
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 N
at

ur
al

 S
ci

en
ce

s
D

ep
ar

tm
en

t o
f P

hy
si

cs

M
as

te
r’

s
th

es
is

Mats Estensen

Simulation of a Mercury Cadmium
Telluride Avalanche Photodiode

A Monte Carlo and Finite Element Method
Approach

Master’s thesis in Nanotechnology
Supervisor: Jon Andreas Støvneng (IFY), Trond Brudevoll (FFI)

March 2019

Mats Estensen

Simulation of a Mercury Cadmium
Telluride Avalanche Photodiode

A Monte Carlo and Finite Element Method Approach

Master’s thesis in Nanotechnology
Supervisor: Jon Andreas Støvneng (IFY), Trond Brudevoll (FFI)
March 2019

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Physics

i

Abstract

An existing simulator software developed at the Norwegian Defense Research Estab-
lishment for simulating charge carrier transport phenomena in semiconductor materials
has been further tested and developed in this thesis work. With applications to midwave-
infrared sensors used in the defense industry, a mercury cadmium telluride avalanche pho-
todiode has been used as an example device. The 3D simulation model is based on the
Monte Carlo Method for carrier transport simulation and the Finite Element Method for
discretization of the device. Issues and errors in the simulation model and its implemen-
tation have been investigated to improve the simulator further with regards to stability and
efficiency of simulations.

ii

iii

Sammendrag

En eksisterende simulatorprogramvare utviklet ved Forsvarets Forskningsinstitutt for
simulering av ladningsbærertransportfenomen i halvledermaterialer har blitt testet og videreutviklet
i arbeidet med denne oppgaven. Med anvendelser for midtinfrarødsensorer i forsvarsin-
dustrien har en kvikksølv-kadmium-tellurid avalanche fotodiode blitt brukt som halvled-
erkomponent i simuleringen. 3D-simuleringsmodellen er basert på Monte Carlo-metoden
for ladningsbærertransport og Finite Element-metoden for diskretisering av komponenten.
Feil og utfordringer i simuleringsmodellen og dens implementasjon har blitt påvist og ut-
forsket for å forbedre simulatoren med hensyn på stabilitet og effektivitet i simuleringer.

iv

"Our imagination is stretched to the utmost, not, as in fiction, to imagine things which are
not really there, but just to comprehend those things which are there."

Richard P. Feynman, The Character of Physical Law (1965)

v

Acknowledgements

This thesis marks the conclusion of a Master of Science degree in Nanotechnology at the
Norwegian University of Science and Technology (NTNU) which started in 2012. The
work in this thesis was done during October 2018 – February 2019, without any prior
specialization project ("project thesis").

The work was mainly done at the Norwegian Defense Research Establishment (FFI) at
Kjeller under supervision of Researcher Trond Brudevoll together with Researcher Asta-
Katrine Storebø. A sincere acknowledgment goes out to them for welcoming me to FFI
and supervising my work along the way. Despite my challenges during this work their
encouragement, inputs and discussions are greatly appreciated. Thank you to Jon Andreas
Støvneng at NTNU for accepting to be NTNU’s supervisor for this thesis.

The software used in this work was further developed from several previous master stu-
dents from NTNU and other universities who collaborated with FFI, most recently Siri N.
Fatnes in 2017. I would like to thank her for personally introducing me to the simulator, as
well as providing extensive documentation in her work. This thesis is a direct continuation
of her excellent work.

I would like to thank my current employer who granted me some months of academic
leave from my full-time job and encouraged me in the period of working with this thesis.
Thank you to Brit Wenche Meland and the other study counselors at NTNU for making
it possible for me to complete this thesis, despite working remotely from Oslo/Kjeller,
unfortunately being delayed with my studies after a one-year leave from the university.

Last, but not least, a big thank you goes out to my friends, family and girlfriend for
their continuing support and encouragement throughout the years.

I hereby state that I have acknowledged all my sources of help and where I have used
work of others which is not mentioned here, this is clearly stated throughout the text.

Mats Estensen
Oslo, March 25, 2019

vi

vii

Contents

Contents . vii
List of Figures . ix
List of Abbreviations . xi

1 Introduction 1

2 Theory 5
2.1 Semiconductor Physics . 5
2.2 Semiconductor Devices . 11
2.3 Semiconductor Device Simulation . 12

3 Simulator Model and Implementation 17
3.1 Simulation Model . 17
3.2 Program Structure . 19
3.3 Coding, Build and Runtime Optimization 21

4 Simulator Development and Results 23
4.1 Program Development . 23
4.2 Unphysical Behavior of Holes . 24
4.3 Mesh Optimizations . 28
4.4 Increased simulation time . 31
4.5 Further Work . 33

5 Summary 35

Bibliography 37

viii

ix

List of Figures

2.1 Energy band gap comparison of solids 6
2.2 Crystal lattice with unit cell . 6
2.3 Reciprocal lattice and Brillouin zone . 8
2.4 A simple energy-band diagram . 9
2.5 Doping in a semiconductor . 10
2.6 Flow chart of simulation and experimental work 13
2.7 Illustration of a meshed cube . 15

3.1 Simulated APD Device model . 18
3.2 Logical flow of MCFEM simulator program 20

4.1 Plot of zero velocity of holes in the device 25
4.2 Previous meshes . 29
4.3 Improved mesh of APD . 30
4.4 APD Potential . 32

x

xi

List of Abbreviations

1D one-dimensional
2D two-dimensional
3D three-dimensional
APD avalanche photodiode
CPU central processing unit
FD Finite Difference
FEM Finite Element Method
FFI Norwegian Defence Research Establishment
HgCdTe mercury cadmium telluride
LPE liquid phase epitaxy
MBE molecular beam epitaxy
MC Monte Carlo
MCFEM Monte Carlo software with finite element Poisson solver
NTNU The Norwegian University of Science and Technology
PDE partial differential equation
PLA point location algorithm

xii

1

Chapter 1

Introduction

Since the mid-19th century when the laws of electromagnetism were first described, the
development of electrical components quickly gained wide traction as a promising tech-
nology for engineering advanced and useful devices. Throughout the 20th century further
progress led to the use of different semiconductor materials which quickly were utilized
for detectors and receivers [1]. This development coupled with a more fundamental under-
standing of the natural phenomenas of electromagnetism and light has later given us all the
digital tools and components we use today – from the simplest single resistor to the most
advanced supercomputers in the world.

In a the field of study where electricity and light are of interest, the main characters are
the current-bearing electron and the light-bearing photon. Only through the comprehension
of their nature to the atomic level can we harness their energy and produce useful currents
and signals utilized in advanced devices. Among these devices, the semiconductor detector
– more specifically the photodetector – for infrared detection is of interest in this thesis.

Semiconductor materials are widely used in imaging devices due to the photoelectric
effect. The transferred energy from incident photons generate a electrical carrier in the
semiconductor which can be transported in the material and extracted as current and read
out as an output signal [2].

Various forms of image sensors can be found everywhere; in modern cell phones, ad-
vanced digital cameras, surveillance cameras, hyper-spectral apparatuses and much more
[3]. They consist of diodes produced by using semiconductor materials that absorb the
photons the sufficient energy for the desired imaging purpose. These diodes are often
assembled together to form an one-dimensional (1D) or two-dimensional (2D) arrays to
process signal from several similar or unique diodes together, where the signal can be read
out as an image consisting of pixels which correlates to the number of diodes on the chip.

2 Chapter 1. Introduction

Simulation of Devices

Prior to manufacturing new devices it is necessary to have a design based on the desired
physical properties which corresponds to the imaging object(s) of interest. As prototyping
actual devices in a lab can be both expensive in time and cost, computer simulation allows
to do this more rapidly and save development and production costs [4]. Computer simula-
tions of electronic devices has since the late 60s [5] been used to model and understand the
properties of various designs, allowing for greater understanding of the underlying physics.
This offers significant insight into device physics beyond that which is possible to calcu-
late analytically and observe in experiments, which can be used to create new – as well as
further develop – device designs.

As users of some of the most advanced photodetectors, the defense industry have signif-
icantly contributed to the development of this technology through their research contribu-
tions over several decades [6]. They continue to utilize this technology through specialized
applications including LIDARs, laser range-finders and other detectors in their military
equipment.

Previous work at FFI

The Norwegian Defence Research Establishment (FFI), Norway’s national research orga-
nization for the defense sector, have since end of 1962 researched and developed electronic
devices for defense and military applications [7]. Their semiconductor lab, Epitek labora-
tory, has since 1990 developed and characterized semiconductor materials used for infrared
detector applications [8]. One of the applications is the detector used in the infrared hom-
ing system in the sea-target missile Naval Strike Missile, produced by Kongsberg Defence
& Aerospace [9].

A prime research effort at Epitek is the processing and characterization of molecular
beam epitaxy (MBE)- and liquid phase epitaxy (LPE)-grown mercury cadmium telluride
(HgCdTe) devices [10–12]. The experimental work is carried out in close cooperation
with physicists working on modeling and simulation of such materials [13–16], where the
majority of the work has been related to avalanche photodiode (APD).

