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Abstract

Offshore structures located in harsh environments may experience large wave
loads and wave-induced responses. The present thesis documents a two-
dimensional numerical investigation of interactions between fixed or floating
structures and waves. Examined scenarios include large rigid-body motions and
steep waves. The main objective of the research has been to develop an accurate
and efficient fully non-linear potential-flow method for an incompressible liquid,
and to use this in a systematic analysis to provide fundamental insight into wave-
body interaction mechanisms beyond the capability of linear and weakly non-
linear methods. Free-surface tension is neglected.

The numerical method uses the harmonic polynomial cell (HPC) method
to solve the governing Laplace equation for the velocity potential and its time
derivative. The HPC method is a field method where the entire fluid domain is
discretized by overlapping cells, and the velocity potential in each cell is rep-
resented by harmonic polynomials up to fourth order. Here, the HPC method
is proposed combined with novel features that include an immersed boundary
method where markers track the time-evolution of the free surface, and using
overlapping grids in a domain-decomposition strategy. By doing this, boundaries
with arbitrary geometries are managed straightforwardly, and the numerical dis-
cretization can be refined locally without increasing the computational cost un-
necessarily. Systematic studies are performed to validate the numerical method.
It is shown that the solver is able to accurately propagate steep waves in deep
and intermediate waters over a long time scale, and to deal with non-linear wave
phenomena in shallow water including non-linear dispersion, solitary waves and
a steep and eventually breaking focused wave. The method’s ability to deal with
local free-surface behavior close to a curved body is confirmed through studying
a circular cylinder undergoing forced heave motions in still water. Wave loads on
a fixed ship section in beam-sea incident waves show satisfactory agreement with
published reference results.

A freely floating ship-section is studied in beam-sea waves with different wave
heights. Wave-frequency motions and the mean wave drift force in sway are com-
pared with experimental, numerical and theoretical reference results. Near heave
and roll resonance, significant non-linear coupling effects are observed between
the different modes of motion. In this wave-frequency range, mean wave drift
forces larger than those predicted by second-order theory are observed. For higher
wave frequencies, on the other hand, they are lower than from second-order the-
ory. The latter is confirmed also when the body is restrained from moving. These
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Abstract

observations indicate that there are important non-linear effects, beyond the ca-
pability of second-order theory, that influence the mean wave drift force. This
has relevance for mooring analysis of ship-shaped structures exposed to waves
from the side. Contrary to claims made by other authors, the mean wave drift
force is estimated most accurately from direct pressure integration. It is found
that weakly non-linear methods based on conservation of fluid momentum, such
as Maruo’s formula, may be inaccurate and should be used with care in connec-
tion with fully non-linear wave-body interaction simulations. The results obtained
from conservation of fluid momentum without any additional assumptions are
consistent with direct pressure integration, other than when wave-frequency mo-
tions are large. It is demonstrated that the mean wave drift force is particularly
sensitive to a non-linear term in the body-boundary condition when a separate
boundary value problem is solved to estimate the time derivative of the veloc-
ity potential. Treating this term erroneously may dramatically increase the mean
wave drift force near heave and roll resonance, while wave-frequency motions
are insignificantly affected. It is questioned whether this may have contributed to
other authors claiming that direct pressure integration is inaccurate in their work.

A domain-decomposition strategy to couple the developed potential-flow
method with an existing Navier-Stokes solver based on laminar flow is proposed.
Within this framework, viscous effects can be properly accounted for where they
matter, while benefiting from the accuracy and efficiency of the potential-flow
method elsewhere. The exchange of information between the two solvers is ex-
amined for a wave-propagation case. This serves as a guidance towards future
work.
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Nomenclature

General Rules

• Only the most central symbols are listed below

• Meaning of symbols are as a minimum given when first introduced

• The same symbol is sometimes used to describe different quantities

• Vector quantities are given with bold letters

Abbreviations

2D Two-dimensional

3D Three-dimensional

ASCII American standard code for information interchange

BEM Boundary element method

BGG Background grid

BVP Boundary value problem

CFL Courant-Friedrichs-Lewy

CFM Conservation of fluid momentum

CPU Central processing unit

DD Domain decomposition

DFSC Dynamic free-surface condition

DP Dynamic positioning

DPI Direct pressure integration

FDM Finite difference method

FEM Finite element method

FPSO Floating production, storage and offloading

FSBI Free surface-body intersection

FVM Finite volume method

GPU Graphic processing unit

HPC Harmonic polynomial cell
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IBM Immersed boundary method

IBOGM Immersed boundary-overlapping grid method

KFSC Kinematic free-surface condition

LS Level set

MTF Multi-transmitting formula

NS Navier-Stokes

NWT Numerical wave tank

OG Overlapping grid

RK Runge-Kutta

UK United Kingdom

VOF Volume of fluid

Subscripts

b→ i Body-fixed to inertial

bf Body-fixed

fs Free surface

i→ b Inertial to body-fixed

n Time step number

ref Reference value

t Time derivative

wm Wavemaker

Superscripts

l Linear

n Time step number

(n) nth order

q Quadratic

Coordinate systems

Oxz Earth-fixed inertial coordinate system

oxbfzbf Body-fixed coordinate system

oxz Local cell coordinate system
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Roman letters

Aij Added mass coefficient

B Breadth of ship section

Bij Damping coefficient

c Phase speed

ci,j Element of inverse of harmonic-polynomial matrix D

Cij Stiffness coefficient

d Draught of ship section

D Cylinder diameter

E Sum of potential and kinetic energy

fj Harmonic polynomial number j

g Acceleration of gravity

h Water depth

H Wave height

Hb Breaking-wave height

Iyy Moment of inertia about y-axis

k Wave number

KE Kinetic energy

KG Vertical center of gravity from keel

L2 |L2| norm

Lbeach Length of numerical beach

Ltank Length of wave tank

M Mass

My External moment about y-axis

My,add Additional external moment about y-axis

nx Number of grid nodes in x-direction

nz Number of grid nodes in z-direction

p(x, z, t) Excess pressure P (x, z, t)–patm

P (x, z, t) Total pressure

patm Atmospheric pressure

PE Potential energy

R Cylinder radius

rwm Wavemaker ramp function

S0 Mean submerged area

SB Body boundary
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Sseabed Seabed boundary
SSF Free-surface boundary
Swall Wall boundary
swm Wavemaker motion
SWM Wavemaker boundary
t Time
T Wave period
Tramp Wavemaker ramp time
V Fluid volume

Bold Roman letters

A Global coefficient matrix
B Damping matrix
bϕ Right-hand side vector, velocity potential
bϕt

Right-hand side vector, time derivative of velocity potential
C Stiffness matrix
D Inverse of harmonic-polynomial matrix or rate-of-strain tensor
F (t) Fluid force vector
Fadd Additional external force vector
Fext Total external force vector
g Acceleration of gravity vector
i Unit vector in x-direction
I Rotational inertia matrix
j Unit vector in y-direction
k Unit vector in z-direction
M Mass matrix
M(t) Fluid moment vector
Mext Total external moment vector
n Normal vector
P Coordinates of a point P
Pfs Coordinates of a general point on the free surface
Pm Coordinates of a free-surface marker
r Vector from origin of oxbfzbf coordinate system to a point P
R Vector from origin of Oxz coordinate system to a point P
R0 Origin of oxbfzbf coordinate system
U ,v,V Velocity vector
ub Velocity vector of a fixed point in oxbfzbf coordinate system
v′ Velocity vector relative to oxbfzbf coordinate system
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Greek Letters and Mathematical Symbols

α Rotation angle about y-axis

γ Measure of cell skewness

∆t Time step

∆x Grid spacing in x-direction

∆z Grid spacing in z-direction

ζ Free-surface elevation

ζa Wave amplitude

ζc Crest amplitude

ζR Reflected-wave amplitude

ζT Transmitted-wave amplitude

ηi Motion in degree of freedom i

ηia Motion amplitude in degree of freedom i

θb(x) Envelope function, suppression of wave breaking

κ(x) Spatial ramp function

λ Wavelength

Λ Rotation matrix

µ Dynamic viscosity

µb(x) Dissipative term, suppression of wave breaking

ν Damping coefficient associated with numerical beach

ξB Non-dimensional wave frequency

ρ Mass density

ϕ Velocity potential

ϕ Vector with velocity potential in grid nodes

ϕt Eulerian time derivative of ϕ in inertial reference frame

ϕt Vector with time derivative of velocity potential in grid nodes

φ Level-set function

Φ Acceleration potential

ω Angular frequency or angular wave frequency

ω Angular velocity vector

Ω Computational domain

∂ΩD Dirichlet boundary

∂ΩN Neumann boundary
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Chapter 1

Introduction

1.1 Motivation

Floating offshore structures in harsh locations are exposed to large environmen-
tal loads from waves, wind and current. In the North Sea, for example, significant
wave heights above 15m, wind speeds above 40m/s and current speeds in the or-
der of 1.5m/smay be seen (DNV GL, 2018). Examples of relevant floating offshore
structures are given in Figure 1.1. Some of these floaters, such as semi-submersible
drilling rigs and ship-shaped or circular floating production, storage and offload-
ing (FPSO) units, have been used by the oil and gas industry for decades. More
recently, other types of structures that have traditionally been deployed in shel-
tered locations, are for various reasons moved offshore. Examples of these include
floating wind turbines and fish farms.

In order to withstand environmental loads and maintain their position, the
offshore floaters are equipped with a station-keeping system that may consist of
mooring lines, a dynamic positioning (DP) system or a combination of the two.
In order to dimension these systems, it is important that the environmental loads
are accurately estimated. The focus in the present work is on the wave action, i.e.
the loading on and response of a structure due to waves, while disregarding wind
and current loads. Depending on the type of structure, the nature of the wave
loads may vary. For a ship-shaped structure, for instance, inviscid wave loads
dominate. For a fish farm, on the other hand, the viscous drag loads on the net
structure may govern the global behaviour of the structure. In severe sea states,
the wave-induced loading on and response of a structure may display significant
non-linear behaviour. There are several types of such non-linear effects, both local
and global, that are important to take into account when designing an offshore
structure. Examples of local non-linear effects, although they may have global
consequences from a structural viewpoint, are violent wave impacts on the bow
or deck structure of a ship (Faltinsen et al., 2004), or on the columns or deck box
of a semi-submersible.

Slowly-varying wave drift loads represent non-linear global loads that are im-
portant to account for in the design of a station-keeping system. If the oscilla-
tion frequency of these loads coincides with the natural frequency of a moored

1



1. Introduction

(a) Semi-submersible (b) Circular FPSO

(c) Ship-shaped FPSO (d) Floating wind turbine

(e) Offshore fish farm

Figure 1.1: Examples of floating offshore structures taken from the follow-
ing sources: a) www.seadrill.com, b) www.sevanssp.com, c) www.bp.com,
d) www.equinor.com, e) www.nordlaks.no.

2



1.1. Motivation

structure, they may induce large slowly-varying motions leading to significant
mooring-line forces. Traditionally, slowly-varying wave drift loads are assumed
weakly non-linear and are estimated from analysis based on potential-flow per-
turbation theory where terms up to 2nd order are included, see e.g. Pinkster (1980)
and Wichers (1988). Potential-flow theory does not account for viscous effects.
However, viscous damping loads may be approximated by including additional
linear or quadratic damping, while viscous loads on mooring lines may be ap-
proximated from Morison theory. The perturbation theory assumes that the wave
height and body motions are small, and that non-linear wave drift loads can be es-
timated from truncated power series. By looking at the real scenario experienced
by a floater in a storm sea state, such as depicted in Figure 1.2, or during model
testing in a severe sea state such as in Figure 1.3, the general validity of the as-
sumptions used within this approach is not obvious.

Figure 1.2: The Maersk Gryphon FPSO during a storm. Source: www.the-
mariner.co.uk.

Figure 1.3: Model testing of a FPSO (courtesy of Sintef Ocean).

Several mooring line failures for both semi-submersibles and FPSOs in harsh
weather have been reported over the last decade at the Norwegian Continental

3



1. Introduction

Shelf (Kvitrud, 2014a,b) and in UK sector (Noble Denton Europe, 2006). In some
of the incidents it is indicated that the failure mode was mooring-line overload, i.e.
exceedance of the mooring line’s strength capacity. While there are plausible rea-
sons that could cause this, such as unintended response from a DP system leading
the floater to drive off, there are also cases where the cause of mooring-line over-
load is less obvious. A possible explanation for mooring line failures in such cases
is that the environmental loads and subsequent response were higher than the
mooring system was dimensioned to withstand. It has been questioned by e.g.
Stansberg et al. (2015) whether larger-than-anticipated wave loads contributed to
some recent mooring line failures in the North Sea. Dev and Pinkster (1995) found
that viscous effects may significantly increase the slowly-varying wave drift loads
on a semi-submersible compared to those predicted by potential-flow theory. This
observation was confirmed by Stansberg et al. (1998). Fonseca et al. (2016), Fon-
seca and Stansberg (2017b), Fonseca et al. (2017) performed systematic studies on
the wave drift loads for a semi-submersible and a FPSO. Based on extensive model
tests, they confirmed that wave drift loads may be significantly under-predicted
by state-of-the-art computational tools in severe sea states. The increase in wave
drift loads for the semi-submersible is mainly due to viscous effects, while for the
FPSO also other non-linear effects may contribute. Similarly, Aksnes et al. (2015)
found it necessary to increase the wave drift loads computed from potential-flow
perturbation theory in order to achieve reasonable comparison with model tests.
Non-linear mechanisms also influence the damping of slowly-varying motions
(Fonseca and Stansberg, 2017a). Furthermore, there is experimental evidence that,
when large waves and strong currents interact, wave drift loads are significantly
influenced (Stansberg et al., 2013).

1.2 Objective

Although many of the scenarios described above are three-dimensional (3D) by
nature, and may be influenced by viscous-flow effects, there are also mechanisms
that can be systematically investigated in a two-dimensional (2D) inviscid frame-
work. The aim of the present thesis is (1) to develop an accurate and efficient
potential-flow solver to handle severe wave-body interactions within a 2D frame-
work and (2) to provide fundamental insight into global non-linear effects beyond
the capability of linear and weakly non-linear methods. This is achieved by inves-
tigating wave-body interaction problems involving steep waves and large rigid-
body motions in a 2D numerical study. In particular, non-linear effects influencing
the mean wave drift force on a ship section in beam-sea waves are investigated
in detail. This has relevance for example for spread moored FPSOs that risk large
waves from the side because the vessel’s heading is restricted by the mooring sys-
tem.

1.3 Previous Work

The boundary element method (BEM) has historically been the most widely used
method for numerical solution of potential-flow problems involving wave-body
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interactions. Under certain assumptions, the unknown linear velocity potential
can be expressed in terms of singularities only over the mean wetted surface of
the body in an analysis using the perturbation approach (Faltinsen, 1993). Thus,
the method is attractive in that the number of unknowns is restricted. The most
widely used commercial frequency-domain codes, such as Wamit by Wamit, Inc.
and Hydrostar by Bureau Veritas, use BEM. If required, the 2nd-order velocity po-
tential can be solved for by in addition distributing singularities over the mean
free surface. Commercially available partially non-linear BEM solvers include
DNV GL Software’s Wasim and ANSYS AQWA. Here, Froude-Krylov and hy-
drostatic loads evaluated at a body’s instantaneous position are combined with
linear scattering and radiation loads. Such method can be useful e.g. to estimate
the hull-girder bending moment on a container ship in waves, as the water plane
area typically varies with the relative wave elevation. A common feature of meth-
ods based on perturbation theory and partially non-linear methods is that they are
only valid under certain assumptions. In terms of fully non-linear potential-flow
methods, the majority of work exists in the field of research. A few notable works
using BEM are mentioned in the following.

Vinje and Brevig (1981) and Dommermuth et al. (1988) performed numeri-
cal analysis of steep, overturning waves in finite water depth in 2D until the
point where the overturning wave reattaches to the underlying surface, where
potential-flow theory does not apply. Greco (2001) examined water-on-deck prob-
lems, typically relevant for FPSOs in large waves, using a BEM in 2D. You (2012)
studied wave loads on and motions of moored ships in finite water depth in a fully
non-linear numerical wave tank using a BEM in both 2D and 3D. Water entry of
2D bodies, accounting for non-viscous flow separation and hydroelastic effects,
was investigated using BEM by Sun (2007). For a comprehensive overview of the
historical development of potential-flow numerical wave tanks until the end of
the twentieth century, reference is given to Kim et al. (1999).

Also other methods have been applied to study non-linear wave and wave-
body interaction problems within the framework of potential-flow theory. A fi-
nite element method (FEM) was adopted by Wu and Eatock Taylor (1994) to solve
the Laplace equation of the velocity potential for non-linear wave propagation in
2D, and for non-linear wave-body interaction in 2D by Eatock Taylor (1996). Yan
and Ma (2007) investigated steep waves interacting with a floating body in 2D
using FEM, and later extended their work to 3D (Ma and Yan, 2009). Bingham
and Zhang (2007) investigated non-linear wave problems in 2D using finite dif-
ference methods (FDM) of different accuracy orders. A FDM was implemented in
3D by Engsig-Karup et al. (2009), showing good agreement with reference results
for steep periodic waves and for waves propagating over a shoal. Ducrozet et al.
(2010) performed an analysis involving diffraction of non-linear waves around a
bottom-mounted, upright cylinder in 3D using a FDM.

More recently, the harmonic polynomial cell (HPC) method was proposed by
Shao and Faltinsen (2012, 2014b) as an accurate and efficient numerical solver for
the Laplace equation in potential-flow problems. Although the method is rela-
tively new, it has been used by several authors for both linear and non-linear ap-
plications. The method was adopted by Liang et al. (2015) to study various prob-
lems in marine hydrodynamics, including coupling with a local solution to deal
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with singular flows at sharp corners, in 2D. Zhu et al. (2017) used the HPC method
in developing a 2D non-linear numerical wave tank, while Strand (2018) used the
method to describe the flow inside a closed, flexible fish cage. Wang and Faltinsen
(2018) used the HPC method with local grid refinement to study strongly non-
linear phenomena, including overturning waves and water entry of a wedge, in
2D. Robaux and Benoit (2018) investigated the use of the HPC method combined
with an immersed boundary method for 2D waves propagating over a submerged
cylinder. The accuracy of the HPC method in various 2D implementations was in-
vestigated in depth by Ma et al. (2018). 3D applications of the HPC method are still
limited, but Shao and Faltinsen (2014a) demonstrated its use for fully non-linear
waves, investigating the wave run-up around upright bottom-mounted cylinders
in 3D. Considering the HPC method as a measure to discretize a general field
equation, Bardazzi et al. (2015) showed how a generalized version of the HPC
method can be used to accurately solve the Poisson equation in a viscous-flow
solver. The method’s capabilities are therefore not restricted to potential flows,
and further use in connection with viscous flows is currently investigated.

While potential-flow solvers are superior in propagating waves in an accurate
and efficient manner, more computationally expensive Navier-Stokes (NS) solvers
are required to properly deal with problems involving wave breaking, fragmenta-
tion phenomena and viscous effects. To benefit from the strengths of both classes
of solvers, coupling between the two have received increased attention in the re-
search community during the last years. A strong domain-decomposition (DD)
between a non-linear BEM potential-flow solver and a level-set Navier-Stokes
(LS-NS) solver to analyze a dam-breaking problem and subsequent wave im-
pact on a vertical wall was proposed by Colicchio et al. (2006) in 2D, showing
good agreement with experiments. Kristiansen and Faltinsen (2011) used a lin-
earized potential-flow solver coupled with a NS solver to study the gap reso-
nance phenomenon in 2D, where both solvers were based on the finite volume
method (FVM). By doing so, they obtained free-surface elevations in the gap
in good agreement with experiments. Near resonance, it is well-known that the
free-surface elevation is significantly over-estimated by potential-flow theory due
to lack of viscous damping. The gap-resonance problem in 2D was again con-
sidered by Fredriksen (2015), who also took into account forward-speed effects.
In his work, the potential-flow solver was based on the HPC method. In Kris-
tiansen et al. (2015), a similar method as in Kristiansen and Faltinsen (2011) was
used in 3D to investigate the behaviour with an object inside the moonpool of a
ship. With a HPC potential-flow solver weakly coupled with the open-source NS
solver OpenFOAM, Siddiqui et al. (2018) showed good agreement between ex-
periments and simulations for the fluid flow inside a damaged ship compartment
with forced oscillatory heave motion in 2D. In this case the weak coupling scheme
was applicable because there were no incident waves.
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1.4 Present Work

1.4.1 Method and Analysis

The present research is carried out numerically and is mainly performed with
potential-flow theory, in which the water is assumed to be incompressible, invis-
cid and irrotational (Faltinsen, 1993). Surface tension is neglected. The free surface
is defined to be a single-valued function, so that overturning waves cannot be
modelled. However, these are not considered of major importance for the global
effects studied here. Since potential-flow theory is applied, viscous effects are ne-
glected, although linear and quadratic damping can be included in order to ap-
proximate viscous damping loads. This can e.g. be relevant in the case of a ship
with small bilge radius or with bilge keels, where flow separation from the bilge
may result in considerable viscous roll damping.

The HPC method is used to solve the governing equation for the velocity po-
tential and combined with a Runge-Kutta scheme for the time evolution of the
solution. In order to model the generation of steep waves by a wavemaker as well
as wave-body interactions accurately, solely using Cartesian grids with constant
geometry, the HPC method is combined with an immersed boundary method
(IBM) and with overlapping computational domains in a novel way. The latter
means that a DD approach is adopted between potential-flow solutions obtained
in different Cartesian grids using different reference frames. This is illustrated by
Figure 1.4 a) for the case of a floating body in waves. In a restricted computational
domain surrounding the body, the potential-flow solution is solved in a grid that
moves and rotates with the body using a body-fixed coordinate system. The so-
lution in this domain is coupled with the solution in a stationary background
domain that includes the majority of the water region and where the governing
equations are solved in an Earth-fixed inertial coordinate system. In this way, the
grid spacing in the two domains can be chosen individually, so that local flow
effects near the body can be accounted for in a computationally efficient manner.
A similar type of DD is used to model the wave generation by a moving wave-
maker. The resulting method has been systematically validated and verified. Sev-
eral wave-propagation problems, involving various non-linear features, are first
considered. A wave-radiation problem involving a heaving circular cylinder in
still water is thereafter investigated, where non-linearity is partly due to the non-
wall sided geometry of the structure through the waterline. Then, we consider a
wave-diffraction problem where a ship section in beam-sea waves is restrained
from moving. The non-linear features of this problem, which are also part of the
physical investigation, arise from steep waves interacting with a fixed body. Fi-
nally, the same ship section is studied as freely floating in beam-sea waves. In this
case, the non-linearities are both from the incident waves and from induced body
motions, especially near resonance conditions.

The proposed DD strategy, based on overlapping grids, can also be applied
for the coupling between the HPC potential-flow method and a Navier-Stokes
solver. This is useful for investigating the relevance of viscous-flow effects in the
wave-body interactions, and is illustrated in Figure 1.4 b). Here, a viscous-flow
solution applies in a restricted domain surrounding the body, and is coupled with
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the potential-flow solution in the background domain. When a strong coupling
is performed with another solver that has different assumptions, solution vari-
ables and numerical features, the exchanged information must be made consistent
with the receiving solver. This is a crucial challenge as reported by Colicchio et al.
(2006). In this thesis, a DD strategy using the single-phase (water) LS-NS solver
documented in Colicchio et al. (2011) is proposed, where the viscous problem is
also solved on a stationary Cartesian grid using an Earth-fixed inertial reference
frame. The LS technique is adopted to capture the free-surface deformation and
the body motions in the NS solver.

