
Collaborating Robots
Multi-robot Exploration of an Unknown

Environment

Øyvind Ulvin Halvorsen

Master of Science in Cybernetics and Robotics

Supervisor: Tor Engebret Onshus, ITK

Department of Engineering Cybernetics

Submission date: June 2014

Norwegian University of Science and Technology

Problem description

Two robots with appurtenant code is given, which are able to map

an unknown area using a Simultaneous Localization and Mapping

(SLAM) algorithm and Bluetooth communication. Further, they are

able to run the same code in parallel, and communicate over an inter-

net connection. This thesis aims to develop an algorithm for collabo-

ration by solving the tasks listed below.

� Develop the simulator in order to handle parallel operations in

order to simplify the work with developing the algorithms.

� Improve the communication protocol (over TCP/IP) between

the robots in order to achieve reliable data transfer.

� Create one common map in which both robots operate.

� Improve performance of the NXT-robot by implementing posi-

tioning and feedback on the sensor tower angle.

� Design an algorithm for collaboration, which explores the area

in an e�cient manner. This task can further be broken into the

i

ii

objectives listed below.

� Design an algorithm for navigation, which makes optimal

decisions based on the common map and the positions of

the robots.

� Design a path planner, which ensures safe driving to the

new position calculated by the exploration algorithm.

� Coordinate the robots such that they avoid collisions and

chooses di�erent targets across the workspace.

Preface

This thesis has been conducted as the �nal part of my MSc degree at

the Department of Engineering Cybernetics at The Norwegian Uni-

versity of Science and Technology.

This thesis has been based on my project work done fall of 2013,

which has given a good foundation and understanding of the system,

which is used in this thesis. This has given insight into the possibilities

of the system, which have enabled me to have high ambitions for the

system.

This project is the latest contribution to a long series of master the-

ses and project works by students at NTNU, which has continuously

improved the capabilities and performance of the system. It has been

most motivational to be a part of this bigger project, and to further

develop and expand this system to include collaborating robots.

This thesis has been most educational, and I have gained insight

into a new �eld of studying coordinated multi-robot exploration, and

to implement several modules, which has to function together. I have

also gained insight about realizing a physical system and all the chal-

iii

iv

lenges the real world poses on a system.

This thesis is meant to be used for future work, and have also

aimed to document the latest update of the system. Additional docu-

mentation can be found in previous theses and project works.

Acknowledgements

I would like to thank my supervisor Tor Onshus for good advice

throughout the semester.

I would also like to thank my fellow student at the o�ce Kristian

Stormo, Simen Fuglaas, Erlend Kvinge Jørgensen, Håkon Bøe, Sverre

Kvamme, Håkon Søhoel and Jørgen Herje Nilsen for taking your time

to have technical discussions, and for a great �nal year at NTNU.

Abstract

This thesis aims to develop and implement an algorithm for collab-

oration, such that two LEGO-robots can collaborate on mapping an

unknown area using infrared sensors, a simultaneous localization and

mapping (SLAM) algorithm and controlled from MATLAB.

In order to have a testing platform during development of the al-

gorithms, the simulator was updated to allow for parallel operations

and communication.

Further, the communication protocol between the robots were im-

plemented such that data could be exchanged in a reliable fashion,

which was the key for allowing collaboration.

The robots exchanged their local SLAM-generated maps such that

they could operate in one common map. The map was merged by

removing the initial distance between the robots.

For the NXT-robot, positioning and feedback on the sensor tower

was implemented, which improved the sensor data signi�cantly.

The main objective was to develop and implement a navigation

algorithm for choosing target points, a path planner for ensuring col-

v

vi

lision free driving and coordination of the robots in order to exploit

the use of multiple robots.

The navigation algorithm was implemented with a Frontier-based

approach and a cost function, which was minimized in order to �nd

the next target point.

The path planner was implemented by a Breadth-�rst search (BFS)

algorithm and the coordination was achieved by a CLIENT/SERVER-

structure.

Finally, the algorithm was tested in the simulator and on the phys-

ical system. It was shown that the robots were able to collaborate on

the mapping task, as was intended in the problem description.

Sammendrag

I denne oppgaven skal det utvikles og implementeres en algoritme for

samarbeid, slik at to LEGO-roboter kan samarbeide om å kartlegge et

ukjent område ved hjelp av infrarøde sensorer, en samtidig posisjoner-

ing og kartleggings algoritme, og som blir styrt fra MATLAB.

For å ha en testplattform under utviklingen av algoritmene ble

simulatoren oppdatert slik at to simulatorer kunne kjøres i parallell,

samt kommunisere.

Videre ble kommunikasjons-protokollen mellom robotene utbedret

slik at data kunne utveksles på en pålitelig måte, noe som var nøkkelen

til å realisere samarbeidet.

Robotene utvekslet SLAM-generert kart-data slik at de kunne jobbe

sammen i ett kart. Kartene ble �ettet sammen ved å trekke fra den

initielle avstanden mellom robotene.

På NXT-roboten ble posisjonering og tilbakekobling på sensor-

tårnet implementert, noe som forbedret måledataene signi�kant.

Hovedmålet for oppgaven var å utvikle og implementere en nav-

igasjonsalgoritme som kunne velge nye posisjoner å kjøre til, en vei-

vii

viii

planlegger som sikrer at robotene ikke kolliderer med objekter samt

koordinering av robotene for å kunne utnytte bruken av �ere roboter.

Navigasjonsalgoritmen ble implementert med en Frontier-basert

framgangsmåte, og en kost-funksjon som ble minimert for å �nne neste

posisjon å kjøre til.

Vei-planleggeren ble implementert ved hjelp av et Bredde-først søk

(BFS) og koordineringen ble oppnådd ved hjelp av en KLIENT/SERVER-

struktur.

Til slutt ble samarbeids-algoritmen testet på simulatoren og robotene.

Det ble vist at robotene var i stand til å samarbeide om kartleggingen,

som var målet for oppgaven.

Summary and conclusion

This chapter will conclude all the tasks in the problem description

based on the testing in chapter 9 and the discussion in chapter 10,

and determine if the goals of this thesis were reached.

The �rst task was to update the simulator such that it could han-

dle parallel operations, which was achieved by letting the simulators

communicate with each other as if they were the physical robots.

In order to improve the foundation for debugging, the GUI of the

system was extended such that more plots could be analyzed, and

the GUI was made more �exible such that the plots from di�erent

iterations could be viewed.

A fundamental condition for the collaboration was to ensure reli-

able communication over the TCP/IP connection between the robots.

This was accomplished by writing a new data transfer protocol on top

of the TCP/IP protocol such that messages was taken care of in MAT-

LAB. This protocol allowed for a �exible and reliable communication

between the robots, such that important data could be guaranteed

delivery.

ix

x

In order to have the robots collaborate in the same map, their

local SLAM-generated map was exchanged such that both robots knew

what the other had explored. As a result, the robots could exploit each

others information. The map merging was implemented by removing

the initial o�set between the robots, which were su�cient when the

system performed a small number of scans, since the position and

measurement errors grew over time.

For the NXT-robot to be as functional as the IR-robot, positioning

was implemented based on odometry on the NXT-brick. In addition,

feedback was implemented on the sensor tower heading such that the

sensor data from the NXT-robot has been improved signi�cantly.

The main objective of this thesis was to design an algorithm for

collaboration. This was realized by the Exploration algorithm, which

consisted of a navigation part and a path planning part.

Before the work with developing the exploration algorithm started,

a literature study was conducted in the �eld of coordinated multi-robot

exploration in order to get insight in this �eld, and ideas for this thesis.

The navigation algorithm was developed with a Frontier-based ap-

proach, which aims to maximize the discovered area at each step.

Further, each frontier was assigned a cost in the cost function, and

the frontier that minimized the cost function was the new target des-

tination for the robot.

Next, the path planner calculated a path to the target point by a

Breadth-�rst search (BFS), and the path is smoothed by a line-�tting

approach.

xi

In order to coordinate the robots, a CLIENT/SERVER structure

was used. The SERVER-robot �nds target points for both robots and

is responsible for the coordination.

Extensive testing in the simulator has shown that the Exploration

algorithm has completed the mapping task both for a single and two-

robot system. The algorithm was �nally tested on the physical system,

where both robots contributed to the mapping. Hence, the robots col-

laborated in the mapping task as intended. Therefore, it is concluded

that the tasks described in the problem description has been ful�lled.

xii

Contents

Problem description i

Preface iii

Abstract v

Conclusion ix

Contents xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Outline of the thesis 2

1.3 History of the LEGO-robot project 3

2 Description of the robot system 5

2.1 The robots . 5

The NXT-robot 6

The IR-robot 7

xiii

xiv CONTENTS

2.2 The software . 8

2.2.1 Program �ow 11

2.2.2 Communication 14

3 Changes made to the previous robot system 17

3.1 GUI . 17

3.2 NXT-robot . 19

3.2.1 Positioning . 21

3.2.2 Feedback on sensor tower angle 23

3.3 Simulator . 24

3.3.1 Updating the simulator to allow collaboration. . 25

4 The Communication protocol 27

4.1 Reliable data transfer 28

4.1.1 New data transfer protocol 28

4.2 Integrating the communication module 29

5 The Navigation algorithm 33

5.1 The multi-robot navigation problem 34

5.2 Research on multi-robot exploration 35

5.3 Outline of the algorithm 39

5.4 Developing the Navigation algorithm 40

5.4.1 The Tactical Map 40

5.4.2 The border of the discovered area 43

5.4.3 Determining the Frontier points 47

5.4.4 Optimization and the Cost function 50

CONTENTS xv

6 Path planning 57

6.1 The path planning problem 57

6.2 Outline of the algorithm 58

6.3 Developing the path planning algorithm 60

6.3.1 When to use path planning 60

6.3.2 Con�guration space 60

6.3.3 Finding a path 61

7 Coordination of the robots 69

7.1 From one to two robots 69

7.2 Implementation of Coordination mechanisms 71

8 Implementing the physical robot system 75

8.1 Exploring with beacons 76

8.1.1 Beacons and the navigation algorithm 78

8.1.2 Beacons and the path planning algorithm 78

8.2 More improvements . 80

9 Testing 83

9.1 Testing the navigation with one robot in simulator . . . 83

9.2 Testing the path planner in simulator 87

9.3 Testing with two robots in simulator 90

9.4 Testing the improvements of the NXT-robot 100

9.5 Testing the exploration on the physical robot system . 101

10 Discussion 107

10.1 The Simulator . 107

xvi CONTENTS

10.2 The Communication protocol 108

10.3 The map merging . 109

10.4 The Navigation algorithm 110

10.5 The Path planner . 112

10.6 Comparing the Exploration algorithm with the Left-

wall-follower to backtracking algorithm. 114

10.7 Overall performance of the multi-robot system 115

10.7.1 The performance of the physical robot system . 117

10.8 Improvements of the NXT-robot 117

10.9 Conclusion is stated at the beginning of the thesis . . . 119

11 Further work 121

11.1 SLAM . 121

11.2 Map merging . 122

11.3 Communication . 122

11.4 Simulator . 123

11.5 The Robots . 123

11.5.1 NXT-robot . 123

11.5.2 IR-robot . 124

11.6 Path planner . 125

11.7 Navigation algorithm 125

Bibliography 130

A Tables 131

B Equipment and set up 135

CONTENTS xvii

C CD 139

xviii CONTENTS

Chapter 1

Introduction

1.1 Motivation

The multi-robot exploration problem is a fundamental problem in

robotics with many applications such as search and rescue, military

use, minesweeping or generally searching hostile environments. For

humans, the ability to navigate in an arbitrary environment is taken

for granted, but is a challenge for a robot team, and a fundamental

ability if considering for instance humanoid robots.

Multi-robot exploration has several advantages over a single robot

system. First, a robot team is potentially more e�ective than a sin-

gle robot, given that the robot team is coordinated. Second, the use

of several cheap robots instead of one expensive robot is probably

cheaper, and introduces redundancy since the system will tolerate

loosing robots. Moreover, several robots is advantageous for the si-

1

2 CHAPTER 1. INTRODUCTION

multaneous localization and mapping (SLAM) algorithm, where the

robots can use each other's position and observations for correcting

their own positioning errors and map displacements.

1.2 Outline of the thesis

This thesis uses two di�erent LEGO-robots, controlled from MATLAB

over a Bluetooth connection, and an internet connection for commu-

nication between the robots.

The aim of this thesis is to design an algorithm for collaboration,

such that the use of two robots is exploited. Most of the development

will be done in MATLAB with the simulator, but the goal for the

thesis is to run the two LEGO-robots with the new algorithm. In

order to run the physical robots, a few improvements has to be done

in order to make the robots fully functional and ready for running.

The algorithm for collaboration is called 'The Exploration algo-

rithm' and will consist of two main parts. First, a navigation algo-

rithm will �nd a target position based on a Frontier-based approach.

Next, a path planner will calculate a path to this target point.

In addition to this, the robots are coordinated by a SERVER/CLIENT-

structure where the SERVER ensures the coordination for the robot

team.

1.3. HISTORY OF THE LEGO-ROBOT PROJECT 3

1.3 History of the LEGO-robot project

This thesis is based on the work of several master theses and project

works. Throughout the years, this system has been developed to in a

system for mapping an unknown area with infrared sensors, a Blue-

tooth connection and a SLAM-algorithm. The �rst master thesis was

conducted in 2004 by Skjelten [15], which built the IR-robot. Since

then this robot has been further improved, and its functionality de-

veloped. The version of the robot which is used in this thesis was last

improved by Tusvik [16] in 2009. The NXT-robot was included later,

and rebuilt in 2013 by Homestad [7] to the robot which is used in this

thesis. More of the history of the project can be found in [7], [16], [19]

and all the previous theses can be found on the CD.

Structure of the thesis

Chapter 2 gives a general overview of the entire system, the di�erent

modules and how they are connected. Chapter 3 describes the changes

and improvements done to the system. In chapter 5 the navigation

algorithm is explained in detail, and the path planner is elaborated

in chapter 6. The coordination of the robots follows in chapter 7.

A few more considerations are made in chapter 8 in order to make

the physical system function properly. The entire system is tested in

chapter 9, and the results are discussed in chapter 10.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Description of the robot

system

This chapter will give a general overview of the system used in this

thesis as it was at the end of the spring semester 2014.

2.1 The robots

For this thesis two robots has been used called the NXT-robot and the

IR-robot, which is shown in �gure 2.1. For a more thorough expla-

nation of the NXT-robot, see the master thesis of Homestad[7]. For

a more thorough explanation of the IR-robot, see the project work of

Tusvik[16]. A short description of the robots is given below.

5

6 CHAPTER 2. DESCRIPTION OF THE ROBOT SYSTEM

(a) The NXT-robot. (b) The IR-robot.

Figure 2.1

The NXT-robot

The NXT-robot is built from a LEGO Mindstorms 2.0 construction

kit, and is a commercial product. The NXT-robot as it is now, was

built and implemented by Homestad [7] in 2013. The NXT 2.0 brick

is programmed in the programming language called 'Not Exactly C'

(NXC). As the name suggests, it is similar to C, but is a primitive

language not designed for as a general-purpose use. It supports the

use of threads called tasks.

