NTNU - Trondheim
Norwegian University of

Science and Technology

Implementing the next generation of the
Methodical Accelerator Design language
using LuaJIT

Martin Valen

Master of Science in Cybernetics and Robotics
Submission date: March 2014
Supervisor: Amund Skavhaug, ITK

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Assignment

The student shall create an application to be used in the Methodical Accelerator
Design-project at CERN. The application shall contain:

e A parser that can read, create and run Lua code. It shall be able to run
in both batch- and interactive mode. Syntax- and run time errors should
be mapped to the correct line in the original file. The parser shall be easily
extensible to parse other languages.

e A unit testing framework to be used in the application and in modules other
users create.

If there is time, the student shall also:

e Show the use of the framework by extending the parser to be able to parse
MAD, a new language extending Lua. It shall contain C-style include state-
ments and the possibility of creating short anonymous functions that can be
called without parentheses if they do not take arguments.

e Show the possibilities of the application by extending it to be able to parse
and translate MAD-X files.

Portability to other operating systems (Windows, Linux, Mac-OS) shall be
facilitated.

ii

Acknowledgements

Going into a project of this sort with minimal knowledge of the actual workings
of a compiler proved to be quite an interesting challenge. I doubt that I've learnt
more during any other half year of my studies than I've done during this last one.
Being allowed to contribute to the worlds coolest experiment is a major motivation
boost, which really helps during those countless times when nothing works, my
program hates me and I hate my program.

I would like to give a huge thanks to my supervisor at CERN, Laurent Deniau,
who taught me a lot, both about interpreters and compilers, but also about clean
and structured code and programming in general. I would also thank him for
choosing me for the project, as the half year in Geneva was incredibly interesting,
both from an academic and a social point of view.

I would also like to thank my NTNU supervisor, Amund Skavhaug, who has
given me great input on how to properly write a thesis, both when writing this
thesis and when doing my specialisation project earlier.

Thanks are also in order to my flatmates and other friends from the time at
CERN, for taking my mind of my project with quizzes, ski trips, lunches, kings
meals and all other things I did down there. In addition to thanking my friends
and family for shaping me into the awesome person I am today, I would like to give
a special ”thank you” to Qystein and Qystein who gave me a couch to sleep on as
well as a constant stream of distractions while I finished the thesis.

Trondheim 31. March, 2014.

Martin Valen

iii

iv

Summary

To further the boundaries of human knowledge, physicists at CERN use large
particle accelerators to smash elementary particles together at high energies. To
design these accelerators, the physicists need a language specially designed for the
task, to allow them to spend their time doing physics instead of programming. The
Methodical Accelerator Design (MAD) project at CERN is developing this kind of
languages. The author of this thesis was chosen to cooperate in this project to aid
in the implementation of the new iteration of the MAD language. A new version is
needed, because the old version (MAD-X) has several problems that will make it
unsuitable for the next generation of accelerators. The project this report is based
on is an application able to run code written in Lua, the new language MAD, and
MAD-X. The implemented MAD application is written in the Lua language and
run using the excellent Just-In-Time compiler LuaJIT.

The application contains a parser constructor factory and a generator factory
to facilitate addition of different languages. Using the factories, the user can chose
between three different input languages and two different output languages. The
parsers are implemented using LPEG, a module creating top-down parsers. With
the help of LPEGs regex module, the grammars of the implemented languages are
written in a syntax closely related to Extended Backus Naur Form. The parsers
then create an Abstract Syntax Tree that is used by the generators to create Lua
or MAD code. The Lua code can then be run using LuaJIT, while the MAD code
can be used to debug the application.

To make the application fully able to interpret all Lua files and act as one
would expect interpreters to act, a module for correctly mapping errors to their
correct lines is implemented. The implementation utilises a map that contains all
the generated codes lines and their corresponding lines in the input code.

The application is extended with support for a new language, MAD, which is
an extension of Lua. MAD contains support for C-style include statements and
a short function syntax for functions that can be lazily evaluated. MAD is also
extended to be backwards compatible with MAD-X, by translating MAD-X code
into Lua code.

A stand-alone framework for unit testing is implemented, allowing all modules
in the MAD application to be tested quickly and easily. The framework is inspired
by the pre-existing BTD and Lunit-frameworks.

The future works of the application are discussed and solutions to potential

vi

problems are suggested. The interpreter is tested against other Lua interpreters
and is shown to be able to compete on an equal basis. The application is also shown
to be easily extendible, helped by the unit testing framework that easily allow the
module designers to test their functions and APIs. The implemented application,
which can be found at [8], can therefore be of help to the MAD project and thus
also to accelerator physicists in general.

Samandrag

For a fremme kunnskapen til menneskeheita, bruker fysikarane pa CERN store
partikkelakseleratorar for & knuse elementeerpartiklar saman ved hgge energiar.
For a designe desse akseleratorane, treng fysikarane eit programmeringssprak som
er spesiallaga for jobben, sann at dei kan bruka tida si pa fysikk i staden for
pa programmering. Methodical Accelerator Design (MAD)-prosjektet ved CERN
utviklar denne typen sprak. Forfattaren av denne rapporten blei valt ut til & delta
i dette prosjektet for & hjelpe til med implementeringa av den nye iterasjonen av
spraket MAD. Ein treng ein ny versjon, da den fgrre versjonen (MAD-X) har fleire
problem som gjer den upassande til den neste akseleratorgenerasjonen. Prosjek-
tet denne rapporten er basert pa omhandlar ein applikasjon som kan kgyre kode
skrevet 1 Lua, det nye spraket MAD, og MAD-X. Den implementerte applikasjonen
er skrevet i Lua og kgyrest ved hjelp av den utmerka Just-In-Time-kompilatoren
LuaJIT.

Applikasjonen inneheld ein parser constructor-fabrikk og ein generatorfabrikk
for a fasilitere innlegging av forskjellige sprak. Ved hjelp av desse fabrikkane kan
brukaren velge mellom tre forskjellige inputsprak og to forskjellige outputsprak.
Parsarane er implementert ved hjelp av LPEG, ein modul som lagar ovanfra og
ned-parsere. Vha. regexmodulen til LPEG kan grammatikkane skrivast i ein syn-
taks som er saers lik Utvida Backus Naur Form (EBNF). Parsarane lager sa eit
Abstrakt Syntaks Tre som blir brukt av generatorane til a lage Lua- og MAD-
kode. Luakoden kan bli kgyrd vha. LuaJIT, mens MAD-koden kan bli brukt til a
debugge applikasjonen.

For a gje applikasjonen mogelegheita til a tolke alle Luafiler og opptre som ein
vil anta at tolkarar skal opptre, er ein modul for & lenke feilmeldingar til deira
tilhgyrande linjer implementert. Implementasjonen bruker eit kart som inneheld
alle utgongslinjene i den genererte koden og alle deira korresponderande linjer i
inngongskoden.

Applikasjonen er utvida med stotte for eit nytt sprak, MAD, som er ein utviding
av Lua. MAD stgtter include, brukt som i C, og ein kort funksjonssyntaks for
funksjonar som kan bli evaluert seinare. MAD er og bakoverkompatibel med MAD-
X, ved at det kan oversettje MAD-X-kode til Lua-kode.

Eit frittstaande rammeverk for einhetstesting er implementert, noko som let alle
modular i MAD-applikasjonen bli testa pa ein kjapp og konsis mate. Rammeverket
er inspirert av dei allereie eksisterande BTD- og Lunit-rammeverka.

vii

viii

Det framtidige arbeidet til applikasjonen er diskutert og lgysingar til mogelege
problem er fgreslatt. Tolkaren blir testa mot andre Lua-tolkarar og viser seg &
kunne konkurrere pa like fot. Applikasjonen viser seg a vera enkel a utvide, godt
hjulpe av einheitstestingsrammeverket som gjer det szers enkelt for moduldesignere
a teste funksjonane og APIa sine. Den implementerte applikasjonen, som kan
finnast pa [8], kan vera av stor bruk for MADprosjektet og dermed og for alle slags
akseleratorfysikarar.

Contents

1 Introduction
2 Background
2.1 Languages and grammars
2.1.1 Extended Backus Naur Form
2.1.2 Context/Context free grammars
2.1.3 Lexical elements
2.2 Methodical Accelerator Design
221 Syntax
2.22 Problems
2.2.3 Conclusion e
23 Compilers
2.3.1 Abstract Syntax Tree
2.3.2 Lexers e e
233 Parsers e
234 Leftrecursion e
2.3.5 Parsing Expression Grammars
3 Implementation
3.1 Previouswork e
3.1.1 GSLShell o
3.1.2 Terra e
3.1.3 Nyanga e
3.1.4 LualJIT Language Toolkit
3.2 Main structure Lo Lo
321 mad
3.3 Abstract Syntax Tree
3.4 Luagrammaro e e
3.4.1 Removing left recursion
3.4.2 Operator precedence and associativity
3.4.3 Lexical elements
3.4.4 Adding actions oL o
3.5 Unittesting o
3.5.1 Previouswork.

X

x CONTENTS

3.5.2 Implementation 0oL 37

3.6 Generator L 40
3.7 Imteractive 41
3.71 Previousworks 41
3.7.2 TImplementation Lo 43

3.8 Report errors correctly Lo oo 44
3.8.1 Syntax errorso 44
3.82 Run-timeerrors. 44

3.9 Extending Lua - Making the new MAD 47
391 Include 47
3.92 Lambda 48
3.9.3 Adding a MAD source code generator 52

3.10 Making a MAD-X parser. e 52
3.10.1 Grammar e 52
3.10.2 Finalisation Lo 60

3.11 Future works Lo 64
3.11.1 Make it work on Windows 64
3.11.2 Make a unified makefile system 64
3.11.3 Single binary oL o 65
3.11.4 Adding a bytecode generator 65
3.11.5 Finish the Lua implementation of MAD-X 65

4 Tests 67
4.1 Unittests e 67
4.2 Speed tests 68
5 Discussion 79
5.1 Initial design decisions oo 79
51.1 Using LPEG 79
5.1.2 Not using LpegLJ oo, 80

5.2 Changes made to the grammar 80
5.2.1 Splitting the variable into definition and expression 80
5.2.2 Not having associativity 81
5.2.3 How to check if two grammars are similar 82

5.3 The final product oo 82
5.3.1 Luainterpreter oL 82
5.3.2 Extensibility of the application 83
5.3.3 MAD interpreter 83
5.3.4 MAD-X interpreter 84
5.3.5 Errorsmoduleo oo 85
5.3.6 Unit testing framework 86

5.4 Using the application 86
6 Conclusion 89

A How to install MAD 91

CONTENTS

B Mad-e command line arguments
C MAD-X example sequence
D Lua AST

E Lua Grammar

xi

93

95

97

101

xii CONTENTS

List of Figures

1.1 CERN Accelerator Complex

2.1 Lexer/parser/transformer-setup L.
2.2 AST nodes for different expressions
2.3 Typical parse tree for A = B + C*2; D = 1. [Source: Wikipedia] . .
2.4 Numbered parse trees for different approaches to parsing. Both trees
parse the expression A = B + C*2; D = 1 [Source: Wikipedia]

3.1 Nyangas interpreter chain
3.2 Main structure of MAD oo
3.3 The structure of the mad subfolder
3.4 Timing of the expression (((1) + 1) + 1) with « parentheses

4.1 Description of idempotent parser
4.2 10k lines of Lua code run with different applications
4.3 10k lines of Lua code run with MAD and LuaJIT language toolkit

4.4 Empty Lua file run with MAD and LuaJIT language toolkit
4.5 Empty Lua file run with MAD and LuaJIT language toolkit, per run
4.6 A random Lua file run with MAD and LuaJIT language toolkit . . .
4.7 100k lines of Lua code run with mad and lua interpreter
4.8 100k lines of Lua code run with mad and lua interpreter, per run . .
4.9 Files of different size run by Lua and MAD interpreters
4.10 Tests of different approaches to the lambda function

xiii

21
22
24
29

71

xiv LIST OF FIGURES

Listings

2.1
2.2
2.3
24
2.5
2.6
3.1
3.2
3.3
3.4
3.5

3.6

3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20

3.21
3.22

A simple grammar oL 0oL 6
EBNF grammar of MAD-X 8
A sequence defined in MAD-X syntax 9
Rule with immediate left recursion 15
Set of rules with indirect left recursion 15
Example result after removing immediate left recursion 16
Donnelys Lua EBNF grammar without left recursion 26
Lua expression definition with left recursion 26
Lua expression definition without left recursion 27
Lua variable and funcall-definition with left recursion. 27
Variable and function call definitions without left recursion, but not
working on PEG oo 27
Variable and function call definition without left recursion, but too
much backtracking o 28
Variable and function call definition split into definition and expression-
partso e 28
Lua expressions with precedence and associativity, but with left-
TECUTSION « . & v v v v v et e e e e e e e e e e e e 30
Orexp with left recursion and associativity removed 30
Lua expressions with precedence, but without associativity 30
Implementation of the white space-rule in the Lua grammar 31
Two different ways of capturing literal nodes 31
Adding actions to exp using table captures 32
Adding actions to exp using simple captures 32
Capturing table fields by capturing [. 33
Capturing table fields, without capturing [. 33
Example of how to write a test function 38
Pseudo code showing what happens when unit tests are run 39
Example output of a run of the unit tests 40
Eduardo Ochs unfinished fix to allow Lua to enter interactive mode

from the script 42
Pseudo code for interactive mode 43
The structure of the linemap mapping output lines to input lines

and filenames 46

XV

xvi

3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34

3.35

3.36
3.37
3.38
3.39
3.40
3.41
3.42
3.43

3.44
3.45

3.46
3.47
3.48
4.1

4.2
C.1

LISTINGS

Pseudo code for handleError
Addition to the Lua grammar to allow for include statements
The function used support C-style include statements
Grammar addition to allow lambda functions
Adding a new type lambda’ L.
Overloading + operator to support deferred evaluation of lambda . .
Overloading math.abs to support deferred evaluation of lambda . . .
Overloading math.max to support deferred evaluation of lambdas . .
MAD-X grammar to allow .5 and 5. as numbers
MAD-X grammar to allow strings without string delimiters
MAD-X grammar for statements
Implementation of label- and command-statements in MAD-X gram-
1007
Functions to check whether a key should have a string or not as
argument oL oL Lo e e e e e e
A sequence created in Lua L.
Pseudo code for the implementation of labelstmt and cmdstmt
Grammar definition of line statements
Implementation of macro definitions
Implementation of macrocalls.
Pseudo code for the function execmacro
First attempt at translating MAD-X sequence to Lua
Change made to chunk to call every 1000 statements allowing LPEG
to handle positiono Lo
New function to that runs an arbitrary number of statements.
Change made to chunk to return every 1000 statements, needing the
user to handle the position
Function that returns the position and an arbitrary number of state-
ments oL oL e e e e e e e
How the parser function needs to look if it shall keep track of the
position instead of LPEG 0o 0oL
Pseudo code for the function executing the interpreters, disregarding
option handling oL oL
Setup for speed tests of different applications
Code used to test the speed of different usages of lambda
Definition of the 8km long SPS accelerator

48
48
49
50
50
51
51
93
93
54

54

95
o6
57
o7
o8
99
99
61

62
62

Chapter 1

Introduction

Since its founding in 1954, researchers at The European Organization for Nuclear
Research, CERN, have been working together to unravel the mysteries of the cos-
mos. The main focus has always been on the building blocks of the universe,
resulting in its researchers being the first ever to create anti-atoms and, more re-
cently, resulting in the discovery of the Higgs Boson ([4] and [1]) which resulted
in a Nobel Price for Englert and Higgs. Notable side effects include the birth of
the World Wide Web and 4 Nobel prices to CERN. To be able to perform these
experiments, larger and larger accelerators are needed. The largest so far, the
Large Hadron Collider (LHC), clocks in at 27 km in circumference. CERN has
several upgrades for the LHC in the pipeline, the most important being the High-
Luminosity LHC, which will increase the number of collisions by a factor of ten
from 2020. Other, smaller upgrades are being applied now, as the LHC is in its
first long shutdown period (LS1), during which many improvements will be made
to increase the collision speed to 14TeV at center of mass.

But the LHC is only the last of a long line of circular accelerators that have
been used at CERN, most of which are now included in the pre-acceleration steps
of the LHC, as one can see in Figure 1.1. The LHC still has its limitations and
to reach even higher luminosity and energies, newer and better accelerators have
to be built. The two main ones being researched now, are the Compact Linear
Collider (CLIC) and the Future Circular Collider (FCC). CLIC is going to be a
50km linear collider, achieving the same energies as the LHC, but colliding electrons
and their antiparticles, giving researchers a new angle of input. The FCC will be
a circular accelerator of 80-100km circumference, using the LHC as a part of its
pre-acceleration.

To design an accelerator and to simulate particles moving through it, one will
need a physics module, to decide how the particles will interact with the magnets
and be acted on by the exterior forces, and a simulation framework to do the simu-
lations. Both of these can be written in FORTRAN or C and as long as they both
have clear API, it is possible to write the accelerators by hand in C/FORTRAN
and get good results. When the designed accelerators grow in size, it becomes
harder and harder to optimize/build them by hand, and one might need to add

1

2 CHAPTER 1. INTRODUCTION

LHC

SPS

T2

ATLAS

v neutrinos
CNC/;‘\A

2Dl Gran Sasso

East Area

~
LINAC 2 | CTF3
A e
¥ 4 eutror C e
[N Leir
LINAC =5 2005 (78 m)
lons
» ion » neutror » P (antiproton) —H— \/antiproton conversion » neutrinos » electron
LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

AD Antiproton Decelerator CTF=3 Clic Test Facility CNGS Cern Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice

LEIR LowEnergylonRing LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight

Figure 1.1: CERNSs current accelerator complex. [cern.ch]

some more modules to add e.g. optimization. Even later, when building the ac-
celerators, it might be practical to have a database containing the exact positions
of all the magnets, all the different strengths, and in general all the information
about them. The framework that has been made will need to communicate with all
these modules in addition to all other modules one might need. The more elements
added, the more does the designing of accelerators move from being a physics-
to a programming-related task. By developing a language with the modules as a
base, where one can easily design a simple accelerator to test and optimize, the
physicists can spend more of their time solving physics related problems and less
solving programming related problems.

Through the years, CERN has developed several languages to solve this problem
and let the physicists care about physics, not programming. These are gathered
under the umbrella term Methodical Accelerator Design (MAD) and most notably
contain the deprecated MADS8 and MAD9, as well as the current MAD-X. MAD-X,
which has been around since the start of the millennium, has become a de facto
standard for accelerator physicists from all around the world and is the language the
LHC was designed in. But because of its abundance of ’known bugs are features’,
memory leaks, non-modular construction and in general poor design, it has been

decided that a new MAD will need to be made. New MAD! will have a new syntax
based on LuaJIT and should have a better structure making it easier to maintain
and extend. It should also be able to read MAD-X files and translate them to
MAD-¢.

Lua[25] is a scripting language designed, implemented, and maintained by the
Pontifical Catholic University of Rio de Janeiro, Brazil. It is used in several indus-
trial applications and is the leading language in game development, including well
known games as World of Warcraft and Angry Birds. In addition to it being fast,
reasons for it being largely used include that it is easily embeddable because of its
small size and high portability, as well as having the liberal MIT-license. However,
a language such as MAD will need large amounts of computations for its physics
parts and will therefore need even more speed than Lua can achieve. Mike Palls
LuaJIT[39] is another implementation of Lua, but implementing it as a Just-In-
Time compiler. This allows for a significant speed boost, outperforming Lua by a
factor of 3-100, depending on how the code is set up?. Just-In-Time compilation is
a technique that gives a program both the benefits of an interpreted and a compiled
language. It works as an interpreted language from a black box point of view, that
is by not compiling the code before running it, but in its internals it compiles the
code dynamically just before it is run, allowing for the speed of compiled code.
It can actually be faster than pre-compiled code in some cases, as a JIT-compiler
may dynamically compile the code with run-time information, allowing better op-
timization than a pre-compiler would. LuaJIT is, according to its own homepage,
widely considered to be one of the faster dynamic language implementations and
may therefore bring MAD the speed it needs.

This report is written with two main goals in mind. It is to be used as a
side-kick to the documentation of the implemented MAD application, to aid others
trying to implement new features or fix bugs that might be in the code. It will
therefore not only contain the actual implemented features, but also what was
attempted to be implemented and why it was not used. It is also written for anyone
attempting to start a project similar to this one, showing different approaches
to the implementation and pitfalls one might encounter. The report is written
mainly for readers with a background closely related to the authors®, but it shall
also be possible to read the report from a physics background. It will therefore
contain introductions to subjects that might be elementary to the average computer
scientist, especially concerning language theory and compiler structure. The author
will attempt to make as few assumptions as possible about the reader, but it is
assumed that the reader has some background from C or similar languages. No
knowledge of Lua or MAD-X is required, but it is assumed that the reader knows
enough about programming languages to understand smaller Lua code snippets

IThe proper name has yet to be determined, potential names being MAD, New MAD, MAD-
NG (Next Generation), MAD-11, MAD-E, MAD-XI, and MAD-£. Many of these names will be
used in this report and in the attached code, most often just MAD. I.e. if it’s not specified to
mean MAD-8/9/X, it means new MAD.

2Several Lua functions are not JIT-compiled, making the programs significantly slower.
http://stackoverflow.com/questions/7167566/luajit-2-optimization-guide contains a good
optimization guide for LuaJIT.

3Cybernetics and embedded systems

4 CHAPTER 1. INTRODUCTION

without too much explanation.

To achieve these goals, the report will begin with an introduction to languages
and grammars for languages. To provide some motivation for this project, MAD-X
is introduced. Basic syntax and usage is shown, before the problems and sug-
gested solutions for fixing them are introduced. Following some of the sugges-
tions, a background in compilers is given, showing some previous work concerning
Abstract Syntax Trees, lexers and parsers, before finally focusing on Parsing Ex-
pression Grammars and how to create grammars following this form. After the
background, it will be shown how the created application was implemented. The
implementation chapter will begin by introducing projects either extending Lua
or facilitating the extension of Lua and how they manage it, before moving on to
develop the structure of the applications code. The parser specific elements Ab-
stract Syntax Tree and Lua grammar will be described, then it will be shown how
the new framework for unit testing used in the application was developed. The
report will then go on to show how source code generation, interactive mode and
correct error reporting was managed. As those elements conclude the main work on
the application, it is shown how the framework can be easily used to extend Luas
grammar and create a new language, MAD, containing some simple extensions.
The report then goes on to show how one can implement support for languages
completely different from Lua, by adding support for MAD-X. Once the MAD-X
interpreter has been fully described, the implementation chapter is wrapped up by
showing how the final kinks of the application are handled, as well as giving an
introduction to the work that can be done to improve the application. The report
then shows how the application fares during testing, testing its speed compared
to other applications interpreting Lua code. Finally, the entire works viability is
discussed in the discussion-chapter, before the work is concluded in the conclusion-
chapter. The appendices show how to install MAD and LuaJIT, explanations of
the different command line arguments allowed by the application, as well as show-
ing the designed Abstract Syntax Tree definition, the definition of the SPS-lattice
and the entire grammar of the Lua language.

Chapter 2

Background

To understand the motivation for this project a brief introduction to the MAD
languages’ history and current status will be given, as well as a brief introduction
to its syntax and use. To simplify the discussion around the languages, this section
will begin with a short explanation of languages, grammars and the Extended
Backus Naur Form. This is followed by the MAD introduction, before the chapter
is conluded by an introduction to compilers and some examples of how these can
be implemented.

2.1 Languages and grammars

To be able to communicate, everyone needs to be able to use some sort of com-
munication, whether oral, written or bodily, that one can ve certaub the other
part will understand the same way you intended it to be understood. To do this,
languages are perfect. In a perfect world, a language is such a system that when
someone has conveyed their meaning, everyone who knows the same language will
understand that exact meaning. Unfortunately, this is rarely the case, as languages
evolve over time and regions, which may give rise to many unfortunate situations'.
Fortunately, computer languages haven’t had time to evolve as much as human lan-
guages and their region is more or less the entire world, because of the internet, and
this section will therefore deal with the perfect world-kind of languages if nothing
else is noted. To be able to properly describe a language, both for computers and
for humans, one will need a definition of what is allowed and what is not, otherwise
one would be allowed to take a random stream of letters, put in some spaces and
call it a sentence. This is what grammars are for. A grammar is something one can
turn to if one needs to check if a string of letters is a proper construct in a given
language. How to properly describe a grammar isn’t something that is defined,
as the best way of making a grammar will depend on the language the grammar

11ike when you call a baby cute, while the parent understands it as if you called the baby
a weirdo (snal). Or someone calling someone a sweet girl, while the girl understands that she’s
being called a slut (tgs).

