
HCRF

Hidden-state Conditional Random Field Library

User
Guide

Version

2.0

HCRF

User Guide

Main point of contact :
Louis-Philippe Morency

morency@ict.usc.edu

Contributors:
C. Mario Christoudias

Ariadna Quattoni
Hugues Salamin

Giota Stratou
Sybor Wang

Version 2.0a

January 12th, 2010

mailto:morency@ict.usc.edu

Table of Contents

Table of Contents i

Introduction 2

Installation 3

System Requirements 3

Package structure 3

Compilation 4

Microsoft Visual Studio (Windows) 4

Makefiles (Linux) 4

Matlab Installation 4

Licenses 5

Software Interface 6

Overview 6

Parameters 6

Data Format 7

MATLAB Interface 9

Overview 9

Action Descriptions 9

Action 'createToolbox' 9

Action 'setData' 10

Action 'loadData' 10

Action 'set' 11

Action 'getModel' 12

Action 'setModel' 12

Action 'saveModel' 13

Action 'loadModel' 13

Action 'train' 13

Action 'test' 14

Action 'getResults' 14

Action 'unloadData' 14

Action 'clearToolbox' 14

Sample program 14

C++ Interface 15

C++ Classes Overview 15

Main classes 15

Detailed Interface 15

Toolbox 16

DataSequence 17

DataSet 18

FeatureGenerator 18

FeatureType 19

FeatureVector 19

Feature 19

Custom Features and Toolbox 20

Troubleshooting 22

“Can’t find the matHCRF function” 22

"Error when running executables compiled with

OpenMP" 22

Acknowledgement 23

References 24

H C R F

1

H C R F

2

Introduction

HCRF is a C++ library for training and inference of Conditional
Random Field (CRF), Hidden-state CRF (HCRF) and Latent-
dynamic CRF (LDRCF) models.

his guide presents the functionalities and characteristics of the HCRF library. The
main purpose of this library is to offer a simple and intuitive interface to efficient
implementations of different Conditional Random Field models. The core part of
the library was implemented in C++. The hCRF library also offers Matlab and

Python interfaces. Matlab, Python and C++ interfaces are all compatible with Microsoft
Windows(XP/7) and Linux.

This library implements three main models: Conditional Random Field (CRF), Hidden-state
Conditional Random Fields (HCRF) and Latent-Dynamic Conditional Random Fields
(LDCRF). The CRF implementation is based on Lafferty et al. original paper [5] as well as
Sha and Pereira paper [6]. We implemented two variants of the HCRF model: Quattoni et al.
[3] (referred as HCRF model) and Gunawardana et al. [7] (referred as Gaussian-HCRF or
GHCRF model). Finally, we implemented the Latent-Dynamic CRF of Morency et al. [1]
which extends the original CRF model to include hidden variables. The CRF and LDCRF
models can be applied to unsegmented sequences while the HCRF (and GHCRF) should be
apply to pre-segmented sequences (only one label per sequence).

The following chapter explains the installation procedure for the hCRF library. Chapter 3
explains the different parameters of the demo application TestHCRF. Chapter 4 presents
the Matlab interface. Chapter 5 presents the C++ interface and the details of the
implementation.

Chapter

1

T

H C R F

 3

Installation

The hCRF library can be easily installed on a Microsoft Windows system using the
IntallShield installation package.

System Requirements

● Microsoft Visual Studio 2008 or better, or equivalent C++ compiler.

● MATLAB 7.1 or superior to use the MATLAB interface.

Package structure

The core installation file hcrf-x.xx.exe will copy on your machine the following components:

 hCRF\apps: C++ files and projects for the Matlab wrapper (matHCRF), the
Python wrapper (using SWIG) and the demo application (TestHCRF)

 hCRF\bin: hCRF demo program (TestHCRF.exe) and Matlab Mex files necessary
to access the Matlab interface;

 hCRF\doc: Documentation of the hCRf library;

 hCRF\Samples\C++: Sample data files to train CRF models using testHCRF.exe
application ;

 hCRF\Samples\Matlab: Samples programs for the Matlab interface;

 hCRF\libs: Contains source files for the core hCRF library and the 3rd party
libraries.

