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Abstract—In this paper, the buffer-constrained throughput per-
formance of a multi-user wireless-powered communication system
is investigated with a practical non-linear energy harvesting
model. The investigation focuses on the backlog performance
of sending data in the downlink (DL) from the access point
(AP) node to each user equipment (UE) node and that in the
uplink (UL) from the UE node to the AP node, based on
which, the throughput performance on both directions when
buffer constraints are enforced is also studied. To this aim, the
buffer overflow probability is derived for each communication
node with given data buffer capacity. Based on the buffer
constraint, the buffer-constrained throughput is then ascertained.
In addition, to ensure the buffer and throughput performance,
the DL transmission power allocation policy and the required
energy storage capacity are investigated. Moreover, a non-convex
max-min problem is formulated to maximize the minimum buffer-
constrained throughput guaranteed by each UE simultaneously.
A dichotomy-based time allocation algorithm combined with
one-dimensional search is proposed to solve this problem. The
obtained results explicitly reveal the maximum traffic throughput
sustained by each node is dominated by energy harvesting model,
buffer constraint, channel path loss, time allocation scheme and
the number of UEs. The analysis and results shed new light on
the performance of wireless-powered communication systems.

Keywords—Wireless-powered communication system, buffer per-
formance, buffer-constrained throughput, resource allocation.

I. INTRODUCTION

With the advance of wireless charging technology [1, 2],
wireless powered communication (WPC) has recently attract-
ed a significant amount of attentions in both academia and
industry [3–6]. In a WPC system, a number of nodes, e.g. user
equipments (UEs), harvest energy and may simultaneously also
receive data from the ambient radio frequency (RF) signals that
may be purposely radiated by another node, e.g. an access
point (AP), in its downlink (DL) to the UE nodes, and then
the UE nodes may use the harvested energy to transmit data
in the uplink (UL) to the AP node, as shown in Fig. 1.
Compared to the natural renewable energy sources such as
solar and wind, RF signal is more controllable and relatively
stable [7]. Additionally, due to long lifetime, WPC devices
are more accessibility and deployability than the conventional
battery-powered devices in extreme environments, such as the
hazardous area and the human body, where replacing batteries
is difficult or even impossible [1]. As a result, WPC has
a great potential for use in a wide range of applications
particularly in wireless sensor networks (WSNs) and Internet
of Things/Everything (IoT/IoE) [3, 8].

Typically, a fundamental issue of the WPC system is to de-
cide how much time should be allocated to the AP for wireless
energy and information transfer and to each communication
node for data transmission [7–20]. To answer this question,
one has to investigate how much data needs to be sent by the
AP node in the DL and how much by the UE nodes in the UL,
or equivalently what data throughput or capacity the system is
intended to achieve for the AP and each UE respectively. In
addition to channel capacity, data buffer overflow control is
sometimes also required by some WPC devices. For instance,
buffer requirement is a crucial consideration for a large-scale
wireless sensor network where resource of a single node is
limited since the size and production cost of devices are usually
required as small as possible [21]. Moreover, due to hardware
limitation and imperfect energy transfer, the amount of harvest-
ed energy in a WPC system may be highly limited compared
with the conventional systems powered through circuit [2]. As
a consequence, if there is backlog requirement on the data,
e.g., the buffer overflow probability, the investigation of a
WPC system should also take the backlog into account. These
constitute the objective of this paper.

In this paper, we investigate the buffer-constrained through-
put performance of a multi-user WPC system with finite data
buffer capacity. Specifically, our focus is on the backlog per-
formance of each node including the AP and UEs, and on their
maximum throughput performance when buffer constraints
are enforced. In our investigation, practical non-linear energy
harvesting model, finite energy storage capacity, stochastic
traffic and stochastic fading channel are taken into account.
To this aim, the buffer overflow probability for stochastic
traffic arrivals are derived for each node based on which the
buffer-constrained throughput of each node is further derived.
Moreover, the system resource allocation policies are studied to
guarantee the buffer overflow probability and traffic throughput
performance. More specifically, we first derive a DL power
allocation policy to satisfy the performance requirements of all
the nodes in both DL and UL. The minimum battery capacity is
then obtained after ensuring the harvested energy is sufficient.
Finally, to deal with the doubly near-far problem in a WPC sys-
tem [9], an optimal time allocation algorithm was proposed to
maximize the minimum buffer-constrained throughput which
can be guaranteed by each UE simultaneously.

The contributions of this paper is summarized as follows:

• This paper develops a tractable framework to study
the backlog and throughput performance together for
both DL and UL data transmissions in a multi-user
WPC system with finite buffer capacity. The proposed
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framework is universal since the analysis takes practical
energy harvesting model, finite energy storage capacity,
stochastic traffic and stochastic fading channel into ac-
count. Particularly, buffer overflow probability is derived
in close-form. The buffer-constrained throughput is not
only able to inform each node how much data can
be accessed under a given buffer constraint, but also
converges to the results in [7] when buffer constraint is
loosen infinitely.

• The DL power allocation policy and energy storage ca-
pacity configuration are designed to guarantee the buffer-
constrained throughput performance from probabilistic
point of view while comparing to our early work [20]
where the resource allocation policies are only designed
to guarantee performance in averages.

• This paper proposes a dichotomy-based time alloca-
tion algorithm to deal with the doubly near-far prob-
lem where the minimum buffer-constrained throughput
guaranteed by each UE simultaneously is maximized.
Specifically, we first fix the energy transfer time of each
TB and use dichotomy approach to find out the time
allocation solution which ensures each UEs experiences
identical buffer-constrained throughput. The the optimal
time allocation is then ascertained by one-dimensional
search.

• The analysis results explicitly reveal the impacts of
energy harvesting model and time allocation policy
on throughput performance when buffer constraints are
enforced. They shed new light on the performance of
WPC systems.

