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implemented for AMPL, it does recognize SOS2 variables automatically, when using the specific syn-
tax for piecewise linearization included in AMPL[28],[43]. For languages not featuring automatic de-
tection of SOS2 variables, it can be implemented by adding the following constraints to the problem
(inspired by (Williams [114])):

i = 1,2...n −1,n

1 =ψ1 +ψ2 + ...+ψn−1 +ψn ψi ∈ {0,1}

φ1 ≤ψ1 (2.31)

φi ≤ψi−1 +ψi 1 < i < n

φn ≤ψn−1

Assuming constraints 2.31 are satisfied, then for any x ∈ [x0, xn] the linearization fl i n(x) can be
written as

fl i n(x) = yiφi + yi+1φi+1 1 ≤ i < n (2.32)

Now, let

∆yi = yi+1 − yi 1 ≤ i < n (2.33)

Then equation 2.32 can be written as

fl i n(x) = yiφi + yi+1φi+1

= yiφi + (yi +∆yi )φi+1 (2.34)

=∆yiφi+1 + yi (φi +φi+1)

=∆yiφi+1 + yi 1 ≤ i < n

which shows that fl i n(x) consists of n −1 linear pieces.

By combining piecewise linearization and use of CPLEX, there may be possible to solve advanced
problems faster with reasonable exactness. The main downside is the loss of accuracy. This can be
verified by looking at figure 2.10. An approach to improve the accuracy is to have a very large number
of breakpoints. The obvious disadvantage is that this generates a corresponding number of new bi-
nary variables and constraints. An increased number of variables may increase the computation time
drastically, and in worst case cause the problem to become impossible to solve within reasonable
time.

In terms of limiting the number of breakpoints with as little loss of accuracy as possible, there
is reasonable to have higher density of breakpoints in areas where the function got significant cur-
vature, and a lower one where it is closer to a linear behavior. This is illustrated in figure 2.10. The
job of choosing breakpoints does easily get cumbersome, and for advanced functions there might be
necessary to use specialized algorithms for this purpose.

OFP

The OFP used in the practical part is an extension of BONIMIN B-iFP and is thoroughly presented
in (Sharma [100]), while a more compact presentation can be found in (Sharma et al. [101]). The
algorithm is a modification of the FP heuristic for MINLPs, which aims at balancing the two goals
of quickly obtaining feasible solutions and preserving the quality of the solution with respect to the
original objective[101]. It is originally designed for convex MINLPs, but is by experiments found to
perform well for some types of nonconvex MINLPs as well[100].
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The original FP is a heuristic for solving difficult MILPs[40], where the main idea is to have two
sequences of points, one which is constraint feasible and another which is integer feasible. If the two
sequences converges to the same point, then a feasible solution is found[100]. The constraint feasible
point is initially found by computing the LP-relaxation of the original MILP. Besides this, the objective
value is not accounted for in the solution process. This often causes the FP to provide poor solution
quality with respect to the objective value[8].

Instead of excluding the original MILP objective after the initialization, the OFP for MILPs in-
cludes it through the whole process, weighting it as a part of the cost function. As the number of
iterations increases, the weight is reduced. At the same time, as the number of iterations increases,
the weight of a cost corresponding to the integer infeasibilities increases[100].

There have been made different approaches extending the original FP to heuristics for convex
MINLPs. One such approach is described in (Bonami et al. [14]). It finds a feasible solution by solving
a sequence of NLPs. Initially, a constraint feasible point is found by solving a NLP relaxation of the
original MINLP. This is followed by a process rounding all integer variables to the nearest integer
point. Further, the distance to the integer feasible point is minimized. This approach is similar to
what is implemented in BONIMIN B-iFP[14].

The results presented in (Sharma [100]), show that BONMIN B-iFP is able of finding feasible re-
sults for convex MINLPs significantly faster than BONMIN B-BB. The downside is that the solution
quality is poor. The purpose of the OFP presented in the same paper, is to improve this while keeping
computation time low.

The basis of the OFP is to formulate the MINLP as a multiobjective problem with two conflicting
objectives: One subproblem minimizing the distance to the integer feasible point and the NLP relax-
ation of the MINLP. As in the MILP-case, the subproblems are weighted, mainly focusing on minimiz-
ing the NLP relaxation at first, and weighting the integer feasibility more as the number of iterations
increases[100].

When applying the solver, there are four parameter values which might be of interest of varying.
The weighting of the two terms in the objective function can be set manually. For the remainder of
the text, the weighting of the integrality condition and the original objective will be referred to as u1

and u2, respectively. In terms of the variable weighting of the two terms throughout the simulation
process, the geometrical reduction factor can be adjusted.

To prevent the algorithm from getting stuck in an integer infeasible point, a state often referred to
as stalling, the algorithm flip a random number of integer variables when this state is detected. The
maximum number of variables to be flipped can also be set manually.

For the remainder of this thesis, the term OFP refers to the OFP heuristic designed to handle
MINLPs.
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fi t Fuel/water consumption for unit i during period t
fmaxi Maximum fuel/water consumption for unit i during the simulation
m Total number of periods
n Total number of units
pi Penalty for exceeding emission constraint for unit i [¤/kg CO2]
t Time [h]
tmi n−o f fi Minimum period of time which unit i has to continuously stay off when stopped [h]
tmi n−oni Minimum period of time which unit i has to continuously stay on when started [h]
to f fi t Time which unit i has been shut down [h]
uoni t 1 if unit i is on during period t , 0 else
wi t Output from unit i at time t [MW]
wmaxi Maximum capacity of unit i [MW]
wmi ni Minimum stable output from unit i [MW]
xi t Startup parameter, 1 if unit i starts up during period t , 0 else
yi t Shutdown parameter, 1 if unit i is shut down during period t, 0 else
zi 1 if unit i is exceeding its CO2 allowance, 0 else

Table 3.1: Nomenclature.