Since the NXT-robot is a commercial product, it has been devel-

oped dedicated toolboxes for this type of bricks, both for MATLAB

use and for programming the NXT brick. For this robot the RWTH-

Mindstorms NXT Toolbox [17] is used with MATLAB. In addition to

the MATLAB toolbox, [17] has provided code in NXC for controlling

2.1. THE ROBOTS 7

the LEGO motors, which has made the foundation for the current

code on the NXT 2.0 brick. There are also built-in NXC-functions

that can be used to control the motors directly. These functions are

documented by the IDE1 (BricxCC) for NXC.

The functionality on the NXT-brick is only to control the robot.

For example controlling the motors, sending measurements from the

sensors to MATLAB and estimating the position.

The NXT-robot is driven by two electrical motors, and has a third

contact point at the back, which is a drag point. The third electrical

motor rotates the tower, which is independent of the wheel motors.

The IR-robot

The IR robot was originally built in 2004 by Skjelten [15]. Except from

the infrared sensors and the battery (and the LEGO parts obviously),

all parts are built by students through master theses and project work,

and has been continuously developed since 2004.

The processor is a ATMEGA32 which is programmed in C, and

downloaded using a JTAG (see Tusvik [16]).

The IR-robot has also two wheels and a drag point at the back,

while the sensors is mounted directly on top of a servo motor.

No work has been done on the IR-robot for this thesis since it

is considered to be in a good condition. Therefore, it will not be

explained in more detail in this thesis.

1Integrated development environment

8 CHAPTER 2. DESCRIPTION OF THE ROBOT SYSTEM

2.2 The software

The system consists of several software modules, which interacts with

each other. The system is designed such that the SLAM- and naviga-

tion algorithm operates independent of which robot that is connected,

which makes the system �exible and fault tolerant. The division of

the software into modules makes the system understandable and eas-

ier to debug, since the origin of the errors are easier recognized. The

software modules are explained below.

The Graphical User Interface (GUI) is the interface where the

robots is controlled from. The most important button is the

'Start'-button, but several other buttons are implemented in or-

der to allow to test basic functionalities for the robots, for ex-

ample the 'FullScan'-button which performs a full scan e.g. for

sensor testing. The GUI also displays the main map, and several

other plots which are helpful for debugging.

Each robot has its own GUI to allow for di�erent functionalities

and capabilities of di�erent robots.

Not all buttons are supported, which is result of several projects

working with di�erent topics.

The Simulator provides six maps, which can be used for testing the

algorithms of the system. The simulator is found in the GUI by

choosing 'Simulator' when connecting.

2.2. THE SOFTWARE 9

SLAM and Navigation module builds the map based on the sen-

sor data from the robots, and estimates the robot position in

this map. The SLAM-algorithm is landmark based [2], which

uses 'lines' and 'beacons' as landmarks. The SLAM-algorithm

extracts lines from the sensor data, and beacons are extracted

from the remaining measurement points. These landmarks forms

the basis for the wall segments in the map. The landmarks are

used for estimation of the robot position and map updating. If

a landmark is observed from several di�erent viewpoints, this

information can be used to estimate the positioning error of the

robots. Usually, the sensor data is more accurate than the posi-

tioning, which is exploited by the SLAM-algorithm by trusting

the sensor data more than the positioning. SLAM is a major

�eld of study, and there can be found a lot of literature on the

subject.

The SLAM-algorithm used in this thesis is provided by The Cen-

tre of Autonomous Systems - Robot Navigation Toolbox, created

by Arras [1].

After the map has been updated the new target destination is

calculated by the navigation algorithm. This part is the main

objective of this thesis, and will be treated further.

This module interacts with the robot only by receiving sensor

data and the position, and sending the new position back. This

module does not need information about which robot it commu-

nicates with.

10 CHAPTER 2. DESCRIPTION OF THE ROBOT SYSTEM

This module is the 'main loop' of the system and implemented in

lineBeaconSLAM.m, which is called from the callback function

of the 'Start'-button in the GUI.

The Communication module is responsible for the communica-

tion between the two robots, over a TCP/IP connection. This

module holds the TCP/IP connection handle, and is responsible

for creating-, sending-, reading-, and interpretation of packages.

RobotHandler is the module, which is responsible for the commu-

nication between the SLAM and Navigation module and the

robots. This module separates the SLAM and Navigation mod-

ule from the robots, such that multiple robots can be added

dynamically.

This module needs to know which robot is communicates with,

such that the data �ow between the current robot and the SLAM

and Navigation module is correct.

IRInterface and NXTInterface are the modules for direct control

and communication with the robots. These modules are imple-

mented specially for controlling each robot, with functionality

tailored for the robot of interest. The design with the robot

interfaces allows the system to connect di�erent robots to the

system.

The Hardware module is the embedded system on the physical

robots that executes the commands from the interface of the

2.2. THE SOFTWARE 11

speci�c robot. The functionality implemented on the physical

robots are only for controlling the motors and sensors.

A graphical description of the complete system is shown in �gure

2.2. The �gure shows how the modules are connected, and the data

�ow between them. The SLAM and Navigation module is drawn to

the left, with the main loop in it. The blue communication arrows

illustrates the data �ow between the SLAM and Navigation module

and the current robot. This data �ow is considered as local, since this

is of no concern for the other robots. The green communication arrows

illustrates the data �ow between the robots, which is the communica-

tion over the internet.

Each robot will have this structure and communicate with the

other robots through the communication module. As can be seen,

this system design makes it simple to add or loose robots. Hence,

the system can be considered as fault tolerant since it is able to loose

robots, and it is �exible since it can use di�erent types of robots, as

this thesis does.

2.2.1 Program �ow

This subsection will describe the program �ow of the main loop and

the program �ow of the NXT-robot. The main loop of the entire sys-

tem is summarized in �gure 2.2, and will be explained more into detail

below. The main loop is also well explained in [16], [7], [19].

12 CHAPTER 2. DESCRIPTION OF THE ROBOT SYSTEM

SLA
M

 an
d

n

avigatio
n

 m
o

d
u

le

G
et p

o
sitio

n
 estim

ates

Sim
u

ltan
eo

u
s

lo
calizatio

n
 an

d

m
ap

p
in

g algo
rith

m

(SLA
M

)

Po
st p

ro
cessin

g m
ap

fro

m
 SLA

M

State p
red

ictio
n

V
isu

alize th
e m

ap

Exp
lo

ratio
n

R
o

b
o

tH
an

d
ler

m
o

d
u

le

G
et p

o
seSen

d

‘d
rive-to

’-co
m

m
an

d
s

Fu
ll scan

G
et sen

so
r d

ata

P
h

ysical R
o

b
o

ts
m

o
d

u
le

Exch
an

ge p
o

sitio
n

s

Exch
an

ge n
ew

p

o
sitio

n
s

‘A
live’ an

d

term
in

atio
n

 flags

SLA
M

 m
ap

 an
d

b

eaco
n

s

G
et p

o
se

G
et sen

so
r d

ata

D
rive to

 p
o

in
t

o
r

C
o

m
m

u
n

icate m
o

d
u

le

To
 th

e o
th

er ro
b

o
t(s)

R
o

b
o

t
In

terface
m

o
d

u
le

TC
P/IP

 co
n

n
ectio

n

M
ATLA

B

B
lu

eto
o

th

(serial)
co

n
n

ectio
n

Figure 2.2: The structure of the robot system, with all modules, the
main loop, communication lines (green lines are communication over
TCP/IP, while the blue lines are internal communication within MAT-
LAB and over Bluetooth with the robots.), data �ow and the physical
robots.

2.2. THE SOFTWARE 13

Main-loop

Get position estimate from the robot. The position is stored in

the navData-structure and displayed in MATLAB. The position

is also exchanged with the other robot, and the second robot

position is also stored in navData.

State prediction predicts the position of the robot based on esti-

mating the angular displacement of the wheels.

Full scan commands the robot to perform a full scan, and gets the

sensor data from the robot.

SLAM uses the sensor data for extracting lines and beacons, and up-

dates the map. The robot position is estimated by an extended

Kalman �lter (EKF).

Post processing the SLAM-map removes beacons close to wall seg-

ments.

Visualizing the map plots the SLAM-map in the main plotting win-

dow of the GUI.

Navigation This module calculates the new position of the robot

based on the SLAM-map. There are two approaches which is the

old algorithm called 'Left-Wall-Follower to Backtracker' which

is implemented for only one robot. The second approach is the

'Frontier based exploration'-algorithm which is designed and im-

plemented in this thesis. The navigation algorithm calculates the

14 CHAPTER 2. DESCRIPTION OF THE ROBOT SYSTEM

new target destination for the robots by solving an optimization

problem, and then plans a path to this position if needed.

The NXT-robot main-loop is a state machine, which chooses ac-

tion based on the received command. The while-loop will check the

INBOX each iteration to see if a new message had arrived from MAT-

LAB. The state machine, together with the NXT-Matlab- protocol is

summarized in table A.3.

2.2.2 Communication

The system uses two types of communication. The �rst is the Blue-

tooth connection, which connects the robots to the computer. The

Bluetooth connection is set up with the use of a Bluetooth dongle,

which both robots can communicate with simultaneously. This con-

nection type is limited by the range, but for the test set up the distance

from the computer to the robot is small.

The second communication type is the internet over a TCP/IP

connection. This connection is used for communication between the

robots, in order to allow for collaboration. The connection is between

two instances of MATLAB, between the RobotHandler/communicate-

modules of the robots.

The complete structure of the communication modules is shown in

�gure 2.3.

2.2. THE SOFTWARE 15

Figure 2.3: The communication structure of the system. The robots
are controlled from separate MATLAB instances over a Bluetooth con-
nection, while the communication required for collaboration between
the two MATLAB instances is over TCP/IP. This design also allows
the use of two separate computers.

16 CHAPTER 2. DESCRIPTION OF THE ROBOT SYSTEM

Chapter 3

Changes made to the previous

robot system

This chapter will discuss the changes made to the original system. In

order to properly debug the system, the GUI was extended to show

more plots. The NXT-robot needed some improvements in order to

increase the precision and accuracy of the sensor data. Further, the

simulator had to be updated in order to allow for parallel operations.

3.1 GUI

The graphical user interface was extended to allow for more plotting,

such that the system could be visualized in more detail. This was

helpful in the debugging process, and simpli�ed the work with pro-

ducing plots for this thesis. The main GUI window is shown in �gure

17

18CHAPTER 3. CHANGESMADE TO THE PREVIOUS ROBOT SYSTEM

3.1(a).

The main change on the main GUI window was that each iteration

could be viewed, by clicking on the arrows. This way, each iteration

could be studied in detail, instead of just having the �nal image when

the scan was done.

The button 'Plot Iterations' were added to the main GUI, which

extended the plotting GUI of Homestad [7] with two plotting windows

below the three existing plotting windows, which is shown in �gure

3.1(b). The left plotting window shows the tactical map as a contour

plot, the border of the discovered area and the frontier points, together

with the wall segments. The right plotting window shows both robot

paths with the wall segments, in order to see if they are properly

coordinated. These plotting windows also allowed the user to browse

through the iterations.

For all new plot windows, it was made a button for plotting in a

separate �gure, such that results could easily be retrieved from the

GUI.

Because of the network roles, the plots shown for each robot is

di�erent. Only the SERVER-robot will have access to the tactical

map, since the CLIENT does not calculate the frontier points.

Under 'Navigation Strategy', the 'Frontier-based optimization' but-

ton was added, such that it is possible to choose between the two

navigation strategies. Further, it can be speci�ed if collaboration is

used. If this check box is marked, the robot will initiate a TCP/IP

connection, which will block until a CLIENT connects. Choosing the

3.2. NXT-ROBOT 19

'Left-wall follower to backtracker' navigation strategy will disable the

'Collaboration'-check box.

Both robots are calibrated from the GUI, which is done by click-

ing on the 'Calibrate NXT' for the NXT GUI. For the IR GUI, the

calibration is performed from the main GUI window.

The GUI windows can be edited by 'GUIDE'. To access the GUI

editor, type guide in the command prompt, and choose the .�g-�le

to edit.

3.2 NXT-robot

It was called to attention in [19] that the performance of the NXT-

robot was not satisfactory. The sensor data had low precision and the

positioning was inaccurate.

The sensor tower did not have feedback implemented. It was sup-

posed to rotate from 0°to 180°and take one measurement every 5°. It

was assumed that this happened precisely, but this was not the case.

The sensor tower accumulated a growing o�set such that the 0° posi-

tion approached a 45°-90°o�set, after a few scans. This had a great

e�ect on the sensor data, which quickly became erroneous.

The positioning had the same issue as the sensor tower. The motor

position was not measured, such that there were no knowledge of the

real position. The position of the robot was calculated in MATLAB

based on the reference. This approach assumed no errors in the mo-

tors, which was not the case, and lead to that the position estimate

20CHAPTER 3. CHANGESMADE TO THE PREVIOUS ROBOT SYSTEM

(a) Main GUI window

(b) The plotting GUI

Figure 3.1

3.2. NXT-ROBOT 21

error grew quickly.

These two issues were solved as described in the next sections.

3.2.1 Positioning

The positioning is implemented the same way as for the IR-robot

and given by the equations in 3.1(a-c) [16]. This equation needs the

assumption that the change in angle ∆θt is small. This assumption

holds since the robot drives either forward, or turns by turning the

wheels in opposite directions. This driving pattern keeps the ∆θt

small.

Dt =
Dr
t +Dl

t

2
[m] (3.1a)

∆θt =
Dr
t −Dl

t

B
[rad] (3.1b)

xtyt
θt

 =

xt−1 +Dt cos(θt−1 + ∆θt
2

)

yt−1 +Dt sin(θt−1 + ∆θt
2

)

θt−1 + ∆θt

 (3.1c)

B is the length between the midpoint of the wheels, and Dt is the

distance the midpoint of the robot has travelled between time t − 1

and t. Dr
t and D

l
t is the distance travelled by the right and left wheel

and calculated based on the tacho readings from the motor, between

time t − 1 and t. A tacho is one length unit in the motor encoders,

and one motor revolution is 360 tachos.

22CHAPTER 3. CHANGESMADE TO THE PREVIOUS ROBOT SYSTEM

Note that the sin()/cos()-functions used, provided by NXC, uses

degrees instead of radians. The angles are transformed to radians

before they are used in the main loop lineBeaconSLAM in MATLAB.

Equation 3.2 [7] shows the relation between tachos and travelled

distance.

Dr,l
t =

N2

N1

2πr

360
Tt [m] (3.2)

N2
N1

is the gear ratio from input cogwheel (attached to the motor)

to the output cogwheel (attached to the wheel). r is wheel radius and

Tt is the tacho count. Each time the motor is run by the motor control

functions provided by RWTH Aachen-team [17], the tacho counter is

reset such that Tt is the change in tachos between time t− 1 and t.

