
energies

Article

Physical and Mathematical Modeling of a Wave
Energy Converter Equipped with a Negative Spring
Mechanism for Phase Control

Amélie Têtu 1 ID , Francesco Ferri 1 ID , Morten Bech Kramer 1 and Jørgen Hals Todalshaug 2,3,* ID

1 Department of Civil Engineering, Aalborg University, DK-9220 Aalborg, Denmark; at@civil.aau.dk (A.T.);
ff@civil.aau.dk (F.F.); mmk@civil.aau.dk (M.B.K.)

2 Department of Marine Technology, Norwegian University of Science and Technology (NTNTU), NO-7491
Trondheim, Norway

3 CorPower Ocean AB, 114 28 Stockholm, Sweden
* Correspondence: jorgen@todalshaug.no; Tel.: +47-9766-0028

Received: 11 July 2018; Accepted: 4 September 2018; Published: 7 September 2018
����������
�������

Abstract: A wave-energy converter has been studied through the combination of laboratory
experiments and numerical simulations. The converter model is a semi-submerged axi-symmetric
buoy with a circular cross section with a diameter of 26 cm at the water plane. The buoy is pitching
about a fixed external axis oriented such that the buoy works primarily in heave. The laboratory
model is equipped with a spring mechanism referred to as WaveSpring, which works to shift the
resonance period and increase the response bandwidth of the system. A controlled electric actuator
was connected and programmed to provide a velocity-proportional force for power extraction.
The buoy mass was varied at two levels and the experimental setup was exposed to a selection of
regular and irregular waves. The power take-off (PTO) damping was set as a function of sea state.
A mathematical model for global motion response was developed based on linear hydrodynamic
theory and rigid-body dynamics. Comparison of laboratory measurements and numerical simulation
results shows that the dominant physical effects have been well captured by the mathematical model.
Overall, the study gives an experimental verification that a negative spring mechanism mounted in
parallel with the power take-off machinery of a wave energy converter may be used to increase the
average converted power.

Keywords: point absorber; negative spring; renewable ocean energy; power take-off; hydrostatic
stiffness; phase control

1. Introduction

As argued by several authors [1–3], some types of wave energy converters will require
considerable cycling of mechanical reactive power between motion and machinery in order to absorb
and convert ocean wave energy efficiently. Typically, wave energy converters having large hydrostatic
stiffness, as found in systems with surface-piercing buoys with vertical or pitching motion, fall into
this category. It was recently proposed [4,5] that an arrangement of mechanical springs be used to
facilitate this power cycling, such that the power take-off machinery may be designed to handle the
active power only. If working at efficiency comparable to or higher than the power take-off machinery,
the use of such a mechanism may represent a substantial cost-saving for wave energy units of this type.
The cycling of reactive power can then be done with minor losses, ensuring an efficient absorption
of wave energy, while the power take-off machinery can be dimensioned according to active power,
which is smaller.
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Earlier studies [5–7] have presented results with theoretical estimates of forces from a negative
spring mechanism designed for linear motion. The current paper describes how the same principle may
be applied to rotating motion. A laboratory model designed with coil springs is used to demonstrate
the effect in practice. The spring mechanism is mounted on a laboratory setup of the WaveStar floater,
which has already been studied extensively in other works [8,9]. The reported tests took place in
the Deep Water Wave Basin at the Department of Civil Engineering at Aalborg University during
two campaigns.

The paper is organized in the following way: First the system configuration and details of the
laboratory model is presented in Section 2, and the experimental matrix with all system variations is
summarized in Section 4. The mathematical model is described in Section 3, and results from both
experiments and simulations are presented and discussed in Section 5.

2. Experimental Setup

The physical model used in the present work is shown in Figure 1. It is a 1:20 downscaled buoy of
the WaveStar prototype [10]. The buoy may be approximately represented as a hemisphere extended
with a cylindrical part on top. It is constrained to rotate about a horizontal axis A fixed at 0.285 m
above the mean water level (MWL). The buoy is connected at point F to a force-controlled LinMot
actuator (LinMot Series PS01-37x240, Linmot controller Series E1100), which may be programmed to
act as the power take-off (PTO) system of choice. The slider of the actuator is moving with respect
to the stator, which is fixed at point L. The force on the system is measured with a load cell (Futek
LSB302 300lb) placed between the slider of the actuator and the lever arm of the buoy. A laser-based
position sensor (MicroEpsilon ILD-1402-600) follows the position of the slider with respect to the stator.
An accelerometer (Analog Devices ADXL203EB) is placed on-top of the buoy enabling a measure of
the angle and the angular velocity of the buoy.
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Figure 1. Sketch of the physical model of one buoy WaveStar.

The physical model is equipped with a WaveSpring lab model as depicted in Figure 2. A coil
spring is fitted between the buoy lever (E) and a fixed point D. The setup was adjusted such that
points A, D, and E were found on a straight line when the buoy was at its initial position with the
waterline at the top of the hemispherical bottom. When the natural length of the spring exceeds the
minimum distance between D and E, the mechanism provides a negative spring force on the buoy’s
rotation about its equilibrium position.
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Figure 2. Left: Sketch of the WaveSpring assembly fitted to the WaveStar setup. Right: Picture of the
WaveSpring model installed on the WaveStar setup in the wave basin.

In order to obtain the contribution of the WaveSpring in terms of moment to the overall system,
some governing properties for the WaveSpring laboratory model are listed:

• The spring’s stiffness, k;
• The initial compression force of the spring, which is a function of its natural length l0, its actual

length l, and the stiffness k, F = k(l0 − l);
• The angular displacement of DE arm (α) as a function of angular displacement of the arm AC

axis (ϕ), cf. Figure 2;
• The change in distance DE as a function of angular displacement of the AE axis (ϕ).