Potential flow

(body-fixed)Potential flow

(inertial)

(a) Pure potential flow

Viscous flow

(inertial)Potential flow

(inertial)

(b) Potential-viscous flow

Figure 1.4: Illustration of DD strategies to deal with wave-body interaction in the
proposed numerical method.

It is emphasized that the pure potential-flow method is used for the physical
investigations presented in this thesis. For the potential-viscous flow method, the
details of the coupling strategy are introduced, and the exchange of information
between the two solvers is examined for a simple wave-propagation case. The
objective here is to outline a solution strategy to deal with viscous effects in an
efficient manner as a basis for future work.

Whereas the present work is carried out strictly in 2D, the numerical method
is developed with future 3D applications in mind. It is anticipated that both the
immersed-boundary modelling and the overlapping between different computa-
tional domains can be extended to 3D.

1.4.2 Main Contributions

A complete list of the contributions of the present work is given towards the end
of the thesis, among which the most important are summarized below. In relation
to the numerical method, the following contributions are highlighted:
• A novel numerical solution method, combining the HPC method with an

immersed boundary method and overlapping grids has been proposed. The
method preserves the spatial accuracy of the HPC method while allowing
for local refinement of the fluid flow in wave-propagation and wave-body
interaction problems in a computationally efficient manner.

• A domain-decomposition strategy has been proposed to couple the
potential-flow solver with a Navier-Stokes solver in order to account for
localized viscous effects, where they matter, in an efficient manner. The cou-
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pling is strong and the exchange of information between the solvers is han-
dled through an overlapping zone that includes the free surface. A fully
non-linear formulation is used everywhere.

From the systematic investigation of a 2D floating body in waves, the follow-
ing main findings were made:
• Inconsistent handling of a non-linear term in the body-boundary condition

for the time derivative of the velocity potential solved through an auxiliary
hydrodynamic boundary value problem, strongly influences the mean wave
drift force when wave-frequency motions are large. The wave-frequency
motions were on the other hand insignificantly affected. This is important
to be aware of when validating and verifying similar numerical methods.

• By adding quadratic roll damping near resonance, the reduced roll motions
did not necessarily give a more linear behaviour. In particular, the relative
decrease of the 1st order sway force was stronger than that of the 2nd order
component. In general, strong coupling effects between the different modes
of motion occurred near heave and roll resonance.

• The normalized mean wave drift force near heave and roll resonance was
larger than unity, which is the maximum value predicted by 2nd order the-
ory. For higher wave frequencies, the mean wave drift force was signifi-
cantly lower than predicted by 2nd order theory, but in qualitative agree-
ment with experiments. These observations were explained by non-linear
effects.

• Contrary to statements made by other authors, the mean wave drift force
for the 2D floating body in waves was most accurately estimated from the
method of direct pressure integration. In this framework, the use of a con-
sistent formulation for the boundary value problem of the time derivative
of the velocity potential is essential. Moreover, it was seen that using weakly
non-linear methods based on conservation of fluid momentum gave inaccu-
rate estimates of the mean wave drift force. This is important to be aware of
in connection with non-linear numerical simulations.

1.4.3 Outline of the Thesis

The thesis is built up of eight chapters organized in the following way:

Chapter 1 introduces the motivation and objective of the present study. An
overview of some relevant previous works is given, and the present numerical
solution strategy is outlined.

Chapter 2 gives the theoretical background related to body-fixed reference
frames and potential-flow theory. The formulation of potential-flow problems in
inertial and body-fixed reference frames is discussed.

Chapter 3 gives a brief introduction to the HPC method, and explains in
detail the proposed numerical implementation. Techniques used to accelerate
the computational speed, including suggestions for further improvement, are
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discussed.

Chapter 4 provides validation and verification of the numerical method for
various non-linear wave-propagation problems including steep and nearly
breaking waves and shallow-water waves. A systematic investigation of the
numerical accuracy and convergence properties is presented.

Chapter 5 presents numerical results for a heaving circular cylinder in ini-
tially still water, and for periodic waves interacting with a fixed ship section.
These are considered as validation and verification studies for non-linear radia-
tion and diffraction, respectively.

Chapter 6 presents an in-depth investigation of a freely floating ship sec-
tion in beam-sea waves. Non-linear effects influencing the mean wave drift force
are emphasized. Furthermore, different methods to estimate the mean wave drift
force are investigated.

Chapter 7 proposes a domain-decomposition method to couple the potential-flow
solver with an existing viscous-flow solver. The exchange of information between
the two solvers is examined for a simple wave-propagation case.

Chapter 8 summarizes the present study and gives suggestions for further
work.

1.4.4 List of Publications

As part of this thesis, the following papers have been published:

Conference Papers

• Hanssen, F.-C. W., Greco, M., and Shao, Y.-L. (2015). The Harmonic Polyno-
mial Cell Method for Moving Bodies Immersed in a Cartesian Background
Grid. ASME 34th International Conference on Ocean, Offshore and Arctic Engi-
neering.

• Hanssen, F.-C. W., Greco, M., and Faltinsen, O. M. (2017). Wave-Body In-
teraction with Overlapping Structured Grids in the HPC Method. The 32nd
International Workshop on Water Waves and Floating Bodies.

• Hanssen, F.-C. W., Colicchio G., and Greco, M. (2019). Severe Wave-
Body Interactions: a Potential-Flow HPC Method and its Strong Domain-
Decomposition Coupling with a Level-Set Navier-Stokes Solver. The 34th In-
ternational Workshop on Water Waves and Floating Bodies.

Journal Papers

• Hanssen, F.-C., Bardazzi, A., Lugni, C., and Greco, M. (2017). Free-Surface
Tracking in 2D with the Harmonic Polynomial Cell Method: Two Alterna-
tive Strategies. International Journal for Numerical Methods in Engineering. This
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paper was awarded the Moan-Faltinsen Best Paper Award on Marine Hy-
drodynamics in 2017.

• Ma, S., Hanssen, F.-C. W., Siddiqui, M. A., Greco, M., and Faltinsen, O.
M. (2017). Local and Global Properties of the Harmonic Polynomial Cell
Method: In-Depth Analysis in Two Dimensions. International Journal for Nu-
merical Methods in Engineering.

The following co-authored paper, where a modified version of the numerical
solver developed in the present work is used, is considered as additional back-
ground:
• Tong, C., Shao, Y.-L., Hanssen, F.-C. W., Li, Y., Xie, B., and Lin, Z. (2019). Nu-

merical Analysis on the Generation, Propagation and Interaction of Solitary
Waves by a Harmonic Polynomial Cell Method. Wave Motion.
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Chapter 2

Theoretical Framework

In the following, fundamental concepts used in the numerical implementation
are introduced, starting with a dedicated explanation of the use of inertial and
body-fixed reference frames. In particular, body-fixed reference frames are used
to model the local potential flow near a moving wavemaker and rigid bodies. In
this context, it is essential to be aware of how a body-fixed reference frame dif-
fers from an inertial reference frame. This is particularly important when working
with physical laws, such as Newton’s 2nd law, that are originally formulated in the
inertial reference frame. Finally, the governing equations of potential-flow theory
are outlined.

2.1 A Note on Inertial and Non-Inertial Reference Frames

In this and the following chapter, the terms inertial coordinate system and inertial
reference frame are frequently referred to. An inertial reference frame is a non-
accelerating, non-rotating reference frame. We here take the Earth-fixed reference
frame as an inertial reference frame, because the time scale of the problems dealt
with throughout the present work is much smaller than that of the Earth’s rota-
tion (Faltinsen and Timokha, 2009). In contrast, a body-fixed reference frame is a
non-inertial, accelerated reference frame.

2.2 Body-Fixed Reference Frames

A 2D body that is free to move in all degrees of freedom in waves is considered.
As shown in Figure 2.1, an inertial Oxz coordinate system is defined with origin
in the calm free surface, and a body-fixed oxbfzbf coordinate system is defined
with origin in the body’s center of rotation. The center of rotation is here taken to
coincide with the center of gravity1. Both the Oxz and oxbfzbf coordinate systems
are right-handed, Cartesian coordinate systems. The rotation of the oxbfzbf coor-
dinate system with respect to the Oxz coordinate system is denoted by the angle
α, where α is positive for rotation in clockwise direction.

1As noted by Faltinsen and Timokha (2009), the rotational center is generally a time-dependent
quantity.
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x

z

O

Figure 2.1: Definition of inertial Oxz and body-fixed oxbfzbf coordinate systems.

A point P = (xp, zp) defined in the inertial Oxz coordinate system can be
expressed in the body-fixed coordinate system by a two-step coordinate transfor-
mation consisting of

1. a coordinate displacement, where P is expressed in a coordinate system
with origin coinciding with the oxbfzbf system but with axes parallel to the
Oxz system

2. a coordinate rotation, where the coordinates are projected onto the axes of
the body-fixed coordinate system.

In order to illustrate the latter, a situation where the origins of theOxz and oxbfzbf
systems coincide is considered. We define a rotation matrix

Λ(α) =

(
cosα sinα
−sinα cosα

)
, (2.1)

where α is a rotation given in radians and positive in clockwise direction. Then the
point with coordinates P = (xp, zp) in theOxz system has body-fixed coordinates
Pbf = (xp,bf , zp,bf ) given by

Pbf = Λi→b · P , (2.2)

where Λi→b = Λ(−α). A point Pbf = (xp,bf , zp,bf ) in the body-fixed coordinate
system correspondingly has coordinates

P = Λb→i · Pbf (2.3)

in the inertial coordinate system, where Λb→i = Λ(α).
When transforming the time derivative of a vector between inertial and non-

inertial reference frames, one must also account for the time-rate of change of the
unit vectors in the non-inertial coordinate system. Put in another way, because α
generally is a time-dependent variable, so is Λ:

Ṗ = Λb→i · Ṗbf + Λ̇b→i · Pbf . (2.4)

The overdot here means time derivative relative to the coordinate system that the
quantity is defined in, i.e. Ṗ and Ṗbf are the time derivatives of P and Pbf in
the inertial and body-fixed reference frames, respectively. In principle, the com-
ponents of a time-derivative vector may be projected along the axes of a different
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coordinate system than the reference frame in which the time derivative is taken.
This is sometimes beneficial from a practical viewpoint when working with mixed
reference frames. As an example, Λb→i · Ṗbf is a projection of Ṗbf along the axes of
the inertial coordinate system, but still a time derivative taken in the body-fixed
reference frame.

2.2.1 Notation

Working with time derivatives of vectors in a mixture of inertial and body-fixed
reference frames, as we will do in the following, it is instructional to define some
general rules of notation. With s as an arbitrary vector, which can be defined in
any coordinate system, we have that
• ds/dt is the time derivative of s in the inertial reference frame

• ṡ is the time derivative of s in the reference frame where it is defined

• a subscript bf explicitly means that the vector is projected along the axes of
the body-fixed oxbfzbf coordinate system.

It follows that if s is a vector defined in the body-fixed reference frame, s̈bf is
the double time derivative of s in the body-fixed reference frame, and with vector
components projected along the unit axes of the oxbfzbf coordinate system. We are
in principle free to project this vector onto the axes of the inertial Oxz coordinate
system, Λb→i · s̈bf , but from (2.4) it is clear that the magnitude of this vector is
not the same as the magnitude of the double time derivative of s in the inertial
reference frame.

2.2.2 Kinematics

We now consider a point P on the surface of a moving, rigid body in Figure 2.2
defined by a position vector r relative to the origin of the body-fixed oxbfzbf co-
ordinate system. The corresponding position vector in the inertial Oxz coordinate
system is

R = R0 + r, (2.5)

where R0 is the position vector of the origin of the body-fixed coordinate system.
We let the vectors R0 and r be defined in the body-fixed reference frame.

x

z

r

R0

R

P

Figure 2.2: Definition of a point P in the inertial Oxz and body-fixed oxbfzbf ref-
erence frames.
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The velocity of the point P in the inertial reference frame is obtained by taking
the time derivative of (2.5),

dR

dt
=
dR0

dt
+
dr

dt
= Ṙ0 + ṙ + ω × r, (2.6)

where Ṙ0 and ṙ are the time derivatives of R0 and r in the body-fixed reference
frame. ω is the angular velocity vector, that in the present 2D framework is given
as ω = α̇j with j the unit vector in y-direction. Obviously, the left- and right-hand
sides of (2.6) must be projected along the unit axes of the same coordinate system
in order for the relation to hold true. Note that (2.6) is only valid if the origin of
the body-fixed coordinate system coincides with the body’s center of rotation.

As explained by Faltinsen and Timokha (2009), the term ω × r is due to the
time-rate of change of axis unit vectors in the body-fixed coordinate system. This
term is related to the expression defined in (2.4) through

Λ̇b→i · s = Λb→i · (ω × s), (2.7)

with s as an arbitrary vector. This relation is given by Shao (2010), who presents
a comprehensive overview of the governing equations of rigid-body motions
described in a body-fixed reference frame. It is also useful to note that, since
ω × ω = 0 in 2D, the angular velocity is independent of reference frame.

By taking the time derivative of (2.6), the acceleration of the point P in the
inertial reference frame is found as

d2R

dt2
= R̈0 + ω × Ṙ0 + r̈ + ω̇ × r + 2ω × ṙ + ω × (ω × r), (2.8)

where ω̇ = α̈j and all the individual time derivatives on the right-hand side are
relative to the body-fixed reference frame.

If P is a fixed point on the body boundary, we have that ṙ = r̈ = 0, so that
(2.6) and (2.8) simplify to

dR

dt
= Ṙ0 + ω × r, (2.9)

d2R

dt2
= R̈0 + ω × Ṙ0 + ω̇ × r + ω × (ω × r). (2.10)

2.2.3 The Equations of Motions

The motions of a floating rigid body are governed by the body’s equations of mo-
tion. The equation of translational motion follows from Newton’s 2nd law, which
by definition is formulated in the inertial reference frame,

M · d
2R0

dt2
= Fext. (2.11)

Here, M is the mass matrix with by the body’s mass M along its diagonal as the
only non-zero elements, Fext is the external force vector, which is the sum of all
loads acting on the body including its weight, and d2R0/dt

2 is the acceleration of
the center of gravity in the inertial reference frame.
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Now we instead let the position of the body’s center of gravity, which coincides
with the origin of the body-fixed coordinate system, be defined in the body-fixed
reference frame as R0,bf . By using (2.10), and noting that r = 0, the equation of
translational motion written in the body-fixed reference frame is

M · (R̈0,bf + ω × Ṙ0,bf ) = Fext,bf . (2.12)

Ṙ0,bf is here the body’s translational velocity in the body-fixed reference frame,
equal to the inertial-reference frame velocity projected along the axes of the body-
fixed coordinate system. The body’s translational acceleration in the body-fixed
reference frame, R̈0,bf , is the time derivative of Ṙ0,bf estimated in the body-fixed
reference frame. Fext,bf is the external force vector projected along the axes of the
body-fixed reference, i.e. Fext,bf = Λi→b · Fext.

The equation of rotational motion follows from Euler’s law of angular motion,
which states that the change of angular momentum of a body in the inertial refer-
ence frame is equal to the external moments acting on it. Defining the rotational
inertia matrix as I and the total external moment vector as Mext, this is written as

I · ω̇ + ω × (I · ω) = Mext. (2.13)

In 3D, the term ω × (I · ω) means that the body has a time-varying inertia, repre-
senting a challenge in numerical simulations. It was shown by Shao (2010) that
instead formulating the problem in the body-fixed reference frame, this time-
dependence is avoided. In 2D, the inertia matrix is reduced to an inertia vector
I = Iyyj, where Iyy is the body’s moment of inertia about the y-axis. Further-
more, it was noted in Section 2.2.2 that ω×ω = 0, and consequently the equation
of rotational motion in 2D simplifies to

Iyyω̇ = Mext. (2.14)

Here, Mext = Myj with My the total external moment on the body about the
y-axis. (2.14) applies irrespective of reference frame.

2.2.4 Time Derivatives of Scalar Quantities

Thus far we have discussed how velocity and acceleration vectors in an inertial
and a body-fixed reference frame are related. However, as explained by Faltinsen
and Timokha (2009), care must also be taken for time derivatives of scalar quanti-
ties. We consider a general, time-dependent scalar quantity q and define DBO/Dt
as the time derivative performed following the rigid-body motions. DBO/Dt
therefore corresponds to a Lagrangian-type time derivative in the inertial refer-
ence frame and to an Eulerian time derivative in the body-fixed reference frame.
The time derivative of q in a point fixed in the body-fixed coordinate system and
with position vector r is then given as

DBOq

Dt
=
∂q

∂t
+ (Ṙ0 + ω × r) · ∇q, (2.15)

where ∂q/∂t is the Eulerian time derivative of q, i.e. the time derivative of q in a
fixed point in the inertial coordinate system. This relation plays a central role in
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the implicit coupling of potential-flow variables between computational regions
modelled in different reference frames in a domain decomposition, as well as in
computing the fluid pressure in the body-fixed reference frame.

2.3 Potential-Flow Theory

The full theory of potential flow is outlined in e.g. the textbooks by Newman
(1977) and Faltinsen (1993). Here we only repeat the most fundamental relations,
before focusing in more detail on aspects that are relevant for the fully non-linear
numerical implementation deployed in the present work.

2.3.1 Fundamentals

For an incompressible fluid, the continuity equation can be written as

∇ · V = 0, (2.16)

where V is the fluid velocity vector. If the fluid in addition is inviscid and irrota-
tional, the velocity field can be described as the gradient of a velocity potential ϕ.
In a 2D problem with principal axes x and z, we may thus write the fluid velocity
vector as

V (x, z, t) = ∇ϕ(x, z, t). (2.17)

Inserting (2.17) into (2.16) we get the Laplace equation for the velocity potential,

∇2ϕ(x, z, t) = 0. (2.18)

This equation is the governing equation to be solved in a potential-flow problem,
and is valid in both an inertial and non-inertial reference frame.

2.3.2 Fluid Pressure

In the inertial reference frame, the total pressure P (x, z, t) in any point in the fluid
is given by the Bernoulli equation as

P (x, z, t) + ρ(
∂ϕ

∂t
+

1

2
|∇ϕ|2 + gz) = C(t), (2.19)

where g is the acceleration of gravity, ρ is the water density and z is the vertical
coordinate in the inertialOxz coordinate system and positive in upward direction.
Throughout the present work, z is defined with origin in the still water line (as
indicated in Figure 2.1). By setting the constant C(t) equal to the atmospheric
pressure patm, the excess pressure relative to the atmospheric pressure becomes

p(x, z, t) = P (x, z, t)− patm = −ρ(
∂ϕ

∂t
+

1

2
|∇ϕ|2 + gz). (2.20)

From (2.15) it follows that the fluid pressure evaluated in a body-fixed refer-
ence frame is

p(xbf , zbf , t) = −ρ(
DBOϕ

Dt
− ub · ∇ϕ+

1

2
|∇ϕ|2 + gz) (2.21)
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with ub = Ṙ0 + ω × r and r = (xbf , zbf ). It is noted that z in the right-hand side
of (2.21) is the vertical coordinate in the inertial reference frame.

2.3.3 Boundary Value Problem for ϕ

The Laplace equation (2.18) can be solved mathematically by specifying a set of
appropriate conditions along the boundaries of the fluid domain. Formally, the
boundary value problem (BVP) can be stated as

∇2ϕ = 0 in Ω
ϕ = ϕ∂Ω on ∂ΩD
∂ϕ
∂n = ∂ϕ

∂n ∂Ω
on ∂ΩN

, (2.22)

where ϕ∂Ω refers to specified values of ϕ on Dirichlet boundaries ∂ΩD and
∂ϕ/∂n∂Ω refers to specified values of the normal derivative of ϕ on Neumann
boundaries ∂ΩN . Figure 2.3 illustrates the fluid domain Ω for the case of a floating
body with Dirichlet boundaries consisting of the free surface SSF and Neumann
boundaries consisting of the body boundary SB , the sea bed SSeabed, the vertical
side walls SWall and the wavemaker SWM . The specific boundary conditions on
each of these boundaries are outlined below.

SSeabed

SB

SSF SSF

SWall

SWall

SWM
n

Ω

Figure 2.3: Fluid domain Ω for velocity-potential BVP bounded by the free surface
SSF , body boundary SB , sea bed SSeabed, vertical tank walls SWall and wave-
maker SWM . The normal vector n is positive pointing into Ω.

Free-Surface Boundary Conditions

Along SSF , the dynamic free-surface condition (DFSC) follows from requiring
the pressure to be equal to the atmospheric pressure 2, and the kinematic free-
surface condition (KFSC) follows from requiring that a fluid particle on the free
surface remains on the free surface. The free-surface elevation is denoted ζ, so
that the coordinates of a point on the free surface are given by (x, ζ(x, t)) in the
inertial reference frame. Furthermore, we define the Lagrangian time derivative
δ/δt = ∂/∂t+ v · ∇ to express the free-surface boundary conditions in the inertial

2Assuming that the effect of surface tension is negligible (Faltinsen and Timokha, 2009)
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reference frame as

δϕ

δt
= −1

2
|∇ϕ|2 − gz + v · ∇ϕ− ν(x, t)(ϕ− ϕref )

δζ

δt
=
∂ϕ

∂z
+ (v −∇ϕ) · ∇ζ − ν(x, t)(ζ − ζref )

on SSF . (2.23)

Choosing the velocity v as v = 0 corresponds to an Eulerian description, v = ∇ϕ
corresponds to a fully Lagrangian description and v = (0, ∂ζ/∂t) corresponds to
a semi-Lagrangian description.

Similarly, the free-surface conditions may be formulated in the body-fixed ref-
erence frame as

δ′ϕ

δ′t
= −1

2
|∇ϕ|2 − gz + (ub + v′) · ∇ϕ− ν(x, t)(ϕ− ϕref )

δ′ζ

δ′t
= (

∂ϕ

∂z
− ub · k) + (ub + v′ −∇ϕ) · ∇ζ − ν(x, t)(ζ − ζref )

on SSF , (2.24)

where δ′/δ′t is defined as DBO/Dt + v′ · ∇ with DBO/Dt defined in (2.15), ub is
defined in connection with (2.21) and v′ is a velocity relative to the body-fixed
coordinate system. In particular, choosing v′ = 0 leads to an Eulerian formulation
for a fixed point in the body-fixed coordinate system, while v′ = (0, δ′ζ/δ′t) leads
to a semi-Lagrangian formulation in the body-fixed reference frame. (∂ϕ/∂z−ub ·
k) is a fluid velocity relative to the moving body-fixed reference frame in the same
direction as k, where k is the unit vector in z-direction. (2.24) can in principle
be specified with ζ and vectors projected along the axes of either the inertial or
body-fixed coordinate system. In practice, however, it is natural to use the latter
formulation as will be done in (3.15) in Section 3.2.1.

In a fully Lagrangian description, the formulation in the inertial reference
frame in (2.23) is generally more practical than a body-fixed formulation. A fur-
ther discussion of the latter is thus omitted.

ν(x, t) in (2.23) and (2.24) is a damping coefficient associated with dissipation
zones towards the ends of the domain, and is therefore zero elsewhere. ϕref and
ζref are reference values for the velocity potential and wave elevation, respec-
tively. These will be discussed later.

The DFSC and KFSC are used in a time-marching scheme to update respec-
tively the position of, and velocity potential on, the free surface. The latter is im-
posed as a Dirichlet condition in the BVP for ϕ.

