
High Precision Deployment of Wireless
Sensors from Unmanned Aerial Vehicles

Siri Holthe Mathisen

Master of Science in Cybernetics and Robotics

Supervisor: Tor Arne Johansen, ITK

Department of Engineering Cybernetics

Submission date: May 2014

Norwegian University of Science and Technology

i

Work Description

High precision deployment of wireless sensors from unmanned aerial vehicles.

The task consists of several steps:

1. Given a known end position for the sensor, calculate the optimal position and course of
the UAV at the sensor deployment point. Assume that wind speed and direction is known,
UAV speed and altitude are given.

2. Develop an algorithm that is used to control the UAV trajectory to the optimal deployment
point.

3. Implement an embedded computer system for execution of sensor deployment, based on
the following principles.

(a) Use Piccolo SL autopilot in a Penguin B UAV and associated ground control station
with Command Center mission planning and execution software.

(b) Implement the custom software for coordination of sensor deployment on a Panda-
board onboard computer. Use waypoint lists or turning rate as the primary com-
mand to the Piccolo SL, use navigation sensors in the Piccolo SL autopilot, and as-
sume that the end position of the sensor is fixed and given. Use DUNE for integration
of the new functionality in the onboard computer.

(c) Implement on the Pandaboard an interface to a simple sensor deployment mecha-
nism that is integrated as a payload on the Penguin B UAV.

(d) Develop a user interface with DUNE for execution and monitoring of the sensor de-
ployment functionality. Normally the UAV is operated from the Piccolo Command
Center. When a sensor deployment target is set, the command can be given to the
onboard system to take over the command of the UAV to initiate and execute the
deployment. After deployment is completed, command is given back to the Piccolo
Command Center. The UAV operator must be able to abort the deployment and take
command of the UAV at any time.

(e) Wind speed and direction estimates from the Piccolo autopilot may be used, or a
dedicated manoeuvre (like flying a circle) can be executed in order to get a reliable
wind estimate before the above algorithms are executed.

4. Test the system using hardware-in-the-loop simulation setup in the lab.

5. Test the system with field experiments, to the degree that available equipment and vehicle
permits it.

ii

Preface

The relevance of a Master Thesis can be a great motivation when working on it. To see a pur-
pose to the project does not only provide a reason for working on it in the first place, it also helps
making the choices that must inevitably be made during the work. Another drive to perform in
this project is the joy of working together with another Master Student. Although it might some-
times complicate the process, as what is intuitive to one is not necessarily understandable by
another, the benefit is vast. The result is greater than the sum of the two separate achievements,
and working together is more fun than doing it alone.

This is a Master Thesis concerning work done in the spring of 2014 at the Department of
Engineering Cybernetics. The project is taken at NTNU in cooperation with the Centre for Au-
tonomous Marine Operations and Systems (AMOS). The initiative to the Master Project came
from AMOS as part of AMOS’ Project 3: Autonomous unmanned vehicle systems, and the work,
but not the thesis, is done in cooperation with Master student Simen Fuglaas.

The objectives described in the Work Description will be distributed between the author and
Simen Fuglaas as follows:

1. Simen Fuglaas will calculate the optimal position and course of the UAV at the sensor
deployment point.

2. Simen Fuglaas will do research on the subject of finding an algorithm that is used to con-
trol the UAV trajectory to the optimal deployment point. He will then present the possible
solutions, after which he and the author together will find a suited solution.

3. The author will implement the embedded computer system for execution of sensor de-
ployment, together with Simen Fuglaas on some parts:

• The author will get familiar with programming in C++ with the use of DUNE.

• The author will get familiar with the Pandaboard, with cross compiling and with run-
ning programs on the Pandaboard.

• Simen Fuglaas will implement in C++ the calculations for an optimal position and
course of the UAV at the sensor deployment point.

• Simen Fuglaas will implement in C++ the algorithm that is used to control the UAV
trajectory to the optimal deployment point.

• The author will design a hardware architecture for the payload mount of the Penguin
B and implement it.

• The author and Simen Fuglaas will together choose a sensor deployment method for
the UAV.

• The author will implement the drop mechanism that is fit for the sensor deployment
method including all features needed to make this work.

iii

• The author will create a user interface with DUNE that communicates with the soft-
ware on the UAV.

4. Simen Fuglaas and the author will together test the system using hardware-in-the-loop
simulation setup in the lab.

5. Simen Fuglaas and the author will together test the system with field experiments, if time
and equipment permits it.

Trondheim, Monday 26th May, 2014

Siri Holthe Mathisen

iv

Acknowledgment

I would like to thank my supervisor, Professor Tor Arne Johansen, for his tireless efforts during
the whole semester. I would also like to thank my co-supervisor Mariann Merz for her patient
guidance and meetings. Other great contributors are Frederik Stendahl Leira, Kristian Klausen,
Torkel Hansen, Lars Semb and Carl Erik Stephansen, all of which have ensured that the practical
aspects of the project have gone well.

A great thank goes to my co-worker Simen Fuglaas, who has put up with me during long
work hours and testing sessions.

My Vegard Gulaker has been a fabulous support to me throughout the semester as always,
and has helped proofreading my Master Thesis. Geir Mathisen has given me valuable feedback
on the report, for which I am very grateful.

S.H.M.

v

Summary

AMOS - Centre for Autonomous Marine Operations and Systems - is a research center at the
Norwegian University of Science and Technology. One out of the 9 projects in AMOS researches
how basic unmanned aerial vehicle (UAV) operations can be performed, and one of these oper-
ations is high precision deployment of a payload from a UAV. UAVs are normally used for tasks
that are either too dangerous, too inaccessible or too repetitive for humans. These tasks may
include sensors to be placed somewhere inaccessible or first aid equipment to be delivered to
disaster areas.

This Master Thesis describes the development of a high precision deployment system of
wireless sensors from a UAV. The UAV will be controlled in a trajectory from an arbitrary start
position to the point for deployment of the sensor. The Master Thesis contains description
of the development and implementation of hardware and equipment that is placed on a UAV
called Penguin B, as well as software to control the system. The software is implemented on a
Pandaboard, an embedded computer situated on the payload mount of the UAV. The software
communicates with the UAV’s autopilot through an interface in DUNE, which is an open source
software solution delivered by the LSTS research group. DUNE offers easy-to-use interfaces
between the control software, the autopilot and all peripheral units.When the UAV reaches its
optimal deployment point, it signals a drop mechanism to let go of the sensor.

The system was tested with a hardware in the loop simulator, and with a field test where
the UAV was taxing on the landing field. The results of the tests are that both the hardware and
software of the system work as they should. The trajectories to the deployment point have been
tested with success, and one trajectory is found to be better than the other. It can be concluded
that this system has contributed a lot on the subject of high precision sensor deployment, and
suggestions for further development are given at the end of the thesis.

vi

Sammendrag

Ubemannede luftfartøyer (UAV) eller droner blir vanligvis brukt til oppgaver som er enten for
farlige, for utilgjengelige eller for kjedelige for mennesker. Slike oppgaver kan være å foreta
målinger som krever at en sensor er plassert på en utilgjengelig plass, eller å levere nødhjelp-
sutstyr til katastroferammede områder. AMOS - Senter for Autonome Marine Operasjoner og
Systemer - er et senter for fremragende forskning ved Norges Teknisk-Naturvitenskapelige Uni-
versitet. Ett av prosjektene det jobbes med i AMOS er å forske på forskjellige grunnleggende
operasjoner som droner må kunne utføre. Høypresisjonsslipp av en nyttelast fra en drone er en
av disse grunnleggende operasjonene.

Denne masteroppgaven beskriver arbeidet med å utvikle et system for slipp av trådløse sen-
sorer med høy presisjon fra en drone. Dronen skal styres i en bane fra et vilkårlig startsted til
et optimalt slippsted, der sensoren løslates. Oppgaven rommer utvikling og implementering av
maskinvare og utstyr som plasseres på en drone kalt Penguin B, samt programvare for å styre
systemet. Programvaren er implementert på et Pandaboard, en innebygget datamaskin plassert
i dronens nyttelastrom. Programvaren kommuniserer med dronens autopilot via et grenses-
nitt i DUNE, som er en fritt tilgjengelig programvareløsning levert av forskningsgruppen LSTS.
DUNE tilbyr enkle grensesnitt mellom kontrollprogrammet, autopiloter og alle periferienheter.
Når dronen når det optimale slippunktet signaliserer den til en slippmekanisme som lar sen-
soren falle til bakken.

Systemet ble testet med et hardware in the loop-simuleringssystem, samt utprøvd i praksis
på en drone som kjørte på bakken på en rullebane. Resultatene av testene er at både maskin-
varen og programvaren i systemet virker som de skal. Flybanene til slippunktet er blitt testet
med suksess, of en bane har vist at den er mer korrekt enn den andre. Det kan konkluderes
at dette systemet bidrar mye til arbeid med høypresisjonsslipp av sensorer, og forslag til videre
utvikling er presentert i slutten av oppgaven.

vii

Acronyms and Explanations of Words Used

NTNU Norges Teknisk Naturvitenskapelige Universitet - Norwegian University of Science and
Technology

GPS Global Positioning System

UAV Unmanned Aerial Vehicle

AUV Autonomous Underwater Vehicle

LSTS Laboratório de Sistemas e Technologias Subaquáticas - Underwater Systems and Tech-
nology Laboratory

MPC Model Predictive Control

DUNE Unified Navigation Environment

IMC Inter-Module Communications

PWM Pulse Width Modulated

IDE Integrated Development Environment

LAN Local Area Network

DHCP Dynamic Host Configuration Protocol

IP Internet Protocol

SSID Service Set Identifier

POE Power Over Ethernet

HIL Hardware In the Loop

IAS Indicated Air Speed

SD Secure Digital

PoI Point of Impact

PoR Point of Release

GPIO General Purpose Input and Output

CAN Controller Area Network

TCP Transmission Control Protocol

viii

Contents

Work Description . i
Preface . ii
Acknowledgment . iv
Summary and Conclusions . v
Norwegian Summary . vi
Acronyms . vii

1 Introduction 3
1.1 Background and Motivation . 3
1.2 Problem Formulation . 5
1.3 Objectives . 5
1.4 Delimitations . 6
1.5 Structure of the Thesis . 6

I Background and Theory 9

2 Literature Study 11
2.1 Search Words for the Literature Study . 11
2.2 Payload Deployment Methods . 12
2.3 The LSTS Toolchain . 15
2.4 Summary . 15

3 Tools and Equipment 17
3.1 The LSTS Software Toolchain . 17

3.1.1 DUNE . 18
3.1.2 Neptus . 18
3.1.3 IMC . 19

3.2 Pandaboard . 19
3.3 Penguin B . 19
3.4 Piccolo SL Autopilot and Cloud Cap Technology . 20
3.5 Equipment from Ubiquity Networks . 21

4 Precision Air Drop Theory 25
4.1 A Simple Throw . 25

ix

x CONTENTS

4.2 A Throw with Air Resistance and Wind . 28
4.3 Dubins Path . 30
4.4 Half Planes used to Accept Waypoints . 33

II System Description, Planning and Implementation 35

5 System Description 37
5.1 The Work Flow of the System . 37
5.2 Overview of the System Modules . 37

6 Trajectory and Drop Planning 41
6.1 Choice of Payload Deployment Method . 42
6.2 Development of an Algorithm for a Trajectory to the Point of Release 43

6.2.1 Determining the Initial Conditions . 43
6.2.2 Choice of Navigation Method . 45
6.2.3 The Straight Line approach . 46
6.2.4 A Pseudocode Implementation of the Straight Line Approach 46
6.2.5 Using Dubins Path . 46
6.2.6 A Pseudocode Implementation of the Adapted Dubins Path 48

6.3 Choice of Waypoint Acceptance Criteria . 48

7 Drop Mechanism 51
7.1 Choice of Drop Mechanism . 51
7.2 Signal Generator . 54

7.2.1 Choice of Signal Generator . 54
7.2.2 Control Signal . 55
7.2.3 Interface between Signal Generator and Pandaboard 57

7.3 Placement of the Drop Mechanism on the UAV . 58
7.4 The Substitute for the Sensor . 62
7.5 The Drop Mechanism Assembly . 62

8 The Software Implementation 65
8.1 Software Architecture on Pandaboard and User Interface 65
8.2 Class Relationship Overview . 66

8.2.1 Piccolo . 66
8.2.2 GroundControl . 70

8.3 Addresses and IDs . 70

9 Implementation of Hardware on the Penguin B 73
9.1 Radio Communication . 74
9.2 Power Supply . 75
9.3 Implementation of First Design . 76

9.3.1 Drawbacks with the First Hardware Design . 76
9.4 Implementation of Second Design . 76

CONTENTS xi

9.5 Hardware of the User Interface . 77

III Experimental Procedure 81

10 System Testing 83
10.1 Hardware Tests . 83
10.2 Hardware In the Loop Testing . 85

10.2.1 Test of Drop on Target . 85
10.2.2 Test of the Correctness of the Different Acceptance Criteria 88
10.2.3 Test of Straight Line Approach . 89
10.2.4 Test of the Accuracy of the Straight Line Approach 91
10.2.5 Test of Adapted Dubins Path . 92
10.2.6 Test of the Accuracy of the Adapted Dubins Path 92

10.3 Field Testing . 93
10.3.1 Test of Drop on Target from the Ground . 93

IV Results and Conclusions 97

11 Results 99
11.1 Results of the Hardware Tests . 99
11.2 Results of the Test of the Correctness of the Different Acceptance Criteria 99
11.3 Resulting Trajectory Generation Algorithms and their Accuracy 100

12 Discussion 107
12.1 Discussion of Choices Made . 107
12.2 Discussion of Results . 110

12.2.1 Discussion of the Hardware Test Results . 111
12.2.2 Discussion of the Correctness of the Different Acceptance Criteria 111
12.2.3 Discussion of the Trajectory Generation Algorithms 113

12.3 Discussion of the Limitation of the Field Tests . 114
12.4 Discussion of the Significance of the Study . 116

13 Future Work 117

14 Conclusion 119
14.1 What has been Performed . 119
14.2 What has been Achieved . 119
14.3 Conclusions . 120
14.4 Recommendation for Future Work . 120

Bibliography 121

CONTENTS 1

V Appendices 125

A Drawings and Schematics 127

B Definitions, Code Implementations, Equations and their Derivations 135

C Annotated Bibliography 139

2 CONTENTS

Chapter 1

Introduction

In this chapter, the Master Thesis is presented. Its background and motivation is explained, the
problem is formulated and described in separate steps. The work distribution is also described,
as is the structure of the rest of the Thesis.

1.1 Background and Motivation

The Arctic area can be defined in different ways: As the area north of the polar circle, as the
area on the northern hemisphere where the average temperature is below 10oC in the summer
months, or as the area north of the northern tree line (Wikipedia, 2014a). Though these defini-
tions do not define the exact same area, the picture is still clear: The Arctic is a very cold place.
And in cold places, icebergs appear. Everyone who has seen the film "Titanic" knows what an
unfortunate situation an undetected iceberg can cause, and it is therefore a great advantage to
the shipping industry to know where the icebergs are.

With the present technology, an iceberg could be equipped with a global positioning system
(GPS) transmitter and send its position to a receiving station at all times. However, the prob-
lem with icebergs is that they are seldom easily reachable as they float on the water, are never
standing still and consist of ice. This makes it difficult to place a GPS-transmitter on the ice-
berg. It is a risky sport to climb on icebergs, and definitely if one has to enter the iceberg from a
ship. An easier solution would be to place the sensor on the iceberg without having to climb on
the mountain, by dropping it from the air. This drop would have to be of high precision, as the
dropped package should land on the iceberg and not into the water.

An unmanned aerial vehicle (UAV) is smaller, lighter and cheaper than manned aerial vehi-
cles like helicopters or air crafts. There are two types of UAVs: the fixed-winged UAVs and the
rotorcraft designs. A rotorcraft UAV is like a small helicopter and would be easy to land on the
iceberg, but the fixed-wing UAV has a longer range and is therefore more suitable to tough mis-
sions like placement of a sensor on a far-away iceberg.

Other possible applications for high precision deployment of a payload from a UAV is the

3

4 CHAPTER 1. INTRODUCTION

Figure 1.1: A UAV deploying a sensor on an iceberg (graphics from UAV Factory (2014), SiriusXM
(2014))

deployment of supplies to devastated areas, commercial package delivery or sensors on other
places that are as unreachable as an iceberg. UAVs are used for tasks that are either so demand-
ing or so repetitive and dull that human beings do not want to do it.

To have UAVs conduct tasks that are dangerous or unsuited for humans is not new. It saves
money as it does not require a crew on the UAV, and the UAV demands less fuel and costs less
than a larger aircraft. Tuna et al. (2012) published an article about how a UAV can be used to
drop payloads and sensors in post-disaster areas. They wanted to find out how effective the
localization and navigation of their system for a wireless sensor network was, and concluded
that it is possible to deploy a wireless sensor network on a predetermined location from UAVs.
Corke et al. (2004) explains in his article how unmanned helicopters can deploy sensors, also if
there are several sensors that should be dropped in series. Wuest and Benney (2005) describes
different methods that are currently in use for deploying payloads from air crafts with the use
of parachutes. The article presents, among other air delivery technologies, five different pay-
load deployment methods, all of which use parachutes to safely deliver the load to the ground.
McGill et al. (2011) describe research done on the field of dropping sensors on icebergs. A re-
motely controlled UAV is launched from a ship nearby the iceberg, releases the sensor on the
iceberg and returns to the ship. The article explains that the challenge was to return the UAV
safely to the ship without crashing, and that the sensors released over the iceberg were operat-
ing well in approximately half of the cases.

The research centre AMOS - Centre for Autonomous Marine Operations and Systems - is a
Centre of Excellence at NTNU. It is a cooperation between the Departments of Engineering Cy-
bernetics and Marine Technology with ties to the industry, and works with operations on UAV
among other systems. One out of the 9 projects in AMOS is called Autonomous unmanned ve-

1.2. PROBLEM FORMULATION 5

hicle systems and is concentrated on how to perform basic operations with a UAV, like dropping
a payload or picking it up again. This Master Thesis is grounded on that research project. It is
conducted in cooperation with another Master Student, Simen Fuglaas, and is closely related to
a series of other projects that work on the Autonomous unmanned vehicle systems.

1.2 Problem Formulation

In this Master Thesis, the problem formulation is as follows: Develop high precision deployment
of wireless sensors from unmanned aerial vehicles (UAVs). The UAVs should be autonomous.

1.3 Objectives

The task consists of several steps:

1. Given a known end position for the sensor, calculate the optimal position and course of
the UAV at the sensor deployment point. Assume that wind speed and direction is known,
UAV speed and altitude are given.

2. Develop an algorithm that is used to control the UAV trajectory to the optimal deployment
point.

3. Implement an embedded computer system for execution of sensor deployment, based on
the following principles.

(a) Use Piccolo SL autopilot in a Penguin B UAV and associated ground control station
with Command Center mission planning and execution software.

(b) Implement the custom software for coordination of sensor deployment on a Panda-
board onboard computer. Use waypoint lists or turning rate as the primary com-
mand to the Piccolo SL, use navigation sensors in the Piccolo SL autopilot, and as-
sume that the end position of the sensor is fixed and given. Use DUNE for integration
of the new functionality in the onboard computer.

(c) Implement on the Pandaboard an interface to a simple sensor deployment mecha-
nism that is integrated as a payload on the Penguin B UAV.

(d) Develop a user interface with DUNE for execution and monitoring of the sensor de-
ployment functionality. Normally the UAV is operated from the Piccolo Command
Center. When a sensor deployment target is set, the command can be given to the
onboard system to take over the command of the UAV to initiate and execute the
deployment. After deployment is completed, command is given back to the Piccolo
Command Center. The UAV operator must be able to abort the deployment and take
command of the UAV at any time.

(e) Wind speed and direction estimates from the Piccolo autopilot may be used, or a
dedicated manoeuvre (like flying a circle) can be executed in order to get a reliable
wind estimate before the above algorithms are executed.

6 CHAPTER 1. INTRODUCTION

4. Test the system using hardware-in-the-loop simulation setup in the lab.

5. Test the system with field experiments.

1.4 Delimitations

As mentioned in Section 1.3, many factors in this Thesis have already been decided and a lot is
assumed before my work started. A Penguin B fixed-wing UAV will be the vehicle used in this
task, controlled by a Piccolo SL autopilot. A Pandaboard embedded computer will hold the soft-
ware needed onboard the UAV, and it will use the DUNE framework. DUNE will also be used on
the ground station for a user interface. Another delimitation is that the choice of radio commu-
nication between the Pandaboard on the UAV and the ground station is already done.

As this work is only intended to be carried out in the course of 20 weeks for two students, it
may not be possible to develop an optimal solution without any flaws. Thus, a trajectory opti-
mization using MPC, which would give the optimal path from the start point of the UAV to the
deployment point, is omitted in this Master Thesis. The high precision deployment is also a goal,
although the term high precision is a question of definitions and the precision may not be as
high as possible.

A simplification that is done is to only look on waypoints in two dimensions, ignoring the
height. This is done because the UAV pilot does not want the safety of the UAV to be put at risk
by lowering the UAV too much, and because it reduces the workload of the task. That means
that the height of the UAV is constant throughout this Master Thesis, and that the deployment
of the sensor has to be done at that given height.

Another assumption is that the UAV pilot will launch the UAV, and control it until a given
point. This given point is assumed to be the point of impact for the sensor. Although the point
of impact is a position on the ground, the UAV will loiter above the ground, at the same hight as
the rest of the flight will take place. At this given point where the Pilot releases the control, the
system described in this Master Thesis will take over and guide the UAV towards the deployment
point.

1.5 Structure of the Thesis

The rest of this Master Thesis is divided into parts to keep the structure as tidy as possible. In the
first part called Background and Theory, Chapters 2, 3 and 4 are placed. Chapter 2 is concerned
with the background information and the literature search used to prepare this project. An an-
notated bibliography in Appendix C contains the relevant articles. In Chapter 3, the equipment
and tools that are used in this thesis are explained and described to give some background in-
formation about them. Chapter 4 is concerned with the theory, methods and equations about
the physics of a drop, a theory used to find the path from one directed point to another, and

1.5. STRUCTURE OF THE THESIS 7

other useful theory for UAV navigation.

Part II is called System Description, Planning and Implementation. In this part, the prepa-
rations are described along with the implementation of the systems and the necessary choices
that should be taken. Chapter 5 describes the system and gives an overview that sets the next
chapters in a context. Chapter 6 debates the choices of a trajectory calculation method and a
drop method, based on the theory described in Chapter 4. Chapter 7 debates the choice of a
drop mechanism used to release the sensor from the UAV, the technicalities around this drop
mechanism and its implementation on the UAV. Chapter 8 describes the software architecture
on the Pandaboard while Chapter 9 describes the hardware architecture of the Pandaboard.

Part III is called Experimental Procedure and consists of a single chapter. Chapter 10 de-
scribes the verification of the developed hardware parts, the hardware-in-the-loop testing done
in the UAV-laboratory as well as field testing done in Agdenes.

Part IV is called Results and Conclusions and consists of the results, the discussion, the future
work and the conclusion of this Master Thesis. Chapter 11 contains the results of the testing
from Chapter 10. Chapter 12 discusses the results found in Chapter 11, the decisions that have
influenced the project and the significance of the project. Chapter 13 contains suggestions to
future work on the project described in this Master Thesis. Chapter 14 describes what has been
performed and achieved in this project, and what can be concluded.

