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The search for improved energy-efficient building solutions seem to be given much at-

tention in the recent years. Both academically and commercially there is large interest

to improve building energy economy by applying advanced control systems.

This thesis explores the possibility of implementing a simplified building model for op-

timal control based on calculation of physical constants and offline estimation. The

data is collected from a case study of an apartment located in Trondheim, Norway. By

applying an Extended Kalman Filter (EKF) with state and parameter estimation the

estimator can compensate for unmeasured disturbances.

The simulation based results show that even with a simple model is implemented in the

EKF accurate results are achieved even when large disturbances and missing data occur

The computational complexity of the model is kept as low as possible, making it suitable

for real time implementation. The proposed model with EKF has twice the number of

states as there are rooms in the building, this means that the computational complexity

scales fairly well when applied to larger buildings. The performance and complexity of

the approach should be suitable for use in an model-based optimal building temperature

control system.
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Chapter 1

Introduction

1.1 Background

User interface

Building

Building temperature control system

Sensor handling

Model-based 
Controller

Actuator 
handling

Estimator

Model 
identification

Model: A,B,C,D,K

Output: y

Meterological 
data

Setpoints: xr

Scope of this thesis
Control input: u

State estimate

Figure 1.1: Diagram of complete control system

The thesis is part of a smart grid project at SINTEF who aims at implementing a

complete model based system for building temperature control. The system should be

easy to use and preferably not require elaborate redesigning for each individual building.

1



Chapter 1. Introduction 2

This thesis focuses on the modeling and estimation part of the control system, leaving

the controller to be implemented in later works.

1.2 Motivation

In developed countries, Heating Ventilation and Air-Conditioning systems (HVAC) for

buildings constitutes 10-20% of the total energy consumption. This number also seem

to be on the rise according to Pérez-Lombard et al. [3]. In general the field of energy

optimization seems to be on most contractors minds, and is also a popular subject in

current building journals, therefore new methods for saving energy in buildings are wel-

come both in industry and academia.

One way of improving the energy consumption of buildings is to implement more efficient

control strategies. Such strategies can be implemented without expensive rebuilding to

previously constructed buildings and is suggested to be a key element for realizing the

potential of new energy saving buildings [4]. A promising method of optimal control

that have been used with success as building temperature control is the Model Predic-

tive Controller or MPC.

1.3 Design Constrains

The model for implementing an optimal control strategy should be designed in such a

way that it is simple enough to run in real time on a System on a Chip or similar. The

complexity of the model will affect the runtime in this limited environment, so efforts

should be made to simplify the model without sacrificing precision. In addition the

model structure should be as general as possible, to prevent having to make adaptations

when applying to a different building. Since the model is to be part of a larger system

portability and modularity is important, to have a easy implementation and inclusion

in a larger program.

Because of the cold climate in Scandinavia the energy consumption focus is mostly on

heating, while other, more temperate parts of the world might emphasize air-conditioning.
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This difference must be taken into account when designing energy saving schemes. A

design suitable for cold climate is not necessarily optimal for a warmer one.

1.4 Contribution

The main contribution of this thesis is a framework for model design and implementation

for a building temperature control system. It also provides a case study of a real building

to verify that the used methods can give an accurate description of the building in

question. It points out the main challenges when applying the model to a larger optimal

control based system.

The scripts and algorithms are constructed such that it should be easy to apply to a

different building or to rewrite in any other programming language.

1.5 Thesis organization

The thesis looks at temperature control in buildings from a control engineering point of

view, the chapters are organized as follows: First relevant theory for understanding the

methods and physics being applied are presented in Chapter 2, then a short review of

current modeling methods in Chapter 3, before the general building model is introduced

mathematically in Chapter 4. The thesis continues by describing the proposed imple-

mentation in Chapter 5, before the case study is presented in Chapter 6. Chapter 7

displays and discusses the results from the case study. Finally Chapter 8 concludes the

thesis and provides proposals for further work.

A comprehensive documentation of objects and functions implemented is included in

Appendix A. All plots from the case study simulations are included in Appendix B.





Chapter 2

Theory

This chapter considers the fundamental physical and mathematical premises for model

design and identification of heat flow in buildings. It is a short overview of necessary

methods and standards needed to motivate choices made in later chapters of the thesis.

2.1 Fundamentals of heat transfer

Heat transfer is an important subject in many engineering disciplines, this section re-

views the basics of heat transfer theory to motivate chosen model design. The theory is

compiled from [5] and can be omitted for readers familiar with heat transfer and ther-

modynamics.

It is known from fundamental physics theory that there are three ways heat can be trans-

fered: conduction through a substance from more energetic particles to less, convection

from a surface to a moving fluid, thermal radiation from a heated surface. Heat transfer

can be quantified in terms of rate equations given that the temperature distribution T (·)

is known. For conduction the rate equation is known as Fourier’s law, and can be stated

for a plane as:

q′′cond = −k∆T (2.1)

5
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Where q′′x is the heat flux [W/m2], k is the transport property, known as the thermal

conductivity [W/m ·K], the sign implies that the heat always flow from the hotter part

of the substance to a colder one.

For a linear heat distribution the equation can be simplified:

q′′cond = −λ
L

(T2 − T1) (2.2)

Where T1 and T2 is the temperatures on each surface of the plane, L is the length of

the plane in the heat gradient direction, λ is the design thermal conductivity defined as:

λ = kL.

For convection the governing rate equation is known as Newton’s law of cooling, and

can be stated as:

q′′conv = hc(Ts − T∞) (2.3)

Where Ts and T∞ is the temperature of the surface and the fluid [K], respectively, h is

the convection heat transfer coefficient.

Incoming radiation to a surface can be absorbed or reflected, when it is absorbed the

thermal energy of the surface increases, while when reflected the radiation is returned

to the environment. Surfaces also emit thermal radiation depending on the emissivity,

a completely absorbent surface is called a blackbody and has an emissivity of 0. The

governing rate equation is Stephan-Boltzmann law, here defined for a gray surface:

q′′rad = εσ(T 4
s − T 4

sur) (2.4)

Where 0 ≤ ε ≤ 1 is the surface emissivity, σ is the Stephan-Boltzmann constant, Ts and

Tsur is the temperature at the radiating surface and the surrounding surface, respectively.

For convenience the equation sometimes is expressed as:

qrad = hrA(Ts − Tsur) (2.5)
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Where hr is the radiation heat transfer coefficient defined as:

hr ≡ εσ(Ts + Tsur)(T
2
s + T 2

sur) (2.6)

This is a form of linearizion, notice that the dependence on temperature differences are

lower in hr than in the original equation, and the form corresponds with the formulas

of conduction and convection. For the remainder the radiation heat transfer coefficient

can be seen as a constant.

From the three equations the thermal resistance of each mode can be formulated

Transfer mode Rate of heat transfer Resistance

Conduction Q̇ = kA
L (T1 − T2) L

kA

Convection Q̇ = hcA(Ts − T∞) 1
hcA

Radiation Q̇ = hrA(Ts − Tsur) 1
hrA

Table 2.1: Table of thermal resistances in the modes of transfer

hr defined as in Equation 2.6

To achieve a balance equation the first law of thermodynamics is applied to a control

volume:

∆Etotst = Q−W (2.7)

Where Etotst is the total change in energy stored in the system, Q is the net heat transfered

to the system, and W is the work the system performs.

For a system that does not perform any work, the only change in stored energy comes

through heat transfer. Further more the only stored energy of interest is internal energy

from temperature. Differentiating Equation 2.7 with respect to time gives the rate

equation:

Ėst = −Q̇ = −Q̇ht + Q̇e (2.8)

Where Q̇ht is the energy loss rate due to heat transfer and Q̇e is the energy gain rate

from electrical heating.

From definition the heat capacitance is given by: C = dEst
dT = CvV so the net change of
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internal energy can be written as:

dEst
dt

=
dEst
dT

dT

dt
= C

dT

dt
(2.9)

Considering a two dimensional control volume that encapsulates the inside of the room,

with a small air film separating the control surfaces from the walls. It is assumed no

internal heat generation within the walls and they all are considered homogeneous. Wall

corners are ignored, so equal area is assumed on both sides of walls, and only the effect

of a single wall is considered and the heat flow through said wall is assumed to be one

dimensional.

CvV
dT

dt
= As

[
q′′cond(Ts1 , Ts2)− (q′′conv(Ts2 , T∞) + q′′rad(Ts2 , Tsur))

]
+ Q̇e (2.10)

T, Cv, V

Pn

Ts1

C.V.

Ts2

Figure 2.1: Drawing of proposed control volume for thermal flow

The general differential equation can be stated as:

Notice that the conduction is dependent on the temperature difference on each side of

the wall Ts1 and Ts2 respectively, while the convection is dependent on the temperature
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difference on the inside of the wall Ts2 and air-temperature T∞. Radiation is dependent

on the inside wall temperature and the temperature on the surroundings being irradi-

ated by the wall Tsur i.e. the various surfaces of the room such as walls and ceiling. This

causes the equation to be non-homogeneous, one solution is to separate it into several

single order differential equations, where temperature in room and temperature on walls

are separate states. Whit this type of differential equation the number of states needed

will depend on both the number of rooms and the number of walls between the rooms,

causing the complexity to increase greatly when adding more rooms. A simplification is

needed to make the system scalable and more computationally efficient.

Rate of energy is also known as power, so the rate of energy supplied by heating can be

given by the heaters nominal power rating Pn and an efficiency coefficient µ seeing how

electrical heaters typically have a high efficiency the heating power can be approximated

to the nominal power:

Q̇e = µPn ≈ Pn (2.11)

Construction engineers often use a calculated total thermal transmittance U when de-

signing [6]. This is a standardized way of calculating thermal flow through composite

building components. The calculation principle is stated next:

• Obtain thermal resistance for each homogeneous part of the component

• Combine these individual resistances to obtain the total thermal resistance of the

component, including (where appropriate) the effect of surface resistances.

Numerical values for common building materials are given in [7].

By using this principle a homogeneous single order differential equation can be obtained

for each room:
dT

dt
=

C∑
i=1

UAi
CvV

(Ti − T ) +
Pn
CvV

Kh (2.12)

where T is the temperature in the room, assumed to be equal over the whole volume, i

is the index of a space in or around the building, C is the subset of space indexes that

are connected to current room.
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With this representation the heater is assumed to heat the whole volume of air equally at

all times, realistically this is not possible, so a coefficient Kh is introduced to compensate

for the dispersion effect of heater power.

The thermal transmittance U will vary with different building components, so it needs

to be calculated for all the different type of components in the building.

2.2 State space systems

Most physical systems can be described by continuous differential equations, as shown

heat flow is no exception. A practical and well known representation of multiple differ-

ential equations is the state space representation.

The general linear continuous state space system can be stated as:

ẋ(t) = Ax(t) + Bu(t) + Kw(t)

y(t) = Cx(t) + v(t)
(2.13)

Where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input vector, y(t) ∈ Rp is the

output vector. w(t) is a vector of plant noise, v(t) is a vector of measurement noise,

both usually considered to be zero mean Gaussian white noise.

Continuous state space systems are useful for describing physics and mathematical ma-

nipulation, but when using a digital computer to control a given system it must be

sampled and discretized The continuous state space system in Equation 2.13 can be

discretized by using Zero-Order-Hold as in Chen [8]:

xk+1 = Adxk + Bduk + Kdwk

yk = Cxk + vk

(2.14)

Where the discretized system matrices are given by:

Ad = eATs = I + ATs +
A2T 2

s

2
+ · · · ≈ I + ATs

Bd =

∫ Ts

0
eAτdτB ≈

∫ Ts

0
IdτB = TsB

(2.15)
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Ts is the sampling period, C and are unchanged from the continuous system. In the re-

maining part this thesis all state space systems are considered discrete and the subscript

d is dropped from the system matrices.

There are a number of important properties associated with discrete state space systems

that often restricts the use of the system and associated control methods. First of all

there is stability. Stability is defined in Chen [8] as a dynamic system that stays within a

certain region when it is initiated in said region. Linear discrete systems are considered

stable if all eigenvalues of the A matrix is within the unit circle or

|Λi| < 1, i = {1, . . . , n} (2.16)

Again n is the number of states, or order of system, Λ is a vector containing eigenvalues

of matrix A.

The observability is a property that states if the internal states of the system can be

reached if the outputs are known. Mathematically observability is explored by examining

the observability matrix O.

O =



C

CA

CA2

...