The two latter properties are governed by the placement of points D and E. Their position are set
such that the appropriate negative spring force is achieved over a given range of angular displacement
ϕ. The WaveSpring laboratory model is composed of a coil spring with a stiffness defined as [11]

k =
G d4

8 n D3 (1)

where G is the shear modulus, d is the thread diameter, D is the coil diameter, and n is the number
of turns.

With the spring dimensions as chosen for the current design, the spring force can be treated as
linear. The shear modulus of stainless steel is about 77 GPa.

Let the buoy rotation angle ϕ be defined with ϕ = 0 when AE and AD are aligned and with
a positive direction for the buoy moving upwards. By geometrical considerations, the length DE may
then be expressed as function of ϕ in the following way:

DE2
= AD2

+ AE2 − 2 AD AE cos ϕ. (2)

The change in spring length is equal to the change in DE, ∆l = ∆DE, so the spring force is
Fs = k(l0 − li − ∆DE) = Fs,0 − k ∆DE, where li is the initial length (compressed) of the spring when
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the system is at the equilibrium position. The component along the buoy path (perpendicular to arm
AC) is Fs,⊥ = Fs AD sin ϕ/DE. This gives a torque about axis A equal to

τWS = Fs,⊥AE

= Fs
AD sin ϕ AE

DE(ϕ)

=
(

Fs,0 − k ∆DE(ϕ)
)AD sin ϕ AE

DE(ϕ)

=
(

Fs,0 − k(DE(ϕ)−AE + AD)
)AD AE

DE(ϕ)
sin ϕ (3)

where DE(ϕ) is defined as

DE(ϕ) =

√
AD2

+ AE2 − 2 AD AE cos ϕ. (4)

For small angular displacements, the expression simplifies to

τWS|ϕ→0 = Fs,0
AD AE sin ϕ

AE−AD
≈ Fs,0

1/AD− 1/AE
ϕ. (5)

The fraction in the last expression may be identified as the equivalent rotational stiffness as seen
from the buoy’s rotation about axis A. As long as the initial force Fs,0 is positive (spring compression),
the setup will correspond to a negative spring force.

The experiments performed with the physical model described above were done in the Deep
Water Wave Basin at the department of Civil Engineering, Aalborg University. The basin is 15.7 m
long and 8.5 m wide with a depth of up to 0.75 m. For the experiments documented in this work,
the water depth was adjusted to 0.60 m. The basin is equipped with a surging wall wave-maker at one
end and an absorbing beach at the other. The absorbing beach has a 1:3.33 slope and has an average
reflection of ∼15 to 20% over the covered wave periods used during the experimental campaign, based
on previous experiments performed in the basin. Figure 3 shows an illustration of the wave basin with
dimensions and placement of the buoy and instrumentation.
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Figure 3. Basin layout with location of the model (B1) and the wave probe. (Note that the drawing
dimensions are indicative).
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As described in [8,12], a Simulink code is used to control the PTO system and acquire data.
The analog signals from the laser, the load cell, the accelerometer, and the wave probe are inputs to the
Simulink model, while the control signal in the form of a target moment is sent as an analogue output
to the controller enabling real-time control of the external load on the system.

A list of the physical properties of the experimental setup is given in Table 1. Some of the physical
properties of the experimental setup have been specifically investigated and are detailed in Section 4.

Table 1. Constant physical properties of the experimental setup. Distances refer to Figure 2.

Quantity Unit Setup 2/3 Setup 4 Setup 1/5
Mass of buoy—lever and attachments kg 2.564 2.564 4.210

Mass of WaveSpring bracket kg 0.027 0.027 0.027
Estimated moment of inertia kg m2 0.430 0.430 0.900

Buoy diameter m 0.263 0.263 0.263
Buoy total volume dm3 7.28 7.28 7.28

Buoy submerged volume (hemisphere) dm3 3.45 3.45 3.45
Waterline beam m 0.256 0.256 0.256

Height of cylindrical part of bouy m 0.050 0.050 0.050
Height of point A above MWL m 0.285 0.285 0.285

Distance AB: lAB m 0.510 0.510 0.510
Distance AC m 0.470 0.470 0.470
Distance AE m 0.400 0.405 0.405
Distance AD m 0.320 0.320 0.320
Distance CB m 0.090 0.090 0.090

Distance AG∗: lAG m 0.306 0.306 0.400
Angle ϕB,0 of line AB with horizontal deg −34.0 −34.0 −34.0

Angle ϕG,0 of line AG∗ with horizontal deg −28.5 −28.5 −25.9
Coil spring natural length m 0.165 0.165 0.165

Shortest spring length m 0.130 0.135 0.135
Coil spring number of turns m 58 58 58
Coil spring thread diameter mm 1.50 1.50 1.50

Inner coil diameter mm 7.0 7.0 7.0
Coil spring fabricant —– Lesjøfors 3992 —–

Approximate spring stiffness kcoil kN/m 1.32 1.32 1.32
Spring stiffness estimated from measurements, k′coil kN/m 1.50 1.50 1.50

∗ G refers to the total center of gravity of moving parts. Both the moment of inertia and position of the
center of gravity were estimated from the measured mass and position of different rig components.

3. Mathematical Model

3.1. Equation of Motion

The motion response of the WaveStar lab model may be represented by a classical one-degree-of-
freedom equation of motion for rotation angle ϕ, where the angle and all forces are evaluated about
the pivot A (see Figures 1 and 2):

JA ϕ̈A = τexc − τrad − τdrag − τfric − τb − τg − τWS − τpre (6)

where it has been assumed that the inertia of the system is time-invariant and ϕ̈A denotes the rotational
acceleration about the pivot A. The inertia term JA and torque terms τi, and their mathematical
representation, are explained in the following.