8 CHAPTER 1. INTRODUCTION

Part I

Background and Theory

9

Chapter 2

Literature Study

The purpose of this literature study was to investigate previous work done on the field of sensor
deployment from a fixed-wing air plane, either unmanned or manned, and on the field of the
system architecture onboard a UAV that uses an autopilot.

A lot of information was found on the precise details of trajectory generation and tracking,
and all the articles containing information about this was given to Simen Fuglaas, as that was his
field of investigation. The most relevant articles for the author’s part of the work were the arti-
cles by Corke et al. (2004), Williams and Trivailo (2006), Ducote and Speelman (1966) and Wuest
and Benney (2005) for giving suggestions to a deployment method for the sensors. The article by
McGill et al. (2011) also gave valuable experience on the field of dropping a sensor on an iceberg
with a fixed-wing UAV. The advantages and disadvantages of the different deployment methods
are described in Section 6.1

The other field of investigation, the system architecture on a UAV with an interface to an
autopilot, was useful as the articles described their solution. The articles that explain research
done with the LSTS tool chain (which will be explained in Chapter 3), written by Santamaria
et al. (2007), Pinto et al. (2012), Oliveira et al. (2011) and Pinto et al. (2012), were particularly
interesting as they described the mode of operation of the LSTS tool chain. LSTS is a Portuguese
abbreviation that means Underwater Systems and Technology Laboratory. The scientists work-
ing in that group have developed a tool chain that they have called the LSTS tool chain. This will
be further explained in Section 3.1.

2.1 Search Words for the Literature Study

Ballistic Deployment on Scopus.com 09.01.2014: 182 document results in the field of engineer-
ing. 5 abstracts read. No articles read

Software Architecture UAV on Scopus.com 09.01.2014: 95 document results. 4 abstracts read.
0 articles read.

11

12 CHAPTER 2. LITERATURE STUDY

System Architecture UAV Payload on Scopus.com 09.01.2014: 10 document results. 2 abstracts
read. 0 article read.

Software Architecture Payload Autopilot on Scopus.com 09.01.2014: 4 document results. 2
abstracts read. 1 article read (Santamaria et al., 2007).

Optimal Trajectory UAV on Scopus.com 13.01.2014: 236 document results. 19 abstracts read.
2 articles read (Bousson and Machado, 2013), (Lai et al., 2011).

Onboard Architecture UAV on Scopus.com 13.01.2014: 83 document results, 10 abstracts read.
1 articles read (Dong et al., 2007).

System Architecture Design UAV on Scopus.com 15.01.2014: 296 document results, 8 abstracts
read. 2 articles read (Tang and Li, 2011), (Omari et al., 2013).

UAV on Scopus.com 23.01.2014: 76 document results. 2 abstracts read. 0 articles read.

Deployment Unmanned Aerial Vehicle on Scopus.com 23.01.2014: 387 document results. 18
abstracts read. 3 articles read (Tuna et al., 2012), (Corke et al., 2004), (Maza et al., 2010).

In addition to this, two papers about the LSTS tool chain ((Pinto et al., 2012), (Pinto et al.,
2012)) have been given to me by Remus Barbatei, who worked on the subject last semester.
Three papers ((Williams and Trivailo, 2006), (Ducote and Speelman, 1966), (Wuest and Benney,
2005)) about high precision payload drop from air planes and one paper ((Oliveira et al., 2011)
about the LSTS tool chain have been given to me by Mariann Merz. An additional paper about
deployment of sensors on icebergs using an UAV ((McGill et al., 2011)) was found by Tor Arne
Johansen. An annotated bibliography is found in Appendix C.

2.2 Payload Deployment Methods

Several payload deployment methods have been discussed in the literature. A few of which will
be presented here and discussed in Chapter 6.

Free Fall without Parachute

In their Arctic research, McGill et al. (2011) used a UAV to drop sensors down to an iceberg. No
parachutes were used to soften the landing, but the sensors were wrapped in a soft toy football
for protection with four rods pointing out. The rods were meant to prevent the sensor from slid-
ing off the iceberg(McGill et al., 2011). In the article, the researches described that the UAV was
controlled by a pilot standing on a ship some hundred meters away, aided by a camera. Three
out of the four dropped sensors survived the fall and sent reports back to the receiving station,
but only one of the four non-functioning sensors was for certain delivered on the iceberg(McGill
et al., 2011). The article also described that the landing of the UAVs was problematic.

2.2. PAYLOAD DEPLOYMENT METHODS 13

Figure 2.1: Drop of a vehicle with parachute and drogue parachute, by Ducote and Speelman
(1966)

Free Fall with Parachute

Wuest and Benney (2005) describes a free fall with parachutes in their article Precision Airdrop.
The system called Sherpa consists of a drogue parachute in addition to a main canopy con-
nected to the payload. Another system described in their article is the SCREAMER, a parachute
delivery system using a ram air drogue in addition to round, larger canopies. The DRAGONFLY
system described in the same article is another parachute delivery system, as are the Capewell
and Vertigo AGAS, the Atair ONYX and SPADES. Wuest and Benney (2005) conclude that there
have been many advances in the precision airdrop technologies and that these changes will con-
tinue in foreseeable future.

Ducote and Speelman (1966) present other research done on parachute guided delivery of
payloads from aircrafts, in an article called U.S. Air Force Concepts for Accurate Delivery of Equip-
ment and Supplies. They explain how the aerial delivery altitude can influence the choice of
delivery methods, and recommend a free fall for objects that are released from under 20 Ft.

Gravity Drop with parachute is illustrated in Figure 2.1 with an illustration from Ducote and
Speelman (1966).

Guided fall with a Spiralling Wire Slide

A guided fall is here the opposite of a free fall: The payload is guided to the ground instead of
disconnecting it from the vehicle and letting it fall freely. This method is one of a family where
an aircraft flies in circles and a payload is released to the ground with a wire. Normally, the pay-
load is attached to the tip of the wire, and the stability depends on the weight of the payload -
the heavier, the more stable. However, Williams and Trivailo (2006) used the wire as a slide that
delivered the payload in circles to a point on the ground. A constant heavy weight was placed
on the cable tip and this was preferably anchored to the ground.

14 CHAPTER 2. LITERATURE STUDY

Figure 2.2: The Spiraled Slide illustrated by Williams and Trivailo (2006)

Williams and Trivailo (2006) demonstrated that if it is possible to anchor the cable tip to
the ground, this will guarantee that the payload reaches the correct point of impact. However,
the speed it gets along the wire would have to be braked down to reduce the damages to the
payload upon the impact on the ground. The method is illustrated in Figure 2.2 with a figure
from (Williams and Trivailo, 2006).

Guided Fall on a Wired Coil

This method is described by Corke et al. (2004). Its main purpose is to deliver a sensor network,
finding a way to deploy many sensors after each other with a deterministic distance between
them. The deployment method is to use a wired coil that is controlled by a servo. The payloads
are attached with hooks to this coil at given intervals. When the servo rotates the coil, the pay-
loads fall off, one by one. The details on how this is supposed to happen are not given, and no
good illustration of the mechanism is found in the article. The method is attempted illustrated
in Figure 2.3.

2.3. THE LSTS TOOLCHAIN 15

Figure 2.3: Illustration of the payload deployment with a wired coil. The payloads hang with a
constant interval on the coil, and as it is rotated, they fall off one by one.

2.3 The LSTS Toolchain

Pinto et al. (2012) and Pinto et al. (2012) describe the LSTS toolchain in their articles Implemen-
tation of a Control Architecture for Networked Vehicle Systems and Experiments with Delibera-
tive planning on Autonomous Underwater Vehicles. The LSTS group consists of interdisciplinary
scientists mainly based in Portugal who research marine technology and applications for un-
manned vehicles in or near the sea (Laboratório de Sistemas e Tecnologias Subaquáticas, 2013).
The LSTS toolchain consists of one communication protocol called IMC, one software frame-
work called DUNE and one graphical user interface called Neptus, which all work together to
create an interface for control of unmanned vehicles.

The article by Pinto et al. (2012) introduced all these three features and describes what their
areas of applications are. An overview is given, as well as a detailed description of the qual-
ities of DUNE, Neptus and the IMC protocol. The article by Pinto et al. (2012) explains how
this toolchain can be combined with other tools. The article contains experiences with the
LSTS toolchain combined with the Teleo-Reactive Executive (T-REX), which is a plan execution
framework.

2.4 Summary

The literature study in this Master Thesis was thorough and comprehensive considering the
amount of knowledge about the system on that time. All thinkable search word combinations
were tried, but with poor results: Out of 1379 document results of the searches, only 70 abstracts
were read and only 9 articles were read. However, this was a very systematic way of structur-
ing the information on the fields of study, and it was useful to the process as it catalogued the
searches on the way. This way, the search word combinations are ploughed through and no
searching had to be done twice on the same search words. The articles that are presented in this
chapter contain useful ideas and information that is used in this Master Thesis. In the annotated
bibliography in Appendix C, all articles that were read are summed up briefly together with their
relevance.

Very useful information was found on the field of payload deployment methods and on the

16 CHAPTER 2. LITERATURE STUDY

LSTS tool chain, and this information will be used in later chapters.

In hindsight, searches on Arctic research would also be relevant. The article by McGill et al.
(2011) was very relevant as background information, and it did not appear in any of the searches
on the Scopus search engine mentioned above. The searches on the software and system archi-
tecture should also not have been emphasized that much, as they served as inspiration more
than as guidelines. However, they served their purpose as they showed a diversity of architec-
tures and demonstrated that many solutions can lead to a great design. And besides, a lot of the
read articles gave useful information, like the use of the LSTS tool chain and the sensor deploy-
ment methods. And although many of the other articles were of little use for the author’s part of
the work, they were useful to Simen Fuglaas and to the collective good.

Chapter 3

Tools and Equipment

This Master Thesis uses a lot of equipment that works together, both software and hardware.
Figure 3.1 shows an overview of how the technology is supposed to cooperate: The LSTS Soft-
ware Toolchain is supposed to be a tool that facilitates the communication with the peripherals
and autopilot onboard an unmanned vehicle and with the communication between the un-
manned vehicle and the ground station. The Pandaboard is a computer that is mounted inside
the unmanned vehicle and the Cloud Cap Technology manages the autopilot functionality of
the unmanned vehicle. Ubiquity Networks supplies the system with radio equipment for the
communication between the vehicle and the ground station that does not carry autopilot infor-
mation.

3.1 The LSTS Software Toolchain

The Underwater Systems and Technology Laboratory (LSTS), connected to the Department of
Electronic and Computational Engineering of the University of Porto, is a research group spe-
cialized on unmanned vehicles operating under water, on the water surface or in the air. The
LSTS has developed a software tool-chain consisting of the programs Neptus, DUNE and the
IMC communications protocol. Neptus is a user interface used for mission control and mis-
sion planning. It communicates with the onboard environment DUNE by the use of IMC mes-
sages.(Laboratório de Sistemas e Tecnologias Subaquáticas, 2013). DUNE is an interface to all
other peripherals of the embedded computer on which DUNE is sited.

The LSTS tool-chain works for all Autonomous Underwater Vehicles (AUV), Unmanned Aerial
Vehicles (UAV), Autonomous Surface Vehicles (ASV) and Remotely Operated Vehicles (ROV).
The tool-chain is independent of the operating system it is used on (Pinto et al., 2012), but
prefers to be used on Linux. The LSTS tool-chain is open-source technology available on the
distributed revision control and source code management system Git (Wikipedia, 2014c). That
means that it can not only be used in a project, but also modified to fit the project better.

17

18 CHAPTER 3. TOOLS AND EQUIPMENT

Figure 3.1: How the LSTS toolchain is supposed to work together with the Cloud Cap Technology
(source: (Oliveira et al., 2011))

3.1.1 DUNE

The DUNE Unified Navigation Environment is a software that runs on-board the vehicle on an
embedded computer. DUNE is responsible for the coordination of the payload processes on the
vehicle, and between the payload processes and the autopilot. It consists of several tasks, each
of which controls one element onboard the vehicle. The tasks communicate with each other
using IMC messages, which transfer data packages between a sending task and a receiving one.

DUNE should control all peripheral units of this computer to ensure a clear chain of com-
mand and good cooperation. These peripherals are normally sensors, the autopilot and a wire-
less radio frequency sending device, which communicates with Neptus (Pinto et al., 2012). The
control of peripherals use various protocols, to which DUNE can translate messages by includ-
ing the correct task.

When DUNE is running, it takes as input an .ini-file. This file includes all of the tasks that
should be used. The tasks could be compared to a pantry full of available ingredients, while the
.ini-files are receipts that use these ingredients. It is possible to say: I want to bake a chocolate
cake! and then the correct ingredients are used. It is the same with the .ini-file: If DUNE is run
with lauv-seacon as argument, the correct tasks are used.

3.1.2 Neptus

The Neptus Command and Control Software is the ground station of the tool-chain. It con-
tains a human interface and communicates with the DUNE units in the network using the IMC
protocol. The human interface offers several functionalities, like mission planning, simulation,
monitoring and replay. Neptus sends a mission plan via IMC messages to the DUNE nodes in

3.2. PANDABOARD 19

the network, and receives logging information in return.

3.1.3 IMC

The Inter-Module Communication Protocol is used both between the different DUNE modules
as well as between the vehicle and the ground station. The protocol consists of a large number
of message definitions, and the protocol can be extended by adding new message definitions.
DUNE can be an interface to other protocols like TCP or UDP. Then the IMC messages, that are
sent from one DUNE task, are translated in a translation task and sent on to the correct periph-
eral on the hardware. Corresponding, the incoming messages are translated to IMC messages.
IMC messages are available for all connected tasks, not restricted by physical limits, as long as
the messages are sent between the physical units with some communication link, including the
translating task.

3.2 Pandaboard

The Pandaboard is a general purpose microprocessor board. The board in use is a Pandaboard
ES with an OMAP4460 processor using dual-core ARM Cortex-A9 architecture (Pandaboard.org,
2014). It communicates with the host computer through a serial port using the RS232 protocol
or through Ethernet (see figure 3.2). It is also possible to connect a keyboard, a mouse and a
screen to the Pandaboard and use it as a regular personal computer. Pandaboards have room
for an SD Memory Card, where an operating system can be kept. The Pandaboard in this project
has a Linux operating system called Wheezy on its 32 GB secure digital (SD) memory card.

The Pandaboard has several ports enabling a lot of peripherals to connect to it. They can
be investigated in Figure 3.2. The Pandaboard requires a 5V power supply, preferably with 4A
available (OMAPpedia, 2012). However, it is possible to power it with a battery, as long as it can
provide the required voltage and manage current peaks of 1.2 A.

3.3 Penguin B

The UAV in use is a Penguin B from UAV Factory, as shown in figure 3.3. It has a propeller behind
the wings, a payload module that is mounted beneath the body of the air plane, two tailboom
assemblies attached to the wing and a tail joint attached to these, see Appendix A for drawings.
The mass of the Penguin B is 10 kg without fuel or payload, and it can take a payload that, in-
cluded the fuel, can be up to 10 kg (UAV Factory, 2014).

Although it is able to take off on a runway with 30 m run, it can also take off from a catapult.
That is the take off method that will be used in this project. Once it is in the air, it may stay fly-
ing for at least 20 hours and has a cruise speed of 22 m/s and a max level speed of 36 m/s. It is
petrol-powered and generates 80 W power onboard, with which it can power the payload. (UAV

20 CHAPTER 3. TOOLS AND EQUIPMENT

Figure 3.2: Pandaboard setup (source: Pandaboard.org (2014))

Factory, 2014).

The Penguin B has a removable payload mount that forms the bottom of the nose fuselage.
The gross length of the payload mount is 42 cm and the net length is 34 cm. Drawings of the
payload mount are attached in Appendix A.

The Penguin B is a fixed-wing UAV, as opposed to a rotorcraft design. Its benefits are its long
reach and the ability to carry a large payload.

3.4 Piccolo SL Autopilot and Cloud Cap Technology

Piccolo SL

Piccolo SL is an autopilot from Cloud Cap Technology. It has 14 configurable general purpose
input and output (GPIO) lines, a controller area network (CAN) interface, three RS232 payload
interfaces and several radio options for wireless communication. It has GPS sensors that makes
it able to measure its position. It supports waypoint navigation with up to 100 waypoints saved
in the autopilot as well as turning rate input. Its mass is 110 grams and it takes 4 W power. The
Piccolo SL supports both software-in-the-loop testing and hardware-in-the-loop testing. The

3.5. EQUIPMENT FROM UBIQUITY NETWORKS 21

Figure 3.3: Penguin B from UAV Factory (source: UAV Factory (2014))

autopilot is placed on the UAV, and counts as part of the payload (Cloud Cap Technology, 2014b).

Piccolo Ground Station

To communicate with the Piccolo autopilot, a Piccolo ground station is needed, see Figure 3.4.
This device receives the wireless signals that the autopilot transmits, and sends back directions
to the autopilot. It is connected to a computer with the Piccolo Command Centre that provides
a user interface (Cloud Cap Technology, 2014a).

Piccolo Command Center

This is the user interface to the Piccolo Autopilot. With Piccolo Command Center, the user may
configure the autopilot, define missions, watch the vehicle track its route and save the data of
the mission. The flight can be directed statically, which means that the complete voyage is pre-
programmed, or dynamically, which means that the Piccolo Command Center can send way-
points or heading directions to the Piccolo SL during the voyage. The Piccolo Command Center
is also used for hardware-in-the-loop or software-in-the-loop simulation, which is treated like
any other mission. It also contains pressure sensors and inertial sensors (Cloud Cap Technology,
2014c).

3.5 Equipment from Ubiquity Networks

Rocket M5

The Rocket M5 is a radio that transmits and receives data at high speed and over a wide range.
The Rocket M5 in this project will be used as a radio station. The Rocket M5 is part of the Ubiq-
uity Networks airMAX series, which use the multiple-input-multiple-output (MIMO) time divi-
sion multiple access (TDMA) protocol. The different Rocket M models have different operating

22 CHAPTER 3. TOOLS AND EQUIPMENT

Figure 3.4: The Piccolo ground station communicates with the autopilots onboard the un-
manned vehicles using radios, and with the user interface either wired or wireless. (source:
Cloud Cap Technology (2014a)).

frequencies, and the Rocket M5 has an operating frequency of 5470-5825 MHz with an output
power of 27 dBm. The Rocket M5 has a user interface can be reached from any internet browser
by an initial static internet protocol (IP) address, and the settings of the Rocket M5 can be ad-
justed in the browser.

The Rocket M5 together with another device from the airMAX series act as an extension of
the local area network (LAN), creating a wireless link. The Rocket M5 is powered by POE - Power
over Ethernet. More detailed specifications can be found on Ubiquity Networks (2014)

NanoStation M5

The NanoStation M5 is another part of the airMAX series by Ubiquity. Like the Rocket M5, it
has an output power of 27 dBm and 5 GHz transmitting and receiving frequency. The NanoS-
tation M5 is also a radio node, and the NanoStation M5 in this project will be used as an access
point. In contrast to a station, an access point in a wireless network connects many stations
as an extension to the network. The NanoStation M5 and the Rocket M5 used in this project
will be used in a bridge, extending the Ethernet connection. A sketch that illustrates how the
Nanostation M5 can communicate with the Rocket M5 is shown in Figure 3.5. The figure shows
how the radios make the upper computer an extension of the LAN, and the two computers can
communicate over the internet just like they would if both were connected to the LAN. More
detailed specifications can be found on Ubiquity Networks (2014)

3.5. EQUIPMENT FROM UBIQUITY NETWORKS 23

Figure 3.5: The upper computer is connected to the Rocket M5 with a twisted pair Ethernet ca-
ble. The Rocket M5 communicates with the NanoStation M5 using radio communication and
the NanoStation is connected to the LAN with a twisted pair Ethernet Cable. The lower com-
puter is also connected to the LAN.

24 CHAPTER 3. TOOLS AND EQUIPMENT

Chapter 4

Precision Air Drop Theory

Precision drop of an object from an airplane, either unmanned or manned, is interesting in
many fields of research. The topic has evolved greatly since the first times bombs were dropped
from the air by Austrians in 1849 (HistoryOrb, 2014) and precision air drop is now an interesting
subject for civilians as well as for the military. It is therefore a lot of information available on both
methods to deliver the payload safely to the ground and methods to get to the deployment point
effectively. This chapter is concerned with some of the theory that exists on these disciplines
and with the theory behind the physics of a throw. The last section gives an alternative way of
accepting waypoints in automatic tracking. Although the calculation of an optimal release point
for the sensor that should be dropped, as well as the calculation of an optimal path to the point
of deployment, are areas belonging to Simen Fuglaas’ Master Thesis, theory on the subjects are
presented here. However, the theory is superficial and further details can be found in Simen
Fuglaas’ Master Thesis.

4.1 A Simple Throw

The classical ballistics example is the simplified throw. The forces involved in a throw of a parti-
cle without any air resistance are investigated and unknown variables are calculated.

Given a particle with mass m and initial velocity v0. This particle is released at the height h.
This is illustrated in Figure 4.1. Assuming no air resistance and only the gravity g influencing
the particle, then Netwon’s Second Law will say that:∑

~F = m ×~a (4.1)

∑
~F =~g = m ×~a (4.2)

~a = ~g

m
(4.3)

Decomposing Equation 4.3 gives:

25

26 CHAPTER 4. PRECISION AIR DROP THEORY

Figure 4.1: A simple throw without air resistance.

ax = gx

m
(4.4)

ay =
g y

m
(4.5)

az = gz

m
(4.6)

gx = g y = 0 → ax = ay = 0, gz =−g (4.7)

Given a constant initial velocity V0(x, y, z) = (vx , vy , vz). Integrating Equations 4.6 and 4.7
twice then gives the positions P (x, y, z):∫

az = vz =
∫

gz

m
= gz

m
t + v0z (4.8)∫

vz = z =
∫

(
−g

m
t + v0z) = 1

2

−g

m
t 2 + v0z t + z0 (4.9)∫

ax = vx = v0x (4.10)∫
vx = x = v0x t +x0 (4.11)∫

ay = vy = v0y (4.12)

4.1. A SIMPLE THROW 27∫
vy = y = v0y t + y0 (4.13)

Which gives:

P (x, y, z) = (v0x t +x0, v0y t + y0,− g

2m
t 2 + v0z t + z0) (4.14)

Given v0z = 0, Equation 4.14 gives:

P (x, y, z) = (v0x t +x0, v0y t + y0, z0 − g

2m
t 2) (4.15)

At t = 0, P0(x, y, z) = (x0, y0, z0). At the time of impact, t = ti , Pi (x, y, z) = (xi , yi , zi). To find
the release position of the particle that makes it fall a given point of impact, the point of impact
is set to Pi (x, y, z) = (0,0,0). Given a release height, z0 = h, then:

v0x ti +x0 = xi = 0 → x0 =−ti v0x (4.16)

v0y ti + y0 = yi = 0 → y0 =−ti v0y (4.17)

h − g

2m
ti

2 = zi = 0 → ti =±
√

2mh

g
(4.18)

As the time is always positive, that means:

x0 =−ti v0x =−
√

2mh

g
v0x (4.19)

y0 =−ti v0y =−
√

2mh

g
v0x (4.20)

If he size of V0 is constant, but the direction is arbitrary, then the velocity can be written with
polar coordinates, using a size and an angle. The size is given and the angle can change. We
can then easy see that x0 and y0 can take any points of a circle around the point of impact with
a radius given by Equation 4.23, where the velocity is directed towards the point of impact (see
Figure 4.2).

|(x0, y0)| =

√√√√(−
√

2mh

g
v0x)2 + (−

√
2mh

g
v0x)2 (4.21)

=
√

2mh

g
v2

0x +
2mh

g
v2

0y (4.22)

=
√

2mh

g

√
v2

0x + v2
0y =

√
2mh

g
|V0| (4.23)

The decomposed velocity vectors are shown in Figure 4.3.