CAn−1


(2.17)

If the rank of the observability matrix is larger or equal to the order of the system it is

observable. rank(O) ≥ n

The controllability is a property that states if all internal states can be affected by the

inputs of the system. The controllability is explored by examining the controllability

matrix C.

C = [B AB A2B . . . An−1B] (2.18)

If the rank of the controllability matrix is larger or equal to the order of the system it

is controllable rank(C) ≥ n
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2.3 Model Predictive Control (MPC)

There are a number of optimal control algorithms that may be applied to a thermal

system, MPC is one of the most common and well known methods. It has been applied

to building temperature control in Fux et al. [9], Bălan et al. [10], Ma et al. [11], Zacekova

et al. [12], Široký et al. [13] the latter reporting energy savings from 15%-28% depending

on house properties.

The MPC is a form of controller in which the current control move is obtained by solv-

ing a finite horizon open loop optimal control problem for each sampling instance. The

optimization yields an optimal control sequence and the first control move in sequence is

applied to the plant Mayne et al. [14]. MPC is popular because it handles constrains and

is an optimal control approach. MPC can be extended in many ways to solve different

type of control problems, but has a large computational load compared to a simpler

PID control. In a practical system the states need to be estimated from the output to

cancel disturbances and measurement noise, this set up is called output feedback MPC

as opposed to state feedback [15].

MPC with output feedback can be summarized in the following algorithm:

for t = 0, 1, 2, . . . do

Compute the estimate of the current state x̂t based on the measured data until

time t.

Solve a dynamic optimization problem on the prediction horizon from t to t+N

with x̂t as the initial condition.

Apply the first control move ut from the solution above

end

Algorithm 1: Output feedback MPC algorithm Foss and Heirung [15]
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A typical discrete time dynamic optimization problem can be stated as:

min
z∈Rn

f(z) =

N−1∑
t=0

1

2
x̂Tt+1Qtx̂t+1 + dx̂t+1

x̂t +
1

2
uTt Rtut + dTutut (2.19)

Subject to: (2.20)

x̂t+1 = f(x̂t,ut, θ̂t) (2.21)

xlow ≤ x̂t ≤ xhigh (2.22)

ulow ≤ ut ≤ uhigh (2.23)

−∆uhigh ≤ ∆ut ≤ ∆uhigh (2.24)

∆ut = ut − ut−1 (2.25)

zT = (xT1 , . . . , x
T
N , u0, . . . u

T
N−1) (2.26)

n = N · (nx + nu) (2.27)

Where x ∈ Rn are the states, u ∈ Rm are the inputs, Qt is the positive semidefinite

weighing matrix for states at time t, Rt is the positive semidefinite weighing matrix

for inputs at time t, f(x̂t,ut, θ̂t) is the dynamic model to be designed, θ̂t is the model

parameter estimate, the initial value x0 is assumed known.

By solving this dynamic optimization problem, the optimal control sequence can be

obtained. One key property of optimization is whether the problem is convex or non-

convex, non-convex problems are generally harder to solve. In order to generate a

convex optimization problem the function f(·) and the inequality constrains must be

linear, further more the cost function must be convex [15]. If this is not the case the

estimator f(·) can be linearized along the prediction horizon.

2.4 Kalman filter

Kalman filtering was first introduced in Kalman [16] and is well known and popular

solution to state estimation problems. The filter operates by propagating the mean and

covariance of the state though time and is the optimal linear filter [17]. First an a priori

estimate x̂k+1|k of the state is made, then when a new measurement is available, a a

posteriori filtering is done revealing the smoothed estimate x̂k|k. This is done for every
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time-step in a discrete kalman filter, but the estimation part can also be performed more

often than the filtering, this technique is called continuous discrete kalman filtering. The

theory in this section is mostly based on [17] and [18].

To derive the general kalman filter the discrete linear system from Equation 2.13 is

considered:

ẋ(t) = Ax(t) + Bu(t) + Kw(t)

y(t) = Cx(t) + v(t)

Where xk ∈ Rn,uk ∈ Rm, and yk ∈ Rp, wk and vk are uncorrelated zero mean white

noise processes and have known covariance matrices Qk and Rk:

wk = N (0,Qk)

vk = N (0,Rk)
(2.28)

Further more they are assumed uncorrelated:

E

wkwTk wkv
T
k

vkw
T
k vkv

T
k

 =

Qk 0

0 Rk

 (2.29)

the initial values are given by:

x0 = E[x0]

P0 = E[(x0 − x̂0)(x0 − x̂0)]
(2.30)

Where P0 is the initial value of the estimation error covariance Pk.

The a priori estimate can be stated as:

x̂k+1|k = Akx̂k|k + Bkuk

Pk+1|k = AkPk|kA
T
k + KkQkK

T
k

(2.31)

When the new measurement is available the estimate is filtered:

KF = Pk|k−1C
T
k (CkPk|k−1C

T
k + Rk)

−1

x̂k|k = x̂k|k−1 + KF (yk −Ckx̂k|k−1)

Pk|k = [I−KFCk]Pk|k−1

(2.32)
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KF is the kalman gain. When correctly tuned the kalman filter should give an accurate

estimation of the state xk given the output yk, this type of configuration is normally

used to filter out noise.

The estimation step can be performed more often that the update, which leads to the

well known Continuous-Discrete Kalman Filter (CDKF) [19]. This type of filter can

provide a state estimation between samples, and in that way it may be more accurate

than only relying on sampled values. It can also be used to increase the possible sampling

interval without sacrificing accuracy, lastly the CDKF can compensate for missing or

incorrect data, if the acquired sample is missing the filter can rely on its estimate and

discard measured value.

2.4.1 Parameter estimation

Kalman filters can be used for both state and parameter estimation, when this is the

case, the resulting problem is called a dual estimation problem.

The state space model of the system with unknown parameters can be stated as:

xk+1 = A(θ)xk + B(θ)uk + K(θ)wk

yk = H(θ)xk + vk

(2.33)

Where θ is a vector of unknown parameters to be estimated.

When using the Extended Kalman Filter for solving the dual problem, the state vector

is augmented to include an estimate of the unknown parameters:

ξk+1 =

xk+1

θk+1

 =

A(θk)xk + B(θk)uk

θk

+

Γ(θk) 0

0 I

wk

nk


yk = H(θk)xk + vk

(2.34)

Where nk is white Gaussian noise of appropriate strength as to allow exploration of the

parameter space [20].

Using KF to solve a dual problem will result in a non-linear augmented model, this can

be seen from Equation 2.34: The next instance of states are dependent on a product of

the states in the linear state space system and the estimated parameter, which is also a
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state in the augmented system. Several extensions exist for handling non-linearities in

Kalman filtering.

2.4.2 The Extended Kalman Filter (EKF)

The simplest form of non-linearities handling is simply linearizing the system around a

certain point. This technique is used in the Extended Kalman Filter (EKF) which is

known to be sub-optimal, but well proven method in practice.

A general non-linear system can be formulated as:

xk+1 = f(xk,uk,wk) (2.35)

yk = h(xk,vk) (2.36)

Where xk ∈ Rn,uk ∈ Rm, and xk ∈ Rp, wk and vk are defined as in Equation 2.28

The linearized system matrices are found by calculating the Jacobians:

Φk =
∂f(x,u,w)

∂x

∣∣∣∣
x=x̂k|k

Γk =
∂f(x,u,w)

∂w

∣∣∣∣
w=w̄

(2.37)

Where Φk is the linearized state matrix, Γk is the linearized plant noise matrix, w̄ is

the mean value of the plant noise.

The prediction step is performed like in Equation 2.31 only now with the nonlinear

model function f(·).

x̂k+1|k = f(x̂k|k,uk, w̄) (2.38)

Pk+1|k = ΦkPk|kΦ
T
k + ΛkQkΛ

T
k (2.39)

Notice that the state estimate is made on the non-linear system, while the covariance

matrix estimate is made on the linearized one. The rest of the Jacobians are found based
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on the predicted state estimate x̂k+1|k:

Σk =
∂h(x,v)

∂x

∣∣∣∣
x=x̂k+1|k

Λk =
∂h(x,v)

∂v

∣∣∣∣
v=v̄

(2.40)

Where Σk is the linearized output matrix, Λk is the linearized measurement noise matrix,

v̄ is the mean value of the measurement noise.

If no non-linearities is present in a system matrix the partial derivative equals the system

matrix, for instance: if no non-linearities is present in h(x,v) then

Σk =
∂h(x,v)

∂x

∣∣∣∣
x=x̂k+1|k

= Ck

Λk =
∂h(x,v)

∂v

∣∣∣∣
v=v̄

= I

(2.41)

Finally the Kalman filtering step is applied as in Equation 2.32:

KF = Pk|k−1C
T
k (CkPk|k−1C

T
k + Rk)

−1

x̂k|k = x̂k|k−1 + KF (yk −Ckx̂k|k−1)

Pk|k = [I−KFCk]Pk|k−1

(2.42)

It is important to note that while Kalman filtering is optimal in the case of a linear

system, the EKF is sub-optimal in the case of a non-linear system. This can still give

adequate performance in the case when the nonlinearities are small, but when the sys-

tem is highly nonlinear the performance is degraded.

The Jacobians needs to be calculated for every time step, this increases the computa-

tional load compared to normal Kalman filtering. Other methods for nonlinear system

exist such as the Unscented Kalman Filter (UKF) and particle filtering. These subjects

are eventually not considered in this thesis. While the UKF has a computational burden

similar to the EKF [18], the particle filtering is a more complex algorithm [20, 21]. These

methods may be investigated if the EKF does not perform in a satisfactory manner.





Chapter 3

State of the art of house thermal

flow modeling

Modeling of thermal flows in houses has been subject to substantial research over the

last two decades. Computer aided simulation tools for predicting the thermal behavior

are many and well used by civil engineers and architects, these tools are called building

Energy Performance Simulation Tools or BEPST Privara et al. [22], a comparison of

available tools is presented in Crawley et al. [23].

In control engineering however the BEPST created models are too complex and therefore

computationally expensive to implement as a part of a practical control system. Another

problem is that these models are usually not explicit and therefore unsuitable for model

based control. Anyway, BEPST has been used as a support for the explicit model used

in control, in [22] it is suggested to use a simulation tool to provide well conditioned

data for model identification.

While the emergence of model based control has provided the need for simplified models,

the increase of computing power over the last twenty years have made more advanced

models feasible. Still the complexity of the model is key to provide a precise enough

model, while keeping runtime within the constrains of a real time implementation. The

following is a short review of the different modeling methods mentioned in literature,

for a comparison of these methods the reader is referred to Privara et al. [24].

19
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3.1 Sub-space methods (4SID)

Sub-space methods are black-box estimation techniques that condition the input to

output data by projecting or performing a decomposition of the system matrices and

then estimate using least squares [25]. One method that is particularly useful in the

modeling of buildings and has been implemented in Privara et al. [26] is the Subspace

State Space System Identification or 4SID.

The 4SID algorithm can provide an estimation of the system order as well as matrices

of the state space description Verhaegen and Dewilde [27]. Another apparent advantage

is the state space representation, which makes it suitable for estimator design. The

greatest disadvantage with 4SID and other black-box methods is that while the state

space model may represent the input-output characteristics of the system, the explicit

model structure may be different from the true system, so the connection to the physical

system may be lost.

3.2 Prediction Error Methods (PEM)

Prediction error methods are statistically based identification techniques. Their objec-

tive is to minimize the error between the one step ahead prediction and the current value,

this is done by updating the parameters of a predefined model structure [28]. Predic-

tion error methods usually applies Auto Regressive Moving Average with eXogenous

inputs (ARMAX) model structure. This structure and identification method has been

successfully used as a room temperature model in Wu and Sun [29]. PEM models best

accommodates SISO systems, this is impractical since buildings normally are MIMO

in nature. Using a SISO-ARMAX model to represent a HVAC-system has been done

by Yiu and Wang [30], here the authors concluded that multiple SISO-ARMAX models

connected to represent each component had a lower performance than a MIMO-ARMAX

model. The general PEM optimization problem can be represented as:

θ̂ = arg min
θ

N∑
k=1

`(εk(θ)) (3.1)

Where `(•) is an appropriate scalar function, θ is the vector of unknown parameters, εk

is the prediction error at time k i.e. εk = yk − ŷk, ŷk is the estimate of y at time k.
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A special case of PEM is the MPC relevant identification or MRI. Similar to PEM, MRI

minimizes the error between current and predicted future values. The difference is that

MRI uses a multi step prediction instead of one-step ahead. It is sensible when applying

MPC that the number of time steps estimated is equal to the MPC prediction horizon,

in this way the runtime of both algorithms may be reduced. The optimization problem

is reformulated as:

θ∗ = arg min
θ̂

P∑
i=1

N−i∑
k=0

(yk+i − Zk+1,θ̂θ̂)
2 (3.2)

Where Z(q) = [uq−nd
, . . . , uq−nb

, yq1 , . . . , yq−na ] with q = k + i is the regressor, θ̂ =

[b̂nd
, . . . , b̂nb,â1,..., ˆana

] is the vector of estimated parameters, P is the number of steps

used, N is the size of the dataset used for estimation, na and nb respectively denotes the

number of delayed inputs and outputs, nd is the delay between the input and output,

The advantage of using a multi step prediction error is discussed in Zacekova et al.