Chapter

2

H C R F

 4

 hCRF\libs\3rdParty: Contains the source code and projects for the 3rd party
libraries. cgDescent, liblbfgs and uncOptim are optimization algorithms . The
Matlab directory contains some file for the Matlab wrapper.

 hCRF\libs\shared\hCRF: core hCRF library.

Compilation

Microsoft Visual Studio (Windows)

The main solution for Microsoft Visual Studio is hCRF\apps\hCRF\hcrf.sln. This solution
contains 6 projects:

 hCRF: core part of the hCRF library. Contains the code implementing CRF,
LDCRF and HCRF.

 matHCRF: Matlab wrapper.

 testHCRF: Demo applications.

 cgDescent: An optimization library implementing Conjugate Gradient Descent.

 Lib (short version for liblfgs): Optimization library implementing Limited-memory
BFGS with L1 or L2 regularization.

 uncOptim: Optimization library implementing Limited-memory BFGS with only L2
regularization.

Makefiles (Linux)

To compile in Linux you will first need to install cmake and g++ compiler on your machine.

Each project contains a CMakeLists.txt. To compile, you should go to the project folder and
run "cmake ./ " command, which will create the necessary makefiles. In the same folder, run
"make" and that should compile the project and necessary dependencies.

Matlab Installation

To run the Matlab sample programs, you will need to add the hCRF\bin directory to your
Matlab path list. To add the path manually you can use the 'addpath' command as

> addpath('c:\matlab\work\hcrf');

or by using the MATLAB GUI path interface.

H C R F

 5

Licenses

HCRF library is distributed under GNU General Public License. Licenses for the 3rd party
libraries used, are as follows:

 CgDescent: Distributed under GNU General Public License. More information at:
http://www.math.ufl.edu/~hager/papers/CG

 Liblbfgs: Distributed under the term of the MIT license. Please refer to COPYING
file in the distribution. Refer to the libLBFGS web site for more information.
http://www.chokkan.org/software/liblbfgs/

 UncOptim: Distributed under GNU General Public License. Source code from:
http://faculties.sbu.ac.ir/~katanforoush/uncoptim/uncoptim.tar.gz

H C R F

 6

Software Interface

The demo program gives you command prompt interface to train and test different
models.

Overview

The HCRF library comes with a demo program called TestHCRF.exe. This program can
be used to train and test CRF, HCRF and LDCRF models from the command prompt.

Parameters

The demo program TestHCRF.exe is called using the following syntax:

TestHCRF.exe [-t] [-T] [-d filename] [-l filename] [-D filename] [-L

filename] [-m filename] [-f filename] [-r filename] [-o cg|bfgs|asa]

[-a crf|ldcrf|hcrf|ghcrf]

Parameters Description Default

-t Train the model using the training dataset

-T Test the model

-tc Resume training using the intermediate saved data

-d Name of the file containing the training data dataTrain.csv

-ds Name of the file containing sparse training data

-l Name of the file containing the training labels labelsTrain.csv

-TT Test the model on both the training and testing data

-D Name of the file containing the testing data dataTest.csv

-L Name of the file containing the testing labels labelsTest.csv

-m Name of the file where the model is written model.txt

-f Name of the file where the features are written features.txt

-r Name of the file where computed labels are written results.txt

-c Name of the file where statistics are written stats.txt

Chapter

3

H C R F

 7

-o Select optimizer: „cg‟, „bfgs‟ or „lbfgs‟ bfgs

-a Model: „crf‟,‟hcrf‟,‟ghcrf‟ or „ldcrf‟ ldcrf

-i Maximum number of iterations 300

-s2 Sigma2: L2 regularization factor 0.0 (no L2 reg.)

-s1 Sigma1: L1 regularization factor 0.0 (no L1 reg.)

-I Initialization strategy: „random‟, „gaussian‟ or „zero‟ random

-R Range for random initiliazation -1 1

-w Window size. Number of neighboring observations
used in the input vector. If w=1, then the next and
previous observations will be used.