28 CHAPTER 4. PRECISION AIR DROP THEORY

Figure 4.2: The release point and the velocity vector at the point of release, where the point of
impact is the origin.

The conclusion is that to hit a point Pi (x, y, z) with a particle with mass m from the height
h, the particle can be released with a velocity V0 pointing towards the point of release, when the
distance in the radial direction is given in 4.24.

r =
√

2mh

g
|V0|. (4.24)

In Cartesian coordinates the point of release is:

P0(x, y, z) = (−
√

2mh

g
v0x ,−

√
2mh

g
v0y ,h) (4.25)

4.2 A Throw with Air Resistance and Wind

Given a particle with mass m and initial velocity v0. The particle is released at the height h, as
illustrated in Figure 4.1. Assuming air resistance and wind influencing the particle in addition
to the gravity. Then Equation 4.2 will be adjusted to Equation 4.26:∑

~F =~g + ~Fw + ~Fa = m ×~a (4.26)

4.2. A THROW WITH AIR RESISTANCE AND WIND 29

Figure 4.3: The decomposition of a velocity vector in x- and y direction.

Where ~Fw is the wind force and ~Fa is the force of the air resistance. The wind force will either
reduce or extend the distance from the point of release to the point of impact. Approaching the
point of release against or with the wind will be the two simplest cases. As Figure 4.4 shows that
if the particle is released against the wind, then it will have a lot lower velocity than if it is re-
leased with the wind. The distance from the point of release to the point of impact will therefore
be greater than the solution in Equation 4.25. The air resistance will reduce the distance from
the point of release to the point of impact.

Figure 4.4: The particle’s velocity after the release if it is released against or with the wind.

30 CHAPTER 4. PRECISION AIR DROP THEORY

4.3 Dubins Path

In this Master Thesis, a directed point means a position given with a coordinate, where the ap-
proaching angle to the point is given. Therefore, in three dimensions, a position P is given with
the position vector ~P = [x, y, z] as well as with the velocity vector ~V = [u, v, w], or corresponding
using other coordinates. In 1957, Lester Eli Dubins showed that the time-optimal curve between
two directed points in a two dimensional plane consists of only two circles of and a straight line
that is a tangent to both lines (Dubins, 1957; Beard and McLain, 2012). The problem that this
solution solves is showed in Figure 4.5. His solution to this problem is called the Dubins Path.

Figure 4.5: The problem that is solved with Dubins Path: Create an optimal trajectory from point
Ps , which has the heading θs , to point Pe , which has the heading θe .

NED-frame

The word NED-frame is derived from the abbreviations of the words north, east and down. It is
a local geodetic coordinate system that is similar to the Cartesian coordinate system, where the
origin is a point on the earth sphere. Within a given and not too large distance of the origin, the
xy-plane of the NED-frame is approximately equal to the surface of the earth, making a tangent
plane to the earth on the point of origin of the NED-frame. The x-axis of the NED-framepoints
towards north, the y-axis points towards east and the z-axis points towards the center of the
earth (Wikipedia, 2014b).

4.3. DUBINS PATH 31

Figure 4.6: The problem that Dubins Path solves: The shortest curve from one directed point to
another directed point.

Assuming a plane on a NED-frame of a given height. From a starting position Ps with a ve-
locity with the heading θs relative to the north axis of the NED-frame, a UAV should follow a
path that ends up in Pe with velocity heading θe relative to the north axis of the NED-frame, see
Figure 4.5. The UAV has a minimum turning radius R, which is the radius of the smallest circle
the UAV can make. The principle of Dubins Path is that the UAV starts by flying in a circle until it
reaches the straight line that touches both that circle and the circle formed by the ending point.
The ending point forms a circle because a particle with position P and velocity V is part of two
circles, one on each side.

As Figure 4.6 shows, a particle that has the initial starting point Ps and velocity θs can be
part of two turning circles, one clockwise to the right of the starting position and one counter-
clockwise to the left of the starting position. The end point with the end velocity heading can
also be part of two circles: One clockwise on the right hand and one counter-clockwise on the
left hand. This means that there are four circles, one right-handed and one left-handed for both
start and end position. They have centres definer by:

cr = p+R(cos(θ+ π

2
, si n(θ+ π

2
),0)> (4.27)

cl = p+R(cos(θ− π

2
, si n(θ− π

2
),0)> (4.28)

That means that there are four combinations that fulfil the circle-straight-line-circle con-
ditions, all of which are shown in Figure 4.7. Dubins path is the shortest path out of the four
possible ones (Beard and McLain, 2012). According to (Beard and McLain, 2012), the total path

32 CHAPTER 4. PRECISION AIR DROP THEORY

length is therefore:

Case 1: Right-hand circle, straight line, righ-hand-circle

ϑ is the angle formed between the north axis and the straight line between the center of the
chosen circles.

RSR : L1 = ‖cr s − cr e‖+R
〈

2π+
〈
ϑ− π

2

〉
−

〈
θs − π

2

〉〉
+R

〈
2π+

〈
θe − π

2

〉
−

〈
ϑ− π

2

〉〉
(4.29)

Case 2: Right-hand circle, straight line, left-hand-circle

ϑ is the angle formed between the north axis and the straight line between the center of the
chosen circles, `= ‖cle − cr s‖ and

ϑ2 =ϑ− π

2
+ si n−1

(
2R

`

)
(4.30)

RSL : L2 =
√
`2 −4R2 +R

〈
2π+〈ϑ2〉−

〈
θs − π

2

〉〉
+R

〈
2π+〈ϑ2 +π〉−

〈
θs + π

2

〉〉
(4.31)

Case 3: Left-hand circle, straight line, right-hand-circle

ϑ is the angle formed between the north axis and the straight line between the center of the
chosen circles, `= ‖cr e − cl s‖ and

ϑ2 = cos−1 2R

`
(4.32)

LSR : L3 =
√
`2 −4R2 +R

〈
2π+

〈
θs + π

2

〉
−〈ϑ+ϑ2〉

〉
+R

〈
2π+

〈
θs − π

2

〉
−〈ϑ+ϑ2 −π〉

〉
(4.33)

Case 4: Left-hand circle, straight line, right-hand-circle

ϑ is the angle formed between the north axis and the straight line between the center of the
chosen circles.

LSL : L4 = ‖cl s − cle‖+R
〈

2π+
〈
ϑ+ π

2

〉
−

〈
θs + π

2

〉〉
+R

〈
2π+

〈
θe + π

2

〉
−

〈
ϑ+ π

2

〉〉
(4.34)

The case with the shortest total path length is Dubins Path and therefore the time-optimal
curve from one directed point in the plane to another directed point in that same plane (Beard
and McLain, 2012).

4.4. HALF PLANES USED TO ACCEPT WAYPOINTS 33

Figure 4.7: The four possible suggestions for a Dubins Paths with the initial Ps ,θs and Pe ,θe .
The two lower paths indicate that the UAV has to fly almost a whole circle before starting on the
straight line.
.

4.4 Half Planes used to Accept Waypoints

A waypoint is a position given with a geographic coordinate system, meaning that the point con-
sists of a latitude, a longitude and an altitude. To accept a waypoint as entered, a sphere around
the waypoint can create an acceptance area. When the UAV’s GPS position says that the UAV is
within this sphere, the waypoint is accepted. The radius forming the acceptance sphere is called
an acceptance radius.

As an alternative to an acceptance radius around the tracked waypoint, half planes can be
used. When the line that defines the change of half planes is crossed, the waypoint is accepted.
The theory names the waypoint that should be accepted for wi , the previous waypoint is wi−1

and the next waypoint is wi+1. These three waypoints form a plane, and two half planes are
formed if that plane is divided by a line. The point of using half planes to accept a waypoint is to
say that as long as the UAV is on the first half plane, it has not yet reached the waypoint. As soon
as it crosses the line to the next half plane, the waypoint is accepted.

Given a point r ∈ℜ3 and a normal vector n ∈ℜ3, a half plane is defined as in Equation 4.35.

H(r,n), {p ∈ℜ3 : (p− r)>n ≥ 0} (4.35)

Waypoints i is written as wi , and the unit vector from wi to wi+1 is written as Equation 4.36.

34 CHAPTER 4. PRECISION AIR DROP THEORY

Figure 4.8: Illustration showing the half plane that indicates when the UAV has reached waypoint
wi and can continue to track the next. Source: (Beard and McLain, 2012)
.

qi ,
w[i +1]−wi

‖wi+1 −wi‖
(4.36)

The unit normal vector of the halfplane in 3 dimensions is given by Equation 4.37:

ni ,
q[i +1]+qi

‖qi+1 +qi‖
(4.37)

The source for this whole Section is (Beard and McLain, 2012) and further information can
be found here.

Part II

System Description, Planning and
Implementation

35

Chapter 5

System Description

Summed up, the assignment of this Master Thesis is to drop a payload from a UAV precisely on
a given target from a predetermined height. This is a large and complicated task that must be
described thoroughly to get a proper overview of the situation. This chapter aims to describe
the system and create a connection between the tasks that are described later on in the Master
Thesis.

5.1 The Work Flow of the System

The line of action in this system is illustrated in Figure 5.1. The given start condition is that the
UAV loiters around the point of impact, but on a given height, to measure the wind. Until this
point, the UAV pilot has controlled the UAV. This loitering has a radius that is at least as big as the
minimum turn radius of the UAV, but probably bigger. After the wind is correctly measured, the
point of release and the angle, from which the UAV must approach the point of release (PoR), is
calculated. This calculation takes the direction and the strength of the wind into consideration.
The next task is to calculate a trajectory that takes the UAV from the current position to the PoR.
Here, it is important that the UAV reaches the PoR from the correct angle, that was calculated in
the previous step. When the trajectory is calculated, it can be tracked by sending instructions
to the autopilot. When the correct PoR is reached, the sensor must be released. Afterwards, the
UAV can return to base or continue to loiter around the target position, ready to be controlled
again by the UAV pilot.

5.2 Overview of the System Modules

The two superset modules of the system are the UAV and the ground station, communicat-
ing with each other using wireless communication (Figure 5.2). The UAV is a Penguin B, more
closely described in Section 3.3, using a Piccolo autopilot to control the flight, see section 3.4. A
payload mount forms the bottom of the UAV body, on which a Pandaboard (see 3.2), equipment
for a drop mechanism, some electronics and a radio are placed. The radio in the Penguin B is a
Ubiquiti Rocket MS from Ubiquiti Networks, see section 3.5. The drop mechanism is described

37

38 CHAPTER 5. SYSTEM DESCRIPTION

Figure 5.1: The flow of the system used to release a sensor from a UAV onto a target. The loitering
around the target happens on the same height as all other flight activity. Before the loitering, the
UAV pilot is responsible for controlling the path of the UAV.

Figure 5.2: Superior System Overview. The UAV communicates with the ground station with
radio communication.(sources: UAV Factory (2014), www.gettyicons.com)

5.2. OVERVIEW OF THE SYSTEM MODULES 39

Figure 5.3: The system architecture of the payload. The green boxes are controlled by the UAV
pilot, but the autopilot may receive directions via DUNE

in detail in Chapter 7.

The UAV communicates with the ground station over wireless communication, as anything
else would be impossible when it is in the air. Piccolo has a radio link connecting it with Piccolo
Command Centre on the ground, independent of the communication between the payload and
the ground. This is controlled by a UAV pilot. The user interface is also on ground and consists
of software written with DUNE that communicates with the payload using IMC messages wire-
lessly.

Onboard the UAV, the Pandaboard is placed on the payload mount. The software on the
Pandaboard communicates with the ground station using the UDP protocol over radios. The
software on the Pandaboard is also responsible for calculations of the point of release, calcula-
tions of an optimal path from the current position of the UAV to the point of release, control of
the drop mechanism and interface to the Piccolo autopilot. This is shown in Figure 5.3.

40 CHAPTER 5. SYSTEM DESCRIPTION

Chapter 6

Trajectory and Drop Planning

A precision air drop implies that the payload to be deployed should end up as close to the target
position as possible. Although there are uncertainties involved in this, it is possible to calculate
a point of release by the use of mechanics equations. This will be done in Simen Fuglaas’ Mas-
ter Thesis and will therefore not be described here, but some of the theory involved is found in
Sections 4.1 and 4.2.

As described in Chapter 5, the UAV is controlled by the UAV pilot until it reaches the point
of impact, projected on the same height as the UAV is supposed to fly. This is probably close
to the point of release, though not the same point. After measuring the wind, the Pandaboard
calculates the optimal point of release (PoR) and the trajectory that leads it to this point from
the correct angle. The minimum turning radius of the UAV must also be taken into considera-
tion. From the UAV leaves this circle until it reaches the point of release (PoR), it must follow a
trajectory. The shortest way between two points is a straight line, but as the UAV is restricted by
technicalities such as minimum turning radius and initial heading, a straight line is not always
an option. One method to solve this problem is elaborated in Section 4.3.

To release the payload from the UAV, there are several methods found in the literature for
delivering a payload from an aerial vehicle. Many scientists have presented their experience
with different solutions. Restrictions on the UAV as well as requirements for the delivery of the
payload must be taken into consideration, and not all solutions are realistic in the time frame
assigned to this master thesis.

This chapter is devoted to development and implementation of an algorithm for a trajectory
from a starting point to the point of release, and to the choice of a method used to deploy the
payload. Because the trajectory from a starting point to an end point depends on where the end
point is, the calculation of a point of release is treated before the first. And since the payload
deployment method is critical when it comes to calculating the point of release, that first step
will be treated before the second.

41

42 CHAPTER 6. TRAJECTORY AND DROP PLANNING

6.1 Choice of Payload Deployment Method

The payload deployment methods found in the literature can be divided into two groups: Free
falls and guided falls. The free fall group contains all methods that drops the payload directly
from the UAV, and can either use parachutes or not. The guided falls use facilities to release
the payload, for example the wire coil slide mentioned by Williams and Trivailo (2006) or the
rotating wire coil, mentioned by Corke et al. (2004). These deployment methods are described
in Section 2.2.

Free Fall without Parachute

This method is by far the simplest one. It requires nothing but a facility that disconnects the pay-
load from the UAV, and the control of this facility. That means that there is less equipment that
can be malfunctioning and that has to be maintained. Besides, it means that the calculations
for a point of release are simple. The drawback is that there are no mechanisms implemented
in the deployment method that prevent the sensor from being destroyed by the impact on the
ground.

Free Fall with Parachute

This method has the simplicity of the free fall without parachute, but provides a mechanism
that prevents the sensor from being destroyed by the fall, namely the parachute. The canopy
decelerates the speed of the falling object by increasing the air resistance and thus decreases
the shock when the object hits the ground. However, the increased air resistance means that the
parachute is much more exposed to the wind, which can make the object drift far away from its
point of impact.

Guided fall with a Spiralling Wire Slide

It is far more complex than both of the free falls, as it requires the wire to be released and a facility
that releases the payload on the wire slide, in addition to anchoring of the wire to the ground or
a heavy weight on the tip of the wire. The weight on the wire and the weight of the wire itself will
moreover be restricted by the maximum payload weight on the Penguin B. Another challenge
with this method is the anchoring to the ground for stability: It has to be done automatically as
there are no human beings on the iceberg, ready to anchor a wire to get packets. An automatic
wire anchoring mechanism then has to be developed, and the resulting amount of work would
then probably exceed the workload available of this Master Thesis.

Guided Fall on a Wired Coil

Although this method is placed among the deployments that do not use free fall, the payload is
dropped from the coil directly to the ground. Its main purpose is to enable several sensors to be
dropped at given intervals from the same UAV, and is therefore not very relevant in this case.

6.2. DEVELOPMENT OF AN ALGORITHM FOR A TRAJECTORY TO THE POINT OF RELEASE43

Choice of Deployment Method

The spiralling wire slide is a time-consuming and complicated solution that requires a lot of
weight, especially for a deployment from a great height, to be carried by the UAV. That makes
it a unfit solution for this application. The free fall is a simple solution that is manageable in
the course of a Master Thesis. However, there is no use in a sensor that is precisely dropped to
the ground, if the impact breaks it. A parachute might solve that problem, but the effect it has
on the wind forces is unforeseeable. Depending on the height where the payload is released, it
can drift very far away. As precision is important, then parachutes are out of question. The only
solution of the researched alternatives is the free fall without parachute, but with protection for
the deployed sensor that prevents it from destruction.

This will be realised with a drop mechanism that releases the payload sensor from the body
of the UAV, and this drop mechanism will be discussed in Chapter 7.

6.2 Development of an Algorithm for a Trajectory to the Point
of Release

6.2.1 Determining the Initial Conditions

The requirement for the trajectory is that it should lead the UAV from the starting point to the
point of release. The point of release depends on the wind and the approach direction of the
UAV, which means that it is necessary to know the force and direction of the wind. This can be
effectively measured by loitering around the point of impact. With its sensors, the Piccolo SL au-
topilot can measure the wind and communicate that to the control unit onboard the Penguin B.
The wind will, as mentioned, influence the position of the point of release and the calculations
for this point are easiest if the UAV comes up against the wind or flies with the wind. These two
choices are approximately equivalent, but still, the first alternative is preferable: If the UAV flies
against the wind, then the length between the point of release and the point of impact is con-
fined, although the wind strength might change. If the UAV flies with the wind, then a change
of the wind strength will blow the payload further away, helped by the initial velocity of the pay-
load that is gained from the UAV. That means that the point of release is decided to be placed
such that the UAV must fly against the wind, see Figure 6.1.

Now the trajectory requirements are as follows: A trajectory should be calculated from a start
position, which is somewhere on the circle around the point of impact to measure the wind, to
an end position, which is somewhere else. The end position will be along the opposite direction
of the wind from the point of release, depending on the strength of the wind, the air resistance
and the speed of the UAV. The UAV has a velocity when the trajectory is calculated, and the point
of release should be approached from a correct angle. This must be considered when the tra-
jectory is calculated. This is illustrated in Figure 6.2. Another requirement is that the minimum
turn radius of the UAV should be respected - no turns should be planned with a smaller radius.

44 CHAPTER 6. TRAJECTORY AND DROP PLANNING

Figure 6.1: An illustration of the point of release, where ~Fw =−|Fw |~R.

Figure 6.2: The problem to be addressed when creating a trajectory from an initial point to an
end point. Pi is the initial position of the UAV, the arrow points its heading. Pr is the point of
release, the arrow points against the wind. R is the minimum turn radius of the UAV.

6.2. DEVELOPMENT OF AN ALGORITHM FOR A TRAJECTORY TO THE POINT OF RELEASE45

Figure 6.3: On out of many possible paths from one directed point to another.

A countless number of paths lead from the directed starting position to the directed ending
position, one of which is shown in Figure 6.3. It is clearly an advantage to use a deterministic
path. The natural choice is then to use the optimal path between the points, starting with a
given direction and ending up with a given direction.

6.2.2 Choice of Navigation Method

The Penguin B uses a Piccolo SL autopilot to control its flights. The autopilot can accept flight
directions in the form of waypoints and heading change. Waypoints consist of latitude, longi-
tude and several variants of height, while heading means the angle the autopilot should fly with
relative to the north axis of the NED frame. This was not experimented with before a method
was chosen, as there was no appropriate test time: The testing happened in the last few weeks
of the Master Thesis project, and there were not enough test times available. Besides, if the
waypoint and heading experiments should be conducted before one was chosen, then the real
testing would have happened much later. Therefore, the decision was taken based on experi-
ence other Master students had had with the system, and sensible discussion.

The preferred choice is to use heading, as that is more easily controlled with feedback. If a
heading is given to the autopilot, then the measured heading received from the autopilot says
how well the directions are followed. That is exact and easy to use control theory upon. With
waypoints, that is different. If the autopilot receives a waypoint, it flies in that direction, but does
not have to be exactly on the waypoint spot to accept it: If the UAV is within a given radius of the
waypoint, it counts as if the UAV is in the waypoint. That creates uncertainty, if the waypoints
are not tracked. It is possible to track the waypoint in a payload computer and be more exact
than the autopilot.

Some other Master students, Espen Skjong and Stian Nundal, experienced that the Piccolo
autopilot did not track a path well when it used heading instead of waypoints, as there are no
good ways to measure the heading onboard the UAV, and therefore no possibilities for a feedback

46 CHAPTER 6. TRAJECTORY AND DROP PLANNING

loop. That, in addition to the improved tracking of waypoints, led to the decision that waypoints
should be used for navigation.

6.2.3 The Straight Line approach

This is a very simple approach, which does not give any optimal path. The UAV approaches the
point of release (PoR) from a predetermined angle and starts by loitering around the point of
impact on the given height above the ground.

A straight line is drawn through the PoR, parallel to and in the same direction as the wind.
A point is chosen on the straight line, far away from the PoR in the direction of the wind. The
path of the UAV goes from the starting point, through the point far away from the PoR on the
straight line, and then through PoR against the wind. This is illustrated in Figure 6.4, where the
trajectory is the dotted line.

However, no UAV is able to turn on the spot. A more realistic path is shown as a solid-drawn
line in the figure, with an arch and lines drawn from the arch to the dotted line. The size of
the arch on this line depends on the minimum turn radius of the UAV. To be sure to reach the
PoR fram the correct angle, it is important that the far away point is, in fact, far away. If the
distance were equal to two minimum turn radius of the UAV (R), then the worst case scenario
is that the UAV would approach the PoR from the side, simply following the circle arc, with 90o

angle deviation from the ideal approach. For each extra turning radius added to the distance,
the angle with which the UAV approaches the PoR, will be more similar to the ideal angle. This
is however in a worst case scenario. In reality, the autopilot will aim to follow the dotted line and
thus add a curvature to the straight lines shown in Figure 6.4. That makes approximately four
times the minimum turning radius a reasonable choice for the distance, as that distance would
allow the UAV to fly not one, but two full circles before reaching the PoR.

6.2.4 A Pseudocode Implementation of the Straight Line Approach

The Straight Line Approach will be implemented in the calculations tasks (see Section 8.2.1.2)
in C++. The algorithm for following the Straight Line Approach is found in Table 11.2 in Chapter
11. The implementation of and calculations for the Straight Line Approach are conducted by
Simen Fuglaas and this will be described in his Master Thesis. This solution is meant to be a
temporary solution that solves the problem, but not in any optimal way, as the precision of the
approaching angle on the point of release depends on the distance to the far away-point.

6.2.5 Using Dubins Path

The Straight Line approach gives a deterministic, though not very optimal solution to the tra-
jectory generation problem. Dubins Path, described in Section 4.3, is an optimal path from one
directed point to another. To find Dubins Path, four possible Dubins Paths must be evaluated
and the shortest one chosen. As the UAV is already loitering when the path is calculated, this
excludes the two paths that do not start with the same rotation as the loitering, but still, two

6.2. DEVELOPMENT OF AN ALGORITHM FOR A TRAJECTORY TO THE POINT OF RELEASE47

Figure 6.4: Straight Line Approach. The figure shows the starting point, the chosen point, PoR
and an ideal path between the points drawn with dots.

paths must be calculated. To make the solution simpler, we do not demand a time optimal, but
a deterministic trajectory from the directed starting position to the point of release. That means
that one possible Dubins Path can be chosen from the beginning, without any heavy compari-
son calculations.