A. Related Work
In the literature, a number of studies on the throughput

performance of WPC systems can be found. Usually, these
studies only focus on either UL or DL transmission. On UL
transmission, work [9] was the first time to propose time
allocation schemes to maximize throughput in a multi-user
WPC system. Based on the proposed harvest-then-transmit
protocol, the maximum system throughput and the maximum
common throughput which can be guaranteed by all the UEs at
the same time were obtained by solving optimization problems.
In [10], the focus was on spatial UL throughput maximization
of a large-scale WPC network. The optimal tradeoff between
the energy transfer and information transfer was found out
by using stochastic geometry theory. In [11], an optimiza-
tion algorithm was proposed to maximize the system UL
throughput in a multiuser multi-input-multi-output (MIMO)
system through jointly optimizing the energy beamforming,
receive beamforming and time slot allocation. In [12], the
optimal time allocation scheme was studied to maximize the
average throughput in both delay-limited mode and delay-
tolerant mode which are differentiated through whether the
code length is finite or not. Different from works [9–12] where
the energy harvesting efficiency at the UE circuit was assumed
to be constant, in [7, 13], the authors employed a practical
non-linear energy harvesting model to study throughput per-
formance and revealed the inaccuracy of throughput results

while using the conventional linear model. In [8], the impact of
DL wireless power transfer on the UL transmission throughput
was investigated. A unified framework was then presented
to optimize the system throughput under both time split and
power split schemes. On DL transmission, the studies usually
address in the rate-energy (R-E) tradeoff of the simultaneous
wireless information and power transfer (SWIPT) technology.
In [14], the R-E tradeoffs were studied for single-antenna
terminals under four typical SWIPT schemes. In [15] and
[16], the R-E tradeoffs were studied for MIMO broadcasting
channels under linear and non-linear RF energy harvesting
models respectively. In [17], the R-E tradeoff was analyzed in
the regime of finite code length with consideration of decoding
error probability.

In summary, the throughput performance studied in the
existing works [7–17] is equivalent to the channel capacity
due to the concealing assumption of saturate traffic. To the best
of our knowledge, the state-of-the-art study of WPC systems
rarely focus on buffer overflow probability. Only a few works
try to investigate the WPC systems from the viewpoint of
delay. In [18], a method to control the power-delay tradeoff on
demand in a WPC system was proposed to minimize the time-
averaged power consumption. In addition, work [19] proposed
an adaptive harvest-then-cooperate protocol to minimize the
average delay of UE by simulation method. However, the
aims of [18, 19] are both with little touch on maximizing the
throughput or capacity performance as in [7–17]. In our early
work [20], we focused on a point to point WPC scenario.
The delay and delay-constrained throughput performance was
analyzed for both DL and UL transmission. However, as shown
in [20], the delay of most packets are usually smaller than
one charging cycle in the WPC systems. Therefore, if the
charging cycle is small enough, the delay is no longer the
major constraint in a WPC system. At this time, the backlog
performance is more worth studying since the buffer overflow
phenomenon may be more prominent for a device with small
buffer capacity.

The remainder is organized as follows. In Section II, the
system model is presented. In Section III, general analysis of
the WPC system is conducted. In Section IV, the resource
allocation policies are studied. In Section V, analytical results
are presented, compared and discussed. Finally, we conclude
the paper in Section VI.

II. SYSTEM MODEL

A. Notation
Throughout this paper, the following notations are adopted.

A variable with subscript k means it is used for the AP (k = 0)
or the kth UE (k ≥ 1) which is denoted by Uk. Variables s
and t are always used to identify the transmission blocks. The
cumulative amount of stochastic processes during time [s, t)
are expressed in the bivariate form as Y (s, t).

B. System Model
As shown in Fig. 1, we consider a multi-user wireless-

powered communication system including one AP and K UEs
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Fig. 1. System model with wireless energy transfer in the downlink and
wireless information transmissions in both uplink and downlink

denoted by {Uk, 1 ≤ k ≤ K} whose locations are fixed. The
AP is equipped with M independent antennas and transmits
RF signal to the UEs in the DL. The UEs, which are all
single-antenna devices, split the energy from the received DL
signal into two parts, where one part is used to recover the
information and the other part is stored into a battery. In the
UL, the stored energy is used to send data from each UE to the
AP. Moreover, the system is assumed to work in half-duplex
mode.

The time model consists of multiple consecutive time blocks
(TBs) which are numbered by t = 1, 2, · · · . Each TB consists
of a DL phase and a UL phase. For convenience, the dura-
tion of each TB is normalized as 1. The system adopts the
harvest-then-transmit protocol [9], as depicted in Fig. 2. The
transmission time allocated to the DL and UL during a TB
is determined by parameters τ = {τk : 0 ≤ k ≤ K}, where∑K
k=0 τk ≤ 1. In each TB, during the first τ0 amount of time,

AP transfers wireless energy and possibly also data to each
UE in the DL. A fixed amount of the harvested energy is used
by each UE to recover the information while the remaining
energy is stored into the battery to support data transmission
in the UL. Thereafter, Uk (1 ≤ k ≤ K) is assigned with τk
amount of time to conduct UL transmission.

As assumed in the literature, the channel reciprocity holds
for the DL and UL which share the same spectrum resource.
The channel is quasi-static flat block fading. Specifically,
we use h̃k(t) to denote the small scale channel fading gain
between the AP and Uk in the tth TB. And h̃k(t) is assumed
to remain constant during each TB but to be independent
and identically distributed (i.i.d) over different TBs. Note
that h̃k(t) is a M -dimension vector. With the knowledge of
channel state information, the system is assumed to adopt
maximum ratio transmission (MRT) policy to perform the DL
energy and information transfer and maximum ratio combining
(MRC) policy to deal with the UL information [12, 13, 22].
Consequently, the total channel power gain holds as hk(t) =
||h̃k(t)||2 for the link between the AP and Uk [12, 13]. We
highlight that the small scale fading feature used in this paper
is general, which can be Rayleigh fading, Nakagami-m fading,
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Ricean fading and etc. The analysis is always tractable as long
as the statistical information of hk is available.

C. Energy Harvesting and Data Transmission Rate
The transmission power of each antenna of the AP, denoted

by p0, is assumed to be constant. In the tth TB, the RF energy
harvesting rate of Uk (1 ≤ k ≤ K) is given by

pRFk(t) = p0hk(t)lk +N0W, (1)

where N0 denotes the power spectral density of background
noise and W denotes the bandwidth. Besides, lk denotes the
deterministic power gain of path loss which only depends
on the distance between Uk and the AP. Typically, in order
to guarantee Uk to harvest enough energy to conduct data
transmission, the amount of energy harvested from the AP is
always much larger than that from the background noise, which
implies N0W in the righthand side of (1) can be neglected [9].
Therefore, we have

pRFk(t) ≈ p0hk(t)lk. (2)

In each TB, fixed level of power, denoted by pD, is used by
each UE to perform DL information recovery. Since the signal
noise ratio (SNR) of the mixed RF signal is invariant no matter
how much energy is used to recover the DL information, the
transmission rate from the AP to Uk (1 ≤ k ≤ K) holds as

RDk(t) =W log2(1 +
p0hk(t)lk
N0W

), (3)

Additionally, the remaining RF energy needs to be trans-
ferred into the direct-current (DC) energy before the UEs can
use it to send data. To characterize the behavior of RF energy
harvesting circuit, we adopt a practical non-linear energy
harvesting model proposed in [7, 13]. In this model, the energy
harvesting rate of Uk (1 ≤ k ≤ K) is given by [7, 13]

pDCk(t) = π
1− e−ν1pRk (t)

1 + e−ν1(pRk (t)−ν2)
, (4)

where pRk(t) = pRFk(t)−pD denotes the remaining RF power
input to the RF energy harvesting circuit after information
recovery. Parameters π, ν1 and ν2 in (4) capture the joint
effects of various non-linear phenomena caused by hardware



4

limitations. More specifically, π represents the maximum pow-
er that can be harvested by the RF energy harvesting circuit, ν1
and ν2 are related to different physical hardware phenomena,
such as the circuit sensitivity and current leakage.

