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Abstract

Control and optimization of an oil production network based on gas-lift is a difficult task
with challenges including well fluid flow oscillations and pipeline slugging which can lead
to instabilities in the system. A possible control solution to this is Model predictive control,
which requires a model capable of capturing the main characteristics of the controlled
process, such as oscillations and input dependencies.

In this thesis models for wells and flowlines are instantiated in the detailed multiphase
dynamic fluid flow simulator OLGA. Further, simpler dynamic models are attempted fitted
to these models, and the comparison between the resulting models is discussed. In addition
state estimation using an Extended Kalman Filter is performed on the flowline model,
based on measurements proposed in [1].

Based on the fitting of models and implementation of state estimation for the flowline
system, methods for NMPC are attempted implemented using the JModelica.org environ-
ment, and limitations and advantages associated with this environment are assessed.
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Sammendrag

Kontroll og optimalisering av et olje-produksjonsnettverk basert på gass-løft er en vanske-
lig oppgave med utfordinger som osillerende strømninger i brønner og rørledninger. En
aktuell kontrolløsning i slike produksjonsnettverk er Model Prediktiv Kontroll. Denne
kontrolløsningen er avhengig av en god modell av systemet som skal kontrolleres, da den
må være i stand til å fange opp de viktigste egenskapene til produksjonsnettverket, som
osilleringer og pådragsavhengigheter.

I denne oppgaven blir modeller for brønner og rørledninger instansiert i den detaljerte
multifasestrømningssimulatoren OLGA. Deretter blir enklere dynamiske modeller forsøkt
tilpasset til disse komplekse modellene, og forskjellen mellom de resulterende model-
lene blir diskutert. Videre blir det utført tilstandsestimering med et utvidet Kalmanfilter i
rørledningsmodellen basert på foreslåtte målinger fra [1].

Med utgangspunkt i den utførte modelltilpasningen og tilstandsestimeringen, blir
det forsøkt implementert en ulineær modelprediktiv kontroller for rørledningsmodellen
i optimalisering- og simuleringsverktøyet JModelica.org. Deretter blir fordeler og begren-
sninger ved dette verktøyet vurdert.
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Chapter 1
Introduction

In this chapter the background for the work described in this master thesis will be pre-
sented. This is followed by the scope for the thesis, and an outline of the report.

1.1 Production optimization in oil gathering systems
Most oil reservoirs consist of relatively thin slabs of porous rock buried at depths of hun-
dreds to thousands of meters. In the early stages of oil production from a reservoir, it is
important to plan and drill wells in order to reach the predefined plateau production stage
as fast as possible. In this stage, the oil usually flows to the surface naturally, and no fur-
ther methods for enhanced oil recovery are needed. However, after some years, when the
primary recovery phase ends, it is necessary to apply additional production components in
order to maintain a satisfactory oil recovery.

The system has then entered the secondary recovery phase, where water or gas is in-
jected into the reservoir in order to maintain the pressure and to displace the oil from the
injection wells towards the production wells. Even with the use of injection wells, most
of the oil will remain trapped in the pores of the rock, and the recovery factor often stays
somewhere between 10% and 50% [5].

A possible tertiary recovery phase includes the use of enhanced oil recovery techniques
such as injection of surfactants, polymers, or steam. This is done to change the properties
in the reservoirs in a favourable way. This can for example be to reduce the surface tension
or to increase the permeability of the oil. However, the feasibility of these techniques is
strongly dependent of a high oil price.

Another emerging method for increasing the oil recovery factor from a reservoir is
to use model-based control concepts combined with sensors and remotely controllable
valves in wells and at the surface. These methods often rely on large-scale subsurface flow
models. To effectively work with the mentioned models, there will be a need for strong
and effective computers and computer algorithms.

Decisions regarding when to enter a new recovery phase, and which strategies to use
are parts of the many important decisions that has to be made before, and under production
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Chapter 1. Introduction

of an oil reservoir. These decisions require planning on several time horizons, which is
illustrated in Figure 1.1 that is taken from [6].

Figure 1.1: Multi-level control hierarchy.

As shown in Figure 1.1, the two upper boxes represent long term decisions, as men-
tioned above, with a decision horizon that can span from months to several years, while
the two lower boxes represents decisions with decision horizons spanning from weeks to
only a minute. It is in these boxes one can find real-time production optimization (RTPO),
which can be utilised to optimize the production with respect to the constraints in the sys-
tem. Such optimization may require models of both the sub-surface components, such as
the reservoir and the wells, and also the surface components such as pipelines and other
process facilities.

In the bottom of the hierarchy, closed-loop controllers are widely used to control flow
rates, pressures and other controllable aspects relevant to production. The performance of
these closed-loop controllers is limited however, and there is a growing interest in applying
advanced process control concepts to these controllers. In particular Model Predictive
Control (MPC) is considered, as an MPC can give better coordination to the production,
and help avoiding instabilities such as slugging.

1.2 The principle of Model Predictive Control
In [4] it is given that Model predictive control (MPC), also referred to as moving horizon
control or receding horizon control, is the only advanced control method widely used in
the industry. Today, it is mainly applied in petrochemical industries, but its use in other
industries is growing. The reason for such popularity is the ability of MPC designs to

2



1.2 The principle of Model Predictive Control

yield high performance control systems capable of operating without expert intervention
for long periods of time [7].

The MPC consists of three main parts; the cost function, the constraints, and the pre-
diction model. The cost function is a scalar criterion measuring the performance of the
system, for example with regard to offset from a defined set point, or with regard to eco-
nomical performance, as for example produced oil in a oil-gas network. The cost function
is measured over a predefined prediction horizon, and minimized with respect to future
control inputs. When the the optimal solution to the cost function is found, the first con-
trol input is applied to the real system. This procedure is repeated at the next time step
t′ = t′ + 1.

The constraints are one of the main motivations behind the MPC, as they enable precise
specification of the operational area of the process variables. This can be very valuable, as
it can allow production systems to operate close to their system constraints, with low risk
of violating them.

One of the main challenges when developing an MPC is the prediction model. The
performance of the MPC is dependant of a prediction model which captures the main
behaviour of the system, in order to find a good control solution and ensure preservation
of the constraints. When supplying the prediction model to the MPC, one has to consider
the trade off between a complex model, which gives a very accurate description of the
system but requires much computation power and time, or a simpler model which may
only be valid for a smaller operation area, but which can be solved faster.

The iterative steps of the MPC is illustrated in Figure1.3, where one can see how the
first input of the whole control solution is applied at each step.

Figure 1.2: Principle of model predictive control.
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Chapter 1. Introduction

As mentioned, the figure above showns how the MPC uses a measured state of the
system at the current time t′, to solve a finite horizon open-loop optimal control problem
for the time horizon from t′ to t′ + N . One can then see how the first input of the finite
horizon solution is applied to the real system, before another finite horizon open-loop
optimal control problem is solved to find the next input.

1.3 Modeling and optimization in Optimica and JModel-
ica.org

In order to fully utilize the potential of the MPC, the need for an efficient and structured
optimization platform is evident. The modeling language Modelica is targeted at modeling
of complex physical systems, and is about to establish itself as one of the main tools in this
area [8]. Optimica is an extension to Modelica, enabling optimization formulations based
on developed models. Modelica does not support optimization in it self however, but a
framework incorporating this feature is JModelica.org, which is an open source platform
that integrates state of the art algorithms for simulation, optimization and automatic differ-
entiation. Further, it provides an interface for dynamic optimization of Modelica models
through the Optimica extension. Some of the main components included in JModelica.org
is shown in the figure below.

Figure 1.3: JModelica.org components.

The linking of these sophisticated packages for simulation and automatic differentia-
tion forms a promising platform for optimization and control for dynamic systems.