0

-h Number of hidden state 3

-P Number of parallel thread 1

-p Debug print level 1

Data Format

The data files and label files are encoded using the CSV format (comma separated values).
Each file contains multiple matrices or vectors encoding the feature values (data files) or
label values (label files).

Data Files

A data file contains multiple matrices, one for each sequence. There are two types of data
files, dense and sparse matrix data

Dense matrix representation: For each matrix, the first line always contains 2 numbers: the
number of rows and the number of columns. The number of rows for each matrix
represents the number of features. All the matrices should have the same number of
features. The number of column for a specific matrix represents the number of time samples
in the sequence.

Sparse matrix representation: we can use data entries with sparse representation for the
matrices as follows:

#rows_matrix1 #columns_matrix1 0

row_nonZeroElement1 col_nonZeroElement1 value1

…

row_nonZeroElementN col_nonZeroElementN valueN

#rows_matrix2 #columns_matrix2 0

row_nonZeroElement1 col_nonZeroElement1 value1

H C R F

 8

…

Label Files

Since HCRF models have only one label associated to each sequence while CRF and
LDCRF have one label associated to each time sample in the sequence, the HCRF library
supports two file format for labels.

For HCRF and GHCRF models, the label file contains one integer per line, representing the
label for the specific sequence

For CRF and LDCRF models, the label file is encoded as a data file with matrix headers
specifying the number of row and columns but in this case the matrices always have one
row. This row should have the same length as the corresponding sequence in the data file,
with one label for each time sample.

H C R F

 9

MATLAB Interface

The HCRF library comes with a MATLAB interface (matHCRF). The
MATLAB library allows to access to full functionality of the C++ library.

Overview

The HCRF library functionalities are all accessed through the matHCRF function. The
matHCRF function is defined as:

matHCRF(Action,Parameters)

The following section describes the different action available as well as the associated
parameters for each action.

Action Descriptions

Action 'createToolbox'

This action creates an instance of the hCRF toolbox, and defines the main characteristics of
this particular toolbox.

matHCRF('createToolbox',modelType,optimizerType,nbHiddenStates,windowSize);

The parameters are:

Parameter Type Explanation Possible inputs

modelType String Defines the desired CRF type to
use.

'crf','hcrf',‟ghcrf‟, 'ldcrf'

optimizerType String Defines the optimizer to be used.
Use 'bfgs' for limited Newton and

'cg', 'bfgs', „lbfgs‟

Chapter

4

H C R F

 10

'cg' for conjugate gradient.

nbHiddenStates Int Defines the number of hidden
(latent) states in either HCRF
or LDCRF type toolboxes.

windowSize Int Defines the number of time
sample used to create the
feature vector.

0 : only the current time sample
is used
1+ : neighbor samples are
concatenated with the current
sample to create the final
feature vector

Action 'setData'

This action sets the data of a certain dataset into the current instance of hCRF.

matHCRF('setData',featureSequences,labelSequences,labels);

The main parameters are:

Parameter Type Explanation Possible inputs

featureSequences Array of
matrices

Each matrix contains the input
features for one sequence. All
matrices should have the same
number of rows, representing the
number of features per sample.

Double

labelSequences Array of
integer
vectors

Each vector contains the labels
for a specific sequence. Labels
are zero-based. Applies only to
CRF and LDCRF models.

Integer

labels Integer
vector

Each entry represents the label
of an entire sequence. Labels
are zero-based. Applies only to
HCRF and GHCRF models.

Integer

Action 'loadData'

This action reads from the dataset from files.

matHCRF('loadData',fileFeatureSequences,fileLabelSequences,fileLabels);

The main parameters are:

H C R F

 11

Parameter Type Explanation Possible inputs

fileFeatureSequences String Name of the CSV file containing
the precomputed features. See
Chapter 3 for details on the
format.

Double

fileLabelSequences String Name of the file containing the
labels for each node of each
sequence. Applies only to CRF
and LDCRF models. See
Chapter 3 for details about the
file format.

