter ramps down all the way to the sensor node without
loosing sight of the sensor node.
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Figure 6.3: North-East-Down position of the hexacopter

Figure 6.4 shows the the North-East position of the hexacopter and the sensor node. It also
shows the camera frame and whether the node is spotted by the camera or not. It can also
be seen from this plot how the hexacopter yaws to keep the same heading as the sensor node.



6.5. TEST OF CONTROLLER 61

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

East [m]

N
or

th
 [m

]

 

 
Start position of UAV
Position of UAV
Camera frame does not contain node
Camera frame containing node
Node position

Figure 6.4: North-East-Down position of the hexacopter, sensor node and camera frame

Discussion

The hexacopter was able to lower itself down on the exact spot of the sensor node without
loosing sight of the sensor node. This is a very promising result, although an environment
without any disturbances is probably not a very realistic one.

6.5.2 Simulation With Constant Disturbances

Early tests in the lab showed that the controller used in the previous simulations would give
some stationary deviations. The lab tests were conducted inside so wind played no part in
this error. The error is probably due to unbalances of the hexacopter and inaccuracies of
the low level controllers of the APM. Hence integral action was added to the controller. A
simulation with constant disturbance and integral action was performed. It was chosen to
add a constant force of 0.5 N in North direction, this could for instance represent wind.

Results

As can be seen from Figure 6.5 and Figure 6.6 the hexacopter overshoots the reference
position. The controller is able to cancel out the disturbance and make the hexacopter
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descend upon the sensor node.
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Figure 6.5: North-East-Down position of the hexacopter

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

1.5

2

2.5

3

East [m]

N
or

th
 [m

]

 

 
Start position of UAV
Position of UAV
Camera frame does not contain node
Camera frame containing node
Node position

Figure 6.6: North-East-Down position of the hexacopter, sensor node and camera frame
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Discussion

The overshoot of the position reference is due to the I-term of the controller and is quite
natural due to the step in reference position. The fact that the disturbance is working in
North-direction will also lead to an overshoot in North-direction, due to the added forces in
that direction. The controller is able to correct for the disturbance and descend upon the
sensor node.

6.5.3 Simulation With Varying Disturbances

The controller is tested in simulations where the disturbances are varying in both North and
East-direction using integrated band limited white noise where the integral is limited by ±
1 N in both directions.

Results

The hexacopter stays approximately straight above the sensor node, and is able to lower itself
a bit towards the sensor node before it looses the sight of the node and drifts away. Both
these observations are easily seen in Figures 6.7 and 6.8. When the sensor node is outside
the camera frame, the reference for the controller is the same as the current position. That
is why it looks like the reference leads the UAV to drift of in the end of the plots in Figure
6.7.
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Figure 6.7: North-East-Down position of the hexacopter
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Figure 6.8: North-East-Down position of the hexacopter, sensor node and camera frame
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Discussion

The results show that the controller is able to handle some random disturbances but sooner
or later these disturbances will lead to problems where the camera will loose sight of the
sensor node and then drift off. When flying close to the sensor node, the area covered by the
camera is small, hence a random force acting upon the hexacopter in the last stage of pickup
will easily lead to a drift off. This will make pick up in such conditions impossible.

6.5.4 Simulation With Constant Disturbances on the Hexacopter
and Disturbances Affecting the Sensor Node

A more realistic simulation is to simulate with disturbances on the sensor node in addition to
a constant disturbance on the hexacopter, e.g. due to wind or inaccuracies in the APM. The
constant disturbance on the hexacopter is a force of 0.5 N acting in North direction. The
sensor node is affected by varying noise, which makes it change heading and position. The
position of the node is modelled as random walk where the position is limited to a square of
2 times 2 meters, while the heading of the node is modelled as unconstrained random walk.