This approach is known as dead reckoning, which is the process

of calculating the position based on the change since last estimation.

This approach accumulates errors fast, and will therefore need correc-

tion. The error is often caused by wheel spin, since the surface might

have high friction or be uneven. This leads to that the robot wheels

turn, but the robot might not move, or at least not as intended.

Another source for error is the measurement of the length B, which

varies with the contact point of the wheels. The reason for this is

caused by e.g. uneven surface.

The sending protocol for the position estimate was almost com-

pletely implemented, both on the NXT brick and in MATLAB. The

getPos function in NXTInterface had to be extended in order to

interpret the package received from the NXT-robot. The format was

3.2. NXT-ROBOT 23

xnnnnynnnntnnnn

where [x, y, t] marks if it is the (x, y) position or the orientation t,

while n is the raw data.

3.2.2 Feedback on sensor tower angle

The �rst issue to solve, was to track the tower angle. This was done by

reading the tachos before and after the motor was run, and calculating

the change in angle. The angle was calculated by equation 3.3.

∆θst =
N2

N1
(Tt − Tt−1) [deg] (3.3)

The tacho count is calculated di�erently here than in equation 3.2 since

this angle is calculated continuously as the motor runs, unlike equation

3.2 where the position is calculated when the motor has stopped.

During the full scan, when the tower angle has reach approximately

180°, the motor is run continuously in the opposite direction until ap-

proximately 0°. This approach removed the problem with the growing

o�set, by keeping the tower approximately in the range (0°,180°). Fur-

ther, the angle were sent back to MATLAB with the corresponding

measurement, such that the correct angle was used when transform-

ing from polar- to cartesian coordinates of the measurement. This

improved the quality of the NXT-measurements signi�cantly.

In order to send the angle back to MATLAB, the communication

protocol for the fullScan procedure had to be extended. The new

protocol is presented below.

24CHAPTER 3. CHANGESMADE TO THE PREVIOUS ROBOT SYSTEM

s1xxxxms2xxxxmayyyyyyyfi

S1/S2 - marks that the next data is measurement from either sensor

1 or sensor 2.

x - raw measurement data.

m - marks the end of a measurement.

a - marks that the next data is the angle.

y - angle data.

f - marks that the next data is the measurement number.

i - the measurement number.

3.3 Simulator

This section will discuss how the simulator of the system was made

able to run with two robots.

At the starting point of this project, the simulator was able to run

one robot through a few di�erent mazes. The simulator was merged

together with the main loop, separated from the robot interfaces. This

presented the challenge of how the simulator should be connected to

the interfaces without blending the modules. With this in mind, the

simulator was updated as explained below.

3.3. SIMULATOR 25

3.3.1 Updating the simulator to allow collabora-

tion.

The main issue to consider was that the simulator was developed be-

fore the software was restructured, when the robot interfaces were

implemented. This meant that the simulator was completely sepa-

rated from the robot interfaces. The objective of the simulator was

to simulate the SLAM-algorithm, and therefore the robot interfaces

was previously of no concern. However, due to the required com-

munication with the collaborating robots, the role of the interfaces

has become more signi�cant for the main loop. This meant that the

simulator needed to be connected to the interfaces in order to allow

communication between two simulators.

The functions the simulator needed access to resided in

RobotHandler and were independent of which robot that were con-

nected. Because of this design, these functions could be called by the

simulator by simply extending RobotHandler with few new functions.

This allowed the simulator to use the interface as if it was a robot. An

overview of the new functions are listed in table A.1

This allowed two simulators run the 'same' map, and collaborate on

the mapping task. However, the robots were not simulated to actually

be in the same map, more as if they were running in two copies of

the same map. This meant that the robots did not crash and were

unable to 'see' each other with the sensors. Still, the simulator were

fully capable of testing the algorithms of the system.

26CHAPTER 3. CHANGESMADE TO THE PREVIOUS ROBOT SYSTEM

Chapter 4

The Communication protocol

This chapter will discuss how the internet connection between the

robots was resolved. The purpose of this communication was to allow

the robots to communicate with each other for collaboration purposes.

The internet communication would also allow the robots to be con-

trolled from separate computers, and is therefore �exible.

The solution presented for this thesis is based on the project work

by Halvorsen [19]. The solution for this project will extend the pre-

vious solution into a reliable data transfer protocol. The aim is to

guarantee delivery of the data packages regardless of which data or

which time it is sent.

27

28 CHAPTER 4. THE COMMUNICATION PROTOCOL

4.1 Reliable data transfer

In order to be able to guarantee a reliable data transfer protocol, a

new protocol had to be implemented on top of the TCP/IP proto-

col. Although the TCP/IP protocol is a reliable protocol, messages

could be lost when arriving in MATLAB if they were not interpreted

correctly.

When the reliable data transfer protocol was implemented, a more

�exible communication could be achieved.

4.1.1 New data transfer protocol

The creation of a new data transfer protocol involved a modi�cation

of the communicate-protocol, which was implemented for the project

work of Halvorsen [19]. This protocol sent data packages formatted

as strings, which was required by the read/write functions provided

by the MATLAB-toolbox Instrument Control Toolbox. The new pro-

tocol extended the data string to include a header. This header held

information regarding which type of data was sent, whether it was a

vector or a matrix, together with symbols marking the beginning and

the end of the packages. The format is shown below.

:dataTypeHeader!datastring,

The sign ":" marks the start of the header and the package, the sign

"!" marks the end of the header, and the "," marks the end of the

package.

4.2. INTEGRATING THE COMMUNICATION MODULE 29

The main reason for package loss previously was caused by receiv-

ing packages on the wrong format, e.g. receiving incomplete packages,

which generated various errors in MATLAB. With the new protocol

the packages was temporarily stored in a persistent-variable until

the termination sign was read. The package was then returned by the

read-function of the commuication-module. With this protocol all

packages was received regardless if the data in the input bu�er con-

tained partial or several packages. Hence, the data transfer could now

be regarded as reliable.

Further, with the new header containing the data type, the re-

ceived packages could easily be interpreted, and stored correctly in

the navData-data structure for further use. This made it easy to send

various data at the same time, which made the communication more

�exible.

With this new communication protocol, the TCP/IP connection

was set up before the main loop. The SERVER/CLIENT-structure

still applied, but once the TCP/IP connection was set up, the network

role had no impact on the direction the data was sent.

4.2 Integrating the communication module

In order to use the communication protocol with the main loop, a new

function was implemented in RobotHandler called exchangeData.

This function was responsible for sending and reading data, and stor-

ing the received data in a data structure such that it could be used

30 CHAPTER 4. THE COMMUNICATION PROTOCOL

throughout the main loop. This method required that all data that

was sent had de�ned data-types, regardless if it was a scalar, vector

or matrix. The di�erent data types are listed below.

� 'connected'

� 'pose'

� 'nextpos'

� 'map'

� 'beacons'

� 'finished'

� 'initoffset'

With this protocol, messages could be read when they were avail-

able and stored safely. To assure the newest update was received,

the input bu�er was checked regularly throughout the main loop, of-

ten right before data from the second robot was used. This way the

robots could use the latest updates when navigating and travelling

through the workspace.

The structure of the robot-to-robot data �ow is shown in �gure

4.1. The main loop LineBeaconSLAM requests various data, while

RobotHandler handles the request for the current robot. The actual

sending and receiving is performed in communicate. With the design

of the communication module, packages could be sent from anywhere

4.2. INTEGRATING THE COMMUNICATION MODULE 31

RobotHandler
Exchanges data
by calling read

and send. Stores
the received data

in navData.

LineBeaconSLAM
Requests reading

and sending of
the data needed

for exploration.

Communicate
Creates and

sends packages.
Reads and

interpret the
received data

packages.

Exchange data
request

Update of
navData

Call send and
read

Returns data
packages

Figure 4.1: Data �ow for data sent and received by the internet com-
munication. All data exchanged is stored in navData, which is used
in the main loop.

in the software since the communicate-function holds the connec-

tion handle, and handles all requests regarding the communication-

protocol.

32 CHAPTER 4. THE COMMUNICATION PROTOCOL

Chapter 5

The Navigation algorithm

In this chapter, a new navigation algorithm will be designed and imple-

mented. First, a literature study will be conducted and review several

approaches to the navigation problem with multiple robots. Then a

new algorithm will be developed based on this review. This algorithm

will replace the 'Left-wall-follower to backtracker'- algorithm, which

has been used previously. The main reason for replacing this algorithm

is that both the navigation- and coordination problem will be solved

by one exploration-algorithm. The approach of this algorithm is more

�exible, and can be easily extended to include more robots. The sec-

ond reason is that the new exploration-algorithm is more suited for

multiple robots.

Before a new navigation-algorithm can be designed, the multi-

robot navigation problem has to be formulated.

33

34 CHAPTER 5. THE NAVIGATION ALGORITHM

Figure 5.1: This �oor plan is a typical example of an indoor environ-
ment suited for this algorithm.

5.1 The multi-robot navigation problem

Multiple robots are potentially able to explore an unknown area faster

than a single robot [18]. By using optimization, several good ap-

proaches has been developed. However, it is not possible to �nd a

globally optimal search path before the entire map is explored, hence

only locally optimal decisions can be made at each step [11]. The

challenge lies in designing an algorithm, which can as e�ciently as

possible explore an area, and minimize the costs de�ned for the cost

function. The costs can be, travelling distance, time, information gain

and so forth.

This algorithm will be designed for 2D indoor environments, where

the landscape is either open, or consists of corridors and rooms. Figure

5.1 shows a typical workspace where this algorithm would be suited.

5.2. RESEARCH ON MULTI-ROBOT EXPLORATION 35

5.2 Research on multi-robot exploration

There are many articles written on this subject, and this section will

review di�erent ideas, which will form the foundation for the algorithm

used in this thesis.

Yamauchi 1998 - Frontier-based Exploration Using

Multiple Robots

This article [18] is referenced in almost all of the articles below, and

presents a fundamental base for a solution of the navigation problem.

The central idea behind Frontier-based exploration is to gain as

much new information as possible at each step. An occupancy grid

is used to keep track of the discovered area. The method classi-

�es discovered cells adjacent to undiscovered cells in the occupancy

grid as frontier-points. Adjacent frontier-points are then grouped into

frontier-regions, which is assigned to- and visited by the robots.

The system presented in this article is decentralized, with asyn-

chronous communication, where each robot has a global map, which

is broadcast to the other robots. The maps are then fused together

by adding two probabilistic maps together, which shows the probabil-

ity for a cell in the grid to be occupied. In addition, this system is

fault tolerant since if a robot stops working, the remaining robots can

continue the search without problems.

36 CHAPTER 5. THE NAVIGATION ALGORITHM

Burgard et al.

The approach described in [5],[6] is based on the approach of Yamauchi

[18], and extends this method in order to coordinate the robots. The

coordination is solved by calculating the utility of a target point, in

addition to the travel costs. The utility of a target point is given by

the information gain at this point, and reduced for the other robots

when it is assigned. The target point is chosen based on a trade-o�

between the travel cost and utility. This way, the robots will choose

di�erent target points, and disperse better throughout the workspace.

Quottrup et al.

The method used in this article [12] is to build a planar grid, which

de�nes the feasible paths for the robots. They can move forward,

backward, or sideways. This approach has well de�ned possibilities

for the direction, but is primitive, and for a smaller workspaces, the

di�culty of coordination increases.

Méndez-Polanco et al.

The exploration in this article [9] is based on that a server assigns

regions to the autonomous robot team. This is a centralized system,

which is not desirable when designing a completely autonomous sys-

tem.

5.2. RESEARCH ON MULTI-ROBOT EXPLORATION 37

MAGIC 2010 Robot Challenge

Three articles [8], [3], [4] have been reviewed, which was used by team

MAGICian for the MAGIC 2010 robot challenge. The exploration is

based on a �ood-�ll with ray casting approach. This approach �nds

frontier points, and de�nes frontier regions, as described in Yamauchi

[18]. Then an information gain is calculated for each region by using

ray casting. This method casts rays in a radius from the center of

each frontier region, and counts number of unexplored pixels. Then

an estimate of the information gain is calculated. Further, a new ray

casting is performed in order to check the position of the other robots,

before deciding on a new position.

A few more improvements were applied to the algorithm, such as

favoring the forward direction and assigning bounding regions, which

de�ned areas the robots could explore.

A tactical planner, with help from an in�uence map, is used to

assist the navigation. Each robot then calculates a global path using

A*/D* Lite algorithm, while a mid-level planner modi�es the path in

real-time using elastic bands.

Finally, a trajectory planner, which modi�es the immediate way-

points and trajectory commands, based on Dynamic Window ap-

proach, avoids collisions.

However, team MAGICian placed 4th, but their algorithms were

similar to the winners, team Michigan, which is documented in [13],

[10]. These papers were more directed towards the competition, which

allowed human interaction. They realized that making an autonomous

38 CHAPTER 5. THE NAVIGATION ALGORITHM

system with human interaction was rather di�cult, and focuses some-

what on that aspect.

D. Puig et al.

The approach described in this article [11] divides the workspace into

regions, assigns the regions to the robots, and coordinates the robots

in order to reduce completion time. The cost function minimizes the

variance of the average waiting time for each region, and the variance

of the travel cost. In other words, this system focuses on distributing

the workload as even as possible in order to reduce the overall costs,

as e.g. time.

Summary

The most important issues mentioned by these articles are listed below.

These terms will become in focus for the algorithm in this thesis.

� Frontier regions.

� Track the movement of the robots with an occupancy grid.

� Information gain.

� Dispersing of the robots across the workspace.

� Assigning regions to the robots.

5.3. OUTLINE OF THE ALGORITHM 39

5.3 Outline of the algorithm

The design of this algorithm aims to solve both the navigation- and co-

ordination problem in one algorithm. This will be done by formulating

the exploration as an optimization problem.

First, the algorithm will build a tactical map based on the common

map and the robot positions. The tactical map will track how well

the robots has covered an area, and accounts for overlapping of the

robots.

Second, the discovered area is computed based on the robot paths

and the reliable range of the sensors, constrained by the wall segments.

Further, the border of the discovered area is found. The feasible border

points are the frontiers, and therefore candidates for the next destina-

tion.

If all border points of the discovered area are adjacent to wall

segments, the search is done, since then no possible next destinations

exists.

If the search is not terminated, the optimizing part will �nd the

frontier, which minimizes the cost function. This frontier will then

become the new target destination. The pseudo code for the algorithm

is presented in 5.1.

The exploration algorithm is based on the Frontier-based approach

of Yamauchi [18], and the tactical map is inspired from the work of

team Magician [8], [3], [4] of the Magic 2010 Robot challenge.

This exploration algorithm calculates new positions without con-

sidering if the path along the straight line from the current to the

40 CHAPTER 5. THE NAVIGATION ALGORITHM

next position is collision free. For this solution to be complete, a path

planner is needed. This is discussed in chapter 6.

