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Introduction 

HCRF is a C++ library for training and inference of  Conditional 
Random Field (CRF), Hidden-state CRF (HCRF) and Latent-
dynamic CRF (LDRCF) models. 

his guide presents the functionalities and characteristics of the HCRF library.  The 
main purpose of this library is to offer a simple and intuitive interface to efficient 
implementations of different Conditional Random Field models.  The core part of 
the library was implemented in C++.  The hCRF library also offers Matlab  and 

Python interfaces.  Matlab, Python and C++ interfaces are all compatible with Microsoft 
Windows(XP/7) and Linux. 

This library implements three main models: Conditional Random Field (CRF), Hidden-state 
Conditional Random Fields (HCRF) and Latent-Dynamic Conditional Random Fields 
(LDCRF). The CRF implementation is based on Lafferty et al. original paper [5] as well as 
Sha and Pereira paper [6]. We implemented two variants of the HCRF model: Quattoni et al. 
[3] (referred as HCRF model) and Gunawardana et al. [7] (referred as Gaussian-HCRF or 
GHCRF model). Finally, we implemented the Latent-Dynamic CRF of Morency et al. [1] 
which extends the original CRF model to include hidden variables. The CRF and LDCRF 
models can be applied to unsegmented sequences while the HCRF (and GHCRF) should be 
apply to pre-segmented sequences (only one label per sequence). 

The following chapter explains the installation procedure for the hCRF library. Chapter 3 
explains the different parameters of the demo application TestHCRF. Chapter 4 presents 
the Matlab interface.  Chapter 5 presents the C++ interface and the details of the 
implementation. 
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Installation 

The hCRF library can be easily installed on a Microsoft Windows system using the 
IntallShield installation package.  

System Requirements 

● Microsoft Visual Studio 2008 or better, or equivalent C++ compiler. 

● MATLAB 7.1 or superior to use the MATLAB interface. 

Package structure 

The core installation file hcrf-x.xx.exe will copy on your machine the following components: 

 hCRF\apps: C++ files and projects for the Matlab wrapper (matHCRF), the 
Python wrapper (using SWIG) and the demo application (TestHCRF) 

 hCRF\bin:  hCRF demo program (TestHCRF.exe) and Matlab Mex files necessary 
to access the Matlab interface; 

 hCRF\doc:  Documentation of the hCRf library; 

 hCRF\Samples\C++:  Sample data files to train CRF models using testHCRF.exe 
application ; 

 hCRF\Samples\Matlab:  Samples programs for the Matlab interface; 

 hCRF\libs:  Contains source files for the core hCRF library and the 3rd party 
libraries. 

Chapter 
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 hCRF\libs\3rdParty: Contains the source code and projects for the 3rd party 
libraries. cgDescent, liblbfgs and uncOptim are optimization algorithms . The 
Matlab directory contains some file for the Matlab wrapper. 

 hCRF\libs\shared\hCRF: core hCRF library. 

Compilation 

Microsoft Visual Studio (Windows) 

The main solution for Microsoft Visual Studio is hCRF\apps\hCRF\hcrf.sln. This solution 
contains 6 projects: 

 hCRF: core part of the hCRF library. Contains the code implementing CRF, 
LDCRF and HCRF. 

 matHCRF: Matlab wrapper. 

 testHCRF: Demo applications. 

 cgDescent: An optimization library implementing Conjugate Gradient Descent. 

 Lib (short version for liblfgs): Optimization library implementing Limited-memory 
BFGS with L1 or L2 regularization. 

 uncOptim: Optimization library implementing Limited-memory BFGS with only L2 
regularization. 

Makefiles (Linux) 

To compile in Linux you will first need to install cmake and g++ compiler on your machine.  

Each project contains a CMakeLists.txt. To compile, you should go to the project folder and 
run "cmake ./ " command, which will create the necessary makefiles. In the same folder, run 
"make" and that should compile the project and necessary dependencies. 