Energies 2018, 11, 2362 6 of 23

JA: Moment of Inertia

The moment of inertia is the sum of all mass oscillating with the buoy and its lever, including the
hydrodynamic added inertia Jr(∞) at infinite frequency:

JA = Jbuoy + Jballast + Jlever + Jr(∞), Jr(∞) ≡ lim
ω→∞

Jr(ω). (7)

The variation in inertia due to the WaveSpring mechanism (see below) is neglected.

τexc: Excitation

The hydrodynamic excitation torque due to incident waves is estimated from the pressure field
as solved by the velocity potential solver WAMIT [13], expressed through pre-computed complex
excitation force coefficients fexc(ω):

τ̂exc(ωi) = f̂exc(ωi) ζ̂(ωi) (8)

where τ̂exc and ζ̂ are complex amplitudes of excitation torque and wave elevation, respectively. When
used with polychromatic waves, the excitation is precomputed by convoluting the excitation impulse
response function with the wave elevation time series.

τrad: Radiation

The radiation torque due to radiated waves is also solved by the velocity potential solver
WAMIT [13], and is represented by a radiation state-space model [14,15]:

ẋ = A x + B ϕ̇

τrad = C x
. (9)

τdrag: Drag

The torque due to viscous drag forces is modeled as a quadratic function in buoy angular
velocity [16], which gives

τdrag =
1
2

ρ CD IA ϕ̇|ϕ̇| (10)

where IA is the third area moment of the buoy hull projected on the plane defined by the rotational
axis A and the line AB (cf. Figure 2). Here it is approximated by IA = l3

AB Ap, where the area Ap is that
of the mentioned projected hull. This is a simplification of the quadratic term of the Morison equation,
which usually considers the relative velocity of hull and water.

τfric: Friction

The friction about axis A combines friction from both rotational axis and the WaveSpring
mechanism. From the slow oscillation tests (Section 5.3), a Coloumb friction model seems to account
for most of the friction:

τfric = c f
ϕ̇

|ϕ̇| . (11)

A steep ramp max(1, cramp|ϕ̇|) is multiplied in to replace the discontinuity around ϕ̇ = 0.

τb + τg: Buoyancy and gravity

The buoyancy and gravity effects are modeled by the classical linearized hydrostatic assumption:

τb(ϕ) + τg(ϕ) = khs ϕ sat(ϕ), (12)
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which gives stiffness force as deviation from hydrostatic equilibrium, where both gravity and buoyancy
are accounted for by the hydrostatic stiffness coefficient khs. This coefficient was estimated by curve
fitting to data from slow-oscillation tests (cf. Section 5.2). The saturation function sat(ϕ) is included to
keep the hydrostatic torque constant when the buoy goes completely into or out of the water.

τWS: WaveSpring

The stiffness torque from the WaveSpring mechanism is implemented by the analytic expression
derived in Equations (2) and (3), where the spring stiffness k has been adjusted to give a good fit to
slow-oscillation tests done with the WaveSpring mechanism active.

τpre: Pretension

For the small-mass system (cf. Table 2), a constant pretension force is applied by the machinery:

τpre = −(τg(0) + τb(0)) = −lAG m g cos(ϕG,0) + lAB ρ g Vs,0 cos(ϕB,0) (13)

where lAG = AG is the arm from pivot A to the center of gravity G, and ϕG,0 is the angle between
the horizontal and the line AG, cf. Figure 1. The submerged volume at equilibrium is denoted Vs,0,
and lAB = AB. The applied pretension makes the system rest at the defined midpoint in calm water.
The mean position in waves may differ from this midpoint due to mean wave drift forces.

This concludes the elaboration of the force terms given in Equation (6). In the following
subsections, some further details are given on hydrodynamic parameters for the laboratory model
with descriptions of how the machinery damping values were chosen.

3.2. Hydrodynamic Parameters

For the setup at hand, it is practical to express the hydrodynamic parameters in terms of rotation
about the pivot A (cf. Figure 2). This can be achieved by defining the geometric model with the
constraint that it has to move about that axis. The hydrodynamic parameters from the boundary
element solver will then be given directly as a function of rotation angle. This approach was used here.
The excitation torque is shown in Figure 4.
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Figure 4. Hydrodynamic excitation torque on the experimental model.

3.3. Optimal Load Resistance for Unconstrained Oscillation

According to linear theory, when disregarding losses, the optimal load resistance Ropt for a one-
degree-of-freedom system undergoing harmonic oscillation may be found as [17]

Ropt(ω) =
√

Rr(ω)2 + X(ω)2 X(ω) = ω JA(ω)− Sϕ/ω (14)
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where Rr(ω) and X(ω) are the radiation resistance and the reactance of the system, respectively, and
JA(ω) = Jbuoy + Jballast + Jlever + Jr(ω) is the moment of inertia about the pivot A including added
inertia as discussed before, but here including the frequency-dependent part. The resonance of the
system is defined by the reactance X being zero, and it can be tuned by changing the mass and/or
stiffness of the system. Assuming that the mass is kept constant, but the stiffness is modified to
achieve resonance at a frequency of f0 = ω0/(2π) = 1/T0 = 1/1.5 s = 0.67 Hz the required stiffness
S becomes

X = 0 → S = ω2
0 JA(ω0). (15)

Still assuming absence of losses, the optimal energy absorption in a regular wave of period T0 is
then obtained by damping: Ropt = Rr(ω0).