[12]. Using a case study the authors conclude that the MRI method gives better esti-

mation result compared to a one-step ahead PEM faced with highly correlated data, an

additional advantage is achieved when estimating using Partial Least Squares (PLS).

3.3 Deterministic Semi-Physical Modeling (DSPM)

By modeling the heat flow and capacity of an object as passive electrical components like

resistors and capacitors a thermoelectric analogy can be derived. Furthermore several

effects can be combined into the same passive components using the lumped capacitance

method [5, Chapter 5]. Many papers suggest using this type of gray-box modeling

technique and several leading research groups on optimal control such as UC Berkley

[11], KU Leven [31], and ETH Zürich [32] are using some form of thermoelectric analogy.

A discrete state space representation based on RC-networks can be formulated in many

ways as described in Jiménez and Madsen [33].

The levels of complexity in the analogue models varies, in Fux et al. [9] a simple 1R1C

model is used but the parameters and states are estimated on-line. This dual estimation

problem is solved using the EKF. Fraisse et al. [34] uses a 3R4C model for each wall,
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and calculate thermal resistances and capacitances from physical considerations. Fur-

thermore several wall models are aggregated for simplification. The authors conclude

that the resulting model can still be valid depending on the similarity of the thermal

properties of the walls aggregated.

3.4 Probalistic Semi-Physical Modeling (PSPM)

This approach is based on a physical description of the system and represented by a set

of stochastic differential equations. The parameters of the model are estimated through

e.g. a Maximum Likelihood (ML) algorithm using the prior knowledge of the system

parameters. The estimation can be represented mathematically as:

θ∗ML = arg max
θ
{ln(L(θ, Y N

1 |y0))} (3.3)

L(θ, Y N
1 |y0) =

N∏
k=1

exp(−εTkR
−1
k|k−1εk/2)

(
√

2π)l
√
det(Rk|k−1)

p(y0|θ) (3.4)

Where L is the likelihood function, Y N
1 is a vector of N measurements y0 is the initial

conditions, l is the dimension of the problem defined by the number of outputs, θ is

the vector of unknown parameters, p(y0|θ) is the probability of initial conditions on

parameters, εk are residuals and Rk|k−1 is the residual covariance matrix,

This optimization problem can be solved with the EM-algorithm [35, 36]. Kristensen

et al. [37] uses EKF to solve the ML problem recursively, the algorithm is implemented

in a software tool named CTSM. PSPM is applied to a case study of a building in

Bacher and Madsen [38] with promising results. The method is computationally heavy

for complex models, so it is suggested application is to small scale models [24].
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Model design

This chapter uses heat transfer theory to derive a simple state space system for the

thermal flow for a an apartment located in Trondheim, Norway. However the design

presented is valid for a general building. The single order homogeneous differential

equation 2.12 is expanded to include terms for all the walls connected to a given room.

This can be seen as a network of RC-circuits with one resistor per wall and one capac-

itance per room. The electrical heating is seen as a power supply, providing constant

power equal to the nominal power of electrical heating elements. The heat flow though

the ceiling is ignored under the assumption that the temperature in the space above the

room is equal to the room in an apartment building, if this is not likely for the building

to be modeled it should either be included in the model or handled as a disturbance.

CaQ̇ = Ca
dTa
dt

=
1

Rab
(Tb − Ta) + PaKhh (4.1)

h is a variable defining if the heater is on or off:

h(t) =

1 heater is on at time t

0 heater is off at time t
(4.2)

Some parameters can be calculated from looking at the geometry of the building:

CaṪa = Aab(Tb − Ta)U + PaKhh (4.3)

23
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Where U is a general conductance coefficient defined as U = 1
RT

that only depend on

the wall materials, the capacitance can be calculated by assuming that it is dominated

by the properties of air inside the room, therefore the heat capacity of other materials

inside the room is ignored:

Ca ≈ VaCv (4.4)

Where Cv is the volumetric heat capacity of the air inside the room. The value of this

can be found in a physics table for general properties for instance [5, Appendi A]. For air

at 300K(27◦C), atmospheric pressure and typical room humidity the volumetric heat

capacity is found to be:

Cv = 1169

[
J

m3K

]
(4.5)

This property is dependent on density, so it will vary with temperature, this will cause

the state space system to be time variant. At this stage the heat capacity is assumed

constant at stated value.

Ṫa =
Aab
VaCv

(Tb − Ta)U +
Pa
VaCv

Khh (4.6)

The general differential equation can be stated as:

Ṫi =
1

ViCv

j∈Ci∑
Aij(Tj − Ti)U + PiKhhi (4.7)

Where i ∈ N(1 : n), n is the number of states, Ci is the subset of indexes for temperatures

connected to current temperature. If the walls are made from different materials or have

different thickness U will vary, typically the value for U will be lower for outer walls,

since they are usually better insulated.

It is important to observe that the outside temperature is not a state in the model, since

the buildings inside temperature has little to no effect on the outside temperature. The

outside temperature is therefore assumed to be an input. If there are other adjacent,

measured temperatures that can not be considered a state, the should be modeled as an

input.

The outside temperature can not be known a-priori, so the model will in practice have

to rely on accurate forecast data for outside temperature input. The Norwegian Meteo-

rological Institute offers a API for collecting forecast data for most places in Norway[39].
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The basement temperature can not be acquired through forecast data, but as can be

seen from data later in the thesis, the basement temperature varies a great deal less than

other measured temperatures. It is therefore assumed to be constant over the simulation

time window.

The state space model can be formulated as:

ẋ = Ax + Bu + Kv

y = Cx + w
(4.8)

System matrices are defined as:

A =


K1,1 K1,2 · · · K1,n

K2,1 K2,2 · · · K2,n

...
...

. . .
...

Kn,1 Kn,2 · · · Kn,n

 (4.9)

Where

Kij =


UI

Aij

ViCv
j ∈ Ci ∪ i 6= j

−UI 1
ViCv

∑j∈Ci Aij − UO 1
ViCv

∑j∈EAiE − UB 1
ViCv

∑j∈BAiB if i = j

0 j /∈ Ci
(4.10)

The function for the diagonal terms Equation 4.11 are explained next:

Aj,j − UI
1

ViCv

j∈Ci∑
Aij − UE

1

ViCv

j∈E∑
AiE − UB

1

ViCv

j∈B∑
AiB (4.11)

From Equation 4.7 it can be seen that all terms will include the state itself, so the

connection with external temperature and others modeled as inputs will be included as

a term in the diagonal of the A-matrix. Here the space E is the indexes of the external

temperatures connected to state j, O is the indexes of the other temperatures connected

to state j, UE is the conductance though external walls and UO is the conductance
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through other building mass i.e. floor to basement.

A =


A1,1 UI

A12
V1Cv

· · · UI
A1n
V1Cv

UI
A21
V2Cv

A2,2 · · · UI
A2n
V2Cv

...
...

. . .
...

UI
An1
VnCv

UI
An2
VnCv

· · · An,n

 (4.12)

It is assumed that there is an electrical oven in each room and the measured temperatures

in adjacent spaces, such as outside and basement, are modeled as inputs. The input

matrix becomes:

B =


Kh1 0 · · · 0 Ko1 Kb1

0 Kh2 · · · 0 Ko2 Kb2

...
...

. . .
...

...
...

0 · · · · · · Khn Kon Kbn

 (4.13)

As with the A-matrix certain easy measurable parameters can be taken from the adjacent

temperature coefficients:

B =



P1
V1Cv

Kh 0 · · · 0 UE
A1o
V1Cv

UB
A1b
V1Cv

0 P2
V2Cv

Kh · · · 0 UE
A2o
V2Cv

UB
A2b
V2Cv

...
...

. . .
...

...
...

0 · · · · · · Pn
VnCv

Kh UE
Ano
VnCv

UB
Anb
VnCv

 (4.14)

Here UE is transmittance through external walls and UB is transmittance through the

floor to the basement.

The plant noise vector v in Equation 4.8 is assumed to contain zero mean Gaussian

white noise with known covariance:

v =
[
v1 v2 · · · vn

]T
(4.15)

Where:

v = v(t) = N (0, σ2vv) (4.16)
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The plant noise vector is defined as:

K =


e1 0 · · · 0

0 e2 · · · 0
...

...
. . .

...

0 0 · · · en

 (4.17)

The system matrix for the output function is defined as:

C =


c1 0 · · · 0

0 c2 · · · 0
...

...
. . .

...

0 0 · · · cn

 (4.18)

Where:

ci =

 ci = 1 temperature i is measured

ci = 0 temperature i is not measured
(4.19)

The measurement noise vector w from Equation 4.8 is also assumed to contain zero

mean Gaussian white noise with known covariance:

w =
[
w1 w2 · · · wn

]T
(4.20)

Where

wi(t) = N (0, σ2ww) (4.21)

In a normal inhabited building there may be a number of disturbances that are not

stochastic in nature and, there may be unmodeled heat sources and sinks like the inhab-

itants opening a window, or lighting fireplaces. These disturbances are also time variant

in nature, so they need to be handled by some form of adaptive scheme if they are to

be compensated. The EKF with state- and parameter estimation could provide such

functionality and will be introduced shortly.
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4.1 Discretization

By using Zero-Order-Hold as defined in 2.15 the discretized system is found:

xk+1 = Axk + Buk + Kek

yk = Cxk + Duk + ek

(4.22)

4.2 Augmented model for EKF

When introducing an EKF with parameter estimation the state space model is adjusted

in the following way:

xk+1 = Ω(θk)xk + Buk + Kwk

yk = Cxk + vk

(4.23)

Where the augmented state matrix is defined as:

Ω(θk) = A + diag(θk) (4.24)

The disturbance parameter vector is defined as:

θk = [θ1 θ2 · · · θn] (4.25)

The system is extended to include the parameters to be estimated:

ξk+1 =

xk+1

θk+1

 =

Ω(θk)xk + Buk

θk

+

K 0

0 I

wk

nk


yk = Cxk + vk

(4.26)



Chapter 5

Implementation

This chapter covers the computer program used to calculate and test the estimator and

model. In this early stage of implementation process, the program is just designed for

testing the case study. However the classes and structure are designed to be general and

portable. In a real time system the data will be a stream of sensor and meteorological

data, for the case study previously collected sensor data is stored in files, and simulated

offline.

User interface

Building

Building temperature control system

Sensor handling

Model-based 
Controller

Actuator 
handling

Estimator

Model 
identification

Model: A,B,C,D,K

Output: y

Meterological 
data

Setpoints: xr

Scope of this thesis
Control input: u

State estimate

Figure 5.1: Diagram of complete control system
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Operating system Processor Clock frequency RAM

Windows 7 Enterprise 64-bit Intel Core i5-2500 3.30GHz 8.0 Gb

Table 5.1: Detailed specifications of test computer

Figure 5.1 shows the over all structure of the control system proposed, the colors of

blocks represents what the code could be running on. Green represents a real time

system, most likely a SoC or micro-controller. Yellow is a Matlab-script that can run

offline. Blue is external inputs from sensors and data, and grey is the user interface.

In this thesis Matlab is used for the estimator, model and offline identification scheme.

The computer specifications are summarized in Table 5.1.
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Figure 5.2: Class diagram

There are three main objects in the implementation, the rest of the code is support

functions that is specific to the case study:

• Model

• Kalman Filter

• Temperature dataset

The Model object contains all information about the identified model, and can be con-

structed from a general state space system and a symbolic function defining the rela-

tionship between the augmented system matrices and the parameters to be estimated.