We assume, at Uk, its harvested energy is mainly consumed
by its data transmission, ignoring the other part of its function-
alities. Each UE adopts a typical best-effort policy to allocate
transmission power for its data transmission. Specifically, the
transmission power at Uk in the tth TB is given by

pk(t) =
min{Ek(t) + pDCk(t)τ0, b}

τk
, (5)

where b denotes the energy storage capacity of the battery and
Ek(t) denotes the amount of remaining energy at the beginning
of the tth TB. The intuition behind the power allocation policy
is to maximize the transmission power through using up the
remaining energy and the harvested energy at the end of each
TB, such that the data transmission capacity of each UE is
maximized in each TB.

Hence, the transmission rate of Uk during the UL phase of
the tth TB holds as

Rk(t) =W log2(1 +
pk(t)hk(t)lk

N0W
). (6)

D. Performance Metrics of Interest
Throughout this paper, region [s, t) is used to represent the

time from the sth TB to the tth TB, where we always assume
0 ≤ s ≤ t. In order to reduce data backlog or energy storage
capacity for the communication nodes in a WPC system,
the duration of one TB should be set as short as possible.
Therefore, traffic can be assumed to only arrive at the AP or
each UE at the beginning of each TB. Besides, we assume
the traffic arrival process for each node is i.i.d over different
TBs. We use Ak(s, t) (0 ≤ k ≤ K) to denote the cumulative
amount of the traffic arrivals during [s, t). Here, k is used
to identify the communication nodes where k = 0 represents
the AP and k = 1, · · ·,K represents the kth UE, i.e., Uk.
The corresponding departure process of Ak(0, t) is denoted
by A∗

k(0, t). It is easily verified that, for a system with input
Ak(t) and output A∗

k(t), there holds [23]

A∗
k(0, t) = inf

0≤s≤t
{Ak(0, s) + Ck(s, t)}, (7)

where Ck(s, t) represents the cumulative transmission capacity
within time [s, t).

This paper focuses on the data transmission performance of
the AP in the DL and that of each UE in the UL. At each
communication node, the stochastic arrival traffic is stored in
the buffer and waits for being served based on first in first
out policy. Our focus is on the backlog performance at each
communication node. For a node with infinite buffer capacity,
its backlog holds as [23]

Qk(t) = Ak(0, t)−A∗
k(0, t)

= Ak(0, t)− inf
0≤s≤t

{Ak(0, s) + Ck(s, t)}

= sup
0≤s≤t

{Ak(s, t) + Ck(s, t)}
, (8)

where Qk(t) denotes the backlog for an infinite-capacity buffer
in the tth TB. In this paper, we take finite buffer capacity into
account. The backlog of Uk in the tth TB is denoted by Bk(t)
and Bk(t) ≡ 0 when t = 0. It is easily verified that Bk is
upper-bounded by Qk due to packet loss, there holds

Bk(t) ≤ sup
0≤s≤t

{Ak(s, t) + Ck(s, t)}. (9)

The buffer constraint is defined as

Pr{Bk(t) > xk} ≤ ϵk, (10)

where xk denotes the buffer capacity. The buffer constraint
means the buffer overflow probability should be control within
ϵk for a node with buffer capacity xk.

In this paper, we study the throughput performance based on
the buffer constraint, which is called as the buffer-constrained
throughput, representing the maximum traffic rate that the AP
or Uk can sustain to meet the buffer constraint:

rmax
k = sup{rk : Pr{Bk(t) > xk} ≤ ϵk}, (11)

where rk denotes the traffic arrival rate. Compared to the
conventional throughput characterized by the instantaneous
capacity or ergodic capacity, the buffer-constrained throughput
is not only associated with system service process, but also
depends on the traffic characteristics and buffer overflow
probability requirement.

III. PERFORMANCE ANALYSIS

A. System Service Characterization
According to definitions (9), the backlog performance are

both related to the cumulative transmission capacity Ck(s, t).
At time region (0, t), Ck is given by

Ck(0, t) =
t∑
i=1

Rk(i)τk, (12)

where Rk(i) denotes the transmission rate in the ith TB. When
1 ≤ k ≤ K, Ck(0, t) represents the service process of Uk.
In this case, Rk(i) is deterministic within a TB and can be
obtained from (6). When k = 0, C0(0, t) represents the service
process of the AP. As the AP may send data to different UEs at
different time during a TB, according to (3), the transmission
rate R0(i) varies with the selection of UE to communication
with. Thus, R0(i) is no longer deterministic during a TB but
a complex random variable which is always equal to one of
the elements from set {RDk(i) : 1 ≤ k ≤ K}, where RDk(i)
is obtained from (3).

B. Buffer Overflow Probability
The following lemmas provides general expression of buffer

overflow probability with respect to buffer capacity.

Lemma 1. Consider a stable WPC system as depicted in
Fig. 1, where the data transmission capacity and the traffic
arrival process of a node is characterized as Ck and Ak
respectively. If Ck and Ak are independent of each other and
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both i.i.d processes, then for a given buffer capacity xk, the
corresponding buffer overflow probability is bounded by

Pr{Bk(t) > xk} ≤ e−θkxk ,

for some θk > 0 which meets E[eθkAk(0,1)]E[e−θkCk(0,1)] ≤ 1.

Proof: Please see Appendix A.