Algorithm 5.1 Outline of the exploration algorithm

Input: Merged map, robot paths.
1. Build tactical map based on SLAM map and the robot paths.
2. Find the discovered area and its border.
3. Determine the frontier points.
4. Optimize: Assign costs to all frontiers and choose the frontier
point which minimizes the cost function.
Output: New position.

5.4 Developing the Navigation algorithm

In this section, each step of algorithm 5.1 will be explained thoroughly.

First, the algorithm will be developed for one robot, and afterwards

extended to include the second robot.

5.4.1 The Tactical Map

The purpose of the tactical map is to track how well an area is cov-

ered. This information is used in the cost function when calculating

new destination points for the robots. It is desirable to �nd new des-

tination points which can give as much new information as possible.

The tactical map will give a measure of the information gain at each

point. By summing the function values in some neighbourhood of the

frontier point, an estimate of how well this point is covered can be

5.4. DEVELOPING THE NAVIGATION ALGORITHM 41

calculated. It is therefore desirable to �nd the frontier point with the

lowest sum, which will give the highest information gain if visited.

The tactical map is represented by a multivariate normal distribu-

tion. This representation is considered to be fair, since it is assumed

that the robot position is very likely to have been discovered, but less

likely further away from this point. The range of the robot is decided

by the reliable range r of the sensors, hence the line of sight of the

robots.

The tactical map is based on the robot paths, and is represented by

a grid with resolution in cm. Each robot position is considered as an

expectation value for the normal distribution, with a standard devia-

tion proportional to the line of sight parameter r. The mathematical

representation of the tactical map is presented in equation 5.1.

T =
N∑
j=1

αe−(
(x−xcj)

2

2σ2
+

(y−ycj)
2

2σ2
) (5.1)

where α is a scaling factor, N is the number of robot positions in the

path, (xcj , ycj) denotes robot position j and the expectation values,

and σ is the standard deviation. σ is the same for both x and y since

the distribution is wanted to be circular, and not elliptical. r is de�ned

to be 3σ and marks the edge of the distribution at that point, since

about 99,7 % of the volume lies inside three standard deviations of a

normal probability distribution.

The size of the grid is decided by the greatest and smallest (x, y)

values of the positions, and extended by the line of sight parameter r,

42 CHAPTER 5. THE NAVIGATION ALGORITHM

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.2

−0.1

0

0.1

0.2

0.3

x [m]

y
[m

]

(a)

−0.5

0

0.5 −0.5

0

0.5

0

0.5

1

y [m]x [m]

z
[m

]

(b)

Figure 5.2: 5.2(a) shows the circle with centre in robot position
(xj, yj), radius r. Figure 5.2(b) shows when a normal distribution
is added to the robot position with σ = r

3
and µ = (xj, yj).

as shown in 5.2.

Grid corner points =

xmin − 2r, ymin − 2r

xmin − 2r, ymax + 2r

xmax + 2r, ymax + 2r

xmax + 2r, ymin − 2r

 (5.2)

This makes the grid dynamical, which is important since the area

is unknown. It is possible to assume a �xed size for the area, but for

this project, it is considered to be undesirable. An example of the

procedure of how the map is built is shown in �gure 5.2.

This kind of representation will resemble a mountain scenery, which

is shown in �gure 5.3. From this map it can easily be found points

which are local minimas, and therefore points of interest when choosing

5.4. DEVELOPING THE NAVIGATION ALGORITHM 43

−0.5 0 0.5 1

0

0.5

1

x [m]

y
[m

]

(a) (b)

Figure 5.3: The robot paths in 5.3(a) will generate the tactical map
displayed in 5.3(b)

new destination points during navigation.

5.4.2 The border of the discovered area

After de�ning the tactical map, the next step is to �nd the discovered

area and its border. The border points will be candidates for frontiers,

and therefore the new positions of the robot. By going to points on

the border to an unknown area, the extension of the discovered area

can be maximized, which will lead to a more e�cient exploration. The

role of the discovered area at this step is to �nd the border of it, but

later this bitmap is used for the path planning algorithm.

When �nding the discovered area the wall segments had to be taken

into account, such that the workspace was found as the set of points,

44 CHAPTER 5. THE NAVIGATION ALGORITHM

which were visible from the robot positions.

Calculating the discovered area was a challenging task, since it

could be di�cult to de�ne which areas was reachable or not. The

same area could be considered as both reachable and unreachable,

depending on the viewpoint.

To derive a method to �nd the discovered area, one point and one

wall segment was considered �rst. The fundamental idea was that

points behind the wall segments was unreachable. The unreachable

area behind the wall segment was represented as a polygon with sides

along the lines from the robot through the end points of the wall

segment, and the range of the robot sensors. If a point was found

to be inside or on the polygon, it was considered as unreachable and

given a negative weight.

One polygon was created for each wall segment in range of the

current robot position, which de�ned the unreachable area for this

point.

When all the robot positions had been considered, the negative

weighted points were de�ned as unreachable, and positive weighted

points were de�ned as reachable. The process of �nding the unreach-

able area is illustrated in �gure 5.4, and the procedure is shown in

algorithm 5.2.

After the procedure in 5.2, the map was transformed to an occu-

pancy grid where 0 marked an unknown cell, and 1 marked a known

cell. Then, the MATLAB function edge was used to �nd the border

of the discovered area. The border was on the format border = [x, y],

5.4. DEVELOPING THE NAVIGATION ALGORITHM 45

−1 −0.5 0 0.5 1

−0.5

0

0.5

1

1.5

(a) Based on the lines (green), the wall segment (red) and the line
of sight circle (magenta), the polygon (black + wall segment) is
created.

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b) All points inside the overlapping area between the circle
and polygon (including the polygon edges) are marked un-
reachable, the remaining points within the circle are marked
reachable. The resulting discovered area has the border points
marked with blue circles.

Figure 5.4: A step by step generation of the border for one point and
one segment.

46 CHAPTER 5. THE NAVIGATION ALGORITHM

Algorithm 5.2 Finding the discovered area
for each robot position do
Find possibly con�icting wall segment within range r
if No con�icting wall segments then
Add a positive weight to the entire range

else
for each possibly con�icting segment do
Create all polygons which de�nes the unreachable area for
the current robot position

end for
for each point in range r of the current robot position do
Check if the current point lies in the unreachable area
if point is in or on the unreachable area then
Add a negative weight to this point
break

end if
if not then
Add a positive weight to this point

end if
end for

end if
end for

5.4. DEVELOPING THE NAVIGATION ALGORITHM 47

with values sorted on x- and y-values.

The importance of the correctness of this map was crucial. This

border was the set of possible next destinations, and if an infeasible

border point was created, the robot could collide. Moreover, in order

for the end criterion to work properly, the border had to be correctly

�tted to wall segments where this was the case.

The most important problem was that di�erent viewpoints gave

di�erent answers to if a point was unreachable or not. Two robot

positions on each side of a corner illustrates this issue, and is shown

in �gure 5.5. What is unreachable for the �rst point is reachable for

the second point, and opposite. This unfortunate case would have to

be treated in the post-processing step of the border, when the frontier

points is found.

5.4.3 Determining the Frontier points

After calculating the border of the discovered area, these points were

considered for frontier points. First, all points close to wall segments

were removed to avoid collisions with the wall segments. Moreover,

the end criterion depended on that points �tted to a wall segment

were removed in order to know when the exploration was done. This

procedure would then divide the original border into border segments,

which had to be identi�ed.

The identi�cation process of the border segments was done with a

window scan. When a point from the border was found, the border

was tracked both ways (if possible). All border segments over a certain

48 CHAPTER 5. THE NAVIGATION ALGORITHM

−0.4 −0.3 −0.2 −0.1 0 0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 5.5: When �nding the discovered area, this ambiguous case
often occur. The border bulges around the corner, since what is in the
blind spot for one point is not for the other, and opposite.

5.4. DEVELOPING THE NAVIGATION ALGORITHM 49

size was stored in a cell structure. This method also sorted the border

points in a chronological order, which was needed for the next step,

when the border segments was merged. The algorithm is shown in 5.3.

This procedure also solved the problem illustrated in �gure 5.5.

Since the bulges around the corners are close to the walls, they will be

removed if they are within some range of the wall. Further, if parts

of the bulges remains after the �rst step, they are �ltered out at the

next step since these border segments would be too small.

Algorithm 5.3 Identifying and sorting the border segments

Transform border from [x, y] vector, to a (i, j) bitmap.
for all i do
for all j do
if border point found then
Mark start point
With a window scan, trace the border
if end of border found then
Go back to start, or store border if starting point has al-
ready been visited.

end if
end if

end for
end for

After algorithm 5.3, the border consists of several sorted border

segments. Some of these segments may belong to each other. There-

fore, a merging procedure follows algorithm 5.3. This algorithm checks

if start or end points of the border segments are su�ciently close to

each other. If they are, the segments are merged together.

50 CHAPTER 5. THE NAVIGATION ALGORITHM

The output of this border post processing is a set of frontier points.

In the next phase, a cost function will be de�ned, and all the frontier

points will be assigned a cost, which will in turn determine the next

point to visit.

5.4.4 Optimization and the Cost function

This section will de�ne the cost function for the optimization problem,

and compute the next position for the robot. First, the costs have to

be de�ned.

Travelling cost It was desirable to minimize the overall travelling

distance of the robots, since the system accumulates positioning errors

over time, and to exploit most of the batteries. By adding travel

distance as a cost, the unexplored areas close by would be favored

over areas farther away. The cost is de�ned as the distance travelled,

scaled in order to match the information gain.

d(d̄d) = κ · d̄d (5.3)

κ is the scaling factor and d̄d is the distance in [m] from the current

robot position to the current border point.

Information gain It is desired to gain as much new information as

possible at each step. The goal is to maximize the expansion of the

discovered area at each step in order to have an e�cient navigation. By

summing all function values of the tactical map T in a neighbourhood

5.4. DEVELOPING THE NAVIGATION ALGORITHM 51

of each frontier, a measure of how much new information it is possible

to obtain from a frontier is estimated. The cost is shown below.

g(x̄i, ȳi) =
∑
k,l

T (xk, yl), s.t (x̄i − xk)2 + (ȳi − yl)2 ≤ R2 (5.4)

(xk, yl) is the index representation of a metric (x, y) point in the tacti-

cal map T . (x̄i, ȳi) is the current frontier (index) point in T . R marks

the radius of the neighbourhood from the current frontier.

Close to wall segment Points close to a wall segment will get its

view obscured by the wall, and it is desirable to lead the robot into

open spaces. The cost is de�ned as

w(dw) =
1

d2
w

(5.5)

where dw is the distance from a point to the wall segment.

The cost function will then be the sum of the costs listed above, for

each frontier point.

f =
m∑
i=1

di + gi + wi (5.6)

where d is the travelling distance, g is the information gain, w is the

distance from a point to a wall segment, i is the number of current

frontier and represents a (x, y) point, and m is the number of frontiers

52 CHAPTER 5. THE NAVIGATION ALGORITHM

to be considered.

The cost function is built and minimized simultaneously, by storing

the lowest sum which is calculated, and the corresponding frontier

point. This way, when all frontier points has been considered, the

global minimum is found. If there were multiple minima with similar

cost function values, the algorithm would choose the �rst minimum

point it considered.

An example is shown in �gure 5.7. For this example, �gure 5.6

shows the current map of the exploration. For each frontier point, the

cost function has calculated the individual costs, as shown in �gure

5.7(a), which when summed becomes the cost function shown in �gure

5.7(b). Finally, the minimum of this function is found, and the position

is returned by the navigation algorithm.

The placement of the new target position shows the e�ect of each

cost. First, the travel cost prefers the frontiers at the shortest range

of the robot. Second, the wall cost forces the point to the right, away

from the wall. Finally, the information gain makes sure that the target

point will not overlap too much with an already visited area, and limits

how far to the right the target point can be.

How much the point is shifted away from the wall and the already

discovered area depends on the relative weighting of the costs, which

have to be considered carefully. It is desirable to lead the robot into

open spaces, but also to maximize the expansion of the discovered

area. Although the information cost increases the e�ciency of the

algorithm, the wall cost is a preventer of collisions. Therefore, these

5.4. DEVELOPING THE NAVIGATION ALGORITHM 53

two costs must be balanced properly with the travel distance, which

is the most important cost.

Finally, the navigation algorithm was tested in the simulator, as

explained in chapter 9.1.

54 CHAPTER 5. THE NAVIGATION ALGORITHM

−0.5 0 0.5 1

0

0.5

1

1.5
Test track

Figure 5.6: The red segments are the wall segments, the border is
marked in blue, and the frontier points are marked with pink circles.
The tactical map is represented by a contour-plot, and also shows
approximately the robot path. The star marks the current position
while the square marks the new position the algorithm has calculated.

5.4. DEVELOPING THE NAVIGATION ALGORITHM 55

100 200 300 400

−50

0

50

100

150

200

250

Frontier points

C
os

t

Individual costs

Travel distance
Information gain
Distance from point wo wall

(a)

0 100 200 300 400 500
0

50

100

150

200

250
Sum of costs

Frontier points

C
os

t

(b)

Figure 5.7: An example of the exploration algorithm. The track is
shown in �gure 5.6, while the individual costs are shown in �gure
5.7(a), and the �nal cost function is shown in �gure 5.7(b).

56 CHAPTER 5. THE NAVIGATION ALGORITHM

Chapter 6

Path planning

This chapter will discuss how the path planning problem was solved

for this thesis. From the navigation algorithm the robot will receive

a destination point, but there is no guarantee that the path along

the line between the current position and the next position would be

collision free. This chapter aims to solve this problem.

6.1 The path planning problem

The general path planning problem is to travel from A to B with-

out any collisions. For this project, the problem is to �nd a path

in 2D which avoids collisions with obstacles in the work space. The

workspace for the path planning algorithm is de�ned to be a subspace

of the discovered area called the free con�guration space.

There is one basic requirement for the path planning algorithm,

57

58 CHAPTER 6. PATH PLANNING

which is to avoid collision with wall segments. Avoiding collision with

wall segments will imply �nding a path in a static environment. A

second basic requirement could also be considered, which is to plan

a path which avoids the other robot. This would be a more di�cult

part, since this robot will be acting as a dynamical obstacle.

Furthermore, it is required that the number of intermediate way-

points is low in order to avoid a jagged path, allowing smooth driving.

This is due to the driving method of the robots, which is composed by

sequential turning then driving. By making the robot follow a path

consisting of a signi�cant amount of waypoints, the robot will make

many turns and drive short distances, leading to ine�cient driving

and fast growth of the positioning error.

In order to make the path planning dynamical during runtime, the

robots will recalculate their path at each waypoint and check if the

path is still collision free.

6.2 Outline of the algorithm

The exploration-algorithm will in most cases return a point at a dis-

tance close by, with no obstacles interfering with the path. It is when

the robot comes to the end of a search path, and wants to explore a

region across the workspace, that it needs path planning.

An example is when the robots is done exploring a room, and wants

to go out into the corridor and explore the next room. For this reason,

the �rst part of the path planning algorithm will check if there is need

6.2. OUTLINE OF THE ALGORITHM 59

to plan a path, by checking for collisions with obstacles. If the path is

free, the robot can proceed with no further planning.