6 CHAPTER 2. BACKGROUND

should define. An example of a grammar for a language where one is only allowed
to write ’hello world’ could be something as simple as the string *hello world’.
A more advanced grammar could be as seen in listing 2.1.

Listing 2.1: A simple grammar

while get word do
if word is not in list_of_legal_words do
return false
end
end
return true

This grammar will allow a stream of words, but only if the words are contained in
a predefined list of words, thereby allowing e.g. the word ’hello’ but not the word
‘fweFW’2. By extending this grammar with different classes of words (noun, verb,
...) one would almost be able to describe the entire english language. But to add
the different classes one will need an easier way of describing the language, as it
will get too convoluted otherwise. Going into all the different ways of describing
the grammars will be too long for this report, hence only Extended Backus Naur
Form will be introduced and used.

2.1.1 Extended Backus Naur Form

EBNF is a way of describing context free grammars first introduced by [46] and later
standardised by the International Organization for Standardization in ISO/IEC
14977. Its symbols are defined in table 2.1.

definition =
concatenation ,
termination ;
alternation |
option [..
repetition {..}
grouping (
terminal string
terminal string

comment *..
special sequence 7 ... 7
exception -

Table 2.1: Standardised symbols for EBNF.

An example of its usage is shown below, describing a simple definition of a
number.

2This grammar already does the assumption that a word is a string of characters from the latin
alphabet, as going further into the different alphabets will unnecessarily lengthen this report.

2.1. LANGUAGES AND GRAMMARS 7

decnozero = 17 | 727 | 37 | 47 | 57 | 6> | 7T | '8 |
90 .
b
Zero = 0" ;
decimal = zero | decnozero ;
number = ["="], decnozero, {decimal} | zero ;

This defines the decnozero which can be all decimal characters excluding zero,
and zero which is zero. A single decimal is then defined to be zero or decnozero.
A number is therefore a decimal without zeroes, followed by zero or more decimals,
it may also be preceded by an optional minus sign. If it does not fit this description,
it may also be a single zero. One may also note here, the use of terminal and
non-terminal. A terminal is a rule that does not exist on the left hand side of the
grammar, as e.g. a single string. A terminal is a rule that exist on the left hand
side of the grammar, and may therefore be exchanged in all points where it occurs.

2.1.2 Context/Context free grammars

Using EBNF, one could write the grammar taking a stream of legal words as the
following.

sentence = {legal _words} ;
legal_words = legal_1 | (x omitted for brevity =) | legal_n ;

This should be enough to write a grammar for most languages, but it will be hard to
get some meaning out of it, as most languages are context dependent. The sentence
T'm over it’ by itself can mean both that you are standing above something and
that you are not bothered by something any more, depending on the context in
which it is said. This is something that is really hard to code into a grammar, as
the grammar in itself doesn’t understand what it is parsing, it only checks if it is
an allowed construct. To actually use a grammar for something useful, one will
need to connect a meaning to the different rules. In a context free language, a set
string of characters will have the same meaning no matter where it is used, making
it easier to attach meaning to the different rules.

2.1.3 Lexical elements

So far, it has been assumed that a word is a sequence of alphabetical letters,
not containing spaces, which is something most humans easily assume, while a
computer will have to be told. To achieve this, the stream one receives is split into
lexical tokens. This can be done several ways, and most grammars will not contain
the lexical definitions, but they are still very important. A grammar will use lexical
elements as number and word, meaning that these will have to be defined somehow
as well.

number = decimal , {decimal} ;
number = decnozero, {decimal} ;
number = decimal , {decimal}, ’.’, {decimal} ;

8 CHAPTER 2. BACKGROUND

These are all valid lexical definitions of a decimal number, but which definition is
chosen will greatly influence how the language works.

2.2 Methodical Accelerator Design

MAD-X is a language written by physicist for physicists to be used to design particle
accelerators. It is the successor of MAD8 and MADY, which are both still used
in the older accelerators at CERN. It is widely used all over the world as the de
facto standard for accelerator design and its user base is as big as a user base for
something as peripheral as an accelerator design language can be.

2.2.1 Syntax

In this section, the syntax and use of MAD-X will be described. As it is meant
as a quick pointer to how MAD-X is used, to make the later parts understandable
for the reader, all parts of the syntax will not be shown and several sections will
be overly simplified. If the reader wishes to know more about MAD-X, the MAD-
X primer[16] gives a good introduction. MAD-Xs syntax is very simple at first
glance?, as one can see in listing 2.2.

Listing 2.2: EBNF grammar of MAD-X

chunk = {stmt, ’;’} ;

stmt = assign | defassign | labelstmt | cmdstmt |
linestmt | macrodef | macrocall | ifstmt | repeatstmt |
whilestmt ;

labelstmt = name, ’:’, name, [’,’], attrlist ;

cmdstmt = name, [’,’], attrlist ;

attrlist = {attr} ;

attribute = defassign | assign | expr ;

defassign = name, ’:=’, expr ;

assign = name, '=’, expr ;

MAD-X is a context dependent language, but all different contexts will not be
explained in this section, as this explanation exists to give a short overview, not to
teach physicists how to use the language.

Most importantly, MAD-X is not lexically scoped, meaning that all variables
and constants created can be reached from any part of the program, including from
different files®. Another main part of the language is that it is case insensitive.

A labelstmt will store the return of its cmdstmt in a variable named the value
of name_1. The command is a constructor, making name_1 become a child of

3The definition of if, while, repeat, and expr have been left out for brevity. Someone coming
from C/C++ will understand them at first glance.

4There’s no telling how many different ways this can break a program. If one wishes to use a
variable name in a module, but someone else have used the same variable name in their module,
this will create huge problems for the poor physicist trying to use both modules, believing that
they are both without side effects.

2.2. METHODICAL ACCELERATOR DESIGN 9

name_2. name_l can then later be called as the command for other label statements,
spawning new children. Name_ 1 becomes a clone of name_ 2, with the additional
attributes from attrlist.

A cmdstmt is quite similar to a function call in C. It will execute name_1 with
its attributelist as arguments.

An attrlist is a table containing the different attributes. An attr is either a
key /value-pair, or a single value to be stored in a numbered storage (like a C-array).

assign works as one would assume, assigning the value of its expression to the
name.

defassign will create a new deferred expression. A deferred expression will
work as a variable from the users side, but every time it is used, the value of its
expression will be re-computed. This is useful e.g. for variables containing random
numbers.

Listing 2.3: A sequence defined in MAD-X syntax
LQP = 1;
LDP = 0.5;
QPp: QUADRUPOLE, 1 = LQP, k1 = 0.2;
QPm: QUADRUPOLE, 1 = LQP, k1 = —0.2;
DPp: DIPOLE, 1 = LDP, k1l = 0.1;
DPm: DIPOLE, 1 = LDP, k1 = —0.1;
BAD. Accelerator: SEQUENCE, LENGTH = 3;
QPpl: QPp, at = 0
DPpl: DPp, at = 1;
1
2

QPml: QPm, at = 1.5;
DPml: DPm, at = 2.5;
ENDSEQUENCE;

The example in listing 2.3 shows the definition of a sequence of magnets,
i.e. a particle accelerator®. This example creates four classes of magnets; two
quadrupoles and two dipoles, both with opposite bends. Then it creates a se-
quence of magnets named BAD.Accelerator of length 3. Since sequence is a
special command in MAD-X, one that changes the context, the magnets created
between a sequence-command and an endsequence-command will be created as
global variables in addition to being added to the sequence that is being created.

Another way of creating sequences is the MADS8/9-way, using the command
line.

linestmt = name ’:’ ’line’ ’=’ linector ;

linector = ’(’ (name | linector) {’,’ (name | linector)
P
As long as everything under name is either a magnet or another sequence, this will

create a sequence as well. The positive thing with this approach is that one can do
arithmetics on the sequence, by multiplying it to get several repetitions of the same

5The author hereby allow anyone to use this accelerator, as long as he is not held responsible
when it fails to work.

10 CHAPTER 2. BACKGROUND

sequence after each other, or by using the unary minus-operator to invert it. This
allows for more elegant creations, e.g. allowing the design of the entire 7km Super
Proton Synchrotron (SPS) in 9 lines, see Appendix C: MAD-X Example Sequence.
It is deprecated and not used any more, but for MAD-X to be compatible with its
older versions, it has to support it.

A powerful, oft used, feature is the special command macro.

macrodef = name [’(’ {string, ’,’} ’)’] ’:’ macro =’
9))).
{4y
macrocall = ’exec’ ’,’ name_macro ’(’ {string, ’,’} 7)’;

Macrodef will save the string and the parameters to the variable named the value of
name, while macrocall will call the macro named name_macro with the arguments
given. When a macro is called, the MAD-X-parser will read the entire macrostring
and exchange every occurrence of parameter_i with argument_i, then parse it as
MAD-X-code. This is a powerful feature, but it is also dangerous. If one e.g. calls
the parameter i, one will also exchange the i in a while, which will, most likely,
break the code.

2.2.2 Problems

[7] contains a list of problems with MAD-Xs current implementation, which will
be briefly shown here.

Data management

Because of its design, there will be a lot of memory leaks during its usage. This
is partly because it was originally designed to run one-shot jobs, where one could
let the OS handle the garbage collecting, but this has changed after introducing
macros, leading to several severe cases of leaking. To improve the speed of data
lookup, the core of the application sets a lot of global variables, i.e. leading to all
modules having side effects. The problem with side effects, that is made even worse
by all variables being global, leads to loads of well known user tricks of the type
"If your program doesn’t work when you write 'use, sequencel;’; then write 'use
sequence2; use, sequencel;’”. These tricks should of course be unnecessary and will
pollute the code.

Interpreter design

The interpreter is designed as a strict string interpreter and does not contain neither
a lexer, parser, nor an Abstract Syntax Tree, which is common in interpreters (see
figure 2.1), as will be shown in the next section about compilers. As a direct
consequence of this, other fields of the application, e.g. the physics, have been
conditioned to work with it. An example of a problem that arises from this is that
a logical expression can contain many less than/greater than etc., but only one and
(&&) or or (||). Another is that the constructs if, while, and repeat are only able
to contain one level of if/while/repeat within their blocks. The grammar is also

2.3. COMPILERS 11

ambiguous, which allows for silent failure in many different cases. If one adds an
extra comma to certain commands which are supposed to remake global tables, the
command will silently fail and the old table will be kept, on account on it being
global.

2.2.3 Conclusion

[7] lists features the current MAD-X is lacking that will need to be implemented
in the new MAD. It also comes with a suggestion as to how this can be achieved
in a new application, which follows the structure of figure 2.1.

2.3 Compilers

In the very dawn of computer science, programs were most likely written in assem-
bly code, but as the needs of the programs grew larger, one needed to have higher
level languages to be able to keep the code maintainable. This lead to the need
of compilers. [2] defines a compiler as something that can read a program in one
language and translate it to an equivalent program in another language. The other
language can be binary to create executables or another language to be run or read
later. A second language processor defined by [2] is the interpreter, which reads a
program in a language and executes it, instead of creating another program.

firves tokens Emfh‘l
istream | =3 lexer r—‘r parser | AST code
O BN

srni:nlij—-) E-Dntl!ﬂi)l/ﬂ effects

Figure 2.1: Structure of a lexer/parser based compiler. The lexer takes a stream
of characters and translates them to a stream of tokens. While doing this, it will
need to read from the applications symbol table which again might need to know
something of the context. The stream of tokens will then be fed to the parser, which
will read the tokens and apply high-level rules to them to create an AST. This AST
can then be transformed/optimized by the transformer, or simply evaluated.

The most common way of writing a compiler or interpreter is to use a lexer
— parser — transformer approach, as shown in figure 2.1. The lexer will provide
a stream of lexical tokens to the parser which will translate the token stream to
an Abstract Syntax Tree. This AST can then be optimized and transformed by a
transformer, or it can be evaluated.

12 CHAPTER 2. BACKGROUND

2.3.1 Abstract Syntax Tree

|
+ PN PN
TN + 4 1 B
+ 4 PN /\
+ P + 3 2
N 1 * N A~
1 2 P 1 2 3 4
2
(a) AST 3 (¢c) AST mnode for (d) AST node for
node for (b) AST node for 1424344, balanced 1727374, balanced for
142 14+2%3+4 for left-associativity. right-associativity.

Figure 2.2: AST nodes for different expressions

An AST is a generalized way of expressing a program. As the name suggests,
it has a tree structure with a set of allowed nodes. Examplewise, a node for the
expression 142 can be expressed as figure 2.2a. It is important for an AST to be
general, to be able to properly denote the source code, and simple, to be easy to
analyse and transform.

An AST should properly describe the precedence of the different operators. The
precedence means that the expression 14 2%3+4 should be parsed as 1+ (2%3) +4,
as the * has a higher precedence than +. The resulting AST node should therefore
be the node in figure 2.2b, making sure that the * is in a lower node than the +.

Another aspect of expressions that need to be described by an AST is the
associativity. Associativity means how an expression like 142+ 3+ 4 is parsed. Is
it parsed as the right-associative 14-(2+(3+4)) or the left-associative ((142)+3)+47
The AST needs to be properly balanced after whether the operator is right- or left-
associative. + is a standard left-associative operator, which means that 1+2+3+4
should evaluate to figure 2.2¢, while the exponentiation-operator is typically right-
associative, meaning that 1°2°3"°4 should evaluate to figure 2.2d.

2.3.2 Lexers

Lexers are important for the simplicity of the parser and since it is pure string
comparison, it can be really fast. A commonly used lexer generator is flex[13]
made by Vern Paxson in 1987, but it is also common to write ones own lexer, to
be in full control of the program. A typical token returned by the lexer is the type
of the token (PLUS, MINUS, WHILE, LEQ, NAME, NUMBER) and an optional
value if needed, as it will be in the case of e.g. NAME and NUMBER. One practical
element of having a lexer is that one can remove unnecessary elements like spaces
and comments, as well as taking care of the different versions of words (if/iF /If/IF)
one can get in case-insensitive languages. Lexers also give the possibility of writing
simpler parsers that therefore run faster. Lexers and parsers can, and usually will,
be set up to run in parallel, with the parser parsing the stream of tokens that the
lexer generates while it generates it.

2.3. COMPILERS 13

2.3.3 Parsers

The parser takes the lexers stream of tokens and creates some sort of structured
representation of it, e.g. an AST. The parser will also do syntactical analysis to
root out syntax errors.

statements

stmt stmt
assign assign

-\ \

sums sums

products products products
value value value value
var var var \ var

A = B + c D = 1

Figure 2.3: Typical parse tree for A = B + C*2; D = 1. [Source: Wikipedia]

There are two main ways of parsing, bottom-up or top-down. The difference
is how they traverse the parse-tree®. An example of a a parse tree for the two
statements A = B + Cx2; D = 1 can be seen in figure 2.3. A bottom-up parser
will evaluate all the lower level constructs before evaluating any higher level rules, as
seen in figure 2.4a. The top-down parser in figure 2.4b works completely opposite,
evaluating the leaves once it knows that they are needed. [40] describes several
different algorithms both for implementing top-down and bottom-up parsers, and

a brief introduction of some of these will be given below.

Top-Down Parsing

The simplest version of a top-down parser is a recursive descent parser. To con-
struct a recursive descent parser, one needs to think of each rule as a function
where the name of the function is the non-terminal on the left hand side of the
rule. Then, each instance of a non-terminal on the right hand side of the rules
are a call to its corresponding function. Each instance of a terminal on the right

6 A parse tree doesn’t have to be created, it is merely a convenient way of visualizing the parse
steps.

14 CHAPTER 2. BACKGROUND

29 1

18 28 2 21
17 27 22
\ S~
26 26
7 25 2|7
6 24 28
2 5 21 ‘ 4 23
|
! 3 J; 8 9 12 13 19 20 22 23 5 6 11 12 16 17 19 20 24 25 29
(a) Steps for Bottom-up parsing (b) Steps for Top-down parsing

Figure 2.4: Numbered parse trees for different approaches to parsing. Both trees
parse the expression A = B + C*2; D = 1 [Source: Wikipedia]

hand side of a rule is a call to match with that terminals input symbol. A recur-
sive descent parser has no ’intelligence’ behind how it chooses which rule to try to
evaluate first. Given a rule:

X: ’a7 | 7a’7A | ’b?,B ;

A recursive descent parser will choose the left-most rule first, evaluating as true
at once when it has found a match. That will be a problem in this case, as the
terminal 'a’ will return true at once, never letting the rule 'a’ A be checked, even if
it might be the correct one. Therefore, one must always put the longest rule first,
changing the grammar to:

X: 7a77A | 7a7 | 7'b7

Using this rule, a recursive descent parser would check if the first letter is ’a’ and
if it is, it would continue to evaluate rule A, continuing until A is proven wrong. If
A was wrong, it would consume 1 ’a’ from the stream and evaluate itself to true.
This can lead to big spikes in performance, as a badly written grammar can make a
parser backtrack a lot, loosing valuable time. A way of circumventing this problem
is by adding lookahead. Lookahead means that the parser will look k steps ahead
of the rule, to see if it should be evaluated or not. [40] defines LL(k)-parsers to
be scanning the input from the Left to the right, conducting a Leftmost derivation
and having k steps of lookahead. It is commonly accepted that LL(1)-parsers
represent the most acceptable compromise between expressive power and ease of
implementation.

2.3. COMPILERS 15

Bottom-Up Parsing

A common way of implementing a bottom-up parser is by using shift-reduction,
which is normally implemented using a stack with the sentence to be parsed as the
first item pushed to the stack. One will then push the current input symbol on the
stack, until one has parsed the right hand side of a rule. The entire right hand side
will then be popped and the left hand side of said rule will be pushed, reducing
the stack. The parse succeeds once the stack contains one item which is the top
level rule and fails if this has not happened once the entire sentence is parsed. This
approach has problems as well though, as one might need to decide which rule to
reduce to. This can also be solved by lookahead and [40] describes a few different
classes of algorithms for lookahead, most notably the LR (k)-parsers. LR (k) stands
for scanning from Left to right, conducting a Rightmost or Reverse derivation, and
using k symbols of lookahead.

2.3.4 Left recursion

It is common that grammars shipped with languages to be left recursive, either im-
mediate or indirect, which is a problem for most top-down parser implementations.
A grammar is immediate left-recursive if it contains a rule as the one in listing 2.4.

Listing 2.4: Rule with immediate left recursion
A=A al | A, a2]| ... |]A,an | b1l | b2 | ... |

bm ;
Where b_j does not start with A. In this case, the parser may apply A = A a_1

without ever getting to a terminal state. A grammar is indirectly left recursive if
it contains a set of rules:

Listing 2.5: Set of rules with indirect left recursion

AO=A1, al | ... ;

Al =A2, a2 | ... ;

An=A0, a_{n+1} | ... ;

The parser could apply AO = A1 al= ... =A0ad{n+l} ... a2 aland

end up with the same problem as in immediate left recursion.

Several articles have been written about the problem of left-recursion in top-
down parsers, both looking into how to write the parsers to allow left-recursion
and about how to rewrite the grammar to remove it. [34] suggests a conservative
extension to Parsing Expression Grammars, allowing them to parse left-recursive
grammars. [40] shows a way of re-writing rules and sets of rules to remove left-
recursion, while still being able to express the same language. This approach will
be shown below.

16 CHAPTER 2. BACKGROUND

Removing immediate left recursion

If given a rule for A which contains immediate left recursion as in listing 2.4, one
can remove the left recursion by adding an extra rule A’, giving us the set of rules
in listing 2.6.

Listing 2.6: Example result after removing immediate left recursion
bl ,A | ... | bm , A ;
al , A | ... | an , A ;

A
A7

)

This solution is without left recursion, as all b_is are guaranteed not to start
with A and A’ will always need to consume an a_i before continuing with itself.

Removing indirect left recursion

Algorithm 1 Algorithm for removing indirect left recursion

Input: set of non-terminals X
{Step 1}
Order non-terminals from X in arbitrary order A;...A,
fori=1toi=mndo
{Step 2a}
forj=1toj=i—1do
if A, contains choice on the form Aj;a where A; = b1]...|b,,, then
Replace Aja with bial...|by,a in A;s production rules
end if
end for
{Step 2b}
Remove immediate left recursion in A;
end for
return Set of non-terminals A;...A,, without left recursion

If given a set of rules A_0-A_n which contain indirect left recursion, as in listing
2.5, one can remove the left recursion by using algorithm 1. This algorithm guar-
antees that the rules are free from left recursion, but may get harder to read than
the initial version. It is therefore suggested to try a few different ways of arbitrarily
order the rules to find the best one.

2.3.5 Parsing Expression Grammars

Parsing Expression Grammar is an unambiguous way of describing formal lan-
guages, introduced by [15]. It was created as a response to the fact that most
parsers were created using regular expressions, which are initially formalised, but
loose the formal anchor when they are extended to allow for more expressive syntax.
PEGs gives the same expressiveness as many of the extended regular expressions,
but keeps a formal basis. [15] shows that a linear time parser can be built for any

2.3. COMPILERS 17

PEG, using a technique called packrat parsing introduced in [14]. Packrat pars-
ing is a parsing technique that memoizes the rules it has evaluated, making sure
that a certain part of the input is only evaluated once, even if the parser backtracks
past it several times. This introduces a linear memory cost to the parser, as the
memory cost will be a constant times the size of the input instead of a constant
times the nesting depth, which most recursive descent parser implementations will
use.

LPEG

Another way of implementing a PEG is to use virtual parsing machine, as suggested
by [33] and [18], and implemented in LPEG[22]. LPEG (Lua PEG) translates each
rule into a program that can be built at run-time and be put together with other
programs to create larger rules. It also has a simple implementation, hence it can
easily be JIT-compiled.

One can write grammars directly in LPEGs syntax, which is described on its
homepage. There are also several examples in the LPEG-recipes page[23]. If using
regular expressions is too hard to let go off, LPEG is distributed with a regular
expression-module, implemented in LPEG, where one can write grammars in a
regex-like syntax and compile it to LPEG afterwards. This efficiently keeps a
high readability without loosing any of the positive sides of LPEG. Its syntax is
described on its homepage[22, @The re module] and only a short description will
be given here, to allow the reader to understand the example code given in later
chapters.

Table 2.2 shows the main syntactical elements of re. The most interesting
parts are the captures, as the rest are quite self-explanatory ways of describing a
grammar. The captures are what is used to do something with the grammar, e.g.
to build ASTs. The simple capture will return the string it captures as its first
return value and all embedded captures as further returns, while a table capture
will return a table where all the embedded captures are stored in its fields. The
— >-operator will use its embedded captures as input to name which will normally
be a table, where it returns the content of table[embedded captures], or a function
where it returns the return values of the function with the embedded captures as
arguments. => is a special case of — >. Where — > does not evaluate before
the entire input file have been parsed and been deemed to fulfil the grammar and
all the lower rules’ captures have been evaluated (as with all the other operators
as well), => forces an immediate evaluation at once when it is reached. It will
then immediately evaluate all its embedded rules and give the entire input file,
the current position and all its embedded captures as arguments to the function.
Depending on your return values, LPEG may then continue parsing from a position
of the functions choosing, or stop because of some error.

18

(p)
‘string’
7string”
[class]

Y%name
name
<name>

{}

{p}

{tp:}
{:name: p :}
{~p~}
{Ip}
=name

p?

p *

p+

p num
p~+num

p -num

p — > ’string’
p — > "string”
P — > num

P — > name
P => name
&p

'p

pl p2

pl / p2
(name < — p)+

CHAPTER 2. BACKGROUND

grouping
literal string
literal string
character class
any character

pattern defs[name] or a pre-defined pattern

non terminal

non terminal

position capture

simple capture
anonymous group capture
named group capture
substitution capture
table capture

back reference

optional match

zero or more repetitions
one or more repetitions
exactly n repetitions

at least n repetitions

at most n repetitions
string capture

string capture
numbered capture
function/query/string capture
match-time capture
and predicate

not predicate
concatenation

ordered choice
grammar

Table 2.2: The syntax of LPEGs re-module

Chapter 3

Implementation

This chapter will show how the final application was implemented and which choices
were made to solve the different problems that surfaced during the implementa-
tion. The chapter begins with an introduction into how similar projects have been
structured and implemented, before a brief introduction to the structure of the
application will be given. The implementation of the different parts related to
parsing Lua will be introduced, including the AST, grammar and parsing, before
it will be shown how the new unit testing framework utest is implemented. This
chapter then goes on to show how the source code generator, interactive mode and
correct error reporting have been handled, before it will be shown how easily one
can extend the application by implementing interpreters for the new MAD and the
old MAD-X.