In Lemma 1, the condition E[eθkAk(0,1)]E[e−θkCk(0,1)] ≤ 1
implies a sufficient stability condition for a system [23]

lnE[eθkAk(0,1)]
θk

≤ − lnE[e−θkCk(0,1)]
θk

⇕

lim
t→∞

lnE[eθkAk(0,t)]
θkt

≤ − lim
t→∞

lnE[e−θkCk(0,t)]
θkt

, (13)

where lnE[eθkAk(0,t)]
θk

and − lnE[e−θkCk(0,t)]
θk

represent the statis-
tical envelops of processes Ak and Ck respectively [23, 24].
And, αθk , lnE[eθkAk(0,1)]

θk
and βθk , − lnE[e−θkCk(0,1)]

θk
denote

the corresponding envelop rates respectively.
Note that a variety of traffic can be characterized by αθ,

including Poisson traffic, on-off traffic, self-similar traffic and
heavy-tail traffic [23]. Specially, a typical periodical Poisson
traffic can be described as follows [25]

αθ =
lnE[eθA(0,1)]

θ
=
λ

θ
(eθL − 1). (14)

Here, λ denotes the mean number of the arrival packets during
each TB, L denotes the constant packet size.

Additionally, Ck is i.i.d process if and only if Rk(t) is i.i.d
over time. On one hand, when k = 0, the instantaneous trans-
mission rate depends on the selection of UE to communication
with, which is reflected by the traffic characteristics. Besides,
the traffic arrival process of the AP and the channel power gain
for each UE are both i.i.d. Hence, Rk(t) satisfies i.i.d property
according to (3). On the other hand, when 1 ≤ k ≤ K,
Rk(t) not only depends on the channel power gain but also
the amount of energy storage Ek(t) at the beginning of the
tth TB according to (5) and (6). It is easily verified that Ek(t)
depends on both the energy harvesting and data transmission
before the tth TB. Therefore, Rk(t) dose not meet the i.i.d
property in this case. However, a lower bound of Rk(t), which
ignores the impact of Ek(t), is still i.i.d and able to guarantee
the lower bound of the performance of each UE. We remark
that this lower bound is accurate since Ek(t) ≈ 0 (t ≥ 0)
is reasonable in a WPC system from the economic point of
view. Specifically, the transmission power of the AP and the
energy storages capacity of each UE can be configured as small
as possible with appropriate time allocation and the statistical
information of traffic arrivals, which will be studied in the
subsequent section. Therefore, the stored energy is almost
used up by each UE at the end of each TB. In summary,
the cumulative transmission capacity Ck can be approximately

considered as i.i.d process. And we let

βθk = lim
t→∞

− lnE[e−θkCk(0,t)]
θkt

= lim
t→∞

− lnE[e−θk
∑t
i=1 Rk(i)τk ]

θkt

≈ lim
t→∞

−
∑t
i=1 lnE[e−θkRkτk ]

θkt

= − lnE[e−θkRkτk ]
θk

. (15)

Here we omit the identification of TB i in random variable Rk
for simplification, since Rk is i.i.d over different TBs. Note that
βθk is available as long as Rk is light-tailed distributed [26].
In fact, for various typical fading channels, such as Rayleigh,
Rice, Nakagami-m, Weibull, and lognormal fading channels,
the distribution of Rk has been proved to own light-tailed
property [26].

Additionally, according to Lemma 1, the buffer overflow
probability decreases as θk increases, which means a tighter
bound would be achieved with a larger θk. However, θk is
constrained by (13), i.e.,

αθk ≤ βθk (16)

for both DL and UL data transmissions. Hence, the optimal
θk can be found out according to the following expression,

θoptk = max{θk : αθk ≤ βθk} . (17)

With Lemma 1, the buffer overflow probability of the DL
and that of the UL can be analyzed specifically. The following
theorems summarize the obtained bounds.

Theorem 1. For the DL transmission of the AP (i.e., k = 0)
or the UL transmission of the Uk (i.e. 1 ≤ k ≤ K), with buffer
capacity xk, the buffer overflow probability is upper bounded
by

Pr{Bk(t) > xk} ≤ e−θkxk .

Here, for system stability, θk should meet αθk ≤ βθk , where
αθk and βθk are the envelop rate of traffic arrival and
transmission capacity at the AP or Uk respectively. There
holds,

αθk =
lnE[eθkAk(0,1)]

θk
. (18)

βθk =

− ln
∑K
k=1 E[e−θ0RDkτ0 ]Pr{k}

θk
, k = 0

− lnE[e−θkRkτk ]
θk

, 1 ≤ k ≤ K
, (19)

where Pr{k} denotes the probability that the data being sent
by the AP is towards Uk, and

∑K
k=1 Pr{k} = 1.

Proof: Please see Appendix B.
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C. Buffer-Constrained Throughput
With the information of the buffer constraint including

backlog capacity xk and buffer overflow probability ϵk, the
maximum sustained throughput of the input traffic, i.e., the
buffer-constrained throughput, can be derived.

Theorem 2. For the DL transmission of the AP (i.e., k = 0)
or the UL transmission of the Uk (i.e. 1 ≤ k ≤ K) with buffer
constraint (xk, ϵk), the buffer-constrained throughput of the
input traffic holds as

rmax
k = g−1

k (β− ln ϵk
xk

),

where g−1
k (αθk) denotes the inverse function of gk(rk) = αθk

and θk = − ln ϵk
xk

.

Proof: Please see Appendix C.

Note that for Poison traffic, gk(rk) = rk
θkLk

(eθkLk − 1)
according to (14), where rk = λkLk. Therefore, the buffer-
constrained throughput holds as

rk =
αθkθkLk
eθkLk − 1

= −
β− ln ϵk

xk

ln ϵk
xk

Lk

e
− ln ϵk

xk
Lk − 1

. (20)

In Theorem 2, θk = − ln ϵk
xk

decreases as xk or ϵk increases.
Besides, it is easily verified that βθk is a decreasing function
with respect to θk and gk(rk) is an increasing function with
respect to rk. Therefore, the communication node with looser
buffer constraint is able to sustain higher traffic arrival rate.
Furthermore, when the buffer constraint is loosen infinitely,
i.e., xk → ∞ or ϵk → 1, there holds θk → 0. At this time, βθk
converges to the mean channel capacity Rkτk (0 ≤ k ≤ K)
and αθk converges to the mean traffic arrival rate rk [23].
Further according to the stability condition, we conclude that
rk converges to the mean channel capacity Rkτk when buffer
constraint is loosen infinitely.

IV. RESOURCE ALLOCATION STUDY

A. DL Transmission Power And Energy Storage Capacity
Due to the reason that the DL transmission power of the AP

p0 has a great difference on both DL and UL transmissions,
it is advisable to adjust p0 to guarantee the performance
requirements for all the communication nodes. The following
theorem introduces the analytical approach to find out the
minimum p0.