Neumann Boundary Conditions

Along Neumann boundaries, the following impermeability condition is set for the
normal velocity ∂ϕ/∂n:

∇ϕ · n = U · n on {SB , SSeabed, SWall, SWM}. (2.25)

Here, n is the normal vector defined in Figure 2.3. The velocity of the boundary
U is zero along SSeabed and SWall. The boundary condition in (2.25) applies in
both the inertial and body-fixed reference frames, with vectors and the gradient
operator decomposed along the same unit axes.
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2.3.4 Boundary Value Problem for Time Derivative of ϕ

In order to evaluate the fluid pressure from the Bernoulli equation, the term ∂ϕ/∂t
in (2.20), or equivalently DBOϕ/Dt in (2.21), must be obtained. The most straight-
forward way to do this is through a finite difference method. Although this strictly
speaking is a numerical technique, it is instructive to discuss it in the present the-
oretical context. If we consider two consecutive time instances t and t + ∆t, a 1st

order backward finite-difference estimate for the time derivative of ϕ in the iner-
tial reference frame is

∂ϕ

∂t
≈ ϕ(x, z, t+ ∆t)− ϕ(x, z, t)

∆t
, (2.26)

or in the body-fixed reference frame,

DBOϕ

Dt
≈ ϕ(xbf , zbf , t+ ∆t)− ϕ(xbf , zbf , t)

∆t
. (2.27)

Higher-order backward finite-difference schemes can be constructed by using
information from numerous consecutive time instances. However, as shown by
Hanssen et al. (2015), such finite-difference schemes may produce spurious tem-
poral oscillations in the fluid pressure and hence in the fluid loads on a body. In an
immersed boundary method, these spurious oscillations are in particular related
to grid nodes going in and out of the fluid domain due to rigid-body motions or
free-surface deformations.

Alternatively, an auxiliary BVP can be formulated for the time derivative of ϕ.
This method is adopted by e.g. Tanizawa (1995), Greco (2001), Koo and Kim (2004)
and Sun (2007), to name a few, and is usually considered more accurate than the
finite-difference approach. Moreover, it generally removes the risk of spurious
pressure oscillations. The basis of the method lies in recognizing that the partial
time derivative of the velocity potential, ∂ϕ/∂t ≡ ϕt, satisfies a Laplace equation
similar to (2.18), i.e.

∇2ϕt(x, z, t) = 0. (2.28)

By imposing appropriate Dirichlet and Neumann conditions, a BVP similar to
(2.22) may thus be solved to obtain the ϕt field in the fluid. Furthermore, it is
demonstrated by Greco (2001) that also DBOϕ/Dt satisfies the Laplace equation
and can be obtained from such auxiliary BVP. This means that the equation (2.28)
can conveniently be solved for ϕt in the Earth-fixed inertial reference frame and
for DBOϕ/Dt in the body-fixed reference frame.

The appropriate boundary conditions for the BVP to be solved for the time
derivative of ϕ are described in the following. Although elaborated more later on,
it is noted that in the domain-decomposition method used in the present work,
the choice of time derivative of ϕ solved for differs depending on reference frame.

Free-Surface Boundary Conditions

From Section 2.3.3 we have that the partial time derivative can be expressed as
∂/∂t = δ/δt − v · ∇. Combining this with the DFSC in (2.23), the free-surface
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boundary condition for ϕt becomes

∂ϕ

∂t
= −1

2
|∇ϕ|2 − gz − ν(x, t)(ϕ− ϕref ) on SSF . (2.29)

In the body-fixed reference frame, the equivalent boundary condition is

DBOϕ

Dt
= −1

2
|∇ϕ|2 − gz + ub · ∇ϕ− ν(x, t)(ϕ− ϕref ) on SSF . (2.30)

Neumann Boundary Conditions in the Inertial Reference Frame

To obtain the appropriate Neumann boundary conditions in the inertial reference
frame, we take the Eulerian time derivative of (2.25):

∂∇ϕ
∂t
· n +∇ϕ · ∂n

∂t
=
∂U

∂t
· n + U · ∂n

∂t
. (2.31)

Since the boundaries SB and SWM in Figure 2.3 are handled in body-fixed ref-
erence frames, (2.31) is only relevant for the stationary boundaries SSeabed and
SWall. Here, both U and ∂n/∂t are zero, so that the boundary condition reduces
to

∇ϕt · n = 0 on {SSeabed, SWall}. (2.32)

In (2.32) we have used that ∂(∇ϕ)/∂t = ∇(∂ϕ/∂t).

Neumann Boundary Conditions in Body-Fixed Reference Frames

We consider two types of body-fixed reference frames; one is the reference frame
that follows the motion of the wavemaker, and the other is the reference frame that
follows the motion of a rigid body. Figure 2.4 shows the two body-fixed coordinate
systems with origin in the pivot point of the wavemaker and in the body’s center
of gravity, respectively. For sake of convenience, we hereafter refer to both the
wavemaker and the rigid body simply as body, since their boundary conditions
are similar.

Figure 2.4: Body-fixed coordinate systems on body boundary SB and wavemaker
SWM . The normal vector n is positive pointing into the fluid.

The velocity U in a point on the body is given as Ṙ0+ω×r, where r is a vector
from the origin of the body-fixed coordinate system to the point. We now take the
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time derivative following the motion of the body,DBO/Dt, of (2.25) written in the
body-fixed reference frame:

DBO∇ϕ
Dt

· n +∇ϕ · DBOn

Dt
=
DBOU

Dt
· n + U · DBOn

Dt
. (2.33)

The normal vector n is constant in the body-fixed reference frame, and (2.33) can
thus be written out as

DBO∇ϕ
Dt

· n =
DBO(Ṙ0 + ω × r)

Dt
· n. (2.34)

It was explained in Section 2.2.2 that ω× terms are related to the time-rate of
change of unit vectors in the body-fixed coordinate system seen by an observer
in the inertial reference frame. For an observer in the body-fixed reference frame,
however, these unit vectors are constant. Thus, ω× terms do not apply for the
left-hand side of (2.34). The final version of (2.34), that is imposed as Neumann
condition in the body-fixed reference frame along SB and SWM , thus reads

∇DBOϕ

Dt
· n = (R̈0 + ω̇ × r) · n on {SB , SWM}. (2.35)

The change of operators from DBO(∇ϕ)/Dt to ∇(DBOϕ/Dt) is discussed in Ap-
pendix A.

Several different formulations of the body-boundary condition used in the
BVP for the time derivative of ϕ can be found in the literature, see e.g. the com-
prehensive comparison done by Bandyk and Beck (2011). As it will be shown in
Chapter 6, the way in which this boundary condition is imposed may in particular
have a significant effect on mean wave drift loads when ω is large.

2.4 Summary

Key aspects for body-fixed reference frames have been introduced, with particular
focus on time derivatives of vector and scalar quantities. A brief introduction to
potential-flow theory was given, before formally stating the boundary value prob-
lems to be solved for the velocity potential ϕ, as well as for the time derivative of
ϕ. The latter is required in order to evaluate the fluid pressure.

The theoretical framework introduced here is used as basis for the numerical
implementation described in the next chapter.
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Chapter 3

Numerical Implementation

In the previous chapter, theoretical aspects related to the use of inertial and body-
fixed reference frames and the formulation of the hydrodynamic boundary value
problems (BVP) of potential-flow theory were stated. We now proceed to use these
in the implementation of a fully non-linear numerical wave tank (NWT) in 2D.

The harmonic polynomial cell (HPC) method, that is used as a solver for
the potential-flow BVPs, is first introduced. It is shown how the HPC method
is implemented together with two modelling concepts, namely treating moving
boundaries as immersed boundaries, and using overlapping grids in a domain-
decomposition strategy. These two represent novel applications of the HPC
method, making it versatile in dealing with arbitrary boundary geometries and
refining the numerical solution locally without deforming the computational grid.
The objective of introducing these concepts is to obtain a numerical method that is
accurate yet efficient. The computational efficiency of any numerical method is a
major factor affecting its practical relevance, and is thus addressed in a dedicated
section. Suggestions for future enhancement of the computational efficiency are
given.

3.1 The Harmonic Polynomial Cell Method

The harmonic polynomial cell (HPC) method was proposed by Shao and Faltin-
sen (2012, 2014b) as an accurate and efficient numerical method for the Laplace
equation in potential-flow problems. We here use their formulation, denoted as
the classical formulation, in 2D. This is explained in the following.

3.1.1 The Classical Formulation of the HPC Method in 2D

In contrast with the more traditional boundary element method (BEM), where
only boundaries are discretized, the HPC method is a field method where the
entire computational domain is discretized. The domain is divided into overlap-
ping, quadrilateral cells as shown in Figure 3.1, where also an arbitrary located
global Oxz coordinate system, that can be either inertial or non-inertial, is indi-
cated. Each cell is made up of eight nodes along its boundaries, where the global
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horizontal and vertical indices of a node are denoted (i, k). Each cell has a local
cell-fixed coordinate system oxz with origin in the interior node, which is a bound-
ary node in any of the eight overlapping cells. We here consider that the axes of
the oxz and Oxz systems are parallel, i.e. we operate with a Cartesian grid.

(i,k)(i-1,k)(i-2,k) (i+1,k) (i+2,k)

(i,k+1)(i-1,k+1)(i-2,k+1) (i+1,k+1) (i+2,k+1)

(i,k+2)(i-1,k+2)(i-2,k+2) (i+1,k+2) (i+2,k+2)

(i,k-1)(i-1,k-1)(i-2,k-1) (i+1,k-1) (i+2,k-1)

(i,k-2)(i-1,k-2)(i-2,k-2) (i+1,k-2) (i+2,k-2)

(i+3,k)

(i+3,k+1)

(i+3,k+2)

(i+3,k-1)

(i+3,k-2)

x

z

z

x
_

_

Figure 3.1: HPC grid consisting of nodes with global indices (i, k) and overlapping
cells. Each cell has a local cell-fixed coordinate system oxz. Oxz is an arbitrary
global coordinate system.

Figure 3.2 shows a square, quadrilateral cell, where the boundary nodes are
given local indices 1 − 8. The interior node has local node index 9, and its global
position is given as P9 = (x9, z9). For any point P within the cell with global
coordinates P = (xP , zP ), the local coordinates P = (xP , zP ) in the cell-fixed
coordinate system are given as P = P − P9.

Everywhere inside a cell, the velocity potential is represented as a linear com-
bination of the velocity potentials in the boundary nodes, ϕi, i = 1, ..., 8,

ϕ (x, z) =

8∑
i=1

 8∑
j=1

cj,ifj (x, z)

ϕi. (3.1)

The fluid velocity vector is given as the gradient of (3.1),

∇ϕ (x, z) =

8∑
i=1

 8∑
j=1

cj,i∇fj (x, z)

ϕi. (3.2)
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1 2 3

4 9 5

6 7 8

z
_

x
_

Δz

Δz

ΔxΔx

P

Figure 3.2: A square, quadrilateral cell with grid spacing ∆x and ∆z in x and z
direction, respectively. The eight boundary nodes have local indices 1 − 8, and a
local cell-fixed coordinate system oxz is defined with origin in the interior node
with local index 9.

Here, fj(x, z) is either the real or imaginary part of the complex nth order har-
monic polynomial (x + iz)n with i =

√
−1. cj,i is an element of the inverse of the

matrix D with elements di,j = fj(xi, zi), where (xi, zi) are the coordinates of the
ith boundary node. Because the harmonic polynomials satisfy the Laplace equa-
tion (2.18), so does automatically the velocity potential expressed through (3.1).

The same set of harmonic polynomials as used by Shao and Faltinsen (2012)
are chosen. These are listed in Table 3.1, representing the complete set of harmonic
polynomials up to 3rd order, and an incomplete set up to 4th order. Because of
this, we can expect the expression (3.1) to have between 3rd and 4th order spatial
accuracy. The expected spatial accuracy of the fluid velocity ∇ϕ in (3.2) is one
order lower than that of ϕ. The choice of harmonic polynomials to be included is
investigated by Ma et al. (2018), where it is concluded that the present set is the
best choice for an eight-node cell.

Table 3.1: List of harmonic polynomials fj(x, z) defined by the real and imaginary
parts of (x+ iz)n.

n Real part Imaginary part
0 f1(x, z) = 1
1 f2(x, z) = x f3(x, z) = z
2 f4(x, z) = x2 − z2 f5(x, z) = xz
3 f6(x, z) = x3 − 3xz2 f7(x, z) = 3x2z − z3

4 f8(x, z) = x4 − 6x2z2 + z4

It is clear from Table 3.1 that in the origin of the local cell-fixed coordinate
system, where (x, z) = (0, 0), all the polynomials other than f1 are zero. Applying
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(3.1), the velocity potential in the interior cell node is thus expressed as

ϕ9 = ϕ (x9, z9) =

8∑
i=1

c1,iϕi. (3.3)

The expression in (3.3) can be regarded as a connectivity equation that ensures
communication between the overlapping cells in the grid.

For the BVP of the Eulerian time derivative of ϕ described in Section 2.3.4,
we take the time derivative of (3.1), (3.2) and (3.3). By noting that the harmonic
polynomials fj(x, z) are independent of time, the corresponding time derivatives
in the inertial reference frame are

ϕt (x, z) =

8∑
i=1

 8∑
j=1

cj,ifj (x, z)

ϕt,i, (3.4)

∇ϕt (x, z) =

8∑
i=1

 8∑
j=1

cj,i∇fj (x, z)

ϕt,i (3.5)

and

ϕt,9 = ϕt (x9, z9) =

8∑
i=1

c1,iϕt,i. (3.6)

ϕt,i is here the Eulerian time derivative of the velocity potential in the ith bound-
ary node.

3.1.2 Formulation in a Body-Fixed Reference Frame

Figure 3.3 shows a HPC grid with quadrilateral, square cells defined in a body-
fixed oxbfzbf coordinate system that is generally not aligned with the inertial Oxz
coordinate system. If we now consider an arbitrary point P with body-fixed co-
ordinates Pbf = (xp,bf , zp,bf ) within the highlighted cell, its coordinates in the
cell-fixed oxz system are given as P = Pbf − P9,bf with P9,bf = (x9,bf , z9,bf )
the coordinates of the interior cell node in the body-fixed coordinate system. This
relation implies that oxz and oxbfzbf are parallel coordinate systems.

It follows that (3.1) for the velocity potential, (3.2) for the fluid velocity vec-
tor and the connectivity equation (3.3) apply directly in the body-fixed reference
frame. Some special considerations necessary for taking the time derivatives of
these expressions are discussed next.

Time Derivative of ϕ in a Body-Fixed Reference Frame

The time derivative DBO/Dt of a scalar quantity estimated in a point fixed in
the body-fixed reference frame follows from (2.15). Applying this on both sides
of (3.1), written for a cell defined in, and moving with, the body-fixed coordinate
system, gives

DBOϕ(x, z)

Dt
=

8∑
i=1

 8∑
j=1

cj,ifj (x, z)

 DBOϕi
Dt

, (3.7)
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x

z

Figure 3.3: HPC grid in a body-fixed reference frame. Three coordinate systems are
shown; an inertial Oxz system, a body-fixed oxbfzbf system and a cell-fixed oxz
system. The cell-fixed coordinate system follows the motion of the cell’s internal
node, as well as the cell’s rotation.

where DBOϕi/Dt is the time derivative of the velocity potential in the ith bound-
ary node of the cell. It is noted that DBOfj/Dt is zero, since (x, z) is a fixed point
in the body-fixed coordinate system.

The time derivative of the fluid velocity vector (3.2) can be evaluated as

DBO∇ϕ(x, z)

Dt
= ∇DBOϕ(x, z)

Dt
=

8∑
i=1

 8∑
j=1

cj,i∇fj (x, z)

 DBOϕi
Dt

, (3.8)

which is further elaborated in Appendix A.
It follows from (3.7) that the time derivative of the connectivity equation (3.3)

in the body-fixed reference frame is

DBOϕ9

Dt
=
DBOϕ(x9, z9)

Dt
=

8∑
i=1

c1,i
DBOϕi
Dt

. (3.9)

Equations (3.7), (3.8) and (3.9) are sufficient to enforce boundary conditions
and continuity of the solution through the domain in a pure body-fixed formula-
tion. However, in coupling the solution between domains, where the solution is
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defined in a mixture of inertial and body-fixed reference frames, it is necessary to
relate the time derivative in a fixed point in the body-fixed reference frame and
the corresponding Eulerian time derivative in the inertial reference frame. This is
done through

DBOϕ(x, z)

Dt
=

8∑
i=1

 8∑
j=1

cj,ifj (x, z)

ϕt,i+
ub·

8∑
i=1

 8∑
j=1

cj,i∇fj (x, z)

ϕi,
(3.10)

where ub is the rigid-body velocity of the point due to the motion of the body-
fixed coordinate system. Similarly, the Eulerian time derivative in the inertial ref-
erence frame is expressed as

∂ϕ(x, z)

∂t
=

8∑
i=1

 8∑
j=1

cj,ifj (x, z)

 DBOϕi
Dt

−

ub·
8∑
i=1

 8∑
j=1

cj,i∇fj (x, z)

ϕi.
(3.11)

Equations (3.10) and (3.11) are both required in a two-way coupling.

3.1.3 Algebraic Equation System

The hydrodynamic BVP of the velocity potential in Section 2.3.3 is established
by using (3.1) and (3.2) to enforce the boundary conditions and (3.3) to enforce
continuity through the fluid domain. This results in a global, algebraic equation
system in the form

A ·ϕ = bϕ. (3.12)

Here, A is a global coefficient matrix, ϕ is a vector that contains the velocity poten-
tial of all grid nodes in the computational domain and bϕ is a vector with bound-
ary conditions. A is generally sparse with nine or less non-zero entries in each row
distributed along the main diagonal. Rows with some off-diagonal entries may oc-
cur when different computational regions are coupled within a DD approach. The
matrix is however still essentially diagonally dominated.

Similarly, equations (3.4) - (3.6) for ∂ϕ/∂t, and equations (3.7) - (3.9) for
DBOϕ/Dt, are used to establish an algebraic equation system for the BVP of the
time derivative of the velocity potential constituted in Section 2.3.4 in the form

A ·ϕt = bϕt . (3.13)

Here, bϕt is a vector that contains the fixed-point time derivative of the velocity
potential in all grid nodes in the computational domain. For a node defined in
the inertial reference frame, the corresponding vector entry is the Eulerian time
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derivative (∂ϕ/∂t), and for a node defined in a body-fixed reference frame, it is
the time derivative following the motion of the body (DBOϕ/Dt). As explained
in Section 2.3.2, this difference is important to be aware of when evaluating the
pressure from the Bernoulli equation, defined in the inertial reference frame in
expression (2.20) and in the body-fixed reference frame in (2.21).

The coefficient matrix A in (3.13) is the same as in (3.12), which means that the
computational effort in establishing (3.13) is restricted to populating the appro-
priate boundary-condition vector bϕt .

3.2 Potential-Flow Solver based on the HPC Method

Wave-propagation and wave-body interaction problems involve boundaries that
vary with time. These boundaries may have complex shapes and represent a chal-
lenge with respect to modelling, accuracy and computational efficiency of a nu-
merical solution. The main goal here is to develop a method that enables mod-
elling of arbitrary geometries while preserving numerical accuracy and efficiency
within the framework of the HPC method.

Previous numerical implementations of the HPC method for non-linear wave
problems by e.g. Shao and Faltinsen (2012, 2014a) apply surface-fitted grids,
where the grid is stretched in vertical direction to conform with the deformation
of the free surface. In wave-body interaction problems, where a body with arbi-
trary geometry may undergo large motions, it remains a challenge to deform the
grid in a rational manner. It is foreseen that algorithms required to deform the
grid increase the overall computational cost. Moreover, it means that the matri-
ces D defined in Section 3.1.1 have to be built and inverted every time a cell is
deformed. The cost of doing this for a single cell is small, but if the number of
deforming cells is large, the total computational cost is still significant. Ma et al.
(2018) showed that using cells with a high degree of distortion, either in terms of
stretching or skewness, in the HPC method is penalized by a significant loss in
numerical accuracy. Figure 3.4 illustrates the numerical error of ϕ and the com-
ponents of ∇ϕ inside a single HPC cell subject to boundary conditions from an
analytical solution that depends on both x and z. One finds that the highest ac-
curacy is generally achieved when the cell is square or close to square, and that
the accuracy in the HPC method is more sensitive to the cell geometry than e.g.
the finite difference method (FDM). For further details regarding the analytical
solution and an extended discussion of the HPC method’s accuracy, reference is
made to Ma et al. (2018). Experience made throughout the present work confirms
that the risk of numerical instabilities developing in a time-integration scheme
increases when the HPC cells are stretched.

To avoid the challenges related to boundary-fitted grids, and to be able to use
grids with favourable cell shapes, we propose an immersed boundary method
(IBM) to account for free-surface deformations and body motions. Combining the
HPC method with an IBM was first attempted by Hanssen et al. (2015) to study
the flow around a fixed and moving circular cylinder in uniform flow. The IBM
used here is an enhanced version of that.

In certain fluid regions, it is necessary to refine the computational domain due
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Figure 3.4: Numerical errors of ϕ and the components of ∇ϕ relative to an ana-
lytical solution in the center of a single cell documented by Ma et al. (2018). The
errors are plotted as functions of the stretching, measured as the ratio between the
horizontal and vertical grid spacing, and the skewness, measured by the angle γ
between the vertical coordinate axis and the lateral cell boundaries. The results
from a standard FDM are included for reference.

to e.g. large body motions or free-surface deformations, curvature in the body ge-
ometry or large changes of the velocity vectors. In order to allow for such local
refinement, without compromising the square-like shape of grid cells and with-
out increasing the number of total grid cells unnecessarily, the idea of overlapping
grids is adopted. This, along with the use of the IBM, is considered a novel appli-
cation of the HPC method. The body-fixed grids are used to model a physical
wavemaker and to model fixed or moving rigid bodies in the NWT. The govern-
ing equations in these regions are implemented in body-fixed reference frames.
In doing this, the geometries of the body-fixed grids are constant in their respec-
tive body-fixed coordinate systems. These grids overlap with a fixed background
grid that is defined in an inertial, Earth-fixed coordinate system. As it will be ex-
plained, due to the fact that the HPC method is formulated as an interpolation
method with smoothly varying coefficients, the exchange of information between
the different domains becomes natural.

Hereafter, we refer to the method combining the IBM with overlapping grids
as an IBOGM (immersed boundary-overlapping grid method). A principal sketch
of the computational domain for a general scenario with a flap-type wavemaker to
generate propagating waves and a floating body in the tank is shown in Figure 3.5.

Since the free surface and rigid bodies are modelled as immersed boundaries,
the instantaneous computational domain at any time is a subset of the total grid,
with the remaining part of the grid denoted as inactive. The inactive region in-
cludes the parts of the background grid that are well inside any of the overlap-
ping, body-fixed grids. The main steps of the IBOGM can be summarized as fol-
lows:
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3.2. Potential-Flow Solver based on the HPC Method

Figure 3.5: Principal sketch of computational domain used in the IBOGM consist-
ing of a background grid and overlapping grids that move with the motion of the
wavemaker and of a generic floating body, respectively.

1. At the start of a simulation, the background grid and the overlapping grids
are generated in their respective coordinate systems, where the grids are
structured and Cartesian.

2. The local HPC matrices D are computed for all cells in all grids and stored
in memory. Since the grids remain constant in the coordinate systems where
they are defined, these local matrices never need to be re-calculated.

3. The cells that belong to the instantaneous computational domain are identi-
fied.

4. The hydrodynamic BVPs are established and solved for ϕ and its time
derivative in the instantaneous computational domain.