The �rst step of the path planning algorithm is to create a graph,

which represents the free con�guration space. Based on this bitmap,

a breadth-�rst search (BFS) is conducted. This algorithm �nds the

shortest path in the free con�guration space. Then the path is post-

processes such that only the most necessary waypoints from the BFS-

algorithm is included.

The outline of the algorithm is shown in algorithm 6.1. The next

section will explain each line of this algorithm into more detail.

Algorithm 6.1 Outline of the Path Planning algorithm

1: if not collision then
2: return
3: end if
4: G← the free con�guration space
5: BFS_Path = BFS(G,v,w)
6: Calculate the relative Angles between each edge in BFS_Path
7: if relative Angles > threshold then
8: add way-point to path
9: end if

60 CHAPTER 6. PATH PLANNING

6.3 Developing the path planning algorithm

6.3.1 When to use path planning

The robot will for most cases travel relative short distances, and there-

fore not need path planning. In order to reduce run time and the num-

ber of scans, it is desirable to travel along the line from the current

pose to the next pose, when it is possible.

During 'normal' navigation, the robot will usually drive a distance

equal to the range of the sensors, such that the next position will be

in sight.

In order to check if path planning is needed, the line between the

current position and the next position is checked for intersection with

the wall segments. It must also check if the path is too close to a wall

segment, for example to avoid cutting corners.

When the physical system is run, the SLAM-algorithm generates

signi�cantly more beacons than the simulator. Therefore, it is impor-

tant to check if the path is close to a beacon. Moving close to a beacon

will often result in a collision, and must therefore be avoided.

If one of these tests show that a collision will or may occur, then

path planning is needed.

6.3.2 Con�guration space

The �rst step of the path planning algorithm is to �nd the feasible

area the robot can travel in. This is the free con�guration space. The

free con�guration space is the set of all con�gurations the robot can be

6.3. DEVELOPING THE PATH PLANNING ALGORITHM 61

in, without being in con�ict with any obstacles. The possible con�gu-

rations are [x, y, θ]. For this system the free con�guration space would

be a 2D map with a (x, y) metric representation. At each position the

robot has the orientation θ, but for this system θ ∈ [0, 360] ∀ (x, y).

The system is holonomic, and the orientation can therefore be disre-

garded. Hence, the free con�guration space is a subset of the discov-

ered area.

By restricting the movements of the robot to the free con�guration

space, it can be guaranteed that the robot path would be feasible.

When travelling in the free con�guration space, all possible hazards are

removed prior to the path planning, ensuring that all paths will avoid

collisions. From the free con�guration space it can also be determined

if a feasible path exists.

The free con�guration space is found by removing all points from

the map showing the discovered area, which is at some range from

the wall segments. In addition, all points around the other robot is

removed in order to avoid that the robots cross paths. This process

would remove narrow openings, which could block the robot. An ex-

ample is shown in �gure 6.1.

When the free con�guration space is found, the robot can be

treated as a point.

6.3.3 Finding a path

The procedure to �nd the path will consist of two stages. First, the

shortest path will be found by a shortest path algorithm, then this path

62 CHAPTER 6. PATH PLANNING

0 0.5 1 1.5 2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 6.1: Example of a con�guration space. The blue dots marks
the discovered area, while the con�guration space is marked with pink
circles.

6.3. DEVELOPING THE PATH PLANNING ALGORITHM 63

will be smoothed such that only a reduced amount of intermediate

way-points will be used. The smoothing algorithm will try to �t as

many points as possible to a line, in order to avoid zigzag driving for

the robots.

In order to choose the shortest path algorithm, the shortest path

problem was de�ned �rst.

Given an undirected and unweighed graph G, start node v and tar-

get node w, �nd the shortest path from v to w in G.

For this system, the graph G is the free con�guration space, the

start node v is the current position, and the target node w is the next

position for the robot.

Further, it is desirable to �nd an optimal path which produces the

best foundation for the second stage. For example, if the algorithm

tries to follow the straight line towards the goal when possible, the

path would not be optimal. The robot would approach the obstacle

head on, circumnavigate it, and continue towards the target when it

�nds the straight line again. Such algorithms would try to minimize

the distance to the goal at each step.

A number of shortest path algorithms were considered such as the

A*-, Bellman-Ford- and Dijkstra-algorithm, but for the shortest path

problem as described above, the breadth-�rst search (BFS) algorithm

was found to be most suitable. The BFS is actually a special case of

the Dijkstra algorithm, but without costs/weights on the edges. The

64 CHAPTER 6. PATH PLANNING

BFS-algorithm would �nd a path based on the distance in the terms

of number of nodes between the start and goal node. An example is

shown in �gure 6.2.

As can be seen from �gure 6.2, the path is not optimal. When the

BFS-algorithm searches in the tree, it looks at the neighbours to the

current node, which has not yet been marked, and adds itself as the

parent to the neighbours. When the goal node is found, the path is

calculated backwards by adding the parent of each node to the path.

This way, the number of nodes is minimized, but the metric distance of

the path might not be. This is due to the order the nodes are visited in.

In the direction of the parent, there are usually three possible parent

nodes (due to the grid structure), which are at the same distance from

the start node, and therefore they will seem equal. This problem can

be solved by adding a cost to diagonal movement, such that a more

optimal path will be found.

When the shortest path is found, the second stage will try to pick

out only the necessary waypoints from the BFS-algorithm. This is

done by looking at the relative angles between the edges of the BFS-

path.

If the orientation θ is the same when travelling between several

waypoints, all of them would not be needed. The necessary way-points

would be points where the robot has to turn. Therefore, by setting a

tolerance for deviation from the previous orientation θt−1, the points

which could be �tted to the same line with a small quadratic error,

can be grouped together. Due to the 8-way direction behaviour of

6.3. DEVELOPING THE PATH PLANNING ALGORITHM 65

0 0.5 1 1.5 2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 6.2: Example of a path found by the BFS algorithm. The robot
starts at the point marked by the blue square, and wants to go to the
position marked by the blue star. The circles marks the graph G, and
the black circles marks the investigated nodes of the BFS-algorithm.
The path found are marked with blue dots.

66 CHAPTER 6. PATH PLANNING

the grid, turning points are easily discovered. The smallest turn in

the grid would be 45 °, which would be a reasonable threshold for the

turning points.

An example of these relative angle di�erences is shown in �gure

6.3. The points picked out for the path is marked with a cross. From

this analysis, the waypoints for the path is picked out as shown in

�gure 6.4. As can be seen from the �gure, only the turning points

are included, which means that the number of way-points is reduced

signi�cantly.

As can be seen from �gure 6.4, some of the waypoints could be

merged together by averaging, but this will raise the question if that

new path is still inside the con�guration space.

With waypoints as in �gure 6.4, the robot will follow the path found

from the BFS-algorithm, which guaranteed feasibility. However, since

the path planner recalculates the path at each waypoint, and if the

robot can reach the destination without going via the last waypoints,

it does. This means that the number of waypoints in the planned path

is 'worst case', and that the robot might arrive the new destination by

a shorter path.

6.3. DEVELOPING THE PATH PLANNING ALGORITHM 67

0 2 4 6 8 10 12 14 16 18 20
−10

0

10

20

30

40

50

60

70

80

90

100

R
el

at
iv

e
an

gl
e

di
ffe

re
nc

e
[d

eg
]

Edge number i

Figure 6.3: The relative angle di�erences between edge i and i + 1.
The waypoints picked out for the path is marked with a cross.

68 CHAPTER 6. PATH PLANNING

0 0.5 1 1.5 2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 6.4: The path produced by the path planner. The BFS-path is
marked with crosses, while the waypoints picked out are marked with
red. The robot starts at the point marked by the blue square.

Chapter 7

Coordination of the robots

This chapter will discuss how the two robots were coordinated in or-

der to fully exploit the use of two robots. While the vision of the

navigation- and the path planning algorithm have aimed beyond the

capabilities of the physical system, the work performed in this chapter

focuses on this system in order to make it work.

7.1 From one to two robots

To use the navigation- and path planner algorithm alone would not

be su�cient in order to avoid collisions. Moreover, it is di�cult to

achieve an e�cient system without coordination since the robots tends

to converge towards the same path after a while. This e�ect is caused

by that the robots are forced to choose target points close to each other

towards the end of the exploration, due to lack of options. Moreover,

69

70 CHAPTER 7. COORDINATION OF THE ROBOTS

when the robots choose points close to each other, they will �nd new

frontiers close to each other and continue along the same path. This

must be avoided by ensuring that the robots choose di�erent target

points.

In summary, the main issues with the coordination of the robots is

to avoid collisions with each other, and to make them disperse across

the workspace by choosing di�erent target points.

In order to accomplish this, the robots would need knowledge about

where the other robot is planning to go next. Due to this requirement,

it was decided that one of the robots would act as the leader of the

group, and calculate new positions for both. Since the SERVER/-

CLIENT structure already was implemented, this was exploited in or-

der to determine the role of the robots. This structure would make the

system centralized, which would compromise the desired autonomous

nature of the system.

However, this would only be a problem if the robots got out of

range with each other. Nevertheless, the problem of network range

did not apply to this system, since the workspace was quite small and

the communication was performed internally on one computer.

Anyway, the system would be implemented as autonomous as pos-

sible, and with the network range problem in mind, the SERVER/-

CLIENT structure was implemented such that the system could tol-

erate that one was disconnected. If this occurred, the remaining robot

would explore as if it was alone, only considering the last known po-

sition of the other robot as an obstacle. If the connection loss were

7.2. IMPLEMENTATION OF COORDINATION MECHANISMS71

due to the network range, it would still be safe for both robots to act

as if they were alone, since they would be far from each other. If the

robots eventually appears in range again, they would exchange the

data, choose a leader and continue the search together.

7.2 Implementation of Coordination mech-

anisms

When including the second robot into the exploration algorithm a few

extensions had to be done. First, a SERVER/CLIENT structure had

to be implemented in the main loop. Before the main loop started the

SERVER-robot was picked, which calculated the new positions. The

SERVER calculated its own target destination �rst, and used this

when calculating for the CLIENT. Then this information was sent to

the CLIENT.

Further, some �ags which marked if the robots were done had to be

sent. This way could the SERVER notify the CLIENT if the SERVER

was done, or if the CLIENT was done. If one of the robots were done

before the other, the remaining robot would act as it was alone, and

continue the search.

In order for the SERVER-robot to coordinate the robots, a few

extension to the navigation- and path planning algorithm had to be

made, which are explained below.

72 CHAPTER 7. COORDINATION OF THE ROBOTS

De�ning frontier regions

An important factor for e�ciency and a precaution for collision avoid-

ance was to ensure that the robots did not choose the same target

points. In order to accomplish this, a frontier region was de�ned

around the target point, which was calculated �rst. This way it was

avoided that the target position of the CLIENT was calculated to be

in the immediate neighbourhood of the SERVER's target destination.

Hence, the robots would choose target points at di�erent places in the

workspace.

Dispersion

In addition to choosing di�erent target points, it was important to

make the robots disperse across the workspace. This was done by

adding a new cost to the cost function, which punished frontier points

close to the target point of the other robot. The cost was de�ned as

c(d̄c) = κc
1

d̄2
c

(7.1)

where d̄c is the distance from a frontier point to the target destination

of the other robot, and κc is a scaling factor.

This lead to that the robot always wanted to increase the distance

between them, and therefore dispersed across the workspace.

7.2. IMPLEMENTATION OF COORDINATION MECHANISMS73

Accounting for the second robot in the path planner

Although the robots choose di�erent target points and disperse across

the workspace, the robots may want to cross paths. A typical case is if

the robots approach the same corner from di�erent directions. When

planning a path, a neighbourhood of the current position of the other

robot is removed from the con�guration space, such that the other

robot would block the hallway. This will, e.g. for the corner case

(where the robots approach a corner from di�erent directions), force

the robot who wants to go past the other robot, to go the other way.

These coordination mechanisms have proved to be su�cient in order

for the robots to collaborate in a good manner. The complete explo-

ration algorithm is tested in chapter 9.3.

74 CHAPTER 7. COORDINATION OF THE ROBOTS

Chapter 8

Implementing the physical

robot system

This chapter will discuss how the physical system was implemented

with the algorithm for collaboration developed through chapters 5-7.

The physical robot system introduces signi�cant uncertainties such

as positioning- and measurement errors, as well as the distance be-

tween the robots will change with the positioning error, and produce

uncertainties for the resulting map.

With these uncertainties, the map produced by the SLAM-algorithm

will not be an exact mapping of the true environment, and this must

be accounted for throughout the exploration algorithm. The �rst phe-

nomenon to consider is that a scan with much more uncertainties

produces signi�cantly more beacons, and less wall segments. This is

a challenge and have to be considered in order to be able to map an

75

76CHAPTER 8. IMPLEMENTING THE PHYSICAL ROBOT SYSTEM

area without colliding with beacons.

8.1 Exploring with beacons

Beacons (also called point feature) is the second landmark the SLAM-

algorithm uses, after the lines. Beacons are generated by small clusters

of measurement data, which are not part of a line. It can seem to be

random when beacons are generated by the robots, but it happens

more often when the sensors produce measurement data with some

dispersion. This is common if the wall is at long range, or the view-

point is skew relative to the wall.

A good example of the randomness of the beacon generating is

shown in �gure 8.1. This is actually two consecutive scans of the very

same environment, shown in �gure 8.1(a). The �rst scan shown in

�gure 8.1(b) produces many beacons and one wall segment, while the

second scan shown in �gure 8.1(c) renders the real environment quite

good.

As can be seen from this example, when a beacon is generated

it means that the robot has discovered something. This means that

the robot must avoid these points when exploring the environment.

This can be accounted for in the navigation algorithm and in the path

planner algorithm.

8.1. EXPLORING WITH BEACONS 77

(a) The actual environ-
ment

−0.5 0 0.5 1
−0.5

0

0.5

(b) First scan produced many beacons

−0.5 0 0.5 1
−0.5

0

0.5

(c) Second scan reproduces the real environment in
a good fashion.

Figure 8.1: Illustrating issue with beacons

78CHAPTER 8. IMPLEMENTING THE PHYSICAL ROBOT SYSTEM

8.1.1 Beacons and the navigation algorithm

The ideal solution to account for beacons would be to use the same

approach as for the wall segments, but this approach is rather di�cult

when considering points. This is simply because is hard to de�ne

what is behind a point. It could be considered that beacons could

be grouped together and be considered as wall segments, but this

approach can close valid gaps between walls and prevent the robot

from completing the mapping task.

The solution at this point was to lead the robot away from choosing

target points near beacons. This was simply done by penalizing the

distance from a frontier to a beacon in the cost function. The penalty

was de�ned similar to the wall cost, as shown in equation 8.1

b(d̄b) =
1

d̄2
b

(8.1)

where d̄b is the distance to beacon. This cost will be very high close

to beacon, and quickly decline when the distance increases from the

point feature. Hence, the target points would not be chosen to be

close to beacons.