Theorem 3. Suppose the traffic arrival process of the AP
and Uk (0 ≤ k ≤ K) is characterized by envelop rate
αθk = gk(rk), the time allocation policy is fixed as {τk : 0 ≤
k ≤ K} and the energy storage capacity is sufficient. If the
buffer constraint is given as (xk, ϵk), the required minimum
DL transmission power pmin

0 holds as

pmin
0 = max{p0,k : 0 ≤ k ≤ K}.

Here, p0,0 is the solution of the following equation
K∑
k=1

E[e
ln ϵ0
x0

W log2(1+
p0hklk
N0W

)τ0 ]Pr{k} = e
ln ϵ0
x0

g0(r0).

p0,k (1 ≤ k ≤ K) is the solution of the following equation

E[e
ln ϵk
xk

W log2(1+
πk

1−e−ν1(p0hklk−pD)

1+e−ν1(p0hklk−pD−ν2)
τ0hklk

τkN0W
)τk ] = e

ln ϵk
xk

gk(rk)

Proof: Please see Appendix D.

Note that pmin
0 may not be available in closed-form when the

channel power gain is random over time. However, it can be
analyzed with the help of some mathematical calculation tools
like MATLAB. Also, pmin

0 is achieved provided that the energy
storage capacity of each UE is large enough. However, large
energy storage capacity may lead to high economic cost while
small energy storage capacity restricts the UL performance of
the UEs. It is consequently worth finding out the energy storage
capacity as small as possible to ensure the UL performance
requirements.

Theorem 4. Suppose the conditions are all the same as
introduced in Theorem 3, the required minimum energy storage
capacity bmin

k (1 ≤ k ≤ K) can be ascertained by solving the
following equation,

E[e
ln ϵk
xk

W log2(1+
bmin
k hklk
τkN0W

)τk ] = e
ln ϵk
xk

gk(rk).

Proof: The proof is similar with that of Theorem 3. We
only need to replace the transmission power pk with bmin

k

τk
in

(26), due to the reason that bmin
k

τk
≥ pk.

B. Time Allocation Scheme
In the considered WPC system, the UEs suffer two times

of path loss during each TB, where one is in DL energy
transfer and the other is in UL information transmission. This
phenomenon which causes severe performance degradation is
called as the doubly near-far problem [9]. In this section,
we are going to find out the optimal time allocation scheme
to maximize the minimum individual throughput at each UE
under the given buffer constraint (x, ϵ). The problem is also
known as max-min problem [7], which is given as follows

max r

s.t. rk ≥ r, 1 ≤ k ≤ K
K∑
k=0

τk ≤ 1

Pr{Bk(t) > x} ≤ ϵ

, (21)

where rk is the buffer-constrained throughput of Uk. For
convenience, we call this maximum individual throughput
as the max-identical throughput. Note that the max-identical
throughput in this paper differs from another ones studied in
the literature on the consideration of buffer constraint. For ex-
ample, in [9], the max-identical throughput called as ”common
throughput” is derived as the maximum mean channel capacity
which can be guaranteed by each UE simultaneously. We
highlight that our max-identical throughput converges to the
common throughput of [9] by loosening the buffer constraint
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infinitely. The reason is that when xk → ∞ or ϵk → 1, rk
converges to the mean channel capacity of Rkτk.

According to Theorem 2, rk can be related to the trans-
mission capacity envelop rate by g−1

k (β− ln ϵ
x
), where g−1

k (β)
is a monotonically increasing function of β. Besides, β− ln ϵ

x

is a monotonically increasing function of Rkτk according to
(19), and Rkτk is a monotonically increasing function of
both τ0 and τk according to (5) and (6). Therefore, rk is
consequently a monotonically increasing function of both τ0
and τk. Hence, the optimal time allocation solution τopt should
satisfy

∑K
k=0 τk = 1. Otherwise the remaining available time

can be allocated to each UE such that r can still be improved.
Additionally, problem (21) is designed to maximize the traffic
throughput of the UE with the worst channel condition, e.g. the
largest distance far from the AP. The optimal time allocation
solution τopt should allocate the same throughput to all the
UEs. Otherwise, the UEs whose throughput is higher than r
can give some time to the other UEs to increase r. Additionally,
as the buffer constraint is fixed as (x, ϵ), the optimal parameter
θ is always equal to − ln ϵ

x according to Theorem 1 and (17).
Consequently, the max-min problem is transformed to the
following optimization problem,

max r

s.t. rk = r, 1 ≤ k ≤ K
K∑
k=0

τk = 1

θ = − ln ϵ

x

. (22)

In order to find out the optimal time allocation solution for
problem (22), we first focus on the following problem where
τ0 is given.

find τ∗ and r
s.t. rk = r, 1 ≤ k ≤ K

K∑
k=1

τk = 1− τ0

θ = − ln ϵ

x

. (23)

Here, we call r as the identical throughput.
Without loss of generality, we assume U1 has the best mean

channel condition among all the UEs. In what follows, we
propose a dichotomy-based algorithm to find out τ∗ and r for
problem (23).

In step 1 of Algorithm 1, we set τmin
1 = 0 and τmax

1 = 1−τ0
K

in order to let υmin > 0 and υmax < 0, such that the dichotomy
approach can be started. Here, we set the maximum τ1 as 1−τ0

K
due to the reason that the transmission time of U1 is always
less than the mean remaining time for each UE since U1 is
in the best channel condition. When τ0 and τ1 is fixed, the
buffer-constrained throughput of U1, denoted by r1, can be
ascertained according to Theorem 1 and Theorem 2. In steps
3, 5 and 9, τk can be obtained as the solution of equation
rk = r1, where r1 = [rmin

1 , rmax
1 , rh1 ] respectively. As rk

monotonically increases with τk, the equation rk = r1 has only

Algorithm 1 Solution of problem (23)

1: initialize τmin
1 = 0 and τmax

1 = 1−τ0
K ;

2: compute the buffer-constrained throughput rmin
1 ;

3: find out τmin subject to rk = rmin
1 for all k = 2, · · ·,K;

4: υmin = 1−
∑K
k=0 τ

min
k ;

5: compute rmax
1 and find out τmax with respect to τmax

1 ;
6: υmax = 1−

∑K
k=0 τ

max
k ;

7: repeat
8: set middle point τh1 =

τmin
1 +τmax

1

2 ;
9: compute rh1 and find out τh with respect to τh1 ;

10: υh = 1−
∑K
k=0 τ

h
k ;

11: if υh < 0 then
12: τmax

1 = τh1 , υmax = υh, then go to step 16;
13: else
14: τmin

1 = τh1 , υmin = υh, then go to step 16;
15: end if
16: until υminυmax == 0 or τmax − τmin ≤ φ, where φ

denotes the precision requirement.
17: if υmin == 0 or υmax == 0 then;
18: τ1 = τmin or τ1 = τmax;
19: else
20: τ1 =

τmin
1 +τmax

1

2 ;
21: end if
22: compute r = r1 with τ1 and find out τ∗ subject to rk = r1.

one solution for given τ0 and τ1. In step 4, υmin > 0 means
there is available remaining time which can be allocated to the
UEs, i.e., τ1 should be increased. In step 6, υmax < 0 means
the total amount of time which should be allocated to the UEs
is more than the maximum amount 1 − τ0, i.e., τ1 should be
decreased. Steps 7-22 are the dichotomy approach to find out
τ∗ to meet the conditions of problem (23).