This function is the basis for both updating the model with new parameter estimates,

and calculating a matrix of Matlab-functions that define the Jacobian of the system.

The EKF-object contains functions to estimate and update the temperature estimate

which are both mathematical functions based on the KF-theory. It also contain the

covariance matrices (R,P,Q) and the Kalman Filter gain matrix Kf . The EKF-object

has a function for calculating the numerical value of the Jacobian based on estimated

state ξ̂ and the Jacobian matrix contained in the Model-object.

The TemperatureSet-object contains data from all rooms in the house saved in a vector

of RoomTemperatureSet-objects. The constructor extracts data based on the filename of
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Figure 5.3: Example of input datafile

a .mat-file with a matrix named ”DATA” containing data for all sensors. The structure

of the DATA-matrix is assumed to be:

DATA =


u1(t = 1) y1(t = 1) u2(t = 1) y2(t = 1) . . . uM (t = 1) yM (t = 1) t

u1(t = 2) y1(t = 2) u2(t = 2) y2(t = 2) . . . uM (t = 2) yM (t = 2) t
...

...
...

...
. . .

...
...

...

u1(t = N) y1(t = N) u2(t = N) y2(t = N) . . . uM (t = N) yM (t = N) t


(5.1)

Where ui(t) is the input of room i at time t and yi(t) is the output of room i at time t

t is a time and date object converted to Matlab-format. Figure 5.3 shows an example

of the structure of a spreadsheet-file that will generate a correct DATA-matrix when

imported.

The offline-estimation uses the Matlab greyest()-function which again uses a combi-

nation of system identification algorithms to find the parameters that best fit the data.

The algorithms used in greyest() are[40]:

• Subspace Gauss-Newton direction

• Adaptive Gauss-Newton

• Levenberg-Marquardt -method

• Gradient method

• Trust region reflective method1

1Requires Optimization toolbox for Matlab, not installed on version used in case study
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In this thesis the greyest is used in auto-mode, which means it tests all the stated

methods, and uses the one which estimate best fit the data. For further reading on said

methods the reader is referred to [28], and [41].

The Structure of the resulting model is defined by a Matlab-function odefunction, for

instructions on how to generate a correct odefunction the reader is referred to [40].

Each experiment of the case study has its own script, Algorithm 2 shows the pseudocode

of the scripts. All necessary files for running the experiments are included on the CD-

ROM attached to the thesis.

Import data for estimation to TemperatureSet-instance
Import data for simulation to TemperatureSet-instance
Run offline estimation
if EKF is used then

Load symbolic function handle symFcn

Resample identified model
Construct instance of Model-object
Run Model-instance with EKF

else
Run identified model

end
Plot results
Calculate eigenvalues, observability-matrix and controllability-matrix

Algorithm 2: Experiment pseudocode

For further details of implementation the reader is referred to Appendix A or see help-

files using the Matlab help-command.





Chapter 6

Case study: Apartment in

Trondheim

N

Figure 6.1: Drawing of apartment layout for case study

This chapter considers an apartment set-up with temperature sensors in each room, real

data is collected over a period and the model results are compared to the measurements.

The apartment is a typical Scandinavian wooden house with glass wool insulation in

outer walls, and inner walls made of plaster and wood. In addition to the sensors in each

room, sensors are placed outside and in the basement directly under the apartment. The

apartment is heated mainly with electrical heaters, but there is also a fireplace placed

on the living room wall adjacent to the guest bedroom. A portable heater is sometimes

used in the kitchen. Due to practical concerns the heater status of the bathroom heater

35
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is not measured, the model will have to handle it as a unknown disturbance. The

sensors are placed in a manner that give the most accurate representation of the room

temperature, with no direct solar radiation and not to close to unmeasured disturbances

such as windows, doors and fireplace.

6.1 Model set-up

Recalling Equation 4.7, the apartment differential equations can be stated as:

CvV1
dx1
dt

= [A12(x2 − x1) +A16(x6 − x1)]Ui +A1o(uo − x1)Uo +A1b(ub − x1)Ub + P1Uhu1 + E1v

CvV2
dx2
dt

= [A12(x1 − x2) +A23(x3 − x2) +A24(x4 − x2) +A26(x6 − x2)]Ui

+A2b(ub − x2)Ub + P2Uhu2 + E2v

CvV3
dx3
dt

= [A23(x2 − x3) +A34(x4 − x3)]Ui +A3o(uo − x3)Uo +A3b(ub − x3)Ub + P3Uhu3 + E3v

CvV4
dx4
dt

= [A24(x2 − x4) +A34(x3 − x4) +A45(x5 − x4)]Ui +A4o(uo − x4)Uo

+A4b(ub − x4)Ub + P4Uhu4 + E4v

CvV5
dx5
dt

= [A45(x4 − x5) +A56(x6 − x5)]Ui +A5o(uo − x5)Uo +A5b(ub − x5)Ub + P5Uhu5 + E5v

CvV6
dx6
dt

= [A16(x1 − x6) +A26(x2 − x6) +A56(x5 − x6)]Ui +A6o(uo − x6)Uo

+A6b(ub − x6)Ub + P6u6 + E6v

(6.1)

On state space form:

ẋ = Ax + Bu + Kw

y = Cx + v
(6.2)

A =



− K11
CvV1

A12
CvV1

0 0 0 A16
CvV1

A12
CvV2

− K22
CvV2

A23
CvV2

A24
CvV2

0 A26
V2

0 A23
CvV3

− K33
CvV3

A34
CvV3

0 0

0 A24
CvV4

A34
CvV4

− K44
CvV4

A45
CvV4

0

0 0 0 A45
CvV5

− K55
CvV5

A56
CvV5

A16
CvV6

A26
CvV6

0 0 A56
CvV6

− K66
CvV6


(6.3)
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K11 = [A12 +A16]Ui +A1oUo +A1bUb

K22 = [A11 +A23 +A24 +A26]Ui +A2bUb

K33 = [A23 +A34]Ui +A3o +A3b)

K44 = [A24 +A34 +A45]Ui +A4oUo +A4bUb

K55 = [A45 +A56]Ui +A5oUo +A5bUb

K66 = [A16 +A26 +A56]Ui +A6oUo +A6bUb

(6.4)

B =



P1
CvV1

Kh 0 0 0 0 0 A1o
CvV1

Uo
A1b
CvV1

Ub

0 P2
CvV2

Kh 0 0 0 0 0 A2b
CvV1

Ub

0 0 P3
CvV3

Kh 0 0 0 A3o
CvV3

Uo
A3b
CvV1

Ub

0 0 0 P4
CvV4

Kh 0 0 A4o
CvV4

Uo
A4b
CvV1

Ub

0 0 0 0 P5
CvV5

Kh 0 A5o
CvV5

Uo
A5b
CvV1

Ub

0 0 0 0 0 P6
CvV6

Kh
A6o
CvV6

Uo
A6b
CvV1

Ub


(6.5)

C =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(6.6)

u =
[
u1 u2 u3 u4 u5 u6 u7 u8

]T
(6.7)

K =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(6.8)
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6.2 Building description

This section gives a description of the building in the case study. Area and building

components of the buildings infrastructure are covered in detail and are necessary to

derive calculated values for coefficients in the model.

6.2.1 Areas and volume

The areas and volume of the respective spaces are calculated from a 3D drawing of the

apartment, all doors and windows are considered closed and part of the total wall area:

Figure 6.2: 3D-drawing of apartment

Name 1 2 3 4 5 6

1 Bathroom - 2.904 0 0 0 6.24

2 Entrance 2.904 - 5.256 3.12 0 3.912

3 Guest bedroom 0 5.256 - 5.904 0 0

4 Living room 0 3.12 5.904 - 6.816 2.184

5 Main bedroom 0 0 0 6.816 - 7.392

6 Kitchen 6.24 3.912 0 2.184 7.392 -

Table 6.1: Wall areas between rooms [m2]

The air volume for each room is known, as well as areas of external walls and area of

floor that connects to the basement.
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Name Floor area [m2] Volume [m3] External wall area [m2]

1 Bathroom 3.1691 7.6058 2.904

2 Entrance 4.2060 10.0944 -

3 Guest bedroom 8.6336 20.7206 6.81

4 Living room 16.275 39.0600 19.416

5 Main bedroom 8.8892 21.3341 14.328

6 Kitchen 7.8232 18.7757 6.0972

Table 6.2: Air volume and external areas
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The nominal power for each room is given in Table 6.3, the bathroom has integrated

floor heating with unknown power, a portable heater of 600W is used in the kitchen,

which is equal to the kitchen heater power, the model doubles power in the kitchen when

the portable heater is used.

Name Heater power [W ]

1 Bathroom -

2 Entrance 600

3 Guest bedroom 600

4 Living room 1000

5 Main bedroom 800

6 Kitchen 600/1200

Table 6.3: Heater power [W ]

6.2.2 Building components

How the different building components are comprised in this apartment is only partly

known, some of it is based on known fact due to recent construction work and some

of it is assumed with basis in common Scandinavian construction-practices. All values

for thermal resistance are taken from [7] except for the Glava-insulation which is taken

from [42]. The thermal transmittance of the air film close to the wall is calculated in

accordance to [6, Annex A]

Average outside wind velocities from the last year in Trondheim is calculated from [43]

and found to be v̄ = 2, 74m/s ≈ 3m/s to match tables in cited standard. The average

normal temperature is found to be T̄ = 4, 95◦C ≈ 5◦C. Values used for calculating

surface resistance is found in Table 6.4. Note that the values for wind and temperature

may vary greatly from this in the case study, but this simplification is needed to generate

a time invariant model.

The resulting total transmittance is calculated:
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T̄ [◦C] ν̄ [m/s] hr [W/m2K1] hc [W/m2K] Rs [m2K/W ]

Inside 20 - 5.13 2.5 0.131

Outside 5 3 4.365 4.2 0.117

Table 6.4: Values used for calculating surface thermal transmittance

1cm 1cm1cm 6cm

Air

Wood

Plasterboard

Glass wool 
Insulation
(newer type)

1cm

Figure 6.3: Cross-section of inner walls

Component λ[W/mK] d[m] R[m2K/W ] n

Surface effect - - 0.131 2
Plasterboard 0.21 0.01 0.048 2
Wood 0.14 0.01 0.071 2
Insulation (Glava 35) 0.035 0.06 1.579 1

Sum 2.214

Table 6.5: Values for thermal resistance in inner walls

Component λ[W/mK] d[m] R[m2K/W ] n

Surface effect (inside) - - 0.131 1
Surface effect (outside) - - 0.117 1
Plasterboard 0.21 0.01 0.048 1
Wood 1 0.014 0.01 0.071 2
Air 0.12 0.013 0.1 1
Insulation (Older type) 0.04 0.1 2.5 1
Wood 2 0.14 0.03 0.214 1

sum 3.252

Table 6.6: Values for thermal resistance in outer walls
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1cm1cm 3cm 1cm 10cm 3cm

Inside Outside

Air

Wood
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Glass wool Insulatiol 
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Figure 6.4: Cross-section of outer walls
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Figure 6.5: Cross-section of floor
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Component λ[W/mK] d[m] R[m2K/W ] n

Surface effect (over) - - 0.172 1
Surface effect (under) - - 0.099 1
Linoleum 0.17 0.002 0.012 1
Parquet 0.23 0.002 0.009 1
Wood 0.14 0.02 0.143 2
Insulation (Glava 35) 0.035 0.05 1.429 1
Clay 1.5 0.05 0.033 1

sum 2.083

Table 6.7: Values for thermal resistance in floors

Component Inner walls Outer walls Floor

Thermal transmittance [W/m2K] 0.0452 0.491 0.307

Table 6.8: Transmittances for building components
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6.3 Experimental set-up

The equipment used for the case study is listed in Table 6.9.

Function Name Producer Precision

Temperature sensor TSS320 Proove AB ±1◦C
Wireless interface Tellstic Duo Telldus Technologies -
SOC Raspberry PI Farnell -

Table 6.9: Experiment equipment list

The temperature-sensors collect temperature in all rooms, in the basement and directly

outside the building, while the sensors for heaters only collect a boolean that evaluate

true if the heater is energized. The set-points for all heaters are unknown and heater

dynamics is effectively ignored in the offline identified model.

The Raspberry Pi collects samples from the sensors and uploads the data to a Dropbox-

folder via an SQLite interface. The data is saved as a Comma Separated Value file(.csv)

which in turn is exported into an excel-spreadsheet, the spreadsheet also handles the

portable heater by summarizing the contribution from kitchen and portable heater.