When the author entered the MAD-project, some design choices had already
been made. Most importantly that the new MAD-implementation should be writ-
ten in Lua and run using LuaJIT, thereby restricting the program to following Lua
5.1 syntax, instead of the new 5.21.

3.1 Previous work

As the desired application has many different features?, it is hard to find related
works that embed all the different ones. In this section, a few projects that have
one or more of the different features will be shown.

3.1.1 GSL Shell

GSL Shell[44] is an interactive command line interface that gives access to a col-
lection of functions and algorithms from the GNU Scientific Library. It is based on
LuaJIT, its syntax is an extension of Lua, and it runs in interactive mode. It also

1LuaJIT can be built to support most of Lua 5.2, but it will not support the entire 5.2.
2Using LuaJIT, having interactive and batch mode, easy to extend to support several different
languages, packed in a single binary, runnable on several platforms, ...

19

20 CHAPTER 3. IMPLEMENTATION

comes with an executable that is used to install the files. This seems to be quite a
good match for the desires of MAD, but when the new MAD project was initiated,
GSL Shell was deemed not to be easily extendable. A module for language exten-
sion has been added later, and this module is based on luajit-lang-toolkit which is
shown later.

3.1.2 Terra

Terral42] is a new low-level system programming language that is designed to
interoperate seamlessly with the Lua programming language. As explained by [9],
Terra is implemented by doing changes in Luas C-library, making it load combined
Lua/Terra-programs. In the edited library, they parse the Terra-files and build an
AST for the specific Terra-functions. It then replaces the function call with a call
to specialise the function in the current environment.

Terra is designed to be a low-level language to be used when one is really in
need of speed and is meant to be used instead of making ones own Domain Specific
Language. During implementation, it seems like the creators have meant for it to
be used instead of having several different languages, meaning that the possibility
of adding more supported languages have not been of the highest importance.
Because of this and because the approach changes the Lua library, making it harder
to update Lua and LuaJIT, this approach was not chosen to be investigated further.

3.1.3 Nyanga

Nyanga[37] is a language created by Richard Hundt as an answer to LuaJIT-users
complaining about the language lacking this or that special feature. The language
in itself is an object-oriented Lua-dialect, using LuaJIT to run it.

As figure 3.1 shows, Nyanga uses LPEGs re-module to write a grammar in an
easy-to-read fashion, then compiles said grammar to LPEG, getting the safety of a
PEG. It matches the Nyanga-file with the LPEG-grammar and creates a Nyanga-
AST. This AST is sent to the transformer-module which transforms a Nyanga-AST
to a Lua-AST. It then has a generator-module which can either transform the AST
directly to bytecode to be run by LuaJIT, or to Lua-code to be dumped or run
with LuaJIT.

Nyanga does not have an interactive mode, nor does it come in a single binary,
but as these problems are something one can overcome and LPEGs re-grammars
are easy to create, this approach was investigated further.

3.1.4 LuaJIT Language Toolkit

According to its announcement post ([28]) on LuaJITs mailing list, the LuaJIT
Language Toolkit[29] is a Lua implementation of Lua, targeting LuaJIT by emitting
optimized bytecode. Its purpose is almost exactly the same as MADs, creating a
framework to easily extend Lua. The toolkit was not around when the author
initiated this project, as it was first announced in february 2014, and was therefore

3.1. PREVIOUS WORK 21

main application

MNyanga|source code

parser
N‘LAT X\s based on
transformer lpeg.re
Uses cormpiles to
Byte code Lua source]
builder lpeg
generator code generator
b¥te code checks$ nodes by
soufce code
luajit
syntax

executes program

Figure 3.1: Nyangas interpreter chain. The parser takes Nyanga code and trans-
lates it to a Nyanga AST. The transformer then transforms this Nyanga AST to a
Lua AST, which is either sent to a byte code generator or a source code generator,
both of which are run using LuaJIT.

22 CHAPTER 3. IMPLEMENTATION

not taken into consideration when deciding how to structure the code. It will still
be explained briefly how it is implemented.

The toolkit started with Nyanga as a base, but its author did not like LPEG
and went for a lexer/parser approach instead. The lexer and parser are trans-
lated versions of LuaJITs lexer and parser, while the bytecode generator is based
on Nyangas generator. To extend Lua using this toolkit, one will only need to
change the lexer and parser, which should be simpler than digging into LuaJITs
C-implementation.

3.2 Main structure

Main project

PAANN

rc Other files Makefile doc

N

Figure 3.2: The main structure of the new MAD. doc contains documentation. src
contains the source files. mad.lua is an umbrella file to be used by the users and
contains the main parts of the application. lua will contain extensions to the Lua-
language, while mad contains all aspects of MAD, including physics and compiler.
lib contains all external libraries, as LPEG and potential others. blackBoxTest
contains full files in different languages used for simple testing of the entire project.
mad-e is a script used to interpret and run .mad/.lua/.madx-files.

]

mad.lua mad-e mad

lib blackBoxTest

Before starting a project of this size, a skeleton is needed, to make sure that it
is properly structured and that it is easy to figure out where to add new modules.

The main structure is as shown in figure 3.2 and will be explained briefly here:

All the source code of the application will be in the src-folder.

doc contains all major documentation for the program. There will also be
documentation within the files..

The other files in the top-level will be the Makefile to install the program?® and

3Until one can ship it as a single binary, if possible.

3.2. MAIN STRUCTURE 23

other files meant for clarifications in between developers.
mad-e is the script that will run the application. Its structure will be:

init: Set application specific variables, start processes,

etc.
options: Handle command line arguments given to the
application .
Ex: Start unit tests if '—utest’ flag is given.
exec: Start interpreting files given, or go to interactive
mode.

fini: Stop processes started by the application, etc.

This script will automatically use luajit to run, ensuring speed.

mad.lua will be the main file to be used in all MAD-files. By having local
mad = require’mad’ in the beginning of ones file, one will get access to all the
MAD-specific modules one might need (e.g. mad.sequence).

The mad-folder will be further described below.

The lua-folder will contain eventual modules needed to extend the Lua-language,
not necessarily having to do with the MAD-language. Examples of this is lua.tableUtil
which contains functions for recursively printing a table* or lua.process which
contains functions for starting a process to be run and communicated with in par-
allel with the program®.

The lib-folder is where the applications external libraries will be added. To
avoid filling the namespace, it was decided that lib should not be added to requires
search paths®. To overcome this, all external libraries will have a wrapper-file to fix
everything search path-related without the user needing to think about it. Then
the user can require the wrapper function instead. The set up for a standardized
wrapper will be:

—Filename: lib/xxx.lua

local pcp = package.cpath

package.cpath = ”;;./1lib/path/to/xxx.so;.\\ lib\\path\\to\\
xxx.dll;”

—— Change comments if xxx is a lua—file

——[[local pcp = package.path

package.path = 7;;./1lib/path/to/xxx.lua;.\\ lib\\path\\to\\
xxx.lua;”]]
local xxx = require”xxx”

package.cpath = pcp
return xxx

This will ensure that the user will not be able to require other modules from the
libraries without explicitly trying to.

4E.g. for printing an AST.
5E.g. gnuplot.
6package.cpath and package.path

24 CHAPTER 3. IMPLEMENTATION

3.2.1 mad
mad
lang & .lua utest & tester.lua core
generator i
o lua/mad/... interactive.lua errors.lua
ua
lua.lua/mad.lua grammar.lua defs.lua parser.lua

Figure 3.3: The structure of the mad subfolder. Core contains modules related
to the running the application. Utest contains the unit testing framework. Lang
contains modules that have to do with the different languages the application sup-
ports.

Figure 3.3 shows the main structure of the mad subfolder. The mad-folder will
contain all modules having to do with the mad-application that are not an external
library or an extension to the Lua-language. This folder is where most parts of
the application will be and is split into several sub-folders. The important ones for
this report are the ones having to do with the interpreter and the application as a
whole, while the ones having to do with physics etc. will not be described further.
The three main sub-folders are lang, utest and core.

The utest folder and the corresponding tester.lua module contain the frame-
work for unit testing and will be introduced in a later section.

core contains the modules that are used strictly for running the application.
exec.lua, init.lua, fini.lua, and options.lua are all in this folder and are all
connected to the script running the application.

The lang folder contains all files having to do with the different languages

3.3. ABSTRACT SYNTAX TREE 25

supported by the application. lang.lua is a parser constructor factory, where
the user can get the parsers for the different languages. interactive.lua and
errors.lua are modules having to do with the interactive mode and the error
reporting, both of which will be explained later. generator.lua is a generator
factory, where the user can get different generators to get different kinds of source
code. The two supported generators so far are for Lua and MAD code, but modules
for e.g. bytecode can be added later.

All parsers will have the same structure, with a file containing the grammar,
one containing the rules for building the AST and one stringing them together into
a proper parser. When lang.lua looks for a parser for e.g. the xxx-language, it will
look for the file ./lang/xxx/parser.lua. How the files defs.lua, grammar.lua and
parser.lua work will be described in later sections.

3.3 Abstract Syntax Tree

A proper Abstract Syntax Tree needs to contain enough nodes to properly define
a program, but few enough for functions parsing the AST to not be overly com-
plex. The ultimate AST would be general enough to be able to properly define all
languages, but in practise, one will specialize it towards a special language, in this
case Lua.

It was quickly decided that Nyangas Lua-AST was too complex and that a
sparser one would need to be created. One example is that Nyanga uses different
nodes for a global and a local assignment. As they are both doing the same thing,
they should be the same node. The only difference is that one can have different
’kinds’ of assignment, in Luas case local and global. Therefore an assignment-node
is made, which has an optional kind="local’.

When implementing the literal node, there were some different solutions to
consider about how the value of the literal should be stored. Should they be stored
as in Nyanga, where the value is stored directly in the node, or should the value be
stored as a string. Both sides have positive and negative sides. Storing the value
will make it easier to read the type from the AST when that might be needed (e.g.
for transforming), but storing the full string will greatly simplify the parsing and
the generator steps. To be able to store the value as itself, one will also need to
keep track of which string delimiter was used on said string, as it will need to be
generated with the same delimiter or problems might arise. Instead of having an
optional key in the AST-node to store the delimiter and because one will only need
to look at the first character of the value to tell which type it is”, it was decided
to store all values as strings.

All the accepted nodes of the AST can be found in Appendix D: Lua AST.

7 => string, number => number, n = nil, t/f = boolean

26 CHAPTER 3. IMPLEMENTATION

3.4 Lua grammar

The entire Lua EBNF-grammar can be seen in Appendix E: Lua Grammar. This
section will be about how to make this grammar work in a PEG and in LPEGs
re-module while keeping it readable.

3.4.1 Removing left recursion

This is a correct EBNF-grammar, but it is not possible to use it in a PEG without
doing some changes because of it containing left-recursion. There have been several
attempts at removing this problem, examplewise by [10], changing the grammar to
the grammar shown in listing 3.1.

Listing 3.1: Donnelys Lua EBNF grammar without left recursion

infix_exp = unar_exp { binop unar_exp }

unar_exp = unop unar_exp | postfix_exp

postfix_exp = ’'mnil’ | literal | ’...° | funcexpr |
prefix_exp | tablector

prefix_exp = varOrExp { nameThenArgs }

funccall = varOrExp nameThenArgs { nameThenArgs }

varOrExp = var | '(’ exp)’

nameThenArgs = [’:’ name | args

var = (name | (7 exp ')’ varsuffix) { varsuffix
}

varsuffix = { nameThenArgs } ([’ exp ’]’ | ’.’ name)

Others have solved it by changing the PEG, like LpegLJ[24], a LuaJIT-implementation
of LPEG, which implements the suggestions made by [34]. By using LpegLlJ, one
could use the same grammar as provided by Lua, without having make any major
changes.

It was decided to stay with LPEG, as LpegLJ is still in its infancy and that it
is still slower than LPEG run with LuaJIT. If it gets stable releases that are faster
than LPEG at some point in the future, it will still be easy to change to it. Because
of this decision, the grammar will need to be rewritten. Donnelys suggestion might
work, but to be in control of the changes, the rewriting will be done by the author.

The grammar contains left recursion in two distinct sets of rules, the ones
concerning exp and the ones concerning var/funcall /prefixexp.

Removing immediate left recursion from exp

Listing 3.2: Lua expression definition with left recursion

exp = nil | false | true | Number | String | ... |
functiondef | prefixexp | tableconstructor | exp, binop,
exp | unop, exp ;

The rule in listing 3.2 has immediate left recursion in its binop-choice, as it can
choose exp an infinite amount of times without consuming any input. By using the

3.4. LUA GRAMMAR 27

algorithm presented in listing 2.6 and making the result more readable, one gets
the rules in listing 3.3

Listing 3.3: Lua expression definition without left recursion

exp = unexp , { binop , unexp } ;

unexp = unop , unexp | valexp ;

valexp = nil | false | true | number | string | ... |
fundef_a | prefixexp | tablector ;

Removing indirect left recursion from var/funcall/prefixexp

Listing 3.4: Lua variable and funcall-definition with left recursion

funcall = prefixexp , args | prefixexp , ’:’ , name ,
args ;
_ :) IR EE) :
var = name | prefixexp , [’ , exp , ']’ | prefixexp
, .7 , name ;
prefixexp = var | funcall | (7 , exp , ')’ ;

Listing 3.4 contains indirect left recursion, hence it can not be used by LPEG and
needs to be rewritten. Using algorithm 1, one can rename the rules to the following,
after applying step 1 and 2a.

Al = A3 al | A3 a2 a3 al = A3 bl ;
A2 = a3 | A3 a4 | A3 a5 a3 = a3 | A3 b2 ;
A3 = A2 | Al | a6 = a3 | A3 b2 | A3 bl | a6 ;

We then need to remove the immediate left-recursion from A3, using the rules
in listing 2.6, which gives:
A3 = a3 A3’ | a6 A3’ ;
A3’ = b2 A3’ | bl A3’ | epsilon ;

epsilon is the empty statement. Returning to the initial nomenclature, inserting

fitting names for the A3’ , b1 and b2, and splitting rules for simplicity the end result
becomes:

Listing 3.5: Variable and function call definitions without left recursion, but not
working on PEG

funcall = prefixexp , call ;

var = prefixexp , index | name ;

prefixexp = name , prefixexp.r | (7 , exp ,)’ ,
prefixexp_r ;

prefixexp_r = [suffixexp , prefixexp.r | ;

suffixexp = index | call ;

call = args | ’: ,’ name , args ;

index =[" , exp, '] , | ’.0 , name ;

name has been moved to the end of var as LPEG evaluates the first rule first,
not the longest. Listing 3.5 is a correct rule set, but it will still not work to create

28 CHAPTER 3. IMPLEMENTATION

a parser. The reason for this is that suffixexp will consume every single call,
including the last one that funcall needs, thus making all function calls evaluate
as variables. A solution to this is to add lookahead in suffixexp, efficiently only
allowing it to consume any input if it is immediately followed by another. This
solution will introduce a lot of backtracking though, as it will need to parse every
consumed index|call twice.

Because of the previous solution being inadequate, a new attempt was made
with a new structure, which lead to the set of rules in listing 3.6

Listing 3.6: Variable and function call definition without left recursion, but too
much backtracking

prefixexp = funcall | var | grpexp ;
grpexp = (7 ,exp ,)7

var = varprefix , {varsuffix} ;
varprefix = name | grpexp , varsuffix ;
varsuffix = {call} , index ;

index = ’[7 , exp , ']’ | 7.7 , name ;
funcall = callprefix , call , {call} ;
callprefix = var | grpexp ;

call = [’:7 , name]| , args ;

Listing 3.6 was created by first making a var that worked following the EBNF,
then making a funcall using var that fulfilled the EBFN. Doing it this way made
the final writing of prefixexp a simple affair. This solution manages to properly
differentiate between a variable and a function call, and can then be used to create
a proper AST. It does not, however, manage to do so without massive worst-case
backtracking. prefixexp, which is the rule used in exp, needs to parse an entire
var and decide that it does not end in a call before failing on its evaluation of
funcall and being able to actually parse the var. This leads to unacceptably slow
parsing, as every variable needs to be parsed twice, and this approach can therefore
not be used. An example of this slow parsing can be shown in the parsing of grpexp
in figure 3.4. The figure shows an attempt at parsing 4000 lines of an expression
on the form (((1) + 1) + 1) with = parentheses. As one can see from the graph,
doubling the depth of the parsed expression has the same effect as doubling the
length of the file.

The main problem with both rule sets is that one either can not differentiate
between a variable and a function call, or one will have to allow single variables
to be used as statements, thus allowing illegal Lua-syntax. If both of these prob-
lems shall be disregarded, the parsing will be unacceptably slow both in worst-
and medium-case situations. By splitting the variable and function call-rules into
several rules, depending on where they are to be used, one can differentiate in the
cases where it is important (not allowing variable for statement) and not have to
use use lookahead in the rule where both variables and function calls will be used
the most (in expressions).

Listing 3.7: Variable and function call definition split into definition and expression-
parts

3.4. LUA GRAMMAR 29

08r /
06 ;/
0.4t /

ool //

10 20 a0 40 50 a0

Figure 3.4: Timing of the expression (((1) + 1) 4+ 1) with x parentheses. y-axis is
the time in seconds needed to parse 4000 lines of the expression. = = 100 failed
with 'Too many pending calls/choices’.

varexp = (name | grpexp) , { tableidx | funcall };
vardef = (name | grpexp , varsfx) , {varsfx};

varsfx = {funcall} , tableidx;

funstmt = (name | grpexp) , {varsfx} , funcall , {funcall};
funcall = [’:7 , name | funargs;

In listing 3.7, varexp is used in expressions, while funstmt is used as a stand alone
statement and vardef is used in assignments. This solution removes the need for
massive backtracking, thus speeding up the parsing process.

3.4.2 Operator precedence and associativity

or
and

.
* /%
not - #

Table 3.1: Luas operator precedence, higher priority the further down in the table
the operator is located. .. and " are right associative, the rest are left associative.

The Lua grammar in the appendix does not contain the precedence nor the
associativity of the operators, but to properly build the AST, this needs to be
implemented. Nyanga[37, /blob/master/src/lang/tree.lual does this in the AST-
building phase, balancing the tree after getting a binary expression from the gram-
mar, using a rule set very similar to listing 3.3. Having this in the grammar instead
of hidden away in the AST-definitions will simplify reading and also speed up the

30 CHAPTER 3. IMPLEMENTATION

building phase, as LPEG can parse some extra rules faster than a function can go
through all nodes of a table®. A first attempt at creating a rule set containing both
the associativity and the precedence, following the precedence and associativity
shown in table 3.1 and building out from listing 3.3 yielded listing 3.8.

Listing 3.8: Lua expressions with precedence and associativity, but with left-
recursion

exp = orexp ;
orexp = orexp or andexp | andexp ;
andexp = andexp and boolexp | boolexp ;
boolexp = boolexp boolop concatexp | concatexp ;
concatexp = sumexp L concatexp | sumexp ;
sumexp = sumexp sumop prodexp | prodexp ;
prodexp = prodexp prodop unexp | unexp ;
unexp = unop unexp | powexp ;
powexp = valexp 7 powexp | valexp ;

The problem with listing 3.8 is that when adding support for associativity, left
recursion was inserted as well. Following the rules for removing immediate left
recursion in listing 2.6, one reaches listing 3.9.

Listing 3.9: Orexp with left recursion and associativity removed

orexp andexp orexp.r ;
orexp_.r = or andexp orexp.r ;

This set of rules remove the left recursion, but it also removes the associativity.

It was therefore decided to create an AST that does not make any assumptions
about the associativity and allowing the Lua-code that runs the code to use its
associativity if nothing else is used. I.e., if one wishes to change the associativity
of an operator, one will have to do it in the post processing as in Nyanga. The
expression-node shown in Appendix D: Lua AST contains a list of operators and
expressions, where all operators of the same precedence will come in the same node,
instead of using the more standard lhs/rhs-setup. When not needing to implement
the associativity in the grammar, the result is listing 3.10.

Listing 3.10: Lua expressions with precedence, but without associativity

exp = orexp ;
orexp = andexp { or andexp o
andexp = boolexp { and boolexp o
boolexp = concatexp { boolop concatexp } ;
concatexp = sumexp { .0 sumexp J
sumexp = prodexp { sumop prodexp J
prodexp = unexp { prodop unexp J
unexp = { unop } powexp ;

powexp = valexp { valexp o

8Especially because one will have to look at some nodes’ hash table parts, not only array parts.
LualJIT is slower at going through the hash table compared to the array.

3.4. LUA GRAMMAR 31

3.4.3 Lexical elements

So far in this section only grammars written in EBNF have been shown, but to be
able to use this in a LPEG-parser one will need to write either LPEG functions or
a grammar in LPEGs re-syntax. To have an easily readable grammar and because
the only speed loss one will get is in the initial compilation from re to LPEG, it
was decided to use re. As this project does not follow the lexer/parser set up,
one will need to implement the lexer in the grammar. Most of the implementation
is straight forward, but a few problems surfaced during the writing and both the
difficulties and the solutions will be explained below.

A lexer will normally have some sort of rule telling it to disregard white space
and comments, but in LPEG one will have to add this within the grammar. Lua is
very lenient when it comes to white space, as there may or may not be white space
between every single atomic unit, and since this parser shall parse Lua-code it will
need to be as lenient. To accommodate this possibility of white space everywhere,
the grammar will quickly get cluttered down by grammatically unimportant objects
and it will be very easy to introduce subtle bugs by not allowing white space in
some random positions. This lead to the creation of s, whose implementation is
shown in listing 3.11.

Listing 3.11: Implementation of the white space-rule in the Lua grammar. ws is a
rule containing all white space that’s not a newline, nl is a newline and cmt is all
comiments.

s <— (ws / nl / cmt)x

By always putting an s in front of all string literals and in front of the lexical
rules number, string, name, etc., as well all keywords, it is guaranteed that the
grammar is fully covered in terms of white space support. Since s will only appear
in front of string literals in the parser part of the grammar, the grammar will not
be unnecessarily cluttered and keep its readability.

3.4.4 Adding actions

To use the grammar for something else than testing if the syntax is correct, one will
need to add actions and capture values. This will easily clutter up the grammar
and make the parser slower, one will therefore need to find a way of capturing the
values that is readable and that does not slow the parser down.

Named captures or functions

There are two main different solutions to how one can create the AST, either by
capturing the values and sending them to functions defined somewhere else, or by
using named captures.

Listing 3.12: Two different ways of capturing literal nodes

literal <— s{:ast_-id: 7”—>’literal >:} {:value: nil / false
/ true / number / string / ellipsis :}

32 CHAPTER 3. IMPLEMENTATION

literal <— s{nil / false / true / number / string /
ellipsis} —> literal

function literal (val)
return { ast_id = ”"literal”, value = val }
end

The resulting ast node of the two approaches in listing 3.12 will be the same, but
the second approach does not clutter up the grammar as much as the first one.
Speed is of the essence, especially when it comes to literals and names, as they
are the two types of nodes that will be used most of the time. Tests with parsers
created with both approaches were made and resulted in both approaches using
the same amount of time, which means that the second approach is to be used.
This means that one will have an extra file containing definitions of functions to
create the AST-nodes.

Expression

As the action-based approach was chosen for literals, this was the approach that
continued to be used for consistency. The first, table-capture based approach can
be seen below, with a lot of functions omitted because of similarity.