FFI Monte Carlo Software

To simulate the devices the researchers at FFI have developed a state-of-the-art Monte
Carlo (MC) simulator for charge transport and electro-optic applications [17]. The simula-
tor can run in a full-band mode where it reads external band data or in an analytical mode
where it calculates the bands for the holes and electrons. It contains simulation of several
scattering and carrier interaction mechanisms, a 2D Finite Difference (FD) and Finite Ele-
ment Method (FEM) Poisson equation solver and is currently adapted to a APD simulation
scenario.

Chapter 1. Introduction 3

The software is programmed from scratch component-wise, such that the the program
can be modified to use different modules on their own (e.g. only Poisson solver) or coupled
together (e.g. Monte Carlo simulation without Poisson solver). This is a deliberate choice
to create a program that is compatible with extensions that may be developed in the future
(e.g. a new equation solver). This does not limit the program to be only used for simulating
HgCdTe APDs, but also for other materials and devices which may be of interest in the
future. An example is III-V antimonide-based photodetectors and other low-dimensional
structures, e.g. quantum well and superlattice infrared photodetectors, which are being
researched as possible successors to HgCdTe devices to reduce cost and increase detector
sensitivity [18, 19].

Since 2007 there has been an ongoing simulator project in parallel initiated by summer
interns and other graduate students who have worked with FFI in connection with their
Master’s thesis projects. Over these years, these two simulators have been developed sep-
arated, but some parts of the two simulators have been implemented in each other. By
developing new implementations the student simulator has grown in both size and com-
plexity to its current form. As different students have investigated different topics, their
individual contributions have often been on specific parts of the software [20–26].

In 2017-2018, Siri N. Fatnes’ work resulting in her master’s thesis [26] led to a major
refactoring of the software, introducing a more modular approach to the software as well
as utilizing more of Fortran’s more modern built-in functions and types, as well as im-
proved the building flow for the software. The physical and mathematical improvements
included integration of a new three-dimensional (3D) Poisson equation solver and a new
implementation of a 2D and 3D point location algorithm (PLA) with a new triangulation
scheme, resulting in an improved handling of the carrier injections in the simulations. Due
to limited time, few and short simulations were carried out but the resulting work laid the
foundation for further development and testing of the simulator.

Objectives and Approach

Based on the background given in the previous sections, the aim for this thesis is to continue
the work initiated by the students on the simulator software – mainly Fatnes’ recent work,
as mentioned in the previous paragraph.

Despite many new implementations and improvements to the simulator several issues
needs to be investigated and corrected, with a focus on carrier transport and device physics.
The aforementioned lack of longer simulations are mainly obstructed by a unphysical be-
havior of the charged particles briefly mentioned in her thesis [26]. The high memory and
central processing unit (CPU) requirements, as well as the use of a highly discretized mesh
with quadratic elements also makes it costly compute-wise to perform longer simulations.

As the work in this thesis was not preceded by a project report/specialization subject,
the scope will be limited to investigate and mitigate current bugs and improving current

4 Chapter 1. Introduction

implementation, as well as carry out new simulations of HgCdTe APDs. Larger efforts
that requires significant changes across several modules in the code like introducing paral-
lelization of the code and applying consistent scaling for all equations will therefore not be
prioritized.

The main priorities are the following:

• Investigate existing errors and bugs in the simulator and continue cleaning up sec-
tions of the code to allow for further development of new modules

• Optimize simulator to further reduce memory and CPU requirements to allow for
easier and faster simulations runs

• Generate optimized meshes with increased accuracy in desired regions to allow for
finer output, faster solving and keeping noise levels low

• Carry out new simulations based on the new improvements and compare results with
most recent achievements from the previous author

Thesis Structure

This thesis follows a classical scientific format, to give the reader a self-contained and
logical presentation of the work that was done with a citation list found at the very end the
thesis, for further reference.

Chapter 2 gives the reader theoretical background on the topics relevant to the simu-
lator model used in the simulator. The model and the implementation of the simulator is
presented in Chapter 3. The development and results are located in Chapter 4 along with
discussion and an outline for further work. The work is finally concluded in Chapter 5.

As the work contained in this thesis builds upon development and usage of a simulation
software developed at FFI the source code, compiled binaries and its full documentation
is not extensively referenced or documented in this text. If the reader wishes to review
the source code or have questions regarding the software, the author can be contacted by
e-mail1. An existing helpful and rather up-to-date reference for the code written by Fatnes
can be found is Appendix B. Overview of Source Code in [26].

1matsest [a] mxe.no

5

Chapter 2

Theory

This chapter gives a general introduction to the underlying physics relevant for semicon-
ductor modeling, without being specific to the particular software at hand. It introduces
some basics of device modeling and computer simulations, which leads up to the follow-
ing chapter.

2.1 Semiconductor Physics

2.1.1 Semiconductor Materials
The basic properties of a semiconductor material is important for its ability to conduct elec-
tricity and provide as the basic building block for electrical devices. As its name suggest,
a semiconductor is not fully conducting – it’s semi-conducting. In comparison with the
two other types of solid-state materials, insulators and conductors, semiconductors have
an electrical conductivity in between, as shown in Figure 2.1. The electrical conductivity,
σ, is defined as

σ = 1/ρ (S/cm), (2.1)

where typical semiconductor materials have a conductivity between 10−8–102 S/cm [2].
Examples of a conductors where electrical charges flow freely are metals like copper

(Cu) and aluminum (Al), while examples of insulators where charge flow is highly re-
stricted are diamond (C) and glass (SiO2). Common element semiconductor materials are
group-IV materials like silicon (Si) and germanium (Ge), but also III-V compounds like
gallium arsenide (GaAs) and II-VI compounds like cadmium telluride (CdTe). Ternary
compounds like aluminum gallium arsenide (AlGaAs) and HgCdTe are also used in de-
vices, where as the latter is the main material of interest in this thesis.

The conductivity in a material can vary with temperature, light or external magnetic
fields, but it is most common to alter it by introducing impurity atoms into the material

6 Chapter 2. Theory

Figure 2.1: Comparison of energy band gaps between metals, semiconduc-
tors and insulators. Materials that conducts electrical current are classified
as metals, while those who do not conduct are classified as insulators. Semi-

conductors are materials that falls between these two cases.
(Adapted from inductiveload under the CC-BY-SA 2.5 license)

structure – the process known as doping. To understand how the impurities affect the ma-
terial properties, we need to introduce the concept of crystal structure in semiconductors.

2.1.2 Electrons in a crystal structure
With the exception of amorphous and polycrystalline solids, most semiconductors are sin-
gle crystals, where the atoms are organized periodically in three dimensions. The fun-
damental building block of this three-dimensional periodic lattice is called a unit cell, as
shown in Figure 2.2.

Figure 2.2: A simple cubic lattice in three dimensions (a) can be considered
a repetition of the unit cell (b). The unit cell is defined by three primitive

vectors (c).

https://commons.wikimedia.org/wiki/File:Band_gap_comparison.svg

2.1. Semiconductor Physics 7

A generalized primitive unit cell consists of three primitive vectors and repeats through-
out the lattice. From this unit cell we can construct the full lattice and define every point in
the lattice by the translational vector

R = n1a1 + n2a2 + n3a3, (2.2)

where ni are integers while ai are primitive vectors in different directions, as shown in
Figure 2.2c for a simple cubic unit cell. The lattice points corresponds to the placements
of the different atoms in the lattice. For specific values of the vector lengths and angles
between them, we can reduce the numbers of possible lattices to 14 distinct Bravais lattices
which are either considered simple, base-centered, body-centered or face-centered based
on the location of the lattice points in the unit cell. In the case of a primitive cell, as shown
in Figure 2.2b, the lattice points exist only on the corners of the unit cell. The information
contained within the unit cell – distances, angles and atoms – contain all the information
we need to describe the full lattice. As well as describing the physical structure of the
crystal, the unit cell and lattice can also give information about the electrical properties of
the crystal, by moving from the real space to the reciprocal space.

Reciprocal Lattices and k-space

Due to the periodicity of the lattice we can use Fourier analysis to convert the real lattice to
a reciprocal lattice. This lattice is defined in the reciprocal space, also known as k-space or
momentum space, where the unit is inverse length (1/m). In this formulation, the periodic
lattice planes in real space corresponds to a periodic set of points which constitutes the
reciprocal lattice. The periodicity of the lattice also leads to a periodicity of the physical
and electrical properties, making Fourier analysis ideal for studying these properties [27].

From the vector R in Eq. 2.2 we can define the reciprocal counterpart as

G = v1b1 + v2b2 + v3b3, (2.3)

where vi are integers and bi are the primitive axis vectors of the reciprocal lattice. These
vectors are defined by the corresponding vectors ai in the real lattice by an orthogonal
relationship

bi · aj = 2πδi j, (2.4)

where δi j is the Kronecker delta. This relationship is visualized in two dimensions in Figure
2.3. By using G we can – similarly as with R for the real lattice – define every point in the
reciprocal lattice. Since G defines all allowed points in the reciprocal lattice it also forces
a condition for allowed wavevectors in the reciprocal space. More precisely, if a particle

8 Chapter 2. Theory

with a corresponding wave in the reciprocal lattice with wavevector k is scattered in the
crystal, it has to obey the condition

∆k = k′ − k = G (2.5)

where k′ is the outgoing wavevector. ∆k represents the change in wave vector at scattering,
also called the scattering amplitude.