Integer

fileLabels String Name of the file containing the
label of each sequence. Applies
only to HCRF and GHCRF
model. See Chapter 3 for details
about the file format.

Integer

Action 'set'

This action sets internal parameters of the toolbox currently instanced.

matHCRF('set',parameter,parameter_value);

The possible parameters are:

Parameter Type Explanation Parameter_value

'maxIterations' String,Int Defines the maximum number of
iterations at training time.

Integer

'debugLevel' String,Int Defines Debug level and verbosity 0,1,2

'regularizationL2' String, Double Defines the value of the L2
regularization constant for
training.

Double

'regularizationL1' String, Double Defines the value of the L1
regularization constant for
training.

Double

weightsInitType String Mode for initializing weight:
„ZERO‟, „CONSTANT‟,
„RANDOM‟, „GAUSSIAN‟

String

'minRangeWeights' String, Double During initialization of the weight
vector, this parameter defines the
lower bound.

Double

H C R F

 12

'maxRangeWeights' String, Double During initialization of the weight
vector, this parameter defines the
higher bound.

Double

initWeights String, Double
vector

Used to manually initialize the
model using a weight vector

Double

'nbThreads' String, Int Defines number of threads to use
when multithreading is enabled
(default value: all cores)

Integer

randomSeed String, Double Random seed for the weight
initialization (when using the
random initialization mode)

Action 'getModel'

This action obtains the current model parameters from the currently instanced toolbox.

[model, featureDefinition]=matHCRF('getModel');

The function returns two structures, one containing the main model parameters and other
containing the generated features. The table below explains the parameters that the action
returns.

Parameter Type Explanation parameter_value

model Structure Contains the information about the
trained model including the weight
vector.

Structure

featureDefinition Structure Contains the features information
for the current model.

Structure

Action 'setModel'

This action sets the parameters for the model in the currently instanced toolbox.

matHCRF('setModel',model,featureDefinition);

This is particularly useful for already trained models.

Parameter Type Explanation parameter_value

Model Structure Contains the information about the
trained model including the weight
vector.

Structure

H C R F

 13

featureDefinition Structure Contains the features information
for the current model.

Structure

Action 'saveModel'

Save the current model parameters from the currently instanced toolbox.

matHCRF('saveModel',fileModel,fileFeatureDefinition);

The parameters are:

Parameter Type Explanation parameter_value

fileModel String Name of the file which will contain
the information about the trained
model including the weight vector.

fileFeatureDefinition String Name of the file which will contain
the features information for the
current model.

Action 'loadModel'

This action reads from file the parameters for the model in the currently instanced toolbox.

matHCRF(‘loadModel',fileModel,fileFeatureDefinition);

The parameters are:

Parameter Type Explanation parameter_value

fileModel String Name of the file which contains the
information about the trained model
including the weight vector.

fileFeatureDefinition String Name of the file which contains the
features information for the current
model.

Action 'train'

This action starts the training of the current instanced toolbox, using the parameters
previously set.

H C R F

 14

matHCRF('train’);

Action 'test'

This action initiates and run the test of the current instanced toolbox.

matHCRF('test');

The results can be later retrieved.

Action 'getResults'

Obtains the results from the last test.

matHCRF('getResults');

Action 'unloadData'

Clear the current dataset from memory.

matHCRF('unloadData');

Action 'clearToolbox'

Clear the current Toolbox object from memory.

matHCRF('clearToolbox');

Sample program

The HCRF library comes with one Matlab sample script called runSampleExperiment.m.
This sample script load data from file, train three models (CRF, LDCRF and HCRF) and
plot the resulting ROC curve. This is a simple example showing how to use the Matlab
interface. This sample program does not do any validation of the training parameters. The
dataset used in this sample example come from an eye gesture user study[4]. The input
features are 2D eye gaze estimates. The positive labels (1) represent eye gaze aversion
gestures.

H C R F

 15

C++ Interface

HCRF offers a C++ interface for training and testing all three models: CRF,
HCRF and LDCRF.