Matlab Installation 

To run the Matlab sample programs, you will need to add the hCRF\bin directory to your 
Matlab path list. To add the path manually you can use the 'addpath' command as 

> addpath('c:\matlab\work\hcrf'); 

or by using the MATLAB GUI path interface. 
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Licenses 

HCRF library is distributed under GNU General Public License. Licenses for the 3rd party 
libraries used, are as follows: 

 CgDescent: Distributed under GNU General Public License. More information at: 
http://www.math.ufl.edu/~hager/papers/CG 

 Liblbfgs: Distributed under the term of the MIT license. Please refer to COPYING 
file in the distribution. Refer to the libLBFGS web site for more information. 
http://www.chokkan.org/software/liblbfgs/ 

 UncOptim: Distributed under GNU General Public License. Source code from: 
http://faculties.sbu.ac.ir/~katanforoush/uncoptim/uncoptim.tar.gz 
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Software Interface 

The demo program gives you command prompt interface to train and test different 
models.   

Overview 

The HCRF library comes with a demo program called TestHCRF.exe.   This program can 
be used to train and test CRF, HCRF and LDCRF models from the command prompt. 

Parameters 

The demo program TestHCRF.exe is called using the following syntax: 

TestHCRF.exe [-t] [-T] [-d filename] [-l filename] [-D filename] [-L 

filename] [-m filename] [-f filename] [-r filename] [-o cg|bfgs|asa] 

[-a crf|ldcrf|hcrf|ghcrf] 

 

 

Parameters Description Default 

-t Train the model using the training dataset  

-T Test the model  

-tc Resume training using the intermediate saved data  

-d Name of the file containing the training data dataTrain.csv 

-ds Name of the file containing sparse training data  

-l Name of the file containing the training labels labelsTrain.csv 

-TT Test the model on both the training and testing data  

-D Name of the file containing the testing data dataTest.csv 

-L Name of the file containing the testing labels labelsTest.csv 

-m Name of the file where the model is written model.txt 

-f Name of the file where the features are written features.txt 

-r Name of the file where computed labels are written results.txt 

-c Name of the file where statistics are written stats.txt 

Chapter 
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-o Select optimizer: „cg‟, „bfgs‟ or „lbfgs‟ bfgs 

-a Model: „crf‟,‟hcrf‟,‟ghcrf‟ or „ldcrf‟ ldcrf 

-i Maximum number of iterations 300 

-s2 Sigma2: L2 regularization factor 0.0 (no L2 reg.) 

-s1 Sigma1: L1 regularization factor 0.0 (no L1 reg.) 

-I Initialization strategy: „random‟, „gaussian‟ or „zero‟ random 

-R Range for random initiliazation -1 1 

-w Window size. Number of neighboring observations 
used in the input vector. If w=1, then the next and 
previous observations will be used. 

0 

-h Number of hidden state 3 

-P Number of parallel thread 1 

-p Debug print level 1 
 

Data Format 

The data files and label files are encoded using the CSV format (comma separated values).  
Each file contains multiple matrices or vectors encoding the feature values (data files) or 
label values (label files). 

Data Files 

A data file contains multiple matrices, one for each sequence.  There are two types of data 
files, dense and sparse matrix data  

Dense matrix representation: For each matrix, the first line always contains 2 numbers: the 
number of rows and the number of columns. The number of rows for each matrix 
represents the number of features.  All the matrices should have the same number of 
features. The number of column for a specific matrix represents the number of time samples 
in the sequence.   

Sparse matrix representation:  we can use data entries with sparse representation for the 
matrices as follows:  

#rows_matrix1  #columns_matrix1  0 

row_nonZeroElement1 col_nonZeroElement1 value1 

… 

row_nonZeroElementN col_nonZeroElementN valueN 

#rows_matrix2  #columns_matrix2  0 

row_nonZeroElement1 col_nonZeroElement1 value1 
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… 

Label Files 

Since HCRF models have only one label associated to each sequence while CRF and 
LDCRF have one label associated to each time sample in the sequence, the HCRF library 
supports two file format for labels. 

For HCRF and GHCRF models, the label file contains one integer per line, representing the 
label for the specific sequence 

For CRF and LDCRF models, the label file is encoded as a data file with matrix headers 
specifying the number of row and columns but in this case the matrices always have one 
row.  This row should have the same length as the corresponding sequence in the data file, 
with one label for each time sample. 
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MATLAB Interface 

The HCRF library comes with a MATLAB interface (matHCRF). The 
MATLAB library allows to access to full functionality of  the C++ library. 

Overview 

The HCRF library functionalities are all accessed through the matHCRF function. The 
matHCRF function is defined as: 

matHCRF(Action,Parameters) 

The following section describes the different action available as well as the associated 
parameters for each action. 