Figure 2.3: The real lattice (a) undergoes Fourier transformation to recip-
rocal space (b). The lattice plane spacing in the real lattice is a while the
spacing between points in the reciprocal lattice is a

2π . ai and bi are the prim-
itive vectors of the real and reciprocal lattice, respectively. The Brillouin
zone (c) is constructed by intersecting lines at the midpoints between points
in the reciprocal lattice. For the sake of visualization, the lattice is shown as

two-dimensional.
(Adapted from Gang65 under the CC-BY-SA 3.0 license)

Similarly to a unit cell in the real lattice we reduce the reciprocal lattice to a periodic and
uniquely defined primitive cell. This is commonly defined by a Wigner-Seitz cell rather than
using the primitive axis vectors directly. By doing this the Brillouin zone limited by its zone
boundary represents a minimal volume that contains all unique wavevectors that satisfy the
condition in Eq. 2.5. Since it contains all unique wavevectors, the value of properties that
depend on k will repeat periodically by crossing the zone boundary (Bragg reflection).
As we will see this proves useful when studying the energy bands which determine the
conductivity as described in 2.1.1.

2.1.3 Energy Bands and Carriers
A key characteristic of a semiconductor is the energy band gap between the valence and
conduction band, as shown in Figure 2.1, in comparison with metals and insulators. For
a single atom, the surrounding electrons occupy different discrete energy levels and for a
large lattice these levels overlap into bands - allowed energy levels where electrons can re-
side. The valence band is defined as the fully occupied outermost band in a semiconductor

https://en.wikipedia.org/wiki/File:Brillouin_zone.svg

2.1. Semiconductor Physics 9

at absolute zero temperature, where as the conduction band is the first completely unoccu-
pied band. Due to the thermal energy at temperatures higher than absolute zero electrons
can transition from the valence band to the conduction band if the electron energy is higher
than the bandgap. This creates a hole (electron deficit) in the valence band where the elec-
tron resided and allows for conduction of electrical current in the bands. This process is
also referred to as the generation of an electron-hole pair. [27]

Due to the shape of the bands and the gap between them, they can explain the varying
conductivity between different semiconductors, as we can see in Figure 2.4 which shows
a generic band model in momentum space - an energy-band diagram. In reality, the band
diagrams are 3D and more complex and will vary with different material but is shown in
1D for the sake of simplicity. The band gap is defined as the gap between the maximum
of the valence band and minimum of the conduction band. Near this region, most energy
bands are parabolic. [27]

Figure 2.4: A generic energy-band diagram for a direct bandgap semicon-
ductor. In the case of an indirect semiconductor, maximum and minimum

values of the bands would not be aligned in p.

Carriers

The concentration of carriers (electrons and holes) will affect the electrical properties of
the semiconductor. A semiconductor with the same concentration of electrons and holes is
classified as an intrinsic semiconductor. For many applications it is desirable to alter this
balance by introducing impurities. These impurities are either donors or acceptors – atoms
with a surplus or deficit of a valence electron compared to those in the crystal. As these
valence electrons are not covalently bound to the crystal atoms, they can more easily move
through the material as mobile carriers. This leads to an extrinsic semiconductor, which is

10 Chapter 2. Theory

classified as either n-type (larger electron than hole concentration) or p-type (larger hole
than electron concentration) based on the impurity introduced into the crystal. In these
cases the carrier with highest concentration is referred to as the majority carrier and con-
sequently minority carrier for the opposite. This is shown in Figure 2.5 for both acceptors
and donors for a generic semiconductor.

The most important effect this has with regards to the energy-band relationship is that
it will introduce new energy levels in the band gap near the conduction (n-type) or valence
(p-type) band. This allows for creating semiconductor devices consisting of interfaces
between n and p-type materials.

Figure 2.5: Illustration of n (top) and p-type (bottom) doping in semicon-
ductors where an electron donor or acceptor is introduced in the material.
The right side shows how this affect the energy-density of states diagram
where the Fermi-level is closer to the conduction or valence band, respec-
tively. In an intrinsic semiconductor this level is in the middle of the band
gap. (Illustration from Tem5psu on Wikipedia under the CC-BY-SA 4.0 li-

cense)

https://simple.wikipedia.org/wiki/File:Semiconductor-doping.jpg

2.2. Semiconductor Devices 11

2.2 Semiconductor Devices
To use semiconductor materials for useful applications we need to engineer a device. To
achieve this it is necessary to have materials with different electrical properties together.
The basic building blocks of semiconductor devices is the p − n-junction, together with
metal-semiconductor junction and the junction between different semiconductor materials
(heterojunctions) [27].

A special case of a p− n-junction is the photodiode, which can create electrical current
from optical signals. It is operated under reversed bias, where the p-type end is connected
to a negative terminal and oppositely for the n-type. This creates a large voltage barrier and
a large electrical field around the junction, allowing separation of the current bias-generated
current and the read-out photogenerated current.

2.2.1 Avalanche Photodiode
In the 50s and 60s much research were put into developing semiconductor devices for
photo-detection in the wide infrared spectrum (∼1–12 µm). The development in these and
following years was largely driven by the defense and space industry [18].

An APD is type of photodiode which has a built-in gain to increase the read-out photo-
generated current. APDs generates carriers by converting incident photons by the pho-
toelectric effect in a cascading manner, such that a single photon can generate multiple
carriers. The strong reverse-bias creates a strong electric field at the p − n-junction, where
carriers are accelerated such that they again can generate new carriers. This process is
known as impact ionization where bound carriers break loose. As sufficient energies, the
newly generated carriers can repeat the process of impact ionization and the process is
such known as avalanche multiplication and leads to a multiplication gain of the internal
current. [2]

Due to the nature of the avalanche multiplication process which excites carriers in a
random manner, minimizing the generated noise from primary and secondary excitations
is an important consideration. This is often mitigated by having regions with different
levels of doping to separate the photo-generated carriers and avalanche-generated carriers.
Another important consideration with APDs is the quantum efficiency, which describes
how efficiently the device convert the number of incident photons to generate primary
charge carriers. [2]

Various materials are used for APDs depending on the application and requirements to
wavelength, noise and operating conditions. As previously mentioned, the material in this
thesis is HgCdTe and a example APD device based on this material will be presented in
the following chapter.

12 Chapter 2. Theory

HgCdTe

Hg1-xCdxTe is a ternary alloy semiconductor commonly used in detector devices due to its
tunable bandgap and high optical absorption. It has a zinc-blende crystal structure, which
consists of two interpenetrating face-centered cubic lattices. When x = 0 it is the semimetal
HgTe with zero bandgap while at x = 1 we have the semiconductor HgTe with a bandgap
of 1.5 eV. The bandgap is direct and also changes with temperature.

It is at low temperatures, down to 77-120 K the material exhibits the highest quantum
efficiency and lowest dark current [28]. Due to the band structure, there is an asymmetry
between the effective masses of the electrons in the conduction band and heavy holes,
which gives a highly favorable electron to hole impact ionization ratio for compositions
with 0.1 < x < 0.7. This makes the multiplication process mainly initiated by one carrier,
which yields a lower gain noise than if both carriers had the same impact ionization ratio
[29].

2.3 Semiconductor Device Simulation
The era of computers makes it possible to solve large analytical problems by using nu-
merical models and computers. This can contribute to experimental work, both to verify
empirical results but also to more precisely describe properties that proves hard to quantify
experimentally. As shown in Figure 2.6 the interplay between experimental work and sim-
ulations is of importance to achieve physical results. To achieve this, we need a suitable
model and well-determined realistic input parameters. According to Krc and Topic [30] a
general approach to this can be listed as

1. Defining the equations that describe the problem (device properties)

2. Choose a numerical approach to solve the problem (system of equations)

3. Implement the model in a computer code (simulator).

With regards to the list above and the simulator software used in this thesis, an overview of
the model and implementation will be given in the following chapter. The following sec-
tions in the present chapter serves as a introduction to the theory behind the most important
aspects of the implementations.

2.3.1 Monte Carlo Method
Most physical systems are in principle deterministic, assuming that they are well enough
understood and explained. MC is a simulation method which is based on using stochastic
variables to solve a deterministic problem. The method has been around since early 1900s,

2.3. Semiconductor Device Simulation 13

Theoretical
background

Device structure
and properties

Physical model

Numerical
approach

Device simulator

Simulations

Results

Analysis

Optimized design

Input data Device
characterization

Experiments
device fabrication

Verification

Figure 2.6: A flow chart which shows the main steps in simulation and its
interplay with the experimental work. Adapted from Figure 1.12 in [30].

but won territory in the 40s and 50s as one of the most used simulation methods across a
variety of fields where it is difficult to approach a problem analytically [31].