Objective function

Objective function:

mi n
n∑

i=1

(
pi +

m∑
t=1

ci t

)
(3.1)

Penalty costs:

pi = δ ·∆ei · zi (3.2)

∆ei = etot ali −emaxi (3.3)

etot ali =
m∑

t=1
fi t ·νi (3.4)

fi t = 3600 ·wi t

θi t · ιi
(3.5)

zi =
{

1 ∆ei > 0
0 ∆ei ≤ 0

(3.6)

Regular costs:

ci t = coperi t + cr ampi t + cst ar ti t + cstopi t (3.7)

coperi t = (εi · fi t +ηi ·wi t ) (3.8)

cr ampi t = γi ·∆w2
i t (3.9)

∆wi t = (wi t −wi (t−1)) · (uoni t −xi t )+ (wi t −wmi ni ) · xi t + (wi (t−1) −wmi ni ) · yi t (3.10)

cst ar ti t = (β1i +β2i · to f fi t ) · xi t (3.11)

to f fi t = (to f fi (t−1) +1) · (1−uoni t ) (3.12)

cstopi t =αi ·wmaxi · yi t (3.13)
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Constraints

Demand:

n∑
i=1

wi t ≥ dt ·ξ (3.14)

Spinning Reserve:

n∑
i=1

wmaxi ·uoni t ≥ dt ·ξ ·κ (3.15)

κ≥ 1

Capacity:

wmi ni ·uoni t ≤ wi t ≤ wmaxi ·uoni t (3.16)

Ramping:

(wi (t−1) −∆wmaxi ) ≤ wi t ≤ ((wi (t−1) +∆wmaxi ) · (uoni t −xi t ))+ (xi t ·wmaxi ) (3.17)

∆wmaxi ≥ wmi ni

Fuel consumption:
m∑

t=1
fi t ≤ fmaxi (3.18)

Minimum up and down time:

xi t − yi t = uoni t −uoni (t−1) (3.19)
t∑

j=t−tmi n−oni +1
xi j ≤ uoni t ∀i , j ∈ {1...m} (3.20)

t∑
j=t−tmi n−o f fi +1

yi j ≤ 1−uoni t ∀i , j ∈ {1...m} (3.21)

xi t ∈ [0,1] ∀i , t

yi t ∈ [0,1] ∀i , t

ui t ∈ {0,1} ∀i , t

Explanation

As can be seen from the previous section, the objective function is divided into two parts: Penalty
costs and regular costs. The penalty for each unit is growing linearly with the amount of CO2 released
exceeding the unit specific allowance defined by emaxi . If an unit complies its allowances the penalty
p[i ], will be set to zero.

The regular costs are divided into four sub-costs: Operational, ramping, startup and shutdown
costs. The operational costs are a sum of fuel consumption and maintenance costs. The fuel costs are
proportional to the nonlinear fuel consumption. The maintenance costs are assumed to vary linearly
with the power generated.

Ramping costs are assumed to be quadratic functions of the change in output ∆wi t . As can be
seen in equation 3.10, the calculation of∆wi t varies depending on if the unit is in operational, startup
or shutdown mode. This is done to avoid double charging of the ramping cost between wi t = 0 and
wi t = wmi ni , though this is assumed to be included in the startup and shutdown cost terms.

Startup costs are calculated proportional to the period of time which an unit has been off, before
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the respective startup procedure takes place.
Shutdown costs are constant for each unit, and are calculated from a shutdown cost parameter

αi , multiplied with the maximum capacity of the respective unit.
In terms of the constraints, the electricity demand is described as the actual demand multiplied

by a transmission and distribution loss factor ξ, which is assumed to be constant.
The requirement of having a spinning reserve is satisfied through constraint 3.15. If for instance

κ= 1.10, then there are required for the operating units to in total have a free capacity of 10% relative
the demand.

As discussed in section 2.1, the output from each unit is constrained to operate between and
minimum and maximum value. This is included in the model by constraint 3.16.

The ramping constraint was originally formulated as

(wi (t−1) −∆wmaxi ) ·uoni t ≤ wi t ≤ ((wi (t−1) +∆wmaxi ) · (uoni t −xi t ))+ (xi t ·wmaxi ) (3.22)

but through practical experiments, it was found that the binary variable uoni t on the left hand side
of the constraint, caused significant growth in computation time compared to the formulation pre-
sented in constraint 3.17. The main consequence of this change is that if ∆wmaxi < wmi ni , then it is
impossible to shut down unit i. For this reason, there is set as a requirement that ∆wmaxi ≥ wmi ni .
This requirement is not unreasonable though. In terms of the model presented in (Wold [115]), can a
typical coal fired unit provide a load change gradient of 2%/min. For an unit operating on a minimum
level of 200 MW, this is equivalent to approximately 650 MW/h, which is more than three times the
minimum output.

The rightmost term in constraint 3.17 is included to allow the units to start operating at whatever
outputs are preferred, straight after startup.

Fuel and water consumption, as well as minimum up and down times, are implemented as dis-
cussed in section 2.1.

As discussed in section 2.1, there is reasonable to assume that constraints for "must run" and
"must out units" can be excluded from the model, for simulations ranging over short periods of time.
None of the simulation periods explored in this thesis exceed 24 hours. For this reason these con-
straints are omitted.