The point of release can be approached from two circles, see Figure 6.5. To simplify calcula-
tions, the same circle is chosen every time, namely the circle with the same rotation as the wind
measurement circle is chosen. In Figure 6.5, this means the right circle. Then, the theory found
in Section 4.3 can be used, creating a path built froms two circles and a straight line. This is
shown in Figure 6.6.

Although the velocity vector of a particle following a circle is tangential to the circle, the ac-
celeration is pointed towards the center of the circle, see Appendix B. This creates a centripetal
force that influences the path of the dropped sensor and pushes it out of its course. In the calcu-

48 CHAPTER 6. TRAJECTORY AND DROP PLANNING

Figure 6.5: Choosing the correct circle for the Adapted Dubin’s Path.

lations of the release point (see Section 4.2 a constant velocity has been assumed, which means
no angular velocity either. The solution to this problem is to add a straight line to the trajectory
before releasing the target. This can easily be arranged by moving the circle connected to the
point of release, along a straight line from the point of impact to the point of release. This is
shown in Figure 6.7

6.2.6 A Pseudocode Implementation of the Adapted Dubins Path

The Adapted Dubins Path will be implemented in the calculations tasks (see Section 8.2.1.2) in
C++. The algorithm for following the Adapted Dubins Path is found in Table 11.3 in Chapter 11.
The implementation of and calculations for the Adapted Dubins Path are conducted by Simen
Fuglaas and this will be described in his Master Thesis.

6.3 Choice of Waypoint Acceptance Criteria

As described in Section 4.4, there are two possible ways to accept a waypoint: Either by using
an acceptance radius and say that the waypoint has been entered by registering the position of
the UAV within a given distance of the waypoint, or by the use of half planes. The efficiency of
the two waypoint acceptance criteria is dependent on how good the communication between
the Pandaboard and the autopilot is. If the autopilot sends the GPS position of the UAV to the

6.3. CHOICE OF WAYPOINT ACCEPTANCE CRITERIA 49

Figure 6.6: The chosen possible Dubins Path. PoI is the point of impact of the sensor, while PoR
is the point of release. R represents the minimum turn radius of the UAV.

Pandaboard on a very high frequency, then the acceptance radius will accept waypoints as soon
as it enters the acceptance circle. That way, the distance between the waypoint and the position
of the UAV when it accepts the same waypoint, is approximately equal to the acceptance radius.
That encourages a very small acceptance radius. The problem with that is if the Piccolo is some-
how prevented from sending its position to the Pandaboard within that very small acceptance
circle, then the waypoint will not be accepted at all, and the UAV has to fly back to try that way-
point again. If however a half plane were used, then the UAV would still be on the other side of
that half plane when the Piccolo is again able to send its position to the Pandaboard, and the
waypoint will always be accepted.

The trajectory tracking will be implemented with both acceptance radius functionality and
with half plane functionality. That way, the two methods can be tested and it is possible to see
which one should be used in future work on the system.

50 CHAPTER 6. TRAJECTORY AND DROP PLANNING

Figure 6.7: This Adapted Dubins Path gives constant velocity at PoR.

Chapter 7

Drop Mechanism

When the UAV has tracked the optimal trajectory correctly and reached the drop location, it
must be able to release its payload. As discussed in Chapter 6, the sensor deployment method is
to come against the wind to an optimal deployment point and disconnect the sensor from the
UAV. As the UAV in use (see Section 3.3) does not come equipped with any drop mechanism, an
external payload release mechanism will have to be attached to the air plane. The requirements
for this payload release mechanism are:

1. It should drop the payload with a known and deterministic delay

2. The dropped payload should not end up it the propeller of the UAV (see figure 3.3).

3. It should not be too power consuming

4. It should not be too heavy

5. It should be reasonably easy to operate

6. It should be reusable

That the drop mechanism should be reusable means that if one part of the mechanism is
connected to the sensor as it is released from the UAV, then this part should be easy to replace.
This Chapter is devoted to the choice of a drop mechanism and to the implementation of that
drop mechanism in the system.

7.1 Choice of Drop Mechanism

The drop mechanisms that were investigated are presented in Table 7.1. The EFLA405 Servoless
Payload Release was purchased in the beginning of January 2014, the Quanum RTR Bomb sys-
tem arrived in the middle of march 2014 and the Tinder Rocketry Peregrine was never ordered.

51

52 CHAPTER 7. DROP MECHANISM

Name Weight Voltage Max
Current

Signal Length Width Height

EFLA405
Servoless
Payload Release

18 g 4.8-8.5 V 350 mA PWM 79.0 mm 15.5 mm 27.0 mm

Quanum RTR
Bomb System

103 g 4.8-8.5 V 350 mA PWM

Bomb:
235 mm
Base:
85 mm

Bomb:
81 mm
Base:
64 mm

Bomb:
81 mm
Base:
20 mm

Tinder Rocketry
Peregrine

8-38 g NA NA Ignition NA NA NA

Table 7.1: The specifications of the drop mechanisms. The different producers present the data
in different ways.

EFLA Servoless Payload Release

The EFLA405 Servoless Payload Release has a design that makes it easy to fasten the mechanism
to other objects, see Figure 7.1. It consists of two parts, one that is twice as big as the other and
contains the electronics and one that is supposed to be fastened of the sensor. Both parts have
holes in their bodies, which makes them suitable to be fastened to the UAV system and to the
sensor. The two parts are connected through a metal pin on the active half that goes through a
hole on the passive part. When the drop mechanism receives a pulse-width-modulated (PWM)
signal in the range between 0-1 V, it pulls back the pin and the passive part is disconnected from
the active part. The interface to a UAV system are three cables, demanding 5 V as power, ground
and the control signal. The EFLA405 Servoless Payload Release can carry up to 340 g as a pay-
load (E-flite advancing electric flight, 2014).

When the ELFA405 Servoless Payload Release releases its payload, it also releases its passive
part. That means that this passive part should be easy to replace. One solution would be to buy
a lot of drop mechanisms and use only the passive parts, but a simpler one is to make them with
a 3D printer. This will not be further elaborated in this Master Thesis.

Quanum RTR Bomb System

The Quanum RTR Bomb System is built similar to the EFLA405 servoless Payload Release. See
Figure 7.2 for a picture. It, too, consists of two parts where the larger part is active and releases
the smaller, passive part when it receives a control signal. In Table 7.1, the active part is named
Base and the passive part is named Bomb, as this mechanism originally is a toy that releases
bombs. It, too has an interface with one cable for 5 V as power, one for ground and one for the
control signal. But the Quanum RTR Bomb System is not suited to be fastened on anything with
screws, as the bodies of both the active and the passive halves have smooth surfaces without
holes. The only options would then be to fasten the parts by drilling holes into the bodies, by
gluing them or by taping them to the UAV and to the sensor. Besides, the passive part is con-
nected to the active part by only two plastic hooks. They do not yield when being pulled apart

7.1. CHOICE OF DROP MECHANISM 53

Figure 7.1: EFLA405 Servoless Payload Release. The brown cable is for ground, the red is for Vcc

and the orange is for the signal

by moderate force, but seem less robust than the EFLA405 Servoless Payload Release.

Tinder Rocketry Peregrine

This might be used as a drop mechanism, although that may not be the original intention. An
illustration of this mechanism is shown in Figure 7.3. The housing seems to be launched from
the mount and cap by the force produced when compressed CO2 is released, and the spring
between the mount and the housing that pushes the housing away. A detailed instruction to
how this launch should be prepared is shown in the manual by Tinder Rocketry (2014), but the
manner of operation is not explicitly stated and might be different from the description above.
It looks like the mount can be fastened to the UAV, having the drop mechanism standing per-
pendicular to the surface where the mount is fastened. Because of the uncertainties of this
mechanism, and because it would demand an ignition to launch this mechanism, which might
be unfortunate on a fuel driven UAV, it was never ordered and considered unfit for this project.

Selection of Drop Mechanism

The description of the three drop mechanisms that were evaluated for this project, indicates that
one of the three is more suited than the others. The Tinder Rocketry Peregrine was excluded al-
ready in the investigation of the drop mechanisms, and was not ordered. The reasons for this
was the ignition launching and the insufficient information about the system. The EFLA405
Servoless Payload Release has a specified payload weight limit, it seems more robust than the
Quanum RTR Bomb System and is easier to fasten on the UAV system than the Quanum RTR
Bomb System. The EFLA405 Servoless Payload Release is therefore selected as the drop mecha-
nism for this project.

54 CHAPTER 7. DROP MECHANISM

Figure 7.2: Quanum RTR Bomb System 1/6 scale plug-n-Drop. The brown cable is for ground,
the red is for Vcc and the orange is for the signal

7.2 Signal Generator

The chosen drop mechanism, the EFLA405 Servoless Payload Release, is meant to be controlled
with a radio channel, although none will be used in this Master Thesis for that purpose. The
control signal is supposed to be a pulse width modulated (PWM) signal that controls the angle
of the servo motor, which in turn pulls the pin in or pushes it out. The only requirements for
this PWM signal is that a pulse should arrive at the drop mechanism’s control cable periodically.
This period is not given in the data sheet. As opposed to a standard PWM signal, this control
signal is not determined by the duty cycle of the signal, but of the length of the pulse.

7.2.1 Choice of Signal Generator

The Pandaboard, which is supposed to signal to the drop mechanism when it should release its
payload, does not have any dedicated PWM output and therefore has no easy way of generating
the signal. That means that a PWM generator must be made. The debated alternatives are: To
force through a PWM signal on the Pandaboard, to use an Arduino or to use an AVR directly.

The first alternative was researched for a while, but with meagre results. Although the OMAP4460
processor used in the Pandaboard has the ability to generate pulse-width-modulated signals,
there are certain drawbacks with the alternative. First, the operating system on top of the Pand-
aboard makes it more difficult to use the instructions from the OMAP datasheet. Second, this
solution would mean that if the Pandaboard was exchanged into another computer, then the

7.2. SIGNAL GENERATOR 55

Figure 7.3: The Tinder Rocketry Peregrine. Exploded View (source: Tinder Rocketry (2014))

PWM would have to be implemented again, possibly with new difficulties. It would mean a
poor modularity to be dependent on one part to make the rest work.

The second alternative, the use of an Arduino to produce a PWM signal, solves both of the
problems that appeared with PWM generated on the Pandaboard. An Arduino is a platform
that is particularly easy to use and only requires a programmer and a free and easily obtainable
integrated development environment (IDE). The Arduino is build on top of an Atmel micro-
controllers enabling most of what is possible on normal Atmel microcontrollers, but offering a
simpler solution with pre-made functionality (Arduino, 2014). In our case, the Arduino Servo
library offers a function called write(), which produces a PWM signal. The drawbacks of the Ar-
duino alternative are first and foremost that it is too much. It is a good alternative, but even the
tiniest Arduinos are bigger than the next alternative, the simple AVR microcontroller. Further-
more, inquiries done on peer students revealed that the Arduinos are not that robust. The final
argument was that there were no Arduino available at the moment when a PWM generator was
needed.

However, there are plenty of AVR microcontrollers available. A quick search to find out which
AVR was required, revealed that as long as only a PWM signal is needed, the tinies ATtiny is
enough. Omega Verksted, who has a large supply of electronic parts, had an ATtiny85 through-
hole microcontroller available. The ATtiny85 uses 5 V as power supply, and can give an output
of maximum 5 V on its I/O pins.

7.2.2 Control Signal

The lock on the drop mechanism connects the active and the passive part. When the lock is
closed, then the passive part is fastened to the active part. When the lock is opened, then the
passive part is released. A PWM signal generator is programmed in C on the ATtiny85. Fast PWM

56 CHAPTER 7. DROP MECHANISM

Figure 7.4: The PWM signal measured with a HP oscilloscope. This picture shows the maximum
width of the signal. It repeats periodically every 16.5 ms

mode is used on the ATtiny85 with 255 as the highest value. A counter counts from 0 to the top
value and is then reset to 0. When the counter is reset, the output value on the ATtiny85 pin
that is assigned with the PWM output is set hight, that is, to 5 V. When the counter reaches a
given value called output compare, the output pin is set low, that is, to 0 V. The output compare
value counts from 0 to 50 and back to 0 continuously when the Pandaboard commands the AT-
tiny85 to generate the control signal for the drop mechanism. As the counter goes to 255 and
the maximum value of the output compare register is 50, then the value of the PWM output pin,
measured with a voltmeter, would vary between 0 and 1 V.

The output value of the ATtiny85’s PWM output pin is a periodic signal with a period of 16.5
ms, with a width that varies between 60 µs and 3,3 ms. The drop mechanism opens its lock
when it receives a narrow PWM signal and closes the lock when it receives no PWM signal or
when the width of the PWM signal is too wide. This way, a short circuit will not result in an open
lock. The code for the ATtiny85 PWM signal generator is found in Appendix B. The PWM signal
is measured with an oscilloscope and a picture of the signal at its broadest is found in Figure 7.4.

As the datasheet of the EFLA405 Servoless Payload Release did not specify the control signal
for the mechanism, a working control signal was found by trial and error. As the values for
opening and closing the lock are not given, it is reasonable to try with a signal sweep. The one
described in in this section may therefore be less than optimal, but it works as it should and
consequently. Therefore, no further effort is put into optimizing the control signal.

7.2. SIGNAL GENERATOR 57

Figure 7.5: The temporary signal generator on a breadboard.

7.2.3 Interface between Signal Generator and Pandaboard

Only one challenge remained: As described in section 8.2.1.1, the payload drop is signalled by
a GPIO pin on the Pandaboard. When the Pandaboard output pin is high, it measures 1.9 - 2
V. This is not enough to register as a 1 on the input pin of the ATtiny85, which has a threshold
voltage at 2,5 V when the Vcc is 5 V. To achieve at least 3 V as input voltage on the ATtiny85,
a voltage controlled voltage switch was built with a transistor and two resistors, see Figure A.5
in Appendix A. The transistor in use is an NPN transistor of the 2N4402 model, which inverts
and amplifies the input signal. That means that the signal for "start the control signal" on the
Pandaboard should be low, and the signal for "stop the control signal" should be high. Then the
signal coming from the Pandaboard controls a 5 V signal, which is fed as input to the ATtiny85,
causing a control signal for the drop mechanism.

When the Pandaboard activates the drop mechanism, the drop mechanism starts by pulling
the lock pin in, continues by pushing the pin out and continues on with that until deactivated.
An alternative solution for this would be to withdraw the pin once and push it out again, or to
pull the pin in as long as the drop mechanism is activated and push it out upon deactivation.
As there is only necessary to release the payload once, the second or third alternative would be
the sensible ones. However, if the hardware got stuck or a mechanical error occurred, then the
payload would not be released at all. Therefore, the drop mechanism opens and closes the pin
continuously when activated, and does nothing when deactivated.

The temporarily built signal generator is shown in Figure 7.5. After testing this design, it was
found suitable and soldered onto a veroboard, see Figure 7.6.

58 CHAPTER 7. DROP MECHANISM

Figure 7.6: The soldered signal generator

7.3 Placement of the Drop Mechanism on the UAV

When the drop mechanism has released its payload, the payload should fall down to the earth.
This requires the drop mechanism to be mounted outside the body of the UAV, or a mechanism
for opening a gap or lid on the body of the UAV. The second alternative was abandoned without
discussion, as the UAV should remain as whole as possible. Then the drop mechanism must be
placed on the fuselage on the UAV, and a placement must be found.

As Figure 3.3 shows, the Penguin B has a propeller behind the body of the UAV. This must be
taken into consideration, as any object that is caught in the propeller can damage the propeller
or itself. Another consideration is that the drop mechanism will be exposed to varying vibration
and air drag, depending on where it is placed on the UAV. The discussed alternatives to a place-
ment of the drop mechanism were underneath its belly, on the wings, on the tailboom assembly
or on the wheel assembly (see Figure A.3, Appendix A).

Placement of the Drop Mechanism under the Belly of the UAV

A sketch of this solution is shown in Figure 7.8. The main problem with the this alternative, to
place the drop mechanism under the UAV body, is the risk of the payload hitting the propeller.
The Penguin B moves in a horizontal direction and the payload is released vertically, so the risk
of it hitting the propeller depends on the difference in speed between the UAV and the released
payload caused by air resistance, the wind and drag forces and the size of the propeller.

7.3. PLACEMENT OF THE DROP MECHANISM ON THE UAV 59

Figure 7.7: A sketch to illustrate the problem connected to dropping a payload from under the
UAV. The circle illustrates the payload, the grey rectangle shows the UAV and the red rectangle is
supposed to be the propeller.

In Figure 7.7, this solution’s physics is illustrated: Vx is the assumed constant horizontal ve-
locity of the UAV, while Vx2 is the constantly decreasing horizontal velocity of the payload after it
is dropped: Initially it equals Vx , but it is decelerated as it meets air resistance. Vy is the increas-
ing vertical velocity of the payload after being dropped, h is the length of the part of the propeller
that reaches under the UAV body and l is the length between the placement of the payload on
the UAV and the propeller. With the drop mechanism attached to the body of the UAV, without
anything holding it lower than the propeller, it is hard to say what will happen without further
calculations - whether or not the payload will hit the propeller or not. The air drag force that
might lift the payload up after it has been released is difficult to predict and the air resistance
slowing the payload down in the horizontal direction depends on the shape of the payload. It is
also difficult to test, as one failure might damage the propeller severely. The conclusion is that
this is placement is not an option.

If, however, something could hold the drop mechanism below the lowest point of the pro-
peller, that problem would be avoided. That arm could either be in a permanent lowered po-
sition, or it could be lowered for the drop, and then raised afterwards. If the permanent low
situation were chosen, this might cause problems during the launch or landing of the UAV. The
launch is preferably done with a catapult and this arm might spoil the process by getting in the
way. The landing of the Penguin B is a project under development but for the time being, the
Penguin B lands like a normal air plane using its landing wheels, and any lower point than the
wheels would spoil the landing. If the drop mechanism was lowered down from the UAV on a
rigid arm that were later raised, the the sensor could be dropped from an arbitrary low point.
However, the arm would have to be raised again and this process could contain errors. Besides,
it is a complicated process to build such an arm. This could be a good solution if there were

60 CHAPTER 7. DROP MECHANISM

more time at disposal, but can not be used in this Master Thesis.

Figure 7.8: A sketch of the placement of the drop mechanism under the belly of the UAV (source
for the figure of the UAV: UAV Factory (2014))

Placement of the Drop Mechanism on the Wing Tips

The next alternative discussed is to attach the drop mechanism on one (or both) of the wing
tips. A sketch of this solution is shown in Figure 7.9. The sensible solution would be to have two
drop mechanisms and two sensors to drop, as the UAV would then be better balanced. On the
wing tips, the drop mechanisms are out of the way of the propeller and the mounting process
would not offer many problems. The drawback is that way out on the tips of the wings, the drop
mechanism (and the payload, which need not be small and neat) will inflict the aerodynamics
of the UAV badly and this might change the center of gravity and at least give the UAV some
unbalance. That makes this placement a possible, but maybe not optimal solution.

Figure 7.9: A sketch of the placement of the drop mechanism on the wing tips of the UAV (source
for the figure of the UAV: UAV Factory (2014))

7.3. PLACEMENT OF THE DROP MECHANISM ON THE UAV 61

Placement of the Drop Mechanism on the Tailboom Assembly

To place the drop mechanism on the tailboom assembly is a good alternative without any of the
mentioned drawbacks. A sketch of this solution is shown in Figure 7.10. Two drop mechanisms
could be places on the two tailboom bars or one could be places in the middle of the tail joint.
Being behind the propeller means that the drop mechanisms can not release any sensors that
will fly into the propeller, and as the tailboom is almost in the middle of the two wing tips, the
drop mechanisms will not disturb the center of gravity. The main drawbacks of this solution are
the difficulties to control the drop path of the payload after it is caught by the backwater of the
propeller and that the UAV gets heavier astern than before. Apart from that, this is a possible
placement.

Figure 7.10: A sketch of the placement of the drop mechanism on the Tailboom Assembly of the
UAV (source for the figure of the UAV: UAV Factory (2014))

Placement of the Drop Mechanism on the Wheel Assembly

The last placement alternative is to place the drop mechanism on one of the wheel assemblies. A
sketch of this solution is shown in Figure 7.11. This alternative involves having two drop mecha-
nisms, one on each of the bars where the wheels are placed. Here, the hight difference between
the drop mechanisms and the propellers can be adjusted and the drop mechanisms will not
affect the landing. However, depending of the design of the attachment mechanism, it might
disturb the launch catapult. If that is not the case, this is a preferred placement of the drop
mechanism: The released sensor will not be caught in the propeller, its drop to the ground is
pretty deterministic and the distance from the payload mount containing the signal generator
to the drop mechanisms is relatively small.

Selection of Drop Mechanism Placement

There are several possible placements for the drop mechanism. Although both the tailboom
assembly, the wing tips and the wheel assembly are alternatives, the wheel assembly is chosen.
There, the two metal bars between the fuselage of the UAV and the wheels can be used to fasten

62 CHAPTER 7. DROP MECHANISM

Figure 7.11: A sketch of the placement of the drop mechanism on the Wheel Assembly of the
UAV (source for the figure of the UAV: UAV Factory (2014))

the drop mechanisms onto, which is not a possibility on the wing tips. Besides, the UAV does not
get any heavier on its aft than it has to. The only drawback is the possibility of getting caught in
the catapult, which must be tested. The tailboom assembly stands as a possible spare solution.

7.4 The Substitute for the Sensor

The sensor that should be dropped on the iceberg from the UAV is not yet designed, and a sub-
stitute will have to be used during the tests. This was made by the engineering workshop of the
Department of Engineering Cybernetics out of polyvinyl chloride (PVC) and can be seen in Fig-
ure 7.12. It has the shape of a spherical sefment with a diameter of approximately 6 cm and a
height of approximately 2 cm. On the middle of the flat side, a hole has been made. The passive
part of the EFLA405 Servoless Payload Release is attached into the hole.

7.5 The Drop Mechanism Assembly

When the drop mechanism is chosen, the signal generator is made and the placement of the
drop mechanism is chosen, the assembly is next. The EFLA405 Servoless Payload Release is
fastened to a metal bar with the use of thin aluminium plates and hard plastic, see Figure 7.12.
The metal bar is attached to the wheel assembly with two hard plastic joints. They are clenched
onto the wheel bars with screws and can be moved up or down on the wheel assembly bars,
see Figure 7.13. The horizontal bar carries two drop mechanisms and is attached to both wheel
assembly bars. The design was tested on the catapult, and the test did not reveal any problems
with the design.

7.5. THE DROP MECHANISM ASSEMBLY 63

Figure 7.12: The EFLA405 Servoless Payload Release is attached to the metal bar with aluminium
plates and a hard plastic frame.

Figure 7.13: The metal bar with the drop mechanisms on it is attached to the UAV wheel assem-
bly bars with two plastic joints.

64 CHAPTER 7. DROP MECHANISM

Chapter 8

The Software Implementation

Although a small part of the software is placed in the AtTiny85 controlling a PWM generator,
most of the software in this project runs on the Pandaboard or on the ground station computer.
It uses an extended version of the DUNE software solution (mentioned in Section 3.1.1), devel-
oped especially for this project, and has an interface to the autopilot, to the drop mechanism
through the Pandaboard hardware and to the radios. This chapter describes this software archi-
tecture and its interfaces.

