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Abstract: In the Minimum Description Length (MDL) principle, learning from the data is equivalent
to an optimal coding problem. We show that the codes that achieve optimal compression in MDL
are critical in a very precise sense. First, when they are taken as generative models of samples,
they generate samples with broad empirical distributions and with a high value of the relevance,
defined as the entropy of the empirical frequencies. These results are derived for different statistical
models (Dirichlet model, independent and pairwise dependent spin models, and restricted Boltzmann
machines). Second, MDL codes sit precisely at a second order phase transition point where the
symmetry between the sampled outcomes is spontaneously broken. The order parameter controlling
the phase transition is the coding cost of the samples. The phase transition is a manifestation of the
optimality of MDL codes, and it arises because codes that achieve a higher compression do not exist.
These results suggest a clear interpretation of the widespread occurrence of statistical criticality as a
characterization of samples which are maximally informative on the underlying generative process.

Keywords: Minimum Description Length; normalized maximum likelihood; statistical criticality;
phase transitions; large deviations

1. Introduction

It is not infrequent to find empirical data which exhibits broad frequency distributions in the
most disparate domains. Broad distributions manifest in the fact that if outcomes are ranked in order
of decreasing frequency of their occurrence, then the rank frequency plot spans several orders of
magnitude on both axes. Figure 1 reports few cases (see caption for details), but many more have been
reported in the literature (see e.g., [1,2]). A straight line in the rank plot corresponds to a power law
frequency distribution, where the number of outcomes that are observed k times behave as mk ∼ k−µ−1

(with 1/µ being the slope of the rank plot). Yet, as Figure 1 shows, empirical distributions are not
always power laws, even though they are broad nonetheless. Countless mechanisms have been
advanced to explain this behaviour [1–6]. It has recently been suggested that broad distributions arise
from efficient representations, i.e., when the data samples relevant variables, which are those carrying
the maximal amount of information on the generative process [7–9]. Such Maximally Informative
Samples (MIS) are those for which the entropy of the frequency with which outcomes occur—called
relevance in [8,9]—is maximal at a given resolution, which is measured by the number of bits needed
to encode the sample (see Section 1.1). MIS exhibit power law distributions with the exponent µ

governing the tradeoff between resolution and relevance [9]. This argument for the emergence of
broad distributions is independent of any mechanism or model. A direct way to confirm this claim
is to check that samples generated from models that are known to encode efficient representations
are actually maximally informative. In this line, [10] found strong evidence that MIS occur in the
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representations that deep learning extracts from data. This paper explores the same issue in efficient
coding as defined in Minimum Description Length [11].
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Figure 1. Rank plot of the frequencies across a broad range of datasets. Log-log plots of rank
versus frequency from diverse datasets: survey of 4962 species of trees across 116 families sampled
from the Amazonian lowlands [12], survey of 1053 species of trees across 376 genera and 89 families
sampled across a 50 hectare plot in the Barro Colorado Island (BCI), Panama [13], counts indicating
the inclusion of each 13,001 LEGO parts on 2613 distributed toy sets [14,15] and the number of genes
that are regulated by each of the 203 transcription factors (TFs) in E. coli [16] and 188 TFs in S. cerevisiae
(yeast) [17] through binding with transcription factor binding sites (TFBS).

Regarding empirical data as a message sent from nature, we expect it to be expressed in an
efficient manner if relevant variables are chosen. This requirement can be made quantitative and
precise, in information theoretic terms, following Minimum Description Length (MDL) theory [11].
MDL seeks the optimal encoding of data generated by a parametric model with unknown parameters
(see Section 1.2). MDL derives a probability distribution over samples that embodies the requirement
of optimal encoding. This distribution is the Normalized Maximum Likelihood (NML). This paper
studies the NML as a generative process of samples and studies both its typical and atypical properties.
In a series of cases, we find that samples generated by NMLs are typically close to being maximally
informative, in the sense of [9], and that their frequency distribution is typically broad. In addition,
we find that NMLs are critical in a very precise sense, because they sit at a second order phase transition
that separates typical from atypical behavior. More precisely, we find that large deviations, for which
the resolution attains atypically low values, exhibit a condensation phenomenon whereby all N points
in the sample coincide. This is consistent with the fact that NML correspond to efficient coding of
random samples generated from a model, so that codes achieving higher compression do not exist.
Large deviations enforcing higher compression force parameters to corners of the allowed space where
the model becomes deterministic.

The rest of the paper is organized as follows: the rest of the introduction lays the background of
what follows by recalling the characterization of samples in terms of resolution and relevance, as in [9],
and the derivation of NML in MDL, following [11]. Section 2.1 discusses typical properties of NML
and Section 2.2 discusses large deviations of the coding cost. We conclude with a series of remarks on
the significance of these results.
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Setting the Scene
Let ŝ = (s(1), . . . , s(N)) be a sample of N observations, s(i) ∈ χ, of a system where χ is a countable

finite state space. We define ks as the number of observations in ŝ for which s(i) = s, i.e., the frequency
of s. The number of states s that occur k times will be denoted as mk. Both ks and mk depend on the
sample ŝ.

We assume that ŝ is generated in a series of independent experiments or observations, all in
the same conditions. This is equivalent to taking ŝ as a sequence of N independent draws from an
unknown distribution p(s) (i.e., the generative process).

1.1. Resolution, Relevance and Maximally Informative Samples

The information content of the sample is measured by the number of bits needed to encode a
single data point. This is given by Shannon entropy [18]. Taking the frequency ks/N as the probability
of point s, this leads to:

Ĥ[s] = −∑
s∈χ

ks

N
log

ks

N
= −∑

k

kmk
N

log
k
N

, (1)

where the ˆ indicates that the entropy is computed from the empirical frequency. This quantity specifies
the level of detail of the description provided by the variable s. At one extreme, all the data points
are equal, i.e., s(i) = s, ∀i = 1, . . . , N such that mk = 0 for k = 1, . . . , N − 1 and mk=N = 1. With this,
one finds that Ĥ[s] = 0. On the other extreme, all the data points are different, i.e., s(i) 6= s(j), ∀ i 6= j,
such that mk=1 = N and mk′ = 0, ∀k′ > 1. Hence, one finds that Ĥ[s] = log N. This is why we call
Ĥ[s] as the resolution, following [9]. The resolution clearly depends on the cardinality of χ. Only a part
of Ĥ[s] provides information on the generative process p(s) and this is given by the relevance

Ĥ[k] = −∑
k

kmk
N

log
kmk
N

. (2)

A simple argument, which is elaborated in detail in [9], is that the empirical frequency ks/N is the
best estimate of p(s), so conditional on ks, the sample does not contain any further information on
p(s). Note that ks is a function of s, which implies Ĥ[s, k] = Ĥ[s] ≥ Ĥ[k]. Therefore, the difference
Ĥ[s]− Ĥ[k] = Ĥ[s|k] quantifies the amount of noise the sample contains.