To limit the complexity of the model, MCP and network capacity constraints are excluded from
the model.

A weakness of the model is that it does neither take extra fuel consumption nor CO2 emissions
due to ramping into account. This causes the fuel constraint to be slightly unrealistic, and the CO2

emissions to appear lower than what is the actual case.
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(a) Demand Set 1 (DS1)
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(b) Demand Set 2 (DS2)
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(c) Demand Set 3 (DS3)
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(d) Demand Set 4 (DS4)

Figure 4.1: Demand sets designed for simulations with 3 (a), 6 (b), 9 (c) and 12 (d) generating
units.

to have a constant startup costs, due to their nature of not having the same thermal variations as
thermal units. This was implemented by setting β2i = 0. All startup parameters were set to values
which were assumed to include the cost of extra fuel consume, maintenance and manpower required
by the respective process. The same applies for the shutdown parametersαi . These values are strictly
fictional though, and were set to what the author considers reasonable relative the startup costs.

For coal and gas units, there were pursued to find values for γi which gave average ramping costs
in the same range as the ones presented in (Kumar et al. [64]). There is important to remark that
the values presented in (Kumar et al. [64]) are based on average numbers, and that all cr ampi t were
defined as quadratic functions. For this reason, large changes in output within short periods of time,
might have caused significant deviations between the ramping costs found in the simulations and the
values found in (Kumar et al. [64]). The ramping parameters for hydro units were set to reasonable
values, relative the values set for coal and natural gas units. The ramping costs were assumed to
include the cost of extra fuel consumption, maintenance and manpower required for the respective
process.

The load change parameters ∆wmaxi , were set to moderate values of those presented in (Wold
[115]).

The coal price was set to 60¤/tonnes. This choice was made based on data from (InfoMine [55]).
Remark that this price was based on February 2014 numbers, which was straight after a significant
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Figure 4.2: Distribution of maximum capacity for the different generator setups.
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price drop, due to a warmer January than expected. The price of natural gas was set to 4.7 ¤/Mcf
based on numbers from (InfoMine [54]). The price for water consumption was set to be within the
price range presented by (Worldwatch [116]).

The values for ηi are fully collusive, and were not based on any scientific research. For this reason
they were set with small variations.

The energy densities of coal and natural gas, may vary depending on purity. In this case the den-
sities were set to 28 MJ/kg and 1.1 MJ/ft3, respectively. The values were based on the numbers pre-
sented in (Wold [115]), and represent fuel of high quality. In terms of the hydro units, ιi was set to
0.5MJ/tonnes. This is a realistic number while having a waterfall slightly higher than 50 meters.

The emission parameters νi , for coal and natural gas were set to 2.3 kg CO2/kg and 0.05 kg/ft3,
respectively. There were not assumed to be any carbon emissions related to production done by the
hydro facilities.

Each power plant got its own emission allowance, emaxi . They were calculated equally for all
units, by multiplying the capacity with a factor of 2000000 kg/GW capacity.

The maximum fuel consumption set for each unit was calculated by multiplying its capacity with
6200000 kg/GW capacity, 3333333333 ft3/GW capacity or 190000000 m3/GW capacity, depending on
if the unit was a coal, natural gas or hydro unit, respectively.

To gain realistic efficiency characteristics, all θi t were assumed to be on the form

θi t = p1i

(
wi t

wmaxi

)3

+p2i

(
wi t

wmaxi

)2

+p3i

(
wi t

wmaxi

)
+p4i (4.1)

The values of p1i , p2i , p3i and p4i were set by parameter estimation based on the efficiency charac-
teristics presented in (Wold [115]). Graphical illustrations of the estimates can be seen in appendix E.

Minimum up and down times were set based on the expected dynamics of the power sources, but
were not based on any specific publication. An important remark in this matter, is that by the start
of all simulations, all units were assumed to be in a state where to f fi t = 1 h, and where the minimum
downtime constraint not applied. This means that for all units, the first startup was allowed to occur
without satisfying to f fi t ≥ tmi n−o f fi .

Minimum stable operational output for the units were set relative maximum capacity, according
to what was presented in (Wold [115]).

Computational Platform

All simulations were carried out with the following system specifications:

• CPU: Intel®Core™i7-2600 (3.40 GHz x 8).

• Memory: 16 GB.

• Operative System (OS): Ubuntu 12.04 64-bit, Kernel Linux 3.2.0-57-generic.

• AMPL Version 20120328 (Linux x86_64).

The CPLEX version used was 12.4.0.0. In all simulations taking advantage of this solver scaling
was turned off, because it was detected feasibility problems during the scaling process. Besides this,
all CPLEX specific parameters were set to their default values.

The BONMIN B-BB version used was 1.5.2 with Cbc 2.7.5 and Ipopt 3.10.1. The OFP was im-
plemented with BONMIN version 1.6 using Cbc 2.7.7 and Ipopt 3.10.2. The BONMIN parameters
allowable_gap, allowable_fraction_gap and cutoff_decr were all set to -0.00001. Except for these, all
BONMIN specific parameters were set to their default values.
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Both the MILP and the MIQP simulations were performed using CPLEX. A nice way of evaluating
the quality of the solutions found while using this solver is studying the MIP optimality gap. This
especially comes in handy when the simulation is interrupted before the solver has finished, though
it gives an indication of how far the problem is from being fully solved. In the results part, as well as in
appendix D, the terms absolute MIP gap and relative MIP gap are used. The former is the difference
between the current best integer solution and the optimal value of the LP relaxation, while the latter
is defined as:

r el ati ve M I P g ap = |best bound − cur r ent best i nteg er soluti on|
|best bound | (4.2)

Some of the CPLEX simulations were performed twice, once in single core mode and once in multi
core mode. This was done to compare runtime with other solvers, and to retrieve data regarding the
importance of multi core CPU support. All CPLEX simulations were interrupted after 3600 sec.