8.1.2 Beacons and the path planning algorithm

The next step in order to account for beacons is to avoid driving close

to them. A beacon would not stop the navigation algorithm from

choosing a target destination on the other side of a beacon. This

would most likely lead the robot to drive into a wall. It was therefore

8.1. EXPLORING WITH BEACONS 79

checked if the straight line from the robot to the target destination

was su�ciently close to a beacon, and if a path had to be planned to

avoid it.

The next step was to remove all con�guration points around the

beacon such that a path cannot be planned to travel near it. The target

destination would then be moved from outside the free con�guration

space to the closest point in the con�guration space, such that a valid

target point was created near the actual target point.

When the robot was able to move, it could get a di�erent viewpoint,

and then identify a wall segment in the area the beacon was.

If no path is found

In theory, it would always exist a path since the discovered area should

always be connected. This is because the robot would never drive

into completely unexplored area, it would always drive to a frontier

point, which is connected to the discovered area. The robot would

therefore, in theory, only make a new bulge in the discovered area for

each position it visited. This was also the case when testing the path

planner in the simulator.

However, this was not the case for the physical system. The rea-

son originated from the uncertainties of the physical system, such as

producing incomplete walls even though the robot was completely sur-

rounded by walls. This could produce infeasible target destinations in

a part of the con�guration space, which were not connected to the

part of the con�guration space the robot resided in.

80CHAPTER 8. IMPLEMENTING THE PHYSICAL ROBOT SYSTEM

The beacons could also separate the con�guration space into dif-

ferent parts since all con�guration points around the beacons were

removed to avoid planning a path near them.

A consequence of a disconnected con�guration space was that the

robot might be 'stuck' at one position. This stops the progression of

the exploration, since several scans at the same position may not give

new information. This will make the navigation algorithm choose the

same target point each time. The robot would then remain at the

same position, trying to �nd a path to an unreachable destination. It

is therefore very important that the robot get to move.

The solution to this problem was to avoid unreachable target points,

and an area around them. This had to be performed by the SERVER-

robot of the system, which calculated the target points for both robots.

Therefore, if the robot remained at the same position too many itera-

tions, the current target point was classi�ed as unreachable, and added

to the list of unreachable areas.

This forced the robot to choose a di�erent target point, which then

made it move and continue the exploration.

8.2 More improvements

In order to further improve the performance of the physical robot

system, a few more improvements were made.

8.2. MORE IMPROVEMENTS 81

Connecting wall segments was done since the SLAM-algorithm

often produced glitches between wall segments, which would lead to

the creation of frontier points inside walls. This prevented many situ-

ations, which would lead the robot to infeasible target points.

Filtering sensor data in order to remove obviously erroneous mea-

surements. This has been especially relevant for the IR-robot, but af-

ter a closer look at the wires connected to sensor, the sensor data has

been improved signi�cantly. However, both robots might still produce

a few erroneous measurement points, which is �ltered out. The main

case is if the points are too far away, or if the dispersion (distance

between the measurements) is too great. Single measurement points

are usually originated from erroneous sensor data.

82CHAPTER 8. IMPLEMENTING THE PHYSICAL ROBOT SYSTEM

Chapter 9

Testing

9.1 Testing the navigation with one robot

in simulator

This section presents the very �rst testing of the the new navigation

algorithm for one robot, and compares its performance to the previous

'Left-wall-follower to backtracker'-algorithm.

For this test, the simulator with Map 1 was used, and the results

is shown in �gure 9.1. The new navigation algorithm used 18 steps

and travelled 5.6 meters, while the 'Left-wall-follower to backtracker'-

algorithm used 51 steps and travelled 5.48 meters.

However, the 'Left-wall-follower to backtracker'-algorithm was un-

able to �nish the exploration since it crashed into the wall during the

backtracking phase, which shows that the old algorithm had some er-

rors. Hence, the actual number of steps and travel distance would be

83

84 CHAPTER 9. TESTING

higher.

This test shows that the new navigation algorithm is more e�-

cient, since it reduces the number of steps quite drastically. For the

real robot system, each step will take some time due to the full scan

procedure, and therefore will the new exploration algorithm reduce

runtime signi�cantly for this case.

Another interesting test was with a convex and open test course,

as Map 6 of the simulator provides. The result is shown in �gure 9.2.

The exploration algorithm completed this track with 29 steps and

travelled 12 meters. The 'Left-wall-follower to backtracker'-algorithm

used 62 steps and travelled 6.2 meters. Again the 'Left-wall-follower to

backtracker'-algorithm failed when it initiated the backtracking state,

which means that the actual numbers are higher. Hence, the new

navigation algorithm would perform better in the case of open envi-

ronments.

This test illustrates a distinction between the two algorithms. The

'Left-wall-follower to backtracker'-algorithm, has a searching strategy

which follows the left wall, while the new navigation algorithm picks

new position more at random.

An interesting phenomenon is the remarkably even distribution of

positions produced by the new navigation algorithm, which tells that

the search environment is covered in a good fashion. Figure 9.3 shows

the robot positions without the path drawn between the points.

9.1. TESTING THE NAVIGATIONWITHONE ROBOT IN SIMULATOR85

−0.5 0 0.5 1 1.5 2

−0.5

0

0.5

1

1.5

(a)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

1.5

(b)

Figure 9.1: The �rst run of the new algorithm in Map 1. The result
of the new algorithm is shown in 9.1(a) and compared to the previous
algorithm in 9.1(b).

86 CHAPTER 9. TESTING

−1 −0.5 0 0.5 1 1.5 2

−0.5

0

0.5

1

1.5

2

(a)

−1 −0.5 0 0.5 1 1.5 2

−0.5

0

0.5

1

1.5

2

(b)

Figure 9.2: Testing in Map 6, a convex environment with no hulls.
The result of the new algorithm is shown in 9.2(a) and compared to
the previous algorithm in 9.2(b).

9.2. TESTING THE PATH PLANNER IN SIMULATOR 87

−0.5 0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 9.3: The even distribution of robot positions shows good cov-
erage of the area by the new navigation algorithm.

9.2 Testing the path planner in simulator

This section presents the testing of the exploration of an area with

focus on the path planner algorithm. For this test Map 3 was used,

which is a more complex map than in section 9.1. This course were

used since a path planning case had to occur.

The result from the scan is presented in �gure 9.4. For this course,

the path planner was needed twice. Figure 9.5 shows the last case

where the path planning was needed. This is a typical case, since the

robot had explored everything within the minimum range. This meant

that it had to travel across the workspace to �nd an area which was

not explored.

88 CHAPTER 9. TESTING

−0.5 0 0.5 1 1.5 2 2.5

−0.5

0

0.5

1

1.5

Figure 9.4: The result from Map 3 with the new navigation algorithm
and path planning.

Figure 9.5(b) shows the path found by the BFS-algorithm, while

�gure 9.6 shows the �nal path.

This test shows that the new navigation algorithm were able to

explore an arbitrary indoor environment in an e�cient manner. It

could now pick target points anywhere in the work space, and get

there safely.

The 'Left-wall-follower to backtracker'-algorithm were not able to

explore this course due to the error during the backtracking phase, and

could therefore not compare its performance to the new algorithm.

9.2. TESTING THE PATH PLANNER IN SIMULATOR 89

−0.5 0 0.5 1 1.5 2 2.5

−0.5

0

0.5

1

1.5

(a) The next destination received from the navigation is such that
the straight line collides with the wall segments.

−0.5 0 0.5 1 1.5 2

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(b) The circles marks the free confuration space, the black circles
are the nodes investigated by the BFS-algorithm, while path is
marked with blue dots.

Figure 9.5: Figure 9.5(a) shows a typical case where path planning is
needed. The shortest path is calculated in �gure 9.5(b)

90 CHAPTER 9. TESTING

−0.5 0 0.5 1 1.5 2

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 9.6: The path planned for the case in �gure 9.5(a)

9.3 Testing with two robots in simulator

The test performed in this section tests the coordination capabilities

of the system, which were described in chapter 7.

For this test, all three maps (Map 1,3,6) were used such that the

results could be compared with the performance of the single robot

system. The performance of the multi-robot system would equal the

number of steps and travel distance of the slowest robot, in terms of

the robot which performs most scans.

Further, in all three tests the robots starts near each other, since

this would be the most realistic for a real search in a collapsed build-

ing, mine sweep and so forth. The test results is displayed in table 9.1

together with the results from exploration with one robot for compar-

9.3. TESTING WITH TWO ROBOTS IN SIMULATOR 91

ison.

Test 1, Map 1

For the �rst test simulator map 1 was used, and the result is shown in

�gure 9.7.

The robots started down in the left corner, and chose to move in

di�erent direction at step 1. After the �rst scan, the discovered area of

the two robots overlapped such that there were three frontier regions

to choose target points from, as shown in �gure 9.8(a). One of the

frontier regions is in the middle of the robots, but because of the cost

function, neither of the robots choose this target.

The next steps did not require any coordination, until they ap-

proached the upper right corner from each direction. In �gure 9.7 the

two paths of the robots is displayed together, which shows that this

'corner'-case was solved. As the robot travelling along the blue path

approach the corner, it initially chooses a target point in the middle of

the map, while the second robot �nishes searching the corner. Since

the path planner for the blue robot cannot move past the green robot,

it starts to move in the direction it came from. When the green robot

is �nished in the corner, there are two frontier regions left, one in the

middle and one near the starting position, as shown in �gure 9.8(b).

Now, the algorithm assigns the middle target to the green robot, and

the target near the start position to the blue robot. Now, the optimal

solution for the overall system is made, and the number of steps is

minimized.

92 CHAPTER 9. TESTING

For this test, the two separate SLAM-maps generated from both

robots is shown in �gure 9.9. They make the foundation for the re-

sult shown in �gure 9.7. Since this simulation is conducted without

measurement- and positioning errors, removing the initial o�set be-

tween the robots is su�cient for the map merging.

Table 9.1 shows the results from this test together with the cor-

responding test with one robot. An interesting fact is that using two

robots does not improve the run time signi�cantly for this map. The

reason is that both robots needs to use the path planner in order to

cover the frontiers, which were left unexplored at 'crossroads', where

the robot had to choose between two possibilities. Therefore, the use

of multiple robots for smaller maps would not give a great advantage

over one robot, as could be expected.

Test 2, Map 3

For the second test, simulator Map 3 was used in order to check how

the system handled a bigger environment. The result is shown in

�gure 9.10. The tests shows that the robots managed to collaborate

in a good fashion, and dividing the workspace fairly.

The robots had to be coordinated, similar to the previous test,

at the beginning and the end of the exploration. The �rst case was

identical to the case in test 1.

The critical coordination case occurred towards the end of the ex-

ploration, as shown in �gure 9.11(a). Since the green robot chooses

target point �rst, the blue robot is assigned the target point on the

9.3. TESTING WITH TWO ROBOTS IN SIMULATOR 93

0 0.5 1 1.5 2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

← 1

1→

Figure 9.7: The resulting map from exploration in Map 1. The two
SLAM-maps from �gure 9.9 has been merged together. The 'server'-
robot is marked with green and contributed with the red wall segments.

94 CHAPTER 9. TESTING

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

(a) Step 1

0 0.5 1 1.5 2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Last coordination decision.

Figure 9.8: Coordination cases from Test 1. The Tactical map is
marked by a contour-plot and the frontier points are marked with
pink on the blue border.

9.3. TESTING WITH TWO ROBOTS IN SIMULATOR 95

0 0.5 1 1.5 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

−0.5 0 0.5 1 1.5

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(b)

Figure 9.9: The two SLAM-maps generated by the robots. These
maps shows what the robots has discovered separately. These �gures
also shows the line- and beacon features, which is used by the SLAM-
algorithm.

96 CHAPTER 9. TESTING

other side of the green robot, which has the 'server'-role. At �rst, the

blue robot must plan to go around, since the area in front of is not con-

nected. As the green robot moves upwards, the blue robot is allowed

to take a shorter route and begins to move the other way again. This

makes the blue robot go back and forth, as can be seen by the dense

gathering of position points in �gure 9.10. As the green robot moves

further, as shown in �gure 9.11(b), it assigns the last frontier to itself,

and tells the other robot that it is done. Hence, the coordination was

solved.

As can be seen from table 9.1, the test results shows that the use of

two robots improved the run time of the exploration signi�cantly. The

number of scans and the distance the robots had to travel was reduced

by more than half. Hence, the test shows that the system bene�ts of

using more robots for larger workspaces is large, which shows that the

algorithm for collaboration is working.

Test 3, Map 6

The �nal test was in the open environment, and this test would really

test the coordination of the system.

The path planner could not help the coordination for this case, so

it was crucial that the target points were chosen such that the robots

did not cross paths.

The results is shown in �gure 9.12. As can be seen from the �gure,

the two robots divided the area between each other, and �nished the

mapping without any collisions. This test shows the e�ect of the

9.3. TESTING WITH TWO ROBOTS IN SIMULATOR 97

−0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

← 1

1→

Figure 9.10: Test results from Test 2 with two robots. The robot trav-
elling along the green path produced the red wall segments, while the
robot travelling along the blue path produced the blue wall segments.

98 CHAPTER 9. TESTING

0 0.5 1 1.5 2

0

0.5

1

1.5

(a)

0 0.5 1 1.5 2

0

0.5

1

1.5

(b)

Figure 9.11: Coordination case for Test 2. These maps shows the
Tactical map marked by a contour-plot and the frontier points are
marked with pink on the blue border.

9.3. TESTING WITH TWO ROBOTS IN SIMULATOR 99

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

← 1

1→

Figure 9.12

'distance to the other robot'-cost, which was su�cient for coordinating

the robots on this case.

The results for this test shows that the multi-robot system per-

formed about twice as good as the single robot system. This test

also shows that the robots are coordinated such that the workspace is

evenly divided between the robots. The robots are dispersing at each

step, trying to move in di�erent directions at each step, which was one

of the goals for the exploration algorithm.

100 CHAPTER 9. TESTING

Two robots One robot
Map 1 Robot 1, Server Robot 2, Client
Steps 14 12 18
Distance [m] 3.48 4.36 5.6
Map 3
Steps 18 17 38
Distance [m] 5.12 4.12 11.1
Map 6
Steps 15 16 29
Distance [m] 5.32 4.92 12

Table 9.1: Comparing simulation results with one and two robots.

9.4 Testing the improvements of the NXT-

robot

This section performs the test of the positioning and sensor tower

angle feedback.

For the positioning test, the NXT-robot had to follow a square

path by 10x10 cm. The NXT-robot got the commands to turn -90°and

drive 10 cm four times. Figure 9.13(a) shows the result of this test

track together with the ideal path. As can be seen, the NXT-robot

performed well with a small error. The �nal destination should be in

the origin, but is displaced by a few millimeters.

For the tower angle feedback test, the NXT-robot performed �ve

scans of the same area from the same positions. This test would show

the tower angle o�set. The result is shown in �gure 9.13(b). The test

course is similar to the test course depicted in �gure 8.1(a).