C++ Classes Overview

Main classes

The following classes are the main classes needed to interact with hCRF:

Name Inherit from Description

Toolbox Main interface for the hCRF library.

ToolboxCRF Toolbox Implementation of the Toolbox abstract class for CRF.

ToolboxLDCRF Toolbox Implementation of the Toolbox abstract class for
LDCRF.

ToolboxHCRF Toolbox Implementation of the Toolbox abstract class for
HCRF.

ToolboxGHCRF ToolboxHCRF Simple modification of ToolboxHCRF to include two
new types of features. Implements the Gaussian-
HCRF model.

DataSequence Input features and labels for a specific sequence.

DataSet List<DataSequence> List of sequences and labels.

Detailed Interface

The following subsections list and describe the member functions of the most important
classes.

Chapter

5

H C R F

 16

Toolbox

Toolbox classes are utility classes designed to give a user friendly interface to train and test
different models. There are three implementations of the abstract class Toolbox, one for
each model: ToolboxCRF, ToolboxHCRF and ToolboxLDCRF. All three classes offer the
same interface, except for the constructor function.

Constructors

 ToolboxCRF(): This constructor expects two arguments: the type

of optimizer and the window size. There are two optimizers

currently implanted: conjugate gradient descent and BFGS. The

parameter window size can be used to concatenate neighborhood

feature vectors. The defaults value is 0, no concatenation.

 ToolboxHCRF(): This constructor expects three arguments: the

number of hidden states, the type of optimizer and the window

size. The number of hidden state is the total number of possible

values the hidden state variable can take. These hidden states

are shared along all class labels.

 ToolboxGHCRF(): This constructor expects three arguments: the

number of hidden states, the type of optimizer and the window

size. The number of hidden state is the total number of possible

values the hidden state variable can take. These hidden states

are shared along all class labels.

 ToolboxLDCRF(): This constructor expects three arguments: the

number of hidden states per labels, the type of optimizer and

the window size. The total number of hidden states is equal to

the number of labels time the number of hidden states per

labels.

Training and testing

 train(): Train the model using the Dataset passed as argument.

The toolbox should have been initialized properly (i.e., set

number of hidden states and regularization factor).

 test(): Apply the current model to each sequences in the

Dataset. Optionally, save the results on files.

Load and save

 load(): Load a model and feature descriptions in memory.

 save(): Save on file the model and feature descriptions.

Suppose that the model was trained before.

H C R F

 17

Utility functions

 getMaxNbIteration(): Return the maximum number of iteration for

the optimizer. Default: 200.

 getRegularization(): Return the current value for the

regularization term. Default: 0, no regularization.

 getDebugLevel(): Return the level of debug messages. 2: Message

every iteration. 1: Message only at the end of training. 0: No

debug messages. Default: 1.

 setDebugLevel(): Set the level of debug messages.

 setRangeWeight(): Set the maximum and minimum range for

initializations of the weight vector. Each element of the

weight vector will be randomly picked between these two values.

Default: [-1 1].

 setMinRangeWeight(): Set minimum value for the weight vector.

Default: -1.

 setMaxRangeWeight(): Set maximum value for the weight vector.

Default: 1.

 getMinRangeWeight(): Returns minimum value for the weight

vector.

 getMaxRangeWeight():Returns maximum value for the weight vector.

Internal structures

 getModel(): Returns a pointer on the internal Model object.

 getFeatureGenerator(): Returns a pointer on the internal

FeatureGenerator object.

 getOptimizer(): Returns a pointer on the internal Optimizer

object.

DataSequence

This class is a container structure for sequences with pre-computed features. These features
will be directly passed to the training algorithm (through the RawFeature or
WindowRawFeature class). This class can be expanded to include other types of features
(e.g., words). This class also contains three other type of information: the labels, the adjency
matrix and the results from the test() function. The labels can be encoded as a single value
(for HCRF models) or as a vector of labels (for CRF and LDCRF). The adjency matrix
represents the connectivity between each node of the sequence. For a chain, this matrix

H C R F

 18

should be diagonal. If no adjency matrix is set, then the Model class will create one
automatically based on the current settings. Finally, the class contains the estimated labels
and probabilities that are computed by the test() function.