We call ŝ a Maximally Informative Sample (MIS) if mk is such that the relevance is maximal at a
given resolution Ĥ[s] = H0. This implies the maximization of the functional

F = Ĥ[k] + µ(Ĥ[s]− H0) + λ

(
∑
k

kmk − N

)
(3)

over mk, where the Lagrange multipliers µ and λ are adjusted to enforce the conditions Ĥ[s] = H0 and
∑k kmk = N, respectively. As shown in [7,8], MIS exhibit a power law frequency distribution

mk ≈ ck−1−µ (4)

where c is a normalization constant such that ∑k kmk = N. As H0 varies from 0 to log N, MISs trace a
curve in the resolution-relevance plane (see solid lines in Figures 2 and 3 (B, C)) with µ as the negative
slope. As discussed in [9,10], µ quantifies the trade-off between resolution and relevance: a decrease in
resolution of one bit leads to an increase of µ bits in relevance. The point µ = 1, which corresponds to
Zipf’s law, sets the limit beyond which further reduction in Ĥ[s] results in lossy compression, because,
for µ < 1, the increase in Ĥ[k] cannot compensate the loss in resolution.

1.2. Minimum Description Length and the Normalized Maximum Likelihood

The main insight of MDL is that learning from data is equivalent to data compression [11].
In turn, data compression is equivalent to assigning a probability distribution over the space of
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samples.This section provides a brief derivation of this distribution whereas the rest of the paper
discuss its typical and atypical properties. We refer the interested reader to [11,19] for a more detailed
discussion of MDL.

From an information theoretic perspective, one can think of the sample, ŝ, as a message generated
by some source (e.g., nature) that we wish to compress as much as possible. This entails translating
ŝ in a sequence of bits. A code is a rule that achieves this for any ŝ ∈ χN and its efficiency depends
on whether frequent patterns are assigned short codewords or not. Conversely, any code implies a
distribution P(ŝ) over the space of samples and the cost of encoding the sample ŝ under the code P is
given by [18]

E = − log P(ŝ) (5)

bits (assuming logarithm base two). Optimal compression is achieved when the code P coincides with
the data generating process [18].

Consider the situation where the data is generated as independent draws from a parametric model
f (s|θ). If the value of θ were known, then the optimal code would be given by P(ŝ) = ∏i f (s(i)|θ) ≡
f (ŝ|θ). MDL seeks to derive P in the case where θ is not known (Indeed, MDL aims at deriving efficient
coding under f irrespective of whether f (s|θ) is the “true” generative model or not. This allows one
to compare different models and choose the one providing the most concise description of the data).
This applies, for example, to the situation where ŝ is a series of experiments or observation aimed at
measuring the parameters θ of a theory.

In hind sight, i.e., upon seeing the sample, the best code is f (ŝ|θ̂), where θ̂(ŝ) is the maximum
likelihood estimator for θ, and it depends on the sample ŝ. Therefore, one can define the regret R,
as the additional encoding cost that one needs to spend to encode the sample ŝ, if one uses the code
P(ŝ) to compress ŝ, i.e.,

R = − log P(ŝ)−min
θ

[− log f (ŝ|θ)] . (6)

Notice that minθ [− log f (ŝ|θ)] = − log f (ŝ|θ̂(ŝ)). R is called regret of P relative to f for sample ŝ
because it depends both on P and on ŝ.

MDL derives the optimal code, P̄(ŝ), that minimizes the regret, assuming that for any P the source
produces the worst possible sample [11]. The solution [20]

P̄(ŝ) =
f (ŝ|θ̂(ŝ))

∑x̂∈χN f (x̂|θ̂(x̂))
. (7)

is called the Normalized Maximum Likelihood (NML). The optimal regret is given by

R̄ = log ∑
ŝ∈χN

f (ŝ|θ̂(ŝ)) (8)

which is known in MDL as the parametric complexity (Notice that eR̄ can be seen as a partition sum.
Hence, throughout the paper, we shall refer to the parametric complexity as the UC partition function.).
For models in the exponential family, Rissanen showed that the parametric complexity is asymptotically
given by [21]

R̄ ' k
2

log
N
2π

+ log
∫ √

det I(θ)dθ +O(1) (9)

where I(θ) is the Fisher information matrix with the matrix elements defined by an expectation

Iij(θ) = −〈 ∂2 log f (s|θ)
∂θi∂θj

〉θ over the parametric model f (s|θ) (see Appendix A for a simple derivation).
The NML code is a universal code because it achieves a compression per data point which is as good
as the compression that would be achieved with the optimal choice of θ when one has large enough
samples. This is easy to see, because the regret R̄/N per data point vanishes in the limit N → ∞,
hence the NML code achieves the same compression as f (ŝ|θ̂).
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Notice also that the optimal regret, R̄, in Equation (8) is independent of the sample ŝ. It indeed
provides a measure of complexity of the model f that can be used in model selection schemes.
For exponential families, MDL procedure penalizes models with a cost which equals the one obtained in
Bayesian model selection [22] under a Jeffreys prior. Indeed, considering P̄(ŝ) as a generative model for
samples, one can show that the induced distribution on θ is given by Jeffreys prior (see Appendix A).

2. Results

2.1. NML Codes Provide Efficient Representations

In this section we consider P̄ as a generative model for samples and we investigate its typical
properties for some representative statistical models.