The method is based on proposing random changes to a system, and evaluating whether
the change was a favorable one. This can be generalized into three main steps, which are
repeated a large number of times. First, the range of possible values (domain) for the
stochastic variable is defined. A random number is then found within that domain, based
on a probability distribution function. Finally, the value is evaluated based on a set of
predetermined rules. A generic example is a simulation of tossing a dice where the discrete
domain will be x ∈ {1, 2, 3, 4, 5, 6} with a uniform probability distribution function for the
stochastic variable X. [32]

A strength of the MC method is the generic nature of the model. As such, MC can be
used to simulate a range of quantitative problems in various fields. It can be applied in
physical sciences, engineering, statistics, finance, compute and more [31]. A description
of the use of the method in the simulator in this thesis is given in the following chapter.

14 Chapter 2. Theory

2.3.2 Finite Element Method
Many space and time dependent physical processes are expressed through partial differ-
ential equations (PDEs) - functions which are dependent on multiple variables and cou-
pled together through derivatives of one or more of these variables. However, analytical
methods can only give solutions to very few PDEs. This drives us to solve the equations
numerically, giving an approximation of the exact solution.

FEM is one way of solving a PDEs numerically. It approximates the PDE by dis-
cretization into equations that are more easily solved within a subdomain of the system -
a finite element - which represents the spatial discretization. To obtain a suitable form of
the equations methods like Ritz Variational or Galerkin’s method can be applied [33]. The
equations for the elements are combined to a global set which can yield an approxima-
tion to the solution of the PDE [34]. According to Jin [33] the basic steps of FEM can be
summarized as

1. Discretization or subdivision of the domain

2. Selection of the interpolation functions

3. Formulation of the system of equations

4. Solution of the system of equations

The system of equations will quickly be large of the discretization is dense and it will
require special methods for solving them efficiently [30]. A way of doing this which is
implemented in the simulator software is the preconditioned conjugate gradient method
[26, Ch.3].

FEM was initially used for structural mechanics but is today used among many fields of
engineering, including electromagnetism and fluid mechanics [33]. In this thesis it is used
for modeling the 3D APD to solve the electrical field updates through Poisson’s equation
as described by Fatnes in [26, Ch. 2].

Meshing

When using the FEM, an important step in the process is how the discretization of the
domain into elements is carried out. This is done by creating a mesh of the domain, as
shown in Figure 2.7 for a simple cube.
In general, the finer the mesh (more nodes and elements), the better an approximation
one is able to obtain at the cost of higher computational cost. To keep computional cost
low it is common practice to use a finer mesh in regions with high variation and larger
elements in more steady regions [33]. Furthermore, the shape of the elements can be of
large importance, and computational methods exist in which the element sizes and shapes

2.3. Semiconductor Device Simulation 15

Figure 2.7: In meshing software gmsh a cube is defined through the points
at the 8 corners. The points are connected by lines (a) and shown as a cubic
volume (b). Finally, an optimized mesh of the volume consisting of 358

nodes and 1809 tetrahedral elements is created.

are adapted in regions of the domain where large error estimates are found. Elements can
also be triangles or tetrahedrons (2D/3D) instead of squares/cubic elements which allows
for more complex geometries and fewer nodes.

As further described in the following chapter, we use computer software with graphical
interfaces to create meshes for use with the simulator software. The meshing software
used in this thesis is gmsh. It uses its own 3-D Delauney algorithm to create and optimize
meshes and its implementations are described in [35].

To create a mesh with the software we need to define the overall geometry including
points, curves, surfaces and volumes. For an APD, this involves generating an input file
with the overall width, size and length as well as the doped regions of the device - the
procedure is described in Appendix A in [26]. As the meshing is carried out automatically,
the meshing algorithms will not be discussed in-depth. Some important statistics from
the mesh that directly affects the simulation will be discussed, including np (number of
points/nodes) and ne (number of elements).

2.3.3 Numerics and Limitations
As numerical approximations are never exact, they will always differ from the analytical
solutions. When implementing numerical algorithms in a computer program, additional
sources of errors can also be present. This refers both to how computers represents num-
bers, rounding errors, how local errors might propagate throughout the simulation and how
the numerical method itself might introduce discrepancies (e.g. convergence issues).

The precision of floating-point numbers is a well-known potential problem for com-
puter programs. Calculations including long floating-point numbers can lead to rounding
errors due to the limited number of bits in a defined variable [36]. To mitigate this most

16 Chapter 2. Theory

floating-points are defined with a larger bit length – in the simulator software the working
precision is explicitly set to up to 15 digits (double precision) with an exponent range of
up to 307 digits (10±307). At the cost of computational time and memory requirements,
this yields fewer rounding errors than for built-in parameter types. It is desirable to keep
numbers within a reasonable magnitude and as such parts of the simulator also involves
scaling to keep numbers consistent. Some optimization is also performed at compilation
level [37].

The implementation and complexity in the FEM and MC models will highly affect
computing time and resource requirements. With regards to the Monte Carlo implemen-
tation the number of particles simulated will highly affect the time. With regards to FEM
the discretization and type of elements (e.g. linear vs. quadratic) is of importance, espe-
cially in 3D. As the size of the elements decrease, the number of nodes and effectively the
system of equations will increase. This demands more computational power and memory,
but this can be somewhat mitigated by introducing decomposition methods of limiting the
use of full-sized sparse (mostly zero-elements) matrices [33]. This is implemented in the
simulator, as described in [26, Ch. 3.1].

As computational and memory resources are limited, this also limits the efficiency of
the simulator. If we have access to a high-performing computing cluster, there is a pos-
sibility of running a program with shared memory (running jobs in parallel on a single
node), distributed memory (runnings jobs in parallel on multiple nodes) or a combination.
However, this requires significant changes to implementations, e.g. splitting up coupled
equations, and is not easily done. Commonly used standards for this includes OpenMPI
(distributed memory) and OpenMP (shared memory). [38]

17

Chapter 3

Simulator Model and
Implementation

This chapter gives a overview the simulator program and the work carried out to further test
and develop the program. Section 3.1 introduces the simulation model while 3.2 describes
the program flow of the simulation.

As the overall structure of the program has not changed from the prior version in 2018,
the reader is recommended to review Appendix B. Overview of Source Code written by S.
Fatnes in in [26]. For further reference on mathematical and physical implementations, the
reader is referred to their theses of previous students [20–25].

3.1 Simulation Model
In general terms, the simulator it is a particle-based bias simulator for a semiconductor
device. It deals with charge transport of particles and attempts to simulate a model of a
real-life semiconductor device similar to a realistic bias simulation. Since it is not feasible
to track particle by particle in a real-life device, the major challenge with modeling the
simulator is the behavior of these particles.

The simulator software is in its current version called Monte Carlo software with fi-
nite element Poisson solver (MCFEM). The full model in the simulation spans a range of
physical and numerical problems, where the implemented solver utilizes the MC method
and FEM as the most important components. The FEM is used for the discretization of the
device to locally solve Poisson’s equation and calculate the electric field during simulation.
The MC method deals with the movement of particles in the device, utilizing randomness
to achieve realistic movement for a large number of particles over time. For the random
number generator the computer time upon simulation is used as a seed.

To use the simulator we define a set of input parameters and a device model to simulate
and let it run for the desired time. From this we generate data about the potential at all

18 Chapter 3. Simulator Model and Implementation

different locations in the device and track the movement and behavior of particles in the
device. Based on our input we are able to see how proposed geometries, material composi-
tions and parameters affect the physical behavior of a device. When the simulator reaches
a sufficient level where the implementation of models works according to observable phys-
ical laws and outputs realistic data, the data from the simulations can thus be useful to
support the research of devices prior to prototyping and making costly investments in lab.
The simulator program is implemented in Fortran, which is described in 3.3.

The simulator is designed to be general in terms of choice of materials and device, such
that it can be reprogrammed to simulate another device geometry or another semiconductor
material.

3.1.1 Device Parameters
The device used for simulation is an HgCdTe APD similar to that which is researched by
FFI both through simulations and physical experiments [13–16]. A simple model is shown
in Fig 3.1 with geometries, doping types and doping densities. These are common among
all simulations.

Figure 3.1: The APD model which is simulated with geometrical param-
eters given. The model is shown in 2D but is 10 µm in the third dimension
as well. The doping type and doping densities are given for the different
regions. The isolation layer is not part of the simulated domain and only
included to satisfy boundary conditions if an alloy gradient is applied. The

top contacts are connected to a read-out circuit which is not shown.

The 1 µm thick isolation layer is included in the model due to the possibility of adding a
alloy gradient of the material in the absorption region without without violating the bound-
ary conditions. This is not done in current simulations, and it does not changes the nature
of the simulation, as shown by Fatnes [26].

The simulation is carried out at room temperature and the reverse bias is set to -7 V
applied to the p contacts, while keeping the n contact at 0 V.

3.2. Program Structure 19

The material used is Hg0.72Cd0.28Te. By using Vegard’s law the lattice parameter is
x ·aCdTe + (1− x) ·aHg which corresponds to ∼ 6.486 × 10−10 m when using lattice constants
6.477 × 10−10 m for CdTe and 6.490 × 10−10 m for HgTe. This composition corresponds to
a band gap of approximately 0.28 eV at room temperature [39]. All other material specific
parameters used in the simulation is given in matpar module.