1.4 Scope and emphasis
The work in this master project will investigate how the previous work [3], [9] and [1] can
be utilised when developing a nonlinear model predictive controller in the JModelica.org
platform. In [3], dynamic optimization were applied to an oil gathering system consisting
of a well-flowline network where the wells and flowlines were described by low order
dynamic models. In [9], an alternative and more complex low order model were proposed
for the flowlines.

In this thesis, the validity of the mentioned low-order models will be assesed through
comparison with more complex and realistic models developed in the commercial mul-
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1.5 Report outline

tiphase simulator OLGA, which is the industry standard tool for transient simulation of
multiphase petroleum production. Further, the application of the low-order models will
be tested through the implementation of a nonlinear model predictive controller, using the
low-order models to control the OLGA models.

1.5 Report outline
In order to provide the necessary theoretical background for working with nonlinear model
predictive control, a literature study of methods for NMPC in particular interest to this
thesis is presented the next chapter. Thereafter, in Chapter 3, the various implementation
tools used in the implementation are described, before the models and optimal control
problem formulations used in this thesis are presented in Chapter 4.

As the basis for the theoretical and practical tools now is described, Chapter 5 presents
how this is utilized in implementation and the results of a series of simulations describing
the resulting systems are shown. Thereafter, in Chapter 6, the results are discussed and
proposals for improvements and further work are given, before a conclusion is made in
Chapter 7.
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Chapter 2
Literature study

As the goal of this project is to control a production system containing gas-lift wells and
a flowline using non-linear model predictive control (NMPC), there will in this chapter be
given a review on previously published work and studies in this area.

When studying model predictive control, it is natural to start with the linear MPC,
since it is far less complex than the non linear MPC. Therefore the basis of the method
will first be presented, before methods for non linear MPC are more thoroughly described.

2.1 Linear MPC

Theory revolving linear MPC has previously been studied extensively in various litera-
ture. In this section, the work of Foss and Heirung[2], and Garcia, Prett and Morari [7] is
considered in particular.

In the mentioned work, it is described how MPC controllers are divided into two main
classes, linear and non-linear MPC. They are separated by the classification of the opti-
mization problem solved within the MPC. In linear MPC, the optimization problem is a
convex QP problem, which means that a global solution always can be found within a
finite time frame. From [2] it is given that a linear MPC problem can be formulated as
follows.

min
z∈Rn

f(z) =

N−1∑
t=0

1

2
xTt+1Qt+1xt+1 + dxt+1xt+1 +

1

2
uTt Rtut + dutut +

1

2
∆uTt R∆tut

(2.1a)
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Chapter 2. Literature study

subject to

xt+1 = Atxt +Btut (2.1b)
x0 = given (2.1c)

xlow ≤ xt ≤ xhigh (2.1d)

ulow ≤ ut ≤ uhigh (2.1e)

−∆uhigh ≤ ∆ut ≤ ∆high
u (2.1f)

Qt � 0 (2.1g)
Rt � 0 (2.1h)

R∆t � 0, (2.1i)

where

∆ut = ut − ut−1 (2.1j)

zT = (xT1 , ..., x
T
N , u

T
0 , ..., u

T
N−1). (2.1k)

In the equation set above, x is defined as the system state vector, and u as the system
input. It should be noted that the objective function given in equation (2.1a) is quadratic
and positive semi-definite, and that the constraints (2.1b) - (2.1i) are linear. This is an
absolute requirement for a linear MPC. When state feedback is added, the algorithm given
in table 2.1 describes the steps of the controller.

Table 2.1: The table contains an algorithm describing the steps of a linear MPC with state feedback,
as given in [2].

Algorithm Linear MPC with state feedback

for t = 0, 1, 2, ... do
Get the current state xt
Solve the optimization problem (2.1) on the prediction horizon from t to t+N
with xt as the initial condition.
Apply for the first control move ut from the solution above.

end for

Linear MPC is successfully used in many applications, especially in the process in-
dustry and this is despite the fact that the dynamics of the closed loop systems it controls
are non-linear [4]. However, there are many systems which are inherently non-linear, and
for these systems linear models are often inadequate. This motivates the use of non-linear
model predictive control (NMPC).
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2.2 Non-linear MPC
As mentioned in the previous section, some systems are too non-linear to be adequately
controlled by a linear MPC and a non-linear approach is therefore needed. The difference
between linear MPC, as described in the previous section, and the non-linear MPC, lies in
the classification of the dynamic optimization problem. While the linear MPC contains a
linear, convex, and relatively simple dynamic optimization problem, the NMPC needs to
solve a considerably much more complex problem with non-linear constraints.

2.2.1 Optimal control problem formulation
The systems studied in this thesis are initially described by Differential Algebraic Equa-
tions (DAE) and the equations describing the system can therefore be formulated in the
following way

F (x(t), ẋ(t), u(t), t) = 0 (2.2a)
h(x(t0)) = 0, (2.2b)

where x : [t0, tf ]→ Rnx are states, u : [t0, tf ]→ Rnu are control inputs, F : Rnx×nx×nu×1

→ Rnx are system functions and x(t0) are initial conditions. Start and end time are given
by t0 and tf respectively [10]. An alternative representation of this is given by the semi-
explicit form

ż(t) = f(z(t), y(t), u(t)) (2.3a)
z(t0) = z0 (2.3b)

0 = g(z(t), y(t), u(t)), (2.3c)
(2.3d)

where z : [t0, tf ]→ Rnz and y : [t0, tf ]→ Rny . The differential and algebraic equations
are given by f : Rnz×ny×nu → Rnz and g : Rnz×ny×nu → Rny , while z(t0) are the
initial conditions. It should be noted that in this system formulation, the system is time-
invariant as the time variable t does not appear explicitly.

This is further reformulated to

ż(t) = f(z(t), y[z(t), u(t)], u(t)) = f̄(z(t), u(t)) (2.4a)
z(t0) = z0 (2.4b)

by using theorem 8.1:

For u(t) and p specified, let f̄(z(t), u(t), p) be Lipschitz continuous for all z(t) in a
bounded region with t ∈ [0, tf ]. Then the solution of the initial value problem (2.4) exists
and is unique, z(t) for t ∈ [0, tf ],

9



Chapter 2. Literature study

as given in [10]. This is the system formulation that will be used when applying state
estimation to the systems in this thesis. Based on (4.14), an optimal control formulation
(OCP) for an nonlinear MPC can be given as

min
x,y,u

Φ(z, y, u) =

∫ tf

t0

L(t, z, y, u)dt+ E(tf , z(tf ), y(tf ), u(tf )) (2.5a)

subject to

ż = f(x, y, u), (2.5b)
z(t0) = z0, (2.5c)

g(z, y, u) = 0, (2.5d)
gI(z, y, u) ≤ 0, (2.5e)

zL ≤ z ≤ zU , (2.5f)
yL ≤ y ≤ yU , (2.5g)
uL ≤ u ≤ uU , (2.5h)
t ∈ [t0, tf ]. (2.5i)

In this OCP formulation, the cost function Φ is given by the sum of the integral over L,
which accounts for the cost over the time horizon [t0, tf ], and the terminal cost denoted
by E. The constraints (4.16c)-(4.16d) are the system equation constraints, (4.16e)-(4.16f)
are the path constraints, while (4.16g)-(4.16i) define the upper and lower bounds for z, y
and u. When state feedback is added, the algorithm given in table 2.2 describes the steps
of the controller.

Table 2.2: The table contains an algorithm describing the steps of a non-linear MPC with state
feedback, as given in [2].

Algorithm Nonlinear MPC with state feedback

for t = 0, 1, 2, ... do
Get the current state zt
Solve the optimization problem (4.16) on the prediction horizon from t to t+N
with zt as the initial condition.
Apply for the first control move ut from the solution above.

end for

10



2.2 Non-linear MPC

2.2.2 Single shooting
As the formulation of NMPC is presented in the previous section, it is now natural to look
into methods for solving the non-linear problem (NLP) which arises within the non-linear
MPC. The solution method chosen in this thesis is single shooting. This choice is made
based on the results from [3], where single shooting was found to be the most reliable
method in comparison to methods such as Multiple shooting and Direct collocation. This
was shown for a similar production system and for the same optimization software as used
in this thesis.