Action Descriptions 

Action 'createToolbox' 

This action creates an instance of the hCRF toolbox, and defines the main characteristics of 
this particular toolbox. 

matHCRF('createToolbox',modelType,optimizerType,nbHiddenStates,windowSize); 

The parameters are: 

Parameter Type Explanation Possible inputs 

modelType String Defines the desired CRF type to 
use. 

'crf','hcrf',‟ghcrf‟, 'ldcrf' 

optimizerType String Defines the optimizer to be used. 
Use 'bfgs' for limited Newton and 

'cg', 'bfgs', „lbfgs‟ 

Chapter 
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'cg' for conjugate gradient. 

nbHiddenStates Int Defines the number of hidden 
(latent) states in either HCRF 
or LDCRF type toolboxes. 

 

windowSize Int Defines the number of time 
sample used to create the 
feature vector.  

0 : only the current time sample 
is used 
1+ : neighbor samples are 
concatenated with the current 
sample to create the final 
feature vector 

 

Action 'setData' 

This action sets the data of a certain dataset into the current instance of hCRF.  

matHCRF('setData',featureSequences,labelSequences,labels); 

The main parameters are: 

Parameter Type Explanation Possible inputs 

featureSequences Array of 
matrices 

Each matrix contains the input 
features for one sequence. All 
matrices should have the same 
number of rows, representing the 
number of features per sample.  

Double 

labelSequences Array of 
integer 
vectors 

Each vector contains the labels 
for a specific sequence. Labels 
are zero-based. Applies only to 
CRF and LDCRF models. 

Integer 

labels Integer 
vector 

Each entry represents the label 
of an entire sequence. Labels 
are zero-based. Applies only to 
HCRF and GHCRF models. 

Integer 

 

 

Action 'loadData' 

This action reads from the dataset from files.  

matHCRF('loadData',fileFeatureSequences,fileLabelSequences,fileLabels); 

The main parameters are: 
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Parameter Type Explanation Possible inputs 

fileFeatureSequences String Name of the CSV file containing 
the precomputed features. See 
Chapter 3 for details on the 
format. 

Double 

fileLabelSequences String Name of the file containing the 
labels for each node of each 
sequence. Applies only to CRF 
and LDCRF models. See 
Chapter 3 for details about the 
file format. 

Integer 

fileLabels String Name of the file containing the 
label of each sequence. Applies 
only to HCRF and GHCRF 
model. See Chapter 3 for details 
about the file format. 

Integer 

 

 

Action 'set' 

This action sets internal parameters of the toolbox currently instanced. 

matHCRF('set',parameter,parameter_value); 

The possible parameters are: 

Parameter Type Explanation Parameter_value 

'maxIterations' String,Int Defines the maximum number of 
iterations at training time. 

Integer 

'debugLevel' String,Int Defines Debug level and verbosity 0,1,2 

'regularizationL2' String, Double Defines the value of the L2 
regularization constant for 
training. 

Double 

'regularizationL1' String, Double Defines the value of the L1 
regularization constant for 
training. 

Double 

weightsInitType String Mode for initializing weight: 
„ZERO‟, „CONSTANT‟, 
„RANDOM‟, „GAUSSIAN‟ 

String 

'minRangeWeights' String, Double During initialization of the weight 
vector, this parameter defines the 
lower bound. 

Double 



H C R F  

 12 

'maxRangeWeights' String, Double During initialization of the weight 
vector, this parameter defines the 
higher bound. 

Double 

initWeights String, Double 
vector 

Used to manually initialize the 
model using a weight vector  

Double 

'nbThreads' String, Int Defines number of threads to use 
when multithreading is enabled 
(default value: all cores) 

Integer 

randomSeed String, Double Random seed for the weight 
initialization (when using the 
random initialization mode) 

 

 

Action 'getModel' 

This action obtains the current model parameters from the currently instanced toolbox.  

[model, featureDefinition]=matHCRF('getModel'); 

The function returns two structures, one containing the main model parameters and other 
containing the generated features. The table below explains the parameters that the action 
returns. 

Parameter Type Explanation parameter_value 

model Structure Contains the information about the 
trained model including the weight 
vector. 

Structure 

featureDefinition Structure Contains the features information 
for the current model. 

Structure 

 

Action 'setModel' 

This action sets the parameters for the model in the currently instanced toolbox.   

matHCRF('setModel',model,featureDefinition); 

This is particularly useful for already trained models.  

Parameter Type Explanation parameter_value 

Model Structure Contains the information about the 
trained model including the weight 
vector. 