The optimal time solution τopt and the max-identical
throughput can be further obtained through one-dimensional
search after problem (23) is solved. Specifically, if the value
of τ0 is set from 0 to 1 with step length ω, we can obtain
⌊ 1
ω ⌋ results of time allocation solution and the corresponding

identical throughput for different τ0. The the max-identical
throughput and the optimal time allocation solution of problem
(22) can be obtained by choosing the maximum r and the
corresponding τ∗ among the ⌊ 1

ω ⌋ results. The solution of
problem (22) is summarized as the following algorithm.

Algorithm 2 Solution of max-min problem (22)
1: initialize τ0=0, step length ω, rmax = 0, τ opt = [];
2: repeat
3: apply Algorithm 1 to obtain r and τ∗;
4: if r > rmax then
5: rmax = r, τ opt = τ∗;
6: end if
7: τ0 = τ0 + ω;
8: until τ0 ≥ 1

In Algorithm 2, the accuracy of the solution depends on the
step length ω. Concretely, the smaller ω is, the more accurate
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solution we can obtain. On the other hand, the duration of a
TB cannot be too long due to the economic cost constraint
on data buffer capacity and energy storage capacity. Actually,
the subsequent numerical result verifies that the throughput
result with ω = 0.01 is already as accurate as that with
ω = 0.0001 when the duration of a TB is 1s. In the end,
the calculation complexity of solving the max-min problem
(22) is summarized in the following proposition.

Proposition 1. The calculation complexity of finding out the
optimal time allocation solution and max-identical throughput
is O(

(K−1) log2(
1
Kψ ) log2(

1
ψ )

ω ).

Proof: Firstly, the calculation complexity of Algorithm
1 depends on the precision of τ∗, which is denoted by ψ.
It is easily verified that the calculation complexity of solving
τ1 is upper-bounded by log2(

1
Kψ ) while that of solving τk

(2 ≤ k ≤ K) is upper-bounded by log2(
1
ψ ). Thus, the

calculation complexity of Algorithm 1 holds as O((K −
1) log2(

1
Kψ ) log2(

1
ψ )). Secondly, the calculation complexity of

the one-dimensional search in Algorithm 2 is O( 1
ω ). Therefore,

the overall calculation complexity of solving problem (22)
holds as O(

(K−1) log2(
1
Kψ ) log2(

1
ψ )

ω ).

V. RESULTS

In this section, we present numerical results from the
analysis to discuss the performance of the WPC system. If not
otherwise highlighted, the various involved parameters and the
adopted analysis scenarios are as follows. The AP has equal
probability to send data to each UE, i.e., Pr{k} = 1

K . We
assume identical configurations and traffic load for each UE.
The energy harvesting parameters are set as π = 0.01mW,
v1 = 47.083 × 103 and v2 = 0.0029mW [13]. The power
used to recover the DL information at each UE is fixed
as pD = −60dBm. The buffer capacity and the maximum
tolerable buffer overflow probability are set to xk = 20 packets
and ϵk = 10−4 (1 ≤ k ≤ K) respectively. The number of UEs
is set to K = 2. The time allocation parameter is assumed to
be τ = (0.2, 0.4, 0.4). The transmission power of AP is set to
p0 = 30dBm (i.e., 1W) and the duration of a TB is 1s. In order
to study the performance for the stochastic traffic which is
served on stochastic channel, we assume the number of packets
periodically arriving at each communication node follows
Poisson distribution and the packet size is fixed as 100kbits.
The traffic envelop rate can be referred in (14). For the channel
model, we set the bandwidth W = 1MHz and the power
spectral density of the background noise N0 = −130dBm/Hz.
The number of antennas of the AP is set to M = 8. The links
of the antennas are all i.i.d Nakagami-2 fading with mean 1.
Thus, the channel power gain h follows Gamma distribution
with shaper parameter m = 16 and rate parameter µ = 2 [27].
Additionally, the path loss is assumed to be lk = ρ−2

k with
30dB power attenuation at a reference distance of 1m, where
ρk = 10k

K (meters) denotes the distances between the AP and
Uk [9]. For a two-user scenario, there holds ρ = [5, 10]m.

Fig. 3 depicts buffer overflow probability varying with buffer
capacity. The mean arrival rate of the AP and that of each UE
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Fig. 3. Buffer overflow probability

are set to λ0 = 30 and λk = 8 (1 ≤ k ≤ 2) packets per TB,
respectively. It is observed that the buffer overflow probability
is an exponentially decreasing function with respect to the
buffer capacity. Besides, the backlog performance of U1 is
much better than that of U2. This implies λk is light load
for U1 but heavy load for U2, since U1 is closer to the AP.
On the other hand, Fig. 3 reminds the buffer capacity should
be carefully determined due to the reason that the number of
backlogged packets may be larger than the arrival rate within
a non-ignorable probability (e.g. 10−4). Particularly, U2 needs
large buffer to guarantee the buffer overflow probability for the
heavy-load traffic. However, the buffer capacity of the WPC
devices cannot be as large as the traditional communication
nodes jointly due to their small sizes and economic cost
constraint. Hence, traffic access control and resource allocation
are rather important for WPC devices.

In Fig. 4, the buffer-constrained throughput performance is
depicted for the AP, U1, and U2 respectively. We can easily
analyze how much traffic be sustained by a communication
node under given buffer constraints. Fig. 4 indicates the traffic
throughput can be improved by loosening the buffer constraint,
i.e., increasing the buffer capacity or the tolerable buffer
overflow probability. On the other hand, the increasing rate
of throughput becomes smooth when either buffer capacity or
buffer overflow probability is sufficiently large (i.e., xk > 40
or ϵk > 0.1). As discussed in Section III-C, the throughput will
converge to the mean channel capacity if buffer constraint is
loosened infinitely. Besides, the throughput performance of AP
is the best of the three nodes among which U1 outperforms U2.
The reason is due to the doubly near-far phenomenon where
the UEs has to suffer the two times of path loss [9].