The MINLP formulation was implemented as presented in chapter 3, and the same formulation
was used for both BONMIN B-BB and OFP. In total appendix D includes 18 simulations using BON-
MIN B-BB. Simulation 16 is the only one of them having three units, and was performed to evaluate
the performance relative other formulations and solvers. Simulation 17 to 28 were all carried through
with six generating units, with δ varying from 0 ¤/kg CO2 to 0.2 ¤/kg CO2. These simulations were
done to evaluate the CO2 allowance model, and to see how different CO2 fines affected the energy
mixes and the emissions. There were not set any time limits on these simulations.

Simulation 29 to 32 are to be considered special, in the sense that they are not based on the CO2 al-
lowance model. These were performed to test other potential approaches of constraining CO2 emis-
sions, and compare them to the allowance model. Simulation 29 is formulated as a pure minimization
of CO2 emissions. Though it is assumed that hydro units are not releasing any emissions, minimiz-
ing the regular costs of these units and minimizing the emissions are not conflicting objectives. For
this reason both were included in the objective. The setup of the simulation was implemented by
removing the penalty costs and replacing the objective presented in equation 3.1 with

mi n

((
n∑

i=1

m∑
t=1

fi t ·νi

)
+

( ∑
i ∈ hydr o

m∑
t=1

ci t

))
(4.3)

while the constraints were kept unchanged. The notation i ∈ hydr o refers to all generating units i
which are hydropower units. The simulation was conducted using DS2 and GS2, but remark that the
parameters emaxi and δ in this case were ignorable.

There is worth noting, that there is a potential weakness of the way the objective presented in
equation 4.3 is formulated. If there are two different solutions which both are optimal in terms of the
objective, there is no warranty that the solver will choose the one of them providing the lowest total
cost.

Simulation 30 is formulated as a strict unit emission constraint approach. This was implemented
by removing the penalty costs from the original objective function, and adding a constraint on the
form

etot ali ≤ emaxi (4.4)

to the problem. The simulation was conducted using DS2 and GS2, but with modified values for
emaxi . They were calculated equally for all units, by multiplying the respective maximum capacity
with a factor of 2500000 kg/GW capacity. It is worth noting that also here δ was ignored.

Simulation 31 is closely related to simulation 30. It is formulated with a strict total emission con-
straint. This was achieved by using the exact same setup as in simulation 30, except that constraint 4.4
was replaced by

n∑
i=1

etot ali ≤
n∑

i=1
emaxi (4.5)
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Simulation 32 is a conventional cost function approach. This was formulated easily by setting
emaxi = 0 for all i . Besides this modification standard GS2 and DS2 were used, and δ was set to 0.001
¤/kg CO2.

Simulation 33 was simulated using the CO2 allowance model, and is the only simulation in ap-
pendix D which includes 9 generating units, that was conducted using BONMIN B-BB. The simula-
tion was manually interrupted after approximately ten days, and for that reason the lower bound is
included in table D.33. This value is the lower bound provided by Ipopt, at the point when the simu-
lation was interrupted. Remark that as discussed in section 2.5, this value is not necessarily truly the
lowest bound.

Simulation 33 was the only simulation in appendix D using BONMIN B-BB which was inter-
rupted. All others were ended by the solver itself.

The specifications of simulation 34, 35 and 36 are identical with 16, 18 and 33, respectively, except
that they were performed using OFP instead of BONMIN B-BB. All of the respective simulations were
performed with u2 = 0.01. Throughout the conduction of simulation 36, the same issue related to
computation time as in simulation 33 was experienced.

In terms of the computation time issues experienced while the number of units were increasing,
there were made another 45 simulations using the allowance model, besides those recently described.
These were divided into three groups of fifteen simulations, were the first was using GS2 and DS2, the
second was using GS3 and DS3 and the third was using GS4 and DS4.

Each group consisted of 13 simulations solved by OFP with different weighting, u2, on the original
objective. All these simulations were set to end when the first feasible solution was found. All OFP
simulations presented in this thesis were performed with u1 = 1, a geometrical reduction factor of 0.9
and a maximum limit of 10 integer variables to be flipped if stalling. Further, each group included
a BONMIN B-BB simulation where all support heuristics were turned off (in default mode BONMIN
B-BB uses an FP heuristic in the first node to find a feasible solution). Also this simulation was set to
end after finding the first feasible solution. The last simulation in each set, was conducted using the
same BONMIN B-BB setup as in simulation 18 in appendix D, but it was set to end after 3600 seconds.