Single shooting is a optimization method where states and algebraic variables are
treated as implicit functions of control inputs. This means that they can be eliminated
from the optimization problem, reducing the decision variables to only the control inputs.

The single shooting method can be efficient due to the fact that it is simple, and that it
reduces the size of the NLP. It is however reliant on a strong differential algebraic equation
(DAE) solver to function optimally. The interaction between the NLP solver and the DAE
solver is described in the figure below.

Figure 2.1: The figure illustrates the interaction between the NLP solver and the DAE solver. The
DAEs are solved in an outer loop providing variable profiles and derivative information to the NLP
solver, which in turn uses these to compute a new sequence of control inputs u. The figure is taken
from [3].

2.2.3 Robustness
Even though the application of a NMPC to a system allows the user to provide more
correct system equations compared to the linear MPC, there will always be some deviation
between the model provided to the NMPC and the real system. This has been considered
in [7] and [4], where the preserved quality of the performance for the feedback system
when the dynamic behaviour of the real system differs from the behaviour of the assumed
system in the model, is referred to as robustness.

To include the deviation in the model equations with regard to the real system a new
formulation of the model equations can be defined as follows

11
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ż = f(z(t), u(t), d(t)), (2.6)

where d represents the uncertainty. Because of this uncertainty, there will be a difference
between the predicted open-loop and the actual closed-loop trajectory. This represents a
problem when conducting stability analysis of the system, as there is not a single future
trajectory, but a whole three of possible trajectories which must be analyzed. As a result of
this, analysis of robustness properties in nonlinear NMPC is still considered as an unsolved
problem in general. Depite this however, the controller may work very well in practice,
even with considerable differences between the model and the real system.

2.2.4 Output feedback NMPC
So far it has been assumed that all the necessary system states are perfectly accessible
through measurements. In general, this is not the case, and therefore it is necessary to
include a state observer in the control loop. This is discussed in [4], where the ”certainty
equivalence principle” is presented as the most often used approach for output feedback
NMPC. This means that the estimated state ẑ first is calculated by a state observer, before
the estimated state is used in the model predictive controller. However, this is no guarantee
for stability, as often only local stability of the closed loop is achieved, even if the observer
error is exponentially stable. The ”certainty equivalence principle” is still applied success-
fully in many applications, and it is applied in this thesis. A schematic presentation of this
principle is given in figure 2.2.

Figure 2.2: The figure is taken from [4] and shows how the state estimator is coupled with the plant
and the NMPC controller.

12



Chapter 3
Implementation tools

The implementation in this thesis is performed on multiple platforms, which are interfaced
together in order to benefit from the strengths of each individual platform. In this chapter
these platforms are presented before the interface between them is described.

3.1 Optimica
High level modelling frameworks such as Modelica are becoming increasingly used in
industrial applications, as they allow for rapid development of complex large-scale
models. Traditionally, the target of such models has been simulation, and therefore several
tools supporting simulation of Modelica models exist. As dynamic optimization of large
scale systems has become increasingly used during the last decades, the motivation for
interfacing these high level modelling frameworks with NLP solvers has grown.

Optimica is a extension to Modelica and enables compact and intuitive optimization
problem formulations based on Modelica models. Figure 3.1 and 3.2 demonstrates how
an optimization problem can be defined in Optimica based on a Modelica model.

The optimization problem formulations in Optimica make it possible to interface the
Modelica and Optimica code with an NLP solver. JModelica.org is a Modelica-based open
source platform specifically targeted at dynamic optimization that also supports the Opti-
mica extension. By importing the Modelica and Optimica models into the JModelica.org
platform, they can be handled by all the different NLP solvers which are available through
JModelica.org. This platform will be further described in the following section.
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Figure 3.1: Example of Modelica code for a system of two coupled tanks taken from [3].

Figure 3.2: Example of Optimica code for a system of two coupled tanks taken from [3].
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3.2 The JModelica.org platform
As mentioned in the previous section, JModelica.org is an open source platform targeted
at dynamic optimization. The JModelica.org platform architecture is shown in Figure 3.3
where one can see that it consists of two main parts, the compiler and the JModelica.org
Model Interface (JMI) run-time library. In the compiler, the Modelica and Optimica code
is first translated into a flat model description, which is further transformed into a hybrid
DAE before a C or XML code representation of the model is generated. The C code repre-
sentation contains the model equations on a form which is suitable for efficient evaluation.
The XML code on the other hand, contains all the model meta data, such as variable names
and parameter values.

Figure 3.3: JModelica.org platform architecture.

Another important thing to notice from Figure 3.3 is that JModelica.org is integrated
with Python. This allows the user to import models from Modelica/Optimica into Python,
where it can be interfaced with other frameworks. One such framework is the symbolic
framework CasADi, which is a free open source framework for automatic differentiation
and optimal control. CasADi will be discussed further in section 3.3.
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3.2.1 Advantages and Disadvantages using JModelica.org
JModelica.org is a platform that mainly provides a lot of opportunities, but there are also
a few drawbacks. Among the advantages we have that the model can be declared inde-
pendent of casuality, which means that the model will be compiled into an index-1 model
regardless of how it originally was defined. The platform also makes it easy to interface
NLP solvers and Integrators with the model implemented in Modelica, providing effective
simulations and NLP solutions. The fact that everything can be written in python, is also
clearly an advantage as python is an easy to read and widely used programming language.

The drawbacks are currently that JModelica.org is in continuous development, and as
a result, some features can be unstable and may contain bugs. In addition the interface
between Modelica and CasADi is not very robust, and this has caused the work with these
models to take up at lot more time than expected.

3.3 CasADi
CasADi is a symbolic framework for automatic differentiation and numeric optimization
that uses the syntax of computer algebra systems, and therefore allows the user to construct
symbolic expressions of scalar or matrix-valued operations. These symbolic expressions
can be efficiently differentiated using state of the art algorithms for automatic differentia-
tion. As JModelica.org, CasADi has a full-featured Python front end, and it also contains
back ends to code for optimization and simulation, for example Sundials which is an effi-
cient tool for solving initial value problems for ODE and DAE systems. Another back end
code is IPOPT, which is a interior point optimizer for large scale non-linear optimization.
The platform is built as a large class hierarchy, where automatic differentiation forms the
foundation of all other classes, as illustrated in Figure 3.4.
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Figure 3.4: The CasADi class hierachy.
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3.4 The OLGA simulation software
OLGA is the industry standard tool for transient simulation of multiphase petroleum pro-
duction. Currently 7.3 is the latest version, but the tool is in continuous development. The
software originated at the Institute for Energy Research (IFE) in 1980, but the oil industry
did not start using it before 1984 after Statoil had supported its development for 3 years.
Data from the large scale flow loop at SINTEF, and later from the medium scale loop at
IFE was essential for the development of the multiphase flow correlations and also for
the validation of OLGA. Oil companies have since then supported the development and
provided field data to help manage uncertainty, predominantly within the OLGA Verifica-
tion and Improvement Project (OVIP). OLGA has been commercially available since the
SPT Group started marketing it in 1990 and is used for networks of wells, flowlines and
pipelines and process equipment, covering the production system from bottom hole into
the production system. Further, OLGA comes with a steady state pre-processor included,
which is intended for calculating initial values to the transient simulations, but which also
is useful for traditional steady state parameter variations. However, the transient capa-
bilities of OLGA dramatically increase the range of applicability compared with steady
state simulators. In OLGA it is also possible to set up an OPC-server, in order to inter-
face OLGA with other modules. OPC stands for Object Linking and Embedding(OLE) for
Process Control, and is a standard for communication of real-time data between control de-
vices from different manufacturers. In this thesis, the open source OPC toolkit OpenOPC
is used to communicate between the JModelica.org framework and OLGA through Python.