The band model used for the material was created mainly by Olsen [20] Skåring [22]
in their thesis work with the model. It makes an approximation of the Brillouin zone as
spherical with a radius of ∼ 9 × 107 m−1. The model consists of a isotropic nonparabolic
conduction band and a more complex heavy hole and light hole band. In the latter bands
the band model consist of an analytic part for low k-values while it uses another model for
the high k-values, with a ad-hoc solution for creating a continuous second derivative. This
is well described in Ch. 3 of Skåring’s thesis [22].

3.2 Program Structure

The structure of the simulator is based around a main program file, MCFEM , which governs
the overall run of the simulation. It calls the various modules located in Fortran mod-
ule files. The modules are collections of variables, subroutines and functions which are
connected through a physical aspect in the implementation, for example FEM routines col-
lected in a module while carrier dynamics is collected in another. Several modules consists
also of components that are common in several subroutines, such that they are contained in
a separate module file. An automatic documentation system called FORD (Fortran Docu-
menter) is used to generate an interactive HTML-based documentation which contains all
modules, subroutines, functions and variables with comments from developers.

An overview of the simulation is shown in the flowchart in Figure 3.2. This shows the
logical flow of the program - from initialization through the time loop and to the completion
of the simulation.

The input for the simulation is one initialization file consisting of all device and material
parameters, and one generated mesh file for the device geometry. The mesh file is created
with gmsh as described in 2.3.2 in the previous chapter. The initialization file also contains
some options for the simulation, like which mechanisms should be simulated, time step
resolution and how long the simulation will run, at what times data should be collected and
the number of particles that should be simulated. The most important device and material
parameters that are given is the doping densities and geometry (mush match the generated
mesh file).

The first action is the initialization of variables and types used in the simulation. This
allocates the necessary memory for the simulation to run successfully. The device triangu-
lation from the mesh file is used to assemble the stiffness matrix for the FEM. The device
is also initialized within the program based on the input file parameters and mesh file.

20 Chapter 3. Simulator Model and Implementation

Initialize simulation

Read material
parameters

Calc. scattering rates

Read device
geometry

Calc. particle positions
and wave vectors

Triangulation

Assemble stiffness matrix

Enter time loop:
t = 0

t = t + ∆t

Solve Poisson’s eq.
and update E-field
for each particle

Free flight of particles

Ejection and injection of
particles near contacts

Scattering events and
calc. new flight direc-
tions for each particle

Collect statistics

t ≥ tmax

Write Data
t = twrite

End simulation

yes

no

Figure 3.2: The overall logical flow of the MCFEM simulator program is
shown. All the steps prior to the time loop can be considered as initialization
steps for the simulation to start while the time loop is repeated for a defined
time range. The output data is collected at predefined times during the time
loop until the time t reaches the defined simulation length and the simulation

ends.

3.3. Coding, Build and Runtime Optimization 21

The steps in the time loop are the main parts of the MC simulation. The time step
between each in the simulation is typically 1–2 ps. Here the Poisson equation is solved
and the electric field is calculated for each of the particles before the free flight of particles
is carried out. According to boundary conditions near the contacts carriers are ejected or
injected and carriers that reach the edges of the device are reflected. Scattering mechanisms
are then simulated for each particle and new flight is calculated. Positions and k-vectors
for the particles are updated several times during these steps to their respective variables.
If the timestep is in the set of defined extraction timesteps statistics from the simulation are
outputted to data files. If the the time has not yet reached the defined simulation time the
loop is entered again using the particle state from the last loop iteration.

The simulator produces several output data files, which is defined in the module for
collecting statistics, and some output files that are only generated at initialization and used
throughout the simulation. The most important data files that are written to during the
time loop (only at defined extraction timesteps) is the electron and hole wave k-vectors and
positions. The potential at each node in the geometry is also written during these timesteps.

At the end of the simulation all used files are closed and variables are deallocated from
the memory.

3.3 Coding, Build and Runtime Optimization
The simulator is implemented in Fortran. The choice to use Fortran as a language is jus-
tified by choosing a language that is numerically fast and simple to use for typical numer-
ical problems (its name is derived from FORmula TRANslation). It is widely used in the
scientific community and has excellent support for legacy code (e.g. available optimized
numerical algorithms) as well as modern standards which are regularly introduced in newer
version of the language [40]. Its interfaces to other widely used programming languages
like C/C++ and Python is also an advantage, which is utilized in the WIEN2k program,
which FFI uses in conjunction with their device simulations. All changes to the code are
tracked through a git repository.

In this work, the program has been built using the open source compiler gfortran 7.3.0
using optimization level 3 [37]. While debugging and testing several helper flags have
been utilized to get more verbose runtime information. All the full commands necessary
to build, debug and run the simulator is documented in the source code README files
which is available upon request to the author. With changes to the build files an alternative
compiler like Intel’s commercial compiler ifort can also be used.

The simulations were run on nodes in the Idun cluster at the courtesy of the HPC group
at The Norwegian University of Science and Technology (NTNU) 1. The simulator was
also compiled on these nodes with the similar version of gfortran as the code is optimized

1https://www.hpc.ntnu.no/display/hpc/NTNU+HPC+GROUP

https://www.hpc.ntnu.no/display/hpc/NTNU+HPC+GROUP

22 Chapter 3. Simulator Model and Implementation

to the platform they are compiled on. The nodes are mostly Dell PExxx series with 2 x Intel
Xeon E5-26xx processors with 20-36 cores and 128-192 GB RAM. The avg. workload for
simulations required ∼ 40 GBs of RAM and run an one core, allowing several simulations
to be run simultaneously at one node or distributed through several nodes. Actual wall-time
for simulations are described in the following chapter.

23

Chapter 4

Simulator Development and Results

This chapter gives an overview of the issues that were identified to investigate in this thesis
and what was done to mitigate them. It also includes some results from simulation runs.

A total of 12 full simulations of the APD device was run with simulation times rang-
ing from 11–40 picoseconds. Besides fixing smaller errors in the program, the simulation
runs have mainly been focused on investigating the different problems and comparing with
previous runs from Fatnes. As described in the following sections, the most important pa-
rameters that were varied are related to device geometry and length of the simulation. All
the simulations were done with the optimized mesh as described in 4.3.

Despite numerous simulations, the data from these are not as well represented and
visualized in this chapter as they deserve. Yet, all the data is exported and stored for
analysis and comparison for future developers of the simulator.

4.1 Program Development
There are several issues with varying degrees of complexity and severity in the current
version of the simulator. Due to the modular development of the code by multiple au-
thors, some of these have occurred when implementing new features while some have
been well-known and considered acceptable. The ones that are mentioned in this section
are specifically following up the issues that arose from new implementations and changes
by the previous author [26]. The main motivation is to increase stability of the simulator
and investigate essential physical issues with the model.

4.1.1 Compilation Changes
In the beginning of this project, a lot of effort was put into being able to compile the
program with ifort. Since ifort has been the preferred compiler for the developers of the

24 Chapter 4. Simulator Development and Results

non-student simulator, as well as for several other previous student developers, it was desir-
able to change the compiler. As the simulations also would run on Intel processors, using
their compiler should yield the most optimized performance.

As all implementations in the previous version was carried out while compiling with
gfortran, the task of being able to compile with ifort and run successfully proved to be
non-trivial. After translating all the build files to be compliant with ifort with similar
compilation options as in gfortran, simulation runs were prone to crash after running 5-10
minutes, reaching only a simulation of only 12 fs (of 36 ps) with a segmentation fault.

Despite being compiled with the -heap-arrays to put the arrays and temporary ar-
rays on the heap instead of the stack, the error was persistent. The error occurred in the the
flight routine the holes, when the error with unusually large k-values (and corresponding
zero velocity-holes) was persistent. As the simulation was not able to run more than a
few picoseconds, it was difficult to debug the error over a larger number of timesteps. The
choice was therefore made to revert the compiling approach to using gfortran.

The changes in the build files was reverted to again be compliant with gfortran and
to run simulations in the same manner as the previous developer. Since the changes are
tracked in a git repository, it is possible to recover these changes to continue the effort to
change to ifort. The latest version that was tested was ifort 2018.3.222.

4.2 Unphysical Behavior of Holes

4.2.1 Background
An issue with an apparently unphysical behavior of particles were one of the first issues
investigated. Based on the potential plots of the devices, as presented briefly by Fatnes in
her thesis, and the trajectories of particles over time it was clear that the movement of holes
was inconsistent with the simulation model. Holes were attracted to surfaces and displayed
severe noise in the potential plots.

At first it was difficult to understand which part of the simulation could cause this
behavior as the high-level flight routine responsible for movement of particles calls a large
number of subroutines. It was also considered that the the physical model of the APD
device and material could come to play in causing irregular behavior in parts of the device.

Neutral Region Height

Based on previous experience with a early version of the MCFEM-software from a previous
master student [23], stability issues occurred when the height of the neutral region was
relatively large (∼1 µm). With a large neutral region, the injection algorithm was prone to
inject too many particles compared to the number of particles that were ejected – effectively
causing an oscillating number of particles in the device. This was later remediated by

4.2. Unphysical Behavior of Holes 25

researchers at FFI by reducing the neutral region height and stable behavior was observed
when the height was reduced to 0.03 um.

Based on this, an initial hypothesis was that the previously used heights of 0.1–0.2 µm
was too large and that reducing this could cause a more stable behavior.