2.1.1. Dirichlet Model

Let us start by considering the Dirichlet model distribution f (s|θ) = θs, ∀s ∈ χ. The parameters
θs ≥ 0 are constrained by the normalization condition ∑s∈χ θs = 1. Let S = |χ| denote the cardinality
of χ and define, for convenience, ρ = N/S as the average number of points per state. Because
each observation is mutually independent, the likelihood of a sample ŝ given θ = (θ1, . . . , θS) can be
written as

f (ŝ|θ) = ∏
s∈χ

θks
s , (10)

where ks is the number of times that the state s occurs in the sample ŝ. From here, it can be seen that
θ̂s = ks/N is the maximum likelihood estimator for θs. Thus, the universal code for the Dirichlet model
can now be constructed as

P̄(ŝ) = e−R̄∏
s∈χ

(
ks

N

)ks

(11)

which can be read as saying that for each s, the code needs −ks log(ks/N) + R̄/N bits. In terms of the
frequencies, {k1, . . . , kS}, the universal codes can be written as

P̄(k1, . . . , kS) = e−R̄
N!

∏s∈χ ks! ∏
s∈χ

(
ks

N

)ks

δ

(
∑
s∈χ

ks − N

)
(12)

wherein the multinomial coefficient, N!
∏s∈χ ks ! , counts the number of samples with a given frequency

profile k1, . . . , kS. In order to compute the optimal regret R̄, we have to evaluate the partition function

eR̄ =
N!

NNe−N

∫ π

−π

dµ

2π
eiµN

[
∞

∑
k1=0

kk1
1 e−k1 e−iµk1

k1!

]
· · ·
[

∞

∑
kS=0

kkS
S e−kS e−iµkS

kS!

]
(13)

=
N!

NNe−N

∫ π

−π

dµ

2π
eiµN [N (iµ)]S (14)

'
√

2πN
∫ π

−π

dµ

2π
eSΦ(iµ) (15)

where
Φ(z) = ρz + logN (z) (16)

and

N (z) =
∞

∑
k=0

kke−(1+z)k

k!
. (17)

The integral in Equation (15) is dominated by the value where the function φ attains its saddle
point value z∗(ρ), which is given by the condition
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dΦ
dz

= ρ− 〈k〉z = 0 (18)

where the average 〈. . .〉z is taken with respect to the distribution

q(k|z) = 1
N (z)

kke−(1+z)k

k!
. (19)

Gaussian integration around the saddle point leads then to

eR̄ ' √ρ
eSΦ(z∗(ρ))√
〈k2〉z∗ − 〈k〉2z∗

(20)

where we used the identity Φ′′(z) = −
[
〈k2〉z − 〈k〉2z

]
.

The distribution Equation (12) can also be written introducing the Fourier representation of the
delta function

P̄(k1, . . . , kS) =
N!e−R̄

NNe−N

∫ π

−π

dµ

2π
eiµN ∏

s∈χ

kks
s e−(1+iµ)ks

ks!
. (21)

For typical sequences k1, . . . , kS, the integral is also dominated by the value µ = −iz∗(ρ) that dominates
Equation (15), which means that the distribution factorizes as

P̄(k1, . . . , kS) '∏
s∈χ

q(ks|z∗). (22)

This means that the NML is, to a good approximation, equivalent to S independent draws from the
distribution q(k|z∗) or, equivalently, that the distribution q(k|z∗) is the one that characterizes typical
samples. This is fully confirmed by Figure 2A, which compares q(k|z∗) with the empirical distribution
of ks drawn from P̄. For large k, we find q(k|z∗) ∼ e−z∗k/

√
k, which shows that the distribution

of frequencies is broad, with a cutoff at 1/z∗. This underlying broad distribution is confirmed by
Figure 2B which shows the dependence of the degeneracy mk with the frequency k.

In the regime where ρ � 1 and k is large, the cutoff extends to large values of k and we find
z∗(ρ) ' 1

2ρ (see Appendix B.1). In addition, the parametric complexity can be computed explicitly via
Equation (9) in this regime, with the result

R̄ ' S
2
(1 + log ρ)− 1

2
log(2ρ), ρ� 1. (23)

The coding cost of a typical sample is given by

E = − log P̄(ŝ) (24)

= −∑
s∈χ

ks log
ks

N
+ R̄ (25)

= NĤ[s] + R̄. (26)

The number of samples with encoding cost E can be computed in the following way. The number of
samples that correspond to a given degeneracy mk of the states that occurs ks = k times in ŝ, is given by

N!
∏k(kmk)!

. (27)

Therefore, the number of samples with coding cost E is
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W(E) = ∑
{mk}∈M(E)

N!
∏k(kmk)!

(28)

= ∑
{mk}∈M(E)

elog N!−∑k log(kmk)! (29)

∼ ∑
{mk}∈M(E)

eNĤ[k], ρ� 1 (30)

where M(E) is the set of all sequences {mk} that are consistent with samples in χN and satisfy
Equation (26). The last expression assumes log M! ' M log M − M, which is reasonable for
M = kmk � 1, i.e., when ρ � 1. In this regime we expect the sum over M(E) to be dominated
by samples with maximal Ĥ[k]. Indeed, Figure 2C,D show that samples drawn from P̄ achieve values
of Ĥ[k] close to the theoretical maximum, especially in the region ρ� 1.
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Figure 2. Properties of the typical samples generated from the NML of the Dirichlet model. (A) A
plot showing the frequency distribution of the typical samples of the Dirichlet NML code. Given S,
the cardinality of the state space, χ, with S = 1.0 × 103 (orange dots), 5.0 × 103 (green squares),
and 1.0× 104 (red triangles), we compute the average frequency distribution across 100 generated
samples from the Dirichlet NML of size N = 10S such that the average frequency per state, ρ, is fixed.
This is compared against the theoretical calculations (solid black line) for q(k|z∗) in Equation (19).
(B) Plot showing the degeneracy, mk, of the frequencies, k, in a representative typical sample of length
N = 103 generated from the Dirichlet NML code with average frequencies per spike: ρ = 100 (yellow
triangle), ρ = 10 (orange x-mark) and ρ = 2 (red cross). The corresponding dashed lines depict the
best-fit line. (C,D) Plots of Ĥ[s] versus Ĥ[k] for the typical samples of the Dirichlet NML code. For a
fixed size of the data, N (N = 103 in C and N = 104 in D), we have drawn 100 samples from the
Dirichlet NML code varying ρ, ranging from 2 to 100. The results are compared against the Ĥ[k] and
Ĥ[s] for maximally informative samples (MIS, solid black line) and random samples (dashed black
lines). For the MIS, the theoretical lower bound is reported [8]. For the random samples, we compute
the averages of Ĥ[s] and Ĥ[k] over 107 realizations of random distributions of N balls in L boxes, with L
ranging from 2 to 107. Here, each box corresponds to one state s = 1, . . . , L and ks is the number of
balls in box s. Note that all the calculated values for Ĥ[k] and Ĥ[s] are normalized by log N.
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2.1.2. A Model of Independent Spins