3.5 How the different JModelica.org components have been
used in this project

In this section, an explanation of how the various simulation and optimization tools pre-
sented in the earlier sections are coupled together, and how they are represented in imple-
mentation of an MPC. This is illustrated in Figure 3.5 and from this one can see that the
MPC is designed using interfaces between Modelica/Optimica, JModelica.org and OLGA.
The process plant, which imitates a real production system, is simulated in OLGA. Fur-
ther, OLGA communicates with Python using an OPC server, which allows the the state
estimator to receive measurements from the plant. The state estimation problem is then
solved in JModelica.org using CasADi, before the estimated state is passed to the NMPC-
controller where an optimization problem defined by a cost function and constraints from
Optimica, and a system model defined in Modelica is solved by a dynamic optimizer in
JModelica.org with CasADi.
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Figure 3.5: Overview of how the software is coupled together in the NMPC design.
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Chapter 4
Modeling and optimal control
formulation

This chapter first gives a presentation of the simplified models in Modelica inspired by
[9] and [3]. Thereafter, the corresponding more complex models instantiated in OLGA
are presented. At last, the optimal control problem formulations used in this thesis are
presented.

4.1 Modelica Well model
The Modelica well model is based on the well model proposed in [3], which is based on
the Eikrem model [11]. The model was constructed with the aim to capture the dynamic
behavior phenomenon known as casing-heading, which leads to oscillating production for
low gas injection rates. Figure 4.1 shows the main components of the gas-lift which the
model is based on.

The model contains three state variables; mass of gas in the annulus volumemga, mass
of gas in the tubing volume mgt and mass of liquid in the tubing volume mlt. The change
of these states with respect to time is given by the difference between the mass flow into
the volume and the mass flow out, as given in equation (4.1)

ṁga = ωgl − ωgi (4.1a)
ṁgt = ωgr + ωgi − ωgp (4.1b)
ṁlt = ωlr − ωlp. (4.1c)

The different mass flows are denoted by ω and two subscripts, where the first specifies if it
is a gas g or a liquid l, and the second defines the position on Figure 4.1, where l refers to
the Gas lift choke, i to the injection valve, r to the reservoir and p to the production choke.
This notation is used throughout this thesis.
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Figure 4.1: The figure is figure 4.1 in [3] and shows how the artificially gas-lifted well is modelled.
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4.1 Modelica Well model

The algebraic equations describing the different mass flows in the model are given in
equation (4.2). It should be noted that ωgl is defined as an input, ωgi and ωp are defined
as a function of the square root of the pressure difference across the valve, while ωlr is
calculated using Vogel’s equation [12].

mt = mgt +mlt (4.2a)
ωgl = ugi (4.2b)

ωgi = Civ

√
ρgimax{0, pai − pti} (4.2c)

ωp = Cpc

√
ρpmax{0, pr − pm}upc (4.2d)

ωgp =
mgt

mt
ωp (4.2e)

ωlp =
mlt

mt
ωp (4.2f)

ωωp = rωcωlp (4.2g)
ωop = (1− rωc)ωlp (4.2h)

ωlr = ρlQmax

(
1− (1− C)

(
pbh
pr

)
− C

(
pbh
pr

)2
)

(4.2i)

ωgr = rglrωlr (4.2j)
rglr = (1− rωc)rgor (4.2k)

(4.2l)

Based on the assumption of ideal gas and on the assumption that the liquid in the tubing is
perfectly mixed at all times, the equations below are provided for the densities used in the
model

ρgi =
Mg

RTa
pai (4.3a)

ρp =
ρlMgppmt

ρlRTtmlt +Mgppmgt
(4.3b)

ρl = rωcρω + (1− rωc)ρo. (4.3c)

The last parameters that must be defined before the model description is complete, are
definitions of the pressures involved. These are given based on assumptions of ideal gas
and uniform density in each volume. In addition the model does not consider friction in
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the estimation of the pressure drop. The result is the following pressure equations

pai =

(
RTa
VaMg

+
g

2Aa

)
mga (4.4a)

pp =
RTtmgt

MgVt −Mgνlmlt
− gmt

2At
(4.4b)

pti = pp +
gmt

At
(4.4c)

pbh =

(
1 + rglr +

rglrMggLω
2RTt

)
pti + ρlgLω

1 + rglr − rglrMggLω

2RTt

. (4.4d)

4.2 Modelica Flowline model
The Modelica flowline model, as illustrated in Figure 4.2, is based on the low-order model
proposed in [9]. The flowline model is divided in two parts; a horizontal slightly decreas-
ing pipeline and a vertical riser. This model is designed to capture the phenomenon known
as riser slugging, which is characterised by severe flow and pressure oscillations. This phe-
nomenon can often occur in pipeline-riser systems which transport an oil and gas mixture
from the seabed to the surface facilities [13], and can occur if the mass flow in the flowline
is too large. The result is an accumulation of mass at the low point, as illustrated in Figure
4.3, which causes the gas portion of the transported fluid to be blocked from entering the
riser. Eventually this will cause the pressure to build up until it gets high enough to remove
the accumulated mass at the low point. This behaviour will continue as long as the mass
flow at the inlet is too large, resulting in a oscillating system.

Figure 4.2: The figure shows a illustration of the flowline when there is no slugging.
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Figure 4.3: The figure shows a illustration of the flowline when there is slugging.

As for the well model, the governing state equations are written as mass balances,
which are given in equation (4.5). The main concept of the notation is the same as the
one described for the well model in the previous section, but with a few additional notes.
These are the subscripts in and out, which refer to the inlet and the outlet of the flowline,
and the subscript lp which refer to the low point. In addition p and r now denotes the
pipeline and the riser

ṁgp = ωg,in − ωg,lp (4.5a)
ṁlp = ωl,in − ωl,lp (4.5b)
ṁgr = ωg,lp − ωg,out (4.5c)
ṁlr = ωl,lp − ωl,out. (4.5d)

The outflow conditions for the flowline are given as follows

ωl,out = αlm,tωmix,out (4.6)

and
ωg,out = (1− αlm,t)ωmix,out, (4.7)

where the parameter ωmix,out is defined by

ωmix,out = Kpcf(z)
√
ρt(p2 − p0), (4.8)

and αlm,t is the approximated liquid-gas volume fraction at the top of the riser. Further,
(p2 − p0) describes the pressure drop over the choke valve, ρt the estimated fluid density
at the top of the riser, and Kpc a tuning parameter.

In addition the level of liquid at the flowline low-point is approximated by

h̄1 = Khhcᾱlp, (4.9)
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where hc is the diameter of the flowline at the low-point, ᾱlp the approximated liquid-gas
volume fraction and Kh a tuning parameter.

Further, the mass flow of gas and liquid at the low-point are given by

ωl,lp = KlAl

√
ρl∆pl, (4.10)

ωg,lp = 0, h1 ≥ hc, (4.11)

and
ωg,lp = KgAg

√
ρgp∆pg, h1 < hc, (4.12)

where Al and Ag are the free areas for liquid and gas flow and ρl and ρgp are the approxi-
mated densities of liquid and gas at the low-point. Further hlp is the height of the liquid in
the pipeline, while Kl and Kg are tuning parameters.

The pipeline-riser model is rather large and the complete list of parameter equations
is therefore not presented here, but can be found in Appendix A.1. It is important to
mention that the model is based on several assumptions, where the most important are the
assumption of uniform liquid volume fractions in the pipeline and in the riser. In addition,
opposed to the well model, friction is considered, but only for the liquid.

4.3 OLGA Well model
The well model in OLGA is in this thesis created with the intention that it should be
comparable to the simplified well model presented in section 4.1. The OLGA model is
based on a test case ”WELL-GLV”, which is found under the sample cases in OLGA 7.1.