The estimated impedance terms for the WaveStar laboratory model in original and tuned
configurations (stiffness adjusted to obtain resonance at T0 = 1.5 s) are shown in Figure 5, and
the corresponding theoretical (unconstrained) power response curves are found in Figure 6.
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Figure 5. Reactance (dashed) and optimal load resistance (solid) estimated for the system under the
assumption of no losses for both a system with original configuration (blue) and a system with stiffness
tuned to give resonance at T0 = 1.5 s (green). The large-mass system has been assumed, cf. Table 2.
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Figure 6. Power response for the system with original configuration (blue) and with stiffness tuned to
give resonance at T0 = 1.5 s (green). The power response is drawn for a wave amplitude of 12.5 mm
assuming no amplitude constraints. The mass alternatives small and large refer to Table 2.
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3.4. Optimal Load Resistance for Constrained Oscillation

When the oscillation amplitude is constrained, the load resistance needs to be adjusted as
a function of wave height and period in order for the motion response not to violate the angular
excursion constraint ϕ ≤ ϕmax. For sinusoidal motion, this may be rewritten as a constraint on the
angular velocity u = ϕ̇, expressed as |û| ≤ umax = ω ϕmax.

Expressing the variables in terms of complex amplitudes τ̂e for the excitation torque and û for
the angular velocity, the oscillation amplitude can be written as a function of the absolute value of
impedance |Z| = |R + iX| =

√
R2 + X2 through

|û| = |τ̂e|/|Z| = |τ̂e|/
√

R2 + X2 (16)

where R = Rr + Rm is the sum of radiation resistance and machinery damping Rm. Constraining the
angular velocity to |û| ≤ umax, a machinery damping Rm = Rc that will fulfil the requirement is to be
found. Inserting now |û| = umax and R = Rr + Rc into Equation (16) gives

(Rr + Rc)
2 = |τ̂e|2/u2

max − X2 (17)

where the solution looked for is

Rc =
√
|τ̂e|2/u2

max − X2 − Rr, Rm = max(Rc, Ropt). (18)

The right-hand expression ensures that the optimal unconstrained damping is used when the
maximum amplitude has not been reached.

In case of perfect phase control, X = 0, and the solution reduces to

Rc = |τ̂e|/umax − Rr Rm = max(Rc, Rr). (19)

4. Experimental Testing Conditions

This section presents the model variations tested during the experimental campaign and the
regular and irregular wave conditions tested. An overview of the runs carried out during the
experimental campaign can be found in the appendix.

4.1. Model Variations

Several configurations have been tested during the experimental campaign and are listed in
Table 2.

Table 2. Description of the setup configurations tested in the experimental campaign.

Acronym Description Mass of the Buoy [kg] Shortest Spring Length [m]
Setup 1 No WaveSpring, large mass 4.210 -
Setup 2 No WaveSpring, small mass 2.564 -
Setup 3 With WaveSpring, small mass 2.564 0.130
Setup 4 Softer WaveSpring, small mass 2.564 0.135
Setup 5 Softer WaveSpring, large mass 4.210 0.135
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In order to assess the effect of the WaveSpring, the configuration with (Setups 3, 4, and 5) and
without the WaveSpring (Setups 1 and 2) have been tested. The mass of the buoy is another parameter
that has been varied in the current work. The system is referred to as "unballasted" for the lower mass
and "ballasted" for the higher mass. For both configurations, the system was adjusted to ensure the
buoy was in equilibrium position in still water. In Setup 3, the shortest spring length is slightly smaller
than that for Setups 4 and 5, leading to a higher negative stiffness effect on the system.

The machinery damping Rm provided by the PTO was varied in four levels for regular wave runs,
and chosen as a constant for the irregular wave runs (cf. Appendix A).

4.2. Wave Conditions

All sea states were run in the basin without model installed in order to establish the undisturbed
wave field and measure the resulting wave parameters in each case. Tables 3 and 4 describe the
realized regular and irregular waves, respectively, used in the experiment. A resistive wave probe
placed next to the buoy model (cf. Figure 3) was used for the given analysis and for the analysis of the
motion response, Section 5. When calculating amplitude responses, the wave measured in open tank
(without the model) was used as measurement of the incident wave.

Table 3. Description of the realized regular wave sea states in terms of wave period and wave height
as measured in the basin without the model.

Name Wave Period Wave Height
T[s] Target Htar[m] Measured Hmes[m] Reference Href[m]

Rf1 0.7 0.0300 0.0293 0.0250
Rf2 0.9 0.0300 0.0270 0.0250
Rf3 1.1 0.0300 0.0250 0.0250
Rf4 1.3 0.0300 0.0250 0.0250
Rf5 1.5 0.0300 0.0230 0.0250
Rf6 1.7 0.0300 0.0236 0.0250
Rf7 1.9 0.0300 0.0236 0.0250
Rf8 2.1 0.0300 0.0225 0.0250

For the irregular waves, a frequency analysis was performed to obtain the wave height (Hm0),
the average wave period (T0,2) and the energy period (T−1,0).

Table 4. Description of the realized irregular wave sea states in terms of wave height (Hm0) and wave
periods (T0,2,T−1,0), as measured in the basin without the model.

Seastate Hm0[m] T0,2[s] T−1,0[s]
S1 0.0193 0.778 0.869
S2 0.0556 1.029 1.205
S3 0.0895 1.334 1.596

Some considerations regarding wave reflection in the wave basin have been done. When waves
arrive at the model, they induce body motion and wave scattering. Scattered and body-generated
waves will return to the model after reflection at the side walls, sloping beach, and wave maker
paddles. Of these reflecting surfaces, the model is closest to the bottom end of the sloped beach, which
starts 3550 mm from the center axis of the buoy model. However, as this is a rubble mound beach
extending all the way down to the bottom, we consider that the part of it closest to the model does not
have a significant effect. The beach mean water line is at 8850 mm from the model. It is assumed that
reflections from the walls at distance dwall = 4250 mm from the model will be the first to influence the
model response.
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The time Tr for the waves to travel from the model to the side wall and back may be found as

Tr = 2
dwall

vg
(20)

where vg is the group velocity of the waves. For regular wave runs, this corresponds to a time in the
range [4.6, 15.5] s, leaving only two full undisturbed wave cycles for the regular waves of the longest
period. Only the undisturbed wave cycles were used in the analysis for regular waves. The irregular
wave sea states were synthesized with about 110 wave cycles, and the full recorded time series was
used in the analysis.