An overview of the results from these simulations can be found in table 5.4, 5.5 and 5.6. The three
rightmost columns are comparisons of the objective relative the result of the B-BB simulation without
heuristics, the objective relative the best OFP solution and CPU time relative the CPU time of the OFP
solution providing the best objective. The best objective value and CPU time retrieved using OFP are
market with green text.
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Figure 5.2: Upper: Energy mix with respect to δ. The results are based on simulations using
the CO2 allowance model with 6 units using: GS2, DS2, κ = 1.10 and ξ = 1.07. For a more
extensive overview, see simulation 18 to 28 in appendix D. Lower: Energy mix for simula-
tions with six units, using other types of emission constraints. From left to right the bars
correspond to simulation 29 to 32 in appendix D.
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Solver u2 Objective [¤] CPU time [sec]
Obj. rel. B-BB, no FP-heuristic,
1st feasible solution found [%]

Obj. rel. best solution
found with OFP [%]

CPU time rel. time best obj.
found with OFP [%]

OFP 0,001 1419550 2427 -3.49 11.57 -41.39
OFP 0,01 1419590 2487 -3.49 11.57 -39.94
OFP 0,1 1319400 2571 -10.30 3.70 -37.91
OFP 1 1306860 3053 -11.15 2.71 -26.27
OFP 10 1357550 3734 -7.71 6.70 -9.83
OFP 100 1272350 4141 -13.50 0.00 0.00
OFP 150 1310360 4082 -10.91 2.99 -1.42
OFP 200 1283770 4167 -12.72 0.90 0.63
OFP 250 1273990 3688 -13.39 0.13 -10.94
OFP 300 1290180 3454 -12.29 1.40 -16.59
OFP 400 1303140 3460 -11.40 2.42 -16.45
OFP 500 1288780 3385 -12.38 1.29 -18.26
OFP 1000 1343290 3560 -8.68 5.58 -14.03

BONMIN B-BB,
without heuristics,
first solution found

- 1470890 11858 0.00 15.60 186.36

Regular BONMIN B-BB
(max runtime: 3600 sec.)

- 1419550 3580 -3.49 11.57 -13.55

Table 5.6: Comparison of results using OFP with different weighting on the original objective.
The results are based on simulations using the CO2 allowance model with 12 units using:
GS4, DS4, δ= 0.1, κ= 1.10 and ξ= 1.07.
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Figure 5.6: Graphical overview of the objectives from the OFP simulations in table 5.4, 5.5
and 5.6 with respect to u2.
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Figure 5.7: Graphical overview of the CPU times from the OFP simulations in table 5.4, 5.5
and 5.6 with respect to u2.
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was caused by the linearizations alone.

Even though the deviation was small, there is always interesting to find the formulation which
gives the best trade-off between objective value and computation time. In this case, the MILP setup
which seemed to be providing this, was the one using step size 100/200. The full overview of this
simulation can be found in table D.3. The objective value was only 0.40% higher than the one pro-
vided by the B-BB simulation, and the computation time was insignificantly higher than for the MILP
simulation using step size 200.

In terms of the MILP simulations in table 5.1 using CPLEX in single core mode, there was no
surprise, in view of the multi core simulation with step size 100, that the single core one failed. What
was remarkable though, was that the simulation with step size 100/200 gave the same solution as in
multi core mode, but with significantly lower CPU time. From the same table, it can be seen that this
behavior applied for the MIQP simulations with step size 200 as well. For this reason, these setups
were simulated several times, both in single and multi core mode, always with the same result.

A potential explanation to this behavior could be that the use of several cores increased the mem-
ory usage, causing the data feed to slow down, but in this case this was unlikely the reason. The
memory usage was monitored during the simulations, and there was not found any significant dif-
ference in memory usage during the simulations, and the total system memory usage was constantly
below 10% of maximum capacity.

Another more probable reason, might be that the synchronization process and time coordinating
among the threads undertaking independent branches in the solution tree, affected the computation
performance in a negative way. An example of such behavior could be a thread which is standing
locked up waiting for another thread to pass on information. The waiting thread will then be adding
CPU time, without performing any useful work. Also the process of handing over information be-
tween threads may be time consuming.

In terms of the MIQP simulations, there can be observed for step size 100, that the objective value
was significantly closer to the B-BB solution than the MILP simulation with equivalent step size. De-
spite this, the MIP gap was much larger, and the simulation was not able of finishing within 3600
seconds. Comparing the number of variables and constraints in table D.1 and D.8, it could be natural
to assume significantly lower computation time for the latter, but this is obviously not the case. The
reason for this is that CPLEX is using different strategies solving MILPs and MIQPs. The former is
solved using branch and cut, while the latter utilizes barrier methods. The improved objective value
was most likely due to improved accuracy, caused by not applying piecewise linearization to equa-
tion 3.9.

For the equivalent MIQP simulation with step size 200, it can, as expected, be observed that the
objective value was a little higher, even despite a significantly better MIP gap. On the other hand, was
the computation time much more acceptable. The objective value was slightly better than the MILP
simulation with step size 100/200, which also can be considered reasonable.

In terms of comparing computation times of the simulations, there are reasonable to compare
real time values due to BONMIN B-BB’s and OFP’s lack of multi core support. Based on table 5.1,
there can be argued that MILP with step size 100/200 solved with CPLEX is the best choice for the C 02

allowance model with 3 units, if the user is willing to slightly compromise on objective value in favor
of computation time. If objective value is more important than time, a MINLP solved by BONMIN
B-BB or OFP should be preferred. Based on the data in table 5.1 alone, the difference in computation
time for the OFP simulation relative the B-BB simulation is to small to argue which solver is the best
choice.

Focusing on a problem only including 3 units is very synthetic in terms of the UC problem. As the
number of generating units increases, the number of variables and constraints grows drastically. For
example did the total number of variables and constraints before presolve in the MILP with step size
100, increase with 9783 and 9243, respectively, as GS1 and DS1 were replaced by GS2 and DS2. The
increased number of variables did also affect the CPLEX simulations drastically. This became very
clear from the results presented in table 5.2. Neither the objective values nor the computation times,
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where ∆êi is used instead of ∆ei and operates as a slack variable. This formulation is inspired by the
work on soft constraints presented in (Maciejowski [71]), and could potentially decrease the compu-
tational load of the problem to some extent. On the other hand, this formulation will only slightly
reduce the number of binary variables in the problem. The way the model is implemented in chap-
ter 3 also has its advantage, in terms of being more general. In particular, this formulation can easily
incorporate penalties of the form

pi = (p0 +δ ·∆ei ) · zi (6.4)

where p0 is a penalty for actually violating the allowance, while the rest of the fee is growing pro-
portionally with the exceeding emissions. Nonlinear increasing penalties for exceeding the emission
allowances can also be implemented.