8.1 Software Architecture on Pandaboard and User Interface

The main structure of the software architecture in this project is the DUNE software provided by
LSTS, see Section 3.1.1. A separate branch of the open-source code was made using the subver-
sion control system Git, for use in this specific project. The branch was called precisionAirDrop.
In addition to the already existing tasks, some new tasks were added. The software was divided
into two distinct modules: The ground station and the on-board code, which are two separate
DUNE .ini-files. The Ground Station will be the user interface. It sends the geographic coordi-
nates of the target point to the on-board side and in return, it gets the states of the UAV.

All communication follows the IMC protocol, and the same IMC message can be fetched in
the ground station as in the on-board code. To communicate wirelessly between the ground
station and the on-board code, the IMC messages use an underlaying communication protocol
called UDP. This protocol is used to transfer IMC messages with the Ubiquity radio equipment.
There is built-in functionality for this in DUNE by including a task called Transports.UDP in the
.ini file. Then IMC messages can be dispatched from a task on the Pandaboard, and without
further code it is consumed by a task on the ground station. That way, IMC messages can easily
be transmitted to a specific IP address that uses DUNE, or simply be broadcasted.

The user interface will be made with hard coded input instead of input from the command
prompt. This is made because that solution is the simpler one, and because small changes in the
code on the user interface do not conflict the code on the Pandaboard, as long as the messages
received on the user interface are the once sent from the Pandaboard, and vice versa.

65

66 CHAPTER 8. THE SOFTWARE IMPLEMENTATION

The on-board code calculates an optimal point of release for the UAV based on the received
point of impact from the ground unit. It then calculates an optimal path to the point of release
for the UAV from any point nearby the point of impact (on the same level as the point of release,
though: the same height as the UAV is always supposed to fly). This path is communicated to
the Piccolo Autopilot via IMC messages, which in a special task called Piccolo are translated to
the Piccolo protocol. The same task translates messages from the autopilot to the IMC protocol
and makes them available on the IMC bus. When the UAV is in the point of release, it tells the
drop mechanism to let its payload be released.

The finished DUNE code is cross-compiled for an ARM kernel, is packed and transferred to
the Pandaboard. The Pandaboard has a Linux operating system, which lies on a Secure Digital
(SD) memory card attached to the board. This operating system has a start-up script that runs
the DUNE program with the correct .ini-file.

8.2 Class Relationship Overview

As DUNE operates with .ini- files that include different tasks as parameters when the program
is running, the normal class diagram has to be adjusted slightly. A relationship overview is a
more appropriate term, which tells about the relationship between the tasks, .ini-files and their
messages.

8.2.1 Piccolo

The .ini-file that is used on the Pandaboard is called Piccolo. An .ini-file is described in Sec-
tion 3.1.1. When an .ini-file includes a task, it means that it lists the tasks that should be used
when the program is running. The Piccolo .ini-file includes all the tasks that are necessary to
have on the Pandaboard, both tasks designed for this purpose and other, more general tasks.
To be able to communicate with the autopilot over TCP, it needs to include the task Trans-
ports.SerialOverTcp. This is a general task which takes as arguments the serial port address,
baud rate and the TCP port. The baud rate is 57600 and the TCP port is 2001, while the serial
port /dev/ttyUSB0 is used to communicate with the autopilot.

To be able to communicate with the Ground Station, the task Transports.UDP is included. It
takes as arguments its local port, the destination IP and port and a list of which IMC messages
that should be transported over UDP. The local port is set to 1024, while the destination port
is 1025. The destination IP address is the IP address of the Ground Station. The IMC message
EstimatedState is sent over UDP from the Pandaboard to the Ground Station.

The third general task included in this .ini-file is the Piccolo task. This task communicates
with the autopilot and translates the Piccolo protocol to IMC messages. The IMC-messages
received from and sent to Piccolo are shown in Table 8.1. To communicate with the autopilot,

8.2. CLASS RELATIONSHIP OVERVIEW 67

Figure 8.1: The software architecture on the Pandaboard and the ground station with user inter-
face

68 CHAPTER 8. THE SOFTWARE IMPLEMENTATION

Figure 8.2: The signal flow from the Pandaboard to the drop mechanism.

the Pandaboard is connected with the autopilot using an RS-232 serial cable. All messages to
and from the autopilot are sent on this cable, and all of them are translated in the Piccolo task.

Received from Piccolo Sent to Piccolo
IMC::EstimatedState IMC::ControlLoops
IMC::EstimatedStreamVelocity IMC::DesiredPath

Table 8.1: The IMC messages received from and sent to Piccolo in this project.

The rest of the included tasks are designed specifically for this project, and are presented in
the following subsections.

8.2.1.1 The DropLoad Task

The task called PenguinDrop.DropLoad binds the IMC message called PayloadRelease. It creates
a connection to the directory of GPIO36 on the Pandaboard, which corresponds to pin 17,J6 on
the Expansion Connector on the Pandaboard, see Figure 3.2, and sets its value to 1 initially.
When it receives IMC::PayloadRelease, it writes the value of this GPIO to 0. Pin 17, J6 on the
Expansion Connector is connected to the PWM generator and is active low. That means that
when Pin 17 is low, then the PWM generator generates pulses to the drop mechanisms, which in
turn let their payload go. This is illustrated in Figure 8.2.

8.2. CLASS RELATIONSHIP OVERVIEW 69

8.2.1.2 The Calculation Tasks

This is a group of tasks used to calculate the point of release (PoR), calculate a path to this point
from the current point and decide when the payload should be released. As several methods are
tested during the Master Thesis, several versions of the calculation tasks exist.

Version 1

The first version of the calculation tasks was used for the first HIL and field tests for drop on
target. In this version, the calculation tasks group consists of only one task called PrecisionAir-
drop.ReleaseObject. This task communicates directly with the Ground Station and receives the
target position as well as the acceptance radius for an acceptance sphere used to accept way-
points. This task does not calculate a point of release; it simply receives IMC::EstimatedState
from the Piccolo task, checks if the position of the UAV is within the acceptance sphere and if
it is, it tells the DropLoad task to release the sensor. Acceptance with half planes is also imple-
mented for test purposes.

Version 2

In the second version of the calculation tasks group, the .ini-file only includes the task called
PrecisionAirdrop. This version of the calculation tasks was used for the Straight Line Approach.
PrecsionAirdrop includes three other classes called ReleasePoint, ReleaseVelocity and Waypoint-
Generator. PrecisionAirdrop communicates with the Ground Station and receives the position
of the target and the radius of the acceptance sphere. It then calculates the point of release using
the classes called ReleasePoint and ReleaseVelocity. The calculations are based on the target po-
sition received from the Ground Station and the wind measurements from the Piccolo Autopilot.

The next step is to generate a trajectory consisting of waypoints. This is done with the use
of the class called WaypointGenerator. The trajectory only consists of three waypoint, where
the starting waypoint is the far away point of the Straight Line Approach (see Section 6.2.3), the
second waypoint is the point of release and the third waypoint is a point along the straight line,
some distance after the point of release, making the UAV continue along the straight line after
having released the sensor.

Version 3

In this version of the calculation tasks group, a modularization is done. It consists of one task
called PrecisionAirdrop.StraightLine and one called PrecisionAirdrop.AdaptedDubinsPath, which
communicate with the ground unit wirelessly and with the Piccolo task. Their relationship is il-
lustrated in Figure 8.3. Both calculation tasks receive the IMC::Target message position from the
ground station, and they then check for the Destination Entity of the message. The calculation
task that is the correct receiver of the message then calculates a path from the UAV’s current po-
sition to the point of release using their method. The waypoints are fed to the autopilot and the
trajectory is tracked using IMC::EstimatedState from Piccolo. When the UAV-position sent from
the autopilot shows that the UAV is within the acceptance sphere, it sends a message to the task

70 CHAPTER 8. THE SOFTWARE IMPLEMENTATION

PenguinDrop.DropLoad, telling it to release the sensor.

All versions of the calculation tasks can use both half planes and acceptance radius to accept
a waypoint, but the half plane is the standard acceptance criteria. The reason for that is that an
acceptance sphere can be omitted from the trajectory of a UAV it the measurements come with
too low frequence, while it is impossible to omit the crossing of a half plane that way.

8.2.2 GroundControl

The .ini-file GroundControl includes only two tasks: PenguinDrop.GroundUnit described in the
following subsection, and Transports.UDP. The latter is the same tasks as in Piccolo.ini, but here,
its local port is 1025 - the same as the destination port of Piccolo’s UDP task - and the destination
port is corresponding 1024. The destination address is the IP of the Pandaboard. This task sends
the IMC messages Target and EstimatedState to the Pandaboard. The GroundControl.ini-file
represents the user interface of the software.

8.2.2.1 The GroundUnit Task

The task called PenguinDrop.GroundUnit takes input from the user to the Pandaboard. This
task can print desired output on a terminal and take input from the user, which it can send
to the Pandaboard. The last version of the GroundUnit task sends the following parameters
from the Ground Station to the Pandaboard: The Point of Impact for the sensor and the chosen
calculation method.

8.3 Addresses and IDs

Because the system should be able to coexist with other equipment, a standardization of IP
addresses and IDs is chosen. The subnet used to communicate on is 192.168.0.X. Here, the
addresses above 100 are to be used by the different units in student projects. The ones used in
this project are described in Table 8.2.

IP address Unit
192.168.0.110 Pandaboard
192.168.0.111 Rocket M5
192.168.0.112 The Author’s PC
192.168.0.113 Simen Fuglaas’s PC
192.168.0.114 Nanostation M5

Table 8.2: The IP addresses used in this project.

8.3. ADDRESSES AND IDS 71

Figure 8.3: The ground station communicates with both calculation tasks at the same time, but
only the one that is labelled as receiver of the target computes a trajectory and communicates
with the autopilot.

72 CHAPTER 8. THE SOFTWARE IMPLEMENTATION

Chapter 9

Implementation of Hardware on the
Penguin B

Figure 9.1: The hardware architecture of the payload mount

The first field test came faster than expected, which is why the hardware architecture has
two editions. The first edition simply fastened the parts of the hardware design to the payload
mount, while the second edition was more thought-through, with better attached cables and
using the experiences gained in the first field test. Common for both editions are the hardware
parts used, both the ones designed in the project and the commercials off-the-shelf. In this
chapter, the hardware architecture, the construction and the placement of the hardware parts
will be thoroughly described. See Figure 9.1 for the hardware architecture.

73

74 CHAPTER 9. IMPLEMENTATION OF HARDWARE ON THE PENGUIN B

Figure 9.2: The first design of hardware, implemented on the payload mount.

9.1 Radio Communication

In order to have communication between the UAV and the ground, wireless communication is
needed. For the Penguin B, it was decided by the project management that equipment with
5.8 GHz frequency from Ubiquiti Networks should be used, which is their airMAX series. More
specifically, a Ubiquiti Rocket M5 should be used on the UAV, sending and receiving signals to
and from the ground, and on the ground, a Ubiquiti Nanostation M5 should be used for testing.
On field tests, another Rocket with a larger range is used. That rocket will not be described fur-
ther in this Master Thesis. The Ubiquity equipment is described in Section 3.5.

Both radio nodes - Ubiquiti Rocket M5 and Ubiquiti Nanostation M5 - have an Ethernet in-
terface. They are also powered over Ethernet (POE), meaning that they only have one input
port, which is Ethernet carrying power to run the radio node. To supply the radio nodes with
POE, power from the UAV will be used. The Rocket M5 requires 12 V DC.

The settings of the radio nodes are accessible from a web browser by typing the IP (internet
protocol) address in the browser’s address field. To make this work, the computer has to be on
the same subnet as the radio nodes. This means that the computer’s IP address must be changed
from a dynamic IP set by a dynamic host configuration protocol (DHCP) to a static IP address

9.2. POWER SUPPLY 75

on the 192.168.0.x subnet. A DHCP is a protocol used to distribute IP addresses to equipment
that wants to communicate with the Internet Protocol (IP).

In the field tests, only the Rocket M5 connected to the Pandaboard will be used, as it com-
municates with a common transceiver with longer range than the Nanostation M5, but for lab
testing, the Nanostation M5 is useful as it allows testing of the communication with the Rocket
M5. The settings on the Wireless page of the Rocket M5 are shown in Figure 9.3. The SSID on
the third line of the page in the figure is UAVskywalker, which is the SSID used for all Ubiquity
equipment during the field tests. In addition to these settings, the Network Mode should be set
to Bridge.

For the Nanostation M5, the test settings are equal to the ones of the Rocket M5, with the
exception that the Wireless Mode should be set to Access Point. Besides, the IP address must
obviously be the same, as there are two radio units communicating with each other. The IP ad-
dress of the Nanostation M5 was changed from 192.168.1.20 to 192.168.0.114, and the IP address
of the Rocket M5 was changed to 192.168.0.111. After this was changed, the radios provided the
Pandaboard with internet.

9.2 Power Supply

The Penguin B has a power generator and delivers 12 V and 6 V. The 6 V power supply is reserved
for servos used in another project, which leaves the 12 V power supply for other purposes. The
Pandaboard requires 5V for power supply and is powered with a 2-cell Lipo battery from Turnigy.
As this battery delivers 7.4 V, which means that the voltage from the battery must be transformed
to 5 V before it reaches the Pandaboard. a Turnigy EBEC-5A voltage transformer is used for this
purpose, see Figure 9.5.

The Rocket M5 that was described in Section 9.1 requires 12 V powering whereas the ATtiny
of the PWM-generator described in Section 7.2 and the drop mechanism both require 5 V. To
supply all devices with power from the Penguin B power outlet, a power supply transformation
station was built, see Figure 9.4. The two lower green cable stations are the input side of the
transformer. Here, 12 V from the Pegnuin B is put into one cable terminator and the POE cable
for the Rocket M5 goes into the other. The two upper green boxes are the output of the trans-
former and provide 5 V. The PWM-generator gets power from one of these cable terminators
with 5 V, and the drop mechanism collects its Vc from the PWM-generator card.

The voltage regulator in use is a LM1084 5A Low Dropout Positive Regulator from Texas In-
struments (Texas Instruments, 2013), connected according to the datasheet, see Figure A.8, Ap-
pendix A.

76 CHAPTER 9. IMPLEMENTATION OF HARDWARE ON THE PENGUIN B

9.3 Implementation of First Design

The payload mount started out entirely empty except for the ballast slug, see Figure A.1 in Ap-
pendix A. As the payload mount had not been tested on the Penguin B, and no directions on the
hardware architecture had been received, it was assumed that the whole payload mount could
be used. The Pandaboard and the rest of the hardware were mounted on the payload mount
as quickly as possible, with an architecture that assumed vast space on the payload mount and
little thought of future expansions. See Figure 9.2 for the implementation of the first design.

All parts were fastened with screws on the payload mount except for the battery and the
voltage transformer, that were fastened with hook-and-loop fasteners. The voltage regulator
circuit described in Section 9.2 was placed next to the Pandaboard while the PWM generator
circuit described in Section 7.2 was placed on top of the Pandaboard with spacers between.
The Rocket M5 is screwed on the payload mount. Pandaboard communicated with the Piccolo
through a serial cable that was connected to the port COM 1 on the UAV Piccolo interface, see
Figure A.4 in Appendix A. Two of the wires on that port were however carrying power and ground
for the power supply card, and were therefore taken out of the serial cable and guided to the
power supply instead.

9.3.1 Drawbacks with the First Hardware Design

The first hardware design was tested on the first field test on Agdenes. The conclusion was that
the design used too much space on the payload mount: Only the outer 25 cm were available.
Apart from that, the hardware worked, but the cables would have to be more thoroughly fas-
tened to the payload mount. These feedbacks resulted in the second hardware design.

9.4 Implementation of Second Design

To make room for all hardware parts on a length of 25 cm of the payload mount (the part fur-
thest away from the ballast slug), and to design the hardware architecture with a view to future
expansions, a payload box is made. The PWM generater remained as before, as well as the volt-
age regulator circuit. The drawings of this box and its lid are shown in Figures A.6 and A.7. The
box was made on the engineering workshop of the Department of Engineering Cybernetics, out
of aluminium sheets. Holes were drilled into them to fasten the box into the payload mount. The
box and lid were made according to the drawings, but 1 cm shorter than the one in the drawing,
to get a better margin. The finished box can be seen in Figure. 9.6.

The Rocket M5 is placed on top of the lid. It is screwed onto the it and the POE cable is
taken around the edge and in under the lid. The Pandaboard is screwed on to the lid inside
the box, hanging upside down. The power supply remains fastened on top of the Pandaboard
and the PWM generator is screwed to the right side of the payload box. The battery and voltage
adapter are placed directly on the payload mount, still fastened with hook-and-loop fasteners.

9.5. HARDWARE OF THE USER INTERFACE 77

The cables are fastened to the box to avoid too much strain on the soldered joints. The finished
implementation of the second hardware design is shown in Figure 9.7

9.5 Hardware of the User Interface

The user interface consists of software on a computer that communicates with the Pandaboard.
That means that the hardware needed is, in addition to any computer with the linux operating
system on it, a means to communicate with the UAV.

For lab testing, the Nanostation M5 described in Section 9.1is used to communicate with
the UAV. It has an ethernet interface, and only a switch connecting the Nanostation M5 and the
computer with the user interface on it is needed. For field testing, an outdoor radio transceiver
with long range is used, which is connected to another switch, providing both the UAV pilot and
the user interface described in this Master Thesis with communication with the Pandaboard.

78 CHAPTER 9. IMPLEMENTATION OF HARDWARE ON THE PENGUIN B

Figure 9.3: The properties in the wireless-page of user interface of the Rocket M5.

9.5. HARDWARE OF THE USER INTERFACE 79

Figure 9.4: The power supply for the Rocket M5 and for the PWM-generator.

Figure 9.5: The voltage transformer used to supply the Pandaboard with 5 V

Figure 9.6: The hardware in the payload box with the second design.

80 CHAPTER 9. IMPLEMENTATION OF HARDWARE ON THE PENGUIN B

Figure 9.7: Overview of the finished payload box with the second design.

Part III

Experimental Procedure

81

Chapter 10

System Testing

To verify the system, it must be tested out with simulation and in real life. The verification of the
system is done piecewise, including all hardware parts and different modules of the software.
The software of the trajectory calculation is tested with hardware-in-the-loop (HIL) simulation
and both the two different waypoint acceptance criteria as well as the two trajectory generation
algorithms will be tested to evaluate which one is the more effective.

To test the system as a whole, it is possible to fly the Penguin B with the onboard payload
mount on an old landing field on Agdenes, two hours by car away from NTNU. This chapter de-
scribes the hardware tests, the hardware-in-the-loop testing done on the UAV-laboratory as well
as the field testing done on Agdenes. It includes tests of the two waypoint acceptance criteria
and the trajectory generation algorithms, performed in the laboratory with HIL.

10.1 Hardware Tests

The hardware tests are conducted along with the completion of each hardware part, starting
with the Pandaboard and ending with the communication with the Piccolo autopilot.

Test of the Pandaboard GPIO Pins

The Pandaboard has two 28 pin generic expansion connectors, see Figure 3.2, named J6 and J3.
Some of these pins are reserved for other purposes, but some are general purpose input and
output pins, like pin 17 on J6. This is the pin that controls the PWM signal generator for the drop
mechanism, and the pin is active low.

The output of the Pandaboard is measured with a voltmeter on the GPIO pin 17 on J6. When
the DropLoad-task tells the GPIO pin 17 on J6 to be set high or low, the output is measured with
the voltmeter and the outcome is compared to the desired value. The registered value on the
pin when the Pandaboard sets it to 1, is 1.9 V, while the registered value one the pin when the
Pandaboard sets it to 0, is 0 V.

83

84 CHAPTER 10. SYSTEM TESTING

Test of the PWM-Generator and the Drop Mechanism

The PWM signal generator is described in Section 7.2. It is supposed to produce a pulse-width-
modulated signal that makes the drop mechanism withdraw and push out the pin in the mech-
anism that connects the passive part to the active part. As further described in Section 7.2, the
ATtiny85 requires an input signal that is at least 3 V, which is achieved with an inverting NPN
transistor. The input of the transistor is the output signal from GPIO pin 17 on J6.

The voltage at the collector of the transistor is measured with voltmeter and found to be 5 V
when the output of the Pandaboard is 0 and the transistor does not conduct current. When the
Pandaboard output is 1, then the transistor conducts current to ground and the collector voltage
is 0.

When the ATtiny85 receives a high signal on its input pin PB1 (see Figure A.5 in Appendix
A), it produces a pulse-width signal on its output PWM pin, that goes gradually from 0 V to 1
V when measured with a voltmeter, and back to 0 V, repeatedly. When the input pin is low, the
measured value on the PWM output pin is equal to 0 V. The oscilloscope testing is described in
Section 7.2, and the period of the PWM signal was 16.5 ms, while the width varied between 60
µs and 3,3 ms.

When the drop mechanism is connected to the three output pins named PWM Signal, Drop
Mechanism Ground and Drop Mechanism Power, see Figure A.5, of the PWM generator and the
Pandaboard’s pin 17 on J6 is used as input on the transistor for the PWM generator, then the
Pandaboard is found to control the drop mechanism. When the ouput pin of the Pandaboard is
set to 1, then the drop mechanism is calm. When the output pin of the Pandaboard is set to 0,
then the drop mechanism is continually closing and opening its attachment pin.

Test Radio Communication

To test the radio communication used to communicate between the Pandaboard and user in-
terface on the ground station, the Pandaboard is connected to the Rocket M5 with a twisted pair
Ethernet cable and the ground station computer is connected to the LAN. The Nanostation M5
is also connected to the LAN. All settings are according to Section 9.1, and the ground station
computer attempts to connect with the Pandaboard over SSH, using the IP of the Pandaboard.
When the Pandaboard is accessible from the ground station computer without any serial con-
nection, it shows that the Pandaboard is accessed over Ethernet. As the wireless LAN is turned
off on the Pandaboard, only the radio communication remains.

Test the Power Supply Card

To supply the Rocket M5 with 12 V and the PWM-generator and drop mechanism with 5 V, a
power supply card is built. It takes 12 V as input and has one output port with 12 V, to which the
Rocket M5 is connected and which does not pass through any voltage transformer. The card also

10.2. HARDWARE IN THE LOOP TESTING 85

has one output port with 5 V that has passed through a direct voltage transformer, to which the
PWM generator is connected. The power supply card is tested with a voltmeter, measuring the
two outputs when an input voltage is applied to the card. With 12 V as input, 12 V are measured
on the first port, and 5 V are measured on the second port.

Test the Communication between the Pandaboard and the Piccolo

To be able to guide the UAV on a trajectory, the Pandaboard needs to be able to send its gen-
erated waypoints to the autopilot. To know the position of the UAV at any time, the autopilot
Pandaboard needs to be able to receive the state of the UAV from the autopilot. The physical
interface between the Pandaboard and Piccolo autopilot is an RS232 cable. The Pandaboard
uses DUNE to send Piccolo messages packed as Transmission Control Protocol (TCP) messages
over this cable, by using the DUNE task called Transports.SerialOverTCP. This way, DUNE sends
Piccolo messages between the two devices, and there is a DUNE Task on the Pandaboard that
translates these messages to IMC messages and translates other IMC messages to Piccolo mes-
sages.

This communication is tested by connecting the Pandaboard to the Piccolo’s COM 1 port (see
Figure A.4 in Appendix A) on the HIL simulator and on the field test UAV respectively. The Pand-
aboard is programmed to print received IMC::EstimatedState messages on a terminal, when
the board is connected to the ground station with an SSH connection. The IMC messages are
printed with correct values. On the HIL simulator, IMC messages are also sent back to the au-
topilot with waypoints for it to follow. The simulated UAV then flies according to the waypoints.