Listing 3.13: Adding actions to exp using table captures
exp <— {orexp } —> exp

orexp <— {andexp} {|(or andexp)x|} —> orexp
andexp <— {logexp} {|(and logexp)x|} —> andexp
function orexp (-, val, tbl)

if #tbl = 0 then return val end

table.insert (tbl, 1, val)

return { ast_-id = 7expr”, tbl }
end

The approach in listing 3.13 compiled a test file containing 100k lines of random
Lua code in 1.10s, almost 3 times slower than without actions. Another approach
will therefore have to be chosen. The reason for the speed-loss is partly because of
the fact that the table capture creates a table even if the table will be empty. The
AST node created with this approach would in fact not be the same node that is
described in Appendix D: Lua AST, but since table.unpack is not JIT-compiled it
would be even slower if this was implemented; Should the approach be used, the
allowed AST nodes would need to be changed as well. The approach in listing 3.14
was an attempt to remove the table creation.

Listing 3.14: Adding actions to exp using simple captures

exp <— { orexp } —> exp
orexp <— { andexp (or andexp)% } —> orexp
andexp <— { logexp (and logexp)x } —> andexp

3.4. LUA GRAMMAR 33

function orexp (-, first, ...)
if ... = nil then return first end
return { ast_id = 7expr”, first, ... }
end

The simple captures returns the captured string and then all other captures, if
any. A parser built using the approach in listing 3.14 ran the test file in 0.85s; a
good speed boost compared to listing 3.13, but still twice as slow as the action-less
grammar. Profiling using LuaJIT 2.1s profiler showed that this was mostly because
of callbacks from LPEGs side, which means that there is not much to do about it
and this approach was kept.

tabledef

The main problem in capturing a table definition is to catch the difference between
[a]l = 1 and a = 1. Two ways of doing it were tried and the fastest was chosen.
The attempt in listing 3.15 captures the |[.

Listing 3.15: Capturing table fields by capturing |

tabledef <— (s’{’ { fieldlist? } s’}’) —> tabledef
fieldlist <— field (fieldsep field)* fieldsep?

field <— {s{’[’} exp s’]’ s’=" exp / name s’=’ exp /
exp} —> field
function field (_, op, key, val)
local kind = ”expr”
if not key then
kind = nil
val = op
op = nil
end
if not val then
kind = "name”
val = key
key = op
op = nil
end
return { ast_id = "tblfld”, kind = kind, key = key, value
= val }
end

A parser built with listing 3.15 parsed a file of 100k lines of a = 1, [a] = 1
in 0.84s.

The approach in listing 3.16 is to look through the captured string if the [is
there.

34 CHAPTER 3. IMPLEMENTATION

Listing 3.16: Capturing table fields, without capturing |

tabledef <— (s’{’ { fieldlist? } s’}’) —> tabledef
fieldlist <— field (fieldsep field)* fieldsep?

field <— {s’]’ exp s’]’ s’=’ exp / name s’=’ exp / exp}
—> field
function field (str, key, val)
local kind = ”expr” and string.find (str, ”[”) or ”name”
if not val then
val = key
key = nil
kind = nil
end
return { ast_id = ”tblfld”, kind = kind, key = key, value
= val }
end

A parser built with listing 3.16 compiled the 100k lines test file in an average
of 0.88s, which means that listing 3.15 is used.

3.5 Unit testing

In any project of some size, one will need some way of testing the code. One way is
to use black box testing, where one will run the entire program and see if it works
or fails, e.g. by letting the MAD application parse a Lua file and see if it acts
correctly. A problem with black box testing is that it does not give any specific
information as to what part of the code failed. It is also very difficult to find code
that properly tests all parts of a program. A way of fixing this problem is to use
unit testing instead. Unit testing is a method where one tests the individual units
of code instead of testing the entire system. The units can be of different sizes,
but in Lua the most logical units to use are modules and functions. Unit tests
only demand that functions have a specified API, as the way they work is along
the lines of ”If this function is called with these parameters, the output should be
like this.”. As long as the API is decided one may write the unit test, even if the
functions they are going to test are not made yet. This way of developing code is
often called test driven development.

The standard set up for a set of unit tests is to have one setup and teardown-
function for each module, as well as a number of test functions. The setup function
will be called before each test function and the teardown function will be called
after each test function. Setups responsibility is to set up all dependencies that
many functions will share and teardowns responsibility is to remove everything
setup made. This is to make sure that all test functions are independent, which is
an important part of unit testing.

For smaller projects, one may simply write a test for each function and call the
test functions when one wishes to test the code, but for any project large enough

3.5. UNIT TESTING 35

to do anything interesting, one will greatly benefit from having a unit testing
framework.

3.5.1 Previous work

There are several unit testing frameworks written for several different platforms
and languages, among them JUnit[20] and TestNG[43] for Java and Check[5] for
C. There are also frameworks that have been ported to several other languages, like
Haskells QuickTest, introduced in [6], which have been ported to C, C++, Java
and Python, among many. Another large family of unit test frameworks is xUnit,
which contains Java®, C++4, .NET and Matlab-ports. Unfortunately, there are not
many different frameworks written for Lua, but the three the author managed to
find will be introduced here.

Lunit

Lunit[31] was initially written in 2004 by Michael Roth and released under the
MIT licence. In 2008 it got rewritten to support Lua 5.1 and after 2009 there have
been no further changes. Lunit introduces 26 different assert-functions, as shown in
table 3.2, to be used in the test functions. It also has 8 functions to test the types
of values. To write a test function using lunit, one will need to create a function
and name it something that contains ’test’? either in the beginning or the end of
the name and then use the assert_xx or is_xx-functions to test the values that one
wishes to test. To run all tests in a file, one will then need to run the lunit shell
script with the files name as an argument.

This framework has several problems, the most important being that nothing
has happened in its GIT-repository[32] for over 4 years, which is a clear pointer
towards there not being any support from the package maintainer should any prob-
lems arise. It also uses an old dialect of Lua 5.1, i.e. being a lot closer to 5.0 than to
5.2. An example of this is the module-function which is an important part of this
approach and that is deprecated in Lua 5.2. Another problem is the unnecessarily
large number of assert- and is-functions. Every single is-function could simply be
replaced with a call to assert_equals with type(actual) and nameoftype as its ar-
guments. Most assert-functions could also be replaced with a few less specialised
versions.

All in all, to use this framework, one would have to give it a complete rewrite,
both to remove its old syntax and to generalise its assert-functions. In the end
there would not be much left of the framework and one could therefore just as well
write ones own.

Luaunit

Luaunit is based on the initial work by Ryu Gwang[30] and is based on the python
unit testing framework[45]. The current version is developed by Philippe Fremy. It

9 JUnit
10Case insensitive

36 CHAPTER 3. IMPLEMENTATION

fail([msg]) Always fails.

assert (assertion,[msg)]) Fails, if ’assertion’ is false or nil.
assert_true(actual,[msg]) Fails, if ’actual’ isn’t true.
assert_false(actual,[msg]) Fails, if ’actual’ isn’t false.

assert_equal(expected,actual,[msg]) Fails, if ’actual’ is different from ’expected’.
assert_not_equal(unexp,actual,[msg]) Fails, if ’actual’ and 'unexp’ are equal.

assert_match(patt,actual,[msg]) Fails, if the string ’actual’ doesn’t match "patt’.
assert_not_match(patt,actual,[msg]) Fails, if the string ’actual’ match 'patt’.
assert_nil(actual,[msg]) Fails, if ’actual’ isn’t a nil value.
assert_not_nil(actual,[msg]) Fails, if ’actual’ is a nil value.
assert_boolean(actual,[msg]) Fails, if ’actual’ isn’t true or false.
assert_not_boolean(actual,[msg]) Fails, if ’actual’ is true or false.
assert_number(actual,[msg]) Fails, if ’actual’ isn’t a number.
assert_not_number (actual,[msg]) Fails, if ’actual’ is a number.
assert_string(actual,[msg]) Fails, if ’actual’ isn’t a string.
assert_not_string(actual,[msg]) Fails, if ’actual’ is a string.
assert_table(actual,[msg]) Fails, if ’actual’ isn’t a table.
assert_not_table(actual,[msg]) Fails, if ’actual’ is a table.
assert_function(actual,[msg]) Fails, if ’actual’ isn’t a function.
assert_not_function(actual,[msg]) Fails, if ’actual’ is a function.
assert_thread(actual,[msg]) Fails, if ’actual” isn’t a thread.
assert_not_thread(actual,[msg]) Fails, if ’actual’ is a thread.
assert_userdata(actual,[msg]) Fails, if ’actual’ isn’t userdata.
assert_not_userdata(actual,[msg]) Fails, if ’actual’ is userdata.
assert_error ([msg],func) Fails, if "func’ doesn’t raises an error.
assert_pass([msg],func) Fails, if "func’ raises an error.

Table 3.2: Lunits assert-functions

is written in 2004 and not updated post Lua 5.0. It has fewer assert-functions than
lunit, only assertEquals, assertDiffers, and the standard assert. It has a similar
way of deciding what is a test, as that is defined to be any function that starts
with 'Test’. It is run by running the function use_luaunit.lua with a module name
given in the command line, or using the default value of all modules starting with
"Test’. The program will then run every function that begins with 'Test’ in the
tested modules and report the results.

Luaunit is a small framework, its major problem being that it is a ’"dead’ project,
as it is not even updated to the second newest Lua-version, but as it is really small
it will not be a problem to rewrite it or to use it as a base for ones own framework.
The code is quite chaotic, which means that a clean up will be in order as well.

3.5. UNIT TESTING 37

Build Test Deploy

BTDI3] is an attempt to create an environment for building, testing and deploying
Lua, but as of now!!, it only contains an extension of Luaunit. The extension is
mostly geared towards utilising Lua Lanes[26] to run several tests in parallel. In
the process of extending Luaunit, it was also updated to Lua 5.1. The framework
was last updated in january 2013 and is considered final by the author.

BTDs unit testing part consists of 4 files, where only two of them are important
to the user. Test.lua is the main module, which runs the tests, keeps track of the
number of failures and prints the information once the tests are done. It has the
option of running all tests for a test class, or only running a single test in said class.
TestApi.lua contains four assert-functions (equals, differs, fails, and succeeds) for
use in test functions and the function wrap, which wraps a set of functions into a
test class. The internal modules TestClass and TestMethod contain constructors
for creating test classes/methods and keeps track of the statistics of classes and
methods. They also contain functions for printing the results.

In theory, BTD is a good framework to use for MADs unit testing, but it
will need heavy modifications both to print the results in a pretty manner (the
current way is unnecessarily verbose) and to decide which tests to run, as BTD
keeps Luaunits way with forcing test function to start with 'Test’. The possibility
of running tests in parallel should give a nice speed boost, but when the author
tried to BTD in parallel, he got several errors within lanes which could be fixed by
using a newer version of lanes, but BTD is incompatible with the newer versions.
Because of this, it was decided to cut the need for lua lanes and lua file system, to
lessen the amount of external libraries to rely on.

3.5.2 Implementation

As BTD needed to be thoroughly rewritten, it was decided to write a new frame-
work inspired by BTD, instead of simply changing things within the framework.
Some parts were deemed almost complete and were therefore kept almost in the
current form, while some where totally changed.

The first thing to be decided was the interface for the modules to use in the
tests. As it was already decided that all MAD-modules should be tables, it was
a simple addition to say that all modules should have a help- and a test-table
as keys. The module.test contains all the test functions as well as the setup and
teardown-classes. Module.test can also contain a module.test.self, which tells the
unit testing framework (utest) which modules said module relies on to ensure that
they are tested as well. As unit tests tend to take up at least as much space as the
code they are testing, it is also necessary to be able to have them in separate files.
This should be kept hidden from the end user, as module.test should act the same
way if it is a part of the file or not. It was therefore decided that if the tests are
kept out of the file, they shall be in a folder named test within the same directory
as the file and have the same name as the file. I.e., if a function does not find the

11 And probably forever

38 CHAPTER 3. IMPLEMENTATION

tests in mad.module.test, it can look in mad.test.module. The test functions shall
be written on the form in listing 3.17.

Listing 3.17: Example of how to write a test function

function mod. test:plus(ut)
local result = ut:succeeds(plus, 1, 2)
ut:equals(result , 3)
ut: differs(result, 2)
ut: fails (plus, 1, nil)
end

succeeds, fails, equals, and differs are functions that shall be given by the
utest framework.

mad.tester

All this shall be kept in the module mad.tester which is the module acting as the
interface between the code wanting to run tests, the code being tested and the utest
framework. Mad.tester contains three public functions: mad.tester.addModuleToTest,
mad.tester.run, and mad.tester.

tester.addModuleToTest (modname) adds the module by the name modname
to the list of modules that need to be tested, if it is not there already. This function
is the one that shall be used in modname.test.self.

tester.run(mod[,fun]) runs all tests for a single module or the test function
fun if it is given. Both mod and fun may be either a string, where it will be
interpreted as the module/function-name, or a table/function, where it is assumed
to be the module or function to be tested.

tester([listofmodnames]) takes a list of module names and runs the unit
tests for them. If it does not get any input, it will use mad.module to find all
currently loaded modules and run the tests for them.

mad.utest.testObject

mad.utest.testObject is similar to BIDs TestApi, in that it contains the func-
tions used to assert in the test functions. The same functions have been kept, but
with modified names and with the addition of some more statistics, as this module
keeps track of how many assertions where made within a test function.

testObject:fails(function, [args]...) runs function with args and raises
an error if function succeeded.

testObject:succeeds(function, [args]...) runs function with args and
raises an error if function raised an error. It returns the functions return values if
it succeeded.

testObject:equals(actual, expected) raises an error if actual differs from
expected.

testObject:differs(actual, expected) raises an error if actual is equal to
expected.

3.5. UNIT TESTING 39

mad.utest.luaUnit

mad.utest.lualnit is the main module to be used by mad.tester. By calling it,
it returns a utest-object, which keeps track of statistics for one unit test-run. It
also contains functions for deciding which unit tests to run and to run said unit
tests. Its only public functions are addModuleToTest, addFunctionToTest, and
run.

addModuleToTest (modname) adds modname to the table of modules to test, if
the modname is not already in the table of modules already tested in this run.

addFunctionToTest (modname ,funname) adds funname to the modnames key
in the table of modules to test, if modname has not already been added as a module
where all test functions should be called and funname has not already been run.

run() will run a module in the table of modules to test, then move it to the
table of tested modules. It will keep doing this until the to test-table is empty,
whereupon it will print the final results of the testing. The pseudo code of run is
shown in listing 3.18.

Listing 3.18: Pseudo code showing what happens when unit tests are run

function run()
while modtotestsize > 0 do
modtotestsize = 0
testtable ()
end
display results
end

function testtable ()
foreach modname, val in modtotesttable do
if testedmodules contains modname then continue end
if type(val) = ’table’ then
get module modname and create testObject
result :startModule (modname, testObject)
foreach funname in val do
runtestmethod (funname, module, testObject)

end
else
runTestModuleByName (modname)
testedmodules [modname] = true
end
end
end

function runTestModuleByName (modname)
mod = modnames corresponding module
create new testObject
result :startModule (modname, testObject)

40 CHAPTER 3. IMPLEMENTATION

foreach fun in mod.test except setUp, tearDown and self
do
mod. test :setUp ()
runTestMethod (funname, mod, fun, testObject)
mod. test : tearDown ()
end
runTestMethod (’self ’, mod, mod. test.self , testObject)
end

function runTestMethod (name, mod, fun, testObject)
result :startTest (name, testObject)
call fun in protected mode
if error then
result :addFailure (errorMessage)
result :endTest(testObject)
end

testObject is the instance of testObject which shall be made for each class. result
is the utest-instances instance of UnitResult which keeps track of results and
statistics and contains functions for printing said results.

The results will be printed in the same manner as in MAD-X, as shown in the
example in listing 3.19.

Listing 3.19: Example output of a run of the unit tests

[some.module. to. test]
functionToTestl (0.01ls) 4/4 : PASS
functionToTest2 (0.13s) 192/193: FAIL
some/module/to/test .lua:756: some error message

self (0.00s) 0/0 : NO TESTS RUN
[other . module.to. test]
toTestl (0.01s) 6/6 : PASS
toTest2 (0.02s) 14/14 : PASS
toTest3 (0.01s) 4/4 : PASS
toTest4d (0.00s) 2/2 : PASS
toTesth (0.01s) 4/4 : PASS
toTest6 (0.00s) 3/3 : PASS
toTest7 (0.01s) 4/4 . PASS

Failed tests:

functionToTest2 failed

some/module/to/test .lua:756: some error message
Success : 90% — 9 / 10

3.6 Generator

To be able to run the code, one will need to generate an output that LuaJIT can
run. LuaJIT can run both byte code and Lua code. It is easier to debug the

3.7. INTERACTIVE 41

parsing steps if one can translate the input code to Lua, especially later when
the parser will translate mad and madx-files to Lua, therefore it was decided to
create a source code generator. The generator that has been implemented builds
on the same structure as Nyangas source generator. The only public function is
the modules call semantic, which returns one instance of the generator, sufficient to
render one AST. The instance has the function generate, which calls the function
render on the AST!? and then returns the contents of its writer instance. The
writer module is where the code is generated and it contains functions to write
to a table where every generated line is kept and to get this table returned as an
entire string. The render function runs the function corresponding to the nodes
ast_id, which in turn may run render on its own nodes. Render also communicates
with the errors module, which is introduced later in this chapter.

3.7 Interactive

The application should be able to run all its supported languages in interactive
mode. Interactive mode should work just like Lua and LuaJITs interactive mode,
i.e. each line is parsed as a chunk and if a line contains an unfinished statement,
the application shall prompt for a new line to allow the user to finish the statement.

3.7.1 Previous works
Moonscript

Moonscript ([36] and [35]) is an extension of Lua that removes a lot of what it calls
"keyboard noise’ from Lua and replaces it with white space. It is not interactive in
itself, but its developer, Leafo, has added a small script written in Moonscript to
add that possibility[35, wiki/Moonscriptrepl]. As this project is similar to the MAD
project, this would be a solution made in heaven, but unfortunately the Moonscript-
fix relies on changing the grammar for the new interactive part. To start a block
in interactive mode Moonscript requires you to write \or tab, which means that
one will not be able to copy-paste MAD-code into the interactive prompt which is
a common way of using MAD-Xs interactive mode that users will be hard pressed
to give up on. This approach is therefore scrapped.

Lua-interactive extension for local variables

David Manura and Shmuel Zeigerman have written a LuaJIT extension to make
LuaJITs interactive mode support local variables. This extension does not do
what is desired, but can work as an example of a way the desired results could be
achieved. This extension can be viewed as consisting of two different extensions.
One is the pure Lua-extension and another is a ’hack’ that has to be done in the
LuaJIT-code to make it compatible with the extension, as it relies on libraries that
LuaJIT 2.0'3 is incompatible with. The ’hack’-part of the extension is obviously

12Which is i.e. the top node of the AST.
13 And therefore probably not 2.1 either.

42 CHAPTER 3. IMPLEMENTATION

dangerous, as changing anything in the LuaJIT-code is both prone to errors that
Mike Pall can not help with and a simple update of LuaJIT* will remove the hack.
Therefore the Ibci-library-dependency would need to be removed if this approach
were to be used.

Nyanga

When the project was initiated, Nyanga did not have an interactive mode, but
one was added in February 2014. This mode works by reading a line from stdin,
then trying to parse said line. If the line compiles, it is run, otherwise the error
is read. If the error is "Unexpected end of input’, a new line is read, the two lines
concatenated and Nyanga attempts to compile the concatenation.

Eduardo Ochs unfinished fix

Eduardo Ochs tried to create a fix[38] to allow Luas interactive mode to be called
from the script, which is something that is desired, but not necessarily needed, for
MAD. Its pseudo code is shown in listing 3.20.

Listing 3.20: Eduardo Ochs unfinished fix to allow Lua to enter interactive mode
from the script

while true do
line = readline ()
code, unfinishedError, normalError = specialloadstring (
line)
if not code then
while unfinishedError do
line = line..readline ()
code, unfinishedError, normalError =
specialloadstring (line)
if normalError then
break
end
end
if normalError then
error (normalError)

end
end
run (code)
end
specialloadstring = function (line)
code, error = loadstring (line)

if error contains(” Unexpected token”) then
return nil, error, nil

14Which will be needed, as LuaJIT 2.1 is still in a development phase.

3.7. INTERACTIVE 43

else
return nil , nil, error
end
end

Listing 3.20s approach is unstable, as it will break if one should change anything
in the error reporting.

3.7.2 Implementation

The approach in listing 3.20 can inspire an approach that is quite similar to the
approach that Nyanga ended up using. Its pseudo code can be seen in listing 3.21

Listing 3.21: Pseudo code for interactive mode

while true do
initialize ()
line = getline ()
if not line then break end
status , ast = pcall(parser.parse, parser, line, ”stdin”)
while not status do
if unfinished rule then

newline = getline ()
if not newline then eof = true break end
line = line ..newline
status , ast = pcall(parser.parse, parser, line, ”
stdin”)
else
print error message
break
end
end
if status then
run (ast)
elseif eof then
break
end
end

To use the approach in listing 3.21 some assumptions have to be made about the
parser. Mainly that it must manage to tell the difference between an unfinished line
and a line that definitely has an error. Without this distinction, one would never
be able to get out of an erroneous loop, because the parser would continuously wait
for the next line that would make it all make sense. How to add this possibility
will be shown in the next section about reporting errors correctly.

This way of implementing interactive mode makes it work like LuaJITs, except
that while LuaJIT will quit once an error appears, MADs mode will simply print
the error report and allow the user to continue coding. All code that has been run

44 CHAPTER 3. IMPLEMENTATION

before the error is still visible, as long as it is in the same lexical scope (i.e. global
scope).

3.8 Report errors correctly

There are two different errors one may get when interpreting code: Syntax errors
and run-time errors. This section will look into how both kinds of errors are
reported to the correct line in the correct file.

3.8.1 Syntax errors

To properly match syntax errors to the correct line, one must transform the main
rule of the grammar (chunk) to add error matching-support.

— old rule

— chunk <— (block s) —> chunk

— new rule

chunk <— (block s(!./’’=>error)) —> chunk

This rule says that it will try to read a block and if the block is followed by
anything other than white space, a rule has failed. The error function will then
get the entire input file and the position of the token that was unexpected. Error
may then read the file and find the line that failed.

The above rule can not tell the difference between code failing because of a
syntax error and code failing because it is unfinished, which is needed because of
interactive mode. To accomodate this, a new rule is added.

sp <— (’=>savePos)

function defs.savePos (-, pos)
defs. _lastPos = pos
if pos > defs._maxPos then defs._maxPos = pos end
return true

end

sp should be put in the end of every rule and after every string literal, to save the
highest position the parser has managed to parse to before backtracking. If this
position is the end of the file, the rule is unfinished and a different error message
is given.

3.8.2 Run-time errors

How to properly report run-time errors is closely related to how one should run
the compiled Lua code. To make Lua code runnable, one will need to load it using
load. Load takes Lua code and an optional chunkname, which can be used to
specify the name that shall be mapped to the code being run and then also to the
error reports, and returns a function that can be run. When a run-time error occurs

3.8. REPORT ERRORS CORRECTLY 45

during the running of said function, LuaJIT will raise an error with the chunkname
given, the line in the loaded code where the error occurs and a string describing
the error. If the code is run with assert, which is the standardised way of doing
it, the program will fail and the error will be shown, but as the error happened in
the created code, the information about line and file tells the user nothing about
what parts of his code will have to be fixed.

To fix this, one can run loads returned function with a function from the pro-
tected call family, pcall or xpcall. The protected calls will call a function and
catch any errors that are raised during the call, before returning status and error.
If the call succeeded, status will be true and error will be the first return value of
the called function. If the call fails, status will be false and error will be the error
message that was raised. The difference between pcall and xpcall is that while pcall
takes a function and then all the arguments to send to the function, xpcall takes
the function and then another function to be used as an error handler function,
e.g. to provide a proper traceback. This section will look into how to structure the
code to use this to get errors reported to the correct line and file.

Information in AST nodes

All information the error reporters needs will have to be put in the AST nodes.
The most important piece of information is what line the different nodes appear
on. LPEG does not have any way of counting lines built in, one can only get
the position in the character stream. Nyangas way of fixing this is to encode
the position into the AST nodes and then parse the input file again to find the
positions corresponding line. Depending on at which point one does the position
to line-translation, one must either parse the input file twice during the parsing,
losing valuable time, or keep the entire input file in memory. Both of these will
have negative impacts to the performance and are therefore avoided.
The solution was to create LPEG rules to count the lines.

s <= (ws / nl / cmt)x
any <— ch / nl
nl <— [\n] —> newLine

function defs.newLine()
defs. _line = defs. _line + 1
end

any will then be used instead of the . to mean any character, thus ensuring that
when a rule is evaluated and a node is created, defs. _line is at the correct line.
The only problem is that for rules matching code spanning several lines, as e.g.
for statements, the line will be the last line in the statement, while an error would
normally be called at the first line. It will be shown later that this problem is
handled by the error-modules implementation.