The sensors take measurements every ten minutes, it is assumed that they are synchro-

nized or that any time between samples of the different sensor is of little importance

in the broader picture. This can be reasoned from the fact that temperature changes

happens slowly relative to the sampling time of ten minutes.

It is observed that some measurements are missing in the data, the sensors seem to skip

collecting samples from time to time. In the spreadsheet-file missing data is handled

by leaving the cell empty, this again will be interpreted by Matlab as NaN-values. The

offline estimation does not handle NaN-values, so when offline estimation is done the

values are patched by a sample and hold function, see Appendix A for details. When

EKF is applied the missing data is estimated by the filter. Please note that when one

of the inputs evaluates as NaN the whole vector of inputs collected at this time must be

discarded.

Two different offline schemes are considered:

• Estimating multiple parameters with grey-box estimation scheme
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• Calculating each wall resistance coefficient based on physical tables

The model is tested with and without applying the EKF with state and parameter

estimation. All experiments are simulated in Kelvin and plotted in Celsius for easier

reference.





Chapter 7

Results and discussion

In this chapter a discussion of the results from the case study and comparison of simu-

lated model with data is given. Possible explanations for the results observed are stated,

and comments on performance are made.

Data used for offline estimation is based on a regular day, with inhabitants in the build-

ing. This is expected to create unknown disturbances, it follows that careful consider-

ations needs to be made when selecting dataset for estimation, to prevent large distur-

bances being present.

7.1 Selection of dataset for estimation

This section displays the proposed dataset chosen for offline estimation and motivates

why this time period was chosen.

Firstly the effect of heater dynamics can be seen clearly in Figure 7.1. It can be observed

that a heater is turned in at the end of the day, the temperature can be seen as rising until

a certain point, and then it ripples around a constant temperature value. The heater

input however is seen as ”on” for the whole period of the night. This type of dynamic

can be explained by a heater controller, turning on and off the heater using hysteresis

control. It can be seen that over different days the temperature in the room ripples

around different values, this might be explained by the heater thermostat value being
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Figure 7.1: Selection of dataset for estimation: Room 5: Main bedroom

changed between different days. This effect seems to be consistent over a number of

days, except for the weekend, when temperatures are generally higher. This is probably

because the inhabitants are absent during the day on weekdays.

One disturbance that presumably will have a large effect is the fireplace in the living

room. The plot from the living room can be seen in Figure 7.2

It can be observed that on the evening of Friday the 11th of April the temperature rises

higher than the other days, and starts to fall during the night until seemingly stabilizing

at a temperature equal to previous nights. During the weekend the heater seems to be

on at all times, but still the temperature does not rise as much as it did on the evening

in question. This may be explained by the fireplace. Choosing a dataset for estimation

that includes said Friday will in other words not be recommended.

In the kitchen there are a number of possible disturbances, mainly from cooking and

cleaning appliances, this can be seen from Figure 7.3. Each day there is a peak tem-

perature in the morning corresponding with heater input, notice that two heaters are

applied in the morning, and therefore the power is doubled. But there is also a second

peak that does not seem to correspond to heater input, some time around four to six.
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Figure 7.2: Selection of dataset for estimation: Room 4: Living room

This may be caused by cooking or other kitchen appliances being used. This effect seem

to be present every day

The entrance is connected to most rooms in the model, and also has doors with un-

known status. Open doors between rooms will cause a disturbance, since it enhances

the connection between them greatly. There is also has a direct connection and door

to the stairway outside the apartment, where the temperature is not measured. If this

door is left open the disturbance may be great. This can be seen in Figure 7.4. By

Examining the difference between 9th and 10th of April we see a discrepancy between

heater input and room temperature, this may be caused by doors being left open the

first day. It can be seen from the previous plots and the rest of the plots in section B.1

that the temperature outside and in the other rooms are relatively alike over these two

days, thus it is reasonable to believe that this is caused by the outer door being left

open.

The Guest bedroom heater is kept off during the whole week, so heater dynamics and

dispersion effect can not be estimated for this room. As previously stated the bathroom

heater status is unknown, and therefore it is expected to see error in the simulation
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Time Day 1: 09.04 Day 2: 10.04 Day 3: 11.04

Direction South-South-East South West-South-West

Wind speed [m/s] 4.1 5.3 6.5

Table 7.1: Average wind speed and direction over the three days of testing

of the bathroom. In the rest of the plots seen in section B.1 large disturbances is not

explicitly observed.

In this dataset the day where the smallest effect of disturbances are observed is the 9th

if April, so this is the day chosen to be the dataset for offline estimation. Finding a day

where the disturbance conditions are alike is almost impossible in an inhabited building,

but the one that seems most alike is 9th of April where every room seem to have the

same response except for the entrance. A better conditioned dataset could probably

improve the results seen here, but it does not seem to be available at this time.

The weather in Trondheim these three days was mostly overcast, light wind with slight

rain. A plot of wind speeds is included in Figure 7.5. As previously stated the outer wall

transmittance is calculated under using the average wind speed for Trondheim over a

whole year. It can be seen that days selected for simulation and estimation differs from

these values. The average wind speed and direction is stated in Table 7.1.

All meteorological data is taken from [43] where the measurements are being made at

Voll measuring station approximately 3 km in direct line from the apartment used in

the case study. Data is not used in the model directly, but is included to help explain

possible sources for model error.



Chapter 7. Results 51

07.Apr 08.Apr 09.Apr 10.Apr 11.Apr 12.Apr 13.Apr 14.Apr

0

5

10

15

20

25

30

Time [Hours]

T
em

pe
ra

tu
re

 [° C
]

 

 

0 20 40 60 80 100 120 140 160 180
0

500

1000

1500

H
ea

te
r 

po
w

er
 [W

]

Measured x [°C]
Heater power [W]

Figure 7.3: Selection of dataset for estimation: Room 6: Kitchen

07.Apr 08.Apr 09.Apr 10.Apr 11.Apr 12.Apr 13.Apr 14.Apr

0

5

10

15

20

25

30

Time [Hours]

T
em

pe
ra

tu
re

 [° C
]

 

 

0 20 40 60 80 100 120 140 160 180
0

200

400

600

H
ea

te
r 

po
w

er
 [W

]

Measured x [°C]
Heater power [W]

Figure 7.4: Selection of dataset for estimation: Room 2: Entrance
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Figure 7.5: Selection of dataset for estimation: Wind speed
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7.2 Model testing

7.2.1 Experiment 1: Grey-box estimation with 4 parameters

The first experiment is based on knowledge of the model structure, but nothing else. All

coefficients are assumed unknown and need to be estimated. The offline estimation is

run on data from 9th of April and verified against data from the 10th and 11th of April.

The first day the model is verified against the same data used in the estimation. This is

to provide a benchmark for each experiment to see how well this best case scenario fits

the data.

For the estimation and model comparison missing data is patched using a sample and

hold function, details in Appendix A.

The parameters to be estimated in this experiment are the temperature transmittance of

inner, outer walls, floor and a general heating coefficient: Ui, UoUb and Kh, respectively.

The values generated by estimation is stated in Table 7.2:

Parameter Ui Uo Ub Kh

Value 0.0007964 0.09956 0 0.004528

Table 7.2: Experiment 1: Grey-box estimation values

It is observed that the values are small and far from the previously calculated values

seen in Table 6.8. Ub is zero, meaning the estimation calculated that improved results

would be had if it where negative. This suggests that the model can not be accurately

estimated with this simplified structure.

The eigenvalues of the model is calculated:

|Λ| =
[
0.9994 0.9963 0.9980 0.9981 0.9975 0.9973

]
(7.1)

All eigenvalues are slightly smaller than 1, thus this model is barely stable.
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Figure 7.6: Experiment 1: Room 1: Bathroom

From examining the plot of the bathroom in Figure 7.6 it can be seen that model

performance for this room is rather poor. The temperature in the model seems to fall

under the measured values, and is steadily falling throughout the simulation. This could

be due to lack of measurement of heater input in this room.

The worst performance of this model can be seen in the plot of the main bedroom

Figure 7.7. The model overshots even in the benchmark period, and it can be seen that

it has a steady temperature gradient, going up or down depending on whether the heater

is active or not. This suggests that the model is too simple to follow the dynamics in this

room, and could also have something to do with the observed heater dynamics, since it

only seem to occur in this room where heater dynamics are apparent. The estimation

can not react to both the general large dynamics of the daily temperature changes in

addition to the smaller changes that the heater controller contributes. This is in fact

poorly conditioned data for this type of estimation.

It can be seen from the plot in the kitchen Figure 7.8 that the model does not seem to

follow rapid dynamics, but rather follows a line where mean error is smallest. This is

because of the identification scheme itself. All methods used in offline estimation choose



Chapter 7. Results 55

09.Apr 00:00 09.Apr 12:00 10.Apr 00:00 10.Apr 12:00 11.Apr 00:00 11.Apr 12:00 12.Apr 00:00

−10

−5

0

5

10

15

20

25

30

Time [Hours]

T
em

pe
ra

tu
re

 [° C
]

 

 

0 10 20 30 40 50 60 70 80
0

200

400

600

800

H
ea

te
r 

po
w

er
 [W

]

Measured x [°C]

Model error [°C]

Simulated x [°C]
Heater power [W]

Figure 7.7: Experiment 1: Room 5: Main bedroom
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Figure 7.8: Experiment 1: Room 6: Kitchen
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values whose error is the smallest, it could be that with this complex dataset and simple

model it is simply not feasible to estimate it correctly without having more knowledge

of the physical system. Same tendency can be observed for the remaining plots that can

be seen in section B.2.

The results shown in this test suggest that the model structure is to simplified to produce

a proper model with estimation alone. The parameters shown in Table 7.2 differs a lot

from the values calculated in section 6.2 for thermal transmittance. It could be that the

model needs some form of physical anchoring to provide an accurate simulation, next

the calculated physical constants is included to see if the results can be improved.
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7.2.2 Experiment 2: Using calculated values for transmittance

The second experiment uses the values for the transmittances from Table 6.8, but with

no calculated value for the heater-coefficient Kh it will have to be estimated:

The variable estimated is shown in Table 7.3.

Parameter Kh

Value 0.02013

Table 7.3: Experiment 2: Grey-box estimation value

The eigenvalues of the model is calculated:

|Λ| =
[
0.8400 0.7556 0.7092 0.6074 0.4451 0.4734

]
(7.2)

Unlike the previous experiment these values are further away from 1, which means the

stability margin is larger for this model.

This model seems to better react to rapid changes in the temperature, this can be seen

from Figure 7.9.

The peaks generated by heater activity is better represented in the model. It it observed

however that a large bias is present and this causes large errors in the model compared

to data.

The bias can especially be seen in the plots from the Guest bedroom Figure 7.10. Here

it is observed that the bias is approximately 25◦C. This could be due to differences in

wall materials and effect from windows. In the other rooms similar bias effects are seen,

see section B.3 for plots of all rooms.

By calculating a general temperature transmittance for all outer walls the effect of

windows are ignored. It is expected that windows will have a large effect on the temper-

ature flow from inside rooms to outside, so effort needs to be made to compensate for

differences in walls. The proposed solution is to estimate a coefficient relating the wall

transmittance to the window effect in the respective room. A different approach could
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Figure 7.9: Experiment 2: Room 6: Kitchen
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Figure 7.10: Experiment 2: Room 3: Guest bedroom
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be to calculate transmittance for windows, and include them in the model. But seeing

how wind and solar effect on windows may differ greatly depending which way they are

facing the window-effect may have to be estimated regardless.
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7.2.3 Experiment 3: Compensating for differences in external walls

In an effort to compensate for the large bias observed in the previous experiment, more

parameters are included in the offline estimation. The proposed experiment estimates

coefficients to allow different transmittance in outer walls. The new transmittance is

stated as:

Uoi = UoKi (7.3)

Where Uoi is the transmittance in outer wall for room i, Uo is the calculated transmit-

tance for outer walls, and Ki is the parameters to be estimated.

In this experiment the following parameters are estimated: Kh,K1,K3,K4,K5,K6.

Parameter Kh K1 K3 K4 K5 K6

Value 0.01925 1.126 0.5638 1.065 1.057 1.089

Table 7.4: Experiment 3: Grey-box estimation values

The eigenvalues of the model is calculated:

|Λ| =
[
0.8400 0.7556 0.7092 0.6074 0.4451 0.4734

]
(7.4)

From the plot of the living room temperature Figure 7.11 a number of effects can be seen.