DataSet

This class is an augmented list of data sequences where we added utilities functions to read
data from file and parse the sequences to find the number of labels (sequence labels for
HCRF and state labels for CRF and LDCRF) and number of pre-computed features.

FeatureGenerator

This class creates a vector of all non-zero features for a given data sequence and a given data
position in the sequence. This task is performed by calling the main function of this class:
getFeatures. The main body of this function goes through all the active FeatureType and
records the non-zero features from each FeatureType.

Main function

 getFeatures(): Based on a DataSequence, a model and a position

in the sequence, this function returns the list of non-zeros

features. Optionally, the index of the previous node can be

passed so that edge features are also returned. The parameter

seqLabel is used by HCRF models to specify the current sequence

label.

FeatureType utility functions

 AddFeature(): Add a FeatureType object to the list of active

FeatureType. This list will later be used by the function

getFeatures() to compute the non-zeros features.

 initFeatures(): Initialize all the FeatureType objects that were

added on the list. This function also makes sure that each

feature has a unique ID.

 clearFeatureList(): Remove all the FeatureType objects from the

active list.

All features utility functions

 getNumberOfFeatures(): Returns the number of features (zero and

non-zero) for a specific type (edge and/or state features).

 getAllFeatures(): Returns a vector with all possible features

for this model. The value of each features are irrelevant. This

function can be used at debugging to know the meaning of each

feature.

H C R F

 19

FeatureType

This abstract class presents a uniform interface for creating features. Currently, four
implementations of this class are available: RawFeatures, WindowRawFeatures,
EdgeFeatures, LabelEdgeFeatures.

The RawFeatures represents “state” feature functions that depend only on the observation
vector and the current position in the sequence. These features can be used with all three
models (CRF, HCRF and LDCRF). A feature is created for each pair of observation feature
and label (for CRF) or hidden state (HCRF, GHCRF and LDCRF). No processing of the
original feature values is done. This class returns the value stored in the DataSequence. The
RawFeature class should be used as a template to implement your own class for feature
generation.

The WindowRawFeature is an extension of RawFeature where observation feature vector is
extended to include neighbor observations. If the window size is 1, then this class will
concatenate the observations from the node before and after the current node.

The EdgeFeatures represents “edge” feature function between two adjacent labels (for CRF)
or hidden states (for HCRF, GHCRF and LDCRF). These edge features depends on the
adjacency matrix for the specific DataSequence. Given the indices for the current and
previous nodes, the EdgeFeatures will return non-zero feature only if there is a link between
the two nodes.

The LabelEdgeFeatures represents the feature functions between a hidden state and the
sequence label. This FeatureType applies only to HCRF models. While this feature has only
binary values like the EdgeFeature, it is considered as a “state” feature during training since
the sequence label is a known observation during training.

 Init(): Initialize the number of feature for this specific

FeatureType based on the type of model (CRF, HCRF, LDCRF) and

based on the number of Raw features in the Dataset. This

function could also be used to initialize some internal

structures such as a dictionary of all the words for

DataSequence consisting of sentences.

FeatureVector

This class represents a vector of Features. This class was created for efficiency so that
memory allocation does not happen too often. This class replaces the original
implementation using std::vector.

Feature

This class structure represents a non-zero feature value in the FeatureVector. The two most
important fields are the globalId and the value.

H C R F

 20

 globalId: The global index represents a unique index specific to

that feature. During the call of

FeatureGenerator::InitFeatures(), the library ensures that no

feature has the same index number. This global Index represents

the position of this feature in the weight vector.

 Value: The value field member represents the value of this

feature.

 id: Local ID of this feature for the specific FeatureType. The global Id of a feature
is equal to the id + the offset from the FeatureType.

 nodeIndex: index of the node representing the current position.

 NodeState: State of the node at the current position. For a CRF,

this state represents the label. For HCRF and LDCRF, this state

represents the hidden state.

 nodeIndex: index of the node representing the previous position.