Holes With Zero Velocity

As a continuation of looking into the hole trajectories, the data files were further analyzed.
By visualizing the positions over time and following the behavior of particles it was clear
that certain holes suddenly stopped moving in the simulation. This occurred even after few
picoseconds and did persist throughout the simulation. By generating logs in the simulation
runs, this was further confirmed with a definite zero velocity. Since the charge of static
particles would severely affect the local potentials in the device, this was quickly identified
as the most important issue with the model.

4.2.2 Results

Figure 4.1: A plot total number of particles in the device through a sim-
ulation of 11 picoseconds. As seen, the response in both electron and hole
count is visible, but after approximately 5 ps the hole count is not changing.

The device has a neutral region height of 5 µm.

The results from the analysis of counting the total particles in the device, can be seen
in Figure 4.1. The plot shows the number total number of holes and electrons in the device
throughout a simulation of 11 picoseconds. At first the response of the device is clearly

26 Chapter 4. Simulator Development and Results

visible as the number of particles changes. After 5 picoseconds the number of holes ap-
proaches a level where it does not further change. I n this case, the majority of the holes
does move within the device leaving few holes to reach the contacts to be ejected. Thus, no
new particles are injected to the device as well. As the simulation continues we can see that
the number of electrons still change. Presumably, the opposite effect occurs for electrons
where they reach the contacts and are ejected. Over time, the lack of holes causes a larger
number electrons to be injected.

A similar response also was observed for simulation runs with varying neutral region
heights near the contacts. Simulations were carried out with 0.02, 0.03, 0.04, 0.05, 0.07,
0.1 and 0.13 µm. As the trajectories of the holes did not change significantly with these
variations, the hypothesis of reducing the neutral height to get more stable behavior was
rejected. In further simulations the neutral region height was set to 0.1 µm.

In addition, for simulations with a neutral region height of 0.02-0.03 µm, the simula-
tions was not able to run successfully. In these simulations the hole simulation seemed to
freeze when reaching 4-5 picoseconds with no apparent error thrown by the simulator. It is
likely that this lower limit of neutral region height correlates to the mesh size and should be
possible to avoid if the mesh size is made even smaller near the contacts. This hypothesis
needs further review to verify.

Large k-values

After a number of simulation runs with varying neutral height without any resolution of
the unphysical behavior, the implementation of the flight routines was further investigated.

By analyzing all all the routines called in indirectly form the MCFEM main program,
it was possible to identify which parts of the simulator model that could be the root cause
of persistent zero velocity of holes. The movement of holes is calculated in a step fashion
where the velocities at the last and current timestep is averaged and multiplied by the
timestep length. This model is fundamentally different from the calculation of movement
of electrons which utilizes a model based on the strength of the electric field as described
in 3.4.3 in [41].

To investigate the calls made the calculate the movement of holes we identify the calls
as:

1. MCFEM (main program) calls flight function from the carrierDyns module

2. The flight function calls the holevgi from the measurements module

3. This holevgi function calls the dEdk from the scatteringrates module.

4.2. Unphysical Behavior of Holes 27

The holevgi function calculates the velocity for holes by using the group velocity
multiplied by the size of the wavevector in each direction x, y and z. The group velocity is
calculated by the formula

vg =
1
~

dE
dk
. (4.1)

In this function the only changing variable is the derivative of the energy-band with re-
spect to k, which is calculated according to the band model implemented by Skåring [22].
This model contains the analytic part and the so-called "ad-hoc" part which calculates the
derivatives differently based on the magnitude of k. When k reaches a value of the prede-
fined variable that corresponds to the boundary of the first Brillouin zone, the derivative
is not defined. According to the symmetry in k-space and the band model which is only
defined in the first Brillouin zone, the hole should reflect at the boundary of this zone and
have a valid value.

The reflection of holes is in fact only done when the position vectors surpasses the
physical boundaries of the device, but surprisingly the holes are not reflected in k-space
when the wave vectors surpasses that of the first Brillouin zone. This leads to a magnitude
of the k-value which continues to increase. As such, there is no defined derivative of the
band for these values. This causes the output of the dEdk function to be zero and thus
zero movement of holes.

Proposed Solution

Since this is closely related to Skåring’s band model implementation, it proves difficult to
solve it elegantly as the derivative is calculated and used in many other functions through-
out the model. To change or even replace this model requires a significant development
effort out of the scope of this thesis.

It is worth mentioning that there is an comment in the dEdk function, in the case of
k-values out of boundaries that mention that this is not dealt with. This shows that at some
time, this has been an issue but this has not been addressed in the most recent theses using
the simulator. This could either be due to short simulation times where it has not yet been
clearly observed or it has not occurred to such an extent prior to the latest implementations.
Regardless of this, it is obvious that this is a major weak point in the implemented band
model and thus fundamental to solve for the further development of the simulator.

Besides redefining the majority of the band model, including the calculation of the
derivatives, a proposed solution is to add a Bragg reflection condition for k-values exceed-
ing the first Brillouin zone.

This should done prior to calling the dEdk function. This could act as an "ad-hoc"
solution which only affects the calculation of hole velocities without altering the dEdk

28 Chapter 4. Simulator Development and Results

function which is used by other routines in the simulator. This was attempted at the very
end of the work in this thesis, but not without throwing fatal errors during compilation.

4.3 Mesh Optimizations

4.3.1 Background
In the work by Fatnes, several improved meshes for the simulator were created. A rep-
resentative selection of these meshes are shown in Figure 4.2. The meshes displayed a
variation in the mesh density, either overall in the device or selectively in the region around
the pn-junction.

Based on the simulation cases presented it her thesis further optimization was possible.
It was shown that an overall high density mesh produced too much noise in the simula-
tion. Especially in the absorption region with lower doping densities, a small element size
produced noise.

The comparison of quadratic and linear elements also showed that the use of quadratic
elements did not yield much improvement in the simulations based on the accuracy of the
potential in the device. Combined with the cost of increased computational requirements
in the simulator for working with quadratic elements, the use of linear elements seemed
most promising.

4.3.2 Results
Based on the meshes shown in Figure 4.2 it was sought to generate a new and improve mesh
with linear elements and a denser mesh in regions of interest without causing noise in the
simulation. Such a mesh would improve the time and resources needed for simulation by
reducing the number of nodes while keeping a sufficiently high level of detail.

The mesh created in this work is shown in Figure 4.3.The mesh was refined to increase
the accuracy in regions where the potential changes quickly, i.e. where the field gradient
is large. Thus, the regions of interest are the regions around the junctions of the doped
regions, including the doped regions under the contacts. With the previous geometry files,
such a level of mesh selectively around all doped regions was not possible.

To achieve this, the geometry was refined to include "dummy" regions with no physical
meaning for the device parameters. These regions were implemented such that it was
possible to more precisely define a characteristic length in the regions of interest (similar
to Fig. 4.2b). This was done while keeping the mesh in the absorption region less dense
(similar to Fig. 4.2a).

A comparison of the meshes presented in Fig. 4.2 and the improved mesh in Fig. 4.3
is shown in Table 4.1. This shows the total number of nodes and elements in the meshes.

4.3. Mesh Optimizations 29

Figure 4.2: Previous iterations of the mesh for the APD device as created
by Fatnes [26]. The meshes are classified after their discretization density
from coarse (a) to (c) ultra-fine. The mesh in (b) is selectively fine in the

region around the pn-junction. but coarse in the other regions.

30 Chapter 4. Simulator Development and Results

Not surprisingly, the improved mesh contains less nodes due to the linear element type.
Compared to the most coarse old mesh (4.2a) it has a factor of one third the number of
nodes. It also reduces the number of elements compared to the previously selectively
refined mesh (4.2b).

4.2a 4.2b 4.2c Improved mesh

Nodes 77,529 240,914 455,931 24,950
Elements 52,574 172,599 323,866 134,828
Element type quadratic quadratic quadratic linear

Table 4.1: A comparison of the old meshes with the new mesh. The total
number of nodes and elements are listed as well as the element type.

Figure 4.3: The optimized mesh of the APD is shown in 3D (a) and with
increased contrast in 2D (b). The colors signify the different regions defined

in the geometry.

4.4. Increased simulation time 31

4.4 Increased simulation time

4.4.1 Background
One of the caveats of simulation runs in the prior version of the simulator was the lack
of simulation runs exceeding ∼ 10 picoseconds. Previously this have often corresponded
with developers who have used more time on developing large and new implementations in
the simulator and re-factored significant pieces of the code. As new implementations have
been needed, the computational cost also increases with additional functionality making
optimization a lower priority.

Based on simulations by researchers at FFI we have seen that the first 100 picoseconds
of simulation of a similar device is still in a transient state [15]. To observe the response
and reach a more steady state, longer simulations are necessary. However, due to the time
frame of this thesis and the current issues in the simulator, such long simulations will likely
not be useful.

But to observe the response in greater detail and to verify if or if not the erroneous
behavior of particles persist or if new behavior occurs, it is desirable to attempt to run
longer simulations for more than 10 picoseconds.

4.4.2 Results
As demonstrated in the previous sections, the many issues with the particle behavior in
the device makes it difficult to run longer simulations that can output meaningful physical
data. As these issues was not sufficiently resolved in this work, the longer simulations did
prove as useful as initially thought.