No bias-effect is observed, but the model seems to react too quickly in relation to data,

even in the benchmark-period of the first day this effect is seen. This could be because of

the simplification of the model itself. The model assumes that the temperature is equal

in the whole volume of the room, when in reality the energy introduced in the system

needs more time to heat the whole volume to equal temperature. There is an internal

heat flow dynamics that is not modeled, similar to the previously mentioned dispersion

effect in heaters. The fact that this effect can best be seen in the living room where the

air volume is the largest further asserts this argument. For very large rooms this effect

could be substantial, if this is the case, then it should be considered to split the large

room into multiple states.

At the end of Friday the 11th of April the measured temperature rises steeply, but the

model does not follow, as previously stated it seems like the fireplace was in use on that

Friday. The use of the fireplace would explain the large error in the model at this time.
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Figure 7.11: Experiment 3: Room 4: Living room

Another thing that can be observed from this plot is that there is two consecutive peaks

in the model dynamics around mid-day of the 10th of April. Examining the outdoor

temperature at the time in question Figure 7.12, there can be seen that the outside

temperature peaks at the same time.

It would seem that the model overemphasizes the effect of outside temperature at this

time, similar effects can be seen in the plots for Main bedroom and Kitchen, section B.4.

Solar radiation though the windows during the time when estimation data is collected

could explain this, although meteorological data shows that the weather was overcast for

the day in question. Another explanation could be different wind-chilling effects. It can

be seen from Table 7.1, that the average wind speed was lower during the period used

for gathering data for estimation than the following days, and from plot Figure 7.13 the

peak wind speed for each day is around mid-day.

Finally the entrance is considered in Figure 7.14 where the model performs poorly, an

maximum error of ≈ 5◦C is observed. This can be explained by a door being left open

as previously mentioned. Again such disturbance cannot be known a priori, so it will

have to be handled later. Choosing a different dataset for estimation may have improved



Chapter 7. Results 62

09.Apr 00:00 09.Apr 12:00 10.Apr 00:00 10.Apr 12:00 11.Apr 00:00 11.Apr 12:00 12.Apr 00:00

4

5

6

7

8

9

10

11

Outside

Time [Hours]
T

em
pe

ra
tu

re
 [° C

]

 

 
Input temperature

Figure 7.12: Experiment 3: Outside

09.Mar 00:00 09.Mar 12:00 10.Mar 00:00 10.Mar 12:00 11.Mar 00:00 11.Mar 12:00 12.Mar 00:00

0

1

2

3

4

5

6

7

Wind speed

Time [Hours]

W
in

d 
sp

ee
d 

[m
/s

]

Figure 7.13: Experiment 3: Wind speed
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Figure 7.14: Experiment 3: Room 2: Entrance

the situation, but a dataset with few or no disturbances present over several days is not

found in this case study. If implemented in a real system it is unlikely that the user can

generate perfect conditions for estimation, so it is a useful test to see if the estimator

can compensate for this large error in the identified model.

This section shows that by comparing the simulated temperature to the data different

performances of the model is obtained, some rooms follow the measured temperature

with small errors, while others have larger errors due to disturbances and poorly condi-

tioned data. A summary of model error is presented in Table 7.5 and Table 7.6.

Bathroom Entrance Guest bedroom
mean max mean max mean max

Experiment 1 [◦C] 4.2 8.3 1.3 5.5 0.3 1.7
Experiment 2 [◦C] 6.4 7.5 2.7 7.3 24.6 26.6
Experiment 3 [◦C] 0.5 1.6 2.0 5.0 0.4 1.7

Table 7.5: Experiment 1-3: room 1-3: Model error

It can be seen that the mean error is relatively low for most rooms, but larger in the

entrance. The maximum error value is also found in the entrance close to 5◦C and in the

living room. The maximum error in the living room seems to be caused by the fireplace.
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Living room Main bedroom Kitchen
mean max mean max mean max

Experiment 1 [◦C] 1.8 9.5 1.7 3.8 1.3 5.0
Experiment 2 [◦C] 2.4 7.0 6.2 8.6 5.7 7.7
Experiment 3 [◦C] 1.1 4.4 1.0 2.8 0.5 2.0

Table 7.6: Experiment 1-3: room 4-6: Model error

The rest of the rooms have relatively low values for error, but there is still potential

for improvement. In the next section a Kalman Filter will be applied and results are

expected to improve.
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7.3 Kalman filter testing

By introducing an Extended Kalman Filter with state- and parameter estimation a

temperature estimator is implemented. Parameters are introduced in each state of the

model to compensate for unknown time varying disturbances. The initial model used in

the Kalman Filter is the one from experiment 3, since it is seen to have the over all best

performance.

7.3.1 Tuning

The EKF is tuned using the covariances of the three noises present in the model: mea-

surement noise vk, plant noise wk, and parameter exploration noise nk.

The Covariance of measurement noise is assumed to be small, since it can be seen that

there is not much noise present in the measurements.

σ2vv = 0.1 (7.5)

The Covariance noise of the plant is calculated from the square of the mean model error

found in previous experiments, so:

σ2ww =
[
0.25 4.0 0.16 1.21 1.0 0.25

]
(7.6)

Parameter exploration noise is found by tuning, it can be seen that the higher the value

is chosen to be the quicker the parameter changes. It can also be seen that these values

are small compared to the other covariances. The values are chosen large enough for the

EKF to react to rapid changes, but without introducing additional noise in the state

estimation:

σ2nn =
[
5× 10−7 6× 10−7 4× 10−8 2× 10−7 2× 10−7 10−8

]
(7.7)

The values in Equation 7.5, 7.5 and 7.7 are related to the EKF design matrices in the

following way:
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R = σ2vvI1×12

Q = diag
([
σ2ww σ2nn

]) (7.8)

7.3.2 Experiment 4: Using EKF with state and parameter estimation

The EKF sampling interval is selected to be 10 times as quick as the original sampling

time, so a new state is estimated every minute. If missing data occurs the EKF will

estimate the temperature until valid data is available. The resampling of the model is

done by Matlab-function d2d() which uses zero-order-hold [40]. The EKF-algorithm is

written in pseudocode in Algorithm 3

for k = 1:N do
Estimate state based on previous estimates, and input-values
Calculate Jacobian based on current estimate
Calculate new Kalman filter covariance matrix P based on new Jacobian
if (Valid measurement available y(k)) then

Calculate Kalman Filter gain Kf

Filter estimate using output values from plant
Recalculate Kalman Filter covariance matrix P

end

end
Algorithm 3: EKF pseudocode

Notice that when an invalid input is detected, the filter must discard the whole input

vector at that time, therefore and potentially valuable information is lost.

It can be seen in the plot from the main bedroom Figure 7.15 that the estimate now

follows fast dynamics from heaters. Since the kalman filter is updated with measurements

every ten minutes the EKF can adapt to rapid changes and time varying disturbances.

When however large periods of missing data occurs the performance deteriorates. It

can be clearly seen on the 11th of April that when data input goes missing for eight

hours the EKF has an error of about 2◦C. When the EKF estimates states it uses both

the previously identified model and the online estimated parameter. The error may

originate from both these sources. It could be that the online estimated time varying

disturbance coefficient is no longer valid, because the nature of the disturbances has

changed. Another explanation is that the model overemphasizes the effect of outside

temperature, as seen in the previous test. In any case, eight hours means that the
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Figure 7.15: Experiment 4: Room 5: Main bedroom

kalman filter has estimated states for 480 samples, and an initial small error in state

estimation might grow large in this time. When applying the EKF as an estimator in

an MPC the prediction horizon might be smaller than 480 steps.

Examining the other plots shows in section B.5 the same tenancy can be observed, but

the error is generally smaller when missing data occurs. The plot from the living room

Figure 7.16 shows that the EKF compensates for the disturbance from the fireplace

observed in previous tests.

It can also be seen that the EKF has a small error at the beginning of the test, this

may be explained by missing data. Examining the plot of the parameters estimated by

the EKF Figure 7.17 it can be seen that they do not change at this time. This means

that no update is performed and previous values for parameters are being applied, the

same can be seen for the period on the 11th of April where data has been missing for

a long time. The parameters themselves does not seem to converge against a constant

value, but follows the system dynamics. The time varying nature of disturbances in this

system makes this a reasonable result and may show that the disturbances are being

handled correctly.
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Figure 7.16: Experiment 4: Room 4: Living room
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Figure 7.18: Experiment 4: Room 3: Guest bedroom
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The plot from the guest bedroom Figure 7.18 shows the kalman filter estimate performing

well when data is missing. It can be seen that on the evening of the 10th of April there

is a period of missing data just as the building is heating up, the EKF seem to estimate

the correct dynamics here ends up at roughly the same temperature as measured when

the input is deemed valid again. This may show that with constant disturbances the

EKF fulfills its purpose and predicts the temperature correctly. In the other rooms it

can be seen that in this period the accuracy of the estimator is also high.
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7.4 Computational time

The computational time of a single iteration is tested using Matlab-function tic and

toc, the mean and maximum values is shown for three different operations:

• Update model with new parameter estimates

• Preform EKF-estimation

• Preform EKF-Filtering

• Total iteration time

Operation Update Estimation Filtering Total
Mean Max Mean Max Mean Max Mean Max

Value (Ts = 60s) [ms] 0.14 0.57 2.6 12.8 0.11 3.2 2.8 16.3

Table 7.7: Iteration time for estimator

Notice that the maximum operation times does not add up to the total time, this is

because filtering is not performed every iteration, and the maximum total time is a

iteration without filtering. To be applicable for real time implementation the EKF in

this set-up will have to calculate ten estimates every minute, so the worst possible total

computational time is 163ms.

The computational time for offline estimation, Model-object construction and resampling

is not considered, since these operations can be performed in a Matlab-environment and

the model-object constructed can be exported to a real time system implemented in a

arbitrary programming language.

7.5 General remarks

A few general remarks should be made before concluding the thesis.

First of all, in every experiment the model is found to be stable, observable and control-

lable. This is tested using Matlab-functions eig(), ctrb(), obsv() and rank(), see

[40] for details.
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It can be seen from the selection of dataset for estimation that there still may be un-

known disturbances present, while it is not feasible to exclude all possible disturbances,

some improvements to the experiment can be made, for instance by collecting data in

a period without inhabitants in the building, compensating for different environmental

disturbances like chilling effects from wind and heat effects from solar radiation.

Ideally the controller should be able to define temperature set-points for electrical ovens,

and be able to receive feedback from the ovens regarding how much heat they are cur-

rently producing. This feedback can be done by introducing a power or current sensor

in the electrical mains loop, for this thesis it is assumed that when energized the ovens

power usage is equal to its nominal power rating. When a thermostat is introduced this

will produce an inevitable deviation. In most simple oven thermostats the power is either

on or of, and the amount of heat produced is controlled by turning the power on and of

in intervals. The length of this interval is usually controlled by some kind of hysteresis

(bang-bang) control, more advanced units may also use PID control. The heater sensors

used in the case study are switches that energize the heaters, and provides no feedback

as to what kind of power the heater is currently producing, this may account for small

errors in the dynamics of the model.

The heater state of the Bathroom could not be measured in the case study, it is ex-

pected that including measurements from this room when estimating should improve

performance.

The contribution of heat flow through the ceiling of the building is ignored, this from the

argument that in most apartment buildings the temperature above the ceiling is close

to equal to the room beneath it. In the case study this assumption may be incorrect, so

the heat flow is treated as a contribution to the sum of disturbances. If measurements

of temperature above the ceiling can be made the model can be expanded by including

said temperatures as additional inputs.

The offline identified model is found to be stable by applying well known control theory

methods but when using EKF the online estimated parameters could push the system

over the edge of stability, this is not observed in testing, but if the EKF is to be im-

plemented with a smaller estimation interval i.e. more estimation iterations between
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filtering, this could become a problem. No formal stability proof estimator is presented,

the stability property of this non-linear time variant system is simply tested empirically.

The precision of the temperature sensors ±1◦C is relatively poor compared to industry

standards. The same sensors are used for collecting the data for identification and com-

paring the model performance, so the precision of sensors are considered less important

in this initial part of the project. When implementing a complete system the overall

precision can be improved by applying more precise sensors, this may increase the cost of

the system, so it would be sensible to balance necessary precision against cost of sensors.