5. Results and Discussion

This section presents the results of the experimental campaign together with a discussion based
on those results. It includes an uncertainty analysis, hydrostatic stiffness and friction measurements,
characterization of the WaveSpring torque, capability of the PTO system, and experimental results for
both regular and irregular wave conditions.

5.1. Uncertainty

An analysis of the uncertainty related to the instrumentation used during the experimental
campaign has been performed. The analysis was done on the velocity measurement before and after
the Kalman filter and on the torque measurement. The results are tabulated in Table 5. Forty test runs
on Setup 3 were used, where the frequency of the signal (i.e., of the wave) was filtered out and the
spikes caused by static friction at zero velocity were removed.

Table 5. Uncertainty on torque and velocity measurements.

Measurement Unit Uncertainty
τ Nm 0.05
v rad/s 0.03

vKalman rad/s 0.02

Note that the laser-based sensor provides only the offset position for the signals from the
accelerometer. The power calculations were performed using the velocity signal after the Kalman filter
and the torque measurement.

5.2. Hydrostatic Stiffness

Slow forced oscillations tests were performed in order to quantify the hydrostatic stiffness of the
different system configurations. The period of the forced sinusoidal motion was 100 s. Figure 7 shows
the measured reaction torque about the rotation axis as a function of rotation angle in configurations
with ballast mass (i.e., Setups 1 and 5). It can easily be observed that the WaveSpring mechanism
reduces the stiffness, determined from the slope of the curve, in the midpoint range. The estimated
stiffness coefficient in this range is shown in Table 6 for all system configurations. Peak values and the
value estimated for nominal zero angle are also tabulated.
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Figure 7. Measured reaction torque about rotation axis for slow forced oscillation in calm water with
Setups 1 and 5.

Table 6. Hydrostatic stiffness estimated for the different system configurations from slow forced
oscillations in calm water. The values referred to as mean are computed as the average over the
rotation angle interval [−0.05, 0.05] rad. The resonance period estimated in the three last columns
refer to the corresponding stiffness values in the three first columns. Note that the peak values refer to
a maximum value for setups without WaveSpring (Setups 1 and 2), and a minimum value for setups
with WaveSpring (Setups 3–5), cf. Figure 7.

Configuration Stiffness [Nm/rad] Resonance Period [s]
1 Mean 2 Peak 3 at ϕ = 0 1 T0

2 T0
3 T0

Setup 1 88.5 95.6 91.5 0.807 0.770 0.791
Setup 2 85.4 93.8 89.3 0.637 0.599 0.619
Setup 3 33.4 9.13 21.4 1.15 2.31 1.47
Setup 4 42.3 23.2 29.0 1.00 1.41 1.25
Setup 5 45.2 26.3 32.8 1.18 1.58 1.40

Table 6 also shows that the ballast tends to slightly increase the stiffness, as should be expected
due to the change in angular component of gravity. The difference in mean stiffness between Setups 3
and 4 due to different compression of the coil spring is about 9 Nm/rad.

It is interesting to compare the measured change in stiffness coefficients to the effective stiffness
coefficient estimated by Equation (5). Inserting numbers for Setup 4 from Tables 1 and 2 gives
an effective WaveSpring rotational stiffness of −60.4 Nm/rad. This corresponds well to the change in
rotational stiffness values observed between Setups 2 and 4, which are −70.6 Nm/rad (peak value)
and −60.3 Nm/rad (nominal zero angle value).

5.3. Friction

The slow forced oscillations tests were also used to derive an estimate of the static friction of the
system with and without the WaveSpring mechanism, as explained in Section 3 and illustrated in
Figure 8.



Energies 2018, 11, 2362 13 of 23

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Setup 1
Setup 2
Setup 3
Setup 4
Setup 5

Figure 8. Estimated static friction torque for the different system configurations.

It is assumed that the friction in the tests presented here is dominated by the static friction part,
and the friction in the wave response tests is estimated directly from the friction curves shown in
Figure 8 by choosing a constant after visual inspection.

5.4. WaveSpring Torque

An estimate for the net spring torque from the WaveSpring mechanism was found by comparing
the slow-oscillation torque curves with and without the coil spring component mounted, i.e., Setups 3
and 4 were compared with Setup 2 (unballasted), and Setup 5 was compared with Setup 1 (ballasted).
Figure 9 shows a comparison of measured and computed torque curves. The correspondence between
the theoretical (Equation (3)) and measured curves has been improved by adjusting the coil spring
stiffness from the tabulated value kcoil = 1.32 kN/m (cf. Table 1) to k′coil = 1.50 kN/m.
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(a) Setup 3
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Figure 9. Theoretical and measured values for τWS as a function of the rotation about pivot A for the
different setups equipped with the WaveSpring mechanism.

5.5. Actuator Reference Following

The PTO system used in the experimental setup described in Section 2 corresponds to a subsystem
with its own frequency response. As the configuration of the controller is limited, this subsystem is not
perfectly tuned for the buoy characteristic and this translates into a frequency and machinery damping
dependency of the quality of the reference following.
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Figure 10 shows the frequency dependency of the actuator’s reference following behavior in terms
of the root-mean-square (RMS) of the difference between the reference (τre f ) and the measured torque
(τ) defined as

(τre f − τ)RMS =

√√√√ 1
N

N

∑
n=1
|τre f ,n − τn|2 (21)

and in terms of the linear correlation coefficient between the reference torque and the measured torque:

ρ(τre f , τ) =
cov(τre f , τ)

στre f στ
(22)

where cov stands for the covariance of τre f and τ, and σ is the standard deviation. All regular wave
conditions were used to compute this frequency dependency. In this case, the machinery damping
was set to the optimal value determined from linear theory. As no friction compensation is included in
the configuration of the controller, spikes caused by friction at zero velocity were filtered out of the
torque measurement. The controller is performing better for higher wave periods, i.e. from Rf3 to
Rf8. The linear coefficient drops for wave periods lower than 1.1 s but still remains relatively high for
optimal damping condition.