Results

As seen from Figures 6.9 and 6.10 the hexacopter tracks both position and heading of the
sensor node, and is actually able to get down to 5 cm above the sensor node before loosing
sight of it and drift off.
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Figure 6.9: North-East-Down position of the hexacopter
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Figure 6.10: North-East-Down position of the hexacopter, sensor node and camera frame
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Discussion

The hexacopters abilities to track the sensor nodes position and heading is quite promising.
The main issue that is revealed is that it could loose sight of the sensor node and drift off
when affected by disturbances. The hexacopter is not able to get back on track after a drift
off, this reveals a need for some way to get back to the previous position where the sensor
node was spotted last. The simulations have also shown that this setup is not able to handle
disturbances as rough weather conditions, meaning that success operation is limited to days
with only small waves and little wind.





Chapter 7

Software-in-the-Loop Testing

When working with UAVs safety is a critical issue. To be able to verify software before test
flights is of great importance and will make a much simpler workflow. This chapter will go
through the setup of a software-in-the-loop (SIL) test, and explain how the different software
are interfaced to each other. The different SIL tests conducted will also be presented.

7.1 SIL-Setup

The main purpose of the SIL test is to verify the control software presented in Chapter 5.3.3.

The SIL-setup contains six main components. These components are: DUNE, Neptus, Ar-
duCopter SIL, ArduPilot, MAVProxy and APM Planner. The interface between the different
components is displayed in Figure 7.1, and their roles are briefly explained below.

69
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Figure 7.1: Setup used for SIL-testing

DUNE

DUNE is the part of the SIL that is put to the test. To be able to see if the control algorithms
work, some of the features need to be simulated. This is done in tasks that only are run
in SIL mode. A model of a multicopter is used to calculate realistic attitude and position
states based on the actuator inputs given to the task. There is another task that simulates
the camera measurements. This is done in the same way as explained in Section 6.3.

ArduCopter SIL

The ArduCopter project contains a SIL-feature. This means that one can choose to compile
the project for SIL instead of for use with hardware. This feature is very practical both
for testing modifications done to the ArduCopter project and to test the way DUNE and
ArduCopter interface each other. The ArduCopter code has been altered by the Hexacopter
team at AMOS to include a DUNE mode. This mode is verified using the SIL feature.
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ArduPilot

To be able to test manual control in the SIL setup, ArduPilot hardware (running ArduCopter
code) is included to send PWM values from a radio into the SIL.

MAVProxy

MAVProxy is a simple ground control station, but it is not used for that purpose in this
setup. The task for MAVProxy here is simply to be a bridge between the ArduCopter SIL
and AMP Planner, which is another ground control station. This bridge is needed because
the ArduCopter SIL use TCP to emulate a serial port used for communication while APM
Planner connects using UDP.

APM Planner

APM Planner is a very versatile ground control station developed as an open source project.
The version used in this setup is an altered version developed by the hexacopter group at
AMOS to include DUNE mode. It is convenient to use this ground control station because it
gives easy access to state values at the AarduCopter SIL and an simple interface to modify
parameters used by the ArduCopter SIL. It can also be used to arm the ArduCopter SIL and
to change mode.

Neptus

Neptus is used to monitor values of the relevant IMC-messages. It is used in exactly the
same way that it is used in real missions. It is convenient to use to get a quick overview of
the different states, but it is not a necessary part of the SIL setup.

7.2 Pickup Test Without Disturbances

The SIL-simulator has support for different types of disturbances. These disturbances could
for instance be environmental disturbances like wind or sensor inaccuracies like drift or noise.
The first SIL-test is conducted without any disturbances. The system has already been sim-
ulated without disturbances in the previous chapter, but SIL test will provide additional
information on how the ArduCopter software and the control structure of DUNE functions
together. Especially interesting moments to consider is how delays due to the interface and
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limited controller input rate between the modules will affect the accuracy of the controller.

Again it is the pickup phase that is tested. The hexacopter is flown manually in above
the location of the simulated sensor node. Then the hexacopter will be switched into DUNE
mode and the pickup will begin.