5. The solution is evolved forward in time.
Steps 1-2 are part of initialization and only performed once, while steps 3-5 are
repeated until the end of the simulation.

In the following sections, the implementation of the hydrodynamic BVPs of
ϕ and its time derivative outlined in Sections 2.3.3 and 2.3.4 is described in more
detail. The modelling of a free surface and a body boundary are discussed sep-
arately, before the coupling between different computational domains, i.e. over-
lapping grids, is explained. The time-integration schemes used for the temporal
evolution of the solution, the numerical damping zones for dissipation of waves
and the smoothing techniques for the free surface are described.

3.2.1 Modelling of a Free Surface

The free surface is described by a set of discrete, evenly distributed massless mark-
ers. The markers’ position and corresponding velocity potential are updated by
time integrating the KFSC and DFSC introduced in Section 2.3.3. The position of
a specific marker in the inertial and in a body-fixed reference frame is denoted
Pm = (xPm

, zPm
) and Pm,bf = (xPm,bf , zPm,bf ), respectively. The motion of the

markers is either semi-Lagrangian, fully Lagrangian or a hybrid between the two.

33



3. Numerical Implementation

Semi-Lagrangian Description for Free-Surface Markers

In a semi-Lagrangian time-evolution scheme, each solution domain has its own
set of free-surface markers as illustrated in Figure 3.6. These are distributed so that
their coordinates in the x or xbf -direction coincide with the x or xbf coordinate of
the vertical grid lines1, depending if they belong to the background grid or to
an overlapping grid. This means that the markers’ velocity component in the x-
direction (or xbf -direction) is set to zero. Hence, in the background grid, the DFSC
and KFSC are defined in the inertial reference frame as

δϕPm

δt
= −1

2
|∇ϕ|2 − gz +

δzPm

δt

∂ϕ

∂z
− ν(x, t)(ϕ− ϕref )

δxPm

δt
= 0

δzPm

δt
=
∂ϕ

∂z
− ∂ϕ

∂x

∂ζ

∂x
− ν(x, t)(ζ − ζref ).

(3.14)

In contrast with the expression given in Section 2.3.3, the KFSC here also in-
cludes the horizontal velocity component of the marker, that is zero in the semi-
Lagrangian description. This allows us to express the time evolution of the free
surface marker’s position in vectorial form, δPm/δt = (δxPm/δt, δzPm/δt), which
is convenient later in Section 3.2.10. All right-hand side terms of (3.14), previ-
ously explained in Section 2.3.3, are evaluated at the instantaneous position Pm
of the marker. The free-surface slope ∂ζ/∂x is evaluated from a 4th order finite-
difference scheme, or from a 3rd order B-spline representation of the free-surface
elevation.

In an overlapping grid, a marker’s velocity relative to the body-fixed reference
frame is defined as δ′Pm,bf/δ′t = (δ′xPm,bf/δ

′t, δ′zPm,bf/δ
′t). The DFSC and KFSC

are then written as

δ′ϕPm

δ′t
= −1

2
|∇bfϕ|2 − gz + ub,bf · ∇bfϕ+

δ′zPm,bf

δ′t

∂ϕ

∂zbf

− ν(x, t)(ϕ− ϕref )

δ′xPm,bf

δ′t
= 0

δ′zPm,bf

δ′t
= (

∂ϕ

∂zbf
− ub,zbf ) + (ub,xbf

− ∂ϕ

∂xbf
)
∂ζbf
∂xbf

− ν(x, t)(ζ − ζref ).

(3.15)

The subscript bf is here used to explicitly state that variables and spatial deriva-
tives are estimated along the axes of the body-fixed coordinate system. ub,bf is the
fixed-point velocity in Pm due to the motion of the body-fixed reference frame.

One should note that the terms associated with numerical damping zones,
ν(x, t)(ϕ−ϕref ) and ν(x, t)(ζ − ζref ), as well as z in the DFSC, refer to the inertial
coordinate system. This is because these terms are naturally defined in the inertial
reference frame. Even though we here work in the body-fixed reference frame,

1The term vertical grid line in a body-fixed reference frame means a grid line parallel with the zbf
axis
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the equivalent coordinates in the inertial coordinate system are known at all times
from the relations defined in Section 2.2.

One important difference is emphasized between the semi-Lagrangian formu-
lation in an inertial and in a body-fixed reference frame: In an inertial reference
frame, the markers are forced to only move in the inertial z-direction. In a body-
fixed reference frame, on the other hand, the markers are forced to move in the
body-fixed zbf -direction. The motion of a marker defined in a body-fixed refer-
ence frame is thus generally not parallel with the motion of a marker defined in
the inertial reference frame.

Semi-Lagrangian marker in overlapping grid

Evaluation point in overlapping grid

Semi-Lagrangian marker in background grid

Evaluation point in background grid

x

z

Figure 3.6: Semi-Lagrangian description of free-surface markers in an overlap-
ping grid moving with the wavemaker and in the stationary background grid.
The points where (3.14) and (3.15) are evaluated, i.e. the evaluation points, coin-
cide with the position of the markers in the semi-Lagrangian description.

Fully Lagrangian Description for Free-Surface Markers

When the fully Lagrangian description is adopted, a single set of free-surface
markers is used as shown in Figure 3.7. The markers do not belong to any spe-
cific grid, and are allowed to cross from an overlapping grid to the background
grid and vice versa, with their evolution followed in the inertial reference frame.
To prevent the markers from clustering together, we require them to be evenly
distributed in the inertial x-direction. This is achieved by a re-initialization of the
markers at every time step of a simulation. Moreover, an even spacing between
the markers is convenient when using spatial filters to smooth the free surface.
This is discussed later in Section 3.2.7. The temporal evolution of the free-surface
markers is described in the inertial reference frame with DFSC and KFSC given as

Dϕ

Dt
=

1

2
|∇ϕ|2 − gz − ν(x, t)(ϕ− ϕref )

DPm
Dt

= ∇ϕ− ν(x, t)(ζ − ζref )k,

(3.16)
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where k is the unit vector in z-direction. Evaluating the gradient of ϕ at the ex-
act marker position, with continuously changing horizontal coordinate, is found
to easily cause numerical instabilities in the time evolution of the free surface.
The way to overcome this is to estimate ∇ϕ in (3.16) through interpolation from
the values of the fluid velocity at the intersection points between the free surface
and vertical grid lines in either the background grid or in a body-fixed grid. The
algorithm for doing this can be summarized as follows:

1. Represent the free-surface elevation with a 3rd order B-spline.

2. Estimate∇ϕ at the points where the free surface intersects vertical grid lines
from (3.2).

3. Represent the components of ∇ϕ with 3rd order B-splines and reconstruct
∇ϕ at the exact marker positions.

The fact that B-splines are used to represent the free-surface properties implies
that the free surface must be a single-valued function. If a marker is inside one of
the overlapping grids, the gradient of ϕ is taken in this grid, along the unit axes of
the corresponding body-fixed coordinate system, and transformed to the inertial
reference frame by means of a rotation matrix. Otherwise, the gradient is taken in
the background grid along the unit axes of the inertial coordinate system.

x

z

Fully Lagrangian marker

Evaluation point in overlapping grid

Evaluation point in background grid

Figure 3.7: Fully Lagrangian description of free-surface markers. The points where
(3.16) is evaluated in the overlapping grid and in the stationary background grid
are indicated.

Hybrid Description for Free-Surface Markers

An advantage of adopting the semi-Lagrangian description for the motion of free-
surface markers is that it is found less prone to develop numerical instabilities
during time evolution of waves than the fully Lagrangian description. A draw-
back of using the semi-Lagrangian description in the IBOGM is that, with sepa-
rate sets of markers in an overlapping grids and in the background grid, special
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attention must be given to ensure the smoothness of the free surface across the in-
tersection between grids. It also means that, depending on the instantaneous po-
sition of the overlapping grid, free-surface markers in the background grid may
be activated or deactivated from one time instant to another. This requires some
additional book-keeping in the numerical implementation. The fully Lagrangian
description is attractive in the sense that it offers one continuous description of the
free surface on either side of a surface-piercing body. Moreover, this description
is generally required when dealing with non wall-sided bodies, because the free-
surface markers at the wave-body intersections cannot separate from the body.
Hence, the horizontal motion of these markers should not be subject to the restric-
tions involved in a semi-Lagrangian description.

As a compromise between the advantageous properties of the semi-
Lagrangian and fully Lagrangian descriptions, the methods can be combined in
a hybrid description. That is, close to moving boundaries, the description is fully
Lagrangian, and is gradually transitioned to a semi-Lagrangian description away
from the boundary. A single set of continuous markers are distributed on either
side of a surface-piercing body, and the velocity of a single marker is given in the
inertial reference frame with components

δxPm

δt
= κ(x)

∂ϕ

∂x
δzPm

δt
=
∂ϕ

∂z
− (κ(x)− 1)

∂ϕ

∂x

∂ζ

∂x
− ν(x, t)(ζ − ζref ).

(3.17)

κ(x) is here a spatial ramp function. At x positions where κ(x) = 1, the description
is fully Lagrangian, and at x positions where κ(x) = 0, the description is semi-
Lagrangian. The scenario is illustrated in Figure 3.8.

x

z

Fully Lagrangian marker

Evaluation point in overlapping grid

Evaluation point in background grid

Hybrid marker

Semi-Lagrangian marker in background grid

Figure 3.8: Hybrid between semi-Lagrangian and fully Lagrangian description of
free-surface markers. The points where (3.17) is evaluated in the overlapping grid
and in the stationary background grid are indicated.
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An alternative version of (3.17) is to let κ(x) be so that δxPm
/δt decays linearly

from the value it has at the intersection points between the free surface and body
boundary towards zero at the outer edge of the overlapping grid. This particular
strategy is used in Chapter 5 to study a heaving circular cylinder.

Imposing Dirichlet Conditions on the Free Surface

The treatment of the free surface as an immersed boundary in a structured grid,
tracked by markers, is explained hereafter. We consider a general scenario with
fully Lagrangian markers in Figure 3.9. The approach is similar both if the grid
represents the background grid or an overlapping grid. Three types of cells can be
seen in the figure:
• Active cells: All cells that are part of the instantaneous computational do-

main.

• Inactive cells: All cells that are not part of the instantaneous computational
domain.

• Free-surface cells: Subset of active cells where Dirichlet conditions for the free
surface are imposed.

The upper nodes in the free-surface cells are denoted as free-surface ghost nodes.
In interior fluid nodes, i.e. the internal nodes in all the active cells, the HPC con-
nectivity equation (3.3) is enforced.

Figure 3.9: Free surface tracked by fully Lagrangian markers immersed in a struc-
tured grid defined either in an inertial or body-fixed coordinate system. Yellow
and dark-grey cells indicate the active and inactive parts of the instantaneous
computational domain. The grey-blue cells are cells used to impose Dirichlet con-
ditions for the free surface, with free-surface ghost nodes (blue squares with black
border) in the upper part. The black nodes below the free surface are internal fluid
nodes where the connectivity equation (3.3) is enforced.

The steps necessary to identify the instantaneous computational domain in
connection with a free surface are illustrated in Figure 3.10, starting from the con-
figuration of the free surface (a), that is given by the position of the free-surface
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markers. The free-surface elevation is then interpolated at the positions of vertical
grid lines by fitting a B-spline through the markers (b). This step is omitted if the
markers are semi-Lagrangian, since in this case they always move along the ver-
tical grid lines. Along each vertical grid line, the first node above the free surface
is identified (c). This is taken as a ghost node, and the cell where the node has
local node index 7 (with reference to Figure 3.2) is a free-surface cell. If the grid
line coincides with a vertical wall, or if the node to the left or right is not part of
the instantaneous computational domain, the cell where the node has local index
6 or 8 is selected instead. All cells up to and including the free-surface cell are
active, and the cells above the free-surface cell are inactive. The interior nodes in
all active cells are identified as nodes where the HPC connectivity equation (3.3)
is enforced. The final step (d) consists in a check of the free-surface cells, to detect
any inactive nodes above the free surface (such as Node 1 in Cell 1 and Node 2 in
Cell 2). These nodes are set as ghost nodes to complete the equation system.

(a) Free-surface configuration (b) Interpolation of free surface

(c) Identification of cell and node types (d) Additional free-surface ghost nodes

Figure 3.10: Procedure for identification of cell and node types near the free sur-
face in a time-varying computational domain. Node 1 and Node 2 are additional
ghost nodes associated with Cell 1 and Cell 2, respectively.

It is found beneficial from a stability viewpoint to evaluate the free-surface
conditions represented by (3.14) - (3.17) at the intersection points between the free
surface and vertical grid lines identified by red stars in Figure 3.10 (b). It is found
equally important that the Dirichlet conditions for the velocity potential and its
time derivative in the hydrodynamic BVPs are imposed at the same intersection
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points. If we denote the coordinates of one of these points as Pfs = (xfs, zfs), and
the corresponding values of the velocity potential and its Eulerian time derivative
as respectively ϕfs and ϕt,fs, the imposed boundary conditions are

8∑
i=1

 8∑
j=1

cj,ifj (xfs, zfs)

ϕi = ϕfs (3.18)

and
8∑
i=1

 8∑
j=1

cj,ifj (xfs, zfs)

ϕt,i = ϕt,fs. (3.19)

ϕfs is obtained by B-spline interpolation through the actual free-surface markers
in the same way as for the free-surface elevation. Once the BVP of ϕ has been
solved, ϕt,fs can be evaluated from (2.29). The expressions (3.18) and (3.19) are
evaluated in each of the free-surface cells defined in connection with Figure 3.10,
where (xfs, zfs) are the corresponding coordinates in the cell-fixed coordinate sys-
tem. The point (xfs, zfs) is generally taken as the intersection between the free
surface and the vertical grid line through the ghost node. When two ghost nodes
are located along the same vertical grid line, such as the situation arising due to
the additional ghost nodes Node 1 and Node 2 in Figure 3.10 (d), the boundary con-
dition for the same intersection point is thus set twice. However, since the bound-
ary condition is imposed in two different cells, the resulting matrix system never
becomes singular. The number of resulting free-surface Dirichlet conditions in the
global matrix system, expressed in terms of equations (3.18) and (3.19), is equal
to the number of free-surface ghost nodes. It is emphasized that these boundary
conditions apply at the exact location of the free surface, and not at the positions
of the ghost nodes. The values of ϕ and ϕt at the ghost nodes are considered un-
known and found from the solution of the corresponding BVPs.

If the boundary condition for the time derivative of ϕ is instead enforced in an
overlapping grid, the Eulerian time derivative in (3.19) must be exchanged with
the time derivative DBO/Dt of ϕfs following the motion of the overlapping grid
evaluated from (2.30).

3.2.2 Modelling of a Body Boundary

The boundary of a surface-piercing body is modelled as an immersed boundary
in an overlapping, body-fixed grid following the motion of the body. This means
that, relative to the overlapping grid, the configuration of the body remains con-
stant in time. The geometry of the body is described by a set of discrete points, and
the normal vector is defined outwards. The configuration of the grid with a free
surface and a portion of the body boundary is illustrated in Figure 3.11, where the
nodes and cell types associated with the free surface have already been defined
in Figure 3.9. The only difference is that here the free surface conditions must be
enforced also at the wave-body intersection points, i.e. not only at the free-surface
points intersected by vertical grid lines.
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Figure 3.11: Free surface and body boundary immersed in a body-fixed grid. The
body geometry is described by a set of discrete points with outwards surface nor-
mal vector n. In addition to the node and cell types defined in Figure 3.9, the red-
shaded cells, associated with ghost nodes (red squares with black border) inside
the body, are used to enforce Neumann boundary conditions on the body bound-
ary. The green-shaded cell is associated with the double node (green square with
black border), used to enforce the boundary conditions for the free surface and
body boundary simultaneously for the wave-body intersection point.

In order to account for the body as an immersed boundary, ghost nodes are
identified inside the body. Since the configuration remains constant in the body-
fixed reference frame, the possible ghost nodes need only to be identified once
during initialization of the simulation. The procedure for doing this is illustrated
in Figure 3.12, where a portion of the body, with the geometry described by a few
discrete points, is immersed in the body-fixed grid (a). Only the points that are
used to impose the body-boundary condition are here shown. A higher density
of points is in practice used to describe the body geometry accurately. All grid
nodes inside the body surface are identified, and those with at least one of their
eight surrounding nodes outside the body, are labelled as ghost nodes (b). The
interior nodes that are not ghost nodes constitute a grid region always inactive,
i.e. never part of the instantaneous computational domain. Finally, appropriate
cells for the ghost nodes are identified. These cells can never contain any inactive
grid nodes, which means that there are only a few valid options for each ghost
node. The cells are here generally taken as the cells where the vector pointing
from the particular ghost node to the cell center is closest to being parallel with the
normal vector in the body-boundary point nearest the ghost node. This strategy
is found to select cells to be associated with ghost nodes in a logical manner for
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the body geometries studied here. However, it is anticipated that other strategies
for selecting the prioritized order of the possible cells that can be associated with
the ghost nodes may be equally good. A reasonable choice of ghost cells is found
to be characterized by that the ghost cells, if possible, overlap with surrounding
ghost cells, and have the majority of the cell area located outside of the body.

(a) Initial configuration (b) Ghost nodes and associated cells

Figure 3.12: Procedure for identification of ghost nodes and associated cells. n is
an outwards normal vector that is constant in the body-fixed coordinate system
following the motion of the body.

We now consider the scenario when a time-varying free surface is introduced.
Starting from Figure 3.12 (b), the stepwise procedure for identification of nodes
and cells is illustrated in Figure 3.13. The steps related to the free surface away
from the body boundary have already been discussed in Figure 3.10, and are
only dealt with briefly. Figure 3.13 (a) shows the body boundary, including ghost
nodes and associated cells, together with the free surface that is tracked by fully
Lagrangian markers. The points where the free-surface boundary conditions are
enforced are first identified (b). In addition to the intersection with vertical grid
lines, the intersection points between the free surface and body boundary are
added. The appropriate free-surface cells and ghost nodes are identified (c), to-
gether with the cells used to enforce both the Neumann conditions on the body
boundary and the free-surface Dirichlet conditions simultaneously in the wave-
body intersection points. The simultaneous enforcement of the two conditions is
achieved through a double-node technique, with details discussed later in the text.
The double node is in the figure indicated with a green square with black border.
In general, the double node is taken as the first body-boundary ghost node that
is above the free-surface intersection point. The cells used to enforce the double-
node boundary conditions (green-shaded), are as a general rule taken as the cells
where the relevant double node is in one of the upper corners. That means, de-
pending on if the wave-body intersection point is to the right or to the left of the
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node, the cell where the double node has either local node index 6 or 8 is selected.
In this way, the cell associated with the double node is so that it maximizes the
cell area inside the physical domain (i.e. below the free surface and outside of the
body). All nodes above the double node are set as inactive in the instantaneous
computational domain. In the final step (d), additional free-surface ghost nodes
are added if this is required. That is, if any of the active cells associated with the
free surface include inactive nodes above the free surface, these are added as free-
surface ghost nodes in the same way as explained in Figure 3.10 (d).

(a) Free-surface configuration (b) Interpolation of free surface

(c) Identification of cell and node types (d) Additional free-surface ghost nodes

Figure 3.13: Procedure for identification of cell and node types relative to instan-
taneous free surface and body boundary in a body-fixed grid.

Having determined the instantaneous ghost nodes inside the body and as-
sociated cells, we can enforce Neumann conditions on the body boundary. The
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number of body-boundary conditions is equal to the number of instantaneous
body-boundary ghost nodes plus the number of double nodes. As a general rule,
the boundary condition is enforced at the body-boundary point closest to the cen-
ter of the associated cell and that is below the free surface. Special care is taken to
ensure that the same point is not used twice in the same cell, which would lead
to a singular matrix system. We denote the coordinates of a point on the body
boundary where boundary conditions are imposed as Pb,bf = (xb,bf , zb,bf ). The
subscript bf is here used because the boundary condition is always imposed in a
body-fixed reference frame. For the velocity potential, the Neumann condition is
given by (3.2) as

8∑
i=1

 8∑
j=1

cj,i∇bffj (xb, zb) · nbf

ϕi = (Ṙ0,bf + ω × rbf ) · nbf , (3.20)

where ∇bf is the gradient operator along the axes of the body-fixed coordinate
system, Ṙ0,bf is the velocity of the body in the center of gravity, ω is the body’s
angular velocity vector, rbf is a vector from the body’s center of gravity to Pb,bf
and nbf is the body’s normal vector in Pb,bf . It is noted that, since the origin of the
body-fixed coordinate system is defined in the body’s center of gravity, we here
have that rbf = Pb,bf .

For the BVP of the time derivative of ϕ, the Neumann body-boundary condi-
tion is given by (3.8) as

8∑
i=1

 8∑
j=1

cj,i∇bffj (xb, zb) · nbf

 DBOϕi
Dt

= (R̈0,bf + ω̇ × rbf ) · nbf . (3.21)

The right-hand side of this equation follows from (2.35) in Section 2.3.4, where
R̈0,bf and ω̇ are the time derivatives of Ṙ0,bf and ω, respectively, estimated in the
body-fixed reference frame as previously explained.

It is emphasized that (3.20) and (3.21) are free-surface and body-boundary con-
ditions for DBOϕ/Dt, which is the variable solved for in the overlapping body-
fixed grid. Unless the body motion is zero, this differs from the Eulerian time
derivative ∂ϕ/∂t. The relation between DBO/Dt and ∂/∂t was stated in (2.15).

Double-Node Technique for Wave-Body Intersection Points

In a free surface-body intersection point, hereafter referred to as a FSBI point,
it is desirable to satisfy both the free-surface Dirichlet condition and the body-
boundary Neumann condition simultaneously. However, because the number of
equations in the global matrix system is equal to the number of nodes in the in-
stantaneous computational domain, this is generally not possible if we want to
avoid the solution of an overdetermined equation system. In order to overcome
this challenge, a double-node technique is adopted. Figure 3.14 shows the details
of a cell that contains the FSBI on one side of the body. The coordinates of the
point in the body-fixed coordinate system and in the cell-fixed coordinate system
are PFSBI,bf and P FSBI , respectively.
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Figure 3.14: Double node and associated cell for simultaneous fulfilment of free-
surface Dirichlet condition and body-boundary Neumann condition in FSBI point.
The double node, indicated as a green square with black border, here has local
node index 8.

The double-node technique consists of introducing fictitious nodes that repli-
cate the boundary nodes in the original cell with local node indices 1 − 8. The
fictitious nodes have local node indices 1′ − 8′. Using Figure 3.14 as an example,
the node with local index 8 is a double node. In general, we denote the index of
the double node as k, and enforce the free-surface Dirichlet condition (3.18)

8∑
i=1

 8∑
j=1

cj,ifj (xFSBI , zFSBI)

ϕi = ϕFSBI . (3.22)

ϕFSBI is the velocity potential in the marker at the FSBI. In addition, for the ficti-
tious node with local index k′, we enforce the body-boundary Neumann condition
(3.20),

8∑
i=1

 8∑
j=1

cj,i∇bffj (xFSBI , zFSBI) · nbf

ϕi = (Ṙ0,bf + ω × rbf ) · nbf . (3.23)

Here, (Ṙ0,bf + ω × rbf ) ·nbf is the normal velocity of the body in the same point.
For the remaining fictitious nodes, we set ϕi′ = ϕi, {i = 1, ..., 8, i 6= k}. As a conse-
quence, for each FSBI point, eight rows and columns are added to the global ma-
trix system. This increase is insignificant compared to the total number of nodes
in the computational domain and has negligible influence on the computational
efficiency.