As shown in Figure 4.4, the OLGA well model consists of two separate flow paths,one
representing the annulus of the well, and the other representing the tubing. Both flowpaths
are vertical, and have their start point at the sea bed. The annulus is 1500 meter long with
a diameter equal to 0.15957 m, while the tubing is 1900 meter long with a diameter equal
to 0.12361 m. At the bottom of the annulus, there is modelled a leak, which functions as
a check-valve leading gas from the annulus into the tubing. At the bottom of the tubing,
the flowpath is connected to a reservoir. A mass flow source is placed at the top of the
annulus, which functions as an actuator to the system, similar to what is modelled in the
simplified model Modelica model illustrated in Figure 4.1.
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Figure 4.4: Overview of the OLGA well model
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4.4 OLGA Flowline model
In section 4.2, the simplified flowline model implemented in Modelica was described. The
flowline model in OLGA created in this thesis was based on a test case for severe slugging
available in OLGA 5.0 and was adapted so that it easily could be compared to the Modelica
model. The geometry of the flowline is shown in Figure 4.5, where the red pipe represents
the pipeline, and the green pipe represents the riser. At the top of the riser, there is a small
horizontal pipeline where a choke valve is inserted. The boundary condition at the end of
this pipeline is given by a constant pressure, representing a separator.

Figure 4.5: Overview of the OLGA flowline model

4.5 Approximating discontinuities
When importing the model equations from Modelica to JModelica.org, maximum and
minimum functions are not supported. In order to handle this, the following smooth ap-
proximation is used

max(x, y) ≈ f(x, y) =

√
(x− y)2 + ε2

2
+
x+ y

2
, (4.13)

where the parameter ε determines the approximation error and the steepness of the contin-
uous function approximation.
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4.6 Optimal control problem formulation

In this section, the optimal control problems used in this thesis are described. First a static
optimization problem formulation is presented. This is used to find optimal set points,
which are further utilised in the dynamic optimization problem formulation. Thereafter,
the dynamic optimization problem which is used for both closed and open loop control of
the system is defined.

4.6.1 Steady state optimization

The problem to be solved using steady state optimization is to find a optimal operating
point for the pipeline-riser system.

Let the flowline system described in section 4.2, be written on the form

ż(t) = f(z(t), y(t), u(t)) (4.14a)
z(t0) = z0 (4.14b)

0 = g(z(t), y(t), u(t)), (4.14c)

where z are the state variables, y the algebraic variables, and u the input given by the valve
opening in the pipeline-riser system. The steady state optimization problem is then defined
as

min
z,y,u

Φ(z, u) = −wl,out (4.15a)

subject to

ż = 0, (4.15b)
g(z, y, u) = 0, (4.15c)

0 ≤ u ≤ 1, (4.15d)

4.6.2 Dynamic optimization

Let the flowline system be written on the form (4.14). Then the dynamic optimization
problem formulation is then defined as follows.

min
x,y,u

Φ(z, y, u) =

∫ tf

t0

q1(mgp −mgp,ref )2 + q2(mlp −mlp,ref )2) (4.16a)

+ q3(mgr −mgr,ref )2 + q4(mlr −mlr,ref )2 + q5u (4.16b)
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subject to

ż = f(x, y, u), (4.16c)
z(t0) = z0, (4.16d)

g(z, y, u) = 0, (4.16e)
gI(z, y, u) ≤ 0, (4.16f)

zL ≤ z ≤ zU , (4.16g)
yL ≤ y ≤ yU , (4.16h)
uL ≤ u ≤ uU , (4.16i)
t ∈ [t0, tf ]. (4.16j)
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Chapter 5
Simulations

The basis of the models used in both OLGA and Modelica was explained in the previous
chapter. In this chapter, the process of fitting the Modelica models to the OLGA models
is described and the results are presented. Further the implementation of state estimation
based on these findings will be tested.

5.1 Well
In section 4.1, the theoretical background for the Modelica well model was described.
When implementing the corresponding model in OLGA, parameters from earlier imple-
mentations of the Modelica well model were used as a basis for realistic well specifications
in OLGA. In Table 5.1, the main parameters of the OLGA well model can be found.

Based on these values the well model was simulated, and the plots on Figure 5.1-5.4
illustrate its behaviour. From these it can be seen, that with ugl = 0.5, the well reaches
a stable operating point. In Figure 5.2 and 5.4, ugl is set to 0.1kg/s. It is clear that the
system now reaches an unstable operating point.
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Table 5.1: Simulation parameters for the OLGA Well model

Component Parameter description Value Unit
Annulus

Start point (x, y) = (0, 0) [m]
End point (x, y) = (0,−1500) [m]
Diameter 0.15957 [m]
Roughness 4.572 · 10−5 [m]
Number of sections 150 [-]
Section length 10 [m]

Tubing
Start point (x, y) = (50,−1900) [m]
End point (x, y) = (50, 0) [m]
Diameter 0.12361 [m]
Roughness 4.572 · 10−5 [m]
Number of sections 190 [-]
Section length 10 [m]

Leak from Annulus to Tubing
Diameter 0.0105 [m]
Valve type OLGAVALVE [-]

Production Choke
Diameter 0.0185 [m]
Model type HYDROVALVE [-]

Well
Reservoir pressure 250 · 105 [Pa]
Production Option VOGELS [-]
Qmax 0.0031 [m3/s]
Reservoire Temperature 348.15 [K]
Water cut 0.8 [-]
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5.1 Well

Figure 5.1: Simulated well pressures in OLGA with ugl = 0.5kg/s

Figure 5.2: Simulated well pressures in OLGA with ugl = 0.1kg/s
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Figure 5.3: Simulated well flows in OLGA with ugl = 0.5kg/s

Figure 5.4: Simulated well flows in OLGA with ugl = 0.1kg/s
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5.1 Well

5.1.1 Fitting the OLGA well model with the Modelica well model
When fitting the well models, several stategies were tried. First, the well parameters where
set to best fit the OLGA model parameters shown in Table 5.1, and further the tuning pa-
rameters Civ and Cpc were estimated. This approach did not prove to be successful, as the
behaviour of the resulting Modelica model greatly differed from the OLGA model. Next,
a more methodical approach was tried. First, the pressure in the annulus was compared
for both models, as a function of mass and gas in the annulus mga. From this it was found
that the Modelica model gave a good approximation of the pressure in the annulus. There-
after, the pressure in the tubing was compared for the two models. It was found that the
estimated pressure in the mass center of the well, given by

pcm =
pti + pp

2
, (5.1)

gave a good approximation of the pressure in the mass center of the OLGA model tubing.
Despite of this, the pressures at the top and bottom of the tubing volume, pti and pp, were
both poorly estimated.

In order to get a better approximation of the pressures in the tubing, the Modelica
model was slightly changed. As the error seemed to be connected with the difference
between the pressure at the center of mass in the tubing pcm, and the pressures at the
top and bottom of the tubing pti and pp, the model equations directly related to these
parameters were modified. In the original model equation given in (4.4b), the first term
represents the pressure at the mass center. As this was found to give an accurate value,
the second term was modified by adding a tuning parameter θ resulting in the following
modified equations for pp and pti

pp =
RTtmgt

MgVt −Mgνlmlt
− θ gmt

2At
(5.2a)

pti = pp + θ
gmt

At
. (5.2b)

From comparisons between the models θ was tuned to θ = 0.87.
When this was done, the model was compared to OLGA by simulations where the

initial conditions were set to the steady state values of the OLGA model. Figure 5.5 and
5.6 shows the pressures and the mass flows in Modelica, compared to the corresponding
steady state values in OLGA. The parameters used in the comparison of the models can be
found in Table 5.2. The analysis of the results will be presented in the discussion chapter.
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Figure 5.5: Simulation of the Modelica model pressures compared to the steady state values of the
OLGA model.