Still, to test the new mesh created during this work, longer simulations was possible to
carry out, despite the persistent issues of zero-velocity holes. This proved viable with sim-
ulations that were able to run more efficiently than previously. The major part of this spike
in efficiency is due to refinement and optimization of the mesh, as described in 4.3. An-
other factor is the access to a high-performing computing cluster at NTNU, which allows
for more memory, faster storage, high uptime and computing resources than for previously
used computers. Details regarding this cluster was given in 3.3 in Chapter 3.

In this work, the simulation time has been increased to 40 ps with timesteps of 1 fs –
a total of 40,000 timesteps. This simulation was done with the improved mesh shown in
4.3. The simulation ran for approximately 53 hours which leads to a runtime of 80 minutes
per simulated ps. A visualization of the average potential along the z-direction is shown
in Figure 4.4. It exhibits similar behavior as those included in Fatnes’ simulations at early
stages, but it is seems like a potential drop is established along the pn-junction in 4.4c at
16 ps. However, the same behavior of maximum potential near the p+ regions is observed
yet again.

32 Chapter 4. Simulator Development and Results

Figure 4.4: The average potential in z-direction for the 40 ps long simula-
tion with the optimized mesh is shown for various times during the simula-

tion.

4.5. Further Work 33

4.5 Further Work
To continue improving the simulator, the most urgent issue is the one of zero-velocity holes
during simulations. The main focus with further development must thus be to continue the
effort to resolve this.

When this is resolved the other parts still need further testing and verification, before
new implementations should be introduced in the simulator. A considerable list of cases
for further testing based on Fatnes’ implementations is outlined in the section for further
work in her thesis [26]. This should make out for several possible projects for students
with a background in physics and numerics. Possible approaches could be focused towards
mathematics (improving the implemented algorithms used in calculations) or physics (im-
proving various aspects of the physical model).

Based on the work in this thesis, the following points are suggested as the next steps in
further work with the simulator:

Resolving Zero-Velocity Hole Behavior

As mentioned in 4.2.1, a simple solution without changing the band model is suggested.
However, for coming developers who seek to refine or develop a new band model, this
could be an idea for a combined specialization and master’s project.

Continue A Simulation From A Previous Run

Since specialization and master’s projects often is limited in time and a good portion of the
time is needed to get familiar with the simulator it is desirable to optimize how simulations
are run with longer simulation times. An approach to this is to implement an alternative
initialization routine where the last output from a previous simulation run is used as input.
If one have already simulated 40 ps and the data looks promising for an even longer sim-
ulation run, a new simulation could simply continue from 40 ps and further by using the
last state of previous run as input. This is implemented in the non-student version of the
simulator used at FFI and would be a big improvement for this simulator as well.

Parallelization

As the access to a powerful computing cluster, there are several techniques which can be
utilize to parallelize the program which can both speed up simulations run on one com-
puter or distribute the workload across nodes in a cluster. This could also decrease the
time needed to run simulations on less powerful hardware as well. This however is not
something that can be carried out easily without changing important parts of the algorithm
implementations, but should be considered. Work done with this topic could also be of use
for the non-student MC simulator.

34 Chapter 4. Simulator Development and Results

Migrate To ifort Compilation

To align with the development of the non-student MC simulator at FFI and make use of
Intel’s latest optimizations for its processors (which the simulator uses), it is proposed to
continue the effort to migrate to using Intel’s ifort as the compiler of the simulator.

Despite the effort to compile with ifort as described in 4.1.1 did not prove successful,
it seems likely that this would be more viable when the problem of zero velocity-holes is
resolved. As this should limit the ever increasing k-values for the holes, a segmentation
fault should be able to be avoided more easily. If the error should be introduced again,
using debugging compiling options within ifort could be considered to identify possible
other sources of the issue.

Another feat of moving to this compiler would be to further investigate if there are
some of the algorithms used in the simulator which could be optimized by using LAPACK
and BLAS routines which are included in ifort. These are highly optimized linear algebra
routines implemented in machine-optimized code which outperforms the native equivalents
in standard Fortran.

35

Chapter 5

Summary

Monte Carlo software with finite element Poisson solver (MCFEM), th simulator software
developed over several years by students at the Norwegian Defence Research Establish-
ment (FFI), has in this 5 month-long Master’s project been further tested and developed,
with a model of a mercury cadmium telluride (HgCdTe) avalanche photodiode (APD) serv-
ing as the simulated device. As the simulator received many significant mathematical im-
plementations by the previous developer, the focus has been on further testing the simulator
and increasing stability.

Building on the most recent efforts by Fatnes in 2017 − 2018, several issues have been
identified and further investigated. It has been demonstrated that the simulator is capable of
running simulations up to 40 ps, only limited by time and computing resources to continue
longer. By utilizing a nodes at a high-performance compute cluster, we have achieved to
run the simulator at faster speed and with more memory available than before allowing for
these longer runs.

By introducing a more detailed meshing geometry it has been shown that we can in-
crease the mesh density around smaller areas of interest while keeping the mesh less dense
in larger regions. This improvement has reduced the total number of nodes and elements
while keeping the detail level sufficiently high.

Stability issues of the solver has been investigated by simulating devices with vary-
ing neutral height of the n-contact region, and the issue of zero velocity-holes have been
thoroughly investigated in the code. A proposed solution to this has also been presented.

There is regrettably data from many of the simulation runs not included in this thesis,
which deserved to be included and thoroughly discussed. With more time this could have
been done, but hopefully this data could be of help to the next developer.

Despite that the implementation of the fix for the zero velocity-hole problem is not
completed, the proposed solution serves as a further work for the next developer. When
that issue is fully resolved, the physical model would be greatly improved and allow for
reaching a steady state in the simulation with longer simulation runs. The many implemen-
tations in the simulator still need further development with focus on stability and efficiency,

36 Chapter 5. Summary

but at the current time it shows a good potential for further improvements.

37

Bibliography

[1] Wikipedia. Timeline of electrical and electronic engineering. Website. https://
en.wikipedia.org/wiki/Timeline_of_electrical_and_electronic_

engineering Accessed: 2019-01-28. 2011.

[2] S. M; Sze and K. NG Kwok. Physics of Semiconductor Devices. 3rd. Wiley, 2007.
isbn: 9780471143239.

[3] Wikipedia. Photodiode. Website. https://en.wikipedia.org/wiki/Photodiode
Accessed: 2019-03-07. 2019.

[4] C Snowden. Semiconductor Device Modelling. London: Springer, 1989. isbn: 978-
1-4471-1033-0. doi: 10.1007/978-1-4471-1033-0.

[5] Wikipedia. Semiconductor device modeling. Website. https://en.wikipedia.
org/wiki/Semiconductor_device_modeling Accessed: 2019-03-07. 2017.

[6] Ravinder Pal. “Infrared technologies for defence systems”. In: Defence Science
Journal 67.2 (2017), pp. 133–134. issn: 0976464X. doi: 10.14429/dsj.67.11223.

[7] FFI. FFIs Historie nr 11. PDF. https://www.ffi.no/no/Publikasjoner/
Documents/FFIs-historie-nr11.pdf Accessed: 2019-01-31. 2003.

[8] FFI. FFIs Historie nr 1. PDF. https://www.ffi.no/no/Publikasjoner/
Documents/FFIs-historie-nr1.pdf Accessed: 2019-01-31. 2003.

[9] FFI. FFIs Årsrapport 2012. PDF. https://www.ffi.no/sites/aarsrapport2013/
dette-er-ffi/kalender/Sider/De-intelligente-missilene.aspx Ac-
cessed: 2019-01-31. 2013.

[10] R. Haakenaasen et al. “Imaging one-dimensional and two-dimensional planar pho-
todiode detectors fabricated by ion milling molecular beam epitaxy CdHgTe”. In:
Journal of Electronic Materials 34.6 (2005), pp. 922–927. issn: 03615235. doi: 10.
1007/s11664-005-0043-3. arXiv: 1211.5586.

[11] R. Haakenaasen et al. “Imaging photovoltaic infrared CdHgTe detectors”. In: Phys-
ica Scripta T T126 (2006), pp. 31–36. issn: 02811847. doi: 10.1088/0031-8949/
2006/T126/007.

https://en.wikipedia.org/wiki/Timeline_of_electrical_and_electronic_engineering
https://en.wikipedia.org/wiki/Timeline_of_electrical_and_electronic_engineering
https://en.wikipedia.org/wiki/Timeline_of_electrical_and_electronic_engineering
https://en.wikipedia.org/wiki/Photodiode
https://doi.org/10.1007/978-1-4471-1033-0
https://en.wikipedia.org/wiki/Semiconductor_device_modeling
https://en.wikipedia.org/wiki/Semiconductor_device_modeling
https://doi.org/10.14429/dsj.67.11223
https://www.ffi.no/no/Publikasjoner/Documents/FFIs-historie-nr11.pdf
https://www.ffi.no/no/Publikasjoner/Documents/FFIs-historie-nr11.pdf
https://www.ffi.no/no/Publikasjoner/Documents/FFIs-historie-nr1.pdf
https://www.ffi.no/no/Publikasjoner/Documents/FFIs-historie-nr1.pdf
https://www.ffi.no/sites/aarsrapport2013/dette-er-ffi/kalender/Sider/De-intelligente-missilene.aspx
https://www.ffi.no/sites/aarsrapport2013/dette-er-ffi/kalender/Sider/De-intelligente-missilene.aspx
https://doi.org/10.1007/s11664-005-0043-3
https://doi.org/10.1007/s11664-005-0043-3
http://arxiv.org/abs/1211.5586
https://doi.org/10.1088/0031-8949/2006/T126/007
https://doi.org/10.1088/0031-8949/2006/T126/007

38 Bibliography

[12] R. Haakenaasen et al. “HgCdTe research at FFI: Molecular beam epitaxy growth and
characterization”. In: Journal of Electronic Materials. 2010. isbn: 0361-5235\r1543-
186X. doi: 10.1007/s11664-010-1211-7.