For the BVP of the time derivative of ϕ, the corresponding Dirichlet and Neu-
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mann boundary conditions are given by equations (3.19) and (3.21) as

8∑
i=1

 8∑
j=1

cj,ifj (xFSBI , zFSBI)

 DBOϕi
Dt

=
DBOϕFSBI

Dt
(3.24)

and

8∑
i=1

 8∑
j=1

cj,i∇bffj (xFSBI , zFSBI) · nbf

 DBOϕi
Dt

= (R̈0,bf + ω̇ × rbf ) · nbf ,

(3.25)

where DBOϕFSBI/Dt is the time derivative of the velocity potential on the free
surface and (R̈0,bf + ω̇ × rbf ) · nbf is the normal acceleration of the body in the
FSBI point, both estimated in the body-fixed reference frame. For the remaining
fictitious nodes, we set DBOϕi′/Dt = DBOϕi/Dt, {i = 1, ..., 8, i 6= k}.

It is pointed out that, for the cases examined in this thesis, the results applying
the double-node technique are in close agreement with the results obtained only
applying the free-surface Dirichlet condition in the FSBI points. This holds true
also when the local solution close to the FSBI points is examined. Although fur-
ther investigation is needed to properly understand this observation, a possible
explanation is that the Dirichlet condition for the free surface is a stricter condi-
tion than the Neumann condition for the body boundary. It is also noted that, in
the present implementation, the double-node technique is only applied for a float-
ing body. At the wavemaker-free surface intersection point only the free-surface
Dirichlet condition is enforced.

The FSBI points are revisited in Section 3.2.8, where special care is taken to
prevent that free-surface markers separate from rigid boundaries.

3.2.3 General Comments concerning Immersed Boundaries

Some general remarks are appropriate regarding the use of immersed boundaries
and Cartesian grids.

As illustrated by Figure 3.5, large portions of the grids are at any time outside
the physical domain. We have previously referred to the nodes and cells in these
parts of the grids as inactive. They do not influence the computational time re-
quired to solve the hydrodynamic BVPs at a given time instant. However, depend-
ing on the position of moving boundaries, inactive nodes and cells may become
active and vice versa. Hence, the dimension and topology of the global matrix sys-
tem generally vary with time. This has an adverse influence on the computational
efficiency, since the global coefficient matrix must be reconstructed.

In connection with immersed boundaries, we have introduced ghost nodes
above the free surface and inside the body. This means that the computational
domain, where a solution exists, extends beyond the physical domain. The solu-
tion outside the fluid domain has no physical meaning, and no properties should
be evaluated here. However, in a numerical interpretation, it has an important
meaning: the solution in ghost nodes, obtained from solving the hydrodynamic
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BVPs, attains the values required to fulfil conditions enforced on physical bound-
aries. The solution in ghost nodes is in this sense analogue with the concept of
analytical continuation used by Faltinsen and Timokha (2009).

Lastly, it is emphasized that the number of boundary conditions we can im-
pose on a boundary is governed by the number of ghost nodes. The number of
ghost nodes do not depend on the number of discrete points or markers used to
describe the boundary, but on the cell size in the grid. One should therefore take
into consideration the minimum relevant wavelength and the local geometry of
the body when deciding upon the cell size in different grids.

3.2.4 Coupling of Solutions in Different Domains

We have discussed the implementation of boundary conditions in the inertial
background grid and the overlapping body-fixed grids separately. We now show
how the solutions in the individual grids are implicitly coupled, resulting in a
single global matrix system for the entire computational domain. The coupling
strategy between an overlapping grid and the background grid is identical irre-
spective if the overlapping grid is fixed to a wavemaker or to a body. It is noted
that the scenario where several body-fixed grids overlap with each other is dis-
regarded in the present work. However, the method can be extended to cover
this scenario without major modifications. To illustrate the coupling strategy, we
use the overlapping grid following the motion of a flap-type wavemaker and the
background grid as shown by a sketch in Figure 3.15.

In Figure 3.15 (a), the nodes indicated by red circles with black borders are
coupling nodes in the overlapping grid. In these, ϕ and its time derivative are de-
fined by local HPC-expressions in the background grid. Similarly, for the coupling
nodes in the background grid (b), ϕ and its time derivative are expressed by local
HPC-expressions in the overlapping grid. The coupling of the velocity potential
is first considered. For the coupling nodes, we impose the following condition:

ϕG1 =

8∑
i=1

 8∑
j=1

cj,ifj (x, z)

ϕi
∣∣∣∣∣
G2

. (3.26)

Here, G1 is the grid with the coupling node, and G2 is the grid to which the so-
lution is coupled. The right-hand side can in principle be evaluated from any cell
in G2 that encloses the coupling node, and at the same time is part of the instan-
taneous computational domain. We here select the cell with center closest to the
position of the coupling node, because the accuracy of the solution inside a cell
is higher in this region as shown by Ma et al. (2018). (x, z) are the coordinates
of the coupling node in the cell-fixed coordinate system of the selected G2-cell.
In relation with Figure 3.15, it is noted that in practice the coupling nodes in the
background grid are taken some distance inside the contour of the overlapping
grid. This is in order to prevent that the G2-cell used to evaluate the right-hand
side of (3.26) contains a node where the solution is coupled with G1, and vice
versa. Such scenario would represent a recursive condition that might influence
the accuracy and stability of the numerical solution.
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(a) Wavemaker-fixed grid highlighted (b) Background grid highlighted

Figure 3.15: Coupling scheme between grid regions. Features of the body-fixed
grid following the motion of a flap-type wavemaker and the inertial background
grid are highlighted in (a) and (b), respectively. The yellow and grey-shaded ar-
eas mark, respectively, active and inactive cells in both grids. The following node
types are shown: Free-surface ghost nodes (blue squares with black borders),
nodes used in connection with Neumann conditions on rigid boundaries (orange
diamonds with black borders), interior nodes where the connectivity equation
(3.3) is enforced (black filled circles) and nodes where coupling conditions are
enforced (red circles with black borders).

For the time derivative of ϕ, we must take into consideration that the solu-
tion variable in the background grid is the Eulerian time derivative ϕt, while the
solution variable in the overlapping grid is the time derivative DBOϕ/Dt. Using
(2.15) in Section 2.2.4, the equation imposed for the coupling node in the overlap-
ping grid (og) is

DBOϕ

Dt

∣∣∣∣∣
og

=

8∑
i=1

 8∑
j=1

cj,ifj (x, z)

 ∂ϕi
∂t

∣∣∣∣∣
bgg

+ub ·
8∑
i=1

 8∑
j=1

cj,i∇fj (x, z)

ϕi
∣∣∣∣∣
bgg

.

(3.27)

DBOϕ/Dt|og is the time derivative of ϕ in the coupling node in the overlapping
grid, taken in the body-fixed reference frame. The right-hand side is evaluated
from the appropriate cell in the background grid (bgg), which is the same as used
in connection with (3.26). ub is the velocity of the coupling node due to the motion
of the overlapping grid.
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For the coupling nodes in the background grid, the corresponding coupling
equation is

∂ϕ

∂t

∣∣∣∣∣
bgg

=

8∑
i=1

 8∑
j=1

cj,ifj (x, z)

 DBOϕi
Dt

∣∣∣∣∣
og

−ub ·
8∑
i=1

 8∑
j=1

cj,i∇fj (x, z)

ϕi
∣∣∣∣∣
og

,

(3.28)

where ∂ϕ/∂t|bgg is the Eulerian time derivative of ϕ in the coupling node in the
background grid. The right-hand side is here evaluated from the appropriate cell
in the overlapping grid.

General Comments concerning Coupling between Domains

It can be said that the coupling between different grid regions is natural in the
HPC method, because the solution field inside each cell is given as a combination
of smoothly varying coefficients. We can thus express the solution in any point,
in any grid, as a function of already defined functions. This is highlighted as an
advantage of the HPC method compared to other field methods, such as e.g. the
FDM, because it allows us to couple the solution in arbitrary points without any
significant loss of accuracy. Moreover, the coupling strategy outlined above is ben-
eficial in the sense that it allows us to operate with Cartesian grids in the respec-
tive domains. As shown by Ma et al. (2018), this is strongly recommended with
respect to numerical accuracy inside a cell in the HPC method. The use of overlap-
ping grids can thus be considered a mean to refine a solution locally while using
Cartesian grids throughout, without increasing the total number of unknowns
(nodes) unnecessarily. Although not pursued in the present work, it is fully possi-
ble to add several levels of overlapping grids inside each other to locally enhance
the refinement further. This is analogue to using so-called octree grids as was done
by Ma et al. (2018).

A major strength of the coupling strategy adopted in the present work, is that
the solution for the time derivative of ϕ in the different grids represents the time
derivative relative to the grid-fixed reference frame. As a consequence, the body-
boundary condition in the BVP of the time derivative of ϕ in the overlapping grids
is simplified, and the difference in reference frame is instead accounted for in the
coupling between different grids in a straightforward manner by (3.27) and (3.28).

3.2.5 Algebraic Equation System

The boundary conditions (3.18) - (3.25), the equations (3.26) - (3.28) enforcing the
coupling between different grids, and the connectivity equations (3.3), (3.6) and
(3.9), constitute the global algebraic equation systems for ϕ and its time deriva-
tive. As explained in Section 3.1.3, these two equation systems share the same
coefficient matrix A. An example of this coefficient matrix for a case with a mov-
ing wavemaker and with a rigid body in the middle of the tank is shown in Fig-
ure 3.16. The majority of non-zero entries in A originate from the connectivity
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equations and are located along the matrix diagonal. Due to the multiple grids,
there are also non-zero off-diagonal entries associated with communication be-
tween the grids. The number of rows with such entries is however small com-
pared with the number of entries from the connectivity equations, and the matrix
equation can be solved efficiently with the use of iterative solvers for sparse ma-
trix systems. In the present work, the sparse iterative solvers included in the SciPy
Python library are used. More specifically, it is found that using the splu decom-
position of A as a pre-conditioner, together with the gmres or bicgstab solver with
a tolerance of 0.5 ·10−8, provides stable and efficient solutions of the global matrix
equations.

Figure 3.16: Example of global coefficient matrix in the IBOGM with a rigid body
in the NWT. The wavemaker-fixed grid, the body-fixed grid and the background
grid are for brevity denoted as 1, 2 and 3, respectively. 1 → 3 and 3 → 1 indicate
coupling terms between the wavemaker-fixed grid and the background grid and
vice versa, and 2 → 3 and 3 → 2 indicate coupling terms between the body-fixed
grid and the background grid and vice versa.

It has already been highlighted that the nodes and cells that are part of the
instantaneous computational domain represent a subset of the complete grids,
which extend beyond the physical domain, in the IBOGM. Moreover, the mean-
ing of any particular node and cell may vary with time. For instance, due to the
moving free surface, a node that was a fluid node at the previous time step may
become a free-surface ghost node at the present time instant. As a consequence,
the dimension and topology of A is not constant. This is a matter of practical
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importance when we build and solve the global matrix equations for ϕ and its
time derivative, because the inactive nodes in the instantaneous computational
domain would result in empty rows in the global matrix system. The iterative
matrix solvers used here do not allow for this, and therefore a mapping between
the global node indices and the node indices in the matrix system must be main-
tained. As we build A, we number the nodes in a continuous order from 1 to Q. Q
is here the number of active nodes, which is less than or equal to the total number
of nodes N . After solving the global matrix equations, the solution in each active
node is related back to its global node index. This book-keeping is managed by
an array illustrated in Figure 3.17 that, at any time, links the global node indices
n = 1, ..., N to the node indices q = 1, ..., Q of the active nodes in the matrix
system.

1 2 3 ��� n - 3 n - 2 n - 1 n n + 1 n + 2 n + 3 ��� N - 2 N - 1 N

1 2 3 ��� q - 1 q q + 1 ��� Q - 1 Q

Global node indices

Node indices in matrix system

Figure 3.17: Example of mapping between global node indices n = 1, ..., N and
node indices q = 1, ..., Q in the matrix system at any time instant, where Q ≤ N .

3.2.6 Integration of Fluid Pressure

When the BVPs of ϕ and its time derivative have been solved, the pressure loads
are calculated in the body-fixed coordinate system. The fluid pressure p is eval-
uated from the body-fixed formulation of the Bernoulli equation (2.21) in Sec-
tion 2.3.2. A tangential coordinate s is defined, running along the body bound-
ary in anti-clockwise direction, so that the instantaneous wetted body surface
is given by s0 ≤ s ≤ s1. The body surface is here defined by the contour
through all the discrete points used to describe it. As discussed in Section 3.2.2,
the points where body-boundary conditions are enforced represent a subset of
these. Furthermore, the body-fixed coordinates of the body surface are given as
Pb,bf (s) = (xb,bf (s), zb,bf (s)), where the components are parametrized by s us-
ing 3rd order B-splines. The resulting fluid forces and moments are obtained by
integrating the pressure over the wetted body surface in s-direction,

Fbf (t) = −
∫ s1

s0

p(s, t)nbf (s)ds, (3.29)

M(t) = −
∫ s1

s0

p(s, t)(Pb,bf (s)× nbf (s))ds. (3.30)
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A negative sign appears in front of the integrals because the normal vector nbf
is defined outwards. Since we operate in 2D, the moment vector M is equal to
Myj with j the unit vector in y direction and My the moment about the y axis,
equal in all reference frames. The force vector can be represented in the inertial
coordinate system by using the rotation matrix, i.e., F = Λb→i · Fbf . An arbitrary
number of points can be used in the numerical integrations performed in (3.29)
and (3.30). Typically we select the number of points sufficient to ensure numerical
convergence, yet not so high that the computational efficiency is reduced unnec-
essarily. Since the Bernoulli equation must be evaluated in each of the points used
in the integration, an excessive number of points may lead to a notable increase in
computational time.

3.2.7 Smoothing of Free Surface

In a non-linear simulation, small disturbances of the free surface may over time
grow and lead to non-physical behaviour and numerical instability. As shown by
Hanssen et al. (2018), even when no smoothing of the free surface is performed
with the semi-Lagrangian description, it takes a significant amount of wave pe-
riods for such instabilities to develop. However, instabilities at the free surface
develop quicker the higher the wave steepness. The disturbance mechanism was
in this case identified as sawtooth-instability, a phenomenon first discovered by
Longuet-Higgins and Cokelet (1976). With the fully Lagrangian description of the
free surface, it is found that disturbances occur earlier and grow quicker when no
smoothing is performed. This is the case even for waves with low steepness.

In order to prevent instabilities from developing, two types of smoothing tech-
niques are used in the present work. When the semi-Lagrangian description is
adopted, the free-surface elevation and the velocity potential at the free surface
are smoothed with a 12th order Savitsky-Golay filter (Savitzky and Golay, 1964).
It is in many cases sufficient to only perform the filtering every several time steps.
However, since the additional computational effort is insignificant, and since the
accuracy is not found to be reduced, the filtering is here performed after every
complete time step. With the fully Lagrangian or hybrid description, the 3rd order
five-point filter used by Sun (2007) is applied to the free-surface elevation and ve-
locity potential on the free surface after every complete time step. This provides
a stronger smoothing than the higher-order Savitsky-Golay filter, which is found
strictly necessary to ensure numerical stability in this case. In addition, the free-
surface markers are redistributed with even spacing in horizontal direction. This
is necessary because otherwise, with the fully Lagrangian description, the mark-
ers may over time cluster together. Also, both the mentioned filters require the
markers to be evenly spaced. This can strictly speaking be circumvented by re-
sampling the free surface at evenly distributed points. Studies here indicate that
such re-sampling may lead to reduced accuracy of the solution, and should be
performed with caution.

Whether the Savitsky-Golay or the five-point filter is applied, the free-surface
elevation is always left unchanged in the intersection points between the free sur-
face and the wavemaker or a body.
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3.2.8 Special Treatment at Free Surface-Body Intersection Points

At FSBI points, either on the wavemaker, the fixed vertical tank wall on the op-
posite side of the wavemaker or a body surface, special care is taken to ensure
that free-surface markers do not separate from the boundary. For the wavemaker
and the opposite tank wall, which are plane boundaries, the separation between
the marker on the boundary and the boundary itself is always several orders of
magnitude smaller than the marker’s motion in tangential direction. The separa-
tion can in this case be considered a consequence of numerical inaccuracy, and is
avoided by simply modifying the coordinate of the marker normal to the bound-
ary.

For the FSBI points on a body of arbitrary shape, separation may occur due to
the curvature of the body. To avoid this, the KFSC for the markers at the FSBI is re-
formulated so that it is expressed in the curvilinear coordinate s running along the
surface of the body, as introduced in Section 3.2.6. These markers always follow
the fully Lagrangian description, i.e. the KFSC is given by (3.16) in the inertial ref-
erence frame. The velocity of the marker relative to the body-fixed reference frame
is given as∇ϕ−ub, where ub is the velocity of the body surface in the marker lo-
cation. Since the Neumann condition along the body surface enforces the water
and body normal velocities to be equal, this relative-velocity vector is tangential
to the body surface in the FSBI points. With reference to Figure 3.18, the velocities
of the markers are formulated as

Ds

Dt
= |∇ϕ− ub| · sgn, (3.31)

where, remembering that s is positive when moving in anti-clockwise direction
with respect to a generic point inside the body, sgn is the component in the body-
fixed zbf direction of a sign function defined as −sign(∇ϕ − ub) if the FSBI is on
the left side of the body and as sign(∇ϕ − ub) on the right side of the body. The
physical argument behind this is that the magnitude of the velocity vector is given
by the KFSC, but in reality the trajectory of the marker will be along the body
surface rather than tangential to the surface in the FSBI point. It is emphasized that
s is a coordinate defined along the surface of the body, so that (3.31) represents a
body-fixed formulation. By evolving the position of the marker in the coordinate
s rather than in Cartesian coordinates, we ensure that the marker never separates
from the body surface. The Cartesian coordinates of the marker are obtained in a
straightforward manner since the functional relationship between s and (xbf , zbf )
is known.

In some cases, such as when a cylinder is forced to oscillated with high fre-
quency in heave, small angles may occur between the free surface and the body
boundary at the FSBI. This is undesirable, since it can easily lead to numerical
instabilities. Therefore, at any time instant of the simulation the angles between
the free surface and the body boundary in the FSBI points are estimated from the
free-surface slope and the curvature of the body surface. When this angle becomes
less than 5◦, a jet-cutting scheme is used to prevent numerical instability from de-
veloping. This is illustrated for a general scenario in Figure 3.19 and consists of
the following steps:
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zbf

xbf

s

Figure 3.18: Reformulation of motion of free-surface markers on FSBI in terms of
the curvilinear coordinate s.

1. The marker at the FSBI (position 1) is removed.

2. The marker next to the removed marker (position 2) is projected normally
onto the body surface (position 1’). This new position of the marker identi-
fies the new FSBI.

3. A new marker is introduced (position 2’) to keep the total number of mark-
ers unchanged, before the markers are redistributed so that they become
evenly spaced.

The jet-cutting scheme is invoked both if the exterior or interior angle between
the body and the free surface becomes less than 5◦. The scenario in Figure 3.19
illustrates a small exterior angle. If on the other hand the interior angle is small,
the jet-cutting scheme prevents a thin run-up along the body to develop.

1

2
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'
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'
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Figure 3.19: Illustration of jet-cutting scheme with small exterior angle. The mark-
ers prior to jet cutting are numbered 1, 2, ... and shown with blue filled circles,
while the markers after jet cutting are numbered 1′, 2′, ... and shown with white
circles with blue borders.

The cases where jet cutting is performed involve strong local non-linear be-
haviour, and because the potential-flow solution may become nearly singular,
they are close to the capability limit of a potential-flow solver. Although the
scheme proposed here is found to be effective in preventing numerical instabil-
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ity, one should carefully assess the accuracy of the solution when jet-cutting is in-
voked. More details around the use of jet-cutting schemes can be found in works
dealing with water-entry problems, see e.g. Sun (2007).

3.2.9 Wave Generation and Absorption

There are two main approaches that can be followed to generate waves in a non-
linear NWT. One is to impose the surface elevation and fluid velocity from an
analytical solution at a fixed control surface, such as done by e.g. Tanizawa et al.
(1999). The other method, which is adopted here, is to generate waves by a moving
wavemaker. We denote this as a physical wavemaker, since it is analogue to the way
waves are generated in a physical wave tank. The main advantage of deploying a
physical wavemaker instead of a fixed control surface is that the waves are not re-
stricted to follow any specific wave theory. Although accurate non-linear theories
exist for periodic waves, generation of non-linear irregular waves is more compli-
cated unless linear theory is applied. A second advantage of applying a physical
wavemaker is that the increase of fluid mass in the tank, that can be observed with
a fixed control surface, is avoided. Such mass increase is shown by Shao (2010) to
be a 2nd order effect related to the Stokes drift, that is a Lagrangian property of
the fluid particles. It is to be noted that this mass increase can be avoided also in
the case of a fixed control surface by modifying the velocity boundary condition.

It was noted by Faltinsen and Zhao (1991) that the impulsive start of a piston-
type wavemaker, with the horizontal velocity given as a step function, causes os-
cillatory behaviour of the free surface close to the wavemaker. This may lead to
instabilities in a numerical solution that are highly undesirable. In order to avoid
such instabilities, a ramp function is here applied. Denoting the displacement
of a piston-type wavemaker or the angular motion of a flap-type wavemaker as
swm(t), the motion signal with a ramp function is given as swm(t) · rwm(t). Here,
rwm(t) is a ramp function defined as

rwm(t) =

{
1
2

[
1− cos πt

Tramp

]
t ≤ Tramp

1 t > Tramp
, (3.32)

where Tramp is the time duration of the ramp function typically taken as 3 − 5
periods of the generated, incident wave. When computing the velocity and accel-
eration of the wavemaker, it is important to remember to take into account the
time derivative of the ramp function.

In order to prevent that waves are reflected from the tank wall opposite of the
wavemaker and back into the tank, a numerical damping zone (beach) is imple-
mented in the fluid region next to this wall. When there is a body in the tank, a
numerical beach is also located next to the wavemaker. This is in order to pre-
vent waves reflected from the body to reach the wavemaker and be reflected back
into the tank, modifying the prescribed incident-wave conditions. Without such
beach, long-time simulations without influence from back-reflected waves would
require an accordingly long NWT. This may substantially increase the computa-
tional cost of the numerical solution. The numerical beaches add damping terms
with a fictitious linear damping coefficient ν(x, t) in the DFSC and KFSC described
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in Section 3.2.1, with the purpose to dissipate wave energy. The theory behind,
and the performance of, the numerical damping zones are described in detail in
Appendix B.

An attractive alternative to the downwave numerical beach is to deploy a non-
reflective boundary. This means substituting the tank wall opposite of the wave-
maker with a control surface where the Neumann boundary condition for the
velocity potential is replaced by a boundary condition consistent with a propa-
gating wave. Promising results were shown by Zhang (2009) applying a multi-
transmitting formula (MTF) to model a non-reflective boundary. The MTF com-
bines information of the phase speed of the wave as well as the velocity poten-
tial in the fluid at previous time steps to extrapolate the velocity potential at the
tank wall, and is relatively straightforward to implement. Applying such non-
reflective boundary condition, the NWT can be shortened by the distance other-
wise required by the numerical beach, and thereby improves the computational
efficiency. A significant effort has been made in the present work to implement
the MTF as an alternative to the numerical beach opposite of the wavemaker. The
attempts were however not successful, as it leads to a steady drift in the wave
elevation near the tank wall. In hindsight, this may be due to the fact that waves
were generated by a fixed control surface in this case. As mentioned, this may lead
to an increase in fluid mass, analogue to a steady current in the tank. In the way
the MTF was implemented, consistent with the strategy documented by Zhang
(2009), no correction was made to account for this. A future investigation, com-
bining the MTF with incident waves generated by a physical wavemaker, would
indicate if this was the case. Further examination of this method is considered
an interesting research topic with the objective to improve numerical efficiency in
non-linear simulations.