In a larger perspective, as the problem size increases, in many situations there will be impossible
to fully solve the problem within reasonable time. In such cases, the goal would be to find an as good
as possible solution within the given time constraints. These are requirements which are very similar
to the features the OFP wants to provide. Based on the results presented in table 5.4, 5.5 and 5.6, this
is exactly the goal in terms of choosing suitable values of u2.

Starting with the simulations with six units, it can be seen that among the OFP simulations the
best objective value is provided by the simulation using u2 = 1. This is also the only OFP simulation
which performs better in terms of objective value than the B-BB without heuristics simulation. Also
the computation time is very competitive, both relative the other OFP variants and the B-BB simula-
tions. It is worth noting that fully solving the problem only improves the objective value with 1.83%
relative the best OFP solution, and at the same time requires more than 10 times as much computa-
tion time.

As can be seen from the blue graph in figure 5.6, the quality of the objective value depends signif-
icantly on the value of u2. Besides the simulations using u2 = 1, the setups with u2 = 0.001, u2 = 0.01
and u2 = 0.1 are all providing good results with short computation times. Also the simulation with
u2 = 10 performs fairly good.

Considering the simulations with 9 generating units, it can be seen that u2 = 200 gives the best
objective value among all the simulations, performing way better than both the B-BB simulations.
Relative the result presented in simulation 36, the objective is less than 1% higher, which is remark-
able in terms of the large difference in computation time. Compared to the other OFP simulations,
the computation time is no more than mediocre. For comparison is the simulation using u2 = 0.1
almost 35% faster. On the other hand, this simulation offers an almost 5.2% weaker objective value.

In terms of making a reasonable trade-off between runtime and objective value, there can be
seen by studying the red graphs in figure 5.6 and 5.7, that u2 = 10 might be a good choice. This setup
improves the runtime with close to 25%, and does only sacrifice about a 3.3% increase in the objective
value.

When studying the simulations with 12 units in table 5.6, there can be observed that the objective
values in general are lower than the objective values presented in table 5.5. This might occur confus-
ing at first, because it is reasonable to assume higher costs due to the higher values in DS4 relative
to DS3, and worse objective quality due to the increased complexity from the larger number of units.
The reason for this, is that the relative gap between the total maximum capacity in GS4 and the de-
mand in DS4 is much higher then for GS3 and DS3. From this, it follows that the simulations with
12 units got a wider aspect of available units, which is helpful in terms of reducing regular costs and
avoiding CO2 penalty fees.

Studying table 5.6 gives that BONMIN B-BB without heuristics performs very poorly. The regular
B-BB simulation presents an objective value in the range of the poorest OFP simulations, but with a
significantly worse computation time. Among the OFP simulations, does the one with u2 = 100 give
the best objective value. The downside of this setup is that it provides the second worst computation
time among the OFP simulations. The very best computation time is for the simulation with u2 =
0.001, but this also retrieves the second worst objective among the OFP simulations.

In terms of trying to make a fair trade-off between cost and computation time the use of u2 = 0.1
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From the data presented in table 2.1, it can be seen that hydropower and wind provide the best
mean values for lifecycle CO2 emissions. This research has shown hydropower to be a very attractive
option, both when it comes to costs and emissions. On the other hand, there are few countries which
got sufficient hydro resources to use it as a dominating baseload source.

The main downside of using wind, and solar power as well, is the strict dependence on weather
conditions. As discussed in (Wold [115]), a power supply system with large shares of these sources, will
require very robust units compensating for weather changes to avoid brown- and blackouts. There
is also important to have in mind that installing these types of facilities, including hydropower, may
cause significant ecological footprints in their respective areas.

Energy from biomass can also be seen to be an attractive option, but it got some major drawbacks.
It usually requires large areas of land to be efficient, and there might also be challenges with materials
not being available the whole year around. The extraction of biomass is also often expensive.

As presented in (Wold [115]), nuclear power does provide great features in terms of GHG emis-
sions and of being a stable baseload source. Despite this, it is a very controversial power source, due
to its nature of producing nuclear waste.

Drawing the full picture, all power sources got their pros and cons. What is for sure, is that mea-
sures have to be made if Europe is going reach their goals of reducing CO2 emissions, and whatever
strategy which is chosen there will have to be made trade-offs.

As earlier discussed, as an effect of the shale gas revolution, the US has experienced great results
in terms of reducing its CO2 emissions. In (Wold [115]) the difference in infrastructure in the US com-
pared to Europe was discussed, and it came clear that the latter is modest compared to the former.
Regardless of this, natural gas is an important power source in the European market. Norway and
Russia are supplying extensively throughout Europe using pipelines, and there is a significant import
of LNG. On top of this, there is estimated to exist significant instances of shale gas on the continent.

The mentioned factors make it reasonable to ask if Europe can achieve similar results as the US, by
replacing shares of coal with natural gas in the power industry. This is a question of complex nature,
and if it is possible, is it the best solution? It is beyond the scope of this thesis to evaluate all potential
strategies for a continental CO2 reduction plan, and state which one is the best. The focus is therefor
left on whether it is possible, and which trade-offs it may require.