In order to corroborate our results for the Dirichlet model, we study the properties of the universal
codes for a model of independent spins, i.e., a paramagnet. For a single spin, s = ±1, in a local field h,
the probability distribution is given by

P(s|h) = esh

2 cosh h
. (31)

Thus for a sample ŝ of size N,
P(ŝ|h) = e[Nmh−N log(2 cosh h)] (32)

where m = 1
N ∑M

i=1 s(i) is the local magnetization. The maximum likelihood estimate for h is ĥ(m) =

tanh−1 m, hence the universal code for a single spin can be written as

P̄(ŝ) = eN[mh(m)−log(2 cosh h(m))]−R̄ (33)

where R̄ ' 1
2 log πN

2 (see Appendix B.2). Note that a sample with a magnetization m can be realized
by considering the permutation of the up-spins (s = 1, where there are ` = N+Nm

2 of such spins) and
the permutation of the down-spins (s = −1, where there are N − ` of such spins). Consequently,
the magnetization for samples drawn from P̄ has a broad distribution given by the arcsin law
(see Appendix B.2)

P̄(m) =

(
N

N−Nm
2

)
eN[m tanh−1 m−log(2 cosh(tanh−1 m))]−R̄ (34)

' 1

π
√

1−m2
, m ∈ [−1, 1]. (35)

It is straightforward to see that the model of a single spin is equivalent to a Dirichlet model with
two states χ = {−1,+1}. In terms of the number ` of up-spins, using m = 2`−N

N , the NML for a single
spin can be written as

P̄(`) = e−R̄
(

N
`

)(
`

N

)` (
1− `

N

)N−`
. (36)

The NML for a paramagnet with n independent spins reads as

P̄(`1, . . . , `n) = e−nR̄
n

∏
i=1

(
N
`i

)(
`i
N

)`i
(

1− `i
N

)N−`i

. (37)

Figure 3 reports the properties of the typical samples of the NML of a paramagnet. We observed
that the frequency distribution of typical samples is broad (Figure 3A) and that typical samples attain
values of H[k] very close to the maximum for a given value of Ĥ[s] (Figure 3B,C). As the size N of
data increases, the NML enters the well-sampled regime where Ĥ[k] ' Ĥ[s], indicating that the data
processing inequality [18] is saturated. In this regime, typical samples are those which maximize the
entropy Ĥ[s].
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Figure 3. Properties of typical samples for the NML codes of the paramagnet. (A) Plots showing the
degeneracy, mk, of the frequencies, k, in a representative typical sample of length N = 104 generated
from the NML of a paramagnet with different number of independent spins: n = 4 (blue star), n = 12
(red cross) and n = 20 (yellow diamond). The corresponding dashed lines depict the best-fit line.
(B,C) Plots of the Ĥ[k] versus Ĥ[s] of the typical samples generated from the paramagnet NML code
for varying sizes of the data, N = 104 (B) and N = 105 (C), and for varying number of spins, n,
ranging from 3 to 20. Given N and n, we compute the Ĥ[k] and Ĥ[s] over 100 realizations of the NML
code of a paramagnet. The results are compared against the Ĥ[k] and Ĥ[s] for maximally informative
samples (solid black line) and random samples (dashed black line) as described in Figure 2. Note that
all the calculated H[k] and H[s] are normalized by log N.

2.1.3. Sherrington-Kirkpatrick Model

In the following sections, we extend our findings to systems of interacting variables (graphical
models) and discuss the properties of typical samples drawn from the corresponding NML distribution.
We shall first consider models in which the observed variables are interacting either directly
(Sherrington-Kirkpatrick model) and then restricted Boltzmann machines, where the variables interact
indirectly through hidden variables.

In this section, s = (s1, . . . , sn) is a configuration of n spins si ∈ {±1}. In the Sherrington-
Kirkpatrick (SK) model, the distribution of s, considers all interactions up to two-body

P(s|J, h) =
1

Z(J, h)
exp

[
∑

i
hisi + ∑

i<j
Jijsisj

]
, s = (s1, . . . , sn) (38)

where the partition function

Z(J, h) = ∑
s1=±1

· · · ∑
sn=±1

exp

[
∑

i
hisi + ∑

i<j
Jijsisj

]
(39)

is a normalization constant which depends on the pairwise couplings, J with Jij = Jji being the coupling
strength between si and sj, and external local fields, h. Thus, given a sample, ŝ = (s(1), . . . , s(N)) of N
observations, the likelihood reads as

P(ŝ|J, h) = exp

[
N ∑

i
himi + N ∑

i<j
Jijcij − N log Z(J, h)

]
. (40)
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where mi = 1
N ∑N

l=1 s(l)i and cij = 1
N ∑N

l=1 s(l)i s(l)j are the magnetization and pairwise correlation
respectively. Note that all the needed information about the SK model is encapsulated in the free
energy, φ(J, h) = log Z(J, h). Indeed, the maximum likelihood estimators for the couplings, Ĵ, and local
fields, ĥ, are the solutions of the self-consistency equations

∂φ(J, h)
∂hi

= mi,
∂φ(J, h)

∂Jij
= cij, i, j = 1, . . . , n. (41)

The universal codes for the SK model then reads as

P̄(ŝ) = exp

[
N

(
∑

i
ĥimi + ∑

i<j
Ĵijcij − φ( Ĵ, ĥ)

)
− R̄

]
. (42)

However, unlike for the Dirichlet model and the paramagnet model, the UC partition function, eR̄,
for the SK model is analytically intractable (For SK models which possess some particular structures, a
calculation of the UC partition function has been done in [23]). To this, we resort to a Markov chain
Monte Carlo (MCMC) approach to sample the universal codes (See Appendix C.1). Figure 4A,C shows
the properties of the typical samples drawn from the universal codes of the SK model in Equation (42).
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Ĥ[s]