[13] Asta Katrine Storebø, Trond Brudevoll, and Knut Stenersen. “Calculated tempera-
ture rise in midinfrared laser irradiated Hg0.72 Cd0.28 Te”. In: Journal of Applied
Physics 103.5 (2008), p. 9. issn: 00218979. doi: 10.1063/1.2890751.

[14] Asta Katrine Storebø, Trond Brudevoll, and Knut Stenersen. “Numerical modeling
of IR-laser-irradiated HgCdTe”. In: Journal of Electronic Materials 39.10 (2010),
pp. 2220–2232. issn: 03615235. doi: 10.1007/s11664-010-1321-2.

[15] Asta Katrine Storebø and T Brudevoll. “Modeling of a Back-Illuminated HgCdTe
MWIR Avalanche Photodiode with Alloy Gradients”. In: Journal of Physics: Con-
ference Series. IOP Publishing, 2015. doi: 10.1088/1742-6596/647/1/012051.

[16] Asta Katrine Storebø, Dara Goldar, and Trond Brudevoll. “Simulation of infrared
avalanche photodiodes from first principles”. In: PROCEEDINGS OF SPIE (2017).
doi: 10.1117/12.2262473.

[17] Trond Brudevoll. Monte Carlo Software for Charge Transport and Electro-optic
Applications. 2018.

[18] Antoni Rogalski, Małgorzata Kopytko, and Piotr Martyniuk. “Chapter 1 - Infrared
Detector Characterization”. In: Antimonide-based Infrared Detectors: A New Per-
spective April (2018). issn: 02613069. doi: 10.1016/j.matdes.2009.12.003.

[19] K. K. Choi et al. “Optics research at the U . S . Army Research Laboratory”. In:
Applied Optics 56.3 (2017), B103–B115. doi: 10.1364/AO.56.00B103.

[20] Øyvind Olsen. “Construction of a Transport Kernel for an Ensemble Monte Carlo
Simulator”. Master’s Thesis. NTNU, 2009.

[21] Ole Christian Norum. “Monte Carlo Simulation of Semiconductors – Program Struc-
ture and Physical Phenomena”. Master’s Thesis. NTNU, 2009.

[22] Øyvind Skåring. “Ultrashort Relaxation Dynamics in Laser Excited Semiconduc-
tors”. Master’s Thesis. NTNU, 2010.

[23] Camilla N. Kirkemo. “Monte Carlo Simulation of PN-Junctions”. Master’s Thesis.
University of Oslo, 2011.

[24] Jonas Julius Harang. “Utregning av det elektromagnetiske feltet i Monte Carlo trans-
port simulering”. Master’s Thesis. NTNU, 2017.

[25] David Kristian Åsen. “Self-Force Reduced Finite Element Poisson Solvers for Monte
Carlo Particle Transport Simulators”. Master’s Thesis. NTNU, 2016.

[26] Siri Narvestad Fatnes. “A Three-Dimensional Finite Element Poisson Solver for
Monte Carlo Particle Simulators”. Masters’s Thesis. NTNU, 2018.

https://doi.org/10.1007/s11664-010-1211-7
https://doi.org/10.1063/1.2890751
https://doi.org/10.1007/s11664-010-1321-2
https://doi.org/10.1088/1742-6596/647/1/012051
https://doi.org/10.1117/12.2262473
https://doi.org/10.1016/j.matdes.2009.12.003
https://doi.org/10.1364/AO.56.00B103

Bibliography 39

[27] Charles Kittel. Introduction to solid state physics. 8th ed. 2005, p. 703. isbn: 0-471-
11181-3.

[28] Xiaoli Sun et al. “HgCdTe avalanche photodiode detectors for airborne and space-
borne lidar at infrared wavelengths”. In: Optics Express. Vol. 25. 14. Optical Society
of America, July 2017, p. 16589. doi: 10.1364/OE.25.016589.

[29] Anand Singh, Vanya Srivastav, and Ravinder Pal. “HgCdTe avalanche photodiodes:
A review”. In: Optics and Laser Technology (2011). issn: 00303992. doi: 10.1016/
j.optlastec.2011.03.009.

[30] Janez Krc and Marko Topic. Optical Modeling and Simulation of Thin-Film Photo-
voltaic Devices. 2013. doi: 10.1201/b14551.

[31] Art B Owen. Monte Carlo theory, methods and examples. 2013.

[32] Morten Hjorth-Jensen. Computational Physics, Lecture Notes Fall 2015. Oslo, 2015.

[33] Jianming Jin. The Finite Element Method in Electromagnetics. 3rd. Wiley-IEEE
Press, 2015. isbn: 1118571363, 9781118571361.

[34] COMSOL. The Finite Element Method (FEM). Website. https://www.comsol.
com/multiphysics/finite-element-method Accessed: 2019-03-07. 2016.

[35] Christophe Geuzaine and Jean-François Remacle. “A three-dimensional finite el-
ement mesh generator with built-in pre- and post-processing facilities”. In: Int. J.
Numer. Meth. Engng. 79.11 (2017), pp. 1309–1331. issn: 03770273. doi: 10.1002/
nme.2579. arXiv: 1010.1724.

[36] Sun Microsystems. What Every Computer Scientist Should Know About Floating-
Point Arithmetic. Article. https://docs.oracle.com/cd/E19957-01/806-
3568/ncg_goldberg.html Accessed: 2019-03-18. 1991.

[37] gfortran. gfortran — the GNU Fortran compiler, part of GCC. Website. https:
//gcc.gnu.org/wiki/GFortran Accessed: 2019-03-18. 2019.

[38] Brandon Parker. Introduction to MPI and OpenMP. Workshop: High Performance
Computing on Stampede 2, Jan. 23, 2017. 2017.

[39] J. P. Laurenti et al. “Temperature dependence of the fundamental absorption edge of
mercury cadmium telluride”. In: Journal of Applied Physics 67.10 (1990), pp. 6454–
6460. issn: 00218979. doi: 10.1063/1.345119.

[40] Lars Koesterke. Modern Programming Languages: Fortran 90/95/2003/2008. Web-
site. https://www.tacc.utexas.edu/documents/13601/162125/fortran_
class.pdf Accessed: 2019-01-28. 2011.

[41] Geir Uri Jensen. “Monte Carlo Simulation of III-V Semiconductor Devices”. Doc-
torate’s Thesis. NTNU, 1989.

https://doi.org/10.1364/OE.25.016589
https://doi.org/10.1016/j.optlastec.2011.03.009
https://doi.org/10.1016/j.optlastec.2011.03.009
https://doi.org/10.1201/b14551
https://www.comsol.com/multiphysics/finite-element-method
https://www.comsol.com/multiphysics/finite-element-method
https://doi.org/10.1002/nme.2579
https://doi.org/10.1002/nme.2579
http://arxiv.org/abs/1010.1724
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://gcc.gnu.org/wiki/GFortran
https://gcc.gnu.org/wiki/GFortran
https://doi.org/10.1063/1.345119
https://www.tacc.utexas.edu/documents/13601/162125/fortran_class.pdf
https://www.tacc.utexas.edu/documents/13601/162125/fortran_class.pdf

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 N
at

ur
al

 S
ci

en
ce

s
D

ep
ar

tm
en

t o
f P

hy
si

cs

M
as

te
r’

s
th

es
is

Mats Estensen

Simulation of a Mercury Cadmium
Telluride Avalanche Photodiode

A Monte Carlo and Finite Element Method
Approach

Master’s thesis in Nanotechnology
Supervisor: Jon Andreas Støvneng (IFY), Trond Brudevoll (FFI)

March 2019

	Contents
	List of Figures
	List of Abbreviations
	Introduction
	Theory
	Semiconductor Physics
	Semiconductor Materials
	Electrons in a crystal structure
	Energy Bands and Carriers

	Semiconductor Devices
	Avalanche Photodiode

	Semiconductor Device Simulation
	Monte Carlo Method
	Finite Element Method
	Numerics and Limitations

	Simulator Model and Implementation
	Simulation Model
	Device Parameters

	Program Structure
	Coding, Build and Runtime Optimization

	Simulator Development and Results
	Program Development
	Compilation Changes

	Unphysical Behavior of Holes
	Background
	Results

	Mesh Optimizations
	Background
	Results

	Increased simulation time
	Background
	Results

	Further Work

	Summary
	Bibliography