Figure 5.6: Simulation of the Modelica model mas flows compared to the steady state values of the
OLGA model.
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5.1 Well

Table 5.2: Simulation parameters Modelica Well model

Parameter description Symbol Value Unit
Temperature in the annulus Ta 300 [K]
Temperature in the tubing Tt 350 [K]
Molar mass of gas Mg 0.0195 [kg/kmol]
Annular cross sectional area Aa 0.02 [m2]
Tubing cross sectional area At 0.012 [m2]
Reservoir pressure pr 25·106 [Pa]
Annular volume Va 30 [m3]
Tubing volume Vt 18 [m3]
Tubing length from the injection point to the reservoir Lw 400 [m]
Well water cut rwc 0.8 [−]
Well gas oil ratio rgor 0.38783 [−]
Theoretical absolute open flow from reservoir Qmax 0.0151 [m3/s]
Water density ρw 1030 [kg/m3]
Oil density ρo 930 [kg/m3]
Vogels equation parameter C 0.8 [−]
Tuning parameter Civ 1.0068·10−4 [m2]
Tuning parameter Cpc 0.4062·10−4 [m2]

5.1.2 State Estimation og MPC
As can be seen from Figure 5.5 and 5.6, the Modelica well model was not fitted to the
OLGA model in a satisfactory manner. In the next section it will be shown that the fitting
of the Modelica flowline model was much more successful. Based on these findings, it
was decided to focus the efforts on state estimation and MPC to the flowline model.
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5.2 Flowline
When implementing the flowline model in Modelica, the equations presented in section
4.2 where used. As mentioned in section 4.4, the OLGA model was created based on an
example case for flowline slugging in OLGA 5.0, which was found to be a good founda-
tion for simulating flowline slugging. The main parameters used in the OLGA model are
described in Table 5.3.

Table 5.3: Simulation parameters OLGA Well model

Component Parameter description Value Unit
Pipeline

Start point (x, y) = (0, 0) [m]
End point (x, y) = (4300,−40) [m]
Diameter 0.12 [m]
Roughness 2.8 · 10−5 [m]
Number of sections 401 [-]
Section length 10 [m]

Riser
Start point (x, y) = (4300,−40) [m]
End point (x, y) = (4300, 260) [m]
Diameter 0.10 [m]
Roughness 2.8 · 10−5 [m]
Number of sections 60 [-]
Section length 5 [m]

Outlet Choke
Diameter 0.10 [m]
Model type HYDROVALVE [-]

For these parameters a series of simulations were run to study the model behaviour.
From these simulations it was found that the critical value of the valve opening for the
transition between stable and oscillatory flow is around z = 0.05. Therefore the model
fitting is performed around this value.

5.2.1 Fitting the OLGA Flowline Model with the Modelica Flowline
Model

When fitting the flowline model this was done mainly using trial and error. As mentioned
in the previous section a valve opening of z = 0.05 were used. The first step when fitting
the models, was to change the Modelica model parameters, in order to get the same critical
value opening as the OLGA model.
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5.2 Flowline

The first three figures compare the behaviour of the OLGA model and the Modelica
model around the critical valve opening z = 0.05, where the first figure shows the mass
flow of liquid at the outlet wl, out, the second the pressure at the low point in the riser plp
and the third the pressure at the top of the riser ptp.

Figure 5.7: Mass flow of liquid at the outlet for 5% choke opening.

Figure 5.8: Pressure at the low point for 5% choke opening.
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Figure 5.9: Pressure at the top of the riser for 5% choke opening.

The previous figures compared the models at the critical valve opening where the tun-
ing were performed. The next three figures show the behaviour just below the critical valve
opening, where both systems are at a stable operating point for the same parameters as in
the previous figures.

Figure 5.10: Mass flow of liquid at the outlet for 4% choke opening.
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Figure 5.11: Pressure at the low point for 4% choke opening.

Figure 5.12: Pressure at the top of the riser for 4% choke opening.
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It is also of interest to compare the behaviour of the systems, right above the critical
valve value. In the next three figures, the same parameters as previously described are
shown for the valve opening z = 0.06.

Figure 5.13: Pressure at the low point for 6% choke opening.

Figure 5.14: Pressure at the top of the riser for 6% choke opening.
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Figure 5.15: Mass flow of liquid at the outlet for 6% choke opening.

After observing that the models are fitted reasonably well around the critical valve
opening, the value of z is set far away from this value at z = 0.3, and the systems are
compared once again.

Figure 5.16: Pressure at the low point for 30% choke opening.
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Figure 5.17: Pressure at the top of the riser for 30% choke opening.

Figure 5.18: Mass flow of liquid at the outlet for 30% choke opening.
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In the previous figures in this section, comparisons around various constant valve open-
ings have been conducted. In order to say more about the similarity between the two mod-
els, the step response is compared. For each of the three plots below, the models have been
simulated for 10000 seconds with input z = 0.04. After 10000 seconds, the valve opening
is changed to z = 0.042.

Figure 5.19: Step response of the pressure at the top of the riser.

Figure 5.20: Step response of the pressure at the bottom of the riser.
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Figure 5.21: Step response of the mass flow out of the outlet.
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The parameters used in the Modelica flowline model when performing these simula-
tions can be found in the following table.

Table 5.4: Simulation parameters Modelica flowline model

Parameter description Symbol Value Unit
Liquid density ρl 832.2 [kg/m3]
Water density ρw 1000 [kg/m3]
Feed pipe inclination θ 1 [◦]
Radius of pipeline r1 0.06 [m]
Radius of riser r2 0.05 [m]
Length of upstream pipe L1 4300 [m]
Length of riser L2 300 [m]
Length of horizontal top section L3 100 [m]
Pipeline temperature Tp 335 [K]
Riser temperature Tr 298.3 [K]
Molar mass of gas Mg 0.023 [kg/kmol]
Separator pressure p0 50.1·105 [Pa]
Dynamic viscosity µ 1.426·10−4 [Pa s]
Roughness of pipe ε 2.8·10−5 [m]
Mass flow gas in ωg,in 0.36 [kg/s]
Mass flow liquid in ωl,in 8.64 [kg/s]
Tuning parameter Kh 0.7400 [-]
Tuning parameter Kg 0.0547 [-]
Tuning parameter Ko 0.1232 [-]
Tuning parameter Kpc 0.0112 [-]
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5.2.2 State Estimation
After fitting the flowline models, the next step in order to create feedback control is to
implement state estimation. This is done based on the work in [1], where the following
measurements were assumed available in the flowline; the pressure at the inlet of the flow-
line pin, the pressure at the low point of the flowline plp, the pressure at the top of the
riser pr,t and the mass flow of oil, gas, and water out of the flowline. This is illustrated in
Figure 5.22. It should be noted that the pipeline is not strictly horizontal in this case, as
explained in section 4.2 and 4.4.

Figure 5.22: Illustration of the available measurements in the flowline.

Based on the available measurements shown in the figure above, both a Unscented
Kalman Filter and an Extended Kalman Filter were implemented. The Extended Kalman
Filter proved to be more robust, at the Unscented Kalman Filter tended to enter infeasible
regions of the flowline models for state values close to zero.

In the following figures the Extended Kalman Filter has been applied to the OLGA
model using the Modelica model for predictions. The comparisons between the measured
value in OLGA and the estimated value from the Extended Kalman Filter are shown in the
figures below. This is done for the pressure at the low point in the riser plp, the pressure at
the top of the riser ptp and the mass flow of liquid at the outlet of the flowline ωl,out.
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Figure 5.23: Comparison between the pressure at the top of the riser in the OLGA simulation and
the estimated value from the EKF.

Figure 5.24: Comparison between the pressure at the bottom of the riser in the OLGA simulation
and the estimated value from the EKF
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Figure 5.25: Comparison between the mass flow of liquid at the outlet of the flowline in the OLGA
simulation and the estimated value from the EKF.
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5.2.3 Development of NMPC for the flowline model
In the previous sections in this chapter, the results from model fitting and state estimation
are shown. These components form an important part of the Output feedback NMPC-
controller, as can be seen in Chapter 2, from Figure 2.2. In this section, the results achieved
using this as a basis for optimization is presented. First, the results from steady state
optimization on the system will be presented, before open loop dynamic optimization is
tested. At last the findings from implementing and testing the NMPC are shown.