0.0

0.2

0.4

Ĥ
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Figure 4. Properties of typical samples for the NML codes of two graphical models: the
Sherrington-Kirkpatrick (SK) model and the restricted Boltzmann machine (RBM). Left panels (A,C)
show plots of the degeneracy, mk, of the frequency, k, for representative typical samples generated
from the NML codes for the SK model (A) and the RBM given a number of hidden variables, nh = 7
(B) for different number of (visible) spins, n. The corresponding dashed lines show the best-fit lines.
On the other hand, right panels (B,D) show plots of the Ĥ[k] versus Ĥ[s] of the typical samples drawn
from the NML codes for the SK model (B) and the RBM with nh = 7 (D) for N = 103 and for varying
number of spins, n ranging from 3 to 12. Given N and n of a graphical model, we compute the Ĥ[k]
and Ĥ[s] for 100 samples drawn from the respective NML codes through a Markov chain Monte Carlo
(MCMC) approach (see Appendix C.1). Note that for the RBM, varying nh do not qualitatively affect
the observations made in this paper. As before, the Ĥ[k] and Ĥ[s] are normalized by log N and the
typical NML samples are compared against maximally informative samples (solid black line) and
random samples (dashed black line) as described in Figure 2.

2.1.4. Restricted Boltzmann Machines

We consider a restricted Boltzmann machine (RBM) wherein one has a layer composed of nv

independent visible boolean units, v = (v1, . . . , vnv), which are interacting with nh independent hidden
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boolean units, h = (h1, . . . , hnh), in another layer where vi, hi = 0, 1. The probability distribution can
be written down as

P(v, h|θ = (a, b, w)) =
1

Z(θ)
exp

(
nv

∑
i=1

aivi +
nh

∑
j=1

bjhj +
nv

∑
i=1

nh

∑
j=1

viwijhj

)
(43)

where the partition function

Z(θ) = ∑
v1=0,1

· · · ∑
vnv=0,1

∑
h1=0,1

· · · ∑
hnh=0,1

exp

(
nv

∑
i=1

aivi +
nh

∑
j=1

(
bj +

nv

∑
i=1

viwij

)
hj

)
(44)

is a function of the parameters, θ, with wij is the interaction strength between vi and hj, a and b are
the local fields acting on the visible v and hidden h units respectively. Because the hidden units, h,
are mutually independent, we can factorize and then marginalize the sum over the hidden variables,
h, to obtain the distribution of a single observation, v, as

P(v|θ) = 1
Z(θ)

exp

[
nv

∑
i=1

aivi +
nh

∑
j=1

log 2 cosh

(
nv

∑
i=1

viwij + bj

)]
. (45)

Then, the probability distribution for a sample, v̂ = (v(1), . . . , v(N)), of N observations is simply

P(v̂|θ) =
N

∏
k=1

p(v(k)|θ). (46)

The parameters, θ̂, can be estimated by maximizing the likelihood using the Contrastive Divergence
(CD) algorithm [24,25] (see Appendix C.2). Once the maximum likelihood parameters, θ̂, have been
inferred, then the universal codes for the RBM can be built as

P̄(v̂) = e−R̄
N

∏
k=1

p(v(k)|θ̂). (47)

In addition, like in the SK model, the UC partition function, eR̄, for the RBM cannot be solved
analytically. To this, we also resort to a MCMC approach to sample the universal codes (See
Appendix C.1). Figure 4B,D shows the properties of the typical samples drawn from the universal
codes of the RBM in Equation (47).

Taken together, we see that even for models that incorporate interactions, the typical samples
of the NML i) have broad frequency distributions and ii) they achieve values of Ĥ[k] close to the
maximum, given Ĥ[s]. Due to computational constraints, we only present the results for N = 103

however, we expect that increasing N will only shift the NML towards the well-sampled regime.

2.2. Large Deviations of the Universal Codes Exhibit Phase Transitions

In this section, we focus on the distribution of the resolution Ĥ[s] for samples ŝ drawn from P̄.
We note that

Ĥ[s] =
1
N

N

∑
i=1

log
ks(i)

N

has the form of an empirical average. Hence, we expect it to attain a given value for typical samples
drawn from P̄. This also suggests that the probability to draw samples with resolution Ĥ[s] = E
different from the typical value has the large deviation form P{Ĥ[s] = E} ∼ e−NI(E), to leading order
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for N � 1. In order to establish this result and to compute the function I(E), as in [26] and [27],
we observe that

P{Ĥ[s] = E}= ∑̂
s

P̄(ŝ)δ
(

Ĥ[s]− E
)

(48)

=
∫ ∞

−∞

Ndq
2π ∑̂

s
P̄(ŝ)eiqN(Ĥ[s]−E), (49)

where we used the integral representation of the δ function and P̄(ŝ) is the NML distribution in
Equation (7). Upon defining

∑̂
s

P̄(ŝ)eiqNĤ[s] = eNφ(iq), (50)

let us assume, as in the Gärtner–Ellis theorem [26], that φ(iq) is finite for N � 1 for all q in the complex
plane. Then Equation (49) can be evaluated by a saddle point integration

P{Ĥ[s] = E}=
∫ ∞

−∞

Ndα

2π
e−N[iαE−φ(iα)] (51)

∼ e−N[βE−φ(β)], (52)

where we account only for the leading order. β is related to the saddle point value q∗ = −iβ that
dominates the integral and it is given by the solution of the saddle point condition

E =
d

dβ
φ(β). (53)

Equation (52) shows that the function I(E) is the Legendre transform of φ(β), i.e.,

I(E) = −βE + φ(β) (54)

with β(E) given by the condition (53), as in the Gärtner–Ellis theorem [26]. Further insight and a direct
calculation from the definition in Equation (50) reveals that Equation (53) can also be written as

E = ∑̂
s

P̄β(ŝ)Ĥ[s] (55)

which is the average of Ĥ[s] over a “tilted” probability distribution [26]

P̄β(ŝ) = P̄(ŝ)eN{βĤ[s]−φ(β)}, (56)

hence β arises as the Lagrange multiplier enforcing the condition Ĥ[s] = E. Conversely, when β(E)
is fixed by the condition Equation (e̊fapp3:saddle2), samples drawn from P̄β have Ĥ[s] ' E. In other
words, P̄β describes how large deviations with Ĥ[s] = E are realized. Therefore, typical samples
that realize such large deviations can be obtained by sampling the distribution P̄β(ŝ) in Equation (56).
Figure 5 show that, for Dirichlet models, samples obtained from P̄β exhibit a sharp transition at β = 0.
The resolution (see green lines in Figure 5) sharply vanishes for negative values of β as a consequence
of the fact that the distribution localizes to samples where almost all outcomes coincide, i.e., si = s̄.
This is evidenced by the fact that the maximal frequency ks̄ = maxs ks approaches N very fast (see
purple lines in Figure 5). In other words, β = 0 marks a localization transition where the symmetry
between the states in χ is broken, because one state s̄ is sampled an extensive number of times ks̄ ∝ N.