7.2.1 Results

Figure 7.2 shows the hexacopters positioning itself over the sensor node before beginning
to descend upon it. Position errors are approximately ± 2 cm in the NE-plane, and the
hexacopter is able to descend all the way down to the sensor node.
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Figure 7.2: North-East-Down position of the hexacopter

Reference attitude versus measured attitude is plotted in Figure 7.3. One can see from the
plots that the the magnitude of the measured attitude is a bit greater than the magnitude of
the reference attitude and that the measured attitude is a bit delayed versus the reference.
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Figure 7.3: Attitude of the hexacopter

7.2.2 Discussion

The control structure is considered to be able to conduct a pickup of a sensor node as it
manages to lower the hexacopter down to the sensor node. It is considered to be accurate
enough even though delays due to communications and inaccurate low level controllers of the
APM makes small oscillations in the position of the hexacopter.

7.3 Pickup Test With Disturbances

The tests conducted in the previous section were able to verify the control structure, and
showed promising results for the communication between the APM and DUNE. But the real
system will have many causes for inaccuracies that the test did not take into account. Hence
another test was conducted to test the robustness of the system in a more realistic setting.
The test is conducted by using simulation parameters that are part of the ArduCopter SIL
to add drift and sensor noise to the system. Some early stage flight tests in the lab have
shown that drift is a major problem for the system. Hence this is a realistic and important
test.
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7.3.1 Results

The position of the hexacopter above the sensor node can be seen in Figure 7.4 and whether
the sensor node is in the picture frame or not is shown in Figure 7.5. One can see from this
figure that the position in the NE-plane oscillates slightly and that there is a small deviation
in the position. The hexacopter is able to lower itself all the way down to the sensor node
even though it looses sight of the sensor node at some points when it is close to the ground.
It is able to regain sight of the node because of the damping term in the controller that makes
the hexacopter stay in the same area.
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Figure 7.4: North-East-Down position of the hexacopter
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Figure 7.5: Showing whether the node is in the picture frame or not

The low level attitude controller follows the reference in approximately the same way as in
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the previous test.

Several additional tests were conducted with the same settings. Some of them did not show
as good performance as the displayed results. Some were not able to get closer to the node
than 0.5 meters, before drifting off.

7.3.2 Discussion

It was shown that the hexacopter is able to lower itself down to the sensor node even though
it is exposed to drift and sensor noise. There is a small deviation in position even though
there is integral action in the controller. This is due to the fact that the integral term is
limited to avoid integral wind up. And because the drift can change direction the limit on
the integral term is quite low. It is considered to be better with a small deviation than facing
the risk of huge overshoots due to big integral terms.

It is promising that the hexacopter is able to stay still and regain sight of the hexacopter
even though drift effects the system. But the simulated GPS velocities are more accurate
than the velocity measurements one can hope to get in the real world, so to be able to keep
the node in sight at all times when descending is crucial for success.

As mentioned, the results varied a bit, showing the unpredictability one faces when working
with noisy sensors and drift.

The simulated camera has the same field of view as the camera used for real life testing.
There exists web-cameras with greater field of view than the one used to decrease the prob-
lem with the camera loosing sight of the sensor node.

7.4 Drop and Recovery Mission

In this test an entire drop and recovery mission is executed. Two wayponts are sent on the
IMC bus to be executed by the control task. Signals to the task that controls the drop and
recovery mechanism are monitored to verify the control logic. Two waypoints where sent
on the IMC bus, first a pickup waypoint a bit South East of the start point, then a drop
waypoint South West of the start point.
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7.4.1 Results

A screenshot of APM Planner at the end of the mission is shown in Figure 7.6. The path
of the UAV to the waypoints and then back to the start position to land can be seen in the
figure.

Figure 7.6: Screenshot of APM Planner at the end of the mission

Plots of the speed and altitude of the UAV are included in Figure 7.7 to get a better idea of
how the mission is carried out. One can easily see the different parts of the mission in this
figure.
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Figure 7.7: Speed and height of the UAV during the mission

The control signals for the drop and recovery mechanism were observed and they were ac-
cording to the specification given in the description of the control task.

7.4.2 Discussion

The mission is carried out according to the design. All the different controllers work together
and the different waypoints are tracked and pickup and drop are executed according to plan.

The speed oscillates a bit when travelling between the waypoints, but this is only natu-
ral as there is little damping in the system, and there is no damping in the controller. The
performance of the velocity controller are considered to be good.