In Fig. 5, the maximum sustained traffic throughput and
the mean channel capacity are depicted. It is well known
larger channel capacity can sustained higher traffic throughput.
A remarkable gap can be observed between the throughput
and the corresponding channel capacity while enforcing non-
ignorable buffer constraint into a communication node. The
gap increases as the DL transmission power p0 increases.
Implied by Fig. 5, if buffer constraint is required in data
transmission, using the mean channel capacity would easily
lead to overestimation in traffic access control. Besides, the
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Fig. 4. Buffer-constrained throughput
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throughput and capacity performance always increases with
p0 at AP while it converges to a constant at the UEs when p0
is sufficiently large (e.g., p0 = 30dBm at U1). The reason is
that the channel capacity increases with its transmission power
and p0 is exactly the transmission power of AP. However, the
energy harvesting rate is limited by the circuit parameter π
in terms of the non-linear energy harvesting model (4), which
limits maximum transmission power of each UE according to
(5). Hence, traffic throughput cannot be increased infinitely for
the UEs.

Fig. 6 compares the non-linear energy harvesting model
with the typical linear energy harvesting model which is
widely used in the literature (e.g., [9–12]). The linear energy
harvesting model is expressed as pDCk = η(pRFk−pD), where
η = 0.1 is the fixed energy harvesting efficiency [13]. From
the subfig, we verify that the energy harvesting rate of non-
linear model is upper-bounded by π. The difference between
these two model is that the throughput based on the non-linear
model has an upper bound while that based on the linear model
dose not. Interestingly, the throughput performance based on
the non-linear model agrees with that based on the linear model
when p0 is small (e.g., p0 < 25dBm at U2). The observation
in Fig. 6 implies that the linear model still performs well in
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models
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low power regime but may lead to severe overestimate when
p0 is sufficiently large.

Fig. 7 and Fig. 8 study the resource allocation policy
in the area of DL transmission power and battery capacity.
The minimum DL transmission power required to ensure the
transmission performance of each node is depicted in Fig.
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7. The abscissa describes the traffic rate of the UEs and
40dBm in the ordinate is considered as infinite power. For
a practical system, the AP usually sustains higher traffic rate
and backlogs more packets than the UEs. In order to reflect
this feature, we assume the rate and the buffer capacity of
the AP are both twice as much as the UEs. It is shown
that the UEs especially U2 require much higher power than
the AP to begin data transmission due to the impact of two
times of path loss. The system cannot increase the traffic
throughput infinitely through rising the transmission power if
other conditions are invariant, since the energy harvesting rate
is limited by parameter π. However, if we assume the energy
harvesting rate is always sufficient, battery capacity will be
a key factor to guarantee the throughput performance. Fig. 8
depicts the impacts of the buffer capacity and the data trans-
mission distance on the minimum battery capacity required to
guarantee the throughput performance. It is observed that the
required battery capacity is sensitive to the distance between
the AP and the UE. The relationship between the battery
capacity and the distance follows logarithmical linearity. Be-
sides, stricter buffer constraint requires larger battery capacity.
This is because stricter buffer constraint implies higher buffer-
constrained throughput needed, which further demands larger
amount of minimum energy stored for the UL transmission.
However, when loosening the buffer constraint to x/L = 20
packets, the required battery capacity is already close to the
case where x/L = 100 packets. Therefore, from the economic
point of view, the tradeoff between the buffer capacity and
battery capacity should be carefully taken into account since a
small buffer capacity may be able to ensure the battery capacity
approach to the convergent minimum value.

Fig. 9 verifies max-min problem (22) is successfully solved.
Firstly, Fig. 9(a) presents the identical throughput results
obtained by applying Algorithm 1 and Algorithm 2 under
different wireless charging time and step lengths. It is observed
that the max-identical throughput is sufficiently accurate even
with a large step length (i.e., ω = 0.1). Therefore, the search
times in Algorithm 2 can be controlled within a small value.

To further study the impacts of buffer constraint on the
identical throughput, Fig. 9(b) and Fig. 9(c) are presented.
In Fig. 9(b), the identical throughput is achieved with a
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Fig. 10. Time allocation scheme for identical throughput

strict buffer capacity requirement. The optimal time allocation
scheme to achieve the max-identical throughput may not be
able to maximize the mean channel capacity of the UE at
the same time. Fig. 9(b) shows that the identical throughput
is lower than the channel capacity of each UE. Besides, the
capacities of the UEs are different, where U2 has larger channel
capacity than U1, even though U2 suffers worse pass loss and
lower transmission power according to (5). It can be explained
that the transmission time τk plays an important role in the
mean channel capacity of the Uk since the transmission rate
of U2 is lower than that of U1. In other words, the mean
channel capacity of a UE can be improved by increasing
its transmission time when other conditions are invariant.
On the other hand, Fig. 9(c) depicts the identical throughput
with a loose buffer capacity requirement which is considered
as infinite loose buffer constraint. In this case, the buffer-
constrained throughput converges to the channel capacity as
discussed in Fig. 4. Thus, the max-identical throughput in
this case is equivalent to the ”common throughput” in [9]. In
addition, the optimal time allocation solution without buffer
constraint is confirmed to be different from the one taking the
buffer constraint into account. Therefore the time allocation
policy to guarantee identical transmission capacity among the
UEs is not able to guarantee the practical identical traffic
throughput while buffer constraint is enforced.

The difference of the time allocation solution between
these tow cases is depicted in Fig. 10. It is observed that
when τ0 > 0.7, which is considered as a sufficient long
wireless charging time, the time allocation solution to the UE
transmission has nothing to do with the buffer constraint. In
this case, the channel capacity results in Fig. 9(b) and and those
in Fig. 9(c) are identical. In contrast, if the AP just charges
the UEs with a small time during each TB, the time allocation
solution is dominated by the buffer constraint.