Structure 
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featureDefinition Structure Contains the features information 
for the current model. 

Structure 

 

Action 'saveModel' 

Save the current model parameters from the currently instanced toolbox.  

matHCRF('saveModel',fileModel,fileFeatureDefinition); 

The parameters are: 

Parameter Type Explanation parameter_value 

fileModel String Name of the file which will contain 
the information about the trained 
model including the weight vector. 

 

fileFeatureDefinition String Name of the file which will contain 
the features information for the 
current model. 

 

 

Action 'loadModel' 

This action reads from file the parameters for the model in the currently instanced toolbox.   

matHCRF(‘loadModel',fileModel,fileFeatureDefinition); 

The parameters are: 

Parameter Type Explanation parameter_value 

fileModel String Name of the file which contains the 
information about the trained model 
including the weight vector. 

 

fileFeatureDefinition String Name of the file which contains the 
features information for the current 
model. 

 

 

Action 'train' 

This action starts the training of the current instanced toolbox, using the parameters 
previously set. 
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matHCRF('train’); 

 

Action 'test' 

This action initiates and run the test of the current instanced toolbox.  

matHCRF('test'); 

The results can be later retrieved. 

 

Action 'getResults' 

Obtains the results from the last test. 

matHCRF('getResults'); 

 

Action 'unloadData' 

Clear the current dataset from memory. 

matHCRF('unloadData'); 

 

Action 'clearToolbox' 

Clear the current Toolbox object from memory. 

matHCRF('clearToolbox'); 

Sample program 

The HCRF library comes with one Matlab sample script called runSampleExperiment.m. 
This sample script load data from file, train three models (CRF, LDCRF and HCRF) and 
plot the resulting ROC curve.  This is a simple example showing how to use the Matlab 
interface.  This sample program does not do any validation of the training parameters.  The 
dataset used in this sample example come from an eye gesture user study[4].  The input 
features are 2D eye gaze estimates.  The positive labels (1) represent eye gaze aversion 
gestures. 
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C++ Interface 

HCRF offers a C++ interface for training and testing all three models: CRF, 
HCRF and LDCRF. 

C++ Classes Overview 

Main classes 

The following classes are the main classes needed to interact with hCRF: 

Name Inherit from Description 

Toolbox  Main interface for the hCRF library. 

ToolboxCRF Toolbox Implementation of the Toolbox abstract class for CRF. 

ToolboxLDCRF Toolbox Implementation of the Toolbox abstract class for 
LDCRF. 

ToolboxHCRF Toolbox Implementation of the Toolbox abstract class for 
HCRF. 

ToolboxGHCRF ToolboxHCRF Simple modification of ToolboxHCRF to include two 
new types of features. Implements the Gaussian-
HCRF model. 

DataSequence  Input features and labels for a specific sequence. 

DataSet List<DataSequence> List of sequences and labels. 

 

Detailed Interface 

The following subsections list and describe the member functions of the most important 
classes. 

Chapter 
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Toolbox 

Toolbox classes are utility classes designed to give a user friendly interface to train and test 
different models. There are three implementations of the abstract class Toolbox, one for 
each model: ToolboxCRF, ToolboxHCRF and ToolboxLDCRF. All three classes offer the 
same interface, except for the constructor function. 

Constructors 

 ToolboxCRF(): This constructor expects two arguments: the type 

of optimizer and the window size. There are two optimizers 

currently implanted: conjugate gradient descent and BFGS. The 

parameter window size can be used to concatenate neighborhood 

feature vectors. The defaults value is 0, no concatenation. 

 ToolboxHCRF(): This constructor expects three arguments: the 

number of hidden states, the type of optimizer and the window 

size. The number of hidden state is the total number of possible 

values the hidden state variable can take. These hidden states 

are shared along all class labels. 

 ToolboxGHCRF(): This constructor expects three arguments: the 

number of hidden states, the type of optimizer and the window 

size. The number of hidden state is the total number of possible 

values the hidden state variable can take. These hidden states 

are shared along all class labels. 

 ToolboxLDCRF(): This constructor expects three arguments: the 

number of hidden states per labels, the type of optimizer and 

the window size. The total number of hidden states is equal to 

the number of labels time the number of hidden states per 

labels. 

Training and testing 

 train(): Train the model using the Dataset passed as argument.  