Between 2005 and 2012, average natural gas prices for industry consumption decreased with 66%
in the US. In the same period of time, EU faced an increase of 35%. Further has the electricity price
index for industry in US and EU decreased 4% and increased 38%, respectively[18]. At the same time,
European coal prices have dropped significantly due to an oversupplied market. This can partly be
seen in context of high import levels from Colombia, South Africa and the US. The increased import
from the US can naturally be seen as a consequence of them replacing coal with natural gas.

In the same period, Europe has been facing a significant recession, and especially are Central and
Southern Europe affected. The increased power prices have contributed to worsen the situation, in
terms of making industry depending on electric power less competitive to the US’ industry. CO2 put
aside, this whole situation in large scale seems to favor coal before natural gas, which by studying
figure 6.1 also comes clear is the case for many countries. From a financial point of view, there are
two factors which can change this, an increase in the total cost of using coal and a reduction in the
natural gas prices.

The former can indirectly be achieved by financial measures to CO2 emissions, such as the al-
lowance system presented. This kind of measures have indirectly been implemented in the EU in
terms of the EU ETS. On the other hand, may it be difficult to gather support for measures which
may cause further increase in electricity prices. Such measures may cause increased relocation of
power consuming industry outside the respective countries, and worsen the situation for an already
struggling population.

As with all consumables, the price of natural gas follows demand and availability. Considering the
idea of replacing coal with natural gas, this will cause a raise in demand. Assuming that the availability
stays on today’s level, this will raise the prices, and from this there will follow a raise in electric power
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Figure 6.1: Diversity of power generation in selected EU countries (2011) Source: Eurostat
with graphics from Euracoal

prices as well. Therefore, it is natural to focus on availability, in terms of making natural gas a more
attractive option.

As discussed in (Wold [115]), can today’s natural gas market be divided into two main branches:
Liquefied natural gas (LNG) and pipeline gas. A rough overview of EU’s trade patterns in these mar-
kets are showed in figure 6.2. In terms of LNG, the market is tight due to large demand both in Europe
and Asia. Considering the pipeline market, Russia and Norway are the dominating actors providing
for 29% and 24% of EU’s total imports, respectively[89]. This market is also very tight, and there is
common with oil price indexed supply contracts, keeping the prices high.

At this point, there are few realistic options of increasing the availability of natural gas in the
pipeline market, besides exploring the opportunities of retrieving shale gas. Conventional domestic
production is scarce for the EU countries, and possibilities of increased supply from the North African
actors are limited due to the unrest in the region.

The estimated volume of recoverable shale gas within the EU countries varies a lot, though little
test drilling has been carried out so far. In 2012 the EU Joint Research Centre (JRC) presented numbers
stating best, high and low estimates of technical recoverable shale gas within the EU. These values
were set to 17.6, 15.9 and 2.3 trillion cubic meters (tcm), respectively. For comparison were the best
and low numbers for the US 47.2 and 13 tcm[18].

Even though the estimates are modest relative the numbers for the US, these amounts of natural
gas got the potential of supplying the whole region for decades[18]. Despite this, the enthusiasm has
been rather varying so far. Among the countries which are assumed to hold shale gas resources are
Poland, France, Great Britain, Bulgaria, Germany and Romania, where the former two are assumed
to hold the largest amounts[35].

The most negative parties have been France and Bulgaria, which both have banned fracking, due
to the risks of polluting ground water and potential seismic disturbances. Another significant factor
when it comes to France, is that fossil fuels only counts for a very small share of their power genera-
tion, as can be seen in figure 6.1. On the other hand, Bulgaria got a power production dominated by
coal, similar to the US before the shale gas revolution. In such matter, this is a country with significant
opportunities of improving their carbon emissions by retrieving their own shale gas, if it shows off to
be recoverable.

Within Germany the opinions regarding fracking are divided, but some drilling has taken place.
Germany can also be seen to have a significant share of electric power coming from coal fired plants,
but they have already made large investments in their renewable sector, which are assumed to change
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Figure 6.2: Imports of natural gas to the EU. Red arrows indicate imports by pipeline, and
blue arrows indicate LNG imports. Source: Gas in Focus (Observatoire du Gaz), Imoports of
natural gas into the European Union

their energy mix drastically. The official goal is having a 35% share of the total gross electricity con-
sumption supplied by renewable sources within 2020[2]. A natural consequence of this, is that recov-
ering shale gas got a minor priority at this point.

Romania has taken a similar stand as Germany. They have allowed drilling of a few test wells, but
have not given any approval for recovering gas or fracking[18].

In Britain, shale gas has been considered a cheap option to alternative renewable energy sources,
and there is an ongoing argue where the main initiative should be. A significant number of test wells
are being drilled these days, but under strict regulations and requirements of geological assessment
before drilling[18]. In large extent, Britain is one of the most exploring countries within the field.

Poland is the country which in largest extent has started exploring its potential shale gas re-
sources. As discussed in (Wold [115]), Poland have traditionally been using small amounts of natural
gas. As shown in figure 6.1 is the electric power industry dominated by coal fired plants. This has led
to comprehensive pressure from the EU, regarding reduction in their carbon emissions. This can be
seen as an impetus to their eager of assessing the possibilities of recovering shale gas.

There have been done comprehensive drilling of test wells, and the government has stated that
they are aiming for commercial operation within the end of 2015. So far, the project has not been a
road without bumps though. During 2012 Exxon pulled out of Poland, stating that their technology
was not sufficient for the type of shale in the basin. In spring 2013 Marathon and Talisman followed
the same path, due to challenges with the geology and uncertainty regarding tax policy[18].