Chapter 8

Testing in the Lab

Simulations have proven the abilities of the controller and SIL tests have verified that the
control structure presented in Chapter 5.5 can be able to execute a pickup of a sensor node.
In addition both the simulations and the SIL tests have revealed some weaknesses of the
system when facing disturbances or inaccuracies in the APM.

DUNE will during these tests run on a PandaBoard communicating with the APM using
a serial interface. It is interesting to perform a real life test using this setup to see how
the reduced performance of the PandaBoard compared to a regular computer and how the
communication link between the PandaBoard and the APM, will affect the performance.
Another point that needs to be considered is the accuracy of the sensors used, and how much
the hexacopter drifts on its own accord.

The lab used for testing is indoors. This is both positive and negative. The roof is only
approximately 3 m high. This makes it difficult to test other parts of operation than the
absolutely last bit of the pickup where the area showed in the picture frame is small, making
it more difficult to get a stable position above the node from the start. The GPS-signal can
be weaker due to the roof, but performance of the GPS would not have been good anyway.
Of this reason both position and speed measurements are based on the camera application,
except when the sensor node is outside of the picture frame, then speed measurements are
based on GPS and position errors are set to 0. On the plus side there is no wind, but there
can be a bit of added turbulence created by the propellers and the hard surface of the floor.
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Some early stage testing revealed some weaknesses in the heading controller of the APM.
The heading overshooted the reference quite a bit and while changing heading, the controller
introduced oscillations in roll and pitch. This heading controller of the APM should be
looked into as future work, but it was not a priority in this project. Hence all this tests are
conducted without automatic heading control.

The tests are performed stepwise, meaning that one feature is tested, then another one
is added until the full system is tested. Videos of all the tests presented in this chapter are
included in the digital appendix.

8.1 Hover Above the Sensor Node

The goal of this test is to hover straight above the sensor node. The hexacopter is flown
manually up above the sensor node. Then the system is switched into DUNE-mode, meaning
that the controller kicks in and roll and pitch reference values are sent from DUNE to the
APM. Throttle and yaw are still controlled by the pilot using the radio.

8.1.1 Result

The North and East error measurements are displayed in Figure 8.1. From the figure one
can see that the UAV is able to hover above the sensor node with a position error within ±
20 cm from the desired position.
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Figure 8.1: North-East position of the hexacopter

The measured and reference roll and pitch angles are shown in Figure 8.2. It can be seen
from the plot that the measured roll and pitch is a bit delayed from the reference and that
the measured overshoots the reference a bit.
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Figure 8.2: Attitude of the hexacopter

8.1.2 Discussion

The hexacopter is able to hover above the sensor node and maintain approximately the de-
sired position above the sensor node. The position is accurate enough for the hexacopter
to keep the node in the camera frame but the errors can be too big to be able to descend
down upon the node. The pilot was in charge of the throttle in this test, and as the test was
indoors it was difficult to maintain a stable height. This might have affected the results in a
negative way.

The reference roll and pitch values seems quite noisy. This is mostly due to the deriva-
tive term of the controller and the low frame rate on the position measurements. The low
level controllers in the APM struggles to follow the reference roll and pitch, but they are able
to follow the main tendencies of the reference values. The measured values show that there
is some overshoot in the low level controllers.
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8.2 Descend Down to the Sensor Node

In this test the altitude controller is added to the system. The hexacopter starts on the
ground next to the node position, then the altitude reference ramps up until the hexacopter
is 1.5 meters above the ground. The position controller tries to maintain a position straight
above the sensor node. When the hexacopter is sufficiently close to the desired altitude and
position, the altitude reference is decreased until the hexacopter has descended all the way
down to the sensor node.