To facilitate later extensions to the language, most specifically the C-style in-
clude statement and require-functions updated to handle files that need interpret-
ing, the file name of the input file will need to be stored in the AST nodes as well.

46 CHAPTER 3. IMPLEMENTATION

As the grammar does not need to worry about the files name and because the file
name is consistent through an entire chunk, the file name is added post-parsing by
the parser generator. It is then added to the chunk node.

Structure of line map

Now that the source code generator has access to the file names and lines of the
different AST nodes, it can map its created output lines to the correct lines in the
input file using the error modules addToLineMap-function. This function takes an
input line, the created output line and the file name and adds this to a map kept
in the error module. The maps structure is shown in listing 3.22.

Listing 3.22: The structure of the linemap mapping output lines to input lines and
file names

linemap [chunkname][lineout| =

{ line = xx, fileName = ’somename’ }
— ex:
linemap [’some_module '] =

{1 ={ line = 1, fileName = ’some_module.mad’ },
2 = { line = 4, fileName = ’some_module.mad’ },
3 ={ line = 1, fileName = ’other_module.mad’ },
4 = { line = 5, fileName = ’some_module.mad’ },

}

linemap [’ some_other_module’] =

{ 1 ={ line = 1, fileName = ’some_other_module.mad’ },
2 = { line = 1, fileName = ’some_other_module.mad’ },
3 = { line = 3, fileName = ’some_other_module.mad’ },
4 = { line = 5, fileName = ’some_other_module.mad’ },

}

The potential problem with reporting the error to a later line than where it should
actually be reported is averted by the implementation of addToLineMap. If the
output line already exists in the linemap to the specific chunk name, it will be
overwritten if the new line number is lower than the old.

Using line map to correctly report error position

Once the line map has been properly filled by the source code generator, the code
can be loaded and run by xpcall. Xpcall is used over pcall, because one may
use a function based on debug.traceback which receives the current stack trace
to get an error message and a stack trace to send to the handleError-function.
handleErrors pseudocode is shown in listing 3.23.

Listing 3.23: Pseudo code for handleError

function handleError (err ,trace)
chunkName = getChunkName(err)
name, realLine = getNameAndLine(err, chunkName)

3.9. EXTENDING LUA - MAKING THE NEW MAD 47

errmess = getErrorMessage (err)
errmess = name..”:” .. reallLine ..
stack = getStackTraceBack(trace)

stacktable = createStackTable(stack)

errmess = errmess .. createStackErrorMessage (stacktable)
return errmess

end

7. 7”7 .. errmess

function createStackTable(stack)
stacktable = {}
for each line s in stack do
chunkName = getChunkName/(s)
name, line = getNameAndLine(s, chunkName)
stacktable[#stacktable+1] = ”"\t”..name..” :” .. line
77 getErrorMessage (s)
end
return stacktable
end

Listing 3.23 translates the line and filename for all modules that have been inter-
preted by the application, including the stack trace. To further raise the error, one
cannot use Luas error function, as this function concatenates a new stack trace to
the error message, and said stack trace traces back to the function that called the
error function. Instead, the error message containing the proper, translated stack
trace is written to stderr before os.exit(-1) is called.

3.9 Extending Lua - Making the new MAD

With the application ready to interpret Lua files, the next step is to show the
concept by adding a new language to the list of supported languages. The first
language to be added is a simple superset of Lua, thus something that should be
easy to implement. This section will show how MAD is implemented.

3.9.1 Include

The new MAD should support C-style include statements as this is a feature many
of MADs potential users will be used to from C/C++. Another positive side of
include is that one may allow several files to share the same lexical scope, sharing
local variables without having to make them global. An include statement should
take a file name and immediately parse said file, adding the returned AST as a
node to the AST the parser is already building. This will then be translated to a
single file to be run by LuaJIT. Because of the way the error reporting-module is
implemented, errors will still be reported to the correct lines in the correct files.
To use an include statement in MAD, one will need to write @include "name/of .file".

The @ is there to set the include statement apart from a regular function call. The

48 CHAPTER 3. IMPLEMENTATION

reason for this is that while a function call is evaluated at run-time, include state-
ments are evaluated at compile-time. When the @ is there, users will hopefully not
be confused. The new rule added to the original Lua grammar is seen in listing
3.24.

Listing 3.24: Addition to the Lua grammar to allow for include statements

stmt <— s((include s{string} sp) => include
/ ... all other statements)
include <— s’@include’e sp

e in this grammar is a rule checking whether the next character is an alphanu-
meric character or not, thus making sure that @includes is not read as an include.
According to listing 3.24, rules written on the form @include "filename" will
trigger an immediate call to lang.mad.defs.include, with the current string be-
ing parsed, the position in the string and the string "filename" as arguments.
lang.mad.defs.include is shown in listing 3.25.

Listing 3.25: The function used support C-style include statements

function defs.include(_, _, name)
name = string.sub(name, 2, string.len (name)—1)
local lang = require”’mad.lang”
local file = assert(io.open(name, ’'r’))
local input = file:read(’*xa’)

file: close ()
local parser = lang.getParser(lang.getCurrentKey ())

local ast = parser:parse(input, name)
return true, table.unpack(ast.block)
end

The function defs.include from listing 3.25 opens and reads the file given by
name, before it parses it using a new instance of the same parser that already
parses the current file. Its return values are true, signifying that the immediate
evaluation has consumed no input in the upper level file, and the list of statements
that were in the included file. These statements will be inserted into the AST built
in the original file.

3.9.2 Lambda

It was desired to have lambda functions in MAD. Lambdas shall either be short
form for defining anonymous functions, or functions that may be called without
parentheses if they take no arguments. These lambdas without arguments, or
deferred lambdas, shall allow the users to not know whether a variable is actually
a lambda, or if it is a regular variable. If a script is written for regular variables, it
shall be possible to make its inputs deferred lambdas without changing the script.
In physics-heavy code as this will be, being able to write a+b+c/d will greatly
improve readability compared to a()+b()+c()/d ().

3.9. EXTENDING LUA - MAKING THE NEW MAD 49

Grammar

Lambda functions shall be able to be defined in some sort of the form \x -x. This
shall be translated to a function that takes x as an argument and returns -x. It is
desired to be able to write the lambdas with as few parentheses as possible, but if
they are needed to avoid ambiguities they are allowed.

Listing 3.26: Grammar addition to allow lambda functions

lambda = ’\’, [namenospace, [’,’, namelist]], ((7,
explist, 7))’ | exp);

Listing 3.26 shows the rule that was added to the Lua grammar to make the MAD
grammar. namenospace is a name that does not follow the same standard that
was described earlier, as it does not remove white space in front of it. To force the
functions first parameter to be immediately connected to the \allows us to define
lambdas without arguments in a short and concise manner: \ 1. This lambda
takes no arguments and always returns 1. To remove ambiguities, one must use
parentheses when having several return values, otherwise one would not know how
to translate \a \b a+b, -a. Should the -a be returned by the upper or lower
lambda? By forcing parentheses for multiple returns, this will never be a problem.
The example can the either be translated to \a (\b a+b, -a) or to \a \b (a+b,
-a), depending on what was desired.

How to get deferred evaluation in Lua code

By translating a lambda function to a standard function-node, but with its kind set
to 'lambda’, the Lua code generator will translate it just as if it was an anonymous
function. This will work for all kinds of lambdas with arguments, but as lambdas
without arguments should act as the deferred expressions described in the section
about MAD-X, a better way of translating them will be needed.

One possible solution is to create two functions lambda.new and lambda.eval
which could handle lambda functions. New takes a function as argument and re-
turns a table with its _lambda-key set to the amount of parameters the function has
and the _func-key set to equal the anonymous function that was the argument. It
also gives the table a call-semantic, to allow it to be used as a standard anonymous
function. The eval-function checks whether its argument is a table with _lambda
set. If it is set to zero, eval calls _func and returns its value, and if it is set to
something else or not existing, it returns the variable itself.

The problem with this approach is to figure out when the eval-function should
be used. With a perfect set up, eval should be called on every lambda function
and on no other functions. Unfortunately, because one does not declare variables
in Lua, any variable could potentially contain a lambda. If the eval and new-
functions should be added to the AST during the parsing step, eval would need
to be added to every single variable. This will clutter the created code and create
an unnecessary amount of function calls and tests for lambda. By making an
amendment to the lambdas documentation saying that a variable can either be a
variable or a lambda, i.e. if it has been a lambda once, it will always be treated

50 CHAPTER 3. IMPLEMENTATION

as a lambda, and if it has been something other than lambda once, it will never
be treated as a lambda, one may append the eval-function only to variables that
are lambdas or not yet defined. This may still not be done in the parsing step,
as LPEG evaluates the lowest level rules first, meaning that one can not know the
context at parse-time. By adding new and eval in the transformer-step instead of
in the parser-step, one may keep track of the context and thus only add eval to the
necessary variables. This approach is simple to implement, but forcing variables
to be a specific kind goes against how Lua works in general and will probably be a
source for problems where users assume lambdas work like other kinds of variables,
even if it is documented that they do not. The same problem applies to the fact
that lambdas will be unable to be passed by reference, which all other functions
may.

Storing lambdas as tables with a call semantic may still be used, as one may dif-
ferentiate between normal functions and lambdas and even add a new type 'lambda’
as seen in listing 3.27. Ehat needs to be changed is how lambda functions are eval-
uated.

Listing 3.27: Adding a new type 'lambda’

local oldType = _G.type
_G.type = function (obj)

if oldType(obj) = ”table” and obj.__lambda then
return ”lambda”
else
return oldType(obj)
end
end

Knowing the amount of parameters the function needs is not needed and the func-
tion will therefore be stored in __lambda to not unnecessarily fill the tables.

The approach being used in the implementation builds from the fact that most
usages of deferred lambdas will be in arithmetic or logical expressions, which Lua
allows us to overload using metamethods. By overloading all the operators to lazily
evaluate lambdas, as one can see in listing 3.28, most uses of deferred lambdas are
covered.

Listing 3.28: Overloading + operator to support deferred evaluation of lambda

local eval = function (lhs ,rhs)
if is_lambda(lhs) then
lhs = lhs.__lambda ()
end
if is_lambda(lhs) then
rhs = rhs.__lambda ()
end
return lhs, rhs
end
mt. __add = function (lhs, rhs)

3.9. EXTENDING LUA - MAKING THE NEW MAD o1

lhs, rhs = eval(lhs, rhs)
return lhs+rhs
end

The structure from listing 3.28 works for all logical and arithmetic operators, except
for == and ~=. The reason for this is that Lua checks if the types of the two
arguments are equal before it looks for metamethods. Tostring have been added for
strings, and #, pairs, ipairs, index, and newindex have been overloaded for lambdas
returning tables, making them work just as if they are ordinary strings/tables. The
__lambda-key will be off limits to users, as this is used specifically by the lambda
function. If a user tries to use it, the index-metamethod will never be called and
the function will be returned instead of what the user looked for.

There are still a couple of uses left where one might use deferred evaluation of
lambdas, namely the string, table, and math-modules within Lua. To overload the
functions contained in those three libraries, three mirror modules will be created
in lang.lambda, to be run when lang.lambda.lua is run, allowing deferred evalu-
ation to be turned off. All overloaded functions in the two libraries will follow the
convention shown in listing 3.29.

Listing 3.29: Overloading math.abs to support deferred evaluation of lambda

local mabs = math.abs
math.abs = function (x)
while is_lambda(x) do
x = x.__lambda ()
end
return mabs(x)
end

Listing 3.29 will evaluate all embedded lambdas in the arguments, then call the
original function with that as its argument. As these functions are not based
on metamethods, they will be overloaded for all inputs. Therefore, every time
math.abs is called, it will have at least one test more than normal, thus slowing
the program a little bit down. As long as it is only one test and because most
scripts will not be mostly math/string/table-based , this is not going to be an
issue. There are several functions that may not be overloaded in a manner that
does not slow the application down too much, mainly functions with a variable
amount of arguments, e.g. math.max. Math.max finds the maximum out of all its
arguments, which is an unknown number because of the ...-operator. If this were
to be overloaded, it would be something closely related to listing 3.30.

Listing 3.30: Overloading math.max to support deferred evaluation of lambdas

local mmax = math.max
math.max = function (...)
local tbl = {...}
for i,v in ipairs(tbl) end
while is_lambda(v) do
thbl[i] = v.__lambda()

52 CHAPTER 3. IMPLEMENTATION

end
end
return mmax(table.unpack(tbl))
end

This is slow for several reasons, both because it creates a table unnecessarily
and most importantly because it calls table.unpack, which is one of the non JIT-
compiled functions. Other functions not working because of this problem are ta-
ble.pack, string.format and math.min.

Changing Lua generator

Instead of transforming the AST to add support for lambdas, as the first approach
would do, the Lua source code generator is changed. The generator gets an option
as to whether it should support lambdas or not, defaulting to not. Without support,
it will simply translate all lambdas to anonymous functions, while when it supports
them, it will translate \a,b a+b to require"mad.lang.lambda" (function(a,b)
return a+b end), where lambdas call semantic will build the lambda table.

3.9.3 Adding a MAD source code generator

When adding a new language, one may also add a new source code generator.
Adding one for MAD is a simple task, as the lambda statement is the only dif-
ference between the languages since the include statement is not added to the
AST. A new file mad.1lua is added to lang/generator/ and this file is added to
lang.generator.luas table of generators under the key 'mad’. Mad.lua is an ex-
act copy of the Lua generator, except that mad translates lambda functions to the
form \x,y x+y.

3.10 Making a MAD-X parser

The last proof of concept for the created framework will be to create an interpreter
for a language that does not extend Lua, to show that most languages can be
implemented in it. This section will go through how the MAD-X language was
implemented in the framework, showing the problems that surfaced and how they
were handled. The Lua-translation of MAD-X, which the framework is supposed
to translate MAD-X to, is a moving target, as it is being developed in parallel with
the MAD-X interpreter. Thus, what to translate to may be viewed as a concept
more than a fixed target, and some parts may be changed completely.

3.10.1 Grammar

As shown in the section about MAD-X, the language is context dependent with a
very short actual grammar, see listing 2.2. This section is about how the ’basic’
structures are parsed and translated, while the more specific parts are handled
later.

3.10. MAKING A MAD-X PARSER 93

Lexical elements

There are two major differences between names in MAD-X and names in Lua. The
first is that MAD-X is case insensitive, meaning that Mad and MAD is the same name.
The second is that . is allowed in MAD-X-names, while it means table access in
Lua. The two places this matters is in the keywords and in the names. The lexical
definition of all keywords is therefore written on the form

return <— s[rR][eE][tT][uU][rR][nN]sp

thus removing the problem. When a name is parsed, all letters are put in lowercase,
all underscores are translated to double underscores and all periods are translated to
simple underscores. The proper name is needed to communicate with the database
containing the structure of the accelerator, which means that it needs to be stored
in the AST as well. Therefore, all name-nodes also have a leaf named strname
containing the untranslated name of the variable.

MAD-X allow some short cuts that Lua would not allow and translating these
as soon as possible will help simplify the later steps. One of these short cuts is that
MAD-X allows numbers to be written .5 or 5., which needs to be translated to 0.5
and 5.0. This can easily be done in LPEG, as seen in listing 3.31.

Listing 3.31: MAD-X grammar to allow .5 and 5. as numbers
decnum <— {~((num (’.” num / '.7—=>’.0")?) / ((’.”—=>70.")
num)) ([eE] sign? num)?~}

Listing 3.31 translates to "A decimal number is a number followed by an optional
dot then number, or an optional dot which should then be translated to .0°. A
decimal number may also be a . followed be a number, where the dot is translated
to ’0.". This can all be followed by an ’e’ followed by a number for exponentiation.”.

Another short cut that must be supported is writing strings with no string
delimiters, if what takes the string is incapable of taking variables. Thus a similar
approach as in listing 3.31 is followed, as seen in listing 3.32.

Listing 3.32: MAD-X grammar to allow strings without string delimiters

madstr <— s(string / (("7—>""") {(1(’,’/’;’) any)+}
(77=>"""))sp) —> literal

Listing 3.32 reads a string, just as in the Lua grammar, but silently inserts a ”
before and after the string.

Expression

Expressions in MAD-X are implemented the same way they are implemented in
Lua, except that &&, ||, and <> are translated to and, or, and ~=. This will
make MAD accept all valid MAD-X-expressions, but it will also allow and- and
or-expressions to contain more than one and or or. As this is merely a shortcoming
in the MAD-X parser, there is no reason to implement it in MAD. This can rather
be used as an 'improvement’ to sell the new application to the hard core MAD-X
users who do not want to change.

54 CHAPTER 3. IMPLEMENTATION

Statements

Listing 3.33: MAD-X grammar for statements

stmt <— (s(assignstmt / macrodef / macrocall /
defassign / linestmt / lblstmt / cmdstmt / retstmt /
ifstmt / whilestmt)sp)

assignstmt <— (real? const7 assign)

assign <— (name s’= sp exp sp) —> assign
defassign <— (name s’ 'sp exp sp) —> defassign
retstmt <— (return expllst‘7 sp) —> retstmt
ifstmt <= ({if s’(’ sp exp s’)’sp block

(elseif s’(’sp exp s’)’sp block)x
(else block)?} sp) —> ifstmt
whilestmt <— (while s’(’sp exp s’) ’sp block sp) —>
whilestmt

Listing 3.33 shows the grammar for the simplest statements in MAD-X. Assign,
retstmt, ifstmt and while are all translated to assign, return, if, and while AST
nodes, while defassign is translated to an assignment statement where the right
hand side is a lambda function returning its expression. While and if are also
upgrades compared to regular MAD-X, as the earlier versions are only able to take
one level of embedded ifs or whiles, while this version manages as many as one
would like.

Label and command statements

Listing 3.34: Implementation of label- and command-statements in MAD-X gram-
mar

Iblstmt <— (name s’:’sp sc name (s’,’?sp attrlist)? sp)
—> lblstmt

cmdstmt <— (sc name s’,’?sp attrlist? sp) —> cmdstmt

attr <— (attrassign / defassign / exp sp) —> attr

attrlist <— (attr (s’,’sp attr)sx*)

attrassign <— (((name=>chkeystr) s’=’sp madstr) —> keystr /

((name=>chkeystrtbl) s’=’sp s’{’?sp (madstr (s’,’sp
madstr)*)? s’}’?sp) —> keystrtbl / assign)

sc <— (V’=>saveclasspre)

Listing 3.34 shows the implementation of the label- and command-statements from
MAD-X. The essence of listing 3.34 (and the AST building functions behind it) is
that:

label :commandl, keyl = vall, key2 = val2;
command2, key3 = val3;

3.10. MAKING A MAD-X PARSER 95

Should be translated to:
translatedlabel = commandl ”label” {keyl = vall, key2 = val2}

command2{key3 = val3}
or, if command2 is a label that has already been defined
command?2: set {key3 = val3}

The label statement and the second command statement utilizes the object module
mad.object.lua created by Deniau. Commandl will be the class of the variable
translatedlabel, having all the same attributes, as well as having keyl and key2.
Calling the class will make translatedlabel a class of its own that can be used to
create further children. It also adds the function set, which can be used to update
the values.

The rest of the grammar is about making the grammar accept parts of MAD-
X that MAD-X should not have accepted in the first place. The main one is
accepting the previously discussed MAD-X string without delimiters, as explained
above. A problem with the strings without delimiters is that they can only be
allowed when the attribute they are connected to is expecting a string or an array
of strings. In MAD-X, this is connected to the file mad_dict.c. This file contains
a list of all commands accepted by MAD-X. Each command has a list of all keys
accepted and what type each key is expecting, as well as what values the keys shall
have if they are absent. This application will not be checking whether keys or
inputs are correct, rather raising run-time errors when the commands are run with
incompatible keys. The only thing needed from mad_dict.c is which command-
key pairs take strings as values and which take arrays of strings. To achieve this,
a script mad.lang.madx.translateMad dict is created. This script is an LPEG
based parser reading mad_dict.c and creating a table containing all command-key
pairs, their expected types and their default values, to be stored in mad_dict.lua.
This is meant to not be needed to be run again, but in case changes are made to
mad_dict.c, the script is kept.

Listing 3.35: Functions to check whether a key should have a string or not as
argument

local preclasspos, class

function defs.saveclasspre(str ,pos)
class = string.sub(str,string.find (str, 7[%w_-$%.]+”, pos)

or 0)
return true
end
function defs.chkeystr(_,_,name)
if dict[class] and dict[class|[name.name]
and dict[class |[name.name].type =— ’s’

and not dict[class|[name.name]. isarray then
return true, name

56 CHAPTER 3. IMPLEMENTATION

end
return false
end

Listing 3.35 shows the implementation of some of the actions used in the gram-
mar in listing 3.34. Saveclasspre/sc is used to store the name of the class the
attributes are added to. It consumes no input and returns no values. It could
have consumed the name and returned it, but this would have possibly lead to an
LPEG error stating that there are too many match-time captures, as LPEG can
only handle a certain amount of match-time captures. After storing the class name,
the parser will get to the attrassign-rule. This rule will check if a specific key
expects a string by calling chkeystr on the keys name. Chkeystr will test whether
the class/key-pair stored in dict, which is the table contained in mad_dict.lua, ex-
pects a string input. If it does, chkeystr returns success and the captured name,
otherwise it returns false. The reason why chkeystr and chkeystrtbl returns their
captured values, when saveclasspre does not, is that it is faster to only parse the
string once and since both chkey-functions most often will return false, there will
not be too many match-time captures. If one of the chkey-functions returns true,
the attribute will allow strings with or without delimiters, otherwise it will interpret
everything without string delimiters as identifiers.

Sequence

Sequences are the main structure in MAD-X, they are where all the magnets are
stored and show the entire structure of the accelerator, thus they are among the first
things to develop when porting the language to another medium, as this project is
doing to MAD-X. The sequence and endsequence commands will enter and leave
the sequence context, thus changing the meaning of the statements within. The
sequence part of the sequence created in listing 2.3 should be translated to the
Lua-sequence in listing 3.36.

Listing 3.36: A sequence created in Lua

local seq = require ’mad.sequence’

bad_accelerator = seq 'BAD. Accelerator’ { length =3 }
bad_accelerator:add{ gpp ’QPpl’ {}, at =
bad_accelerator:add{ dpp ’'DPpl’ {}, at =
bad_accelerator:add{ gpm 'QPml’ {}, at =
bad_accelerator:add{ dpm ’'DPml’ {}, at =
bad_accelerator :done()

N — = O
U OV

—

Listing 3.36 utilizes the object- and sequence-modules by Deniau. Mad.sequence
can be called as a constructor to initialize a sequence with certain attributes set.
One may then add elements to the sequence using add. The elements that are
created while adding to the sequence will also be added to the global scope to
allow it to be updated later. Done will finalize the sequence.

This is implemented by having a test in labelstatements corresponding action,
checking whether the name of the command is sequence or endsequence. If it
is sequence, it will save the sequences label to a local variable. Labelstatements

3.10. MAKING A MAD-X PARSER

o7

following this will be translated to additions to the sequence instead of as assign-
ments as they normally are. Once an endsequence appears, it goes back to normal.
The pseudo code for the implementation of command and label statements AST

creation can be seen in listing 3.37.

Listing 3.37: Pseudo code for the implementation of labelstmt and cmdstmt

function defs.lblstmt (name, class, ...) — ... =
attrlist
__name [name.name] = ’label’
if seqedit then
return sequenceAddition (name, class, ...)
end
if class.name — ’sequence’ then
seqedit = name
end
return ast node for name = class ”name” {...}
end
function defs.cmdstmt (class, ...)
if __nameclass.name] = ’label’ then
return ast node for class:set{...}
end
if seqedit and class.name = "endsequence” then
local name = seqedit

seqedit = nil
return ast node for name:done()
end
return ast node for class {...}
end

Line

To support MAD-X, MAD will also need to support parts of MADS8/9, as MAD-X

supports these. Therefore, MAD will need to support line-statements.