Nevertheless, in January 2014 San Leon Energy (SLE) informed the press (articles among other
published at www.bloomberg.com and www.reuters.com) that they had drilled a successful vertical
well in Lewino, in northern Poland. The well was said to produce as much as 60000 cubic feet daily
during tests, and the company stated they were aiming to drill a commercial horizontal well no later
than July 2014.

To draw a line, there are so far made small steps within the EU to start commercial recovering
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of shale gas. At where it stands now, some countries might face an economical growth, and achieve
reduced carbon emissions as an effect of their ongoing projects. On the other hand, at this point, the
initiatives are to small to achieve nearly the same impacts within the union, as have been seen in the
US.

Only time will show how the width of the upcoming production in Poland and the resources in
Britain. Nevertheless, as long as potentially large resource holders, such as France, are holding back,
there will be hard to gain sufficient cooperation regarding infrastructure, which was pointed out as
one of the main challenges in (Wold [115]).

Besides the environmental gain of replacing coal with natural gas, it is also clear that natural gas is
an important energy source within Central, Southern and Western Europe. In view of the unstable re-
lationship between Russia and the EU, and Russia’s role as a dominating supplier of natural gas, there
is natural to consider the union’s ability of becoming more self provided. This concern is strength-
ened by the recent escalation of the conflict between Russia and Ukraine, which affects a significant
transfer path for EU’s natural gas supply. There is a slim possibility that this situation may trigger the
parties now holding back in their shale gas projects.

The pressure on many of the EU member’s economies, can also be seen as an argument not mak-
ing drastic investments in the shale gas industry. On the other hand, the potential gain is huge, and
such initiatives may be a significant part in terms of turning the negative trends. A major initiative
in the shale gas industry will require significant investments both when it comes to equipment, en-
vironmental protection measures and infrastructure, but this will also create an increased demand
of work labor, especially considering craftsmen and engineers. In such matter, an investment may
besides increasing future financial income and securing the supply of natural gas, also provide a near
immediate effect in terms of reducing unemployment. As the unemployment rates are decreasing,
also social service costs will decrease and tax incomes raise.

To conclude this section, it can be stated that it is unrealistic to expect the same success of shale
gas within the EU, as have been experienced in the US in terms of decreasing CO2 emissions. Some of
the ongoing projects are showing positive results, which may strengthen the role of natural gas in the
power industry in the future. As a consequence of both geological and structural differences, there
will be hard to copy the American success, but a wise approach will be to learn from their experiences,
both in terms of making the business profitable and protecting the environment.
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GENCO Generating Company

GHG Greenhouse Gas

GS1 Generator Setup 1

GS2 Generator Setup 2

GS3 Generator Setup 3

GS4 Generator Setup 4

ISO Independent System Operator

LP Linear Program

LR Lagrangian Relaxation

MCP Market Clearing Price

MIP Mixed Integer Program

MILP Mixed Integer Linear Program

MINLP Mixed Integer Nonlinear Program

MIQCP Mixed Integer Quadratically Constrained Program

MIQP Mixed Integer Quadratic Program

NLP Nonlinear Program

NTNU Norwegian University of Science and Technology (Norges Tekniske Naturvitenskapelige Uni-
versitet)

NVE Norwegian Water Resources and Energy Directorate (Norges Vassdrags- og Energidirektorat)

OFP Objective Feasibility Pump

OSI Open Source Initiative

O&M Operation and Maintenance

PDF Probability Density Function

QCP Quadratically Constrained Program

SA Simulated Annealing

SOS1 Special Ordered Set of Type 1



71

SOS2 Special Ordered Set of Type 2

TRANSCO Transmission Company

TS Tabu Search

UC Unit Commitment

UK ETS United Kingdom Emissions Trading Scheme

US United States

WNA World Nuclear Association
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DS1
Time Demand [MW]
1 700
2 700
3 650
4 250
5 350
6 400
7 350
8 600
9 750
10 800
11 950
12 1000
13 1450
14 2000
15 2100
16 2100
17 2100
18 1900
19 1500
20 1200
21 1000
22 700
23 600
24 700

(a) Demand Set 1 (DS1)

DS2
Time Demand [MW]
1 1400
2 1400
3 1300
4 500
5 700
6 800
7 700
8 1200
9 1500
10 1600
11 1900
12 2000
13 2900
14 4000
15 4200
16 4200
17 4200
18 3800
19 3000
20 2400
21 2000
22 1400
23 1200
24 1400

(b) Demand Set 2 (DS2)
DS3

Time Demand [MW]
1 1860
2 1860
3 1730
4 665
5 930
6 1065
7 930
8 1595
9 1995
10 2130
11 2530
12 2660
13 3850
14 5320
15 5580
16 5580
17 5580
18 5050
19 3990
20 3190
21 2660
22 1860
23 1595
24 1860

(c) Demand Set 3 (DS3)

DS4
Time Demand [MW]
1 1900
2 1900
3 1800
4 700
5 1000
6 1100
7 1000
8 1600
9 2000
10 2200
11 2600
12 2700
13 3900
14 5400
15 5600
16 5600
17 5600
18 5100
19 4000
20 3200
21 2700
22 1900
23 1600
24 1900;

(d) Demand Set 4 (DS4)

Table B.1: Demand sets
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Figure E.1: Estimated efficiency characteristic for coal units.
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Figure E.2: Estimated efficiency characteristic for natural gas units.
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