One direct way to see this is to consider the Dirichlet model and use the “tilted” distribution in
Equation (56) to compute the distribution
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qβ(k|z) =
1
N (z)

k(1−β)ke−(1+z)k

k!
.

of ks following the same steps leading to Equation (19), where again z is fixed by the condition
∑k qβ(k|z)k = N/S. For β ≥ 0, we again find, as in Equation (22), that ks can be considered as
independent draws from the same distribution qβ(k|z). For β < 0, we find that the distribution qβ(k|z)
develops a sharp maximum at k = N indicating that, as mentioned above, the sample concentrates on
one state s̄.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75

β

0.0

0.2

0.4

0.6

0.8

1.0

Ĥ[s], N = 104

Ĥ[s], N = 105

ks̄/N,N = 104

ks̄/N,N = 105

Figure 5. Typical realizations of large deviations from the NML code of the Dirichlet model. For a
fixed parameter, β ranging from β = −1 to β = 1, samples are obtained from P̄β in Equation (56) for
varying length of the dataset, N (N = 104 in solid lines with circle markers and N = 105 in dashed
lines with square markers). The resolution Ĥ[s] normalized by log N (in green lines) and the maximal
frequency ks̄ normalized by N (in purple lines) are calculated as an average over 100 realizations of P̄β

given β. The point β = 0 corresponds to the typical samples that are realized from the Dirichlet NML
code in Equation (12).

This behavior is generic whenever the underlying model f (s|θ) itself localizes for certain values θ̄

of the parameters, i.e., when f (s|θ̄) = δs,s̄. In order to see this, notice that, in general, we can write

f (ŝ|θ̂(ŝ)) = ∏
s

f (s|θ̂(ŝ))ks . (57)

Thus, by inserting the identity e−NĤ[s]+NĤ[s], the NML distribution in Equation (7) can be re-cast as

P̄(ŝ) = e−NĤ[s]−NDKL( p̂||θ̂)−R̄ (58)

where p̂s = ks/N is the empirical distribution and

DKL( p̂||θ̂) = ∑
s

p̂s log
p̂s

f (s|θ̂(ŝ)) (59)

is a Kullback-Leibler divergence.
Now, we observe that
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eNφ(β) = e−R̄ ∑̂
s

e−(1−β)NĤ[s]−NDKL( p̂||θ̂) (60)

≥ e−R̄ ∑̂
s

e−(1−β)NĤ[s]−NDKL( p̂||θ0) (61)

= e−R̄ (62)

where the inequality in Equation (61) derives from the fact that θ̂(ŝ), the maximum likelihood estimator
for sample ŝ, is replaced by a generic value θ0 and consequently, DKL( p̂||θ̂) ≤ DKL( p̂||θ0). The equality
in Equation (62), instead, derives from the choice θ0 = θ̄ such that f (s|θ̄) = δs,s̄. Under this choice,
only the term corresponding to “localized” samples where s(i) = s0 for all points in the sample,
survive in the sum on ŝ. For such localized samples, Ĥ[s] = DKL( p̂||θ0) = 0, hence Equation (62)
follows.

Because of the logarithmic dependence of the regret R̄ on N (see Equation (9)), Equation (62)
implies that, for all β,

φ(β) ≥ R̄/N ' 0 (63)

for N � 1. Given that Ĥ[s] ≥ 0 in Equation (55), then E ≥ 0 and therefore, Equation (53) implies
that φ(β) is a non-decreasing function of β. In addition, φ(0) = 0 by Equation (50). Taken together,
these facts require that φ(β) = 0 for all values β ≤ 0. On the other hand, for β > 0, the function φ(β) is
analytic with all finite derivatives, which corresponds to higher moments of Ĥ[s] under P̄β. Therefore,
β = 0, which corresponds to the typical behavior of the NML, coincides with a second order phase
transition point because the function φ(β) exhibits a discontinuity in the second derivative. In terms
of P̄β(ŝ), the phase transition separates a region (β ≥ 0) where all samples ŝ have a finite probability
from a region (β < 0) where only one sample, the one with s(i) = s̄, ∀i, has non-zero probability and
Ĥ[s] = 0.

The phase transition is a natural consequence of the fact that NML provide efficient coding of
samples generated from f (s|θ). It states that codes P̄β that achieve a compression different from the one
achieved by the NML only exist for higher coding costs. Codes with lower coding cost only describe
non-random samples that correspond to deterministic models f (s|θ̄) = δs,s̄.

3. Discussion

The aim of this paper is to elucidate the properties of efficient representations of data
corresponding to universal codes that arise in MDL. Taking NML as a generative model, we find that
typical samples are characterized by broad frequency distributions and that they achieve values of the
relevance which are close to the maximal possible Ĥ[k].

In addition, we find that samples generated from NML are critical in a very precise sense. If we
force NML to use less bits to encode samples, then the code localizes on deterministic samples. This is
a consequence of the fact that if there were codes that required fewer bits, then NML would not
be optimal.