The parameters estimated with EKF do not seem to converge to a single value, but

rather follow the plant dynamics. A real value of the proposed estimated parameters is

difficult to obtain, since they are a sum of all disturbances present. This is considered to

be of less importance, since the EKF seem to perform well without the explicit knowledge

of disturbance contributions. But if large and rapid changes occurs in the plant the EKF

might not be able to react properly.

The parameters estimated online using EKF are only present in the state matrix: A of

the system, so it may have difficulties to compensate for model errors and disturbances

in the input matrix: B. A possible improvement of the filter would be to add parameters

to be estimated in the B-matrix. This is straight forward according to KF-theory, but

will add more states to the augmented state space system.

The modeling of outside-temperature as an input needs to be considered when using the

EKF as an estimator for optimal control, outside temperature can not be controlled, so

the use of these control inputs needs to be prevented. This can be done by weighing use

of said control outputs heavily in the cost function of the controller.

Unmeasured disturbances are handled through parameters in the EKF, but even with a

well tuned kalman filter, the performance can be improved by measuring the contribution

from each disturbance. This can involve expanding the model to include measured

disturbances. This expansion will increase the over all complexity of the system, in this

case it is not just the complexity of the mathematical model, but also the amount of

sensors that needs to be included. More sensors means that the system will be more

expensive and cumbersome to install, the identification of parameters and tuning can

also be more time consuming. Sensors that can expand the system can be environmental
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sensors, that measure wind and sun radiation, sensors that detect human actions, for

example sensors on windows and doors that signal if they are opened, power sensors for

electrical appliances not primarily used for heating. Here a trade-off between complexity

and precision needs to be considered.

Computational time of the system has been found to fit well within the constrains for the

proposed sample interval, but when applying optimal control the computational time

of the control algorithm add to total iteration time. Seeing how the EKF-estimator

has a relatively low number of states and a low computational time it seems feasible to

implement a controller within stated time constrains. If the system is to be implemented

in real time on a micro-controller or SOC, the lower processing capabilities needs to be

considered. Few of these systems can run Matlab, further more Matlab is considered

slow compared to other low-level programming languages. It is probable that the system

is to be implemented in one of the faster low-level programming languages, so while the

processing power may be weaker, the language may be faster. Realizing this there is no

need to expect computational time to be a problem for the remainder of the project.



Chapter 8

Conclusion and further work

This chapter summarizes the main results found in the case study, and points out possible

improvements based on the discussion in the previous chapter.

Bathroom Entrance Guest bedroom
mean max mean max mean max

Experiment 1 [◦C] 4.2 8.3 1.3 5.5 0.3 1.7
Experiment 2 [◦C] 6.4 7.5 2.7 7.3 24.6 26.6
Experiment 3 [◦C] 0.5 1.6 2.0 5.0 0.4 1.7
EKF - 1.2 - 1.7 - 0.5

Table 8.1: All experiments: room 1-3: Model/estimator error

Living room Main bedroom Kitchen
mean max mean max mean max

Experiment 1 [◦C] 1.8 9.5 1.7 3.8 1.3 5.0
Experiment 2 [◦C] 2.4 7.0 6.2 8.6 5.7 7.7
Experiment 3 [◦C] 1.1 4.4 1.0 2.8 0.5 2.0
EKF - 1.2 - 1.9 - 1.1

Table 8.2: All experiments: room 4-6: Model/estimator error

From the results presented in the case study it is shown that a simple model for building

thermal flow can be implemented and still have adequate performance for optimal con-

trol. By using a combination of calculation and offline estimation a model is derived, and

the performance can be further improved by applying a EKF with state and parameter

estimation, see Table 8.1 and Table 8.2 for a summary of the model errors found. The

largest error observed is ≈ 2◦C and occurs when data has been missing for a long time.

75
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Thermal transmittance for the floor, external- and internal walls are calculated and

differences of the materials in outer walls is compensated for in the offline estimation.

Further more a parameter for the dispersion effect for heaters is estimated offline.

The collection of data in the case study is done with inhabitants present in the building,

in order to collect a better set of data for estimation the inhabitants could be moved for

the duration of data collection. This is expected to give a better conditioned data set,

and in turn provide a more precise model.

In large rooms the model is shown to react to quickly to temperature input, this could

be because of internal heat dynamics within the room itself. Proposed solution if this

occurs is to separate the room into multiple states, where each state represents a certain

zone of the room.

The EKF estimates a general disturbance parameter per state, no explicit knowledge

of each disturbance seems to be necessary, however including measurements from dis-

turbances in the system could improve the over all performance. Adding environmental

sensors seems like the simplest and most efficient way of improving performance. Adding

sensors measuring inhabitants behavior may also have a favorable effect.

Computational time of the proposed model with EKF is low and thus seemingly suitable

for real time implementation. The model is of relatively low order, so the computational

time of a optimal control algorithm using the proposed EKF as an estimator is also

expected to be low.

Heater input to the model was measured as on and off, and the heaters assumed to

provide heating power equal to their rated nominal power. Measuring the heater power

using electrical power- or current sensors could improve the initial estimated model and

have a very positive impact on model and estimator performance. Further more allow-

ing the controller to assign set-points for heaters may be a central functionality in the
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system to come.

It is observed that a large number of disturbances affects the input of the model rather

than the states, by expanding the EKF to include parameter estimation in the input-

matrix of the system some improvement may be made. This will however mean more

states in the augmented system and therefore lower scalability.

When missing data occurs in one of the inputs the filter must discard the whole input

vector. If this can be prevented, by in some way handle a subset of the input vector while

filtering the periods of missing data can be reduced, and better accuracy can be achieved.





Appendix A

Code documentation

A.1 Model

Properties

Property name Description

SYS Identified state space system that is the basis of the
model with properties corresponding to system matri-
ces and sample time: A,B,C,D,K,Ts

theta Identifiable parameters in the model

noTheta Number of identifiable parameters in model

A,B,C,D,K System matrices of the state space model augmented
for parameter identification by theta

J Jacobian function of the non-linear augmented system.
Defined as array of Matlab-functions with call:
Aij = J{i,j}(Xi{:})
Xi is a cell array of numerical values of the estimate ξ̂
Aij is the numeric value of the Jacobian matrix ele-
ment i,j based on the estimate Xi

Ts Sample time

Table A.1: Properties for object Model
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Methods

function name Description

Model(symFcn,SYS,NoTheta) Constructs a new instance of object Model based on
the inputed state space system SYS, and the symbolic
function symFcn that defines the relationship between
the parameters to be estimated and the state space
system.

The symFcn is a handle to a function which can be
called in two different ways:

[A,B,C,D,K] = symFcn(A,B,C,D,K,theta)

This call augments system matrices with the parame-
ters to be estimated θ, the returned values are numer-
ical.

[f,v] = symFcn(A,B,C,D,K,theta)

This call returns an array of non-linear symbolic func-
tions that define each state in the augmented state
space system xk+1 = f(xk, θk,uk) and a vector of
symbolic variables v that defines the variables in the
function. This function is the basis for calculating the
Jacobians of the system.

The state space model SYS is assumed to have the
properties corresponding to the system matrices and
sample time: A,B,C,D,K,Ts for efficency it is re-
comended to use a struct.

updateParameters() Updates the state space parameters in the model
based on the state space system SYS, and the prop-
erty theta. It uses the symbolic function symFcn

[Am,Bm,Cm,Dm,Km] = symFcn(A,B,C,D,K,theta)

Where Am,Bm,Cm,Dm,Km is the augmented state space
matrices and A,B,C,D,K is the properties of the state
space system SYS inputed in the constructor, theta
is a property of the object.

jacobianInit() Initiates the J-property of the model which is the Ja-
cobian matrix based on the symbolic function symFcn.
It returns an array of Matlab-functions J to the object.

Table A.2: Methods for object Model
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A.2 RoomTemperatureSet

Properties

Property name Description

name String containing the name of the room.

time Vector containing a numerical representation of
the time and date for when samples where col-
lected

T Vector of temperatures in current room at time
time

u Vector containing the input value in current
room at time time

Table A.3: Properties for object RoomTemperatureSet

Methods

Function name Description

RoomTemperatureSet() Empty constructor, returns a instance
with properties:
name = NULL

T = []

time = []

u = -1

RoomTemperatureSet(name,u,time) Constructor for rooms without tempera-
ture measurement

RoomTemperatureSet(name,u,time,T) Constructor for normal rooms

Table A.4: Methods for object RoomTemperatureSet
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A.3 TemperatureSet

Properties

Property name Description

rooms Vector of instances of RoomTemperatureSet

each containing data for a single room.

noInputs Number of inputs in dataset

noStates Number of states in dataset

DAT iddata time series object based on input
and output, see Mathworks documentation
center[40] for details about iddata-objects

Ts Sampling time

Table A.5: Properties for object TemperatureSet
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Methods

Function name Description

TemperatureSet(filename,estimate,Ts) Constructs an instance of
temperatureSet by reading us-
ing readData() from the excel-file
named filename, the temperatures in
the model are converted to Kelvin with
the function celsius2kelvin, and
the iddata-object DAT is initialized
with the function update()

estimate is a boolean defining if the
dataset should be used for estimation
or simulation. If it is to be used for
estimation temperature data needs to
be patched using the patchMisData-
function, if it is to be used for simula-
tion the temperature in the basement
is set to the value of the first measure-
ment from the basement.

getInput(i) Returns a vector of the input in dataset
at time i.

getOutput(i) Returns a vector of the output in
dataset at time i.

update() Updates iddata-object DAT with the
contents of the instances in rooms

addRoom(j,room) Adds the RoomTemperatureSet-
instance room to the vector rooms at
index j

readData(filename,estimate,Ts) Reads the data from the excel file
named filename an example of the
datafile layout for the case study is in-
cluded in Figure 5.3 blank cells are in-
terpeted as NaN

patches missing input data with the
patchMisData-function if the boolean
estimate is true it also patches miss-
ing temperature data, id estimate is
false then simulation is assumed, and
the model sets the temperature value
for the basement constant.

Ts is sample time for the dataset.

patchMisData(u) Patches missing data in vector u if val-
ues in any indexes of the vector is in-
terpreted as NaN then the value for this
index is the previous valid value in the
vector. The function starts at index 1.
If there is no previous valid values the
index is given the value: -1

celsius2kelvin() Converts all temperatures in the set
from Celsius to Kelvin.

kelvin2celsius() Converts all temperatures in the set
from Kelvin to Celsius.

Table A.6: Methods for object TemperatureSet
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A.4 EKF

Properties

Property name Description

Kf Kalman filter gain

Q Covariance matrix plant noise

R Covariance matrix measurement noise

P Estimation error covariance matrix

N Order of filter

I eye-matrix of size N

Table A.7: Properties for object EKF

Methods

Function name Description

EKF(Tune) Constructs a kalman filter using the pre-
defined struct of design matrices Q and R

named Tune

jacobian(J,xi) Calculates the numerical Jacobian matrix
by calling the Matlab-functions in the ma-
trix J with arguments based on current
state estimate xi.

estimate(A, B, K, xhat k, uk) Returns a vector xhat that is the a priori
state estimate based on the system ma-
trices A,B and K, the previous estimate
xhat k and previous input uk.

Calculates the numerical Jacobian matrix
using the jacobian()-function and uses
it to update the estimation error covari-
ance matrix: P

The previous estimate can be a-priori or
a-posteriori

filter(C,xhat k,yk) Calculates Kalman gain Kf based on the
covariance matrices and output matrix C

filters the estimated state with current
output yk

recalculates the estimation error covari-
ance matrix: P

Table A.8: Methods for object EKF



Appendix A: Code documentation 85

A.5 Support functions
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Methods

Filename Description

defParameters(type,thetaInit) Defines the names and initial values
of parameters to be estimated offline

Which names being used is defined
by type the different names are:
lite1: Ui, Uo, Ub, Kh

lite2: Kh

lite3: K1, K2, K3, K4, K5,

K6, Kh

thetaInit is the initial values of
the parameters to be estimated

The function returns a cell-matrix
par with names of parameters in
one row and the initial value in the
other.

odefun1(Ui,Uo,Ub,Kh,Ts) Case study specific function for
odefun2(Kh,Ts) defining the structure of
odefun3(K1,K3,K4,K5,K6,Kh,Ts) a state space system to be

estimated by greyest returns ma-
trices: A,B,C,D,K defining the state
space system. The input variables
are parameters to be estimated.