8.2.1 Result

The position error of the hexacopter during the test is shown in Figure 8.3. As one can see
from the figure the hexacopter is able to hover above the sensor node and keep it in frame
while descending all the way down to the node and landing. On the altitude measurement
one can see a spike in height a little after 5 seconds. This spike is an erroneous measurement.
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Figure 8.3: North-East-Down position of the hexacopter

The measured and reference roll and pitch angles are plotted in Figure 8.4. These results
look quite similar to the ones from the hover test, with the difference of the reference roll
and pith angles being less noisy.
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Figure 8.4: Attitude of the hexacopter

8.2.2 Discussion

The hexacopter is actually able to land on the sensor node, which is promising. But one can
also see from the plots that there is an error in NE-position while descending. This error is
not big, but there does not need to be a big error for the camera to loose sight of the sensor
node in the last stages of the pickup phase.

The erroneous altitude measurement can be troublesome, it will lead to wrong position
and speed calculations. The effect this error has on the position calculation can be easily
spotted on the north position measurement in Figure 8.3. There can be several reasons for
the sonar to measure wrong altitude. The sonar can be affected by electromagnetic noise
from the ESCs, batteries or motors, it can be affected by the downwash from the motors
or acoustic noise from the motors. Operating with high roll or pitch angles could lead to
a much greater altitude measured due to the fact that instead of being reflected back to
the sonar, the noise is sent off in another direction. Looking at roll and pitch angles at the
specific moment of the bad measurement, one can see that the roll and pitch angles are kept
small, eliminating the last explanation. The sonar was in this test mounted down below the
hexacopter, which should minimize the risk of it being affected by noise. Other tests showed
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that such bad measurements occurred sporadically, but seldom for more than one sample.
Hence one should consider implementing some logic in the APM to take care of and reduce
the effects of this bad measurements.

One can see from the altitude plot that the desired altitude are unevenly ramped down
towards the sensor node. The reason for this uneven ramp is that the ramping function
uses acceptance parameters to see if the position of the hexacopter is sufficiently close to the
desired position while ramping down. This is done to reduce the risk of loosing sight of the
sensor node while descending.

8.3 Imitation of Pickup Phase

This test is executed in the same way as the previous test, except that instead of landing on
the sensor node, the hexacopter is supposed to hover close to it (0.5 m above) for a sufficient
amount of time for a pickup, and then ascend again. In that way a pickup operation is
imitated. The ramp to reduce the altitude reference is implemented a bit differently in this
test. In the previous test there were continuous checks to see if the hexacopter was in position
straight above the sensor node while ramping down. In this test the ramp starts when the
hexacopter is located sufficiently close to the position straight above the sensor node and
the speed is sufficiently low, and then the ramp continues unaffected of the position of the
hexacopter in accordance to the sensor node.

8.3.1 Result

The position of the hexacopter during this test is shown in Figure 8.5. The reference and
measured roll and pitch angles plot looks quite similar to the previous ones, and is therefore
not displayed.
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Figure 8.5: North-East-Down position of the hexacopter

8.3.2 Discussion

As one can see from the figure the hexacopter is more or less able to maintain a position
above the sensor node. The use of a continuous descend ramp resulted in a smoother and
faster response. But this approach also increases the risk of loosing sight of the sensor node
while descending. One should consider to implement a check that takes the height above the
sensor node into account when checking if the hexacopter is sufficiently close to the position
straight above the sensor node. The hexacopter is able to hover 0.5 m over the sensor node
for the desired amount of time, unfortunately the chosen pickup mechanism needs to be able
to hover a lot closer.

8.4 Test of Drop and Recovery Mechanism

In this test the drop and recovery mechanism is mounted to the hexacopter. The operation
tested is an pickup operation. Unfortunately due to to lack of accuracy in the last parts of the
pickup phase of the hexacopter, this test is conducted while manually lifting the hexacopter
and observing the operation of the drop and recovery mechanism.
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8.4.1 Result

The hexacopter makes sure that the gripper is open and that the gripper platform is raised
when it is switched into dune mode. The gripper platform is lowered when the hexacopter
is starting to “hover” above the sensor node. When the hexacopter is lowered down to the
position where the gripper can grip the mount of the sensor node, the gripper closes and the
gripper platform are raised.

8.4.2 Discussion

The drop and recovery mechanism functioned flawless in combination with the PandaBoard
and DUNE. It did exactly what it was supposed to do, when it was supposed to do it.