10.2 Hardware In the Loop Testing

The HIL-testing is carried out by connecting the Pandaboard to a Piccolo Autopilot through a
serial RS-232 link. The Piccolo Autopilot is connected to a computer that runs a Hardware In
the Loop simulation software from Cloud Cap Technologies to simulate the flight. The simu-
lator simulates the Penguin B UAV, providing the autopilot with simulated values for the state
of the UAV. This includes GPS position and wind strength and direction. That computer is also
connected to a Piccolo ground Station, which in turn communicates with the Piccolo Autopilot.
See Figure 10.1 for an illustration of the HIL setup.

The Pandaboard communicates with the Piccolo Autopilot over a TCP protocol on a serial
link. The serial link is plugged into the Pandaboard’s USB port through a serial-to-USB-adapter.

10.2.1 Test of Drop on Target

To test the communication between the Pandaboard and the Piccolo Autopilot and the hardware
of the drop mechanism, a small program is made and loaded on the Pandaboard. It is supposed
to communicate with a user interface implemented in DUNE and receive a target position on
which it should drop its payload. This target position will result in a drop position, calculated by
the module described in Section 8.2.1.2. The program is supposed to receive signals from, but

86 CHAPTER 10. SYSTEM TESTING

Figure 10.1: The HIL setup: This chart illustrates which units talks to which.

not return any messages to, the Piccolo Autopilot, reading the position of the simulated UAV. If
the UAV is within a given radius of the target, it should signal to its drop mechanism to release
the payload. Upon the exit of this target radius, the drop mechanism should signal not to try to
release its payload any more.

To test the program, the simulated UAV fly a semi rectangular path where one of its way-
points is the target where it should drop its payload, see Figure 10.2. The wind of the simulator
is turned off.

10.2.1.1 First Test

The states of the simulated UAV are set to be measured once per second, and the radius of the
acceptance sphere is set to 20 meters. The indicated air speed (IAS) is set to be 28 m/s. It is
registered that although the system worked correctly most of the time, the UAV does not release
its payload every time it passes the point of release. The DUNE Ground Station is then told
to fetch the IMC messages that holds the GPS position of the simulated UAV, and display the
position on a terminal. The distance between the UAV and the point of release is also displayed.
This shows that sometimes the simulated UAV is as close as 21 or 22 meters away from the point
of release, but the next measurement shows that it has passed the point of release and is 27
meters away. We conclude that as the frequency of the messages holding the state of the piccolo

10.2. HARDWARE IN THE LOOP TESTING 87

Figure 10.2: The HIL simulator’s test flight. Point 2 marks the point of release.

is 1 Hz, and the UAV fly with a speed of 28 meters per second, then a radius of 20 meters around
the point of release will not be big enough. Sometimes the Pandaboard did not know that it was
directly over the point of release, and therefore did not release its payload. The solution is to
increase the frequency of the measurements: Using the setting called "Comms no flow (fast)".
In addition to this, the radius is set to 30 meters, to make sure that the payload will be released
every time the UAV passed the point of release.

10.2.1.2 Second Test

With 3 measurements of the UAV state per second and a radius of the acceptance sphere of 30
meters, in addition to an indicated air speed (IAS) that still is 28 m/s, the system is HIL-tested
again. This time, the position of the UAV and the distance to the point of release is displayed in
the terminal window running the ground control, every time a state estimation is received from
the Piccolo and the UAV is within acceptance sphere (see Figure 10.3). The result is that approx-
imately 4 measurements are taken every time the UAV passes the point of release, and that the
payload is released successfully every time the UAV passes the area of interest.

88 CHAPTER 10. SYSTEM TESTING

Figure 10.3: The output on the DUNE Ground Station

The data containing the distance between the UAV and the target are plotted, showing a
graph displayed in Figure 10.4. This graph shows that the UAV measures its position once while
entering the circle around the point of release, twice close to the actual point of release and
once while exiting the circle, see Figure 10.5. The registered positions are approximately 12 me-
ters apart. The plot of all of the results shows that although the two closest measurements strays
somewhat from the center of the circle, the closest point on every turn is always within 7 meters
of the center of the circle.

To have some margin, the radius for the next test is set to 10 meters. To simplify matters,
the program on the Pandaboard is modified to receive the acceptance radius from the DUNE
Ground Station.

r adi us < I AS

f
(10.1)

10.2.2 Test of the Correctness of the Different Acceptance Criteria

To evaluate the accuracy of the two different acceptance criteria discussed in Section 6.3, a test
is conducted. The simulated UAV will fly in a predetermined pattern several times and then log
the first measured GPS positions that is within the acceptance circle, and the first one that is
over the acceptance half plane. The measured size is then the distance between the waypoint
itself and the position where the waypoint is registered.

10.2. HARDWARE IN THE LOOP TESTING 89

Figure 10.4: The distance between the UAV and the target when the UAV released its payload,
repeated several times.

The program is started and the simulated UAV in the Piccolo Command Center is set to track
a trajectory consisting of 6 waypoints shaped as a rectangle, see Figure 10.2. One of the way-
points of this flight plan will be tested for acceptance, and this waypoint will be referred to as
the target position. An acceptance radius of 10 meters is used to accept the target position,
as well as a half plane constructed as described in Section 4.4. Every time the simulated UAV
passes the target position, the distance between the target position and the first GPS positions
registered by the autopilot within the acceptance sphere is written to a text file. The distance
between the target position and the first GPS position registered after the halfplane is crossed is
recorded in the same file. The results are shown in Chapter 11.

10.2.3 Test of Straight Line Approach

To test the Straight Line Approach, the calculation tasks on the Pandaboard were adjusted, see
Version 2, Section 8.2.1.2. The settings remained as they had been in the previous testing of the
drop on target: The IAS was set to be 28 m/s and the measurements sending frequency was set to

90 CHAPTER 10. SYSTEM TESTING

Figure 10.5: The red circles mark the registered GPS position of the UAV and the big circle is the
acceptance sphere in two dimensions. The red circles appear approximately every 12 meters

"Comms no flow (fast)". The programs on the Pandaboard and the ground station were started,
and the target position and tolerance radius were sent to the Pandaboard from the ground sta-
tion.

The wind on the simulator was turned off. The target position was set close to the starting
position of the simulated UAV, which means that the UAV did not have to travel far to reach
its destination. In fact, the simulated UAV loitered around the target position as the program
was started. As soon as the Pandaboard received the target position and tolerance radius, three
points were shown on the Cloud Cap simulator screen, see points 130, 131 and 132 in Figure
10.6. Point 130 is the far away-point of the Straight Line Approach, while point 131 is the PoR,
the point of release. Point 132 is automatically set 400 meters away from point 131 along the
same line. This is fortunate because it forces the trajectory straight through the PoR.

The simulated UAV follows the waypoints smoothly, as the blue line in Figure 10.6 shows. In

10.2. HARDWARE IN THE LOOP TESTING 91

Figure 10.6: HIL simulation of the Straight Line Approach.

Section 6.2.3, it is said that the far away-point is placed as far away as necessary, to give the UAV
space to turn around after point 132 and still meet point 131 from the correct angle. Figure 10.6
shows that the approach angle on point 131 is not exactly equal to the desired approach angle,
which is indicated by the line from point 130 to point 132. The accept criteria used in this test
was an acceptance radius set to 30 meters.

10.2.4 Test of the Accuracy of the Straight Line Approach

To find out how accurate the Straight Line Approach is, a test it conducted where the state of the
simulated UAV is measured at the time when it releases its payload. That means the position
when the point of release is accepted by the calculation tasks and the drop mechanism is acti-
vated. Both the NED frame position of the UAV and the heading of the UAV are measured. This
measurement is repeated each time the UAV releases its payload. Every time the UAV has fin-
ished the Straight Line Approach algorithm, it sends an IMC message to the ground station. The
ground station then resends the target, and the Straight Line Approach directs the simulated
UAV to the point of release once more. The test is running without wind and with an indicated
air speed (IAS) of 28 m/s. This simulation is continuously running overnight and all results are
presented in Chapter 11.

92 CHAPTER 10. SYSTEM TESTING

10.2.5 Test of Adapted Dubins Path

To test the Adapted Dubins Path, the calculation tasks on the Pandaboard are once more ad-
justed. The tasks are set to follow Version 3 described in Section 8.2.1.2: Two tasks, called
StraightLineApproach and AdaptedDubinsPath, both receive the IMC::Target message from the
ground control, and the label called DestinationEntity decides which task is the receiver of the
message. That task begins its calculations and communicates with the Piccolo-task, while the
other task remains passive.

The IAS is still set to be 28 m/s and the measurements sending frequency is still set to
"Comms no flow (fast)". The simulated UAV starts by loitering somewhere near the PoI, before
the target is sent from the ground unit. The distance between the first circle of the algorithm
and the second circle is set to 5 * IAS.

The wind is not turned on. The test starts with the simulated UAV loitering around a point
nearby the PoR. This loiter circle is the one at the bottom, indicated in blue, in Figure 10.7. As
soon as the Pandaboard receives the IMC::Target message from the ground station, it calculates
a circle and sends the loiter command to the autopilot. This is the blue circle in Figure 10.7
that contains the point 131. The simulated UAV follows this circle until it crosses a half plane
indicating the start of the straight line. The straight line waypoints are sent to the Piccolo and
the simulated UAV starts tracking this line. When the crossing of a half plane indicates that the
simulated UAV has reached the second circle, this circle is calculated and directions are given to
the autopilot. The UAV follows this circle until it is headed directly towards the PoR, then follows
a straight line to the point of release. After PoR, a last waypoint is sent to the autopilot, causing
the UAV to approach point 131 with approximately correct angle.

This test is repeated, and every time with success. The solution seems very successful.

10.2.6 Test of the Accuracy of the Adapted Dubins Path

To find out how accurate the Adapted Dubins Path is, a test is conducted where the state of the
UAV is measured at the time when it releases its payload. Both the NED frame position of the
UAV and the heading of the UAV are measured. This measurement is repeated each time the
UAV releases its payload. Every time the UAV has finished the Adapted Dubins Path algorithm,
it sends an IMC message to the ground station. The ground station then resends the target, and
the Adapted Dubins Path directs the simulated UAV to the point of release once more. The test is
running without wind and with an indicated air speed (IAS) of 28 m/s. The distance between the
first circle of the algorithm and the second circle is set to 10*IAS. This simulation is continuously
running overnight and all results are presented in Chapter 11.

10.3. FIELD TESTING 93

Figure 10.7: HIL simulation of the Adapted Dubins Path.

10.3 Field Testing

The field testing on Agdenes is restricted by the weather, causing all flying to cease if the wind
is too strong. Thus, the test dates are unpredictable and testing may have to be conducted on
short notice with scarce planning. Besides, as the landing field is very far away, impulsive testing
is not possible. As there are several other groups also waiting to test their systems, the result is
that there are not many test dates available for each group and it is not preferable to miss an
opportunity to test. This means that as much as possible of the system should be ready to be
tested each time, but also that it is not realistic to have the opportunity to test everything we
want. Between the tests, the UAVs to be tested are kept in a small hangar

10.3.1 Test of Drop on Target from the Ground

The first test on Agdenes is conducted on the 9. of April 2014. It is raining very lightly and it is
almost no wind. As some of the equipment on the Penguin B, belonging to the Piccolo Autopi-
lot, is not fastened correctly, and because the hardware design of our payload is not according
to the latest restrictions at this point, the test can not be carried out in the air. Instead, the Pun-
guin B is manually controlled by the UAV pilot, while driving on the landing field. A test target
point is found to be (63.628806 , 9.727369), approximately 20 meters from the start spot. The
radius around the point of release is set to be 5 meters. The UAV is driven slowly, so it drops its

94 CHAPTER 10. SYSTEM TESTING

payload correctly, approximately 5 meters before it reaches the target position, just as it enters
the acceptance circle.

Figure 10.8: The Penguin B with the drop mechanisms mounted under its wings and the anten-
nas on top of the fuselage

After refastening the drop mechanisms on the UAV, they are stress tested. On this first test,
the distance between the bottom of the payload to be dropped and the ground is approximately
5 centimetres. As the ground is very bumpy, the drop mechanism can get caught on a tuft of
grass and potentially crash the UAV during a landing. However, the stress test shows no prob-
lems with the design. To be on the safe side, though, it is decided that the drop mechanism
should be mounted higher up one the legs of the UAV. But although the landing would not be
troubled by the drop mechanisms, the take-off might. To get the Penguin B into the air, it is
possible to take off with enough speed on a landing strip, but the preferred way is to shoot the
Penguin B out with a catapult, which used compressed air to shoot the UAV. The Penguin B in
the catapult is shown in Figure 10.10. The bar carrying the drop mechanisms is attached to the
landing gear, and as shown in the picture, it is between the front and rear pair of arms on the
catapult. This was noted as a possible problem and testing would have to be done on the con-
struction to validate it.

However, as the drop mechanism bar was tested on the catapult with a testing rack, it turned

10.3. FIELD TESTING 95

Figure 10.9: The Penguin B driven manually by its pilot

out that the placement was good enough. All in all, this was a successful test that showed that
both the hardware and most of the software except for the calculation tasks, worked well.

96 CHAPTER 10. SYSTEM TESTING

Figure 10.10: The Penguin B in its shoot out catapult

Part IV

Results and Conclusions

97

Chapter 11

Results

After the software has been coded and the hardware has been built, the system was tested. This
is described in Chapter 10. The results of the testing are the results of this Master Thesis, and
include both qualitative results and some quantitative results. These are described in this chap-
ter.

11.1 Results of the Hardware Tests

Although the description of the hardware that is used and build in this thesis is placed in differ-
ent chapters in Part System Description, Planning and Implementation, the tests of the hardware
are conducted in Chapter 10. The tests are mostly simple tests that verifies that the system is
working as it should when asked to, but they do not exclude potential errors in the system. The
results of the hardware tests are presented in Table 11.1:

Test Result
Test the Pandaboard’s GPIO pin Working Correctly
Test the PWM generator and the drop
mechanism

Working Correctly

Test the radio communication Working Correctly
Test the power supply card Working Correctly
Test the communication between the
Pandaboard and the Piccolo autopilot

Working Correctly

Table 11.1: The Results of the Hardware Tests

11.2 Results of the Test of the Correctness of the Different Ac-
ceptance Criteria

In Section 10.2.2, the two acceptance criteria for a waypoint are tested. The first GPS positions
that is within the sphere created by the acceptance radius and the first GPS position after cross-

99

100 CHAPTER 11. RESULTS

Figure 11.1: The distance from the target to the first GPS position after the half plane is crossed.

ing the half plane of the target, are registered. The distance from these positions to the target
position are calculated, and the distances are shown as plots in Figure 11.1 and Figure 11.2.

11.3 Resulting Trajectory Generation Algorithms and their Ac-
curacy

Resulting Trajectory Generation Algorithms

One task in this Master Thesis was to develop an algorithm that is used to control the UAV tra-
jectory to the optimal deployment point. This was mainly Simen Fuglaas’ responsibility, but
algorithms were developed jointly by him and the author. The algorithm for the Straight Line
Approach is given in Table 11.2 and the algorithm for the Adapted Dubins Path is given in Table
11.3.

Accuracy Tests of the Trajectory Generation Algorithms

The accuracy tests of the trajectory generation algorithms produced the deviation between the
calculated point of release, and the state of the simulated UAV when the calculation tasks ac-
cepted the point of release. Both the distance from the measured point of release to the real
point of release, and the difference in heading between the simulated UAV and the ideal ap-
proach angle, were calculated. The results were plotted and are shown in Figure 11.3 and Figure

11.3. RESULTING TRAJECTORY GENERATION ALGORITHMS AND THEIR ACCURACY 101

Algorithm for following the Straight Line Approach
Input: GPS and wind measurements from the autopilot
Require:
1: measure wind
2: while no wind measurement
3: keep measuring
4: end while
5: calculate optimal PoR
6: calculate Far Away point
7: while calculations not done
8: keep calculating
9: end while
10: send waypoints to the autopilot
11: track Far Away point
11: while not entered Far Away point
12: track Far Away point
13: end while
14: track PoR
15: while not entered PoR
16: track PoR
17: end while
18: release the payload
19: start loitering around PoI

Table 11.2: Algorithm for following the Straight Line Approach

102 CHAPTER 11. RESULTS

Algorithm for following the Adapter Dubins Path
Input: GPS and wind measurements from the autopilot
Require: UAV loiters around the point of impact
1: measure wind
2: while no wind measurement
3: keep loitering
4: end while
5: calculate optimal PoR
6: calculate Adapted Dubins Path
7: while calculations not done
8: keep calculating
9: end while
10: start on the first circle
11: while not reached the straight line between the circles
12: keep loitering
13: end while
14: start on the straight line between the circles
15: while not reached second circle
16: if current waypoint tracked
17: send next waypoint
18: end if
19: end while
20: start on the second circle
21: while not reached the straight line from second circle to PoR
22: keep loitering
23: end while
24: start on the straight line from second circle to PoR
25: while not reached PoR
26: if current waypoint tracked
27: send next waypoint
28: end if
29: end while
30: release the payload
31: start loitering around the PoI

Table 11.3: Algorithm for following the Adapted Dubins Path

11.3. RESULTING TRAJECTORY GENERATION ALGORITHMS AND THEIR ACCURACY 103

Figure 11.2: The first hit inside the acceptance sphere

11.4.

For the Straight Line Approach, 615 samples were measured. The distance between the cal-
culated PoR and the accepted PoR varied between 12.92 meters and 13.9558 meters, with a mean
value of 13.3401 meters. The difference between the calculated approaching angle at the PoR
and the actual approaching angle at the PoR varied between 6.6091 degrees and 6.9008 degrees,
with a mean of 6.7326 degrees.

For the Adapted Dubins Path, 493 samples were measured. The distance between the calcu-
lated PoR and the accepted PoR varied between 0.1701 meters and 4.9853 meters, with a mean
value of 1.2911 meters. The difference between the calculated approaching angle at the PoR and
the actual approaching angle at the PoR varied between -0.6910 degrees and 0 degrees, with a
mean of -0.3612 degrees.

104 CHAPTER 11. RESULTS

Figure 11.3: The difference between the state of the simulated UAV and the calculated PoR and
approach angle of the PoR for the Adapted Dubins Path.

11.3. RESULTING TRAJECTORY GENERATION ALGORITHMS AND THEIR ACCURACY 105

Figure 11.4: The difference between the state of the simulated UAV and the calculated PoR and
approach angle of the PoR for the Straight Line Approach.

106 CHAPTER 11. RESULTS

Chapter 12

Discussion

Work described in a Master Thesis does not always follow the wisest approach and sometimes
the premisses for a decision change after more information is found. The results of such a work
will also have to be commented, as results are only numbers while discussed results are informa-
tion. This chapter contains a discussion of the decisions that have been influencing the project
described in this Master Thesis. It also discusses the results described in Chapter 11 from the
tests described in Chapter 10, the remarkably few field tests and the significance of the study.

12.1 Discussion of Choices Made

Some early choices in this Master Thesis have laid the foundation for the later work. Every time
two alternatives are possible and one is chosen, an ocean of possibilities are no longer available.
These choices are taken all the time, and all of them cannot be debated in this Master Thesis.
However, some will be discussed in this section. The important decisions taken in the course of
this project will be discussed in this section. There are also choices made prior to this project,
which have yet more influence on the work. The most important ones will also be discussed in
this section.

The Choice of Payload Deployment Method

The chosen payload deployment method was a free fall without any parachute. The choice of
payload deployment method was thoroughly debated in Section 6.1, but that was prior to the
testing. The field testing described in Section 10.3 did not show any problems with the free fall
from the UAV, but the fall height was not very high either: As the UAV was only taxing on the
landing strip, the sensor fell down approximately 5 centimetres.

As there has not been any deployment of the sensor from a flying UAV, it is difficult to say
whether that choice was correct or not, but for the time being, the choice seemed like the most
reasonable one.

107

108 CHAPTER 12. DISCUSSION

The Choice of Approaching Angle on the Point of Release

The approaching angle on the point of release was chosen to be against the wind. That means
that the UAV would fly straight north towards the point of release if the wind pointed straight
south. The other possible solutions were the same direction as the wind, namely straight south
if the wind pointed straight south, or arbitrary according to the wind. The first two choices were
the simpler ones, and were therefore the two candidates, but the first alternative was eventually
chosen. There is no apparent reason for choosing that alternative over the other candidate, as
the wind force would be taken into account in the calculations of a drop point anyway. The test
results did not draw any conclusion on whether that choice was correct or not, but then, no
drop tests from the air were conducted. To test both alternatives would be a good approach for
deciding which of the two approaching angles would be the better one. But for the time being,
the choice seems like one out of two reasonable ones.

The Choice of Drop Mechanism

The chosen drop mechanism was the EFLA305 Servoless Payload Release. It was tested during
the hardware tests, and stress tested during the field test. It proved to be robust enough on the
field and to perform as it should on the laboratory drop tests. One drawback is that the passive
part of the drop mechanism is connected to the sensor and will therefore be dropped together
with the sensor. However, that is easily solved by making new ones with a 3D printer, that can
make the new parts in plastic within short time. The other two candidates were not tested,
which means that they could have been fantastic as well. On the other hand, the arguments of
the debate in Section 7.1 were well-founded and just as existing now. Thus the choice seems like
a very good choice, both based on the qualities of that drop mechanism and compared to the
alternatives.

The Choice of Navigation Method

Early in the project, it was decided that the trajectory generation algorithm should navigate the
UAV with waypoints instead of with a change of the heading of the UAV. This choice was based on
the poor heading measurement availabilities on the Piccolo, and was therefore the only possible
choice. However, with a different autopilot, or simply a better heading sensor for the UAV, navi-
gation with heading change would be possible. That way, the autopilot could send the measured
heading relative to the north axis of the NED frame. The Pandaboard could use this measured
heading in a feedback loop and control the path with a control algorithm. With only waypoints,
that is more difficult. With waypoints, each waypoint must be tracked and a deviation, between
the intended waypoint and the actual waypoint that the UAV reaches, is inevitable.

At the time when the decision was made, it seemed like the use of waypoints was the only
choice available for the Piccolo autopilot. As this was based on a statement from fellow student,
it should have been tested before the choice was made. But as the discussion in Section 6.2.2
stated, it was not possible to test out the heading navigation on the autopilot in the field before

12.1. DISCUSSION OF CHOICES MADE 109

developing a the trajectory tracking. However, the testing of the heading navigation with hard-
ware in the loop was not considered. That could have been a sensible and time effective way of
finding out whether or not the heading measurements were accurate enough. That way, a more
informed choice could have been taken on the matter of navigation methods. And if the test
actually showed that the heading measurements were not good, then the acquisition of a better
sensor would have been a good action.

The Choice of Placement of the Drop Mechanism on the UAV

The drop mechanism was placed on the wheel assembly of the Penguin B, see Figure 10.8. This
choice proved to be working well on the only field test, without causing problems when the UAV
was taxing on the landing field. This placement could have caused problems when the UAV was
thrown out from the catapult to take off. It could have gotten caught in the arms of the catapult,
as they were stretched up during the start of the take off, and thrown down when the UAV was
launched. However, tests done with a dummy bar showed that it would not be the case, see
Section 10.3. Another problem could have been that the drop mechanism assembly bar could
crash into the ground when the UAV landed. The bar did not touch the ground when the UAV
was taxing, but it never landed with the bar fastened on it. That way, it was not tested and only
assumptions could be made. The assumptions is that the bar will cause no problems, but that
remains to be seen. All in all, there is no reason to doubt that this placement is worse than any
other, although it remains to be tested out with a full field experiment.