The toolbox should have been initialized properly (i.e., set 

number of hidden states and regularization factor). 

 test(): Apply the current model to each sequences in the 

Dataset. Optionally, save the results on files. 

Load and save 

 load(): Load a model and feature descriptions in memory. 

 save(): Save on file the model and feature descriptions.  

Suppose that the model was trained before. 
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Utility functions 

 getMaxNbIteration(): Return the maximum number of iteration for 

the optimizer. Default: 200. 

 getRegularization(): Return the current value for the 

regularization term. Default: 0, no regularization. 

 getDebugLevel(): Return the level of debug messages. 2: Message 

every iteration. 1: Message only at the end of training. 0: No 

debug messages. Default: 1. 

 setDebugLevel(): Set the level of debug messages. 

 setRangeWeight(): Set the maximum and minimum range for 

initializations of the weight vector.  Each element of the 

weight vector will be randomly picked between these two values. 

Default: [-1 1]. 

 setMinRangeWeight(): Set minimum value for the weight vector. 

Default: -1. 

 setMaxRangeWeight(): Set maximum value for the weight vector. 

Default: 1. 

 getMinRangeWeight(): Returns minimum value for the weight 

vector. 

 getMaxRangeWeight():Returns maximum value for the weight vector. 

Internal structures 

 getModel(): Returns a pointer on the internal Model object. 

 getFeatureGenerator(): Returns a pointer on the internal 

FeatureGenerator object. 

 getOptimizer():  Returns a pointer on the internal Optimizer 

object. 

DataSequence 

This class is a container structure for sequences with pre-computed features. These features 
will be directly passed to the training algorithm (through the RawFeature or 
WindowRawFeature class).  This class can be expanded to include other types of features 
(e.g., words). This class also contains three other type of information: the labels, the adjency 
matrix and the results from the test() function. The labels can be encoded as a single value 
(for HCRF models) or as a vector of labels (for CRF and LDCRF). The adjency matrix 
represents the connectivity between each node of the sequence.  For a chain, this matrix 
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should be diagonal. If no adjency matrix is set, then the Model class will create one 
automatically based on the current settings. Finally, the class contains the estimated labels 
and probabilities that are computed by the test() function. 

DataSet 

This class is an augmented list of data sequences where we added utilities functions to read 
data from file and parse the sequences to find the number of labels (sequence labels for 
HCRF and state labels for CRF and LDCRF) and number of pre-computed features. 

FeatureGenerator 

This class creates a vector of all non-zero features for a given data sequence and a given data 
position in the sequence.  This task is performed by calling the main function of this class: 
getFeatures. The main body of this function goes through all the active FeatureType and 
records the non-zero features from each FeatureType. 

Main function 

 getFeatures(): Based on a DataSequence, a model and a position 

in the sequence, this function returns the list of non-zeros 

features. Optionally, the index of the previous node can be 

passed so that edge features are also returned. The parameter 

seqLabel is used by HCRF models to specify the current sequence 

label. 

FeatureType utility functions 

 AddFeature(): Add a FeatureType object to the list of active 

FeatureType. This list will later be used by the function 

getFeatures() to compute the non-zeros features. 

 initFeatures(): Initialize all the FeatureType objects that were 

added on the list. This function also makes sure that each 

feature has a unique ID. 

 clearFeatureList(): Remove all the FeatureType objects from the 

active list. 

All features utility functions 

 getNumberOfFeatures(): Returns the number of features (zero and 

non-zero) for a specific type (edge and/or state features). 

 getAllFeatures(): Returns a vector with all possible features 

for this model. The value of each features are irrelevant. This 

function can be used at debugging to know the meaning of each 

feature. 



H C R F  

 19 

FeatureType 

This abstract class presents a uniform interface for creating features.  Currently, four 
implementations of this class are available: RawFeatures, WindowRawFeatures, 
EdgeFeatures, LabelEdgeFeatures.  

The RawFeatures represents “state” feature functions that depend only on the observation 
vector and the current position in the sequence.  These features can be used with all three 
models (CRF, HCRF and LDCRF). A feature is created for each pair of observation feature 
and label (for CRF) or hidden state (HCRF, GHCRF and LDCRF). No processing of the 
original feature values is done. This class returns the value stored in the DataSequence. The 
RawFeature class should be used as a template to implement your own class for feature 
generation. 

The WindowRawFeature is an extension of RawFeature where observation feature vector is 
extended to include neighbor observations.  If the window size is 1, then this class will 
concatenate the observations from the node before and after the current node. 