8.5 Hover Above the Sensor Node with Gripper Mounted

In this test the drop and recovery mechanism is mounted and the hexacopter is set to hover
above the sensor node while the pilot has control of the throttle. The gripper platform is
lowered while hovering. It is especially interesting to monitor the effect of the added mass
and the effect of the gripper platform being lowered in this test.

8.5.1 Result

The position of the hexacopter while hovering above the sensor node is shown in Figure 8.6.
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Figure 8.6: North-East-Down position of the hexacopter

The reference and measured roll and pitch angles plots are displayed in Figure 8.7. One
can see from these plots that the reference roll and pitch angle values looks quite noisy.
The reference roll and pitch values are strongly dependent on the measured velocity of the
hexacopter. Hence plots of the measured velocity are included in Figure 8.8 for reference.
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Figure 8.7: Attitude of the hexacopter
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Figure 8.8: Velocity of the hexacopter
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8.5.2 Discussion

The system is able to handle the added weight without problems. The low level controllers
could be retuned to compensate for the fact that more force is needed to obtain desired roll
and pitch angles, but it seems like the controllers are able to handle this in an OK fashion
already.

The measurements of positional error looks more noisy in this test than in the previous
tests. This test is executed with the gripper platform lowered and with the camera mounted
on the bottom of this gripper platform. The compensation for this arm in the measurements
are calculated using attitude measurements received from the APM. Hence bad or delayed
attitude measurements will have a great impact of the position measurements. The noise
on the position measurements is probably due to this effect, and because of this noise the
velocity calculations becomes even more noisy. However it still looks like the filter is able to
reduce the effect on the velocity measurements.



Chapter 9

Discussion

The different test scenarios have to some extent already been discussed. But the basis of the
tests have been quite different, because of the variety of features to test and the different
platforms the tests have been conducted on, i.e: simulation in Simulink, SIL-test and testing
in the lab. This chapter aims to discuss the different results and take into account all the
information gathered in the tests on the different platforms. Finally suggestions for future
work are given.

9.1 Drop and Recovery Mechanism

The drop and recovery mechanism has mainly been tested in the lab test, and some additional
tests were conducted in [Voldsund, 2013]. Both the camera application and the electrical and
mechanical design of the drop and recovery mechanism will be evaluated.

9.1.1 Camera Application

The accuracy of the camera algorithm has been tested in [Voldsund, 2013] with good results.
It has also been thoroughly tested in the lab as the measurements from the camera has been
essential for all the tests. The camera algorithm has shown some weaknesses when combined
with the PandaBoard and DUNE and some weaknesses related to the placement of the cam-
era.

Using the PandaBoard and DUNE, a stable frame rate of only 10 Hz could be achieved.
A higher frame rate would be desirable. The PandaBoard has a camera header using the
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MIPI1 CSI-2 standard. CSI-2 is a standard that provides a robust, scalable, low power and
high speed interface for imaging solutions [MIPI, 2013]. e-con Systems has developed a cam-
era (e-CAM51 44x) especially for the PandaBoard and this header. The camera is a 5 MP
auto focus camera able to provide 720p HD video streaming at 60 fps [e-con Systems, 2013].
Tests should be conducted to check whether this camera can deliver the promised frame rate
in communication with a PandaBoard. A higher frame rate would reduce the delay of the
position measurements and reduce the noise in the velocity measurements.

Another challenge with the camera application in combination with the mechanical design is
the fact that the view of the sensor node is easily lost when the UAV is close to pickup. One
measure that could be taken to help this situation is to use a camera with a greater field of
view. Figure 9.1 shows how large area the camera frame will cover from a height of one meter
and the diagonal field of view (DFOV) of the different cameras. The figure show that using
another webcam can help with the node tracking in the pickup phase. The e-cam51 44x has
a greater field of view than the used camera, which makes it even more interesting to check
out. Some webcams with more extreme field of views does also exist. They are designed for
the business marked and can have greater demands to the specification of the computer it is
used with.
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Figure 9.1: Camera frames of different webcams

There also exists some wide angle lenses intended for mobile phone cameras that can be
attached outside the original lens. This can help the situation, and is a cheap and simple

1Mobile Industry Processor Interface
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solution to the problem. One of these was ordered to be tested for the application, but
unfortunately it got lost in the mail.