9.5. TESTING THE EXPLORATIONON THE PHYSICAL ROBOT SYSTEM101

As can be seen from the results, the measurements twists some

after a few iterations, but the results also show that the robot is still

able to recognize the area in a good fashion.

9.5 Testing the exploration on the physical

robot system

This section will describe the testing of the physical robot system, with

both the NXT- and IR-robot. This test will show that the algorithm

was working properly with the physical system.

The test course is presented in �gure 9.14, which is an arbitrary

non-convex course which needs good coordination in order to be com-

pleted without collision due to the small size.

The resulting map is presented in �gure 9.15, together with the

paths of the robots.

As can be seen from the result, the map has reproduced the real en-

vironment in a fairly good fashion. It is possible to recognize the area

as the two rectangles is composed of, which means that the mapping

task has been completed.

The sensor data from the IR-robot is shown in �gure 9.16, and

shows what the IR-robot has seen. As can be seen from the �gure, the

sensor data of the IR-robot has mapped the area in a good fashion. For

this reason, one could expect better results from the SLAM generated

map. However, since the SLAM-algorithm tries to �t lines to sensor

data, it may have problems if the data �ts badly to a line, even though

102 CHAPTER 9. TESTING

0 0.02 0.04 0.06 0.08 0.1

−0.1

−0.08

−0.06

−0.04

−0.02

0

Ideal path

Ideal position

Robot path

Robot position

(a) Testing of the positioning. Robot starts in the origin, and drives
10 cm forwards. Then turns 90°and drives 10 cm until it get back
to the origin.

−0.2 −0.1 0 0.1 0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

(b) Testing the sensor tower feedback.

Figure 9.13

9.5. TESTING THE EXPLORATIONON THE PHYSICAL ROBOT SYSTEM103

Figure 9.14: Test course

−1 −0.5 0 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

← 1

1→

Result

Figure 9.15: The resulting map and the robot paths in it. The IR-
robot followed the green path, and contributed with the red wall seg-
ments. The number '1' marks the starting position of the robots.

104 CHAPTER 9. TESTING

−0.5 0 0.5
−1

−0.5

0

Figure 9.16: Sensor data from the IR-robot and the positions it visited.

the scanning is accurate. This is a problem since each iteration the

positioning error will grow, which results in that the sensor data slowly

rotates, and is therefore slightly displaced compared to the previous

scan, even of the same area.

Further, the map data from the robots has not been matched,

which can be seen from the result in �gure 9.15 where it seems like

the NXT-robot starts within a wall the IR-robot has mapped. The

two separate SLAM-maps is shown in �gure 9.17. From these �g-

ures, it is possible to see that the corners have glitches which the

linkWallSegments-procedure has �xed.

Maybe the most visible issue is that the IR-robot has mapped

9.5. TESTING THE EXPLORATIONON THE PHYSICAL ROBOT SYSTEM105

signi�cantly more than the NXT-robot. This is because the IR-robot

performs the fullscan-procedure much faster than the NXT-robot.

For this reason, the IR-robot has been chosen as the leader of the

two, the SERVER, and calculates the target positions for both robots.

Hence, the IR-robot does not have to wait for the slower NXT-robot

to complete the fullscan before it calculates the new position.

Another reason for the uneven division of the workspace is that the

NXT-robot is assigned more infeasible target points. This is caused by

creating incomplete wall segments, and producing many beacons. For

this reason, the NXT-robot would remain at the same position until

it �nds a feasible target point. It will identify the infeasible target

points, but by the time the NXT-robot has done that, the IR-robot

has almost completed mapping the entire area.

This test has showed that the system is able to complete a mapping

task by collaboration, and hence the system is more e�ective than the

single robot system.

106 CHAPTER 9. TESTING

−0.5 0 0.5 1

−1

−0.5

0

0.5

(a) IR-robot SLAM map

−0.6 −0.4 −0.2 0 0.2
−0.4

−0.2

0

0.2

(b) NXT-robot SLAM map

Figure 9.17: The two separate SLAM-maps of the robots.

Chapter 10

Discussion

This chapter will discuss the results of this thesis, and consider how

each topic presented in the problem description was solved. This chap-

ter will then form the basis for the conclusion of the thesis.

The tests performed in chapter 9 were discussed as the tests were

presented, but in this chapter the discussion will have a more general

view point and look at the entire system.

10.1 The Simulator

The simulator was the most important tool for developing the algo-

rithms, which were designed in this thesis. Therefore, it was important

that the simulator worked properly, and that it could be used for sim-

ulating multiple robots as if they were the physical robots.

What the simulator needed was to communicate with the other

107

108 CHAPTER 10. DISCUSSION

simulator, and to set some variables in RobotHandler which was

achieved by letting the simulator access RobotHandler. Hence, the

integration of the simulator was achieved, and the simulator performed

well throughout the entire thesis.

It was discovered that some of the maps had some �aws, which

allowed the robot to drive through the wall without colliding.

Further, there is no knowledge of how the maps looks like prior

to running the simulator. However, they are displayed in Tusviks [16]

report, but there would still be a problem to set the initial position

of the robot. The problem is easily solved by trial and error, but it

would be convenient to know where the robots were placed, and how

the map looked like.

10.2 The Communication protocol

The communication between the robots were the most important mod-

ule, and the key to allowing the robots to collaborate. The previous

version from the project of [19] were incomplete, and could therefore

not guarantee reliable communication.

This problem was solved for this thesis, which were able to send and

receive packages by the new protocol of the system, and in addition

without being concerned about when a package was sent.

However, the write functions of MATLAB had their limitation

when it came to size of the packages. If the for instance the SLAM-

map was too big, an error occurred which complained that the package

10.3. THE MAP MERGING 109

size was too large for sending.

The same problem applied to the read function too, but this was

the main problem for this thesis and solved by temporarily storing

incomplete packages. This assured that packages was not lost due to

protocol errors, i.e. because a package could not be recognized on the

correct format, which would happen if the package were incomplete.

Still, this protocol has its limitations since the read-function has

to be called in order to check if a package has arrived in the input

bu�er. A better solution would be if the robot was noti�ed when a

package arrived such that the communication was event based. This

way, data packages could be read and stored right away, such that

there would be no delay in the communication. This will in turn

allow a more autonomous and dynamical system, since if the robots

continuously broadcasted their position and other information, it could

be considered that the robots travelled continuously and scanned while

driving.

10.3 The map merging

The two SLAM-generated maps were merged by removing the initial

distance between the robots. This is a simple approach, which will only

give reasonable results for small environments and few scans. These

conditions apply to this robot system, since the test bed is smaller

than 2x2m, and the robots uses less than 20 steps in order to map an

area in this environment.

110 CHAPTER 10. DISCUSSION

The map merging from the simulator is not show displacement

after the map merging. But, the test result from the physical robots

shows that there is a displacement between the merged maps, as can

be seen from �gure 9.15. This is due to the positioning errors, and

measurement errors.

A map matching approach should be implemented in order to

match the maps properly.

10.4 The Navigation algorithm

The approach of the navigation algorithm was to �nd the frontier

point, which minimized the cost function de�ned for the algorithm.

This approach has been working �ne, but there are of course improve-

ments which can be made. Anyway, the navigation algorithm has

produced reasonable target destinations, and is easily controlled by

adding or removing costs.

The tactical map

The purpose of the tactical map was to give an estimate of the util-

ity to a point, or the information gain. The estimate was calculated

based on how well a frontier was covered by the robots. This solu-

tion is the opposite of the ray-casting approach, which many of the

articles mentioned in the literature study used. The ray-casting ap-

proach investigated how much unexplored area surrounds a frontier,

which might give a better estimate, but depends on the size of the

10.4. THE NAVIGATION ALGORITHM 111

occupancy grid which is used. For this thesis, the occupancy grid

has been dynamical, such that there was no knowledge of the size of

the environment which were explored. Therefore, the ray-casting ap-

proach would maybe not give a better information gain estimate, since

it did not have information about how far it could send rays, except

from that the range will have to be minimized since the map would

be scaled to only include the discovered area.

Finding frontiers

This part was the most crucial part of the navigation algorithm, and

had to function properly. The process of �nding the frontiers began

with �nding the border of the discovered area. This was solved by

looking at what was visible from each robot position, and considering

points behind wall segments to be unreachable.

This method seemed to work �ne for the simulator, since all wall

segments which divided the environment were su�ciently far away

from each other. As mentioned, it was a problem of deciding what was

reachable or not, illustrated by the considering a corner as in �gure 5.5.

A more di�cult consideration would be if one wall segment acted as

a partition wall. If a single wall segment is considered from each side,

this method will fail to provide a reasonable result. Therefore, this

method of �nding frontiers would only work if the wall were su�ciently

thick.

Still, the method has proved to function properly, together with the

identi�cation- and merging process of border segments, which follows

112 CHAPTER 10. DISCUSSION

the procedure of �nding the border of the discovered area.

The Cost function

The costs de�ned for the cost function decides where the next target

destination of the robot is. Five costs has been used, which are travel

distance, information gain, nearness to walls, beacons and the other

robots target position. In spite of the number of costs, the algorithm

has calculated reasonable target positions for the robots. However, too

many costs may cause confusion, and it is not advised to add more

costs to this cost function.

The costs has been carefully weighted relative to each other such

that all costs can be 'heard', and it seems like this has been done

reasonably. It can be seen from the tests that the e�ect of each costs

has had an e�ect on the decision made. The robots prefer targets close

by, in open areas as far away from the other robot as possible.

The cost estimates could be improved, as for instance the travel

cost. For this thesis, the path along the straight line has been used,

but the real travel cost would be the path the robot has to follow in

order to reach the target. But, planning a path for each frontier has

been considered to be too time consuming and therefore not used.

10.5 The Path planner

The path planner for this thesis has been found to work properly,

but this is a part which can be improved. The greatest limitation

10.5. THE PATH PLANNER 113

is caused by the driving nature of the robot, which is composed by

sequential turning and driving. A more smooth driving style would

bene�t the e�ciency of the driving, such as being able to turn while

driving forward.

The goal was to plan a path such that the number of turns could

be minimized. This has not been accomplished in an optimal manner.

As can be seen from the tests of the path planner, the path will make

a 'v'-shape if it travels in open areas of the graph. This phenomenon

can be seen from the �gure 6.4. It approaches the goal head on when

possible, but if the robot has to go back around an object it turns

back up and the 'v'-shape were made.

This is caused by the way the path is generated when the goal

node is found. Then the BFS-algorithm adds the parent-nodes to the

path, but for each node there are more than one potential parent. By

adding weights to the nodes in certain directions, this problem can be

solved.

In summary, the algorithm will minimize the distance in terms of

number of nodes, but not in terms of meters.

114 CHAPTER 10. DISCUSSION

10.6 Comparing the Exploration algorithm

with the Left-wall-follower to backtrack-

ing algorithm.

The Left-wall-follower to backtracking (LWFB) algorithm and the new

exploration is quite di�erent, and will be compared to see if it bene�ted

the system to write a new navigation algorithm.

The most signi�cant di�erence is the searching strategy of LWFB,

which is to follow the left wall until a familiar area is found, then

backtrack until a new unexplored area is found near the backtracking

path. The optimization approach will choose points at random, and

always try to maximize the expansion of the discovered area.

Another signi�cant di�erence between the two algorithms is that

the step length of the new navigation algorithm can be adjusted, while

the LWFB has a �xed step length. By increasing the step length, the

robot can explore more at each scan with the exploration algorithm,

and would therefore be faster. The step length would often be limited

by the range of sensors, but would allow the robot to travel across the

workspace, through known areas, in order to �nd a frontier.

The step length of LWFB is very limited in order to avoid path

planning, which means that the robot spends more time in the dis-

covered area. Since the robot performs signi�cantly more scans with

this algorithm, the time e�ciency would be poorer due to the time it

takes to complete a full scan.

The dynamic step length is one of the reasons why the new explo-

10.7. OVERALL PERFORMANCEOF THEMULTI-ROBOT SYSTEM115

ration algorithm is signi�cantly more e�cient in the tests performed

in chapter 9.1.

Further, the approach of LWFB is much more suited for a single

robot maze solving system, since the algorithm is based on a maze-

solving algorithm.

The new exploration algorithm is also more scalable, and can more

easily include more robots, since the optimization approach would only

�nd new target points as long as there were frontier points to visit.

In conclusion, the new exploration algorithm performs better than

the LWFB-algorithm, and was necessary in order to make the robots

able to collaborate.

10.7 Overall performance of the multi-robot

system

As can be seen from the testing in chapter 9, the algorithm is able

to complete the mapping task for both robots, which means that the

algorithm is working properly. There are however a few issues to look

closer at.

During the early stage of the exploration, the robots can navi-

gate without being concerned with the other robot. For this phase,

the decisions made are usually good. The robots travels in di�erent

directions as can be seen from test results in �gure 9.7 and �gure 9.10.

The real issue appears towards the end of the navigation when

there are few and small frontier regions left. This is when the coor-

116 CHAPTER 10. DISCUSSION

dination is crucial, and target positions have to be chosen carefully.

The outcome of the algorithm is that these coordination problems

are solved, but maybe not in an optimal manner. This caused by the

SERVER/CLIENT-structure, where the SERVER-robot is too 'bossy'.

As the main rule, the SERVER-robot will choose target destination

�rst, and then choose the target which is optimal for itself and not

for both. This leads to that the SERVER might take over a target

destination from the CLIENT, which the CLIENT may be on its way

to. Then the CLIENT is assigned another target position, which can

have the e�ect that the CLIENT drives back and forth when its target

position is changed before it reaches a target.

This problem has been addressed in the literature [14],[20], where

the solution has been that the robots bids on target positions such that

the optimal solution for both robots can be made. The implementation

can lead to a more autonomous system, since both robots can pick

target positions and o�er its bids to the other robot. Then after a

bidding round it is decided which target the robots go to.

In order to even out the power di�erence between the robots some,

for this thesis, it is considered who gets the last frontier. If the

SERVER-robot sees that the CLIENT-robot is closer, the CLIENT-

robot get it. This last coordination case has often been the one which

is least optimal, since the SERVER-robot has taken it regardless of

where the CLIENT-robot has been. However, since this case involves

only one frontier, it has been easy to correct it by checking which one

who is closest.

10.8. IMPROVEMENTS OF THE NXT-ROBOT 117

10.7.1 The performance of the physical robot sys-

tem

The physical robot system were able to complete the mapping task

with the use of two robots. However, the distribution of the workload

was quite uneven. As mentioned in the test chapter, the IR-robot

is faster than the NXT-robot and will therefore be able to perform

several scan for each NXT-scan.

In addition to this, the NXT-sensors does not produce as good

results as the IR-sensors, which leads to the creation of more beacons

and more incomplete walls. Therefore, the NXT-robot will be assigned

more infeasible target destinations which the robot is unable to travel

to. Thus, the NXT-robot remains at the same position for longer

before it �nds a feasible target point.