Listing 3.38: Grammar definition of line statements
linestmt <— (name 1ls ’:’sp line ls’=’sp linector
—> linestmt
linector <— (ls’(’sp linedef 1s’)’
—> linector
linedef <— (linepart (ls’,’sp linepart)x)
linepart <— (ls(invert / times / ls name / linector)
—> linepart
invert <— (ls’—’sp linepart
—> invertline

sp)

sp)

sp)

58 CHAPTER 3. IMPLEMENTATION

times <— (ls ((number—>literal)sp ls’*«’sp linepart) sp)
—> timesline

Listing 3.38 shows the grammatical implementation of the line statement. 1s is
a version of s which also allows & , as these where used as line continuation in
MADS8/9. They are only allowed in line statements and not in the rest of the
grammar as they are unnecessary and should be removed, but are still used in
older pieces of code. Line statements are not special in the new MAD and will
therefore be translated directly to sequences in the created Lua code.

Macro

There are two different kinds of macro statements described in the section about

MAD-X: Calls and definitions. A definition defines a macro by a string containing

MAD-X-code and a set of string-parameters describing which strings to substitute

with the input parameters. Calls exchange all instances of the macros parameters

by its own arguments, before parsing and running the code in the macros string.
A MAD-X macro definition as the one seen below

label (one, "two”): macro = { first = one; second = two; }

is translated to:

label = { str = [===[first = one; second = two; |===],
par = { ’one’, "two” } }

And the implementation is shown in listing 3.39.

Listing 3.39: Implementation of macro definitions

macrodef <— (name parlist? s’:’sp macro s’='7sp
macroblock sp) —> macrodef

macroblock <— s’{’sp {((!(’{’/’}’) any) / balanced)x

parlist <— (s’(’sp macrostr (s’,’sp macrostr)* s
—> parlist

macrostr <— s(string—>literal / {["%s),]+}) sp

balanced <— ’{’ ((!(’{’/’}’) any) / balanced)* '}’

-
W~
kel

function defs.macrodef(label , parlist, str)
if not str then str = parlist parlist = {} end
local par = {ast_id = "tbldef”}
for i,v in ipairs(parlist) do
if not v.ast_id then

par[i] = ast node for 7?77..v..”"”
else
par[i] = v
end
end
return ast node for label = { str = "[===["..str

.7===]", par = par }

3.10. MAKING A MAD-X PARSER 99

end

The parameters sent to a macro are supposed to be strings, but as explained earlier,
they may be without delimiters, where the delimiter will be a space, comma or
closing parenthesis. The macro string does not need to abide any grammatical
rules, except that it needs to have balanced curly brackets to allow embedded if,
while, and macro-statements without finishing its string. When run, the Lua code
will create a global table named the macros name, which can be parsed and run
by the execmacro-function.
Macro calls are translated from the form

exec, label (2,$num)
to:
execmacro(label, [[2]], num)

The macro calls implementation is quite simple, as one can see in 3.40. One needs
to keep track of $, as this means that the following word should be parsed as a
name, not as a string, otherwise the translation is straight forward.

Listing 3.40: Implementation of macro calls
macrocall <— (exec s’,’sp name (s’(’sp macroarg s’)’)? sp)
—> macrocall
macroarg <— (s{’$’?(number? ident / number)} sp (s’,’sp s
{’$’? (number? ident / number)} sp)x*)

function defs.macrocall (name, ...)
for i,v in ipairs{...} do
local nam

if string.find(v,”$”) = 1 then
nam = ast node for the identifier string.sub(v
’2)
else
nam = ast node for 7 [[”..v..”]]”
end
arg[i] = ast node for tostring (nam)
end
return ast node for execmacro(name, arg|[l], arg[2],

)

end

What makes the implemented Lua macro system work, is the function execmacro
which is shown in listing 3.41.

Listing 3.41: Pseudo code for the function execmacro

__macrono = 1
function execmacro(macro, arg)
par, str = macro.par, macro.str

60 CHAPTER 3. IMPLEMENTATION

for key,value in par do

str = string.gsub(str,value,arg|[key] or ’7)
end
ast = parser:parse(str, ’'macrono’..__macrono)
errors .setCurrentChunkName (’macrono ’.. __macrono)
code = generator:generate (ast)
loadedCode, err = load(code, ’@macrono’..__macrono)
__.macrono = __macrono + 1
run loaded code and handle errors

end

The function takes the name of the macro to be executed and a table of arguments
to be exchanged for the macros parameters. It then substitutes every instance of
par_i with arg_i and parses the resulting string with the MAD-X parser. It then
generates code, runs it and handles run-time errors occurring during the run. The
code needs to be generated and loaded with a unique filename, because of how
the error handling is implemented. A counter is therefore kept, incrementing every
time a macro has been run. Thus, every called macro will have a name on the form
macronol, where 1 can be any number.

3.10.2 Finalisation

With all the statements implemented, it is possible to parse .madx- and .seq-files.
The files can not be run, as MAD-X contains several global functions that are used
extensively in the code. These functions have yet to be implemented in the new
MAD application and one may therefore only run the application on MAD-X code,
dumping the created Lua or MAD code, and check the dumped code by hand to
see if it is the same as the code one should create. By making empty versions of all
the missing MAD-X-functions, one may also run the code to see if there are any
errors in the sequence or object modules.

This was attempted, using the same grammar/defs/parser-setup as with the
mad and lua parsers, running the entire chunk. But when running this on large
files, e.g. the sequence definition of the LHC which is 25k lines, LuaJIT raises an
error about 'main function has more than 65536 constants’. This error stems from
LuaJIT having different constraints than regular Lua, as Lua would manage to run
this function. The constraint is on the amount of nested tables one may have in a
single table, which the AST has in abundance. This is an issue that there probably
will not be a fix for within a discernible future (see [27]), changes therefore need to
be made in the MAD-X parser.

The problem appears while building the AST, as the AST is the table that
exceeds LuaJITs constraints. There are a few different ways to solve this problem,
all of which will be discussed below.

Change LuaJIT.

Since the problem exists in LuaJIT and not in Lua, one could change the limit in
LuaJIT and make the program run. This approach has several downsides though.

3.10. MAKING A MAD-X PARSER 61

First of all, it will take a long time to figure out which parts of LuaJIT to change
and which parts not to change. This is far beyond the scope of this project, but
as it has been discussed to extend LuaJIT to support lambda functions directly
(see [12]), this could go into the same project. This change will hurt LuaJITs
performance, as the constraint is there for a reason. It will also be more difficult
to update LuaJIT, if one shall have local fixes that LuaJIT does not support. A
simple bugfix could destroy the change. This is therefore not used and the only
possible solutions amount to somehow shrink the size of the created tables.

Change the definition of the AST.

By somehow changing the allowed nodes for the AST, one could theoretically
heighten the amount of information stored per table, thus lessening the amount
of nodes/tables needed for the total AST. To heighten the storage of each AST
node, one will need more and more specialised nodes, thus making the AST less
suitable for different kinds of languages and making the modules needing to tra-
verse the AST more complex. One will also need to change several of the previously
implemented and tested modules. Lastly, even if one should manage to find a good
compromise for the ASTs generality and its amount of nodes, it is unlikely that
one would manage to get a bigger gain than removing enough nodes to just barely
manage to parse the LHC sequence. When longer sequences as the CLIC and the
FCC are to be introduced, the error will pop back up.

Change how to translate the MAD-X code to Lua.

One of the reasons why this problem appears when translating MAD-X and not
Lua and MAD is because one simple MAD-X statement is translated to several
statements in Lua, thus expanding the AST. Another reason why this is a big
problem in MAD-X and not Lua is because (properly written) Lua files should
not be 40000 lines long, while sequence definitions for large accelerators written in
MAD-X easily approach that size. The size of the AST can be shrunk by translating
the MAD-X code to fewer lines. One of the changes that were made because of
this is how the sequence definitions were translated. Initially this was done as in
listing 3.42, but to trim the ASTSs size it was changed to the one in listing 3.36.

Listing 3.42: First attempt at translating MAD-X sequence to Lua

bad_accelerator = seq 'BAD. Accelerator’ { length = 3 }
appl = gpp 'QPpl’ {}

bad_accelerator:add{ qppl, at = 0 }

bad_accelerator :done()

This approach adds the gqppl to the global environment before adding it to the
sequence, while the approach in listing 3.36 assumes that add does that job within
the function. With this change, one can manage to trim some percentages of the
ASTs size, but as with the last solution, this will only make it barely work for the
LHC, not for the FCC and CLIC. Changing how to translate the code can be good

62 CHAPTER 3. IMPLEMENTATION

solutions if it does not impact the performance too much, but it can never be the
final solution as it will never shrink the AST enough.

Call each statement separately.

As all variables in MAD-X are global, scope does not matter as much as it does
in Lua and MAD. In Lua, one would break the lexical scoping by calling every
statement as its own separate chunk, but with MAD-X one may do it and still
keep all variables reachable. Since starting and stopping the parser to generate
code and call the statements for every single statement will be slow, it is possible
to bundle a certain amount of statements together and call them. The precise
number of statements that can be run should be tested to find a number that does
not slow the process down too much, but which is low enough to guarantee to a
certain extent that the code will be runnable by LuaJIT. As the Lua modules that
shall support MAD-X are not ready yet, it is impossible to run the code created
and get proper results for the speed. Because of this, 1000 is guesstimated to be
around the proper size. Tests with dummy functions instead of the proper mad-lua
functions resulted in less than 10% difference in parsing time compared to running
everything in one bulk when tested on files small enough to test in one bulk, which
is an acceptable trade off for code that actually runs.

There are two different ways of changing the parser to run a certain amount of
statements when they are being parsed. Their main difference is whether LPEG
or the parser itself should keep track of the position in the file being parsed. The
LPEG approach changes the grammar to be as in listing 3.43 and the new function
from listing 3.44.

Listing 3.43: Change made to chunk to call every 1000 statements allowing LPEG
to handle position

chunk <= (("’=>setup) (stmtnum)x* s(!./’’=>error)) —>
chunk
stmtnum <— (stmt s’;’sp(stmt s’; sp)”~—1000) => stmtnum

Listing 3.44: New function to that runs an arbitrary number of statements.

local chunknum = 1
function defs.stmtnum(str, pos, ...)
if defs._run then
generate code from AST containing statements from
and filename ’chunkno ’..chunknum
load and run code with name ’chunkno ’..chunknum
if error then handle error end
chunknum = chunknum+1
end
return true
end

When using this approach, parser.parse only needs to set the variable defs. _run

3.10. MAKING A MAD-X PARSER 63

before running the code. When disregarding that single variable, the parser will
not need to know that the functions are being run while parsing.

The second approach has a grammar (listing 3.45) that returns an AST at once
when it has reached 1000 statements, stopping the parsing.

Listing 3.45: Change made to chunk to return every 1000 statements, needing the
user to handle the position

chunk <= (("’=>setup) (stmtnum .x)? s(!./’’=>error))
stmtnum <— (stmt s’; ’sp(stmt s’; ’sp)”—1000) => stmtnum

Listing 3.46: Function that returns the position and an arbitrary number of state-
ments
function defs.stmtnum(str, pos, ...)

return true, pos, AST containing statements from
end

To use this approach, the function parser.parse will need to be changed as well,
as can be seen in listing 3.47.

Listing 3.47: How the parser function needs to look if it shall keep track of the
position instead of LPEG

local parse = function (self, str, fileName, pos)
local pos, chunknum, ast = pos or 0, 1, nil
while pos < string.len(str) do
pos, ast = self.grammar: match(str ,pos)
generate code AST and filename ’chunkno ’..chunknum
load and run code with name ’chunkno ’..chunknum

if error then
handle error
break
end
chunknum = chunknum-+1
end
end

With both functions, a small change has to be made in mad.core.exec, the
module running all the interpreters. Where it normally would treat all languages
the same, creating an AST, generating code, then running the code, it must now
act this way for all languages that are not MAD-X. For MAD-X, it shall only
generate the AST and not run any code afterwards as this has already been done.
The pseudo code for the changed exec can be seen in listing 3.48.

Listing 3.48: Pseudo code for the function executing the interpreters, disregarding
option handling

function exec(-, options)
for _, fileName in ipairs(options. files) do

64 CHAPTER 3. IMPLEMENTATION

errors .setCurrentChunkName (fileName)

inputStream = read file fileName
parser = lang.getParser(file extenstion)
if evaluating MAD-X then
ast = parser:parse(inputStream , fileName)
else
ast = parser:parse(inputStream, fileName)
source = generator:generate (ast))

load and call code with filename fileName
if error then
handle error
end
end
end
end

When testing the two approaches, it was discovered that the one letting LPEG
keep track of its own variables was 10% faster, which was therefore kept.

3.11 Future works

One could write an entire report only describing the future works of the MAD
application, as there are a huge amount of modules that need to be added before
MAD is a working language, e.g. physics, graphical interfaces, web interfaces,
finishing the Lua description of the sequence/modules/etc. This report will only
focus on the potential future works to make the authors part of the application
better, and come with suggestions to how one can fix these problems.

3.11.1 Make it work on Windows

The most important aspect lacking to be able to properly ”sell” the new MAD
application to the MAD-X users and to reach a broader user group, is the ability
to run on Windows as well as MAC and Linux. The main reason why this does
not work as of now, is because LPEG has been made without Windows in mind
and does therefore not work out of the box on Windows. This has been mentioned
several times on LPEGs mailing list, and http://lua-users.org/lists/lua-1/
2007-05/msg00364 .html contains several solutions to the problem. The specific
post that the link redirects to contains a makefile solution, which can be added to
LPEGs makefile.

3.11.2 Make a unified makefile system

At the time of writing this report, LPEG is the only external library used in the
application and the only module that needs to be built before the application can
be run, as all the other modules are pure Lua scripts. It is therefore not a problem
to have the documentation telling the users that one will have to make LPEG

3.11. FUTURE WORKS 65

before one can run it. Later on, when more external libraries and modules are
added, forcing the user to make every single module beforehand will be too taxing
and force users away from the system. What one should do then, is to create a
makefile system that does this. The makefile should build the different modules
and set up the necessary variables to allow the system to be run without problems.
As long as the problem in the next section is unfixed, this can also work as a sort
of installation, making the user only need to know of the mad-e script.

3.11.3 Single binary

As MAD-X comes packaged in a single binary file, it is desired that MAD should
do the same. There are two reasons why this is required /desired.

1. Old MAD-X users will want to have it this way, as this is how it has always
been.

2. MAD support and development wants to be able to be in full control of what
the users can do. If the users can not change anything in the file, support
will not need to try to find bugs that were introduced by the user.

An initial search for how this has been done ended up yielding some questions
on stack overflow and some threads on Luas mailing list, which shall hopefully
be enough to make this work. [47] contains an article by Han Zhao about how to
package scripts, [11] contains a long mailing list discussion with different suggestions
as to how it can be solved and links to repositories containing projects using said
results. In response to [17], a brief introduction into how to keep LuaJIT-compiled
modules when having a single binary is given.

Should one still fail to make a single binary, the second best will be to have a
simple installation process that makes the system and builds all needed modules,
much like the makefile does.

3.11.4 Adding a bytecode generator

An addition that is unnecessary but practical, is a bytecode generator. Generating
bytecode is not needed to make the application run correctly, but it may make it
run faster. One may also append debug information to the bytecode, thus allowing
the errors-module to store less information and lessening its size. To do this, one
may do as the LuaJIT Language Toolkit and extend Nyangas bytecode generator,
or one may make a completely new one. One will have to change the logic in the
generator no matter what, as Nyanga uses a completely different AST than MAD,
but Nyangas module is well structured, which means that it should be easy to use
the structure and create ones own bytecode.

3.11.5 Finish the Lua implementation of MAD-X

As the Lua implementation of MAD-X is unfinished, it is hard to properly test
the MAD-X interpreter. When this is finished, one can add proper tests and

66 CHAPTER 3. IMPLEMENTATION

improve the already existing ones. One should also do a full body of speed tests on
the interpreter to find the proper number of statements to call when interpreting
MAD-X files, as was described in listing 3.43.

Chapter 4

Tests

As there are many different ways of testing an application of this sort, depending
of what one wishes to figure out, one must first decide what question the test shall
answer. This chapter will go through some different questions that need answering
before one can decide whether the goals stated in this report have been met or not.

4.1 Unit tests

The first and foremost of these questions is of course: ”Does it work as intended?”.
The first way of testing this is to run the unit tests, as the unit tests of a system
can be viewed as a specification of the different functions and modules. By running
e.g.:

)

./mad—e —utest "mad.lang mad.lang.generator mad.lang.errors”

One will get a long list of modules and functions that have been tested and a
finishing line:

Success : 100% — 239 / 239

This tells us that there are no test functions that failed, but it does not guarantee
that the entire system works perfectly!. The reason for this is that the tests have
been made by human beings, which means that they probably do not test all the
different possibilities. It does tell us that these parts of the application works as
intended for most use cases. To further test the application, one can do some black
box testing, interpreting files that one knows are correct and check that the output
is correct. When errors are found this way, they should be fixed and the unit tests
should be updated to be able to find the error.

One of the files used for this black box testing has been the file longluafile.
This file contains lots of code from random Lua files found all around the web,

1The more mature the system gets, the more does 100% in the unit tests insinuate a fully
working system. This is because unit tests shall be written every time a new bug has been found
and fixed.

67

68 CHAPTER 4. TESTS

sourcel

Input code . AST1 [generate M — i
> s L T -g—/,a
Enerate

— s £ST2

Figure 4.1: Description of an idempotent parser. To be idempotent, a parser needs
to always create the same AST from the same input code and the generated code
from a certain AST should be parsed to become the same AST. Thus, AST1 and
AST?2 should be equal, as well as sourcel and source2.

mostly defining functions and tables, not running that much. It is 971 lines long and
31.1kB. The generated code has been checked by hand and found to be equivalent?
to the input code.

Another necessary feature of a parser for it to be correct is that it has to be
idempotent. As figure 4.1 shows, an idempotent compiler will be one where, after
creating the initial AST from the input code, one can apply the generator— parser-
step an arbitrary number of times and always end up with the same AST. This is
tested for both MAD and Lua, and is correct. One can not test this for MAD-X,
as there is no MAD-X-generator.

4.2 Speed tests

All tests in this chapter have been run on an Intel Core i5-3470 CPU with a 3.20GHz
quad core processor. It has 7.8 GiB memory and runs 64-bit Ubuntu 12.04 LTS.
All tests of MAD have been made with git HEAD? from the MAD git repository[8]
and git HEAD from LuaJIT, using v2.1 compiled with Lua 5.2 compatibility on.
All tests of LuaJIT language toolkit have been run with LuaJIT git HEAD, using
v2.0, not supporting Lua 5.2. Unless otherwise noted, all tests have been run using
a setup similar to listing 4.1, although with small changes to make the different
applications work properly. If any files need to be created, e.g. because the input
shall contain random numbers, this is done before the first line.

Listing 4.1: Setup for speed tests of different applications

local start = os.clock ()
for i = 1, number of times to run do
run application with command line arguments
end
local stop = os.clock()
total time = stop — start

After testing idempotence and a large enough number of black box tests, one
must assume that the code is correct and can continue to the next important

2Equivalent, not the same. Some changes will have to be made, e.g. removing whitespace and
comments, but the code should do the same.
3Commit 84789bc2608a6430064baa5717f7307b3b275830

4.2. SPEED TESTS 69

A "random" Lua file of ~10k lines interpreted x times

14 T T T T T T
Lua
LuaJIT
MAD

12 LuaJIT Language Toolkit

Time spent (s)

Number of runs

(a) Linear scale

A "random" Lua file of ~10k lines interpreted x times

10 T T T T T T
10° b
G}
€
210"
@
£
=
1071
Lua
LuaJIT
MAD]
LuaJIT Language Toolkit
10'3 | | | | | | | | T T
0 1 2 3 4 5 6 7 8 9 10 11

Number of runs

(b) Logarithmic scale

Figure 4.2: A file containing ~10k lines of assorted Lua code (314kB), run = times
using Lua, LuaJIT, MAD and LuaJIT language toolkit. The y-axis shows the
number of seconds used.

70 CHAPTER 4. TESTS

question: "How does the application fare compared to similar applications?”. This
question is not an easy question to answer, as it is hard to compare this application
to similar ones. Out of the similar applications that have been described earlier,
all but one are made specifically to interpret a language different from Lua, even
if only a slightly different version. The speed of Nyanga interpreting a Nyanga file
is not necessarily equivalent to MAD interpreting a similar Lua file. It is possible
to compare the speed of MADs Lua interpreter with LuaJIT language toolkits
Lua interpreter. As these two projects both attempt to be simple and extendible
applications to interpret languages using LuaJIT, the comparison is very relevant.

Figure 4.2 shows the result of running a file of assorted Lua code z times with
Lua, LuaJIT, MAD and LuaJIT language toolkit. The file is the file longluafile
repeated 10 times to get some length and an actual reading from Lua and LuaJIT.
The file fits well for this kind of tests, as it does not contain that much code to
be executed, meaning that it mostly tests the speed of the parser and generator,
not as much the speed of what runs it, i.e. LuaJIT. The figure shows that Lua
and LuaJIT are miles ahead of the two interpreters, as one would expect. This is
of course not a problem, as the Lua interpreter is only a small part of the MAD
application, not the main part of it, Lua interpretation is only a step on the way
to the MAD interpreter. Another thing one might notice, is that MAD runs the
file significantly faster than the LuaJIT language toolkit. As one can see from
figure 4.3, MAD uses around 0.13 seconds to parse ~10k lines, while Toolkit uses
around 0.23 seconds. MAD also has a smaller standard deviation than Toolkit has.
Another curious aspect of the figure is that MAD uses less and less time the more
times it runs the runs the file, as the constants related to initializing files only
are done once, while the toolkit uses steadily more and more time the more times
it runs the file. This might point towards the fact that the toolkit has a lower
constant or spends less time on shorter files. This can be further shown by looking
at figure 4.4.

As figure 4.4 and figure 4.5 shows, the toolkit spends a lot less time to interpret
an empty file*. While the toolkit runs on speeds sub-millisecond per run, MAD
spends about 3.8 ms per run. This is mostly because no parts of the code actually
tests whether it gets input or not. A chunk with no statements is allowed according
to the grammar, which means that code will have to be generated for it, the errors
module will need to support it (needing to generate tables, even if they are empty)
and then it will need to be run.

From the above mentioned figures 4.4 and 4.2, one can read that the toolkit
excels at smaller files, where MADs initialisation constant adds up to a large a part
of the total time spent. On longer files, LPEG is seemingly faster than the toolkits
home made parser, making MAD faster. This can be seen in figure 4.6. The figure
shows the results of running a file containing « lines of a = [random number] 10
times using both the toolkit and MAD. As the figure shows, the toolkit spends
a quite constant time per line parsed, while MAD starts out spending more than

4Because of Luas os.clock function only having a resolution of ms, the first runs of the
toolkit are reported to spend O time. This is also why there are no error bars present, as one
milliseconds variation on one millisecond is a huge variation, even though it’s only there because
of the resolution of os.clock.

4.2. SPEED TESTS 71

A "random" Lua file of ~10k lines interpreted x times
0.26 T T T

0.24 - B!

o
]
[N
T
I

— MAD
LuaJIT Language Toolkit

=3
N
T
1

<
o
=
T
1

Time spent per run (s)

014+ -

|
0 10 20 30 40 50 60
Number of runs

Figure 4.3: A file containing ~10k lines of assorted Lua code (314kB), run = times
using MAD and LuaJIT language toolkit. The y-axis shows the number of seconds
used per run. Error bars show 1 standard deviation up and down.

twice the time per line when running only 100 assignment statements, but steadily
lowering its seconds per line until it passes the toolkit around 1000 statements. The
next part to notice is that MAD does not parse past 7000 lines, as LPEG fails with
"stack overflow (too many captures)”. This is because all 7000+ statements are
supposed to go in the same node, the chunk, and LPEG will therefore need to keep
them in the stack until the entire chunk rule has been evaluated. One way of fixing
this problem is to make the stack bigger, but no matter how large the stack is, there
will be inflated test cases where one manages to overflow it. It is also bad form
to fix all memory/stack related problems by simply adding more memory/stack
size. One must simply decide what should be the maximum number of statements
allowed and disregarding inflated test cases, the author still have not found any
files that actually end up encountering this limit, no changes are therefore made
to the stack size or to the grammar to fix this problem. Should this prove to be
a problem in the future, there is another way of solving it as well which will be
described briefly below.