3.2.10 Time Evolution of Solution

A 4th order Runge-Kutta method (RK4) is used to evolve the free surface and
the motion of a floating body forward in time. For a general variable y with time
derivative given in the form ẏ = ẏ(y, t), the evolution from the known state yn =
y(tn) at time tn = n∆t to the unknown state at tn+1 = tn + ∆t is given as

yn+1 = yn +
∆t

6
(k1,y + 2k2,y + 2k3,y + k4,y), (3.33)

where ∆t is the time step, taken as constant in the present work. The coefficients
ki,y, i = 1, ..., 4 are given as

k1,y = ẏ(yn, tn),

k2,y = ẏ(yn + 0.5∆tk1,y, tn + 0.5∆t),

k3,y = ẏ(yn + 0.5∆tk2,y, tn + 0.5∆t),

k4,y = ẏ(yn + ∆tk3,y, tn + ∆t).

(3.34)

As a consequence, for each complete RK4 time step, four BVPs must be established
and solved for ϕ. If a floating body is involved, four BVPs must also be solved for
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the time derivative of ϕ. If the body on the other hand is fixed or undergoes forced
motions, the equations of motion are not coupled with the fluid dynamic problem.
In these cases, to estimate the fluid pressure and integrated loads on the body, it is
sufficient to solve the BVP of the time derivative of ϕ at the physical time instants
i.e. at the end of the complete RK4 time step.

Free Surface

The free surface position and the velocity potential on it are tracked in time fol-
lowing the motion of the free-surface markers. In particular, the KFSC and DFSC,
described in Section 3.2.1, provide directly the time derivatives for the position
Pm = (xPm , zPm) and velocity potential ϕm of each marker. Estimating these
derivatives at each time a BVP for ϕ is solved gives the RK4 coefficients ki,Pm

and ki,ϕm
in (3.34) to evolve respectively Pm and ϕm in time through (3.33).

Floating Body

When a floating body is present in the NWT, its equations of motion discussed in
Section 2.2.3 must be coupled with the fluid dynamic problem. Since the wave-
body interaction problem here is solved in the body-fixed grid following the mo-
tion of the body, it is natural to also formulate the equations of motion in the
body-fixed reference frame. The origin of the body-fixed coordinate system is lo-
cated in the body’s center of gravity, R0,bf . Equations (2.12) and (2.14) give the
translation and angular accelerations R̈0,bf and α̈ as follows:

R̈0,bf =M−1 · Fbf,ext − ω × Ṙ0,bf ,

α̈ =I−1
yy My,ext.

(3.35)

Here, M is the body mass matrix, Iyy is the inertia about the y-axis, Ṙ0,bf is the
translational body velocity in the body-fixed reference frame, ω is the angular ve-
locity vector, Fbf,ext is the external force vector and My,ext is the external moment
about the ybf -axis. Fbf,ext consists of the integrated fluid forces Fbf defined in
(3.29), the vertical gravity force, and possibly additional external forces Fbf,add:

Fbf,ext = Fbf −Λi→b · (Mgk) + Fbf,add. (3.36)

Here,M is the body mass, g is the acceleration of gravity and k is the unit vector in
z direction in the inertial coordinate system.My,ext consists of the integrated fluid
moment My given by (3.30) and possibly an additional external moment My,add:

My,ext = My +My,add. (3.37)

The additional force vector Fbf,add and additional moment My,add typically con-
tain contributions from external linear and quadratic damping and from external
restoring effects.

Evaluating (3.35) at each stage of the RK4 scheme gives the coefficients ki,Ṙ0,bf

and ki,α̇ in (3.34) used to evolve the translational and angular velocity respectively
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of, and about, the body’s center of gravity forward in time in the body-fixed refer-
ence frame through (3.33). The translational velocity in the inertial reference frame
is obtained from

Ṙ0 = Λb→i · Ṙ0,bf . (3.38)

Evaluating (3.38) at appropriate time instants gives the RK4 coefficients ki,R0 in
(3.34) used to evolve the position of the body center of gravity forward in time
in the inertial reference frame through (3.33). The reason for doing this in the
inertial reference frame is because the position of the center of gravity is constant
in the body-fixed reference frame. The coefficients ki,α to evolve the body angular
motion forward in time are independent of reference frame in 2D. It is noted that
the velocity and motion of the body must be evolved in time simultaneously.

3.2.11 Iterative Solution for the Time Derivative of ϕ

The fluid forces (3.29) and moment (3.30) used to evolve the velocity and position
of the body in time, are obtained from evaluating the fluid pressure over the in-
stantaneous wetted body surface. The fluid pressure is defined by the Bernoulli
equation discussed in Section 2.3.2, where the time derivative of ϕ is found from
solving an auxiliary BVP with body-boundary condition defined in (3.21). Since
the body’s translational and angular accelerations are involved in the latter, a
problem occurs for a floating body, namely that the body acceleration appears
on both sides of the equation of motion. It is possible to overcome such difficulty
by e.g. using a mode decomposition method such as described by Koo and Kim
(2004), where additional BVPs must be solved for each mode.

In the present work, we instead apply an iterative method that is illustrated in
Figure 3.20. The iteration is performed at the end of every complete RK4 time step,
where the acceleration used in the body-boundary condition at time tn+1 = tn+∆t
is initially estimated with a 1st order backward finite difference method. The BVP
of the time derivative of ϕ is solved, and the fluid pressure is evaluated and in-
tegrated over the wetted body surface. The body’s acceleration is then computed
from the equations of motion. A new acceleration is estimated as the average be-
tween the acceleration used in the body-boundary condition and that obtained
from the equations of motion, and the absolute error between this new accelera-
tion and the one used in the body-boundary condition is computed. If the abso-
lute error in any degree of freedom is larger than a specified tolerance, the body-
boundary condition is updated with the new acceleration and the procedure is
repeated until the error is below the specified tolerance. For the wave-body inter-
action problem considered in Chapter 6, the tolerance is typically taken as 10−3,
with dimension corresponding to the acceleration term. The reason for using an
absolute error rather than a relative one is that the relative error can be slow to
converge when the accelerations are close to zero. The tolerance is generally set
to a level that gives converged results, meaning that further reducing the toler-
ance leads to insignificant changes in motion time series. The iterative procedure
is efficient, because there are no changes to the coefficient matrix A or its pre-
conditioner matrix, and only the elements in the right-hand side vector bϕt

in
(3.13) related to the body-boundary condition have to be updated. As a result, ob-
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taining an updated solution for the time derivative of ϕ at each iteration is fast.
The number of iterations required for each RK4 time step to satisfy the conver-
gence criterion described above is typically found to be in the order of five. This
provides an improved estimate of the body’s acceleration at tn+1, and the body
motion can be evolved to the next time step tn+1 + ∆t.
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Figure 3.20: Iteration loop for time derivative of ϕ performed at the end of every
complete RK4 time step.
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3.3 Efficiency of Potential-Flow Solver

The performance of the IBOGM, that is implemented in the programming lan-
guage Python 2.7, is now considered for a general case with waves generated with
a moving wavemaker, and with a freely floating body in the middle of the NWT.
Figure 3.21 shows the relative time used for main tasks in the present numerical
implementation, i.e. the cumulative time used to perform each task relative to the
total time of the simulation. This is used as basis to explain useful techniques de-
veloped in the present work, as well as to point out areas where there is room for
further improvement. The discussion is intended as a guidance for future imple-
mentations of the specific numerical framework outlined in the present thesis, as
well as for other methods sharing common features.

The first thing that stands out is that establishing the matrix equation for ϕ
accounts for more than 20% of the total computational (CPU) time. The major-
ity of this time is used to generate the global coefficient matrix A, which is time
consuming due to the continuously changing computational domain. In fact, the
time used for this task was initially even higher. However, by recognizing that the
majority of A consists of the connectivity equation (3.3) imposed for interior cell
nodes, the efficiency was improved by initially generating a reservoir coefficient
matrix where all interior nodes are given the continuity equation. Thus, at any
given time, the relevant parts of this matrix is copied into the correct locations
in A. Another aspect that has improved computational efficiency is related to the
identification of cells used to evaluate free-surface properties and fluid velocities
in the coupling between grids. Instead of searching in a vast region of the grid,
the search area is restricted to the cells where the properties were evaluated at the
previous time step extended two cells in all directions. Generally it can be said
that if the non-stationary boundaries move more than approximately one cell in
any direction over one time step, the simulation is likely to eventually become un-
stable. A general technique that is found useful when searching for a point or cell
in the grid, is to first search along one of the coordinate axes to identify a subset
of possible cells, and thereafter search along the second coordinate axis among
this subset. This reduces the effort significantly compared to searching along both
axes simultaneously.

Furthermore, it is seen that generating the right-hand side vector for the global
matrix equation of the time derivative ofϕ amounts to a little more than 10% of the
CPU time. One of the reasons for this is that the fluid velocity must be evaluated
in the locations where the solution in different domains are coupled. Since the
coordinates of these points vary with time, the local HPC expressions cannot be
pre-computed, and the cumulative time spent for these operations is considerable.

The time used by the iterative matrix solvers, including generation of pre-
conditioner matrices, is more than 25% of the total time, while evaluating and
integrating the fluid pressure over the wetted body surface amounts for a little
less than 10% of the time. It should here be noted that the relative computational
effort associated with this, as well as the effort required to update the right-hand
side and solve for the time derivative of ϕ, are significantly reduced if the iterative
solution algorithm discussed in Section 3.2.11 is not invoked.

The remaining tasks included in the group denoted other include e.g. the time

61



3. Numerical Implementation

used to write data to files during the simulation, transforming grid coordinates
between different coordinate systems and more.

A Python-specific advise is to use, as far as possible, functions included in the
libraries NumPy and SciPy. The efficiency of these libraries is generally found to
be better than attempting to write the functions explicitly, especially in connection
with vector and matrix operations.

It is emphasized that the distribution of CPU time between tasks discussed in
Figure 3.21 represents a typical case for a wave-body interaction problem. The
relative distribution between tasks may obviously vary depending on e.g. the
number of unknowns in the different solution domains and the amount of post-
processing performed after each time step.
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Figure 3.21: Relative CPU time for main tasks in a simulation using the IBOGM
with a freely floating body in the middle of the NWT.

3.3.1 Suggestions for Further Improvement of Computational
Efficiency

During the development and implementation of a novel method, such as the
IBOGM method here, it is natural that aspects that could have improved the com-
putational efficiency are discovered in retrospect. Although some techniques to
enhance the efficiency have already been discussed, there is still room for signifi-
cant improvement in the present implementation. It is noted that all suggestions
given here relate to the specific implementation in Python. Although some sug-
gestions are of general nature, it should be kept in mind that the efficiency of
specific operations may differ for other programming languages. It is also noted
that the code is not parallelized to run on several processors.

Two main experiences are made throughout the work:
1. For-loops, and especially nested for-loops, are expensive, and their use

should be limited as much as possible.
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2. Everything that can be pre-computed, should be pre-computed.
While the use of for-loops is difficult to avoid, there are ways to minimize the use
of them. For instance, it is generally much more efficient to populate a matrix by
using vector products than using for-loops. A good example of this in connection
with the HPC method can be seen in e.g. (3.18), where the double-summation in
the present work is replaced by the product between a matrix containing all the
cj,i entries and a vector containing all fj entries. It is believed that in particular the
time spent generating the global coefficient matrix in the present implementation,
which involves a for-loop over all grid nodes that are not interior fluid nodes,
can still be reduced by writing as many functions as possible as vector functions
instead of scalar functions.

While many quantities are precomputed, such as the local HPC expressions
for each cell and the aforementioned reservoir coefficient matrix, enhancements
are possible. The key in this respect is to look for anything that is constant or
only partially changes with time. It should e.g. be possible to reduce the CPU
time involved in evaluating and integrating the fluid pressure over a body, since
the locations in which the pressure is computed are constant with respect to the
body-fixed grid.

Finally, the numerical solution algorithms used to solve the global matrix
equations for ϕ and its time derivative can be examined. Although the iterative,
sparse solvers used here are believed to be efficient, other solvers can be inves-
tigated. This is also linked to developments in computational technology. For in-
stance, graphic processing units (GPU) have during the last years shown to be
very efficient in the amount of vector operations they can perform per time unit.
The efficiency gains that can be achieved through multi-processing have not been
investigated in the present work, since it has been a goal to develop a method
feasible without the use of a computer cluster. However, most modern computers
these days have several cores, and additional enhancement of the computational
efficiency is certainly available through better utilizing this fact.

3.4 Summary

A numerical implementation to study wave-propagation and wave-body inter-
action problems in 2D has been proposed. The harmonic polynomial cell (HPC)
method, that is an accurate and efficient field method, is used to solve the hydro-
dynamic boundary value problems (BVP) within the framework of potential flow.
It was shown that the formulation of the BVP for the velocity potential in the HPC
method is similar in a body-fixed and in an inertial reference frame. However,
the fixed-point time derivative of the velocity potential in a body-fixed reference
frame differs from that in an inertial reference. This has consequences for the BVP
of the time derivative of the velocity potential. The free surface and the boundary
of a rigid body were accounted for using an immersed boundary method (IBM).
This allows arbitrary body shapes to be modelled in a more efficient manner than
applying a body-fitted grid. Studies have shown that the accuracy in the HPC
method is superior when the grid cells are square or close to square, and the IBM
ensures that this condition always can be fulfilled.
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To refined the numerical solution locally in a straightforward manner with-
out excessively increasing the number of cells, using square cells, the idea of
domain-decomposition (DD) was introduced. In the domains that need additional
refinement, here defined as near a moving wavemaker and near a rigid body, the
hydrodynamic problem is formulated in body-fixed reference frames. The grids
in these regions overlap with a stationary background grid, where the hydrody-
namic problem is formulated in an Earth-fixed inertial reference frame. The simul-
taneous application of the IBM and the domain-decomposition method is denoted
as an immersed boundary-overlapping grid method (IBOGM). Although the in-
dividual modelling concepts in the IBOGM are not new, the combination of these
with the HPC method represents an original contribution in the present work.

The details of how to model a free surface, a rigid body and the exchange
of information between different computational domains have been outlined. It
was explained how the fluid pressure is integrated over the instantaneous wetted
surface of a rigid body to obtained pressure loads. Issues influencing the stabil-
ity of the numerical solution, and means to ensure this in connection with the
free-surface evolution and wave-body intersections, were discussed. For a freely
floating body, the body motion and the fluid dynamic problem are coupled. An
iterative scheme to handle this in time has been presented.

The numerical efficiency of any numerical method is of significant practical
interest. Therefore, this aspect was investigated for the IBOGM using a typical
wave-body interaction problem as example. The investigation includes an assess-
ment of the distribution of time used between different computational tasks, along
with experiences made during the present work, as well as suggestions for further
improvement.

In the next chapter, the numerical method described here is used to exam-
ine several cases of wave propagation with different types of non-linear features.
These include steep waves in deep water, shallow-water waves, solitary waves
and a focused wave.
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Chapter 4

Wave Propagation Studies

Using the numerical potential-flow framework introduced in Chapter 3, wave-
propagation problems characterised by different sources of non-linearity are ex-
amined. With the objective of verifying and validating the method’s ability to
propagate non-linear waves accurately, periodic waves with various steepness,
generated by a moving piston- or flap-type wavemaker, or with initial free-surface
properties specified, are considered. Three special shallow-water scenarios are ex-
amined: long periodic waves, solitary waves and focused waves. The accuracy
of the numerical solution is compared to theoretical, experimental or numerical
reference results.

The semi-Lagrangian free-surface description outlined in Section 3.2.1 is used
throughout the chapter, since there are no rigid bodies with curved geometries
involved. All cases except the one in Section 4.3 are documented in Hanssen et al.
(2018), where the numerical method here used to model the free surface was com-
pared with an alternative strategy using overlapping, free-surface fitted grids,
also within the framework of the HPC method.

4.1 Propagation of Periodic Waves over a Long Time Scale

Propagation of periodic waves in a wave tank with periodic boundary conditions
and finite water depth is considered. By applying periodic boundary conditions,
an infinitely long wave tank is approximated numerically by modelling the hy-
drodynamic problem in a computational domain with length equal to the wave-
length λ of the propagating waves illustrated in Figure 4.1. This assumes that the
waves are stationary, so that λ does not change with time.

The wave propagation is initialized by specifying the values of the wave eleva-
tion ζ and free-surface potential ϕfs from the higher-order solution given by Rie-
necker and Fenton (1981) at t = 0. This builds on Dean’s stream function theory,
and represents steadily progressing periodic waves in a potential flow over a flat
seabed as a finite Fourier series. The number of Fourier components required to
give a converged representation depends on the non-linear features of the wave.
In the present work we include the first 20 Fourier components. For t > 0, the free
surface is evolved in time applying the RK4 scheme described in Section 3.2.10.
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z

x

Figure 4.1: Illustration of periodic waves propagating in an infinitely long wave
tank modelled by a restricted computational domain with periodic boundary con-
ditions along the boundaries ∂Ωleft and ∂Ωright. The Oxz coordinate system has
horizontal origin in the middle of the computational domain with vertical origin
in the still waterline.

The free surface is tracked by following markers with the semi-Lagrangian de-
scription given in Section 3.2.1. With reference to Figure 4.1, the entire computa-
tional domain is denoted Ω. The free surface is treated as an immersed boundary
in a structured grid, so that the computational domain at any time consists of an
active part Ωa and an inactive part Ωi. The conditions enforced for the velocity
potential along the boundaries of the active part of the computational domain are
as follows:

ϕ = ϕ∂Ωright
on ∂Ωleft ⊆ Ωa

ϕ = ϕ∂Ωleft
on ∂Ωright ⊆ Ωa

ϕ = ϕfs on ∂Ωfs ⊆ Ωa
∂ϕ
∂z = 0 on ∂Ωbottom

. (4.1)

∂Ωfs is here the free surface at its instantaneous position. Since the wave propaga-
tion is initialized from a specified theoretical steady-state solution, the method’s
ability to propagate waves over a long distance, without possible inaccuracies due
to wave generation by a moving wavemaker, can be investigated. The theoretical
solution by Rienecker and Fenton (1981) is in the following considered as an ana-
lytical solution, and is used to evaluate the error of the numerical solution. At any
given time t, the numerical error of ζ and ϕfs is estimated from the |L2| norm. The
|L2| norm of a generic variable χ, that can be either the free-surface elevation or
the free-surface potential, is defined as

|L2,χ(t)| =


Nm∑
i=1

|χnum(xi, t)− χana(xi, t)|2

Nm∑
i=1

|χana(xi, t)|2


1/2

. (4.2)

Here, χnum and χana are numerical and analytical values of χ, respectively, evalu-
ated at the horizontal position xi of theNm free-surface markers. The conservation
of fluid volume εV (t) is estimated from the expression

εV (t) =
1

V0

∫
Lx

ζ(x, t)dx, (4.3)
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where Lx is the length of the computational domain and V0 = Lxh with h the
water depth. We also estimate the energy per unit length of Ω, E(t) = PE(t) +
KE(t), associated with the free-surface process. PE(t) and KE(t) are defined as

PE(t) =
1

Lx

∫
Lx

g[ζ(x, t)− ζ(t)]dx (4.4)

and
KE(t) =

1

2Lx

∫
Lx

|∇ϕfs(x, t)|2dx, (4.5)

where g is the acceleration of gravity and ζ(t) is the mean wave elevation. The
integrals in (4.3), (4.4) and (4.5) are evaluated using numerical integration.

The length of Ω and the water depth are set to Lx = λ = 10 m and h = 5 m,
respectively. The height of the computational domain is 2h, and since there are
no wavemaker or rigid bodies in the tank, no overlapping grids are present. The
discretization of the computational domain is characterized by the number of grid
nodes per wavelength in x and z-direction denoted as nx and nz , respectively.
Only grids with square cells are considered, so that nx = nz . Four evenly spaced
values of the wave steepness kζa in the range 0.1 to 0.4, where k is the wave
number, are analyzed. For each wave steepness, the convergence of the numerical
solution is assessed by performing analysis for four values of nx = nz in the range
15− 90. kζa = 0.1 represents a wave with moderate non-linearity, while the wave
with kζa = 0.4 is rather steep and close to the kinematic breaking-criterion given
by Mei et al. (2005). This states that a wave breaks when the horizontal wave
particle velocity in the crest exceeds the phase speed of the wave. Using a Stokes
representation to approximate the wave, the maximum wave height H before a
wave breaks in finite water depth is estimated as(

H

λ

)
max

= 0.14 tanh(kh). (4.6)

For the present case with h = 0.5λ, this means (kζa)max ≈ 0.438. In other words,
the waves with kζa = 0.4 are close to the limit of the waves that can be modelled
with the present numerical potential-flow method in terms of wave steepness. The
wave period, estimated from the analytical solution, decreases from T = 2.52 s
for kζa = 0.1 to T = 2.34 s for kζa = 0.4. The time step is set to a fixed value of
∆t = 0.01 s, giving approximately 250 time steps per wave period T . This time
step represents a temporal refinement that may lead to inefficient simulations,
and that may be unnecessary, in cases with larger computational domain. It is
chosen here based on the sensitivity analysis performed by Hanssen et al. (2018),
so that the spatial convergence can be studied with confidence that the results are
temporally converged.

The time evolution of the parameters |L2,ζ |, |L2,ϕfs
|, εV and E are shown in

Figures 4.2 - 4.5 for the four values of kζa. The results denoted as Analytical are
obtained by applying (4.3), (4.4) and (4.5) directly to the analytical solution. For
0.1 ≤ kζa ≤ 0.3, the errors of ζ and ϕfs measured by their respective |L2| norms
decrease with decreasing grid size. The increase with time can likely be denoted
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to a small phase error, which is confirmed by the careful analysis performed for
a similar case by Ma et al. (2018). The oscillatory behaviour seen for εV and E
is caused by the fact that the leftmost free-surface marker in the computational
domain, that is identical to the rightmost marker in the domain, was omitted in the
numerical integrations. This is confirmed by similar oscillations in the analytical
results. For kζa ≤ 0.3, the most refined grids for each wave steepness give εV and
E values that are visually converged to the analytical solution.

For kζa = 0.4, it can be observed that |L2,ζ | is lower for nx = nz = 60 than
for nx = nz = 75. Although the difference is small when we consider the loga-
rithmic scale in the plots, this is indeed unexpected. The observation is possibly
connected with the immersed-boundary modelling of the free surface, since the
accuracy of the numerical solution in the HPC method generally varies with the
location within each cell. Numerical instabilities start to grow after t/T ≈ 30 for
the three highest values of nx = nz for kζa = 0.4. Hanssen et al. (2018) found that
these instabilities were of sawtooth-type and developed close to the wave crest.
The instabilities were kept at a moderate level for a long time when a 12th order
Savitsky-Golay filter was used to smooth the free surface after every time step.
This filter is also used in the results presented here. Without smoothing the free
surface, the instabilities grow rapidly after their onset and the simulations break
down shortly after.