0.75 1.00 1.25 1.50 1.75 2.00
0.020

0.022

0.024

0.026

0.028

0.030

0.032

0.034

0.980

0.985

0.990

0.995

1.000

Figure 10. Frequency dependency of the actuator reference following capability in terms of the
root-mean-square (RMS) of (τre f − τ) and in terms of linear correlation coefficient between τre f and τ,
for Setup 3. Note that the wave period has been chosen as the x-axis to better relate to the different
regular waves used during the experimental campaign.

Figure 11 presents the same performance factors as previously discussed as a function of machinery
damping for three different regular wave conditions: Rf1, Rf4, and Rf8. The dependency on the
machinery damping of the controller’s ability to follow the reference is easily seen. For low machinery
damping the performances drop drastically, and more so for lower wave period (Rf1). It is important
to note that the power analysis performed and presented later in this work are for optimal conditions
where the system performs nicely, as depicted in Figure 10.
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Figure 11. Machinery damping dependency of the actuator reference following capability in terms of
the RMS of (τre f − τ) and in terms of linear correlation coefficient between τre f and τ, for Setup 3.

5.6. Regular Wave Results

Motion response of the different system configurations described in Section 4.1 were performed
in regular waves in order to demonstrate the working principle of the WaveSpring mechanism
and validate the mathematical model. It is important to note that the machinery damping was only
optimized for one configuration, namely Setup 3. For the other setups, the optimal machinery damping
obtained from linear theory was used. With the WaveSpring mechanism, the damping was sometimes
set to a higher value to avoid excessive motions and full submergence or water exit. The values used
are listed in Appendix A.

5.6.1. Motion Response in Regular Waves

The motion response is analyzed in terms of amplitude and phase responses for input waves
of wave height 30 mm (setpoint) and varying wave period. These have been derived by taking the
discrete Fourier transform of the steady-state part of the response time series, which corresponds to
the time interval before wave reflections reach the model (cf. Section 4.2). Before transformation the
time series was cut to an integer number of cycles to avoid spectral leakage. The amplitude response is
then computed as the magnitude of the fundamental harmonic component of the spectrum, which
corresponds to the wave frequency.

Figure 12 shows amplitude responses for angular excursion for the four configurations Setups
1, 2, 4, and 5. The WaveSpring mechanism strongly amplifies the motion in the wave period range
from about 1 s and above. For lower wave periods, the response is stronger for configurations without
WaveSpring, as these have their resonance period in the range 0.8–1.0 s.
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(a) Relative magnitude.
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Figure 12. (a) Amplitude response and (b) relative angle between angular velocity and excitation
torque. The phase is given as relative angle between angular velocity and excitation torque. Circle
markers show the laboratory results, while crosses show the model results. Numbers 1, 2, 4, and 5 in
the legend correspond to Setups 1, 2, 4, and 5, respectively.

The velocity phase response is also shown in Figure 12. Instead of the wave elevation phase,
the phase of the excitation torque is used as reference, as this more clearly shows the resonance and
bandwidth properties of the system. It should be noted that, in the case of runs without WaveSpring
(Setups 1 and 2), the machinery damping was set according to the theoretically optimal value (in the
range 3.5 to 26 Nms/rad in non-equal steps, cf. Figure 6 and Appendix A). This improves the phase
response for these runs. Correspondingly, for the runs with the WaveSpring mechanism, the machinery
damping was varied in the range 1.0–6.9 Nms/rad in non-equal steps. The phase of the excitation
torque was estimated numerically from the linear theory. The results show how the WaveSpring
mechanism shifts the resonance period, identified as zero phase difference, from around 0.8 s to about
1.4–1.5 s. Despite the few measurement points, it is also worth noticing how the phase responses of
Setups 4 and 5 differ. The larger inertia of Setup 5 makes its phase response steeper around resonance
than for Setup 4. This means that Setup 4 has a larger bandwidth, which is a beneficial property when
operating in irregular waves.

An example of the buoy motion in regular wave Rf5 is shown in Figure 13. This demonstrates
how the WaveSpring mechanism in Setup 4 makes the buoy oscillate with larger amplitude than the
incident wave, and how the velocity is almost in phase with the estimated excitation torque for this
wave, which has a period close to the tuned resonance. For Setup 1, the large damping also results in
a fairly good phase response, but this comes at the expense of much lower oscillation amplitude.
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(a) Wave elevation and buoy travel.
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Figure 13. Buoy motion for regular wave Rf5, comparing the responses of Setups 1 and 4. In the left
diagram, the buoy travel is expressed as excursion along the circular path through point B with the
center at pivot A, cf. Figure 2. All signals have their mean values extracted.

5.6.2. Power Absorption in Regular Waves

In order to calculate the power absorption, the following definitions are defined and illustrated in
Figure 14:

• Wave energy: Total energy taken from the wave field.
• Total absorbed energy: Total energy absorbed into the mechanical system from the water.
• Net absorbed energy: Absorbed energy as measured on the load cell between the actuator and

the rotating arm that holds the buoy. Losses between total absorbed energy and net absorbed
energy include friction losses in the shaft bearings and the WaveSpring mechanism.