In Fig. 11, the impacts of the number of UEs K on the
max-identical throughput is presented. As shown in Fig. 11(a),
there always exists unique optimal τ0 to maximize the identical
throughput no matter how many UEs are served in the WPC
system. The optimal τ0 decreases as K increases. In other
words, the more UEs are served by the system, the less wireless
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Fig. 9. Identical buffer-constrained throughput with different time allocation schemes

charging time can be provided to each UE. This is because
the system has to allocate more time to the UL transmission
to guarantee the max-identical throughput for different UEs
which suffer different path losses. Moreover, more users will
lead to less transmission time for each UE, which results in
the degradation of the identical throughput. In Fig. 11(b), the
max-identical throughput are verified as a decreasing function
with respect to K. However, the overall UL throughput which
represents the sum of the throughput of each UE increases
in K. This phenomenon implies multiplex gain exists in the
considered WPC system. Besides, the common throughput
in [9] always overestimates the maximum traffic throughput
sustained by each UE, since the common throughput is actually
equal to the mean channel capacity. It is observed that the gap
between the common throughput and max-identical throughput
decreases as K increases. However, opposite phenomenon is
observed from the point of view of the overall UL throughput.
The reason addresses that the multiplex gain for the channel
capacity is larger that for the buffer-constrained throughput.

VI. CONCLUSION

In this paper we presented an analytical approach to study
buffer-constrained throughput performance of a multi-user
wireless powered communication system with consideration
of non-linear energy harvesting model, finite energy storage
capacity, finite data buffer capacity, stochastic channel and
stochastic traffic arrivals. Specifically, the buffer overflow
probability is derived based on which the buffer-constrained
throughput was then obtained. Furthermore, the minimum DL
transmission power and minimum energy storage capacity
were studied to ensure the buffer-constraint throughput per-
formance of each node. In the end, an optimal time allocation
algorithm was proposed to maximize the minimum throughput
which can be guaranteed by each UE simultaneously. We
believe, the analysis and the results shed new insights on the
performance of WPC systems.
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APPENDIX A
PROOF OF LEMMA 1

Proof: According to (9), we have

Pr{Bk(t) > xk} = Pr{ sup
0≤s≤t

{Ak(s, t)− Ck(s, t)} > xk}

(24)
Let Vs = eθk(AX(t−s,t)−Ck(t−s,t)), Yu = Ak(u − 1, u) and

Zu = Ck(u− 1, u). There holds

Vs+1 = eθk(Ak(t−s−1,t)−Ck(t−s−1,t))

= eθk
∑t
u=t−s(Yu−Zu)

= Vse
θk(Yt−s−Zt−s)

.

Since Ak and Ck are both i.i.d processes, we have

E[Vs+1|V1, V2, ...Vs]
=E[Vs+1|Yt, Yt−1, ...Yt−s+1, Zt, Zt−1, ...Zt−s+1]

=E[Vseθk(Yt−s−Zt−s)|Yt, ...Yt−s+1, Zt, ...Zt−s+1]
(a)
=E[Vs|Yt, ...Yt−s+1, Zt, ...Zt−s+1]E[eθkYt−s ]E[e−θkZt−s ]
(b)
=VsE[eθkAk(0,1)]E[e−θkCk(0,1)]
≤Vs

.

Here, step (a) is due to Yt−s and Zt−s are
independent of each other and also independent of
{Yt, Yt−1, ...Yt−s+1, Zt, Zt−1, ...Zt−s+1}. Step (b) holds
since processes Ak and Ck are both identical distributed, i.e.,

E[eθkYt−s ] = E[eθkAk(t−s−1,t−s)] = E[eθkAk(0,1)],

E[e−θkZt−s ] = E[e−θkCk(t−s−1,t−s)] = E[e−θkCk(0,1)].

Hence, V1, V2, ..., Vt form a non-negative supermartingale [28].
Then, according to the property of the supermartingale. the
buffer overflow probability holds as [28, 29]

Pr{Bk(t) > xk}
=Pr{ sup

0≤s≤t
{eAk(s,t)−Ck(s,t)} > exk}

≤Pr{ sup
1≤s≤t

{Vt−s} > exk}

=Pr{ sup
1≤m≤t

{Vm} > exk)}

≤Pr{V1 > exk}
(a)

≤E[e−θkxk ]E[eθkAk(0,1)]E[e−θkCk(0,1)]
≤e−θkxk

.

Step (a) is based on the Chernoff bound and the independence
between Ak and Ck. Therefore, Lemma 1 is proved.

APPENDIX B
PROOF OF THEOREM 1

The buffer overflow probability is ascertained by directly
applying Lemma 1 and the system stability condition (13).

Note that k = 0, there holds

βθ0 = − lnE[e−θ0R0τ0 ]

θ0

= −
ln

∑K
k=1 E[e

−θ0RDkτ0 ]Pr{k}
θ0

,

which completes the proof.

APPENDIX C
PROOF OF THEOREM 2

According to Theorems 1, we have e−θkxk = ϵk, i.e.,

θk = − ln ϵk
xk

.

Furthermore, according to the stability condition (16), the
maximum traffic envelop rate denoted by αmax

θk
holds as

αmax
θk

= βθk .

Besides, the traffic envelop rate αθk is related to the traffic
arrival rate rk, which can be denoted by function gk(rk) = αθk
[23]. Hence, we finally have

rmax
k = g−1

k (αmax
θk

) = g−1
k (β− ln ϵk

xk

),

where g−1(·) is the inverse function of g(·).

APPENDIX D
PROOF OF THEOREM 3

We first find out θk for each node according to Theorem 1,
and there holds

θk = − ln ϵk
xk

. (25)

When 1 ≤ k ≤ K, βθk is related to DL transmission power
p0 through the transmission rate Rk in terms of (6) and (19),
i.e.,

βθk = − lnE[e−θkW log2(1+
pkhklk
N0W

)τk ]

θk
, (26)

where pk = πk
1−e−ν1(p0hklk−pD)

1+e−ν1(p0hklk−pD−ν2)
τ0
τk

according to (2), (4)
and (5).

When k = 0, jointly considering (3) and (19), we have

βθ0 = −
∑K
k=1 E[e

−θ0W log2(1+
p0hklk
N0W

)τ0 ]Pr{k}
θk

. (27)

In addition, by applying the stability condition (16), there
holds

βθk ≥ αθk = gk(rk).

As βθk increases with p0 for any 0 ≤ k ≤ K, the minimum
DL transmission power required by each nodes, denoted by
p0,k, is the solution of following equation

βθk = gk(rk). (28)

Therefore, p0,k(0 ≤ k ≤ K) is ascertained for each node
by solving the equation set consisting of (25), (26), (27) and
(28). Thereafter, we should choose the maximum p0,k as the
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transmission power such that the performance requirement of
each node can be guaranteed. There holds,

pmin
0 = max{p0,k : 0 ≤ k ≤ K}.

Thus, the proof is completed.
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