It is difficult to interpret the convergence rate with respect to the grid spac-
ing from Figures 4.2 - 4.5. |L2,ζ | and |L2,ϕfs

| are therefore plotted as a function of
grid spacing for two different time instants in Figure 4.6 together with exponential
curves fitted through the |L2| norms for each separate wave steepness. The expo-
nents of the curve fits, which estimate the convergence rate, are listed in Table 4.1.
Except for with kζa = 0.2, both |L2,ζ | and |L2,ϕfs

| have more than 3rd order con-
vergence in the grid spacing at t/T = 0.1. This corresponds well with the fact that
the HPC method has between 3rd and 4th order spatial accuracy. At t/T = 10, the
convergence rate is on average slightly reduced. One reason may be that tempo-
ral errors are more influential at t/T = 10 than at t/T = 0.1, since the latter time
instant is closer to the start of the simulation. The results for kζa = 0.2 differ from
the other values of kζa in that the convergence rates generally are lower, especially
for |L2,ζ | at t/T = 10. The reason for this is not fully understood, but may possibly
be due to the immersed-boundary modelling. More specifically, it is possible that
this wave steepness gives a particularly favourable or unfavourable configuration
of the free surface relative to the cells for different grid spacings. One should nev-
ertheless bear in mind that the errors for kζa = 0.2 can be considered moderate.

In general it is found that the magnitudes of the errors increase with wave
steepness. This is in accordance with expectations, since waves with high steep-
ness generally are more computationally challenging to model than waves with
low steepness. However, it should be noted that the convergence rates do not
decrease systematically with increasing wave steepness. This indicates that the
higher-order spatial accuracy of the HPC method is preserved also in wave-
propagation problems where the waves have significant non-linear features.
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Figure 4.2: Time traces of |L2,ζ |, |L2,ϕfs
|, εV andE for a wave with steepness kζa =

0.1 propagating in a wave tank with periodic boundary conditions.
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Figure 4.3: Time traces of |L2,ζ |, |L2,ϕfs
|, εV andE for a wave with steepness kζa =

0.2 propagating in a wave tank with periodic boundary conditions.
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Figure 4.4: Time traces of |L2,ζ |, |L2,ϕfs
|, εV andE for a wave with steepness kζa =

0.3 propagating in a wave tank with periodic boundary conditions.
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Figure 4.5: Time traces of |L2,ζ |, |L2,ϕfs
|, εV andE for a wave with steepness kζa =

0.4 propagating in a wave tank with periodic boundary conditions.
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Figure 4.6: |L2,ζ | and |L2,ϕfs
| plotted as function of grid spacing ∆x for a wave

propagating in a wave tank with periodic boundary conditions for time instants
t/T = 0.1 and t/T = 10, where T is the wave period. The dashed lines show
exponential curve fits.

Table 4.1: Exponent in curve fits in Figure 4.6.

kζa
t/T = 0.1 t/T = 10

|L2,ζ | |L2,ϕfs
| |L2,ζ | |L2,ϕfs

|
0.1 3.74 3.51 3.78 3.08
0.2 2.79 2.76 1.64 2.74
0.3 3.75 3.14 2.88 2.98
0.4 3.42 3.32 2.84 3.58

In order to better understand the nature of the numerical errors discussed
above, the wave elevation is plotted against the analytical solution at t/T = 20 for
kζa = 0.1 and kζa = 0.4 in Figure 4.7. While, for the finest grid, the numerical and
analytical solutions are visually similar for both kζa values, there is a visible dif-
ference for kζa = 0.4 with the coarsest grid. The phase error is more pronounced
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than the amplitude error, and is likely due to a dispersion error that occurs when
the fluid particle velocities close to the free surface are not estimated with suffi-
cient accuracy. Because kζa = 0.4 represents a wave with significant non-linear
properties, accurate estimation of particle velocities requires a denser grid than
for the wave with kζa = 0.1.
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Figure 4.7: Wave elevation for waves with kζa = 0.1 and kζa = 0.4 propagating
in a wave tank with periodic boundary conditions at the time instant t/T = 20
for the coarsest and finest grids used for each wave. The x position and wave
elevation ζ are both normalized against the wavelength λ.

The studies here performed for periodic waves in an infinite wave tank show
that the HPC method combined with an immersed-boundary modelling of the
free surface is able to propagate waves with both low and high steepness accu-
rately over a long time. The spatial convergence properties of the HPC method
are found to be well maintained by the free-surface modelling. As one would
expect, the grid spacing required to obtain a certain accuracy decreases with in-
creasing wave steepness. In general, it is found that around 30 grid points per
wavelength are sufficient to give accurate simulations for waves with steepness
up to approximately kζa = 0.3.

4.2 Wave Generation with a Flap-Type Wavemaker for Periodic
Waves in Deep Water

Lugni (1999) performed experiments with periodic deep-water waves in a long
wave tank with water depth h equal to 3.6 m. Waves with steepness kζa =
{0.10, 0.15, 0.20} were generated by a flap-type wavemaker hinged at half the
water depth. We here perform numerical analyses with waves generated by im-
posing the angular flap motions shown in Figure 4.8, that coincide with the flap
motions used in the experiments.

The wave tank used in the numerical analysis is depicted in Figure 4.9. The wa-
ter depth and the hinge point of the flap-type wavemaker are set equal to those in
the experiments. The length of the tank is restricted to 25 m and with a numerical

74



4.2. Wave Generation with a Flap-Type Wavemaker for Periodic Waves in Deep
Water

0 5 10 15
t (s)

−2

0

2

s w
m
(t)

 (
∘
)

kζa=0∘10 kζa=0∘15 kζa=0∘20

Figure 4.8: First part of time histories for angular flap-wavemaker motion swm
used in experiments by Lugni (1999) to generate periodic deep-water waves with
steepness kζa = {0.10, 0.15, 0.20}.

beach with damping coefficient νmax = 2.0 s−1 modelled at opposite side of the
wavemaker. The length of the beach is taken as approximately three times the in-
cident wavelength λ ≈ 2.8 m. Both the stationary background grid and the body-
fixed grid following the motion of the wavemaker are uniform with grid spacing
∆x = ∆z = 0.1 m, giving approximately 28 grid points per wavelength. This is
consistence with the recommendations given towards the end of Section 4.1. The
time step is set to ∆t = 0.033 s, i.e. approximately 40 time steps per wave period.

x

z

Figure 4.9: Sketch of wave tank with water depth h used in numerical analysis to
propagate deep-water periodic waves. The wave elevation is recorded in a wave
probe located at (x − xwm) = 12 m, where xwm is the position of the flap-type
wavemaker at rest. The global Oxz coordinate system is located in the middle of
the computational domain with origin in the still waterline. The x and z-axes are
not in scale 1:1.

The wave elevations in the wave probe located 12 m from the wavemaker
are compared with the results recorded during the experiments in Figure 4.10.
In particular for kζa = 0.10 and kζa = 0.20, the results from the present analy-
sis are in close agreement with the experiments. This includes both the transient
phase, characterized by an amplified leading wave crest, and the steady-state be-
haviour thereafter. For reasons that are unknown, the crests are slightly higher
and the troughs slightly shallower in the numerical results compared with the ex-
periments in the steady-state part of the time series for kζa = 0.15. The error in
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the crest and trough magnitudes are approximately similar, so that the two signals
differ mainly by their mean values.
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Figure 4.10: Time series of wave elevation for periodic deep-water waves with
steepness kζa = {0.10, 0.15, 0.20} in a wave probe located 12 m from the posi-
tion of the wavemaker. The experimental results are from Lugni (1999) and the
numerical results are from the present analysis.
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While the waves with kζa = 0.10 are close to linear, the waves with kζa =
0.20 are relatively steep with significant trough-to-crest asymmetry. The results in
Figure 4.10 do therefore show that, knowing the exact details of the wavemaker
signal, the numerical method used here is fully capable of reproducing non-linear
deep-water waves accurately over a long time scale.

4.3 Propagation of Steep Periodic Waves and Growth of the
Leading Wave

Baarholm (2001) performed experiments with periodic, steep waves in a wave
flume 13.5mm long, 0.6mwide and with a water depth h equal to 1.0mwith the
objective of studying wave impacts on deck structures with low clearance to the
still-water level. The wave elevation was measured in a single wave probe that we
here assume was located in the middle of the tank, although Baarholm states that
the location of the wave probe sometimes was changed between cases. The three
cases described in Table 4.2 are considered. In order to get an impression of how
steep these waves are, the crest amplitudes are plotted together with the breaking
criterion given by expression (4.6) in Figure 4.11. Clearly, the case n30 004, that
also has the highest value of the steepness estimate kζc, is closest to the breaking
limit. Here ζc represents the crest amplitude, consistent with the notation used by
Baarholm (2001).

Table 4.2: Selected cases from Baarholm (2001), with the same notation as used
in the reference, for propagation of steep periodic waves. ω is the angular wave
frequency, λ is the wavelength, ζc is the crest amplitude and k is the wave number.
It is noted that, near breaking, ζc is not equal to half the wave height.

Case ω (s−1) λ (m) ζc (m) kζc (−)
d03 003 6.28 1.56 0.080 0.322
n30 004 6.28 1.56 0.093 0.375
n30 008 5.03 2.41 0.089 0.232

The waves in the experiments were generated by a flap-type wavemaker
hinged 0.1 m above the sea bed. Neither the stroke or the ramp period of the
wavemaker is known. We here assume a ramp time of 5 s, while the wavemaker’s
angular stroke swm,a is iterated on until a satisfactory agreement with the exper-
iments is reached. The following values are used for swm,a: 3.209◦ for d03 003,
3.638◦ for n30 004 and 4.498◦ for n03 008. The frequency of the flap motion is
taken equal to ω in Table 4.2. The time step ∆t and grid spacing ∆x = ∆z are
set to 0.02 s and 0.05 m, respectively, for all three cases. Similar grid spacings are
used in the stationary background grid and in the body-fixed grid moving with
the motion of the flap-type wavemaker. This ensures at least 30 time steps per
wave period and at least 31 grid points per wavelength. The latter is consistent
with the recommendations given towards the end of Section 4.1. The length of the
wave tank is increased to 16.5 m in the numerical analysis, in order to allow for a
6 m long numerical beach with damping coefficient νmax = 2.0 s−1 to be located
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Figure 4.11: Waves from Table 4.2 plotted together with the breaking criterion
given by expression (4.6). Hb is the breaking-wave height and ζc is the crest am-
plitude. It is noted that near breaking, ζc 6= 0.5Hb.

at the opposite side of the wavemaker without disturbing the wave measured in
the middle of the tank.

The wave elevation in the probe located 6.25 m from the position of the wave-
maker at rest is compared with the experimental results in Figure 4.12. Consider-
ing that there is uncertainty related to both the wavemaker signal and the position
of the wave probe used in the experiments, the agreement between the numerical
and experimental results is satisfactory. The largest deviations are observed for
the case n30 004, i.e. the case closest to breaking in Figure 4.11. To propagate such
steep waves accurately represents a challenge also in experimental work, and it is
likely that at least some of the observed differences between the experimental and
numerical wave elevation are due to this.

In relation with the present analysis, it is discovered that several wavelengths
away from the wavemaker, the crest of the leading wave in the wave train may
grow very steep and even cause numerical instability. In order to further exam-
ine this phenomenon, the case d03 003 is revisited by elongating the wave tank to
25 m, leaving the other simulation parameters unchanged. Snapshots of the wave
elevation plotted as a function of distance from the wavemaker are shown in Fig-
ure 4.13. As indicated by the envelope curve, the crest-amplitude starts to grow
approximately 5λ from the wavemaker. Shortly after t = 17 s, the simulation be-
comes unstable and breaks down due to the rapid increase of the leading-wave
crest.

In order for the simulation to remain stable, the stroke of the wavemaker is
reduced by 25%. The envelope curve in Figure 4.14 clearly shows that the leading
wave systematically increases with distance from the wavemaker, and the magni-
tude of the crest increases more than the magnitude of the trough.
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Figure 4.12: Time series of wave elevation for the cases in Table 4.2 studied ex-
perimentally by Baarholm (2001). The wave elevation is plotted in a wave probe
located 6.25 m from the position of the wavemaker. It is noted that B-spline in-
terpolation is used to increase the spatial sampling density of the experimental
results.
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Figure 4.13: Snapshots of wave elevation at different time instances t plotted as a
function of distance from the position xwm of the wavemaker for case d03 003 in a
25 m long wave tank. The envelope curve indicates the minimum and maximum
wave elevation at each x location for any t.
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Figure 4.14: Snapshots of wave elevation at different time instances t plotted as
a function of distance from the position xwm of the wavemaker for case d03 003
with 25% reduced wavemaker stroke in a 25 m long wave tank. The envelope
curve indicates the minimum and maximum wave elevation at each x location for
any t.

By studying different configurations of the numerical beach, and different tank
lengths, it is ruled out that the observed growth of the leading wave in Figure 4.14
is related to wave reflections. However, it is found that increasing the ramp-up
time for the wavemaker may postpone the time until the leading wave shows
significant growth. The growth of the leading wave in a wave train was also
found by Clamond and Grue (2000), who performed numerical simulations of
the phenomenon motivated by experimental observations. As the authors point
out, this behaviour is not captured by higher-order analytical wave theories. They
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observed that the amplitude of the leading wave had an oscillatory trend, am-
plifying with time until the point of breaking. The latter is interpreted as the time
when numerical instability occurs, similar to the scenario in Figure 4.13. It is likely
that the growth of the leading wave is due to non-linear dispersion related to the
transient ramp-up of the wavemaker, leading to focusing of energy near the front
of the wave train. Indeed, the fact that modifying the wavemaker ramp-up time
influences the behaviour supports such argument. Being outside the scope of the
present work, the phenomenon is not further examined.

4.4 Non-Linear Dispersion in Periodic Shallow-Water Waves

The experimental work of Chapalain et al. (1992) is now considered. Generating
waves with a harmonically oscillating piston-type wavemaker in a 35.54 m long
and 0.55mwide wave channel with water depth h set equal to 0.4m, they studied
the transformation of long waves with moderate steepness due to non-linear in-
teraction between different harmonic modes in shallow water. The motion of the
wavemaker is described by

swm(t) = −swm,a cosωwmt, (4.7)

where swm,a is the wavemaker stroke and ωwm is the angular oscillation fre-
quency. Numerical analyses are performed for the two cases in Table 4.3. Uniform
grids with grid spacing ∆x = ∆z = 0.08m are used for both cases, giving approx-
imately 60 and 85 grid points per wavelength for cases A and C, respectively, with
the wavelength estimated from the finite-water depth linear dispersion relation.
This is a finer grid than strictly found necessary in Section 4.1, however, we here
anticipate that higher-order wave components arise as the waves propagate. The
time step is taken as ∆t = 0.08 s, giving more than 30 time steps per wave period
for both the examined cases.

Table 4.3: Selected cases from Chapalain et al. (1992), with the same notation as
used in the reference, for propagation of shallow-water waves. swm,a and ωwm are
the wavemaker stroke and angular frequency, respectively, used in (4.7).

Case swm,a (m) ωwm (s−1)
A 0.078 2.5133
C 0.113 1.7952

Chapalain et al. (1992) do not give any information regarding the start-up of
the wavemaker. In the numerical analysis, a ramp function as defined in the ex-
pression (3.32) is used together with a ramp time Tramp = 2 · 2π/ωwm. No beach
was used on the opposite side of the wavemaker in the experiments, which ac-
cording to the authors is to avoid parasitic wave reflections. Thus, only the wave
elevation in the first 25m of the channel was used in post-processing of the exper-
imental waves. This gives a sufficient time window to perform harmonic analysis
before the waves are reflected back from the tank wall opposite of the wavemaker.
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In the numerical analysis, the accuracy of the post-processing improves by hav-
ing longer time series before reflected waves start to influence the wave elevation
in the first 25 m of the channel. A 45 m long numerical wave tank is therefore
used in the analysis. In order to be consistent with the experiments, no numerical
damping zone is used.

The wave-elevation time series is recorded in fixed wave probes distributed
over the first 25 m of the tank. For each of these time series, the first four har-
monic wave amplitudes ζ(i)

a , i = 1, ..., 4 are calculated by Fourier analysis. Only
the steady-state part of the wave elevation in each probe is used, i.e. the part of
the time series after initial transient waves have passed, and before waves are re-
flected back. The present results are compared with the experimental results, in
addition to the numerical results by Shao and Faltinsen (2012). They also used the
HPC method, but in contrast to the present work, the grid was stretched vertically
to deform with the motion of the free surface.

The harmonic wave amplitudes are plotted as a function of distance from the
wavemaker in Figure 4.15. For case A, the results from the present analysis are
found to be in reasonable agreement with the experiments except for an appar-
ent phase shift in the 2nd harmonic. This phase shift is also to some extent seen
in the results by Shao and Faltinsen (2012), who predict slightly lower values for
the 1st harmonic compared to the present analysis. Larger differences between the
present results and the experimental results are observed for case C, particularly
for the 1st harmonic where the difference increases with distance from the wave-
maker. A possible explanation is viscous dissipation in the experiments. Shao and
Faltinsen (2012) added an artificial dissipation term in the free-surface conditions
to model this, resulting in a better agreement with the experiments for the 1st

harmonic away from the wavemaker.
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Figure 4.15: Harmonic wave amplitudes for shallow-water wave cases defined in
Table 4.3 plotted as function of distance from the nominal position xwm of the
piston-type wavemaker. Full lines indicate the experimental results by Chapalain
et al. (1992), square symbols indicate the numerical results by Shao and Faltinsen
(2012) and the dashed lines indicate the results obtained in the present analysis.

82



4.5. Solitary Wave in Shallow Water

Due to the dimensions of the wave channel where the experiments were per-
formed, there are some possible sources of uncertainty. Due to the narrowness
of the channel, non-negligible viscous effects may arise from the side walls. The
length of the tank, and the fact that no beach was present to prevent wave reflec-
tions, restrict the duration of the time signal used in the Fourier analysis. Theo-
retically, the analysis requires at least one full steady-state oscillation to give ac-
curate estimates of the Fourier amplitudes. However, because the wave signal
measured in an experiment will always to some degree be polluted, it is reason-
able to assume that the accuracy of the estimated Fourier amplitudes increases
with the number of oscillation periods used in the analysis. No further efforts are
here made to quantify the level of uncertainty in the experiments. The qualitative
agreement between the experimental and numerical results does nevertheless in-
dicate that the present method is able to predict the non-linear transfer of energy
between different harmonic modes in shallow-water conditions.

4.5 Solitary Wave in Shallow Water

A solitary wave can be described as a single wave crest that travels over a long
distance with a constant wave profile. Its existence was first reported by Russell
(1844), and several theories have since been suggested to describe solitary waves.
We here consider the 9th order approximate solution by Fenton (1972) as an ana-
lytical reference solution. The free-surface elevation ζ is expanded in a series with
a non-dimensional parameter ε = A/h, where A is the amplitude of the solitary
wave and h is the water depth. Fenton (1972) concluded that his solution can be
accurate for ε up to 0.75, however, a practical limit seems to be around 0.6. We here
pursue the method proposed by Wu et al. (2014) to generate the solitary wave by
a moving piston-type wavemaker that extends all the way down to the seabed.
The velocity of the piston is taken equal to the average horizontal fluid-particle
velocity under the solitary wave at the instantaneous position of the piston. This
can be approximated as

ṡwm =
cζ

h+ ζ

∣∣∣∣
x=swm

, (4.8)

where c and ζ are the phase speed and surface elevation given by the analyti-
cal solution, respectively. The position swm of the wavemaker is obtained by let-
ting the analytical wave crest initially be located far upstream of the wavemaker,
and integrating (4.8) in time as the analytical wave travels towards and beyond
the wavemaker. The procedure is further elaborated in Hanssen et al. (2018). One
should be aware that this way of generating a solitary wave is approximate, be-
cause it assumes that the horizontal fluid-particle velocity is uniform across the
water depth at the position of the wavemaker. Wu et al. (2014) claim that (4.8) in
combination with Fenton’s 9th order solution enables accurate numerical simula-
tions for ε up to 0.4. In the following analysis, the free-surface is modelled with
the semi-Lagrangian formulation described in Section 3.2.1.

The wavelength associated with the solitary wave is estimated as λ = 2π/k,
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where k is the wave number suggested by Rayleigh (Wu et al., 2014) as

k =

√
3A

4h2(h+A)
. (4.9)

Numerical analyses are performed for ε in the range 0.2−0.6. A single grid spacing
∆x = ∆z is used for all cases, both in the stationary background grid and in the
body-fixed grid moving with the piston-type wavemaker, so that 95 ≤ ∆x/λ ≤
142. The time step is fixed at ∆t = 0.015 s, so that a Courant-Friedrichs-Lewy
(CFL) condition (Courant et al., 1928) on the form

CFL =
c∆t

∆x
≤ 1.0 (4.10)

to ensure numerical stability is always satisfied. The water depth is set to h =
0.4 m, and the length of the tank is 30 m without any numerical damping zone.
As a consequence, only the part of the time series before the solitary wave reaches
the tank wall opposite of the wavemaker is considered in the post-processing.
The properties of the considered waves based on the analytical solution and the
resulting CFL number in the numerical simulations are summarized in Table 4.4.

Table 4.4: Properties of solitary waves simulated numerically.A is the wave ampli-
tude, λ is the wavelength, c is the phase speed andCFL is the Courant-Friedrichs-
Lewy number.

ε 0.2 0.3 0.4 0.5 0.6
A (m) 0.08 0.12 0.16 0.20 0.24
λ (m) 7.11 6.04 5.43 5.03 4.74
c (m/s) 2.17 2.25 2.33 2.41 2.48
CFL (−) 0.65 0.68 0.70 0.72 0.74

The free-surface elevation is shown at two different time instants for 0.2 ≤ ε ≤
0.6 in Figure 4.16. For ε up to 0.4, both the amplitude, phase and wave form of the
numerical solution compare well with the analytical solution. For the two high-
est values of ε, the wave amplitudes are lower than the corresponding analytical
values. At the first time instant, noticeable trailing waves follow after the solitary
crest for ε > 0.4. These are not visible at the later time instant, because the trailing
waves travel with lower velocity than the solitary crest as seen in the space-time
plots in Figure 4.17. A phase difference that is increasing with time can also be
noticed. This indicates that the phase speed in the numerical solution is slightly
lower than the analytical value when ε > 0.4.

The errors observed in the numerical solution for ε > 0.4 are believed to be
due to the use of a piston-type wavemaker that forces the horizontal fluid-particle
velocity to be uniform for −h ≤ z ≤ ζ at the position of the wavemaker, which is
unphysical when ε increases and non-linear effects become more significant. This
is illustrated in Figure 4.18, where the horizontal fluid-particle velocity ux com-
puted with a 3rd order approximate solution given by Fenton (1972) is plotted as
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Figure 4.16: Wave elevation for solitary waves with 0.2 ≤ ε ≤ 0.6 as function of the
horizontal coordinate x at two different time instants. x has origin in the middle
of the tank. The analytical solution is the 9th order solution by Fenton (1972).
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Figure 4.17: Space-time plot of free-surface elevation for solitary waves with 0.3 ≤
ε ≤ 0.6. x has origin in the middle of the tank.
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a function of the vertical coordinate z. For ε ≤ 0.4, the velocity profile can be ap-
proximated with reasonable accuracy by a uniform profile. For ε > 0.4, however,
ux depends more strongly on z. This can be understood by noticing that the terms
depending on z in the approximate representation of ux are 2nd and 3rd order
with respect to ε. Thus, when the horizontal fluid-particle velocity is forced to be
uniform at the position of the wavemaker for higher values of ε in the numerical
solution, dispersion errors may cause both the trailing waves and phase lag ob-
served in the numerical results. This hypothesis is supported by the findings of
Zhou et al. (2016), who simulated solitary waves by specifying initial conditions.
By using a higher-order initial condition, they were able to simulate solitary waves
with ε = 0.5 more accurately than when applying a lower-order initial condition.
Indeed, by using the present numerical code with a modified Neumann-boundary
condition for the velocity potential at the wavemaker, Tong et al. (2019) were able
to simulate a solitary wave with ε up to 0.6 with good accuracy. This confirms that
the errors observed here for ε > 0.4 are related to the wave generation rather than
the fundamental features of the numerical method.
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Figure 4.18: Horizontal fluid particle velocity ux under crest of a solitary wave
with 0.2 ≤ ε ≤ 0.6 estimated from 3rd order approximate solution given by Fenton
(1972). The velocity is normalized against

√
gh, where g and h are the acceleration

of gravity and the water depth, respectively.