The Choice of UAV

This choice was not made in this Master Thesis. The choice of UAV was the Penguin B from UAV
Factory. It is a heavy weight UAV that has a long possible flight time due to large payload capac-
ity: It can carry a lot of fuel. The payload capacity means that larger sensors can be dropped
from the Penguin B, which makes it suited for the project described in this Master Thesis. The
main drawback of this UAV is that it is very expensive. It means that on days when cheaper UAVs
could defy the extreme weather, it cannot be risked with the Penguin B. A consequence of this is
less flight time with the Penguin B than with other UAVs.

The only other possible fixed-wing UAV is one called X8, which is much lighter and cannot
carry as much weight or fly as long as the Penguin B. On the other side, it is cheap enough to defy
more wind than the Penguin B, and although it cannot carry as much weight as the Penguin B,
tests could have been carried out on the X8. When most of the errors have been removed from
the system, it could have been carried out on the Penguin B. That could have increased the
amount of field tests, although it is difficult to foresee which difficulties would occur. All in all,
the sensible choice of UAV was not the Penguin B, as it is too expensive.

The Choice of Autopilot

This choice was not made in this Master Thesis. The choice of autopilot is closely connected to
the choice of UAV. The Penguin B is controlled with the Piccolo autopilot and the X8 UAV, which

110 CHAPTER 12. DISCUSSION

is mentioned in the previous paragraph, is controlled with an autopilot called Ardupilot. If it
was, after all, possible to combine the two, a choice would have involved a thorough study of
the properties of the two autopilots. Although this study has not been conducted by the author,
the experiences with the autopilot were good and the only difficulties with the autopilot were
moderate, basically caused by the interface between DUNE and Piccolo.

The Choice of Test Field

This choice was not made in this Master Thesis. The field tests were conducted on Agdenes, a
small place two hours by car away from Trondheim. It is the test field of not only this project, but
of all AMOS projects that involve fixed wing UAVs. This is a windy and hilly place, but it is close
to the sea, which is important for some of the other AMOS projects. For the project described
in this Master Thesis, however, the test field was not a good choice. The wind caused many test
days to be cancelled, and this project could only conduct one field test. However, closeness to
the sea is necessary for other projects, and that is most likely what causes the wind. That way,
the test field could not have been changed, although it was not that well suited for this project.

The Choice of using DUNE

This choice was not made in this Master Thesis. DUNE was chosen to be an easy interface to
the autopilot and to easily communicate between modules on the Pandaboard and between the
Pandaboard and the user interface on the ground station. It worked perfectly and as intended,
and the choice of using DUNE was a very good one for this project.

Of course, some time has had to be invested in learning to use DUNE, but that time has
been returned by the advantages DUNE offers: The communication and the modularization
were well suited for programs on an embedded computer on a UAV. DUNE also makes it very
easy to change the different equipment of the system, like vehicle or autopilot. If there had been
no such framework, then the exchange of UAVs between the Penguin B and the X8, that is men-
tioned earlier in this discussion, would have been much more difficult and demanded much
more work. Just like DUNE has an interface to the autopilot currently in use, Piccolo, it has a
similar interface to the other autopilot, Ardupilot, that is mentioned earlier in this discussion.
This possible change is also facilitated by DUNE and its modular construction.

The only exception on the good experiences with DUNE was the Piccolo interface, that
sometimes had small bugs that had to be dealt with. However, they were minor and manage-
able. All in all, the choice of using DUNE has been a good one.

12.2 Discussion of Results

The results presented in Chapter 11 are of different quality: Some are results of a development,
some are results of tests that are supposed to verify the hardware, while some are results meant

12.2. DISCUSSION OF RESULTS 111

to find the better solution out of a selection of solutions. The results will be discussed in the
same order as they were presented in Chapter 11.

12.2.1 Discussion of the Hardware Test Results

The test results of the hardware tests show that the hardware works as is should when asked to.
Some of the equipment, like the power supply card and the PWM generator, are simple con-
structions and not likely to behave in any other way than supposed to. The GPIO pins on the
Pandaboard are also highly logic mechanisms and behave according to the programs onboard
the Pandaboard. The drop mechanism, however, did not come with any data sheet, and was
only found to react upon a PWM signal between 0-1 V by trial and error. So although the system
works perfectly in the tests, there may be hidden behaviour that has not been discovered.

The method chosen for deploying the target with the drop mechanism, to continuously pull
in and push out the pin connecting the passive to the active part, is also discussable. This is
described in Section 7.2.3. It does not give any immediate drawbacks except for the disturbance
while testing the system, but it seems a bit pointless. The argument for choosing that method
was that it made sure the sensor was actually deployed from the UAV: If the first attempt to re-
lease the payload was unsuccessful, then the next ones could add redundancy to the system.
A more sensible solution, though, would be to signal to the drop mechanism to continuously
open its lock when the sensor should be released. So instead of commanding the drop mech-
anism to open, then close, then open, then close, it is only commanded to open, then open,
then open. After all, there is no use in closing the lock in the period when the sensor should be
released. Then, after a given distance, the drop mechanism could be signalled to close the lock.
In the unlikely scenario that the sensor was not dropped when it should, the closing of the lock
prevents it from falling down somewhere else.

The radio communication test is also a simple test to see if he system works works in reality
as it should according to the theory. The results show that the equipment works as it should, and
there is no reason to believe anything different. The communication between the Pandaboard
and the Piccolo autopilot is also found to be working correctly on the basis of simple tests. It
would be very difficult to discover errors on the communication as long as the results are as
expected for a working communication. However, it is not tested to send IMC messages from
the Pandaboard to the autopilot on the field test UAV. That is because there were not enough
field tests, see Section 12.3 for the full discussion on this subject. It would be reasonable to
assume that if there is correct input from the autopilot to the Pandaboard, and as long as the
Pandaboard is able to send messages to the autopilot in HIL simulations, then the Pandaboard
is also able to send messages to the autopilot on a field UAV. But as long as that is not fully tested,
these answers are only guesses and indications, and the result is only partly correct.

12.2.2 Discussion of the Correctness of the Different Acceptance Criteria

The correctness of the different acceptance criteria was tested, and the results were the dis-
tances between the registered GPS positions that satisfied the acceptance criteria, and the point

112 CHAPTER 12. DISCUSSION

of release. Figure 11.2 shows the distances between the target and the first registered GPS po-
sitions within the acceptance sphere, for all tests. Figure 11.1 shows the distances between the
target and the first registered GPS positions after the UAV has crossed the half plane of that way-
point, for all tests.

It is obvious from the figures that the half plane gives better results than the acceptance
sphere, as the distances when the half plane is used are far smaller than the ones using the ac-
ceptance sphere. The mean of the half plane acceptance positions is 1.4415 and the mean of
the acceptance ball acceptance positions is 9.9785. However, the acceptance radius is set to 10
meters, so with high frequent measuring, then the first registered GPS position within the ac-
ceptance sphere should be near the perimeter. If the acceptance radius were smaller, then the
distance from the target position to the first accepted GPS point inside the acceptance sphere,
would also be much smaller. The minimum distance from the target to the first hit inside the
acceptance sphere is 9.0362 meters. If the acceptance radius were smaller, say 9.0362 meters
smaller, then the mean would be approximately 0.5725. That is smaller than the mean of the
distances when the half plane criteria is used.

When the half planes are used, then all accepted GPS position are placed after the half plane
is crossed, while in an acceptance sphere, the UAV is first approaching and then diverging from
the target. If it was certain that the UAV would fly straightly across the target, it would be easy
to shrink the acceptance radius. But then, if a random gust of wind should take the UAV out
of course with some meters, then the acceptance sphere would never be entered. If, however,
the half planes were used, then the waypoint would always be accepted, although the distance
between the GPS position where the waypoint is accepted, and the waypoint itself, could be ar-
bitrarily large, depending on the wind.

The GPS position is measured by the autopilot at regular intervals, and the diameter of the
acceptance radius can never be larger than the distance between two measured points. How-
ever, if this size in meters were called M, and the UAV would fly directly through the target po-
sition, then the hits within an acceptance sphere would be evenly distributed around the target
position within a maximum distance of M

2 from the target position. Using a half plane, all first
accepted GPS positions would be after the UAV has passed the target position, evenly distributed
with a maximum distance of M from the target.

This means that with an acceptance sphere, it is not absolutely sure that the UAV will regis-
ter the waypoint, but in a best case scenario, the registered waypoints will be closer to the target
position. With a half plane, all waypoints are eventually accepted, but on the other hand, they
may be accepted although the UAV is far away from the waypoint.

On the basis of this discussion, it can be concluded that the acceptance sphere can give
accepted GPS positions that probably are closer to the target position than if the half planes
were used. However, that is in an ideal situation. In reality, disturbances can happen. The
acceptance sphere has the insecurity that the UAV might miss it altogether, and the waypoint is

12.2. DISCUSSION OF RESULTS 113

not accepted at all. That is a worse outcome than a waypoint that is accepted a bit further away
from the target position. The conclusion is therefore that half planes will be used, as they secure
that the waypoint is accepted.

12.2.3 Discussion of the Trajectory Generation Algorithms

The algorithms for a trajectory from one directed point to another in a two dimensional plane
are described in Section 11.3. They have been implemented by Simen Fuglaas and tested with
hardware in the loop simulation, and found to work just as they should. However, they have
not been field tested, as there have been no opportunity to do so. Field testing could have given
information about how the algorithms react when they meet nature conditions like changing
wind and precipitation. But as far as this Master Thesis is concerned, the algorithms have done
what they have been asked to.

The Straight Line Approach was only ever intended to be a temporary solution. It does not
seem like a sensible solution, as the accuracy of the UAV’s position and heading in the point
of release is proportional to the distance from the point of release on the far away waypoint.
The Adapted Dubins Path, on the other hand, is derived from an optimal solution, namely the
Dubins Path, according to the inventor of that algorithm (Beard and McLain, 2012). Using that
algorithm, the hardware in the loop-tested UAV showed a high degree of accuracy in the point
of release. The runtime on that algorithm was not measured, but evidently higher than the one
with the Straight Line Approach, but then the accuracy was far better.

The Adapted Dubins Path is just an adjusted Dubins Path, and can therefore not be called a
new development. On the other side, the Straight Line Approach has probably also been used
before, and is therefore no better alternative for a new development. But as the system demands
an optimal solution and that has already been invented, then the needs of the system are more
important than the request for something that no-one has ever seen before.

Accuracy of the Trajectory Generation Algorithm

The results from the accuracy tests of the trajectory generation algorithms are showed in Figure
11.3 and Figure 11.4. Both the plots and the calculated mean values show that the Straight Line
Approach has a less accurate actual PoR than the Adapted Dubins Path. The mean value of the
distance from the calculated PoR to the actual PoR is 13.3401 meters when the Straight Line Ap-
proach is used, while it is only 1.2911 meters when the Adapted Dubins Path is used. The mean
value of the difference between the calculated approach angle at PoR and the actual approach
angle t PoR is 6.7326 degrees when the Straight Line Approach is used, while it is only -0.3612
degrees when the Adapted Dubins Path is used.

It can be observed that the angle difference is strictly positive when the Straight Line Ap-
proach is used, while for the Adapted Dubins Path, it is negative. The reason for this may be the
direction of the loop that the simulated UAV follows. The Straight Line Approach always flew
counter-clockwise, as did the Adapted Dubins Path. The reason for that is that the IMC message

114 CHAPTER 12. DISCUSSION

with the point of impact was sent from the ground station to the Pandaboard as the simulated
UAV had just left the point of release. After passing through the point of release, both algorithms
are directing the UAV to start on a counter-clockwise loiter around the projected point of impact
on the flight height. If they had followed a clockwise path, then the sign before the angles would
very likely have been different.

Both algorithms were running constantly for one night, approximately the same amount of
time. However, the Adapted Dubins Path only produced 493 samples, while the Straight Line
Approach produced 615 samples. That is because the Adapted Dubins Path includes longer
flight time than the Straight Line Approach. That is a drawback, as the Dubins Path is supposed
top be time-optimal, see Section 4.3. But although the Straight Line Approach offers a solution
that takes shorter time, it does not lead the UAV to the directed point where it should end up.
The mean distance from the target at the drop of the sensor is 13.3401 meters, which is not
negotiable, and the mean angle deviation from the ideal heading of the UAV is 6.7326 degrees.
That means that if time is more essential than precision, then the Straight Line Approach is more
effective than the Adapted Dubins Path. However, if the precision of the drop is essential, then
the Adapted Dubins Path is the best choice. The mean distance from target at the drop of the
sensor, and the mean angle difference of the heading, are 1.2911 meters and -0.3612 degrees,
which is not equal to 0, but still fairly precise. The approach has demonstrated that it is a path
from one directed point to another.

12.3 Discussion of the Limitation of the Field Tests

As Section 10.3 shows, there were few field tests with the Penguin B on Agdenes. In the work de-
scription, step 5 is to test the system with field experiments, but only one field experiment was
conducted and the UAV never left the ground during the test. However, that test was successful
as all functionality that was tested was working as it should.

There are several reasons why only one field test was conducted. First, the weather condi-
tions on Agdenes are harsh: Several test days were cancelled because of too much wind. The
Penguin B is an expensive UAV and the project could risk to damage it if it got caught by the
wind and crashed. Besides, it requires a pressured air drived catapult to be launched on Ag-
denes, as the landing strip has too rugged ground for the UAV to take off on. These two reasons
lead to a slow start for the Penguin B, and the first flight on the spring of 2014 was as late as the
10. of May. That flight went well and the UAV was not at all damaged, but the pilots lost radio
communication with the UAV at some points. More delays occurred along with more problems,
as the autopilot suddenly did not work any more and had to be changed.

On top of all that, Agdenes is situated close to a military airport on Ørlandet, and the week
from the 19. of May to the 23. of May, the airspace was only available in small amounts of time.
As time limitations demanded the field tests to be done before the 23. of may, the possibilities
of testing were scarce. Therefore, on 13. may, the following alternatives were proposed by Tor
Arne Johansen:

12.3. DISCUSSION OF THE LIMITATION OF THE FIELD TESTS 115

• Hope that all goes well with the Penguin B and then perform field tests on the available
airspace test time.

• Move the field tests to Eggemoen (470 kilometres away from Trondheim) and avoid prob-
lems with the catapult and availability of the air space. Eggemoen has a much better land-
ing strip than Agdenes and no military disturbance.

• Move the payload to another UAV, the X8, and fly on Agdenes on the available airspace test
time.

• Postpone the tests to June or after the summer.

The options were thoroughly debated: The fourth alternative was not a real option, as the
Master Thesis was due the 2. of June for the author and two weeks later for Simen Fuglaas. The
second alternative would work well for this project, but would be a great disadvantage for all
other project groups who field tested on Agdenes as the equipment would have to be moved.
That left the first and the third alternative, and none of the debaters found it realistic to carry
through any tests on the Penguin B before the 23. of May. The third alternative would involve
a new autopilot called Ardupilot, with which neither the author nor Simen Fuglaas had much
experience, as well as the new UAV. New hardware would have to be made, and new simulations.

It is a realistic possibility to change between the Penguin B and the X8, and between the Pic-
colo autopilot and the Ardupilot autopilot: DUNE has interfaces to both of the autopilot, and
the control the UAV without any further problems. The automatic modularity that DUNE in-
volves makes these changes possible. However, it would be time consuming.

One drawback with the Ardupilot on the X8 UAV is that there is no good HIL simulator for
that system, which means that most tests are conducted as field tests, and all errors are discov-
ered when the UAV is in the air.

To change to the X8 with an Ardupilot autopilot would be to jeopardise the project with
only 10 working days available. But if all went well, important results would be achieved: Field
tests would be conducted and the trajectory algorithms could be field tested. However, a failure
would mean that all the time invested in the transfer would have been used in vain. Then there
would be no field test nor any further HIL tests, as the time that could have been used for HIL
test were used on a fruitless UAV transfer.

Although it seemed very wise to change from the expensive and complicated heavy-weight
Penguin B to the cheap, simpler X8 on the long view, there would not be enough time to guaran-
tee success. Besides, the available time would mean that even with success on the first attempt,
the transfer would demand most of the remaining time of the Master Thesis. The decision was
therefore to go with the first alternative, in reality not field test any more and concentrate on HIL
tests. The choice led to no more field tests, but to HIL testing on waypoint acceptance criteria
and the different trajectory generation algorithms.

116 CHAPTER 12. DISCUSSION

12.4 Discussion of the Significance of the Study

This study is motivated by the problem that drifting icebergs constitutes for the shipping indus-
try. It would be very practical to know the position of drifting icebergs at any given time, but still,
that is not the real significance of this study. The ability to deploy an object from a UAV with high
position is the real advantage this study causes, and that technique is useful for several areas,
from GPS tracking of icebergs to deployment of supplies in disaster areas.

Research is done on the topic, as the literature study shows, but no article describes the same
as this Master Thesis. Even the UAV described in McGill et al. (2011), which placed sensors on
an iceberg, was controlled by a pilot. The study presented in this Master Thesis aims to do the
same thing, only by an autonomous UAV, that does not need to be controlled by a pilot. The
work described in this Master Thesis has not yet come that far, and a pilot is still required to
launch the UAV and fly it to the area where the sensor should be dropped. Still, the project can
be continued and the goal would be as relevant.

The study has also contributed to the AMOS research project. It provides an almost finished
solution to one of the basic UAV operations that the AMOS project Autonomous unmanned vehi-
cle systems wanted to master: Dropping a payload. Since the project uses DUNE as basis for the
control system, the system is yet more useful for AMOS: It means that not only is there a system
available for precision drops with Penguin B and the Piccolo autopilot, but minor adjustments
permits the use of other UAVs like the X8 and other autopilots like the Ardupilot. As long as there
is a DUNE interface for the equipment, it can be easily included in the system described in this
Master Thesis, or it could replace equipment currently in use in the system.

No parts of this Master Thesis could have been omitted, as they only describe what has been
done in the project and the debates that has led to the decisions taken. Especially Chapter 5 is
valuable as it gives the thesis consistence and makes it easier to understand the later chapters.
The tests described in this Master Thesis are also necessary, as they either verify that the equip-
ment and code work as they should, or test the correctness of two different methods and decide
which one will be used later. The results of these tests have been debated earlier in this chapter.

However, other tests could have been useful, for instance a test that find out which signifi-
cance the fall height has on the insecurity of the point of impact for a released payload. Another
useful test would be to see what strong or moderate wind does to the UAV when it tracks the
path generated by the trajectory generation algorithms that are developed in this thesis. Simen
Fuglaas has occupied himself with these tests and other aspects of this project. For supplemen-
tary reading on the topic of this project, his Master Thesis should be read.

Chapter 13

Future Work

Although two master students have worked on this project for one semester, a lot more could
have been done: improvements found while testing the system and improvements found while
not testing the system, planned work that there were no time for and the planned continuation
of this Master Thesis. This project was carried out in the beginning of the AMOS project and
some tests or implementations are easier to carry out when it has been done before, for instance
the field tests. This Chapter contains suggestions to future work on this project.

Change of UAV and Autopilot

The most important part of the future work would be to change the UAV used to deploy the
sensor from a Penguin B to the X8. This has been discussed in Section 12.1, and the conclusion
was that the X8 would be a better UAV for testing, as it is not as expensive as the Penguin B.
That would make it possible to carry out more field tests, which would certainly be useful. A
change of UAVs would involve a change of autopilots. It is not possible to foresee all problems
this change will cause, both caused of the actual transfer and caused by the possible different
behaviour of that other autopilot. However the extra workload would not be too great, as DUNE
has an interface to the other autopilot that resembles the interface to Piccolo a lot.

Conduct more Field Tests

One objective of this Master Thesis was to test the system with field experiments. It was only
possible to conduct one field test on Agdenes because of reasons described in Section 12.3. That
one test was successful and showed that the system worked as far as the test was able to show,
but the system has never been tested on a flying UAV.

The first field test that should be conducted is to test the release on target from the air: The
UAV pilot controls the UAV and guides it to the pre-calculated point of release, then the drop
mechanism is signalled to drop its payload by the Pandaboard.

117

118 CHAPTER 13. FUTURE WORK

The second field test that should be conducted is to test the Straight Line Approach. This is
not strictly necessary, as the HIL tests show that the precision of the position and heading of the
UAV in what it believes is the point of release, does not largely agree with the actual position and
heading for the point of release. However, it is good to have a demonstration of the trajectory
from a field experiment. Besides, it is important to see if the Adapted Dubins Path is more pre-
cise than the Straight Line Approach in a field experiment, too.

The third field test that should be conducted is to test the Adapted Dubins Path. As this is
the algorithm that is considered to produce the best trajectory for the UAV, it is of great impor-
tance to investigate its properties on a real UAV. A simulator can give good results where a field
experiment discovers problems. The field tests will also give good feedback on the accuracy of
the algorithm, and some adjustments of the parameters should be expected.

Test the Sensor Protection

When the trajectory generation algorithms have been field tested, the next step would be to test
the system with the deployment of a real sensor. Firstly, it is important to find the correct model
for this sensor to be able to calculate its fall path correctly. Secondly, it is necessary to see if it
will survive the impact. Before this is experimented with, a dummy sensor should be used with
the same protection that will be used for the real sensor. When that is perfected, a real sensor
could be dropped.

Change Navigation Method from Waypoints to Heading

To get a controllable trajectory and simplify the tracking of the trajectory, heading should be
used. This requires a good direction angle sensor on the UAV, either using the autopilot or with
an external sensor. The change of navigation method will probably result in an optimal point of
release for the UAV.

Implement a Graphical User Interface

The tool from LSTS called Neptus is described in Section 3.1 but has not been used in this
project. It would be useful to have a graphical user interface for DUNE, and Neptus gives a
ready-to-use solution.

Chapter 14

Conclusion

This chapter describes in short what has been performed and achieved in this project, and what
can be concluded.

14.1 What has been Performed

The work started with a thorough literature study, which has given relevant information to this
Master Thesis. Based on researched literature and theory, decisions have been taken through-
out the project. The hardware for a payload mount, meant to be carried by a Penguin B UAV, has
been built, tested and found to work. The tests have been conducted both on a laboratory and
in the field, using a UAV that taxed on a landing strip. Two algorithms for guiding a UAV from
one directed point to another in a two dimensional plane have been developed, tested and their
accuracy have been compared.

Software has been developed, both for the Pandaboard and for a user interface, on a ground
station. They were both implemented with the use of the DUNE framework, which facilitates the
communication with the Piccolo autopilot that controls the Penguin B UAV. The whole system
has been tested on a hardware in the loop simulator and on field tests, to find out if it behaved
as planned. The two trajectory generation algorithms have also been tested to find out which
algorithm lets the UAV release its sensor from a position closest to the calculated point of release.
Last, but not least, two waypoint acceptance criteria have been tested to find out which gives the
closest results. All of the results have been discussed and debated, to find out their relevance and
value.

14.2 What has been Achieved

In this Master Thesis, a ready-to-use modular precision deployment system meant to be mounted
on a Penguin B, has been made. The necessary calculations and decisions have been made, the
hardware has been built and the system has been tested. The system is modularly built and
easily modifiable, since it utilizes the DUNE software solution. That makes the system easy to

119

120 CHAPTER 14. CONCLUSION

use not only with the Penguin B and the Piccolo autopilot, but with a large range of UAVs and
autopilots, for instance the X8 UAV and the Ardupilot autopilot mentioned in the discussion.