• Converted energy: Derived quantity based on subtracting assumed losses between net absorbed
energy and electrical energy output, notably losses in the electric generator and the pretension
system. The generator losses are estimated based on the conversion efficiency for a typical
electric generator. When the system works with pretension, some energy will be lost in the
pretension mechanism. This loss is computed as a loss fraction fpre on the pretension torque,
Ploss = fpreτprev2/|v|.

Figure 14. Assumed energy flow and associated definitions for the laboratory model.

The average converted power as measured by the load cell at the lever is plotted in Figure 15.
The data points have been scaled by the factor (Href/Hmes)2 for the incident wave. The reference
wave height has been set to 0.025 m, cf. Table 3. The figure shows how the ballasted system performs
somewhat better than the unballasted system when there is no WaveSpring mechanism, as should
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be expected due to the larger resonance period of the ballasted system. Also shown in the figure are
the theoretical limit for unconstrained heave motion of an axisymmetric buoy, as well as a yellow line
corresponding to the amount of power passing over a width equal to the buoy diameter. With the
WaveSpring mechanism, there is a strong increase in absorbed power for waves with a period larger
than 1.0 s. It may be observed that, with the WaveSpring mechanism, the system is indeed able to
obtain a point absorber effect that makes the absorption width larger than the physical width of the
buoy. The three points found above the yellow line represent relative capture width of between 1.2 and
1.4. In addition to the tuned phase response, the system is also taking benefit from a combined surge
and heave motion of the buoy. Further modeling and analysis may show the relative contribution from
these two oscillation modes.

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
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Setup 1:no WS, ballasted
Setup 2:no WS, no ballast
Setup 4:WS, no ballast
Setup 5:WS, ballasted

Figure 15. Average net absorbed power. Also shown are the upper theoretical limits for an axisymmetric
heaving body (green, dashed) and Budal’s upper bound (green, dotted). The yellow dashed line shows
the amount of power passing over a width equal to the buoy diameter.

Some of the power absorbed from the wave is lost in friction, in particular in friction as measured
for the WaveSpring mechanism (see Section 5.3). If the power lost in friction is included to compute
the total absorbed energy, the measured relative absorption width reaches up to about 1.6.

Figure 15 may also be compared to Figure 6 that considers theoretical results for unconstrained
motion. Together with friction and viscous loss, the reduction of the WaveSpring torque outside the
ϕ ∈ [−10◦, 10◦] range is found to be the main reason why the curves for measured tuned response
peak earlier than the theoretical curves. Above about 1.3 s wave period, oscillation amplitudes beyond
10◦ are needed to approach the theoretical limit.

It is important to mention that the PTO efficiency, which would typically reduce all power
estimates by 10–40%, have been disregarded in all results presented, both with and without the
WaveSpring.

5.6.3. Mathematical Model Validation

The mathematical model described in Section 3 has been used to simulate the response measured
during the experimental campaign. The analytical expression for the WaveSpring force derived in
Equation (3) was used in the model. The amplitude and phase responses obtained by the model were
included in Figure 12, along with the experimental results for Setups 1, 2, 4, and 5.

The simple model developed and presented in Section 3 is able to capture the general behaviour
of the systems without and with the WaveSpring even though the latest introduces non-linearities in
the system. The model captured better the amplitude response in short waves than the amplitude
response in intermediate and long waves. The phase response diagrams clearly show how the model
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has significant deviations from measurements in the mid-range of wave periods. This is the case for all
experimental setups.

The difference in phase between the model and experimental results could be an effect of not
taking into account the difference in instantaneous inertia. The buoy is moving in and out of the
water, and at the same time it varies in the relative contribution from heave and surge. In principle,
the equation of motion should then include the change-in-mass term dm/dt. The models are all
linearized in angular motion, with mass-properties depending only on frequency, and does not take
these effects into account. The rigid body mass was estimated from weighing all the different parts of
the system; it is not expected to be far off, although there is obviously limited accuracy. The model may
not represent the stiction accurately, but the effect should be less dependent on frequency. The phase
lag could not be reproduced in the model by increasing the static friction in the setups. Finally,
the phase response for the experimental runs is based on estimating the phase of the excitation force
using theoretical excitation force coefficients. The correctness of this phase has not been validated
with measurement. Further experiments or computational fluid dynamics studies would probably be
needed to further investigate the observed deviations.

A variation of machinery damping was performed for Setup 3. As known from theory,
summarized in Section 3.4, for a linear system, each wave period will have one value for the machinery
damping that maximizes the absorbed power. Based on linear theory with friction disregarded, the
optimum value for the machinery damping is predicted to lie in the interval from about 1 to 6 Nms/rad.
The machinery damping was varied accordingly in four levels: 1, 2, 4, and 6 Nms/rad. Measured
values are shown in Figure 16. Also shown in Figure 16 is how the dependency on machinery damping
is well captured by the simulation model. In short waves, the fit is difficult to assess as the experimental
data is strongly influenced by the less accurate reference-following of the actuator, cf. Section 5.5. There
is a difference in sea states Rf1 and Rf2 around applied damping of 4 Nms/rad which has not been
captured by the model. This might be an effect of less accurate reference-tracking or uncertainties in
measurements and processing, but overall the dependency on machinery damping is clearly captured
in the numerical model.
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Figure 16. Simulation results (crosses) and experimental measurements (circles) for the net absorbed
power for the difference regular wave conditions (Rf1 to Rf8).



Energies 2018, 11, 2362 20 of 23

5.7. Irregular Wave Results

Figure 17 shows an example of time series for simulation results compared to experimental
measurements in irregular waves. As for regular waves, the dynamics of the system are well captured
by the model in irregular wave conditions.