10.8 Improvements of the NXT-robot

The improvements done on the NXT-robot was to implement posi-

tioning based on odometry, and feedback on the sensor tower heading.

These improvements were crucial in order for the NXT-robot to deliver

reasonable sensor data, and for the robot to be of use in the mapping

task.

The positioning were implemented, and the NXT-robot were able

to send the position estimate back to MATLAB with the protocol

described in chapter 3. This position error were now signi�cantly

improved compared to the previous approach. However, the NXT-

118 CHAPTER 10. DISCUSSION

robot still has a positioning error due to the dead reckoning approach,

which accumulates an error over time. Nevertheless, it was considered

to be as good as for the IR-robot, which was the goal.

In order to correct this position error the robot should have a

reference point where it knows the environment, such that a scan at

this point can show the positioning error and then correct it. It has

been tried to implement a 'Go home'-function in an earlier project,

but this functionality has not been tested or investigated more closely

in this project.

The sensor tower also performed signi�cantly better than the pre-

vious approach, but it still gets an o�set, which grows for each scan.

However, this o�set is much smaller than for the previous approach.

This can be seen from the global sensor data, since the data is dras-

tically more coincident. For the previous sensor tower approach the

sensor data was almost unusable after a few scans, due to the great

o�set which was accumulated.

The surface may in�uence the positioning if it is uneven or has high

friction, such that the robot wheels spins. This may prevent the robot

from turning and driving the desired distances, and lead to positioning

errors.

10.9. CONCLUSION IS STATED AT THE BEGINNINGOF THE THESIS119

10.9 Conclusion is stated at the beginning

of the thesis

The summary and conclusion is stated at the beginning of the thesis

at page ix.

120 CHAPTER 10. DISCUSSION

Chapter 11

Further work

11.1 SLAM

A new SLAM-algorithm could be implemented in order to improve the

system and exploit the use of multiple robots.

SLAM for multiple robots The SLAM algorithm uses landmarks

for estimating the position, and averaging out the accumulated error

from the positioning from the robot. It is therefore desirable to observe

the same landmark from several positions in order to improve the

estimate. Since the SLAM-framework provided by Kai Arras [1] is

designed for one robot, the robots cannot use each other's observations

for localization and correction of the map. This is a weakness of the

system since valuable information is not exploited.

However, due to the primitive infrared-sensors, the robots are un-

121

122 CHAPTER 11. FURTHER WORK

able to recognize each other. Nevertheless, their positions could be

used for estimation of walls and their own position.

SLAM for arbitrary environments The current SLAM-algorithm

uses lines and beacons for map building, which means that it is only

capable to recognize straight walls correctly. If the robots see a curved

wall, it will try to �t lines to the sensor data. In order to render curved

objects, another SLAM approach has to be implemented.

11.2 Map merging

The two maps produces by the robots should be matched properly

such that overlapping segments are recognized and merged together.

Further, with positioning and measurement errors, map matching is

needed in order to avoid the two maps to be crooked and displaced

relative to each other.

11.3 Communication

The communication module can be made event-based, such that the

robots are noti�ed when a message arrives. This method would be

more reliable and more accurate, since the new information can be

known immediately. Further, if the robots could broadcast their po-

sition continuously, then a more �exible and autonomous navigation

algorithm could be implemented.

11.4. SIMULATOR 123

11.4 Simulator

Currently, when two robots are simulated they explore in two copies of

the same map. This means that they cannot see each other or collide.

The second robot can be included in the simulator-code such that it

is detected during the full scan procedure of the simulator.

11.5 The Robots

� Extra functionality can be implemented, such as manual driving

for the NXT-robot.

� The dead reckoning approach of the position estimation accu-

mulates error over time. It has been attempted to have a known

reference position the robot can go back to in order to check its

position, and correct it.

11.5.1 NXT-robot

Collision detection

The NXT-robot does not have collision detection implemented. This

is a basic functionality that should be implemented on the NXT 2.0

brick. During the driving stage, the sensors should take measurements,

and stop the robot if a wall is detected within some range.

124 CHAPTER 11. FURTHER WORK

Set sensor tower to 0°

The robot is now able to scan approximately from 0°to 180°, but the

tower has to be set to approximately 0° by hand before the program

starts. Knowing where absolute 0° on the motor would not be enough

since there are two cogwheels between the motor and the sensors.

A possible way might be to �nd 0° on the motor, then try to adjust

the sensors to point in 0° direction. However, it may be di�cult to do

this precisely.

Remove sensor-tower angle o�set

The sensor-tower angle o�set is still a problem, which has to be re-

moved in order to have the robot produce good sensor data.

11.5.2 IR-robot

Noisy measurements

The sensor data from the IR-robot often contains data which is clearly

wrong. It has been attempted to �lter this data out, but some erro-

neous points remain. Other approaches can also be tried, since it is

not know exactly what is the origin of this error.

11.6. PATH PLANNER 125

11.6 Path planner

A new path planning algorithm can be implemented instead of the

BFS-algorithm. For instance the A* algorithm, or a modify version

could be more e�ective.

11.7 Navigation algorithm

The robots can be more autonomous by decentralizing the system,

such that each robot makes its own decision for the target point. The

robots should agree on positions, such that the optimal target points

for both robots can be found. The exploration algorithm should make

out a good foundation for this work, with the frontier-based approach.

126 CHAPTER 11. FURTHER WORK

Bibliography

[1] Kai O. Arras. CAS Robot Navigation Toolbox Version 1.0. 2004.

http://www.cas.kth.se/toolbox/.

[2] Mikael Berg. Master thesis: Navigation with Simultaneous Local-

ization and Mapping, For Indoor Mobile Robot. NTNU, 2013.

[3] Adrian Boeing, Thomas Braunl, Robert Reid, Aidan Morgan, and

Kevin Vinsen. Cooperative multi-robot navigation and mapping

of unknown terrain. In Robotics, Automation and Mechatronics

(RAM), 2011 IEEE Conference on, pages 234�238. IEEE, 2011.

[4] Adrian Boeing, Sushil Pangeni, Thomas Braunl, and Chang Su

Lee. Real-time tactical motion planning and obstacle avoidance

for multi-robot cooperative reconnaissance. In Systems, Man,

and Cybernetics (SMC), 2012 IEEE International Conference on,

pages 3117�3122. IEEE, 2012.

[5] Wolfram Burgard, Mark Moors, Dieter Fox, Reid Simmons, and

Sebastian Thrun. Collaborative multi-robot exploration. In

127

128 BIBLIOGRAPHY

Robotics and Automation, 2000. Proceedings. ICRA'00. IEEE In-

ternational Conference on, volume 1, pages 476�481. IEEE, 2000.

[6] Wolfram Burgard, Mark Moors, Cyrill Stachniss, and Frank E

Schneider. Coordinated multi-robot exploration. Robotics, IEEE

Transactions on, 21(3):376�386, 2005.

[7] Trond Kåre Homestad. Master thesis: Fjernstyring av

legoroboter. NTNU, 2013.

[8] Samuel Lopes, Brian Frisch, Adrian Boeing, Kevin Vinsen, and

Thomas Braunl. Autonomous exploration of unknown terrain for

groups of mobile robots. In Intelligent Vehicles Symposium (IV),

2011 IEEE, pages 157�162. IEEE, 2011.

[9] José Alberto Méndez-Polanco and Angélica Munoz-Meléndez.

Collaborative robots for indoor environment exploration. In Con-

trol, Automation, Robotics and Vision, 2008. ICARCV 2008. 10th

International Conference on, pages 359�364. IEEE, 2008.

[10] Edwin Olson, Johannes Strom, Ryan Morton, Andrew Richard-

son, Pradeep Ranganathan, Robert Goeddel, Mihai Bulic, Jacob

Crossman, and Bob Marinier. Progress toward multi-robot re-

connaissance and the magic 2010 competition. Journal of Field

Robotics, 29(5):762�792, 2012.

[11] Domènec Puig, Miguel Angel García, and L Wu. A new global op-

timization strategy for coordinated multi-robot exploration: De-

BIBLIOGRAPHY 129

velopment and comparative evaluation. Robotics and Autonomous

Systems, 59(9):635�653, 2011.

[12] Michael Melholt Quottrup, Thomas Bak, and RI Zamanabadi.

Multi-robot planning: A timed automata approach. In Robotics

and Automation, 2004. Proceedings. ICRA'04. 2004 IEEE Inter-

national Conference on, volume 5, pages 4417�4422. IEEE, 2004.

[13] Pradeep Ranganathan, Ryan Morton, Andrew Richardson, Jo-

hannes Strom, Robert Goeddel, Mihai Bulic, and Edwin Olson.

Coordinating a team of robots for urban reconnaisance. In Pro-

ceedings of the Land Warfare Conference (LWC), 2010.

[14] Reid Simmons, David Apfelbaum, Wolfram Burgard, Dieter Fox,

Mark Moors, Sebastian Thrun, and Håkan Younes. Coordination

for multi-robot exploration and mapping. In AAAI/IAAI, pages

852�858, 2000.

[15] Håkon Skjelten. Project work: Fjernnavigasjon av LEGO-robot.

NTNU, 2004.

[16] Jannice Selnes Tusvik. Project work: Fjernstyring av legorobot.

NTNU, 2009.

[17] RWTH Aachen University. RWTH-Mindstorms NXT Toolbox for

MATLAB. http://www.mindstorms.rwth-aachen.de/.

[18] Brian Yamauchi. Frontier-based exploration using multiple

robots. In Proceedings of the Second International Conference

130 BIBLIOGRAPHY

on Autonomous Agents, AGENTS '98, pages 47�53, New York,

NY, USA, 1998. ACM.

[19] Øyvind Ulvin Halvorsen. Project work: Collaborating robots.

NTNU, 2013.

[20] Robert Zlot, Anthony Stentz, M Bernardine Dias, and Scott

Thayer. Multi-robot exploration controlled by a market economy.

2002.

Appendix A

Tables

131

132 APPENDIX A. TABLES

Functionality Description
case {'simulatorset'} Allows the sim-

ulator to set the
position variable
currentPos.

case {'removepointsnearcoopbot'} Remove measure-
ment points near
the other robot. For
future use.

case {'simulatorinit'} Sets which robot is
simulated.

case {'setinitoffset'} Sets the initial dis-
tance between the
robots. This is used
when the two maps
are merged.

case {'exchangedata'} Handles the commu-
nication between the
robots. Sends and
receives data, and
stores the received
data in the data
structure navData.

Table A.1: Functions added to RobotHandler.

133

Function Description
mergeMaps Removes the initial o�set between

the individual robot maps.
buildTacticalMap Builds a 3D probabilistic map

based on the robot paths
computeBoundary Calculates the discovered area, and

its border
optimizeExploration Removes infeasible border points,

and post processes the border.
Then calculates a position which
minimizes the cost function.

findBorderSegments Identi�es border segment after bor-
der points near walls are removed.
Sorts the border points in chrono-
logical order.

mergeBorderSegments Merges border segments found in
findBorderSegments, by check-
ing if border segments are su�-
ciently close to each other.

planPath Calculates the free con�guration
space, �nds the shortest path
from start to goal using a BFS-
algorithm, and �nally reduces
number of way-points by only in-
cluding the points where the robot
has to turn.

getDistBetween2segments Calculates the shortest distance
between two line segments. Used in
planPath when checking for colli-
sions.

Table A.2: Functions implemented for the Collaboration module.

134 APPENDIX A. TABLES

Action Command
MOVE 0
Drive robot forward 00
Turn robot 01
MEASURE 1
Full scan 10
Single measurement sensor 1 11
Single measurement sensor 2 12
COM 2
DEBUG 3
PING 4
ACCESS 5
Reset: pose, tower angle, all 500,501,502
Get: pose, tower angle 510,511
Set: pose, tower angle 520,521

Table A.3: NXT state machine and sending protocol. Only the most
common sub-actions are mentioned here. See NXTSLAM.nxc for the
complete list. For curtain commands, additional data is sent together
with the command. For instance the MOVE command also needs
distance and power commands.

Appendix B

Equipment and set up

Computer: Dell Optiplex 9010

OS: Windows 7 Enterprise 64-bit

MATLAB version: 8.1.0.604 (R2013a) 64-bit

RWTH-Mindstorms NXT Toolbox version: 4.07�8. Februar, 2012

Bricx Command Center: Version 3.3

Firmware version: 1.31

Mindstorms drivers: Fantom version 1.1.3

USB-driver(NXT): libusb-win32

Bluetooth dongle: Targus micro USB BLUETOOTH 4.0 adapter

Bluetooth device for IR: Free2move and con�guration software

135

136 APPENDIX B. EQUIPMENT AND SET UP

USB cable: From LEGO Mindstorms

RS-232: serial connection for the IR-robot

NXT

The NXT-robot consisted of the following components.

� NXT 2.0 chip from LEGO Mindstorms

� Two EOPD1-sensors, NEO1048, from HiTechnic, range 20 cm.

� Three electrical motors from LEGO Mindstorms

� Construction kit from LEGO Mindstorms

The NXT-brick is programmed in NXC, and the IDE used for this

brick is BricxCC.

In order to program the NXT-brick, open one of the �les in NXT

SLAM -directory, or a new �le. Then the program can be compiled

and downloaded to the brick. Only the main loop NXTSLAM needs

to be compiled, the other �les are included here.

The NXT-brick should have no problem connecting to BricxCC by

USB, but if it has try updating the drivers (libusb-win32).

1Electro-Optical Proximity Detector

137

IR

The IR-robot consisted of the following components.

� Four GP2D12-sensors from Sharp

� One servomotor, HS-5925MG, from Hitec

� Two electrical motors, 71427, from LEGO

� Two OPIC photointerrupter, GP1A53HR, from Sharp

� Main board with ATMEGA 32 microprocessor from Atmel

� Motor control board

� Battery

� Free2move Bluetooth device

� Common LEGO parts

Bluetooth

The Bluetooth should be easily set up if the Bluetooth dongle is com-

patible with the system. Let windows install the drives automatically,

and then the NXT-brick and the 'Free2move'-device (for the IR-robot)

can be added to Hardware and Devices in Windows. The 'Free2move'-

device will require con�guration software in order to run, which can

be found on http://web.free2move.se/.

138 APPENDIX B. EQUIPMENT AND SET UP

If the IR-robot performs several full scans in a row, this is caused

by a weak Bluetooth connection, and not a software error. This is

because the IR-robot has to be told to stop the procedure.

Running the program

In order to run the system, start LegoGUI_IR orLegoGUI_NXT. If

both GUIs are started, it must be done from separate MATLAB in-

stances.

In the GUI, choose 'Simulator' or 'RobotHandler' under the con-

nection options and press 'Connect', or 'Start' if the the main loop

shall be started right away.

The map will then appear in the main plotting window, and more

plots can be found under 'Plotting Iterations'.

The simulator should run without no further set up. The only issue

is to �nd a valid starting point for the robot.

Appendix C

CD

Attached to this thesis is a CD with the following contents.

� MATLAB code

� NXC code for the NXT-brick

� This report on pdf-format

� A demonstration video of running the robots

� Previous works

139