This contributes to the discussion on the ubiquitous finding of statistical criticality [1,4] by
providing a clear understanding of its origin. It suggests that statistical criticality can be related
to a precise second order phase transition in terms of large deviations of the coding cost. This phase
transition separates random samples that span a large range of possible outcomes (the set χ in
the models discussed above) from deterministic ones, where one outcome occurs most of the time.
The phase transition is accompanied by a spontaneous symmetry breaking in the permutation between
samples. The frequencies of outcomes in the symmetric phase (β ≥ 0) are generated as independent
draws from the same distribution, that is sharply peaked for β > 0 as can be checked in the case of the
Dirichlet model. Instead, for β < 0, only one state is sampled. In the typical case, β = 0, the symmetry
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between outcomes is weakly broken, as there are outcomes that occur more frequently than others.
At β = 0, the samples maintain the maximal discriminative power over outcomes. This type of
phase transitions in large deviations is very generic, and it occurs in large deviations whenever the
underlying distribution develops fat tails (see e.g., [27]).

This leads to the conjecture that broad distributions arise as a consequence of efficient coding.
More precisely, broad distributions arise when the variables sampled are relevant, i.e., when they
provide an optimal representation. This is precisely the point which has been made in [7–9]. The results
in the present paper add a new perspective whereby maximally informative samples can be seen as
universal codes.
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MDL minimum description length
NML normalized maximum likelihood
MIS maximally informative sample
SK Sherrington-Kirkpatrick
RBM restricted Boltzmann machine
CD contrastive divergence
PCD persistent contrastive divergence
MCMC Markov chain Monte Carlo

Appendix A. Derivation for the Parametric Complexity

In order to compute the parametric complexity, given in Equation (8), let us consider the integral∫
dθ f (ŝ|θ)g(θ) for a generic function g(θ). For N � 1, the integral is dominated by the point θ = θ̂(ŝ)

that maximizes log f (ŝ|θ), and it can be computed by the saddle point method. Performing a Taylor
expansion around the maximum likelihood parameters, θ̂(ŝ), one finds (up to leading orders in N)

log f (ŝ|θ) = log f (ŝ|θ̂(ŝ))− 1
2 ∑

i,j
N(θi − θ̂i)Ii,j(θ̂)(θj − θ̂j) +O((θ − θ̂)3). (A1)

where

Ii,j(θ̂) = −
1
N

∂2 log f (ŝ|θ)
∂θi∂θj

(A2)

= −∑
s∈χ

ks

N
∂2 log f (s|θ)

∂θi∂θj
. (A3)

Note that for exponential families, the Hessian of the log-likelihood is independent of the data, and
hence it coincides with the Fisher Information matrix [22]

Ii,j(θ) = −∑
s∈χ

f (s|θ)∂2 log f (s|θ)
∂θi∂θj

(A4)

The integral can then be computed by Gaussian integration, as
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∫
dθ f (ŝ|θ)g(θ) ' f (ŝ|θ̂(ŝ))g(θ̂(ŝ))

∫
dθe−

N
2 ∑i,j(θi−θ̂i)Iij(θ̂)(θj−θ̂j) (A5)

= f (ŝ|θ̂(ŝ))g(θ̂(ŝ))
(

2π

N

) k
2 1√

det I(θ̂)
. (A6)

where k is the number of parameters. If we choose g(θ) to be

g(θ) =
(

N
2π

) k
2 √

det I(θ) (A7)

and take a sum over all samples ŝ on both sides of Equation (A5), Equation (A6) becomes

∑̂
s

f (ŝ|θ̂(ŝ)) ' ∑̂
s

(
N
2π

) k
2 ∫

dθ f (ŝ|θ)
√

det I(θ) (A8)

=

(
N
2π

) k
2 ∫ √

det I(θ)dθ. (A9)

Hence, the parametric complexity, R̄ = log ∑ŝ f (ŝ|θ̂(ŝ)), is asymptotically given by Equation (9) when
N � 1.

Notice also that P̄(ŝ) induces a distribution over the space of parameters θ. With the choice

g(θ) =
(

N
2π

) k
2 √

det I(θ)δ(θ − θ0), (A10)

the same procedure as above shows that

∑̂
s

P̄(ŝ)δ
(
θ̂(ŝ)− θ0

)
= e−R̄ ∑̂

s
f (ŝ|θ̂(ŝ))δ

(
θ̂(ŝ)− θ0

)
(A11)

= e−R̄
(

N
2π

) k
2 √

det I(θ0) (A12)

=

√
det I(θ0)∫

dθ
√

det I(θ)
(A13)

which is the Jeffreys prior.

Appendix B. Calculating the Parametric Complexity

In this section, we calculate the parametric complexity for the Dirichlet model for ρ = N/S� 1
where N is the number of observations in the sample ŝ and S is the size of the state space χ and the
paramagnetic Ising model.

Appendix B.1. Dirichlet Model

In the regime where ρ � 1 and k large such that we can employ Stirling’s approximation,
k! =

√
2πkkke−k, the normalization can be calculated as
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∞

∑
k=0

kke−ke−z∗(ρ)k

k!
≈

∞

∑
k=0

e−z∗(ρ)k
√

2πk
(A14)

=
∫ ∞

0

e−z∗(ρ)kdk√
2πk

(A15)

=
1√
2π

√
π

z∗(ρ)
(A16)

=
1√

2z∗(ρ)
. (A17)

Similarly, we can also calculate

∞

∑
k=0

kk+1e−ke−z∗(ρ)k

k!
≈

∞

∑
k=0

ke−z∗(ρ)k
√

2πk
(A18)

=
∫ ∞

0

√
k

2π
e−z∗(ρ)kdk (A19)

=
1√
2π

√
π

2(z∗(ρ))
3
2

(A20)

=
1

(2z∗(ρ))
3
2

(A21)

and thus, the saddle point value z∗ can now be evaluated as

z∗(ρ) ' 1
2ρ

. (A22)

In the same regime, given the determinant det I(θ) of the Fisher information matrix for the
Dirichlet model,

det I(θ) = ∏
s∈χ

1
θs

(A23)

the parametric complexity can be approximated as

eR̄ '
(

N
2π

)(S−1)/2 ∫
dθ
√

det I(θ) (A24)

=

(
N
2π

)(S−1)/2 Γ( 1
2 )

S

Γ( S
2 )

(A25)

' e
S
2 (1+log ρ)√

2ρ
(A26)

which, together with Equation (20) and the fact and the variance 〈k2〉z∗ − 〈k〉2z∗ = 2ρ2, implies that
Φ(z∗(ρ)) = 1

2 (1 + log ρ).