40 41 42 43 44 45 46 47 48 49 50
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Laboratory
Model

Figure 17. Angular displacement time series comparison for Setup 5 and wave conditions S2 where
the blue solid line corresponds to laboratory measurements, while the green solid line with crosses
corresponds to the simulation results.

Figure 18 shows the estimated power response for sea states S1, S2, and S3 and Setup 5, both in
terms of total absorbed power and net absorbed power, based on experimental results and simulation.
The model gives better predictions for sea states S2 and S3 than for S1. This can most likely be
attributed to the less accurate reference-tracking in the short wave period range.
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Figure 18. Average absorption width in irregular wave sea states, where experimental data is compared
to results from the mathematical model for Setup 5. Blue: Experimentally determined relative capture
width. Yellow: Capture width determined from simulation results.
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6. Conclusions

The dynamics of a pitching wave energy converter were studied both in laboratory tests and
numerical simulations. The laboratory model was equipped with a new spring mechanism that
improves the response properties of the system. A simple mathematical model was developed and has
been shown to capture the dominating dynamic effects. The laboratory model of a negative spring
mechanism clearly demonstrated the potential of such solutions in making wave energy converters
more efficient. Practical implementation in full scale will show the real increase in performance that
may be achieved.
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Appendix A. List of tests performed during the experimental campaign

Table A1 contains the list of tests performed including the wave type used, the machinery damping
(Rm) used (cf. Section 3.4), and the initial pretension torque used (τ0).

Table A1. List of Experimental Test Runs Carried out during the Experimental Campaign.

Run ID Setup Wave Type Sm Rm τ0
[Nm/rad] [Nm s/rad] [Nm]

A001 Setup 1 Rf1 0 3.64 0
A002 Setup 1 Rf2 0 3.53 0
A003 Setup 1 Rf3 0 7.31 0
A004 Setup 1 Rf4 0 11.30 0
A005 Setup 1 Rf5 0 15.12 0
A006 Setup 1 Rf6 0 18.78 0
A007 Setup 1 Rf7 0 22.31 0
A008 Setup 1 Rf8 0 25.73 0
A009 Setup 2 S2 0 11.56 8
A010 Setup 2 Rf2 0 6.11 8
A011 Setup 2 Rf4 0 13.12 8
A012 Setup 2 Rf6 0 19.95 8
A013 Setup 2 S2 −59 6 8
A014 Setup 2 S2 −40 4 8
A015 Setup 2 S2 −59 4 8
A016 Setup 3 Rf1 0 1.00 7.4
A017 Setup 3 Rf1 0 2.00 7.4
A018 Setup 3 Rf1 0 4.00 7.4
A019 Setup 3 Rf1 0 6.00 7.4
A020 Setup 3 Rf2 0 1.00 7.4
A021 Setup 3 Rf2 0 2.00 7.4
A022 Setup 3 Rf2 0 4.00 7.4
A023 Setup 3 Rf2 0 6.00 7.4
A024 Setup 3 Rf3 0 1.00 7.4
A025 Setup 3 Rf3 0 2.00 7.4
A026 Setup 3 Rf3 0 4.00 7.4
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Table A1. Cont.

Run ID Setup Wave Type Sm Rm τ0
[Nm/rad] [Nm s/rad] [Nm]

A027 Setup 3 Rf3 0 6.00 7.4
A028 Setup 3 Rf4 0 1.00 7.4
A029 Setup 3 Rf4 0 2.00 7.4
A030 Setup 3 Rf4 0 4.00 7.4
A031 Setup 3 Rf4 0 6.00 7.4
A032 Setup 3 Rf5 0 1.00 7.4
A033 Setup 3 Rf5 0 2.00 7.4
A034 Setup 3 Rf5 0 4.00 7.4
A035 Setup 3 Rf5 0 6.00 7.4
A036 Setup 3 Rf6 0 1.00 7.4
A037 Setup 3 Rf6 0 2.00 7.4
A038 Setup 3 Rf6 0 4.00 7.4
A039 Setup 3 Rf6 0 6.00 7.4
A040 Setup 3 Rf7 0 1.00 7.4
A041 Setup 3 Rf7 0 2.00 7.4
A042 Setup 3 Rf7 0 4.00 7.4
A043 Setup 3 Rf7 0 6.00 7.4
A044 Setup 3 Rf8 0 1.00 7.4
A045 Setup 3 Rf8 0 2.00 7.4
A046 Setup 3 Rf8 0 4.00 7.4
A047 Setup 3 Rf8 0 6.00 7.4
A048 Setup 3 S1 0 6.00 7.4
A049 Setup 3 S2 0 3.37 7.4
A050 Setup 3 S3 0 3.00 7.4
A051 Setup 3 S4 0 10.00 7.6
A052 Setup 3 Sweep 0 3.5 7.6
A053 Setup 4 S1234 0 4 7.6
A054 Setup 4 Sweep1min 0 4 7.6
A055 Setup 4 Rf1 0 4 7.6
A056 Setup 4 Rf2 0 4 7.6
A057 Setup 4 Rf3 0 4 7.6
A058 Setup 4 Rf4 0 4 7.6
A059 Setup 4 Rf5 0 4 7.6
A060 Setup 4 Rf6 0 4 7.6
A061 Setup 4 Rf7 0 4 7.6
A062 Setup 4 Rf8 0 4 7.6
A063 Setup 4 S1 0 4 7.6
A064 Setup 4 S2 0 4 7.6
A065 Setup 4 S3 0 4 7.6
A066 Setup 5 S2 0 4 −0.6
A067 Setup 5 Rf2 0 6.90 −0.6
A068 Setup 5 Rf4 0 2.45 −0.6
A069 Setup 5 Rf6 0 1.72 −0.6
A070 Setup 5 S1234 0 4 −0.6
A071 Setup 5 Sweep1min 0 4 −0.6
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