The steady state optimization problem given in (4.15) was solved using the values
from Table 5.4 as system parameters. This gave the solution u = 0.397, mgp = 1172.32
kg, mgr = 54.3748 kg and mlr = 1770.59 kg, which is used as a reference point in the
dynamic optimization problem.

As mentioned above, the steady state solution was used as a reference point when the
dynamic optimization problem (4.16) was solved. In order to assess the performance of the
open loop solution, the Model was run with valve opening z = 0.02 until it reached steady
state. Then an optimal control solution of (4.16) was found, and applied to the model. The
following plots show the resulting behaviour when the optimal control solution is applied
to the Modelica model, with a time horizon of 20000 seconds.

Figure 5.26: The figure shows how the mass of gas in the pipeline compared to the set reference
value.

51



Chapter 5. Simulations

Figure 5.27: The figure shows how the mass of gas in the riser compared to the set reference value.

Figure 5.28: The figure shows how the mass of liquid in the pipeline compared to the set reference
value.
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Figure 5.29: The figure shows how the mass of liquid in the riser compared to the set reference
value.

Figure 5.30: The figure shows the solution of the dynamic optimization problem that was applied
to the system.
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Further, the OLGA flowline model is simulated with the same input z = 0.02 un-
til steady state, before the same control is applied to this system. The resulting system
behaviour is shown in the figures below.

Figure 5.31: The figure shows the pressures in the OLGA model, and how they change when the
open loop optimal control solution is applied after 10000 seconds.

Figure 5.32: The figure shows the flow of oil out of the OLGA model, and how it changes when the
open loop optimal control solution is applied after 10000 seconds.
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After testing the open loop control solutions for the system, the next step is to close
the loop, using the state estimator in order to implement an Output Feedback NMPC as
illustrated in Section 2.2.4. After many attempts, this was found to be infeasible during the
time horizon of this master thesis, due to large difficulties when solving dynamic optimiza-
tion problems in JModelica.org. The circumstances revolving this issue will be discussed
in the next chapter.
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Chapter 6
Discussion of results and
implementation

6.1 Well

6.1.1 Behaviour of the OLGA well model
The first graphical presentation in the previous chapter was plots of the OLGA well model
behaviour at two different operating points, with ugl = 0.5 kg/s and ugl = 0.1 kg/s, for
for both pressure and flow. In Figure 5.1 and 5.3, the pressures and the flows are shown
for ugl = 0.5 kg/s. From these figures it is clear that the system reaches a stable operating
point.

Further, Figure 5.2 and 5.4, show the same parameters for another operating point
where ugl = 0.1 kg/s, which means that there is significantly less lift-gas injected into
the well. This value was chosen for ugl, as it clearly shows how the system reach an
unstable operating point, where the casing-heading phenomenon described in Section 4.1
is present. The presence of this effect is common in gas-lift wells, and supports the validity
of the OLGA model.

6.1.2 Fitting the OLGA well model with the Modelica well model
As the results in the previous section gave reason to assume validity of the OLGA model,
the Modelica model presented in 4.1, was compared and adapted to the OLGA model.
A natural starting point when fitting the models, was to look at a stable operating point,
which was found for ugl = 0.5 kg/s in the previous section. The comparison of the two
models after attempted fitting is illustrated for pressures and flows in Figure 5.5 and 5.6.
The comparison was done by simulating the OLGA well model to steady state for ugl
providing the steady state parameters from OLGA as a starting point for the Modelica
model, and comparing the difference between the resulting steady state parameters for the
two models.
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As the Modelica model was fed with the steady state parameters from OLGA, one
would expect the Modelica parameters to stay constant if the models were tuned perfectly,
but from the figures it can then be seen that the Modelica well model variables move away
from the starting points, before they reach a significantly different steady state value than
the OLGA well model.

In Section 5.1.1 it was described how the model equations were changed, in order to fit
the Modelica well model better to the OLGA well model. However, these changes did not
affect the assumptions the model was based on, and the pressures are still calculated with
no regard to friction. As model changes had to be done in order to reach similar pressures
in the tubing for both models, it seems clear that the pressure calculations in the Modelica
model are too inaccurate. This is not unexpected, as the Modelica model does not consider
friction when modelling the pressure and flow in the well and introduction of friction in
the model could very well cause the same pressure difference, as the one constructed by
altering the model in this thesis.

6.2 Flowline

6.2.1 Behaviour and fitting of the OLGA flowline model with the Mod-
elica model

In the simulation chapter under section 5.2.1, the results from fitting the flowline model in
Modelica to the flowline model in OLGA was presented. The plots that were given in this
section gives information about the models behaviour.

The first three figures shows three key parameters for the Modelica model compared to
the OLGA model for a choke opening of 5 %. From these we see that both the amplitudes
and the frequencies seems to correspond very good. The next three figures shows the same
three parameters, but for a choke opening of 4 %. From these figures it becomes clear that
there is a small deviation between the steady state values from the OLGA flowline model
and the Modelica flowline model, but that they still are quite similar. Thereafter the choke
opening is altered to 6 % and again the same parameters for the models are compared.
From these figures the amplitudes still seem to correspond well, but the deviation in fre-
quency has increased. While the previous figures show the behaviour of the system for
choke opening values in the same area as where the model was tuned, the three plots in
Figure 5.16-5.18 shows the behaviour when the choke opening is set to 30%. From these
figures one can see that the amplitudes still match very well, but that the deviation in fre-
quency now is significant. Based on these observations it becomes clear that the Modelica
model is very well fitted to the OLGA model, and that it captures all the relevant dynamics
of the system, but that the frequency dependence becomes poorer when the choke opening
is far away from the value at which it was tuned.

As mentioned in the simulation chapter the system step response where also studied.
This is shown in Figure 5.19-5.21. From these figures one can see that step responses are
very similar, which supports the claim that the models are very well fitted.
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6.2.2 State estimation
In Section 5.2.2 in the Simulations chapter, the output of the Extended Kalman Filter
and the values of the simulated system in OLGA are compared. It can be seen from the
figures 5.23-5.25 that the EKF tracks the measured pressures perfectly, but that there is a
deviation between the estimated mass flow out of the system and the actual mass flow out
of the system. This indicates either that the tuning of the EKF is not optimal, or that the
number of measurements are insufficient in order to get good estimations from the system.
Based on the results in the previous section, the models seems to be fitted well enough to
allow for successful state estimation, especially around the operating point z = 0.05.

6.2.3 Development of NMPC for the flowline model
When developing an NMPC for the flowline model, many problems arose in association
with different parts of the JModelica.org platform. Locating and handling these problems
proved to be very time consuming. One of the reasons for this, is that JModelica.org still
is in an early state in the development process both when it comes to robustness and when
it comes to interaction with the user in form of error messages.

The first problem was encountered when importing the models from Modelica and
Optimica into the JModelica.org framework, as this lead to a series of errors which proved
hard to track. The main reason for this, is that the JModelica.org platform consist of many
different tools which earlier was mentioned to be an advantage, but that also makes it very
hard to locate the error. After spending a substantial amount of time debugging this, the
cause of the errors where found to be that JModelica.org does not support importing user
defined functions from Modelica, and also that it does not support certain mathematical
functions such as log10. This was solved by hard coding all user defined functions used in
the Modelica model, replacing log10(x) with log2(x)

log2(10) and inserting approximations for all
maximization functions in the model, using the approximation presented in Section 4.5. In
order to reproduce the behaviour of the models when simulating them from JModelica.org
and from Modelica, the parameter ε defined in (4.13) had to be set no larger than ε = 0.01.