Appendix B.2. Paramagnet Model

The parametric complexity for the paramagnetic Ising model, given P̄(m) in Equation (34),
is given by

eR̄ =
N

∑
M=−N

(
N

N−M
2

)
e[M tanh−1(M/N)−N log(2 cosh(tanh−1(M/N)))]. (A27)
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where M = −N,−N + 2, . . . , N − 2, N runs on N + 1 values. When N � 1, the magnetization,
m = M/N, can be treated as a continuous variable and consequently, the sum can be approximated
as an integral: ∑M . . . ' N

2

∫ 1
−1 dm . . .. Hence, by using the identities tanh−1(m) = 1

2 log 1+m
1−m ,

cosh
(

tanh−1(m)
)
= 1√

1−m2 and K! ' KKe−K
√

2πK, one finds that

eR̄ ' N
2

∫ 1

−1

1√
2πN(1−m2)

(A28)

=

√
πN

2
. (A29)

Appendix C. Simulation Details

Appendix C.1. Sampling Universal Codes through Markov Chain Monte Carlo

Unlike the Dirichlet model and the independent spin model, analytic calculations for the
Sherrington-Kirkpatrick (SK) model and the restricted Boltzmann machine (RBM) are generally
not possible, because the partition function Z, and consequently, the UC partition function eR̄,
is computationally intractable. In order to sample the NML for these graphical models, we turn
to a Markov chain Monte Carlo (MCMC) approach in which the transition probability, P(ŝ → ŝ′),
can be built using the following heuristics:

1. Starting from the sample, ŝ, we calculate the maximum likelihood estimates, θ̂(ŝ), of the
parameters of the model, p(ŝ|θ) by either solving Equation (41) for the SK model or by Contrastive
Divergence (CDκ) [24,25] for the RBM (see Appendix C.2).

2. We generate a new sample, ŝ′ from ŝ by flipping a spin in randomly selected r points s(i) of the
sample. The number of selected spins, r, must be chosen carefully such that r must be large
enough to ensure faster mixing but small enough so the new inferred model, p(ŝ′|θ), is not too
far from the starting model, p(ŝ|θ).

3. The maximum likelihood estimators, θ̂(ŝ′) for the new sample are calculated as in Step 1.
4. Compute

∆E = log p(ŝ′|θ̂(ŝ′))− log p(ŝ|θ̂(ŝ)) (A30)

and accept the move ŝ→ ŝ′ with probability min
(
eN∆E, 1

)
.

Appendix C.2. Estimating RBM Parameters through Contrastive Divergence

Given a sample, v̂ = (v(1), . . . , v(N)), of N observations, the log-likelihood for the restricted
Boltzmann machine (RBM) is given by

logL(θ) =
N

∑
k=1

log ∑
h

P(v(k), h|θ). (A31)

The inference of the parameters, θ, proceeds by updating θ such that the log-likelihood, logL(θ),
is maximized. This updating formulation for the parameters is given by

∆θ =
ε

N
∂ logL(θ)

∂θ
(A32)

where ε is the learning rate parameter. The corresponding gradients for the parameters, w, a and b
can then be written down respectively as
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∂ logL(θ)
∂wij

=
N

∑
k=1

[
∑
h

v(k)i hjP(v(k), h|θ)−∑
v

∑
h

vihjP(v, h|θ)
]

(A33)

∂ logL(θ)
∂ai

=
N

∑
k=1

[
∑
h

v(k)i P(v(k), h|θ)−∑
v

∑
h

viP(v, h|θ)
]

(A34)

∂ logL(θ)
∂bj

=
N

∑
k=1

[
∑
h

hjP(v(k), h|θ)−∑
v

∑
h

hjP(v, h|θ)
]

(A35)

where the first terms denote averages over the data distribution while the second terms denote averages
over the model distribution.

Here, we use the contrastive divergence (CD) approach which is a variation of the steepest gradient
descent of L(θ). Instead of performing the integration over the model distribution, CD approximates
the partition function by averaging over distribution obtained after taking κ Gibbs sampling steps
away from the data distribution.

To do this, we exploit the factorizability of the conditional distributions of the RBM. In particular,
the conditional probability for the forward propagation (i.e., sampling the hidden variables given the
visible variables) from v to hj reads as

P(hj = 1|v, θ) =
1

1 + exp
(
−bj −∑i viwij

) . (A36)

Similarly, the conditional probability for the backward propagation (i.e., sampling the visible variables
from the hidden variables) from h to vi reads as

P(vi = 1|h, θ) =
1

1 + exp
(
−ai −∑j hjwij

) . (A37)

The Gibbs sampling is done by propagating a sample, v(k) = v(k)(0), forward and backward κ times:
v(k)(0)→ h(k)(0)→ v(k)(1)→ . . .→ h(k)(κ − 1)→ v(k)(κ)→ h(k)(κ). And thus, the Gibbs sampling
approximates the gradient in Equation (A33) as

∂ logL(θ)
∂wij

=
N

∑
k=1

[
v(k)i (0)h(k)j (0)− v(k)i (κ)h(k)j (κ)

]
. (A38)

In the CD approach, each parameter update for a batch is called an epoch. While larger κ

approximates well the partition function, it also induces an additional computational cost. To find the
global minimum more efficiently, we randomly divided the samples into groups of mini-batches.
This approach introduces stochasticity and consequently reduces the likelihood of the learning
algorithm to be confined in a local minima. However, a mini-batch approach can result in data-biased
sampling. To circumvent this issue, we adopted the Persistent CD (PCD) algorithm where the
Gibbs sampling extends to several epochs, each using different mini-batches. In the PCD approach,
the initial visible variable configuration, v(k)(0), was set to random for the first mini-batch, but the
final configurations, (v(k)(κ), h(k)(κ)), of the current batches become the initial configuration for the
next mini-batches. In this paper, we performed Gibbs sampling at κ = 10 steps where we update
the parameters, θ, are updated at 2500 epochs at a rate ε = 0.01 with 200 mini-batches per epochs.
For other details regarding inference of parameters of the RBM, we refer the reader to [24,25].
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Appendix C.3. Source Codes

All the calculations in this manuscript were done using personalized scripts written in Python 3.
The source codes are accessible online (https://github.com/rcubero/UniversalCodes (accessed on
8 May 2012)).
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