The EdgeFeatures represents “edge” feature function between two adjacent labels (for CRF) 
or hidden states (for HCRF, GHCRF and LDCRF). These edge features depends on the 
adjacency matrix for the specific DataSequence. Given the indices for the current and 
previous nodes, the EdgeFeatures will return non-zero feature only if there is a link between 
the two nodes. 

The LabelEdgeFeatures represents the feature functions between a hidden state and the 
sequence label.  This FeatureType applies only to HCRF models. While this feature has only 
binary values like the EdgeFeature, it is considered as a “state” feature during training since 
the sequence label is a known observation during training. 

 Init(): Initialize the number of feature for this specific 

FeatureType based on the type of model (CRF, HCRF, LDCRF) and 

based on the number of Raw features in the Dataset. This 

function could also be used to initialize some internal 

structures such as a dictionary of all the words for 

DataSequence consisting of sentences. 

FeatureVector 

This class represents a vector of Features. This class was created for efficiency so that 
memory allocation does not happen too often. This class replaces the original 
implementation using std::vector. 

Feature 

This class structure represents a non-zero feature value in the FeatureVector.  The two most 
important fields are the globalId and the value.   
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 globalId: The global index represents a unique index specific to 

that feature. During the call of 

FeatureGenerator::InitFeatures(), the library ensures that no 

feature has the same index number. This global Index represents 

the position of this feature in the weight vector. 

 Value: The value field member represents the value of this 

feature. 

 id: Local ID of this feature for the specific FeatureType. The global Id of a feature 
is equal to the id + the offset from the FeatureType. 

 nodeIndex: index of the node representing the current position. 

 NodeState: State of the node at the current position. For a CRF, 

this state represents the label. For HCRF and LDCRF, this state 

represents the hidden state. 

 nodeIndex: index of the node representing the previous position. 

Applies only to “edge” features. -1 otherwise. 

 prevNodeState: State of the node at the previous position.  

 sequenceLabel: Label for this sequence. Applies to HCRF models 

only. 

Custom Features and Toolbox 

In this section we describe how to create your own features. This tutorial refers to two 
classes: MyFeatures and MyToolbox.  

The class MyFeatures (\include\MyFeatures.h and \src\MyFeatures.cpp) is an example of 
custom feature generation. This class is based on RawFeatures but instead of returning the 
original precomputed features for each state, this class returns the squared value of the 
precomputed features. This is a small modification but the goal here is to show how to 
create your own features. 

The class MyToolbox (\include\MyToolbox.h and \src\MyToolbox.cpp) is an example of 
a CRF toolbox that uses the new feature generator MyFeatures.  This class inherits from 
ToolboxCRF. The same technique would apply for HCRF and LDCRF. 

The most important function in MyFeatures is the getFeatures() function. This function is 
called automatically by the FeatureGenerator every time the inference engine needs to know 
the non-zero features for a specific node/sample (i.e., sample j ) in the DataSequence. The 
main purpose of FeatureType::getFeatures() is to return add to the variable ListFeatures all 
the non-zero features for the sample j in the DataSequence X. 
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There is two type of call for the function getFeatures: state features and transition (edges) 
features. A state feature is a feature that depends only on one state node.  RawFeatures, 
WindowRawFeatures and MyFeatures are state feature generators.   A transition/edge 
feature depends on two state nodes.  EdgeFeatures and LabelEdgeFeatures (HCRF and 
LDCRF only) are transition feature generators. If the FeatureGenerator wants only the state 
features, the previousNodeIndex will be equal to -1. If the FeatureGenerator wants only the 
edge/transition features, then the previousNodeIndex will be larger or equal to 0. 
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Troubleshooting 

In this chapter, we describe solutions to common problems/mistakes happening when 
installing and using the HCRF library.  

 “Can’t find the matHCRF function” 

Problem 

When trying to access the Matlab interface (matHCRF), Matlab can‟t find the matHCRF 
function.  

Solution 

Be sure that you added \hCRF\bin in Matlab PATH variable. To add it, use the command 
addpath('c:\path_to_bin'). 

 

"Error when running executables compiled with OpenMP" 

Problem 

If projects compiled with OpenMP do not work, there is a chance that the target machine 
does not have some necessary openMP dll's installed. 

Solution 

Installing  "Microsoft Visual C++ 2008 SP1 Redistributable Package" should fix this error. 
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