Applies only to “edge” features. -1 otherwise.

 prevNodeState: State of the node at the previous position.

 sequenceLabel: Label for this sequence. Applies to HCRF models

only.

Custom Features and Toolbox

In this section we describe how to create your own features. This tutorial refers to two
classes: MyFeatures and MyToolbox.

The class MyFeatures (\include\MyFeatures.h and \src\MyFeatures.cpp) is an example of
custom feature generation. This class is based on RawFeatures but instead of returning the
original precomputed features for each state, this class returns the squared value of the
precomputed features. This is a small modification but the goal here is to show how to
create your own features.

The class MyToolbox (\include\MyToolbox.h and \src\MyToolbox.cpp) is an example of
a CRF toolbox that uses the new feature generator MyFeatures. This class inherits from
ToolboxCRF. The same technique would apply for HCRF and LDCRF.

The most important function in MyFeatures is the getFeatures() function. This function is
called automatically by the FeatureGenerator every time the inference engine needs to know
the non-zero features for a specific node/sample (i.e., sample j) in the DataSequence. The
main purpose of FeatureType::getFeatures() is to return add to the variable ListFeatures all
the non-zero features for the sample j in the DataSequence X.

H C R F

 21

There is two type of call for the function getFeatures: state features and transition (edges)
features. A state feature is a feature that depends only on one state node. RawFeatures,
WindowRawFeatures and MyFeatures are state feature generators. A transition/edge
feature depends on two state nodes. EdgeFeatures and LabelEdgeFeatures (HCRF and
LDCRF only) are transition feature generators. If the FeatureGenerator wants only the state
features, the previousNodeIndex will be equal to -1. If the FeatureGenerator wants only the
edge/transition features, then the previousNodeIndex will be larger or equal to 0.

H C R F

 22

Troubleshooting

In this chapter, we describe solutions to common problems/mistakes happening when
installing and using the HCRF library.

 “Can’t find the matHCRF function”

Problem

When trying to access the Matlab interface (matHCRF), Matlab can‟t find the matHCRF
function.

Solution

Be sure that you added \hCRF\bin in Matlab PATH variable. To add it, use the command
addpath('c:\path_to_bin').

"Error when running executables compiled with OpenMP"

Problem

If projects compiled with OpenMP do not work, there is a chance that the target machine
does not have some necessary openMP dll's installed.

Solution

Installing "Microsoft Visual C++ 2008 SP1 Redistributable Package" should fix this error.

Chapter

6

../../../../path_to_bin

H C R F

 23

Acknowledgement

The authors would to thank Juan Pablo Narino for his help debugging and
documenting the first release.

 24

References

[1] L.-P. Morency, A. Quattoni and Trevor Darrell, Latent-Dynamic Discriminative
Models for Continuous Gesture Recognition, Proceedings IEEE Conference on
Computer Vision and Pattern Recognition, June 2007

[2] Wang, S. Quattoni, A., Morency, L.-P., Demirdjian, D., and Trevor Darrell, Hidden
Conditional Random Fields for Gesture Recognition, Proceedings IEEE Conference
on Computer Vision and Pattern Recognition, June 2006

[3] A. Quattoni, M. Collins, T. Darrell, Conditional Random Fields for Object
Recognition, In Neural Information Processing Systems, 2004

[4] L.-P. Morency, C. M. Christoudias and T. Darrell, Recognizing Gaze Aversion
Gestures in Embodied Conversational Discourse, Proceedings International
Conference on Multimodal Interfaces, October 2006

[5] Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In: Proc. 18th International Conf. on
Machine Learning, Morgan Kaufmann, San Francisco, CA (2001) 282–289

[6] Sha, F., Pereira, F.: Shallow parsing with conditional random fields. Technical Report
MS-CIS-02-35, University of Pennsylvania (2003)

[7] Gunawardana, A., Mahajan, M., Acero, A, and Platt J. C. (2005). Hidden
conditional random fields for phone classification . In International Conference on
Speech Communication and Technology.