If one needs to allow more than the stacks limit of statements, one can add a
similar fix as the one made in MAD-X as shown in listing 3.43. Instead of calling
stmtnum when the block is finished, it can be returned as a block. One will need

72 CHAPTER 4. TESTS

: An empty Lua file run x times
10 ¢ -0.03

0.025

0.02

0.015

Time spent (s)

0.01

0.005

— MAD

LuaJIT language toolkit
T T

| | | | | | | 0
0 100 200 300 400 500 600 700 800 900 1000
Number of runs

107

Figure 4.4: An empty Lua file run z times using MAD and LuaJIT language toolkit.
The y-axis is the number of seconds spent. NB: MADs scale is logarithmic while
the toolkits scale is linear.

to do some changes to the generators to allow blocks as statements, but it should
work to fix this problem. By doing this, the allowed grammar of Lua is changed,
even if it is a change that should be unconsequential. As the problem is viewed as
a minor problem unlikely to show up, the change is not implemented. Enclosing
parts of the code in do-end blocks will allow LuaJITs excellent garbage collector
to garbage collect unnecessary values earlier on, thus speeding up the application
and removing the problem with too many statements as well, as the do-end block
will count as one statement.

The question about how MAD fares versus similar applications can be answered
building on the tests discussed so far. The author was only able to find one appli-
cation that was built for something similar that managed to parse Lua code, and
these two applications were compared to each other in speed tests. It was found
that LuaJIT language toolkit is faster on short files because of it having a small ini-
tialisation constant, while MAD, with its larger initialisation constant, was faster
than the toolkit on larger files. MAD also has trouble parsing files containing over
7000 statements in the main chunk, while the toolkit manages this nicely. MAD
does manage to parse arbitrarily large files if this constraint is met though, while
the author had problems running files of over ~1MB using the toolkit. The toolkit

4.2. SPEED TESTS 73

x10° An empty Lua file run x times
4.5 T T
A= i
3.5 4
3+ 4
0
c
3
- 25- _
[
[= 5
=
2 Ll i
4 ——— MAD
E LuaJIT language toolkit
151 4
1 4
05+ 4

Number of runs

Figure 4.5: An empty Lua file run z times using MAD and LuaJIT language toolkit.
The y-axis is the number of seconds spent per run.

also seems to be younger than MAD, which means that there are still bugs that
appear while attempting to parse some random files the author tried to parse for
some different tests. Since it is viewed as less important to be a bit more instanta-
neous in files that are interpreted almost instantaneously, than to be significantly
faster® on long files, MAD is viewed as performing well compared to similar appli-
cations. The constraint on the number of statements is also deemed unimportant
and a suggestion as to how one can fix it, should it prove to be significant, has
been made.

"But how do the different interpreters work compared to the Lua one?”, one
might ask. As the only interpreter one can test compared to other applications
is the Lua interpreter, it makes sense to ask whether the other interpreters are
following suit. One interpreter it is easy to compare to Lua is the MAD interpreter,
as MAD is a simple super set of Lua and should therefore be able to parse all
Lua files. The MAD interpreter should also not be significantly slower than the
Lua interpreter. This was tested by interpreting a file containing ~100k lines of
arbitrary Lua code (3.1MB) with two different endings, .mad and .lua. The results
can be seen in figure 4.7 and figure 4.8. Figure 4.7 seemingly shows that Lua is

52x as fast in a file of 314kB (figure 4.2)

74 CHAPTER 4. TESTS

x10° A Lua file containing a = [random number] x times, run 10 times
5 T

—— MAD

LuaJIT Language Toolkit
45 -

N w
wn w tn

Time spent per line (s)

N

1.5

0.5 L L L L L R . L L L L L T
10 10 10
Number of lines

Figure 4.6: A Lua file containing z lines of a = [random number] run 10 times
using MAD and LuaJIT language toolkit. The y-axis is how many seconds were
used to parse each line. MAD gets stack overflow when parsing more than ~7000
lines, while the toolkit manages far higher numbers.

slightly faster, as it shows the mean values of 10 runs, but as one can see from
figure 4.8 which also shows the minimum and maximum values of the two different
interpreters, their seconds per line-count is within the same margin of error.

The MAD language also contains support for C-style include statements whose
test results are also shown in figure 4.7 and figure 4.8. The include statement is
tested by testing using an intermediary file containing the line

@include 7 file /to/test .lua”

instead of the file file/to/test.lua. Using include should be slower than without,
as the interpreter will need to read two files instead of one and run two parsers
instead of just one. The question is rather how much slower it is. And as one can
see from figure 4.8, the include tests seem to be slower than MAD and Lua, but
within what one might view as the margin of error from the quite varying execution
times. An explanation for why the difference is this small is that the file tested is
quite big (3.1MB), meaning that the time it takes to parse that file far outweighs
the extra time spent to open an extra file and initiate an extra parser. Figure
4.9 shows the results of parsing files of different length using the MAD interpreter

4.2. SPEED TESTS 75

A Lua file of ~100k lines, run x times
70 T T T T T

60 B

50 B!

N
(=}
T
1

o
(=}
T
1

Time spent (s)

20t i

10+ / o
Lua interpreter
2/2 — MAD interpreter

MAD @include
0 ~ 1 1 1 1 1 1 T T

|
0 5 10 15 20 25 30 35 40 45 50
Number of runs

Figure 4.7: A Lua file of ~100k lines (3.1MB) run « times using both the MAD and
the Lua interpreter. y is the time spent in seconds. The circles show the maximum
and minimum time spent for each test.

including the test file and by using the Lua interpreter. The figure clearly shows
that the extra time spent is significant for smaller files. For the empty file it uses
almost twice the time, not surprising as the application needs to do almost twice
the work. The difference is still notable for the file consisting of 1k lines (31.4kB),
but for the larger files, the difference is almost non existing. As include will most
likely be used to shorten and simplify code, it is unlikely that one will include files
larger than a couple of kilobytes, include statements will therefore slow the code
down. The speed is still competitive though, as it is still significantly faster than
LuaJIT language toolkit for the 31kB file.

To be able to decide whether the MAD implementation works, the speed of
the lambda definition must be tested. There are two different ways of translating
lambda functions implemented in the Lua generator. One can choose between these
two by sending the command line argument -lambdatable to the application. If
-lambdatable is set, functions nodes with kind == lambda will be translated to
tables with their __lambda-key set, as described in the implementation chapter.
If -lambdatable is not set, they will be translated to standard anonymous func-
tions. The difference between these two is that the lambdatables may be evaluated
without using parentheses in some some cases, as described in the implementa-

76 CHAPTER 4. TESTS

A Lua file of ~100k lines, run x times

1.45 T
Lua interpreter
MAD interpreter
14L MAD @include i
@
c 1350 © .
2
= o]
g ° 8
T o
)
g 13- © 4
£
O
1.25F B
] e}
© ©
o “ o
|

10'
Number of runs

Figure 4.8: A Lua file of ~100k lines (3.1MB) run z times using both the MAD
and the Lua interpreter. y is the time spent per run in seconds. The circles show
the maximum and minimum time spent for each test.

tion chapter. This is implemented using metamethods for all the operators, which
means that using this does not do anything with the speed of parts not using
lambda. However, the math, table and string-libraries are overloaded completely,
meaning that every time one of their functions® is called, they will need to check if
their arguments are lamdbatables or not. This might slow down the code and will
therefore need to be tested.

To test this, the code in listing 4.2 is used. The code creates a lambda function
without arguments that is supposed to return the value of the global variable a. The
three assignments are made to test three different usages of the function: Regular
call, explicit call with a function that is not overloaded, and explicit/deferred call
with a function that is overloaded for lambda.

Listing 4.2: Code used to test the speed of different usages of lambda

local 1 =\ a
a=1
—Code below is repeated x times

SExcept for a few chosen ones where deferred evaluation is impossible. A list is included in
the implementation chapter and in the lambdas documentation.

4.2. SPEED TESTS 7

Lua files of 1, 1k, 10k, and 100k lines
10 T T T

Lua interpreter
— MAD @include ||

Time spent (s)

Number of lines

Figure 4.9: 4 files containing 0, 1k, 10k, and 100k lines of code (0B, 31.4kB,
313.9kB, 3.1MB) run by the Lua interpreter and the MAD interpreter trough a
file including the actual test file through the @include statement. z is number of
lines, y is time spent.

b=1()

b = math.max(1(), 0, 5)
b = math.sin(1())
—end repeated code

Figure 4.10 shows the speed of running the code in listing 4.2 in three different
ways. The three different ways are tested with code of different length, repeating
the three last lines of the code x times. The different ways of using lambda are:

1. Exchanging the last line of the code in listing 4.2 with b = math.sin(1) to
have deferred evaluation of 1. The code is run with the argument -lambdatable
on, to make the generator translate the code to a lambda, not a regular func-
tion.

2. Explicitly calling 1 in all three cases, but calling the application with ~lambdatable

to make the generator translate the code to a lambda function.

3. Explicitly calling 1 in all three cases, but calling the application without
-lambdatable to make 1 be translated to an anonymous function instead.

78 CHAPTER 4. TESTS

Comparison of evaluation speeds for different translations of \ a
10 T T

Deferred evaluation
Explicit call !
Expilicit call and \ a => function() return a end

10

Time spent (s)

107

10
Number of repetitions

Figure 4.10: Comparison of speed for different usages and translations of the
lambda function \a. A file containing the definition of a lambda function 1 = \a
and a = 1, immediately followed by z repetitionsof b = 1() b = math.max(10),
0, 5) b = math.sin(1()) as seen in listing 4.2. Deferred evaluation means that
the parentheses are omitted in the sine function.

This also makes the math libraries not become overloaded, thus perhaps
becoming faster.

As figure 4.10 shows, there are no discernible speed differences between the three
ways of calling and translating the lambda. In the case of the longest file, the test
that did not overload the math library is in fact the slowest, albeit with a tiny
fraction and well within the margins of error. From this, one can conclude that
overloading the math, table and string libraries does not significantly slow down
the code and can therefore be kept.

Chapter 5

Discussion

Several design decisions were made during the implementation of the application,
some were good and some might have been less fortunate. This chapter will discuss
the different choices made, try to find the positive and negative consequences the
choices had, and discuss whether the choice was a good one, or if something should
be done differently.

5.1 Initial design decisions

Before starting the implementation of this project, some initial decisions were made
as to how the application should be structured.

5.1.1 Using LPEG

The most important of these decisions was that the application should have more or
less the same structure as Nyanga, as shown in figure 3.1. This means that LPEG
should be used instead of a more traditional lexer/parser approach. As it is also
shown when describing the LuaJIT Language Toolkit, it is possible to implement
the Nyanga structure using a lexer/parser approach instead of using LPEG, which
raises the question of what is the best solution.

As the tests from the previous chapter shows, the two implementations are
competing on similar terms, the toolkit being the fastest on short files while MAD
outperforms it on larger files. All in all, these two different implementations both
seem to work and neither is particularly bad at what they are made to do. The
main difference between them then, is that MAD uses LPEGs re module for the
grammar, while the toolkit uses a handwritten lexer and parser. The positive
effects of writing ones own lexers and parsers is that one will be in total control of
what happens, while the positive effects of using LPEG is that it is unnecessary to
be in control of what happens. The author believes that the re module provides a
lower initial step to understand and start implementing ones own grammars. What
makes MAD slower on the short files is its initialisation cost, which is introduced

79

80 CHAPTER 5. DISCUSSION

by the bulk of the application, not as much by LPEG!. Therefore using LPEG and
re was a good choice, as building the AST from the re-grammar is simpler than
writing one in a handwritten parser.

5.1.2 Not using LpegLJ

After the choice had been made to use LPEG, the choice of moving to LpegLJ
opened. LpegllJ was briefly introduced when discussing left recursion. The main
difference between LPEG and LpegLJ is that LpeglJ uses the suggestion made by
[34] to allow definition of grammars with left recursion, thus keeping the necessary
changes to the grammar at an absolute minimum. The other difference is that
LpegLJ is a pure LuaJIT + FFI implementation of LPEG, made to potentially
be faster. As LPEG is a lot more mature than LpegLJ, LpegLJ is about 2.5
times slower than LPEG run with LuaJIT, according to LpegLJs own tests. This
slowness is in itself a good reason not to use it, just as it was when the library
was considered, and when it is possible to easily remove left recursion from the
grammar, using Lpegl.J is completely unnecessary. The conclusion is therefore the
same that was reached when Lpegl.J was first discussed: If a more stable solution,
steadily outperforming regular Lua, is introduced, it will be a small change to
move from LPEG to LpegLJ. This does not seem to be the case in the immediate
future however, as there has been no changes to LpeglJs git repository the last
two months, except for an update to its TODO file.

5.2 Changes made to the grammar

As LPEG does not support left recursion, the grammar needed to be changed. This
section will look into the changes that were made and discuss whether they could
have been handled differently.

5.2.1 Splitting the variable into definition and expression

Listing 3.7 shows the final implemented solution to the problem with left recursion
in variables/function calls. The solution creates different rules for defining and
using variables, as well as a stand-alone rule for using function calls as statements.
The positive effects of this is that one will save a lot of time parsing variables, as
these would need to be parsed twice when following the rules from listing 3.6. The
potential negative effects of the fix is that one might have broken the grammar. By
using the grammar defined by Lua, one is secure that one will have a proper gram-
mar that allow only what it is supposed to allow. Following the rules defined by
[40], one can also know that the grammar is equivalent. When the grammar is split
as was done in the case of variable and function call, the grammar might become
different, thus disallowing something that should work, or allowing something that
should not work. Assuming that the rules in listing 3.7 are equivalent to the ones
coming from the original grammar, the author concludes that the chosen solution

IExcept for the one time compilation cost to compile the re-grammars to LPEG.

5.2. CHANGES MADE TO THE GRAMMAR 81

was a good choice, as it is a lot faster than the solution made only by using the
algorithms described by [40].

There are two ways of showing that the implemented rules are equivalent to
the original rules. The first one is to simply look at the grammar. Listing 3.6
clearly show that the only difference between a variable and a function call is that
a function call must end with a callsuffix, while a variable must end without one.
Therefore, the variable definition and the function call statements from listing 3.7
are equivalent to the ones from listing 3.6. The use of variables and function calls
in expressions are equivalent as well, as the original rule simply states that one
may have a variable or a function call, while the new rule says that one can have
a base, which has the same structure for both variables and function calls, and an
optional call suffix in the end, which will make it into a function call instead of a
variable.

The second way of testing if the new implementation works is to test it thor-
oughly, which is greatly simplified by the unit testing framework implemented
earlier. By running the unit tests of mad.lang.lua.parser one can see that both
luas defs and grammar is thoroughly tested, especially the varexp rule, which is
the cornerstone of this rule set. Testing can of course not prove that something is
100% the same or not, but it can give a clear pointer towards it, which this does.

5.2.2 Not having associativity

As listing 3.8, the rule set that properly describes the grammar with both prece-
dence and associativity, contains left recursion and therefore can not be compiled
by LPEG, it was decided to use the rule set from listing 3.10. This rule set does
not make any assumptions about the associativity, and is helped by the AST which
is built with all similar operators in the same node, thus creating a node free of
associativity. The application never does anything with the expressions until it
reaches the generator which generates Lua code to be run and when this is reached
the expressions will be generated in the same order that they came in. All in all,
this ends up forcing all operators to have the same associativity as they have in
Lua, or one will have to process the node later to properly balance it, as Nyanga
does. With the current size of the application and the fact that it still does not use
a transformer, this has not been a problem. Operators follow the same rules for
most programming languages, having the same associativity in all of them, which
means that it is not a problem to use Luas associativity. However, should one wish
to do any transformation on the tree, one will probably need to balance the nodes
correctly. To fix this, one can either use the solution from listing 3.8, which is
not doable without LpegLJ, which is slow, or by waiting for LPEG to implement
support for left recursive grammars, which is in their pipeline, but with no dead-
line. A more sound solution is to do as Nyanga does and balance the tree after
building it, to balance it properly. It is possible to create a transformer that reads
the AST as it is now as well, without associativity, meaning that this is problem
is an unimportant one.

In conclusion, not having associativity can potentially create problems when
implementing a transformer to trim the AST, or if one for some reason wishes to

82 CHAPTER 5. DISCUSSION

have an operator with a different associativity than Lua, but there are simple ways
of fixing the problems should they arise. The chance of the problems appearing
are assumed to be small, and no work has been put into fixing them before it is
proven that they do appear.

5.2.3 How to check if two grammars are similar

The changes that have been made to Luas grammar have not all followed the
algorithms proposed by [40] and the grammar that is being used in the application is
therefore not proven to be the same as the original grammar, as has been discussed
above. As described in [41], it is impossible to prove if two distinct grammars
represent the same language. This means that it is impossible to prove that the
language parsed by MADs Lua interpreter is in fact Lua, or if it is a language
similar to Lua. It has been discussed earlier how one can show that the grammar
describes a language that acts as Lua within all reasonable constraints. Since this
application is made to work, it is not that important if it is 100% correct, both
because eventual errors found on a later stage can be fixed easily and because as
long as it works for all cases that are needed, it works as intended.

5.3 The final product

This section will discuss the questions that arise during testing, as well as the
viability of the entire product. One of the questions that arise when discussing
this, is how can one check the viability of a product of this scope. The final
product has several different applications, and one will therefore need to discuss
the viability of all the different applications to be able to come to a conclusion
about whether the requirements have been met fully, partly, or not at all. The
different applications will therefore be discussed below.

5.3.1 Lua interpreter

The main goal of this project has been to create a Lua interpreter to be run
using LuaJIT. As is shown during the implementation and test chapters, the Lua
interpreter is implemented and working. Its performance can compete with other
projects made with a similar goal in mind. Some questions have come up during
testing and these will be discussed below.

Tests comparing MADs Lua interpreter to the LuaJIT language toolkits Lua
interpreter shows that MAD is significantly slower on empty files, and does worse
in general on short files. Is it acceptable that the interpreter is that much slower
on empty files?

In a perfect world, the interpreter should of course be the quickest in all aspects,
but having a rather large initialization constant is less of a problem than having
a large constant associated with the size of the file, thus making the parsing slow
on larger files. If someone should use this application to interpret short files, they
will still not notice a difference, as the files will still be interpreted at a speed that

5.3. THE FINAL PRODUCT 83

can safely be called instantaneous by humans. If a file is parsed instantaneously
by MAD or twice as instantaneously by the toolkit really makes no difference.

A problem arose with MAD not being able to parse chunks that contained
more than 7000 statements at the top level. This is something that might become a
problem, as there is no way of guaranteeing that users create files of a small enough
size?. However, most Lua modules should be quite small, not spanning more than
100 lines as a general rule, and this constraint will therefore not be met in most
cases. When one starts to implement sequences in MAD instead of in MAD-X, the
barrier might be met though, which means that this might become a problem in
the future. A suggestion as to how this can be changed is therefore made, and the
author leaves it up to the MAD custodian if this should be implemented or not,
depending on whether this proves to be a problem in the future or not.

5.3.2 Extensibility of the application

An important focus of the project has been to implement the interpreters in a
way that is easily extendible. This is supported by the modular layout of the
project, where one will only need to do changes in the file mad.lang.lua to allow
for a new language to be added to the list of supported languages. The designer
of the new language can then follow the examples from the mad, lua and madx
folders and add grammar.lua containing the re-based grammar of the language,
defs.lua containing the functions used to build the AST, and parser.lua, containing
the parser constructor. The AST has a short and concise definition, containing
few and generalised nodes, thus allowing a large range of potential languages to
be implemented. It is also the authors belief that writing grammars in LPEGs
re syntax is really simple, as long as the language in question has a context free
grammar. If the language creator figures out that he needs to change something
somewhere else in the files to make the language work, e.g. allowing a new ’kind’
in a specific AST node, thus needing to change the Lua source generator, the unit
testing framework makes it simple to check whether the change made any part of
the application stop working.

5.3.3 MAD interpreter

The MAD language is a strict superset of Lua, with only two additions, which
means that the MAD interpreter shall behave quite like the Lua interpreter both
in usage and speed. This has been shown to be correct, both when parsing a
Lua file and when parsing a MAD file containing lambda functions. Using the
include statement has been shown to be slightly slower than having all the code
in a single file, but having a slight speed loss from inclusion is something one
will have to live with, as opening two files will be slower than opening one. The
speed loss is higher than what is expected simply from opening two files instead
of one though, which means that there is something in the code that makes slows
it down. This is assumed to be the table.unpack-function that is used when the

2Using the word size here might be a bit misleading, as the interpreter does handle arbitrarily
large files, as long as they have less than 7000 statements in a single block.

84 CHAPTER 5. DISCUSSION

included AST is added to the top level AST. Unpack is one of the functions that
are not JIT compiled, thus making it slower than other functions. Should the
AST be redesigned to allow blocks and chunks to have blocks as statements, this
unpack can be removed as well, and the entire chunk can be inserted directly into
the AST, potentially saving time. As long as this is not done, the author does
not know how to speed the function up. The loss of speed is small enough to be
viewed as insignificant and the author therefore believes that it is unproblematic
and unnecessary to change the layout to remove this tiny speed bump. Should
the allowed AST be redesigned to allow blocks as statements in blocks, the change
one will have to make in the implementation of include is very small and should
obviously be implemented, as every gain in speed is positive.

5.3.4 MAD-X interpreter

Implementing MAD-X posed a brand new challenge compared to the two previous
languages. While Lua, and then also MAD, had a clear and concise context free
grammar, MAD-X comes with no actual grammar in addition to being context
dependent. The first thing that had to be done with MAD-X was to look through
all the documentation made for it to figure out what was the allowed syntax.
This was a difficult task, as all documentation was written by and for accelerator
physicists, and was usually structured as a users manual telling users handy tricks
for accelerator design, not as something that shall teach someone a new language.
After some time, some kind of a grammar was made and implemented and a new
problem arose. When implementing the Lua grammar, it was possible to find
files that were guaranteed to be correct and check if the parser could parse them,
but because the current MAD-X parser is built without an actual grammar, there
are tons of things that it allows that should not be allowed. Every single error
the implemented grammar reported, would therefore need to be checked in the
documentation to find out if it should be allowed or not. When an error was
found, it was still necessary to hear with the users to see if this was yet another case
of "known bug is feature”, which some super user needed for his specific modules
implementation to work. Working like this is time consuming and the grammar gets
so full of exceptions that it ends up being as prone to errors and bugs as MAD-X. It
was therefore decided that the only undocumented exception that would be allowed
in the grammar would be the madx-strings, as discussed in the implementation
chapter. This decision helped keep the grammar readable and less error prone.
The ”features” that were removed are small enough to be overshadowed by the
improvements that came for free, e.g. that boolean expressions can contain more
than one and or or.

Writing the context free grammar for a context dependent language is another
problem that has had to be overcome during this implementation. The implemen-
tation of the command statements as shown in listing 3.34 and listing 3.35 could
have been solved by hard coding the different accepted tags and commands into the
grammar, thus speeding up the parsing, as LPEG would handle a strict grammati-
cal implementation better than the one that exists now. This would become a huge
rule that would also be harder to maintain than the current function, both because

5.3. THE FINAL PRODUCT 85

unseen errors easily creep into huge strings, but also because changes to MAD-Xs
definition file would need to be inserted into the grammar, while the current im-
plementation comes with a script that parses MAD-Xs def-file and updates the file
used by the grammar. A slight speed loss is therefore acceptable compared to the
range of potential errors and difficulty of maintaining that would be introduced
with the fastest implementation.

5.3.5 Errors module

To have a module making sure that errors are called to the correct line and file is
important when using a framework like this. If the user needs to do his debugging
in the created Lua file anyway, he could just as well have used Lua instead of
MAD or MAD-X. There are a few questions that need to be discussed about the
implementation and usage of the errors module, which will be discussed below.

The modules backbone is the linemap, a table mapping all lines from all output
files to their corresponding file and line. At first glance, this could become very
memory heavy, as one will need an int and a string for each line in the outputted
code. Because of how Lua is made, this is not the case. In Lua, there exists only
one occurrence of a given string, all actual string objects are merely pointers to
that string. Because of this, the linemap will only use a couple of bytes per line
in the output code. This leads to that after parsing some thousand lines of code,
the linemap will only take up about 10 kilobytes of memory, which is far below
anything that could actually trouble LuaJITs 2GB memory limit.