Based on the conclusions made in [3], single shooting was chosen as the optimal con-
trol method, and this was implemented in JModelica.org. This optimal control method
proved not to be very robust at all. Numerous error messages concerning problems eval-
uating the gradients of the objective function and the constraints were received. Some of
these problems were traced back to the approximation of the max functions, as the inte-
grators used in JModelica.org were sometimes unable to evaluate the values of part of the
gradient, where these expressions were present.

In search of a solution to the problem explained above, a thorough review of the im-
plementation of dynamic optimization using JModelica.org in [3] was preformed.

From this review it was found that the same approximation to the maximization func-
tions, as used in this thesis was applied, but with ε =

√
0.1 ≈ 0.316. As explained earlier,

ε could not be set higher than 0.01 in order to simulate the behaviour of the flowline model
in this thesis, but it was possible in [3], as a simpler flowline model was used.

As a result of the problems explained above, the testing of methods for NMPC and
the comparison of these with alternative optimization based strategies has been severely
limited.
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When testing the developed dynamic optimization algorithm for various objective
functions and constraints, it was found that the errors from evaluating the gradients were
less frequent when the objective function only consisted of differential states and inputs.
Therefore, the algebraic variables of the flowline system were not included in the objec-
tive function. As the goal of the optimization often is to maximize the oil flow, and as
ωout is a algebraic variable, this is disadvantageous. In order to work around this, a static
optimization problem maximizing liquid flow out of the flowline was solved as explained
in the beginning of Section 5.2.3.

Figure 5.26 - 5.30 show the behaviour of the Modelica flowline system when applying
open-loop optimization in order to get to the optimal steady state value. From these figures
we can see that the state variables converge to the reference value, without any notable
oscillations or instabilities. In Figure 5.31 and 5.32, it can be seen that this is also the case
when the same open-loop optimization is applied to the OLGA flowline system. Based
on these figures, it seems that the flowline Modelica model is applicable for controlling
the OLGA flowline model, which was expected as the behaviour of the two models was
shown to be very similar in Section 5.2.1.

6.3 Further Work
With the implementation problems described in the previous section fresh in mind, it be-
comes obvious that a thorough analysis of the errors in JModelica.org must be conducted.
This would be the natural starting point when continuing the work presented in this thesis.
Due to the severity of the implementation issues found in this thesis, there will also be
a need to make a further assessment of whether JModelica.org is a suitable platform for
implementation of NMPC.

In this thesis it is also found that it might be valuable to develop the well model in
Modelica so that it takes regard to friction.

Another point for further work will be to connect and analyze the well and flowline
models in OLGA in order to gain a better understanding of how these models interacts.

If the problems in JModelica.org are assessed and handled, a complete implementation
of NMPC can be tested on the complete system. Further, this can be compared to other
optimization based strategies such as steady state optimization.
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Chapter 7
Conclusion

In this thesis models for wells and flowlines has been instantiated in OLGA, and simple
dynamic models inspired by [3] and [9] have been fit to these OLGA models. It was
found that the simple dynamic well model did not give a good representation of the more
complex model in OLGA, and the lack of regard to friction in the tubing was pointed out
at the main reason behind this. For the simple dynamic flowline model it was found that is
can be tuned to fit the more complex OLGA model very well for a set operating point, but
that it will deviate when moving far away from this point.

Further state estimation using an Extended Kalman Filter was performed on the flow-
line model, based on measurements proposed in [1]. Here it was found that the state
estimates are fairly accurate, but some deviations are present, therefore the addition of
more measurements to the system is recommended.

Based on the fitting of models and implementation of state estimation for the flowline
system, methods for NMPC was attempted implemented using the JModelica.org environ-
ment. This implementation was troubled with many bugs, and lack off robustness in the
interface between the various implementation tools used is assumed to play a large role
here.

61



62



Bibliography

[1] T. Lund. State estimation for an oil production nework based on gas-lift, Project
report. 2013.

[2] B. Foss and T. A. N. Heirung. Merging Optimization and Control, Norwegian Uni-
versity of Science and Technology. 2013.

[3] K. Nalum. Modeling and Dynamic Optimization in Oil Production, Master Thesis,
Norwegian University of Science and Technology. 2013.
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Appendix A
Flowline

A.1 Pipeline-Riser model
The average liquid volume fraction in the pipeline is estimated based on the the approxi-
mation that the liquid volume fraction at the inlet is equal to the liquid volume distribution
in the pipeline, and is given in the following equation

ᾱlp
∼=

ρ̄gpωl,in

ρ̄g1ωl,in + ρlωg,in
. (A.1)

The density of the gas in the pipeline ρ̄gp is given by the mass of gas in the pipeline mgp

and the volume available for the gas Vp −mlp/ρl.

ρ̄gp =
mgp

Vp −mlp/ρl
(A.2)

ṁgp = ωg,in − ωg,lp (A.3a)
ṁlp = ωl,in − ωl,lp (A.3b)
ṁgr = ωg,lp − ωg,out (A.3c)
ṁlr = ωl,lp − ωl,out (A.3d)

ᾱl1
∼=

ρ̄g1ωl,in

ρ̄g1ωl,in + ρlωg,in
(A.4)

ρ̄g1 =
mgp

V1 −mlp/ρl
(A.5)
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ωmix,out = Kpcf(z)
√
ρt(p2 − p0) (A.6)

ωl,out = αlm,tωmix,out (A.7)

ωg,out = (1− αlm,t)ωmix,out (A.8)

h̄1 = Khhcᾱl1 (A.9)

h1 = h̄1 +

(
ml1 − ρlV1ᾱl1

πr2
1(1− ᾱl1)ρl

)
sin(θ) (A.10)

Vg1 = V1 −ml1/rhol (A.11)

ρg1 =
mg1

Vg1
(A.12)

p1 =
ρg1RT1

Mg
(A.13)

∆pfp =
ᾱl1λpρlŪ

2
sl,inl1

4r1
(A.14)

λp = 0.0056 + 0.5Re−0.32
p (A.15)

Ūsl,in =
ωl,in

πr2
1ρl

(A.16)

A.1.1 Riser Model
V2 = πr2

2(l2 + l3) (A.17)

Vg2 = V2 −ml2/ρl (A.18)

ρg2 =
mg2

Vg2
(A.19)

p2 =
ρg2RT2

Mg
(A.20)

ᾱl2 =
ml2

V2ρl
(A.21)

ρ̄m =
mg2 +ml2

V2
(A.22)
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∆Pfr =
ᾱl2λrρ̄mŪ

2
m(l2 + l3)

4r2
(A.23)

λr = 0.0056 + 0.5Re−0.032
r (A.24)

Rer =
2ρ̄mŪmr2

µ
(A.25)

Ūm = Ūsl2 + Ūsg2 (A.26)

Ūsl2 =
ωl,in

ρlπr2
2

(A.27)

Ūsg2 =
ωg,in

ρg2πr2
2

(A.28)

A.1.2 Gas Flow model at the low-point
ωg,lp = 0, h1 ≥ hc (A.29)

ωg,lp = KgAg

√
ρg1∆pg, hspace5pth1 < hc (A.30)

∆pg = p1 −∆pfp − p2 − ρ̄mgl2 −∆pfr. (A.31)

ωl,lp = KlAl

√
ρl∆pl (A.32)

∆pl = p1 −∆pfp+ ρlgh1 − p2 − ρ̄mgl2 −∆pfr (A.33)

Ag
∼= πr2

1

(
hc − h1

hc

)2

, h1 < hc (A.34)

Al
∼= πr2

1 −Ag (A.35)

αlm,t =
αl,tρl

αl,tρl + (1− αl,tρg2)
(A.36)

ρt = αl,tρl + (1− αl,t)ρg2 (A.37)

ᾱl2 =
αl,lp + αl,t

2
(A.38)

αl,lp =
Al

πr2
1

(A.39)

αl,t = 2ᾱl2 − αl,lp =
2ml2

V2ρl
− Al

πr2
1

(A.40)
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