9.1.2 Mechanical and Electrical Design

Both the mechanical and electrical design is proven to be robust and reliable. But there are
a few drawbacks with the design of the drop and recovery mechanism that makes pickup
operations troublesome.

The gripper need very accurate control of the UAV to be able to pick up a sensor node.
This kind of precision was unfortunately not achieved in this project. The placement of the
camera is an issue that already has been discussed, and some possible solutions have been
mentioned.

Another point that can be troublesome, is the fact that in the pickup phase the UAV is
hovering approximately 40 cm above the sensor node. Testing in the lab revealed that the
downwash from the propellers had a tendency to move the dummy sensor node used in the
experiment. In real operations the sensor node will be floating partly submerged in water.
Hopefully the water resistance will limit the effect from the propeller downwash on the sensor
node. One could also consider to use longer rack gears to increase the hovering height for
pickup.

9.2 Control of the UAV

The simulations showed that the position controller was accurate enough to control the UAV
during the pickup phase depending of the amount of disturbances acting upon the system.
The controller was able to handle constant disturbances in a good way, but got problems
with strong and varying disturbances. The most realistic operation environment is relatively
nice weather conditions with little wind where the wind comes from a nearly constant direc-
tion. The sensor node might be affected by some currents and/or propeller downwash. The
controller seems to be able to handle this operation environment.

The SIL test showed that the control structure was able to execute pickup operations both
with and without drift added to the SIL test. The SIL test showed that the control of the
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APM from DUNE should function well. It showed that the low level controllers of the APM
had an overshoot, but was in general able to follow the desired roll and pitch angles fed to
the controller from DUNE.

When testing the control structure in the lab, it became clear that the control structure
had some challenges. An update rate of 25 Hz between the APM an the PandaBoard was
achieved. The fact that the updates had to be sent over the serial link meant that a small
delay was introduced to the system. This delay was probably most troublesome for the cam-
era algorithm when the camera was mounted to the bottom of the gripper platform as the
position calculations was very dependent upon roll, pitch and yaw angles due to the long
arm of the gripper.

The 25 Hz update frequency should be high enough for desired control inputs sent to the
APM, but due to the low frame rate (10 fps) of the camera, the update frequency of the
controller is in reality only 10 Hz. One solution to this problem is to control the UAV with
only one device instead of two devices communicating with each other. The APM was used in
this project because it is a convenient way to get started fast, as all the sensors and actuators
already are interfaced and supported. There exists a more powerful flight control solution
running the same software as the APM. This solution is the Pixhawk from 3DR which can
handle more functionality (the APM is already running at its limits). Another solution that
could be very interesting to explore further is the BeaglePilot project2. The aim of the Bea-
glePilot project is to make an autopilot for Linux-based computers (more specifically the
BeagleBone Black (BBB)). They are trying to port the ArduPilot project to be run on the
BBB, handling sensor and actuator communication with real time demands. They have also
designed a sensor cape for the BBB, the Pixhawk Fire Cape. The fact that this is supposed
to run on a Linux-based computer means that it would be possible to run DUNE alongside
the ported APM software. Hence it might be possible to use the developed control structure
with the BeglePilot project without to much hassle. This project is work in progress, but
would be very interesting to follow.

2ardupilotbeaglebone.wordpress.com



9.3. ABILITY TO EXECUTE SENSOR NODE DROP AND RECOVERY OPERATIONS95

9.3 Ability to Execute Sensor Node Drop and Recovery
Operations

The drop and recovery mechanism functions flawlessly. The main concern is the accuracy in
the UAV it demands to function efficiently. The accuracy is more than good enough for drop
operations. The main challenge is the pickup operation. In the previous sections the main
problems related to pickup using the developed system were discussed. A few changes that
it would be interesting to explore further to make the system able of both drop and recovery
of sensor nodes were also proposed.

The SIL test of the drop and recovery operation showed that the control structure is able to
execute such missions.