Lua allows users to insert white space and comments almost everywhere, mean-
ing that knowing which line to report the error to can be a difficult task. To report
an error, the MAD implementation of the parsers will keep a variable that contains
the current line the program has parsed to. This line is updated continuously and
work well for expressions and statements that are on a single line. But because of
LPEG being a top down parser, it will evaluate the functions corresponding to a
rule at first once the entire rule has been validated. This means that the line that is
inserted into the rules corresponding AST node will map to the last line in a state-
ment, not the first. One could of course simply write this in the documentation,
but an important part of the usability of an application like this is that it behaves
as one would expect. Mapping errors to the last line of a statement when most
other languages will map them to the first line, will be the opposite of working as
expected. It will probably make users spend ages looking for errors in the next
statement, before giving up and leaving MAD forever. This problem is partially
fixed, making a specific output line always map to the first lowest line number in
the output lines. This will fix the problem for most cases, e.g. if the statement
failing was the one below:

for i =1, 1 do
a =i
end

The line corresponding to the for statement would be 3, thus making the generator
initially map output line 1 to input line 3, but when the expression that also

86 CHAPTER 5. DISCUSSION

belongs at line 1 appears, the linemap would be updated, mapping output line 1
to input line 1. There may still be occurrences of errors that end up mapped to
the end of the statement, but those bugs will be far enough apart for them to be
insignificant. ”Everyone” knows that the position the errors are mapped to might
be wrong anyway, even when using more mature languages®, and one will therefore
need to look in the errors surroundings to find its actual position. Having an error
sometimes called to the wrong position is therefore still within the term ”works as
expected”. If this is deemed inappropriate some time in the future, this can be
fixed by using Nyangas version instead. Nyanga captures the position in the file
and parses the file to count the number of line changes that have happened before
the position is reached. This will slow down the AST creation significantly though,
and the current solution with a few errors mapped incorrectly is therefore a better
alternative.

5.3.6 Unit testing framework

For the users to write unit tests, the unit testing frameworks API needs to be
simple and easily understandable. Using as few functions as possible makes that
the case, as there are only 4 functions to learn how to use, with names that properly
state what they do. Writing unit tests is therefore deemed to be easy to learn and
do, especially since the users may look at the previously implemented code to see
examples of how it should be done. The users do not have to bother with keeping
track of any statistics, as utest will do it for them. Had the project followed Lunits
implementation more closely, having several specialised test functions instead of 4
general ones, it would be harder to write the tests, as the users would need to learn
more functions, even if the functions are really similar as these ones are. Allowing
the users to call their test functions whatever they like, as long as they are kept
in the modules test table, will allow the user to give the functions helpful names.
Using descriptive names is one of the tips given by [21].

5.4 Using the application

Most of the issues that have been discussed above are elements that the end user
does not care about, as long as they work to a reasonable extent. What is important
to the end user is that the application easy to use and that it behaves as one would
expect it to behave and that there are as few special cases as possible, as these are
guaranteed to be forgotten.

The application does not contain many of these special cases, but there are
two significant ones that the users may encounter, both of which have to do with
the command line options given to the application. The options can be seen in
Appendix B: Mad-e command line arguments. The options in question are that
the -profiler option needs to be the last option given before the files, and that
one can not give the option -utest filename without having something following
it. Utest acts this way because there is no way for the module handling options to

3MAD-X users most of all, as they have lived with it for 15 years.

5.4. USING THE APPLICATION 87

know if the filename should be a filename that should be executed and utest should
be run without arguments, or if one wishes to test the filename and not execute
any files. This therefore defaults to executing the file instead of testing it, as is
also stated in the documentation. The profiler needs to be the last because of how
its arguments are parsed.

The profiler should not be a major problem for the users, as profiling will mainly
be used by MADs developers, not by the end users. It is also kept separate in the
documentation to further show that it needs to be the last. The utest-option can
prove to be a problem, but as it is impossible to know which behaviour is desired
by the user, a default behaviour has to exist and defaulting to executing the file
was chosen. This is clearly stated in the documentation, but it is not as one would
expect. There is not a lot to do about it unfortunately, and for the special case to
appear, the user has to only test a single module, not have any other flags after
the utest-flag and not run any files, which is a rare event.

88

CHAPTER 5. DISCUSSION

Chapter 6

Conclusion

To aid in the ongoing Methodical Accelerator Design project at CERN, a new
MAD application has been implemented to replace the current MAD-X language,
as MAD-X is too weak to implement the new generation of accelerators that CERN
will build in the future, as well as being unacceptably bug ridden and time con-
suming to maintain.

Different ways of implementing an extendible interpreter have been discussed,
concluding that the best approach is to use the LPEG framework to create a
grammar straight from the EBNF grammar of the language in question. It is
further discussed how to properly design an Abstract Syntax Tree to be able to
represent as wide a range of languages as possible and a definition for a generic
AST has been created. A parser based on LPEG has been implemented for the
Lua language, translating Lua code to the AST previously defined. A source code
generator translating nodes with the ASTs structure to Lua has been implemented.

The parser and generator have been combined to create an interpreter that
reads Lua code and returns equivalent Lua code to be run using LuaJIT. The
speed of this interpreter is tested and shown to be fast enough to compete with
other projects that have been made with a similar goal. Some potential problems
the implementation can have have been discussed and solutions to the different
problems, should they arise, have been suggested.

The three main unit testing frameworks for Lua have been reviewed, all of
which were deemed unsuitable either because of them being unfinished, outdated,
or both. Building on their strengths and learning from their weaknesses, a new unit
testing framework has been implemented. The implemented framework is easy to
use and output simple and readable output. The output provides the user a report
of how many tests have succeeded as well as information about the test(s) that
failed, to help pinpoint the error(s). The API to write the test functions is simple
and minimalistic, providing users with a quick and concise way of writing tests and
testing their modules. The framework makes few assumptions about the system it
is being used to test and may therefore, with a few minor adjustments, also be used
in projects with no connection to the MAD project, even if it is initially designed
for MAD.

89

90 CHAPTER 6. CONCLUSION

How the interpreter may correctly report syntax- and run time-errors, keeping
the rate of incorrectly reported errors as low as possible, while still maintaining an
adequate speed, have been discussed and a solution has been implemented. The
proposed solution to further lower the rate of misreporting has been discussed and
deemed to be too slow and therefore not worth implementing. The implemented
solution correctly reports an adequate number of errors for it to be well within
what could be called acceptable behaviour.

Different approaches to implementing interactive mode in a language framework
like MAD have been discussed and a solution has been implemented. This solution
uses the fact that the parsers manage to differentiate between syntax errors that
are unfinished statements and those that are just plain wrong. The implemented
solution works as Lua and LuaJITs interactive mode. The only difference in their
workings is that in MAD, one may continue in the same environment after writing
a line that ended in a syntax error, while Lua and LuaJIT will force a restart when
syntax errors are met. This is a clear improvement and may save users from both
wasted time and loads of frustration.

The extensibility of the system is shown by implementing a new language, MAD,
that is a strict superset of Lua. The additions to the language are C-style include
statements and lambda functions that can be lazily evaluated. The implementation
is tested compared to the Lua interpreter and found to be interpreting Lua code
at the same speed. The MAD-specific parts are tested as well, and are shown to
not be slowing the interpreter down more than one must accept.

To further aid the new application in becoming used, a MAD-X interpreter has
been implemented. The implementation is made by translating the MAD-X code
to Lua code specified by MADs Lua implementation made by the MAD custodian
in parallel with this project. The implemented interpreter can translate MAD-X
code to Lua code and is checked by hand to translate the code correctly. The code
needed to run the Lua code has still not been fully implemented, and doing proper
tests on this implementation can not be done. When the code is complete, the
interpreter will work as it should.

The implemented solution works as intended and has been shown to fulfil its goal
of being easy to extend. The extensions work as they should, making it possible to
interpret both files made in the new MAD language and, once the physics behind
it is implemented, in the old standard language MAD-X.

The final product runs on Linux and Mac-OS, and solutions for porting it to
Windows have been suggested. It contains a stand alone framework for unit testing
and an easily extendible framework for implementing interpreters. The application
can interpret Lua, MAD, and MAD-X files, running them at speeds comparable to
equivalent projects.

Appendix A

How to install MAD

Installing LuaJIT 2.1 with 5.2 compatibility

The application uses LuaJIT 2.1 and 5.2 compatibility, which needs to be installed.
The easiest way to install it on Linux is explained below and it should be similar
on mac.

1. Run the command

git clone http://luajit.org/git/luajit —2.0.git

2. Change to version 2.1 by running the following command in the luajit-folder
just created

git checkout v2.1

3. Open the file luajit-2.0/src/Makefile and exchange the line
#XCFLAGS+= —DLUAJIT_ENABLE LUA52COMPAT

with
XCFLAGS+= —DLUAJIT_ENABLE_LUA52COMPAT

4. Make and install the program

sudo make & make install

Install MAD
1. Download MAD by cloning the git repository
git clone http://github.com/ldeniau/mad

2. Make LPEG

91

92

APPENDIX A. HOW TO INSTALL MAD

make linux [LUADIR=/path/to/luajit/include]

or

make macosx [LUADIR=/path/to/luajit/include]

LUADIR defaults to usr/local/include/luajit-2.1. If you get an er-
ror fatal error: lua.h: No such file or directory, your LUADIR
is wrong.

Your copy of MAD should now be ready to run!

Appendix B

Mad-e command line
arguments

One can run the mad-e script with several command line arguments. The different
flags and their meaning will be discussed here.
Mad-e is run by:

./mad—e {args} [—profiler profilerArgs] {filename}

The filenames are the files that are to be run in batch mode.

-profiler "profilerArgs" runs the application with the LuaJIT 2.1-profiler.
The accepted profilerArgs are the same arguments as would be allowed if one were
to run LuaJIT with the profiler manually, as described in http://repo.or.cz/w/
luajit-2.0.git/blob_plain/v2.1:/doc/ext\textunderscoreprofiler.html. Ex:
./mad-e -profiler 3si4ml file/name.lua will run name.lua while sampling 3
levels deep in 4ms intervals and, when finished with the program, shows a split
view of the CPU consuming functions and their callers with a 1% threshold.

-utest "space separated list of module names" starts unit tests of the
modules given. If no modules are given, unit tests will be run on all loaded mod-
ules. Module names must be written on require-form, not on file path-form. ILe.
file/name.lua can be unit tested by running -utest file.name. Potential pitfall:
If only testing a single file and not running any files, -utest can not be the last
argument, as the module name will be interpreted as a file name to be run and
utest will be interpreted as coming with no arguments.

—-dump "to_be_dumped" dumps the AST or source code of the parsed files.
to_be_dumped can be ast, mad, or lua.

-interactive or -i starts interactive mode once all files have been run.

-benchmark "list of names" - looks in mad.benchmark after a file with name
and runs it. Not really used, but the possibility is still in.

93

94

APPENDIX B. MAD-E COMMAND LINE ARGUMENTS

Appendix C

MAD-X example sequence

The definition of SPS, as shown by [19].

Listing C.1: Definition of the 8km long SPS accelerator

QF:QUADRUPOLE, ...; // focusing quadrupole
QD:QUADRUPOLE, . ..; // defocusing quadrupole
B1:RBEND,...; // bending magnet of type 1
B2:RBEND, ...; // bending magnet of type 2
DS:DRIFT,...; // short drift space

DM:DRIFT,...; // drift space replacing two bends
DL:DRIFT,...; // long drift space

The SPS machine is represented by the lines
SPS: LINE=(6+«SUPER);

SUPER: LINE=(7xP44 ,INSERT,7xP44);

INSERT : LINE=(P24,2xP00,P42);

P00: LINE=(QF,DL,QD,DL);

P24: LINE=(QF,DM,2xB2,DS,PD);

P42: LINE=(PF,QD,2+B2,DM,DS);

P44: LINE=(PF,PD);

PD: LINE=(QD,2%B2,2%B1,DS);

PF: LINE=(QF,2xB1,2xB2,DS);

95

96

APPENDIX C. MAD-X EXAMPLE SEQUENCE

Appendix D

Lua AST

Chunk:

ast_id ’chunk’

block block_stmt
Block:

ast_id ’block_stmt’

. list of statements

Break:

ast_id ’break_stmt’
Goto:

ast_id ’goto_stmt’

name 'name’
Label:

ast_id ’label_stmt’

name 'name’
While:

ast_id ’while_stmt’

expr ’expr’

block ’block_stmt’

Repeat:

97

98 APPENDIX D. LUA AST

ast_id ’'repeat_stmt’
expr ’expr’
block ’block_stmt’
For:
ast_id ’for_stmt’
name ‘name’
first ’expr’
last ’expr’
step -optional- ’expr’
block ’block_stmt’
Generic for:
ast_id ’genfor_stmt’
name ‘name’
expr list of ’expr’
block ’block_stmt’
If:
ast_id ’if _stmt’
. list of ’expr’ or ’block_stmt’
Return:
ast_id 'ret_stmt’
... list of ’expr’
Assignment:
ast_id ’assign’
kind nil or ’local’
lhs
rhs
Expression:

ast_id ’expr’

... list of operator or ’expr’
Table access:
ast_id ’tblaccess’
kind ’.” or nil
lhs ’expr’
rhs ’expr’
Function call:
ast_id ’funcall’
kind ’:’ or nil
name ’expr’
arg list of ’expr’
Group expression:
ast_id ’grpexpr’
expr ’expr’
Function definition:
ast_id 'fundef’
kind ’local’ or nil
name ’expr’
selfname 'name’
param list of 'name’ or ’...
block ’block_stmt’
Table definition:
ast_id ’tbldef’
... list of 'tblfild’
Table field:
ast_id ’tblfld’
kind ’expr’ or 'name’ or nil

key ’expr’

99

100

value ’expr’
Name:

ast_id 'name’

name string
Literal:

ast_id ’literal’

value string

APPENDIX D. LUA AST

Appendix E

Lua Grammar

chunk = block

block

{stat} [retstat]

stat = ¢;7 |

varlist ‘=’ explist |

functioncall |

label |

break |

goto Name |

do block end |

while exp do block end |

repeat block until exp |

if exp then block {elseif exp then block} [else block] end |
for Name ‘=’ exp ¢,’ exp [‘,’ exp] do block end |
for namelist in explist do block end |

function funcname funcbody |

local function Name funcbody |

local namelist [‘=’ explist]

retstat = return [explist] [¢;’]

label = ¢::’ Name ‘::’

funcname = Name {¢.’ Name} [‘:’ Namel

varlist = var {¢,’ var}

var = Name | prefixexp ‘[’ exp ‘]’ | prefixexp ‘.’ Name
namelist = Name {¢,’ Name}

101

102 APPENDIX E. LUA GRAMMAR

explist = exp {‘,’ exp}

exp = nil | false | true | Number | String | ‘...’ | functiondef |
prefixexp | tableconstructor | exp binop exp | unop exp

prefixexp = var | functioncall | ‘(’ exp)’
functioncall = prefixexp args | prefixexp ¢:’ Name args
args = ‘(’ [explist] ‘)’ | tableconstructor | String
functiondef = function funcbody

funcbody = ‘(° [parlist])’ block end

parlist = namelist [‘,” “...°] | “...°

tableconstructor = ‘{’ [fieldlist] ‘}’

fieldlist = field {fieldsep field} [fieldsep]

field = ‘[’ exp ‘]’ ‘=’ exp | Name ‘=’ exp | exp

<)|¢.7

fieldsep = ¢,

binop = 42 | =2 | o0 | /| | g | Lo
{<7 I (<=; | l>; | l>=) | [g—) | C~—> I
and | or

unop = ‘=’ | not | ‘#’

References

ENREY

G. et al. Aad. “Observation of a new particle in the search for the Standard
Model Higgs boson with the {ATLAS} detector at the {LHC}”. In: Physics
Letters B 716.1 (2012), pp. 1 —29. 1sSN: 0370-2693. DOI: http://dx.doi.org/
10.1016/j . physletb.2012.08.020. URL: http://www.sciencedirect.
com/science/article/pii/S037026931200857X.

Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison Wesley, 1985.

Build Test Deploy Development Environment. URL: http://users.skynet.
be/adrias/Lua/ut/index.html (visited on 03/26/2014).

S. et al. Chatrchyan. “Observation of a new boson at a mass of 125 GeV
with the {CMS} experiment at the {LHC}”. In: Physics Letters B 716.1
(2012), pp. 30 —61. 1sSN: 0370-2693. DOI: http://dx.doi.org/10.1016/j.
physletb.2012.08.021. URL: http://www.sciencedirect.com/science/
article/pii/S0370269312008581.

Check. URL: http://check.sourceforge.net/ (visited on 03/26/2014).

Koen Claessen and John Hughes. “QuickCheck: A Lightweight Tool for Ran-
dom Testing of Haskell Programs”. In: ACM SIGPLAN Notices. ACM Press,
2000, pp. 268-279.

Laurent Deniau. MAD-X progress and future plans. 2012. URL: https://
cds.cern.ch/record/148325771n=en.

Laurent Deniau and Martin Valen. MAD Git Repository. URL: https://
github.com/ldeniau/mad.

Zachary DeVito et al. “Terra: A Multi-stage Language for High-performance
Computing”. In: Proceedings of the 34th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. PLDI "13. Seattle, Washing-
ton, USA: ACM, 2013, pp. 105-116. 1SBN: 978-1-4503-2014-6. DOI: 10.1145/
2491956.2462166. URL: http://doi.acm.org/10.1145/2491956.2462166.

Patrick Donnely. Getting Rid of Left Recursion in the Lua BNF. URL: http:
//lua.2524044 .n2 .nabble.com/getting-rid-of-left-recursion-in-
the-Lua-BNF-td5840402.html (visited on 03/26/2014).

103

104 REFERENCES

[11] Embedding scripts in executable - Mailing list. URL: http://lua.2524044 .
n2.nabble. com/Embedding-scripts-in-executable-td6838157 . html
(visited on 03,/26,/2014).

[12] Eztension for LuaJIT - Mailing list. URL: http://www . freelists.org/
post/luajit/extensions-for-luajit (visited on 03/26/2014).

[13] flex: The Fast Lexical Analyser. URL: http://flex . sourceforge . net/
(visited on 03/26/2014).

[14] Bryan Ford. “Packrat Parsing: a Practical Linear-Time Algorithm with Back-
tracking”. Master. Massachusetts Institute of Technology, 2002.

[15] Bryan Ford. “Parsing Expression Grammars: A Recognition-based Syntac-
tic Foundation”. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages. POPL ’04. Venice, Italy:
ACM, 2004, pp. 111-122. 1sBN: 1-58113-729-X. DOI: 10 . 1145 /964001 .
964011. URL: http://doi.acm.org/10.1145/964001.964011.

[16] W. Herr and F. Schmidt. A MADX Primer. 2004. URL: http://madx.web.
cern.ch/madx/doc/madx_primer.pdf0.

[17] How to compile Lua scripts into a single executable, while still gaining the
fast LuaJIT compiler? - stackoverflow. URL: http://stackoverflow.com/
questions/11317269/how-to-compile-lua-scripts-into-a-single-
executable-while-still-gaining-the-fas (visited on 03/26/2014).

[18] Roberto Ierusalimschy. “A text pattern-matching tool based on Parsing Ex-
pression Grammars”. In: Software: Practice and Ezperience 39.3 (2009), pp. 221—

258. 1SsN: 1097-024X. DOL: 10.1002/spe.892. URL: http://dx.doi.org/
10.1002/spe.892.

[19] F. Christoph Iselin. MADY user guide. 2000. URL: http://mad9.web.cern.
ch/mad9/doc/mad9_usrguide.pdf.

[20] JUnit Git Repository. URL: https://github. com/ junit-team/ junit/
downloads (visited on 03/26/2014).

[21] Jesse Lorenz. How to Write Good Unit Tests. 2009. URL: http://wiki .
developerforce.com/page/How_to_Write_Good_Unit_Tests (visited on
03/26/2014).

[22] LPEG Home Page. URL: http://www.inf .puc-rio.br/~roberto/lpeg/
(visited on 03/26/2014).

[23] LPEG Recipies. URL: http://lua-users.org/wiki/LpegRecipes (visited
on 03/26/2014).

[24] LpegLJ Git Repository. URL: https://github.com/sacek/LPegLJ (visited
on 03/26,/2014).

[25] Lua Home Page. URL: www.lua.org (visited on 03/26/2014).

[26] Lwa Lanes Project Page. URL: http://luaforge.net/projects/lanes/
(visited on 03/26/2014).

REFERENCES 105

[27] LwaJIT and large tables - Mailing list. URL: http://lua-users.org/lists/
lua-1/2010-03/msg00238.html (visited on 03/26/2014).

[28] LuwaJIT Language Toolkit Announcement Post. URL: http://www.freelists.
org/post/luajit/LuaJIT-Language-Toolkit (visited on 03/26/2014).

[29] LwaJIT Language Toolkit Git Repository. URL: https ://github . com/
franko/luajit-lang-toolkit (visited on 03/26/2014).

[30] LwaUnit. URL: http://www . gpgstudy . com/gpgiki/LualUnit (visited on
03/26/2014).

[31] lunit - Unit Testing Framework For Lua. URL: http://www .nessie.de/
mroth/lunit/ (visited on 03/26/2014).

[32] Lunit Git Repository. URL: http://repo.or.cz/w/lunit.git (visited on
03/26/2014).

[33] Sérgio Medeiros and Roberto Ierusalimschy. “A Parsing Machine for PEGs”.
In: Proceedings of the 2008 Symposium on Dynamic Languages. DLS ’08.
Paphos, Cyprus: ACM, 2008, 2:1-2:12. 1SBN: 978-1-60558-270-2. DOI: 10 .
1145/1408681 . 1408683. URL: http://doi.acm.org/10.1145/1408681 .
1408683.

[34] Sérgio Medeiros, Fabio Mascarenhas, and Roberto Ierusalimschy. “Left recur-
sion in Parsing Expression Grammars”. In: Science of Computer Program-
ming 0 (2014), pp. — 1SSN: 0167-6423. DOI: http://dx.doi.org/10.1016/
j.scico.2014.01.013. URL: http://www.sciencedirect.com/science/
article/pii/S0167642314000288.

[35] Moonscript Git Repository. URL: https://github.com/leafo/moonscript
(visited on 03/26,/2014).

[36] Moonscript Project Page. URL: http://moonscript.org/ (visited on 03/26/2014).

[37] Nyanga Git Repository. URL: https://github.com/richardhundt/nyanga
(visited on 10/01/2014).

[38] Eduardo Ochs. Angels Eqg Interactive. URL: http://angg. twu.net/LUA/
interactive.lua (visited on 03/26/2014).

[39] Mike Pall, ed. LuaJIT Home Page. URL: http://luajit.org/ (visited on
03/26/2014).

[40] James Power. “Notes on Formal Language Theory and Parsing”. In: National
University of Ireland, Maynooth, Kildare (2002).

[41] Michael Sipser. Introduction to the Theory of Computation. 2012.

[42] Terra Project Page. URL: http://terralang.org/ (visited on 03/26/2014).
[43] TestNG.URL: http://testng.org/doc/index.html (visited on 03/26,/2014).
[44] The GSL Shell Project. URL: http://www.nongnu.org/gsl-shell/ (visited

on 03/26/2014).

[45] wnittest - Unit Testing Framework. URL: http://docs . python . org/2/
library/unittest.html (visited on 03/26/2014).

106

[46]

REFERENCES

Niklaus Wirth. “What Can We Do About the Unnecessary Diversity of No-
tation for Syntactic Definitions?” In: Commun. ACM 20.11 (Nov. 1977),
pp- 822-823. 1ssN: 0001-0782. poI: 10.1145/359863 . 359883. URL: http:
//doi.acm.org/10.1145/359863.359883.

Han Zhao. “Lua Script Packaging”. In: Lua Programming Gems. Ed. by Luiz
Henrique de Figueiredo, Waldemar Celes, and Roberto Ierusalimschy. AUQ.
Rio de Janeiro: Lua.org, 2008. 1SBN: 978-85-90379-84-3. URL: http://opac.
inria.fr/record=b1130035.