For defining other odefun-functions
see: [40, idegrey]

Ts is sampling time

offlineEstimation(roomData,Ts,method) Estimates parameters for the state
space system based on data from
the TemperatureSet-object using
different parameters and methods.
Returns an idgrey-object [40, ide-
grey].

method defines which method
should be used, the alternatives are:

idgrey1 - Grey-box estimation
with 4 parameters:
Ui,Uo,Ub,Kh

idgrey2 - Grey-box estimation
with 1 parameter:
Kh

idgrey3- Grey-box estimation with
6 parameter:
K1,K3,K4,K5,K6,Kh

Table A.9: Support functions for system I
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Methods

Filename Description

[f,v] = M15Sym(A,B,C,D,K,theta) Case study specific function that de-
fines the relationship between offline
identified state space system, pa-
rameters to be estimated online and
augmented state space system.

The function returns either two vec-
tors, where f is a vectors of symbolic
functions and v is a vector of sym-
bolic parameters both used for cal-
culating the Jacobian

[A,B,C,D,K] = M15Sym(A,B,C,D,K,theta) It can also return the augmented
state space system matrices based
on offline identified state space sys-
tem and online estimated parameter
value, in this configuration it is used
to update the model to new online
estimation parameter values

runModel(SYS,roomData,mode) Runs a simulation of the state space
system SYS on the data from the
TemperatureSet-object roomData.
mode defines which type of simu-
lation that should be executed, for
three inputs only M is valid.

runModel(SYS,Mod,roomData,mode) Runs a simulation of either the state
space system SYS or the Model-
object on the TemperatureSet-
object roomData.

mode defines which type of simula-
tion that should be executed. The
alternatives are:

M - Runs the state space system SYS

without any filtering
CDKF - Runs the state space system
SYS with state estimation using a
continuous discrete kalman filter.
CDEKF - Runs the Model-object Mod
with state and parameter estima-
tion using a continuous discrete ex-
tended kalman filter.

Table A.10: Support functions for system II
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Methods

Filename Description

KFtuning() Returns a tuning-struct for EKF

the resulting Struct has the follow-
ing properties:
Q

R

Corresponding to the EKF covari-
ance matrices.

plotResults(roomData,x,u,P) Plots results for experiment with
proper formating and names.

roomData is the TemperatureSet-
object that has been simulated-
x is a matrix of M x N containing
the state estimate for every time in-
stance.
u is a matrix of Q x N containing
the input value for every time in-
stance.
P is a number defining how many
samples the kalman filter is estimat-
ing per filtering run. For discrete
KF P = 1

Table A.11: Support functions for system III
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B.1 Selection of dataset for estimation
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Figure B.1: Selection of dataset for estimation: Room 1: Bathroom
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Figure B.2: Selection of dataset for estimation: Room 2: Entrance
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Figure B.3: Selection of dataset for estimation: Room 3: Guest bedroom
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Figure B.4: Selection of dataset for estimation: Room 4: Living room
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Figure B.5: Selection of dataset for estimation: Room 5: Main bedroom
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Figure B.6: Selection of dataset for estimation: Room 6: Kitchen
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Figure B.7: Selection of dataset for estimation: Outside
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Figure B.8: Selection of dataset for estimation: Basement
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Figure B.9: Selection of dataset for estimation: Wind speed
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B.2 Experiment 1
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Figure B.10: Experiment 1: Room 1: Bathroom
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Figure B.11: Experiment 1: Room 2: Entrance
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Figure B.12: Experiment 1: Room 3: Guest bedroom
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Figure B.13: Experiment 1: Room 4: Living room
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Figure B.14: Experiment 1: Room 5: Main bedroom
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Figure B.15: Experiment 1: Room 6: Kitchen
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Figure B.16: Experiment 1: Outside
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Figure B.17: Experiment 1: Wind speed
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B.3 Experiment 2
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Figure B.18: Experiment 2: Room 1: Bathroom
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Figure B.19: Experiment 2: Room 2: Entrance
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Figure B.20: Experiment 2: Room 3: Guest bedroom
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Figure B.21: Experiment 2: Room 4: Living room
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Figure B.22: Experiment 2: Room 5: Main bedroom
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Figure B.23: Experiment 2: Room 6: Kitchen
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Figure B.24: Experiment 2: Outside
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Figure B.25: Experiment 2: Wind speed
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B.4 Experiment 3
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Figure B.26: Experiment 3: Room 1: Bathroom
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Figure B.27: Experiment 3: Room 2: Entrance
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Figure B.28: Experiment 3: Room 3: Guest bedroom
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Figure B.29: Experiment 3: Room 4: Living room

09.Apr 00:00 09.Apr 12:00 10.Apr 00:00 10.Apr 12:00 11.Apr 00:00 11.Apr 12:00 12.Apr 00:00

−5

0

5

10

15

20

25

Time [Hours]

T
em

pe
ra

tu
re

 [° C
]

 

 

0 10 20 30 40 50 60 70 80
0

200

400

600

800

H
ea

te
r 

po
w

er
 [W

]

Measured x [°C]

Model error [°C]

Simulated x [°C]
Heater power [W]

Figure B.30: Experiment 3: Room 5: Main bedroom
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Figure B.31: Experiment 3: Room 6: Kitchen
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Figure B.32: Experiment 3: Outside
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Figure B.33: Experiment 3: Wind speed
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B.5 Kalman Filter test
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Figure B.34: Experiment 4: Room 1: Bathroom
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Figure B.35: Experiment 4: Room 2: Entrance
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Figure B.36: Experiment 4: Room 3: Guest bedroom
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Figure B.37: Experiment 4: Room 4: Living room
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Figure B.38: Experiment 4: Room 5: Main bedroom
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Figure B.39: Experiment 4: Room 6: Kitchen

09.Apr 00:00 09.Apr 12:00 10.Apr 00:00 10.Apr 12:00 11.Apr 00:00 11.Apr 12:00 12.Apr 00:00

4

5

6

7

8

9

10

11

Outside

Time [Hours]

T
em

pe
ra

tu
re

 [° C
]

 

 
Input temperature

Figure B.40: Experiment 4: Outside
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Figure B.41: Experiment 4: Estimated parameters
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analysis of model predictive control for an energy efficient building heating system.

Applied Energy, 88(9):3079–3087, September 2011. ISSN 03062619. doi: 10.1016/

j.apenergy.2011.03.009. URL http://linkinghub.elsevier.com/retrieve/pii/

S0306261911001668.

[14] David Q. Mayne, James B. Rawlings, Christopher V. Rao, and Pierre OM Scokaert.

Constrained model predictive control: Stability and optimality. Automatica, 36(6):

789–814, 2000. URL http://www.sciencedirect.com/science/article/pii/

S0005109899002149.

http://linkinghub.elsevier.com/retrieve/pii/S0378778812003039
http://linkinghub.elsevier.com/retrieve/pii/S0378778810003750
http://linkinghub.elsevier.com/retrieve/pii/S0378778810003750
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6153586
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6153586
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6114301
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6114301
http://linkinghub.elsevier.com/retrieve/pii/S0306261911001668
http://linkinghub.elsevier.com/retrieve/pii/S0306261911001668
http://www.sciencedirect.com/science/article/pii/S0005109899002149
http://www.sciencedirect.com/science/article/pii/S0005109899002149


Bibliography 117

[15] Bjarne Foss and Aksel N. Heirung. Merging optimization and control, September

2013. URL http://www.itk.ntnu.no/fag/fordypning/TK16-filer/Samling1_

MPCnotat.pdf.

[16] R. E. Kalman. A new approach to linear filtering and prediction problems. Journal

of Basic Engineering, 82(1):35–45, March 1960. ISSN 0098-2202. doi: 10.1115/1.

3662552. URL http://dx.doi.org/10.1115/1.3662552.

[17] Dan Simon. Optimal State Estimation: Kalman, H Infinity, and Nonlinear

Approaches. John Wiley & Sons, June 2006. ISBN 9780470045336. URL

http://www.google.no/books?hl=no&lr=&id=UiMVoP_7TZkC&oi=fnd&pg=

PR3&dq=Optimal+State+Estimation:+Kalman,+H+Infinity,+and+Nonlinear+

Ap-+proaches&ots=L-Gf2LMgth&sig=Zdzf58Yv6VDXsTDEwDWTJK208zQ&redir_

esc=y#v=onepage&q&f=false.

[18] Giancarlo Marafioti. Enhanced model predictive control: Dual control approach

and state estimation issues. 2010. URL http://www.diva-portal.org/smash/

record.jsf?pid=diva2:379307.

[19] John Bagterp Jørgensen. A critical discussion of the continuous-discrete ex-

tended kalman filter. In European Congress of Chemical Engineering-6, 2007.

URL http://www.nt.ntnu.no/users/skoge/prost/proceedings/ecce6_sep07/

upload/3520.pdf.

[20] Fredrik Lindsten, Thomas B. Schön, and Lennart Svensson. A non-degenerate rao-

blackwellised particle filter for estimating static parameters in dynamical models.

In IFAC Proceedings. 16th IFAC Symposium on System Identification, volume 16,

page 1149–1154, 2012.

[21] P. Li, V. Kadirkamanathan, and R. Goodall. Estimation of parameters in a linear

state space model using a rao-blackwellised particle filter. IEE Proceedings - Control

Theory and Applications, 151(6):727–738, November 2004. ISSN 1350-2379, 1359-

7035. doi: 10.1049/ip-cta:20041008. URL http://digital-library.theiet.org/

content/journals/10.1049/ip-cta_20041008.

[22] Samuel Privara, Jiri Cigler, Zdenek Vana, Frauke Oldewurtel, Carina Sagerschnig,

and Eva Zacekova. Building modeling as a crucial part for building predictive

control. Energy and Buildings, 56:8–22, January 2013. ISSN 0378-7788. doi:

http://www.itk.ntnu.no/fag/fordypning/TK16-filer/Samling1_MPCnotat.pdf
http://www.itk.ntnu.no/fag/fordypning/TK16-filer/Samling1_MPCnotat.pdf
http://dx.doi.org/10.1115/1.3662552
http://www.google.no/books?hl=no&lr=&id=UiMVoP_7TZkC&oi=fnd&pg=PR3&dq=Optimal+State+Estimation:+Kalman,+H+Infinity,+and+Nonlinear+Ap-+proaches&ots=L-Gf2LMgth&sig=Zdzf58Yv6VDXsTDEwDWTJK208zQ&redir_esc=y#v=onepage&q&f=false
http://www.google.no/books?hl=no&lr=&id=UiMVoP_7TZkC&oi=fnd&pg=PR3&dq=Optimal+State+Estimation:+Kalman,+H+Infinity,+and+Nonlinear+Ap-+proaches&ots=L-Gf2LMgth&sig=Zdzf58Yv6VDXsTDEwDWTJK208zQ&redir_esc=y#v=onepage&q&f=false
http://www.google.no/books?hl=no&lr=&id=UiMVoP_7TZkC&oi=fnd&pg=PR3&dq=Optimal+State+Estimation:+Kalman,+H+Infinity,+and+Nonlinear+Ap-+proaches&ots=L-Gf2LMgth&sig=Zdzf58Yv6VDXsTDEwDWTJK208zQ&redir_esc=y#v=onepage&q&f=false
http://www.google.no/books?hl=no&lr=&id=UiMVoP_7TZkC&oi=fnd&pg=PR3&dq=Optimal+State+Estimation:+Kalman,+H+Infinity,+and+Nonlinear+Ap-+proaches&ots=L-Gf2LMgth&sig=Zdzf58Yv6VDXsTDEwDWTJK208zQ&redir_esc=y#v=onepage&q&f=false
http://www.diva-portal.org/smash/record.jsf?pid=diva2:379307
http://www.diva-portal.org/smash/record.jsf?pid=diva2:379307
http://www.nt.ntnu.no/users/skoge/prost/proceedings/ecce6_sep07/upload/3520.pdf
http://www.nt.ntnu.no/users/skoge/prost/proceedings/ecce6_sep07/upload/3520.pdf
http://digital-library.theiet.org/content/journals/10.1049/ip-cta_20041008
http://digital-library.theiet.org/content/journals/10.1049/ip-cta_20041008


Bibliography 118

10.1016/j.enbuild.2012.10.024. URL http://www.sciencedirect.com/science/

article/pii/S0378778812005336.

[23] Drury B. Crawley, Jon W. Hand, Michaël Kummert, and Brent T. Griffith. Con-
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