Tests have been conducted to find out which trajectory generation algorithm that produces
the best path to the point of release for the UAV. Tests have also been conducted to find out
which waypoint acceptance criteria is the more effective.

The work done in this Master Thesis has contributed a whole lot on the subject of high pre-
cision sensor deployment from unmanned aerial vehicles, although further testing should be
conducted.

14.3 Conclusions

Conclusions drawn from this Master Thesis are as follows:

• The Adapted Dubins Path is found to be the trajectory generation algorithm that produces
the best trajectory, measured by deviation between the calculated point of release and the
point of release accepted in the algorithm.

• It is more accurate to use half planes as waypoint acceptance criteria than an acceptance
sphere, but it will be more precise if they are combined.

• The system described in this Master Thesis can be used for high precision deployment of
wireless sensors from a UAV, but should be further tested.

• The system described in this Master Thesis could easily be implemented on another UAV
using another autopilot, as long as there is a DUNE interface for that equipment.

14.4 Recommendation for Future Work

By testing and discussion, it is demonstrated that this system works well, but that it can be fur-
ther developed. The most important steps of the future work on this project are:

• To change the UAV and autopilot to an X8 and the Ardupilot

• To conduct more field tests

• To find a well suited protection for the deployed sensor

• To change the navigation method from waypoints to heading changes

• To implement a graphical user interface for the system

Bibliography

Arduino (2014). Arduino Introduction. http://www.arduino.cc/en/Guide/Introduction#

.UxiRqoV213s.

Beard, R. W. and T. W. McLain (2012). Small Unmanned Aircraft. Princeton University Press.

Bousson, K. and P. Machado (2013). 4d trajectory generation and tracking for waypoint-based
aerial navigation. WSEAS Transactions on Systems and Control 8(3), 105–119. cited By (since
1996)0.

Cloud Cap Technology (2014a). Ground stations. https://www.cloudcaptech.com/piccolo_
groundstation.shtm.

Cloud Cap Technology (2014b). Piccolo autopilots - the standard in uas systems. http://www.
cloudcaptech.com/piccolo_system.shtm.

Cloud Cap Technology (2014c). Piccolo command center - powerful flight management sup-
port. https://www.cloudcaptech.com/piccolo_command_center.shtm.

Corke, P., S. Hrabar, R. Peterson, D. c. Rus, S. Saripalli, and G. Sukhatme (2004). Autonomous
deployment and repair of a sensor network using an unmanned aerial vehicle. Volume 2004,
New Orleans, LA, pp. 3602–3608.

Dong, M. b., B. b. Chen, G. b. Cai, and K. c. Peng (2007). Development of a real-time onboard
and ground station software system for a uav helicopter. Journal of Aerospace Computing,
Information and Communication 4(8), 933–955. cited By (since 1996)27.

Dubins, L. E. (1957, Jul). On curves of minimal length with a constraint on average curvature,
and with prescribed initial and terminal positions and tangents. American Journal of Mathe-
matics 79(3), 497–516.

Ducote, R. J. and R. J. Speelman (1966, July-August). U. s. air force concepts for accurate delivery
of equipment and supplies. In Aerodynamic Deceleration Systems Conference, Volume 4.

E-flite advancing electric flight (2014). Servoless payload release - instruction manual. http:

//www.horizonhobby.com/pdf/EFLA405-Manual.pdf.

HistoryOrb (2014). Historical events for year 1849. http://www.historyorb.com/events/

date/1849.

121

http://www.arduino.cc/en/Guide/Introduction#.UxiRqoV213s
http://www.arduino.cc/en/Guide/Introduction#.UxiRqoV213s
https://www.cloudcaptech.com/piccolo_groundstation.shtm
https://www.cloudcaptech.com/piccolo_groundstation.shtm
http://www.cloudcaptech.com/piccolo_system.shtm
http://www.cloudcaptech.com/piccolo_system.shtm
https://www.cloudcaptech.com/piccolo_command_center.shtm
http://www.horizonhobby.com/pdf/EFLA405-Manual.pdf
http://www.horizonhobby.com/pdf/EFLA405-Manual.pdf
http://www.historyorb.com/events/date/1849
http://www.historyorb.com/events/date/1849

122 BIBLIOGRAPHY

Laboratório de Sistemas e Tecnologias Subaquáticas (2013). Lsts. http://lsts.fe.up.pt/

about.

Lai, C.-K., M. Lone, P. Thomas, J. Whidborne, and A. Cooke (2011). On-board trajectory genera-
tion for collision avoidance in unmanned aerial vehicles. Big Sky, MT.

Maza, I., K. Kondak, M. Bernard, and A. c. Ollero (2010). Multi-uav cooperation and control for
load transportation and deployment. Journal of Intelligent and Robotic Systems: Theory and
Applications 57(1-4), 417–449. cited By (since 1996)30.

McGill, P., K. Reisenbichler, S. Etchemendy, T. Dawe, and B. Hobson (2011). Aerial surveys and
tagging of free-drifting icebergs using an unmanned aerial vehicle (uav). Deep Sea Research
Part II: Topical Studies in Oceanography 58(11â€“12), 1318 – 1326. Free-Drifting Icebergs in
the Southern Ocean.

Oliveira, T., G. Cruz, E. R. B. margues, and P. Encarnacão (2011). A test bed for rapid flight testest
of uav control algorithms.

OMAPpedia (2012). Pandaboard faq. http://www.omappedia.com/wiki/PandaBoard_FAQ.

Omari, S., M.-D. Hua, G. Ducard, and T. Hamel (2013). Hardware and software architecture for
nonlinear control of multirotor helicopters. IEEE/ASME Transactions on Mechatronics. cited
By (since 1996)0; Article in Press.

Pandaboard.org (2014). Board references. http://pandaboard.org/content/resources/

references.

Pinto, J., P. Calado, J. Braga, P. Dias, R. Martins, E. Marques, and J. Sousa (2012). Implementation
of a control architecture for networked vehicle systems. Volume 3, Porto, pp. 100–105.

Pinto, J., J. Sousa, F. Py, and K. Rajan (2012). Experiments with deliberative planning on au-
tonomous underwater vehicles. In IROS Workshop on Robotics for Environmental Modeling,
Algarve, Portugal.

Santamaria, E., P. Royo, J. Lopez, C. Barrado, E. Pastor, and X. Prats (2007). Increasing uav capa-
bilities through autopilot and flight plan abstraction. Dallas, TX, pp. 5B51–5B510.

SiriusXM (2014). Iceberg canadian adult alternative music. https://www.siriusxm.ca/

Channels/Iceberg.aspx.

Tang, Y.-R. and Y. Li (2011). The software architecture of a reconfigurable real-time onboard
control system for a small uav helicopter. Incheon, pp. 228–233.

Texas Instruments (2013, March). Lm1084 low dropout positive regulators. http://www.ti.

com/lit/ds/symlink/lm1084.pdf.

Tinder Rocketry (2014). Peregrine exhaustless co2 ejection system. http://fruitychutes.

com/files/peregrine/Tinder%20Rocketry%20Reloading%20Guide-Final-v2.pdf.

http://lsts.fe.up.pt/about
http://lsts.fe.up.pt/about
http://www.omappedia.com/wiki/PandaBoard_FAQ
http://pandaboard.org/content/resources/references
http://pandaboard.org/content/resources/references
https://www.siriusxm.ca/Channels/Iceberg.aspx
https://www.siriusxm.ca/Channels/Iceberg.aspx
http://www.ti.com/lit/ds/symlink/lm1084.pdf
http://www.ti.com/lit/ds/symlink/lm1084.pdf
http://fruitychutes.com/files/peregrine/Tinder%20Rocketry%20Reloading%20Guide-Final-v2.pdf
http://fruitychutes.com/files/peregrine/Tinder%20Rocketry%20Reloading%20Guide-Final-v2.pdf

BIBLIOGRAPHY 123

Tuna, G., T. Mumcu, K. Gulez, V. Gungor, and H. Erturk (2012). Unmanned aerial vehicle-aided
wireless sensor network deployment system for post-disaster monitoring. Communications
in Computer and Information Science 304 CCIS, 298–305.

UAV Factory (2014). Homepage. www.uavfactory.com.

Ubiquity Networks (2014). airmax. http://www.ubnt.com/airmax.

Wikipedia (2014a, April). Climate of the arctic. http://en.wikipedia.org/wiki/Climate_

of_the_Arctic.

Wikipedia (2014b, May). Geodetic datum. http://en.wikipedia.org/wiki/Geodetic_

system.

Wikipedia (2014c). Git (software). http://en.wikipedia.org/wiki/Git_%28software%29.

Williams, P. b. c. and P. b. Trivailo (2006). Cable-supported sliding payload deployment from a
circling fixed-wing aircraft. Journal of Aircraft 43(5), 1567–1570. cited By (since 1996)2.

Wuest, M. R. and R. J. Benney (2005, December). Precsion airdrop (largage de precision). Flight
Test Techniques Series 24.

www.uavfactory.com
http://www.ubnt.com/airmax
http://en.wikipedia.org/wiki/Climate_of_the_Arctic
http://en.wikipedia.org/wiki/Climate_of_the_Arctic
http://en.wikipedia.org/wiki/Geodetic_system
http://en.wikipedia.org/wiki/Geodetic_system
http://en.wikipedia.org/wiki/Git_%28software%29

124 BIBLIOGRAPHY

Part V

Appendices

125

Appendix A

Drawings and Schematics

Figure A.1: The drawing of the payload mount for a Penguin B (source: UAV Factory (2014)).

127

128 APPENDIX A. DRAWINGS AND SCHEMATICS

Figure A.2: The dimensions of the payload mount for a Penguin B (source: UAV Factory (2014)).

129

Figure A.3: The drawing of a Penguin B (source: UAV Factory (2014)).

130 APPENDIX A. DRAWINGS AND SCHEMATICS

Figure A.4: The schematics of the Penguin B. The COM-ports are interfaces to the Piccolo and
the power (Source: Jon Petter Skagmo).

131

Figure A.5: Schematics of the PWM generator system

132 APPENDIX A. DRAWINGS AND SCHEMATICS

Figure A.6: Drawings of the payload box (source: uavlab.itk.ntnu.no)

133

Figure A.7: Drawings of lid for the payload box (source: uavlab.itk.ntnu.no)

134 APPENDIX A. DRAWINGS AND SCHEMATICS

Figure A.8: The schematics used to connect the voltage regulator circuit (source Texas Instru-
ments (2013))

Appendix B

Definitions, Code Implementations,
Equations and their Derivations

The Position, Velocity and Acceleration of a Particle following a
Circular Path

r(t) = costi+ si ntj (B.1)

v = dr

d t
=−si nti+ costj (B.2)

a(t) = dv

d t
=−costi− si ntj (B.3)

Figure B.1: The position vector~r (3π
2) = (0,1), the velocity vector ~v(2π

2) = (1,0), the acceleration
vector ~a(3π

2) = (0,−1).

135

136APPENDIX B. DEFINITIONS, CODE IMPLEMENTATIONS, EQUATIONS AND THEIR DERIVATIONS

The Definition of a Unit Tangent Vector

T = dr

d s
= dr/d t

d s/d t
= v

|v| (B.4)

Code for the PWM Generator

/*

* PWMforAtTiny.c

*

* Created: 24.02.2014 10:46:25

* Author: siriholt

*/

#include <avr/io.h>

#define PWMPIN PB0

#define INPUTPIN PB1

void PWM_init (){

// Enable input on the inputpin

DDRB = 0x00;

//Set the inputpin low

PORTB |= (0 << INPUTPIN);

// Enable output on the outputpin

DDRB |= (1 << PWMPIN);

// Clear OC0A on Compare Match , using fast PWM mode

TCCR0A |= (1 << COM0A1) | (1 << WGM01) | (1 << WGM00);

//Fast PWM mode with 0xFF = TOP , Clock selecy 64 prescaler

TCCR0B |= (0 << WGM02) | (1 << CS01) | (1 << CS00);

//Init the PWM signal to be compared with the counter value

OCR0A = 0;

}

void PWM_run (){

uint64_t value;

uint64_t sleeper;

for(value = 0; value < 50; value ++){

OCR0A = value;

sleeper = 0;

while(sleeper < 300){

sleeper ++;

}

137

}

for(value = 50; value > 0; value --){

OCR0A = value;

sleeper = 0;

while(sleeper < 300){

sleeper ++;

}

}

}

int main(void)

{

PWM_init ();

while (1)

{

if(PINB & (1 << INPUTPIN)){

PWM_run ();

}else{

OCR0A = 0;

}

}

}

138APPENDIX B. DEFINITIONS, CODE IMPLEMENTATIONS, EQUATIONS AND THEIR DERIVATIONS

Appendix C

Annotated Bibliography

Autonomous Deployment and Repair of a Sensor Network using an Unmanned Aerial Vehicle

In this article, Corke et al. (2004) present a method to plan and deploy a sensor node network
using unmanned helicopters. The article does not go into detail about how the deployment is
to take place, only that once the order to deploy a sensor reaches the controller, the helicopter
is told to drop the sensor in that position. The deployment mechanism is also described. It con-
sists of a spiral of wired coil, on which the sensors are attached. To deploy one sensor, the spiral
is turned enough times. The sensor reaches the end of the coil and falls down.

The article is useful because of its alternative to a deployment mechanism. To rotate a wire
coil seems like a sensible choice to drop several sensors from the same UAV. However, if it were
only one sensor, this would be unnecessary complex. Corke et al. (2004) conclude that the use of
UAVs will increase the reach of sensor networks, which concurs with the intention of this master
thesis.

Multi-UAV Cooperation and Control for Load Transportation and Deployment

This article, written by Maza et al. (2010), addresses the cooperation of multiple UAVS when it
comes to transportation of heavy loads and deployment of sensor networks. Although section 4
is concerned with an experiment where an UAV deploys a sensor node, monitored by two other
UAVs, little useful information was given.

Unmanned Aerial Vehicle-Aided Wireless Sensor Network Deployment System for Post-disaster
Monitoring

This article by Tuna et al. (2012) describes how UAVs can deploy sensor nodes for use in post-
disaster environments. It assumes an optimal location for the sensor drop and describes how
the navigation and trajectory tracking is done. The article suggests a combination of Global Po-
sitioning System (GPS) and Inertial Navigation system (INS) to combine the advantages of the
navigation systems, and concludes that it is possible for the UAV to follow a trajectory to an op-
timal drop point.

139

140 APPENDIX C. ANNOTATED BIBLIOGRAPHY

This article is relevant as it describes how the navigation of an UAV can be done if it is im-
portant that the trajectory is followed as accurately as possible.

Precision Airdrop (Largage de précision)

This article by Wuest and Benney (2005) explains theory about and different practices to precise
payload deployment from air crafts. It contains equations necessary for the computations, dif-
ferent drop methods, sensor techniques and deployment systems in use or under development.

The different computations presented in the article are useful for this master thesis and
their considerations are sensible. That the methods presented in the article are currently in
use, makes the theory more relevant.

U. S. Air Force Concepts for Accurate Delivery of Equipment and Supplies

This is an article from 1967 written by Ducote and Speelman (1966) that explains ballistic the-
ory behind parachute drops from air planes, and what methods to use in different altitudes.
Although the article is not concerned with UAVs, the theory is relevant and elaborates the char-
acteristics of air drops with parachutes.

Cable-Supported Sliding Payload Deployment from a Circling Fixed-Wing Aircraft

This article by Williams and Trivailo (2006) explains a technique used for sliding payloads to the
ground from a fixed-wing air craft using a cable. The proposed solution is to circle the air craft
with a fixed diameter around the drop spot, and anchor the cable tip to the ground to increase
the stability. The authors conclude with a recommendation to install a breaking mechanism to
prevent the payload from sliding to quickly to the ground.

This article is very useful for this project, as it proposes a realistic and tested technique for
precision payload drop. The method seems accurate, but might be too complicated as it requires
a breaking mechanism as well as the circling move and the cable with an anchor. On the other
hand, an air drop does not have any break either, so that may not be necessary.

Hardware and Software Architecture for Nonlinear Control of Multirotor Helicopters

In this article, Omari et al. (2013) model a system architecture for multirotor helicopters. The
article includes the necessary mathematics for the model, and explains how the practical im-
plementation can be done. This model applies to all UAVs that land and take off vertically, and
will thus not apply to our project. However, the overview of the system architecture can be use-
ful, as it will apply to any UAV with ground control.

141

The Software Architecture of a Reconfigurable Real-time Onboard Control System for a Small
UAV Helicopter

Tang and Li (2011) discuss the software architecture and implementation in a UAV Helicopter. It
includes figures of the architecture, which can be useful inspiration.

Development of a Real-Time Onboard and Ground Station Software System for a UAV Heli-
copter

Dong et al. (2007) describe the interaction between the onboard system of the UAV and the
ground control station, and presents the software system. It explains how the synchronization
of different onboard tasks can be done and how the different layers of the ground station are
organized. This is a useful article and the theory can be applied in our project.

On-Board Trajectory Generation for Collision Avoidance in Unmanned Aerial Vehicles

This paper by Lai et al. (2011) is concerned with the field of collision avoidance in UAVs. It treats
trajectory generation in a block diagram and mathematically. This seems like a useful article if
one is working on collision avoidance.

4D Trajectory Generation and Tracking for Waypoint-Based Aerial Navigation

This article is written by Bousson and Machado (2013) and is concerned with trajectory planning
where the arrival time to the waypoint is a constraint. That is not to be treated in our project,
thus the article will be too complicated.

Increasing UAV Capabilities through Autopilot and Flight Plan Abstraction

In this article, Santamaria et al. (2007) present two subsystems, which are intended to create an
abstraction layer for the autopilot and a flight plan manager. There will be one program onboard
the UAV that makes the connection between payloads and the autopilot go smoother, and that
communicates with the flight plan manager. The authors describe the systems, but do not seem
to have tested it.

These two subsystems are approximately equivalent to the software tool chain that will be
used in this project, and the article does therefore seem very relevant. However, as it is not
tested, it only describes an alternative to the LSTS tool chain, and will probably not bring the
project any further. Then again, someone might have used this article to work further on it, and
that might contribute to our project.

Implementation of a Control Architecture for Networked Vehicle Systems

This article presents the LSTS tool chain, consisting of the modules: DUNE, Neptus and the
IMC protocol. Pinto et al. (2012) explain the relationship between the entities, their different
layers and their main properties. After describing how the tools work, some tests are mentioned

142 APPENDIX C. ANNOTATED BIBLIOGRAPHY

where they were used and in the conclusion, a recommendation is given to use these tools in
unmanned vehicles.

As these tools will be used in our project, this article is useful as it gives insight in and an
introduction to them.

Experiments with Deliberative Planning on Autonomous Underwater Vehicles

In this article, Pinto et al. (2012) describes how the LSTS tool chain is used in combination with
T-REX, an extended control architecture, to improve the onboard autonomy of an LAUV. This
article says little more than the one by Pinto et al. (2012), but extends it and can extend the
knowledge on the LSTS tool chain.

Aerial surveys and tagging of free-drifting icebergs using an unmanned aerial vehicle (UAV)

The research team presenting this article ((McGill et al., 2011)) has used UAVs to drop GPS sen-
sors on drifting icebergs, to be able to keep them under surveillance. The UAV used is not the
same as in our project and instead of having an autonomous UAV, they used a radio-controlled
one, butapart from that, this project resembles our project a lot. In the article, they suggest the
use of a toy ball to encapsulate the GPS sensor. The toy balls have four sticks pointing out to pre-
vent it from rolling off the ice berg and fall freely from the UAV without any parachute. The drop
mechanism used in this project is not that useful, as the UAV used does not have any propeller
behind it, which it must be careful not to hit with the sensor.

A test bed for rapid flight testing of UAV control algorithms

This article is written by Oliveira et al. (2011) at the Academia de Força Aérea Portuguesa, Fac-
uldade de Engenharia da Universidade do Porto and Faculdade de Engenharia da Universidade
Católica Portuguesa in Portugal. It describes work with the Piccolo Autopilot on UAVs and how
it cooperates with the LSTS toolchain. This is very important information for this Master The-
sis and will make the familiarization with the LSTS tool chain in combined with the Cloud Cap
Technology (see Section 3.4).

	Work Description
	Preface
	Acknowledgment
	Summary and Conclusions
	Norwegian Summary
	Acronyms
	Introduction
	Background and Motivation
	Problem Formulation
	Objectives
	Delimitations
	Structure of the Thesis

	I Background and Theory
	Literature Study
	Search Words for the Literature Study
	Payload Deployment Methods
	The LSTS Toolchain
	Summary

	Tools and Equipment
	The LSTS Software Toolchain
	DUNE
	Neptus
	IMC

	Pandaboard
	Penguin B
	Piccolo SL Autopilot and Cloud Cap Technology
	Equipment from Ubiquity Networks

	Precision Air Drop Theory
	A Simple Throw
	A Throw with Air Resistance and Wind
	Dubins Path
	Half Planes used to Accept Waypoints

	II System Description, Planning and Implementation
	System Description
	The Work Flow of the System
	Overview of the System Modules

	Trajectory and Drop Planning
	Choice of Payload Deployment Method
	Development of an Algorithm for a Trajectory to the Point of Release
	Determining the Initial Conditions
	Choice of Navigation Method
	The Straight Line approach
	A Pseudocode Implementation of the Straight Line Approach
	Using Dubins Path
	A Pseudocode Implementation of the Adapted Dubins Path

	Choice of Waypoint Acceptance Criteria

	Drop Mechanism
	Choice of Drop Mechanism
	Signal Generator
	Choice of Signal Generator
	Control Signal
	Interface between Signal Generator and Pandaboard

	Placement of the Drop Mechanism on the UAV
	The Substitute for the Sensor
	The Drop Mechanism Assembly

	The Software Implementation
	Software Architecture on Pandaboard and User Interface
	Class Relationship Overview
	Piccolo
	GroundControl

	Addresses and IDs

	Implementation of Hardware on the Penguin B
	Radio Communication
	Power Supply
	Implementation of First Design
	Drawbacks with the First Hardware Design

	Implementation of Second Design
	Hardware of the User Interface

	III Experimental Procedure
	System Testing
	Hardware Tests
	Hardware In the Loop Testing
	Test of Drop on Target
	Test of the Correctness of the Different Acceptance Criteria
	Test of Straight Line Approach
	Test of the Accuracy of the Straight Line Approach
	Test of Adapted Dubins Path
	Test of the Accuracy of the Adapted Dubins Path

	Field Testing
	Test of Drop on Target from the Ground

	IV Results and Conclusions
	Results
	Results of the Hardware Tests
	Results of the Test of the Correctness of the Different Acceptance Criteria
	Resulting Trajectory Generation Algorithms and their Accuracy

	Discussion
	Discussion of Choices Made
	Discussion of Results
	Discussion of the Hardware Test Results
	Discussion of the Correctness of the Different Acceptance Criteria
	Discussion of the Trajectory Generation Algorithms

	Discussion of the Limitation of the Field Tests
	Discussion of the Significance of the Study

	Future Work
	Conclusion
	What has been Performed
	What has been Achieved
	Conclusions
	Recommendation for Future Work

	Bibliography

	V Appendices
	Drawings and Schematics
	Definitions, Code Implementations, Equations and their Derivations
	Annotated Bibliography