9.4 Future Work

Several measures need to be taken to make the system able to execute drop and recovery
operations using the proposed drop and recovery mechanism. These measures and a few
suggestions to further development and improvements of the system is presented in the
following list.

• A camera with a greater field of view should be tested.

• Measures to increase the frame rate from the camera should be further explored. A
good place to begin these explorations is to check out the e-CAM51 44x camera, which
is especially designed for use with PandaBoard and according to the producer is able
of 60 fps.

• To decrease delay and increase the rate of the controllers and measurements, solutions
where only one device is use to control the UAV should be explored. The BeaglePilot
project could be a great starting point.

• A console for Neptus where missions could be planned, monitored, executed and re-
viewed should be developed. This could for instance include a map where one could
point and click to set drop, pickup and land locations. A camera stream from the
camera searching for the sensor node could also be included.
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• The heading controller of the ArduCopter code is not stable enough for tracking heading
references without creating undesired effects. This should be looked into to make the
UAV able to align itself with the sensor node for pickup.

• A search pattern should be developed to make sure that the sensor node is found during
pickup as the waypoint for pickup will be an approximate location.

• An algorithm to regain pickup operations when sight of the sensor node is lost should
be developed.

• Object tracking less dependent of calibration can be developed, either by using some
other tracking principle or by including an adaption algorithm to the tracking.
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Conclusion

The goal of this project was to develop a system able to conduct drop and recovery of sen-
sor nodes by the use of a multicopter UAV. A mechanism to facilitate drop and recovery
operations had been developed in an earlier project by the author [Voldsund, 2013]. The
mechanism has been further developed and tested in this project.

The mechanism developed has turned out to be a robust and reliable system able of con-
ducting both drop and recovery operations. However it also puts quite high demands to
the required accuracy of the UAV in the pickup phase. This accuracy demand is not en-
tirely met in this project, but the designed control structure has showed in both simulations
and in SIL tests that it can be able to execute drop and recover under the right circumstances.

The desired accuracy in the pickup phase was not achieved during testing in the lab. There
are several reasons for this, and different measures that can be taken to help on the problem,
the most important measures are given below.

One of the main problems was due the placement of the camera. The camera is placed
on the bottom of the gripper platform, which means that in the end of the pickup phase, the
camera might loose sight of the sensor node. To reduce the risk of this, a camera with a greater
field of view can be used. In addition measures that increase the precision of the UAV will
reduce these problems as the ability to hover straight above the sensor node will be increased.

To be able to increase the precision of the UAV, one can use a solution where only one
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device is used to control the UAV, instead of the two devices that is used in this project
(APM and PandaBoard). This will reduce the delay in the system, and better control over
also the low level controllers is gained.
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Acronyms

ADC Analog to Digital Converter
AMOS Centre for Autonomous Marine Operations and Systems
APM 2.6 Ardupilot Mega 2.6
BBB BeagleBone Black
BGR Blue-Green-Red
CEP Circular Error Probability
CPU Central Processing Unit
DFOV Diagonal Field of View
DH Convention Denavit-Hartenberg Convention
ECEF Earth-centered Earth-fixed
GPS Global Positioning System
HSV Hue-Saturation-Value
IC Integrated Circuit
IMC Inter-Module Communication protocol
IMU Inertial Measurement Unit
I/O Input/Output
IR Infrared Radiation
ISA Inertial Sensor Assembly
ISP In System Programming
LBP Local Binary Patterns
LED Light Emitting Diode
LSTS Laboratório de Sistemas e Tecnologias Subaquáticas
MAVLink Micr Air Vehicle Protocol
MEMS Microelectromechanical Systems
MIPI Mobile Industry Processor Interface
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NED North-East-Down
OpenCV Open Source Computer Vision Library
PWM Pulse-Width Modulation
RAM Random Access Memory
SIFT Scale-Invariant Feature Transform
SIL Software-in-the-Loop
SURF Speeded-Up Robust Features
UART Universal Asynchronous Receiver/Transmitter
UAV Unmanned Aerial Vehicle
WGS-84 World Geodetic System 84
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