4.6 Propagation of a Wave Packet Resulting in a Steep Focused
Wave

The focused wave group studied by Dommermuth et al. (1988) is now consid-
ered. They performed experiments in a 25 m long, 0.7 m wide and 0.6 m deep
water channel equipped with a piston-type wavemaker. In the experiments, the
wavemaker was programmed to generate waves with different wavelengths re-
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sulting in an amplified and eventually plunging crest at a certain location and
time. The channel was equipped with a damping beach starting at a distance
19.5 m away from the wavemaker. The wave elevation was measured in nine
wave probes located between 3.17h and 12.17h from the wavemaker, where h
is the water depth. In the experiments, the breaking wave occurred at the focus
point approximately 12.08h away from the wavemaker at a non-dimensional time
instant t

√
g/h ≈ 52.15.

We here perform simulations with waves generated by a piston-type wave-
maker with the displacement signal shown in Figure 4.19. The depth h is set equal
to that in the experiments, while the length of the tank is set to 15 m. A sketch
of the tank is given in Figure 4.20, also indicating the locations of the nine wave
probes used in the analysis. Due to the nature of the experiments, wave reflections
do not represent a major concern. Nevertheless, a numerical beach of length 8h
with νmax = 2.0 s−1 is located on the opposite side of the wavemaker. This means
that the numerical beach starts at a distance 17h from the wavemaker, i.e. well
beyond the wave-focus point. Uniform grids with three different grid spacings
are considered. The grid spacing is the same in both the stationary background
grid and in the grid fixed to the wavemaker. The free-surface is modelled with the
semi-Lagrangian formulation described in Section 3.2.1. As can be seen from Ta-
ble 4.5, where the main simulation parameters are listed, a fixed time step is used
independent of the grid refinement. This time step is chosen so that the CFL num-
ber based on the individual piston-frequency component with the largest velocity
is always less than unity.

0 10 20 30 40 50
t√g/h  (-)

−0.05

0.00

0.05

s w
m
(t)

/h
 (-

)

Figure 4.19: Time history of piston-wavemaker displacement swm to generate a
focused wave.

The time series of the wave elevation in the nine wave probes obtained with
the three different grid refinements are compared to the experimental results by
Dommermuth et al. (1988) in Figure 4.21. The first thing that stands out is that,
while the simulations with the medium and fine grids break down close to the
time of wave breaking in the experiments (t

√
g/h ≈ 52.15), the simulation with

the coarse grid does not. This is possibly because the coarsest grid effectively fil-
ters out instabilities that are associated with the initiation of wave breaking, so
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x

z

Figure 4.20: Sketch of wave tank with water depth h used in numeri-
cal analysis to propagate a focused wave. The shown free-surface elevation
corresponds to non-dimensional time t

√
g/h = 50.0. The horizontal posi-

tions of the wave probes with indices 1-9 are given as (x − xwm)/h =
{3.17, 5.00, 6.67, 8.33, 9.17, 10.00, 10.83, 11.83, 12.17}, where xwm is the position of
the piston-type wavemaker at rest. The global Oxz coordinate system is located
in the middle of the computational domain with origin in the still waterline. The
x and z-axes are not in scale 1:1.

Table 4.5: Settings used in the numerical simulations for the focused-wave exper-
iments by Dommermuth et al. (1988). ∆x and ∆z are the grid spacings in hori-
zontal and vertical direction, respectively, ∆t is the time step, h is the water depth
and g is the acceleration of gravity.

Refinement ∆x/h (−) ∆z/h (−) ∆t
√
g/h (−)

Coarse 0.08 0.08
0.05Medium 0.06 0.06

Fine 0.04 0.04

that the free surface remains a single-valued function of the horizontal coordinate,
which is required in the present method. However, Wang and Faltinsen (2018)
showed that also such scenarios can be modelled within the framework of the
HPC method by applying a fully-Lagrangian free-surface model with local grid
refinements. In the probes located some distance from the focus point where the
physical wave breaking occurred, i.e. Figure 4.21 (a) - (f), there are insignificant
differences between the numerical results for the different grid refinements prior
to the wave breaking. In the probes closer to the focus point, i.e. Figure 4.21 (g) -
(i), the free-surface elevation with the coarse grid differs slightly from the medium
grid. The results with the medium and fine grids are visually in good agreement
throughout, indicating that the medium grid gives approximately converged re-
sults.
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Figure 4.21: Time series of wave elevation for a focused wave in nine probes lo-
cated between 3.17h and 12.17h from the wavemaker that at rest is located at
x = xwm. Numerical results with three different grid refinements are compared
with the experimental results by Dommermuth et al. (1988).
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Figure 4.21: Continued.
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Figure 4.21: Continued.
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To represent an overturning wave numerically represents an additional chal-
lenge with respect to modelling, and requires a finer spatial discretization as well
as a smaller time step. Moreover, the scenario when the overturning wave reat-
taches to the free surface underneath cannot be accounted for in a potential-flow
model. In many cases it may therefore be of interest to study waves that are close
to breaking, or where the actual breaking is either localized or not of primary
concern, without actually modelling the overturning wave. The physical process
of wave breaking is associated with dissipation of energy, and several numerical
schemes have been proposed to artificially suppress wave breaking in an attempt
to account for this energy dissipation in potential-flow models. Two methods are
outlined by Subramani (2000), where in the first, an additional pressure term is
added in the dynamic free-surface condition (DFSC). The second method consists
in replacing the free surface of the breaking wave with a smoothed profile. This
method has similarities with the method proposed by Wang et al. (1995), where
the top layer of a wave crest close to breaking is ”peeled” off in order to avoid
unwanted wave breaking. Also relevant in this framework is the work by Paulsen
et al. (2014), where a Savitsky-Golay filter is applied locally on the free surface
close to where breaking is expected.

All the above methods represent means to remove energy from the wave crest
in order to avoid wave breaking in a pragmatic manner. Inspired by the work of
Subramani (2000), we here use the method of adding a dissipative term µb(x, t)
in the DFSC. In the semi-Lagrangian formulation outlined in Section 3.2.1, that
is used in the present analysis, the DFSC in the inertial reference frame given by
expression (3.14) is reformulated with the dissipative term as

δϕPm

δt
= −1

2
|∇ϕ|2 − gz +

δzPm

δt

∂ϕ

∂z
− ν(x, t)(ϕ− ϕref )− µb(x, t). (4.11)

Here, Pm = (xPm , zPm) is the position of a free-surface marker expressed in the in-
ertial coordinate system, where the horizontal x-axis and the vertical z-axis have
origin in the center of the computational domain and in the still free surface,
respectively. ν(x, t) is a linear damping coefficient associated with a numerical
damping zone. The wave breaking here occurs at a location outside the numerical
beach, i.e. ν(x, t) = 0 when µb(x, t) 6= 0. If wave breaking is identified in a marker
with horizontal coordinate x0, the contribution to µb(x, t) due to this is defined as

µb(x, t;x0) = µmaxθb(x, x0)|∇ϕ|2sign(
∂ϕ

∂z
), (4.12)

where µmax is an empirical coefficient and sign(∂ϕ/∂z) = 1 if ∂ϕ/∂z ≥ 0 and
sign(∂ϕ/∂z) = −1 otherwise. θb(x, x0) is an envelope function on the form

θb(x, x0) =

{
1
2

[
1.0 + cos π(x−x0)

L0

]
|x− x0| ≤ L0

0 |x− x0| > L0

, (4.13)

with L0 the half-length of the envelope. Because wave breaking can be identified
at several markers i = 1, ..., N that are close to each other, the total dissipative
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term µb(x, t) is accumulated from the individual contributions given by (4.12):

µb(x, t) =

N∑
i=1

µb(x, t;x0 = xPm,i). (4.14)

The parameters µmax and L0 in (4.12) must be determined empirically. For the
present case it is found that taking L0 as 10-15% of the local wavelength of the
breaking wave represents a reasonable initial guess. However, it is believed that
the optimal choice for L0 will depend on the type of wave breaking. In order to
determine the final value of µmax, a suggested strategy is to start out with a small
value µmax << 1 and re-perform the analysis where wave breaking originally oc-
curred. If the numerical analysis still becomes unstable, µmax should be increased
incrementally until the simulation becomes stable. If, on the other hand, the simu-
lation is stable with the initial guess for µmax but results in a clearly non-physical
free-surface profile, µmax should be decreased incrementally until a good compro-
mise is found. If reference results are not available, it is obviously not straightfor-
ward to judge the goodness of such compromise. Evaluation of additional prop-
erties such as conservation of fluid energy and fluid mass, as done by Hanssen
et al. (2018), can be helpful in this respect. If an adequate value for µmax cannot
be established, the choice of L0 can be revisited. A reasonable value for µmax is
found to be 0.1 for the present case.

In order to identify the position(s) x0 in (4.12), a criterion to detect wave break-
ing must be established. Following Barthelemy et al. (2015), wave breaking can
be considered a threshold process where the threshold is defined by the ratio γb
between the horizontal fluid-particle velocity ∂ϕ/∂x and the local phase speed
c(x, t). Using a threshold level for γb in the range 0.85 − 0.86, Barthelemy et al.
(2015) were able to successfully predict wave breaking. Seiffert and Ducrozet
(2016) confirmed that a threshold level of 0.84 − 0.86 for γb identifies the onset
of wave breaking for various focused-wave cases. We here identify wave break-
ing when γb > 0.86. The local phase speed is given as

c(x, t) =

√
g tanh [k(x, t)h]

k(x, t)
, (4.15)

where h is the water depth and k(x, t) is the local wave number. Following Seiffert
and Ducrozet (2016), the latter is determined by first taking the Hilbert transform
of the free-surface elevation, H(ζ), at time t:

k(x, t) =
1

ζ2 +H(ζ)2

(
ζ
∂H(ζ)

∂x
−H(ζ)

∂ζ

∂x

)
. (4.16)

The derivative ∂H(ζ)/∂x is taken from a numerically fitted B-spline representa-
tion of H(ζ) through all free-surface markers. (4.16) must be evaluated at each
time step, but is not found to give any significant increase in the total computa-
tional time involved in the analysis.

Although the breaking criterion described above is able to detect the time and
location of breaking observed in the experiments with good accuracy (Hanssen
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et al., 2018), criteria that are more straightforward to implement have been sug-
gested by other authors. For instance, Snyder and Kennedy (1983) statistically
described the probability of wave breaking in a random sea state using the neg-
ative vertical acceleration of the free surface as criterion. By estimating the rele-
vant spectral parameters from the significant wave height and period, Greenhow
(1989) demonstrated a practical use of the method that can easily be combined
with wave scatter diagrams. Applying the vertical acceleration of the free surface
as breaking criterion directly in a non-linear simulation may indeed represent an
attractive alternative to the one used here, particularly if the method is extended
to 3D. However, the relevant threshold level for the acceleration and the accuracy
of the criterion would require further investigation.

The medium-grid case, that originally resulted in an unstable simulation close
to the time of wave breaking in the experiments in Figure 4.21, is revisited with
the above breaking-identification and suppression schemes included. As shown
in Figure 4.22, the simulation now remains stable throughout. Compared with the
coarse-grid case, where the simulation did not originally break down, the free-
surface profile differs close to the location and time of wave breaking mainly in
that the magnitude of the free-surface elevation is lower. However, some time af-
ter the breaking, the numerical medium-grid results with breaking-suppression
are similar to the coarse-grid results. This indicates that the suppression scheme
successfully modifies the properties of the waves locally in space and time, with-
out significantly influencing the behaviour of the solution thereafter.

The performance of the breaking-suppression scheme is here tested for a case
where a plunging breaker was observed in the experiments. This can be consid-
ered a violent type of wave breaking, that is expected to be challenging to suppress
numerically in a sound manner. However, plunging breakers will in practice only
be studied with potential-flow methods in local types of analyses where e.g. the
wave kinematics associated with impact loads on structures are of interest. Hav-
ing demonstrated that the scheme is able to ensure numerical stability even for the
challenging case of a plunging breaker, indicates that it may represent an attrac-
tive method for cases involving less violent wave-breaking mechanisms. As an
example, spilling breakers may occur due to locally steep waves in an irregular
sea state. If the wave breaking is not expected to be important for the quantities
under consideration, that may e.g. be the slowly-varying wave drift loads on a
moored structure, a breaking-suppression scheme can be an useful mean to pro-
mote numerical stability in a non-linear analysis.

A clear weakness of the proposed breaking-suppression scheme in practical
applications is that the empirical coefficients involved in the dissipative term
(4.12) are determined by a labour-intensive, manual tuning process. In order to
make the method more practical, it is necessary to relate these coefficients more
strongly to the physical properties of the instantaneous wave. This would enable
the coefficients to be changed dynamically during a simulation, but in order to
establish such relations, more research is required. It would also be of interest to
determine if, and how, the method can be applied to 3D problems.
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Figure 4.22: Time series of wave elevation for a focused wave in the three probes
closest to the focus point. Numerical results with coarse grid and with medium
grid including a scheme to suppress wave breaking are compared with the exper-
imental results by Dommermuth et al. (1988).
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4.7 Summary

Using the numerical method introduced in Chapter 3, wave-propagation prob-
lems involving various non-linear mechanisms have been examined. Periodic
waves with wave steepness kζa between 0.1 and 0.4 in finite water depth, prop-
agating in an infinitely long wave tank modelled by a restricted computational
domain with periodic boundary conditions, were first considered. The steepness
kζa = 0.1 represents a wave close to linear, while the wave with kζa = 0.4 is
close to breaking. The waves were generated by specifying the initial properties
of the free surface, allowing us to study the wave-propagating capabilities of the
method without disturbances from a wavemaker. The numerical error was com-
puted by considering a high-order stream-function theory as analytical solution.
For all values of kζa, the waves were simulated over 40 wave periods, with the
number of grid points required to obtain a certain level of accuracy increasing
with increasing wave steepness. The spatial convergence of the numerical error
of the free-surface elevation and potential was, with a few exceptions, approxi-
mately 3rd order or better in the grid spacing. For kζa = 0.4, numerical instabili-
ties of sawtooth-type were observed for the finest grids. By applying a high-order
spatial filter to smooth the free surface, the simulations were able to continue for
40 wave periods, although with increasing numerical errors. It was found that 30
grid points per wavelength generally is sufficient to give accurate simulations for
waves with steepness up to approximately kζa = 0.3.

Propagation of steep waves generated by a flap-type wavemaker was exam-
ined for several cases with wave steepness kζa in the range 0.1 to 0.38. Excellent
comparison with experimental results was found for the cases with kζa up to 0.2,
where the exact time histories of the wavemaker used in the experiments were en-
forced in the numerical analysis. For the higher values of kζa, where simulations
were compared to experiments with different origin, the particulars of the wave-
maker motion were unknown and thus estimated by manual iteration. With this
in mind, and disregarding the initial transient of the wave elevation, the compari-
son with experimentally measured wave elevations was reasonable. By extending
the length of the wave tank beyond that used in the experiments, it was seen that
the amplitude of the leading wave in a steep wave train increased as the waves
propagated. It is likely that this behaviour is due to non-linear dispersion effects
caused by the transient ramp-up of the wavemaker.

By studying long waves in shallow water generated by a piston-type wave-
maker, the non-linear transfer of energy between different harmonic modes was
investigated. Comparing the first four harmonic amplitudes with both experi-
mental and numerical reference results, it was demonstrated that the numerical
method is able to account for non-linear wave-wave interactions in shallow water.

Solitary waves with amplitude-to-depth ratios ε between 0.2 and 0.6 were gen-
erated by a piston-type wavemaker. Compared with a high-order approximate
solution, accurate numerical results were obtained for ε up to 0.4. For higher val-
ues of ε, trailing waves with non-negligible amplitudes were observed, along with
notable errors in phase speed and wave amplitude. It was argued that the errors
observed for ε > 0.4 were due to the fact that waves were generated by a piston-
type wavemaker, that forces the horizontal fluid-particle velocity to be uniform
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over the depth, rather than caused by than the numerical method itself.
At last, a focused wave group that in experiments resulted in a plunging

breaker at the focus point, was examined. Simulations were performed with a
coarse, medium and fine grid, where the medium grid was observed to give nu-
merically converged results when considering the wave elevation close to the
wave-focusing point. Up to the point of breaking, good agreement with experi-
mental results was demonstrated. The two simulations with the finest grids be-
came numerically unstable close to the time of breaking in the experiments, while
the simulation with the coarsest grid did not. This is likely because this grid ef-
fectively filters out the small instabilities that initiate the physical process of wave
breaking. Inspired by this observation, a scheme to suppress wave breaking was
proposed, that enabled the simulation with the medium grid to remain numeri-
cally stable throughout. This represents a pragmatic measure to improve numeri-
cal robustness when modelling waves close to breaking, or where the breaking is
localized or not of primary concern. More work is however required to relate the
empirical parameters in the model to physical properties.

Having shown that the numerical method is able to propagate periodic waves
with high steepness, solitary waves and long waves in shallow water, with distinct
non-linear features, we consider a wave-radiation and a wave-diffraction prob-
lem in the next chapter in order to examine the method’s ability to deal with free
surface-body interaction problems.
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Chapter 5

Wave Radiation and Diffraction
Studies

The previous chapter showed that the immersed boundary-overlapping grid
method (IBOGM) described in Chapter 3 is able to accurately simulate propa-
gating waves with various non-linear and dispersive mechanisms. The method’s
ability to handle water-body interaction is examined next.

First, a circular cylinder undergoing forced harmonic heave motions in still
water, that corresponds to a wave-radiation problem, is considered. This prob-
lem has two numerically challenging non-linear features, namely that the body
has non-vertical geometry in the intersection points between the free surface and
the body, and that local non-linear wave behaviour develops close to the body
for high oscillation frequencies. Thereafter, a fixed ship section in beam-sea inci-
dent waves with different wave heights and frequencies is considered. This cor-
responds to a wave-diffraction problem, where non-linearity is mainly related to
the incident wave and the modification of this as it approaches the body.

The analysis of the heaving cylinder was documented in Hanssen et al. (2017).

5.1 Forced Heave Motion of a Semi-Submerged Circular
Cylinder in Still Water

The forced harmonic heave motions of a half-submerged, circular cylinder in still
water studied experimentally by Tasai and Koterayama (1976) is considered. The
non-dimensional heave amplitude is given as εη3 = η3a/R, where η3a is the heave
amplitude and R = 0.1m is the cylinder radius. The forced heave motion is given
as

η3(t) = −η3a sinωt, (5.1)

where ω is the angular oscillation frequency. Since no incident waves are present,
this corresponds to a wave-radiation problem, where the heave added mass coef-
ficient A33 and damping coefficient B33 can be estimated from the time series of
the vertical water force F3(t) on the cylinder. Following Sun (2007), F3(t) can be
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expanded in a Fourier series,

F3(t) = F3,0 +

∞∑
n=1

F3,n sin (nωt+ δn), (5.2)

with F3,n and δn the nth order force amplitude and phase angle, respectively. The
force amplitudes can be estimated from the actual time series F3(t) as follows:

F3,0 =
1

mT

∫ t0+mT

t0

F3(t)dt ≡ a3,0

F3,n sin δn =
2

mT

∫ t0+mT

t0

F3(t) cos (nωt)dt ≡ a3,n

F3,n cos δn =
2

mT

∫ t0+mT

t0

F3(t) sin (nωt)dt ≡ b3,n
n ≥ 1.

(5.3)

T = 2π/ω is here the oscillation period and m ≥ 1 is an integer. The integrals in
(5.3) are estimated through numerical integration, and the integration limits are
taken so that F3(t) has steady-state behaviour for t0 ≤ t < t0 + mT . The added
mass coefficient is found from the 1st order Fourier component that is 180◦ out of
phase with the heave acceleration,

A33 =
b3,1 − C33η3a

−ω2η3a
, (5.4)

where the hydrostatic restoring coefficient is defined as C33 = ρgD with ρ the
water density, g the acceleration of gravity and D = 2R the cylinder’s diameter.
The damping coefficient is found from the 1st order Fourier component that is
180◦ out of phase with the heave velocity,

B33 =
a3,1

ωη3a
. (5.5)

In addition we compute the mean force F (0)
3 and the 2nd order force amplitude

F3,2 as
F

(0)
3 = a3,0 − ρgS0 (5.6)

and
F3,2 =

√
a2

3,2 + b23,2, (5.7)

where S0 = 0.5πR2 is the mean submerged area of the cylinder.

5.1.1 Definition of Cases

Eight oscillation frequencies are studied numerically for a single heave amplitude
εη3 = 0.2 in a computational domain that is symmetric about the vertical axis
through the cylinder center, as illustrated in Figure 5.1. The dimensions of the
wave tank used for each of the eight frequencies are summarized in Table 5.1,
where the length of the tank Ltank is set equal to 10 times the wavelength λ es-
timated from the linear deep-water dispersion relation, and the water depth h is
approximately equal to or larger than 0.5λ.
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5.1. Forced Heave Motion of a Semi-Submerged Circular Cylinder in Still Water

x

z

Figure 5.1: Sketch of wave tank with length Ltank and water depth h used in
numerical analysis of circular free-surface piercing cylinder undergoing forced
heave motions. The global Oxz coordinate system is located in the middle of the
computational domain with origin in the still waterline, and the computational
domain is symmetrical about the z-axis.

Table 5.1: Length Ltank and depth h of wave tank used in numerical analysis of
cylinder undergoing forced heave motion with non-dimensional amplitude εη3 =
0.2 and non-dimensional frequency ω2R/g. λ is the wavelength estimated from
the linear deep-water dispersion relation.

ω2R/g (−) λ (m) Ltank (m) h (m)
0.20 3.15 31.47 1.50
0.40 1.56 15.62 1.50
0.60 1.05 10.53 1.50
0.80 0.79 7.90 1.50
1.01 0.62 6.19 1.50
1.19 0.53 5.29 1.50
1.38 0.46 4.56 1.50
1.61 0.39 3.30 1.50

5.1.2 Numerical Setup

Examples of the stationary background grid used to model the flow in the major-
ity of the computational domain, and the body-fixed grid used to refine the flow
locally close to the oscillating cylinder, are shown in Figure 5.2 and Figure 5.3,
respectively. The meaning of the different node types indicated in the two grids
are discussed in detail in Section 3.2, and thus not repeated here. The free surface
is described with the hybrid formulation in Section 3.2.1, so that the free-surface
markers at the wave-body intersections move in a fully-Lagrangian manner and
thus never separate from the body surface, while the markers in the background
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5. Wave Radiation and Diffraction Studies

grid are semi-Lagrangian and thus restricted to move in parallel with the iner-
tial z-axis. The horizontal velocity component of the remaining markers in the
body-fixed grid, i.e. those not at the wave-body intersections, decays linearly from
the horizontal velocity component at the closest wave-body intersection point to-
wards zero at the boundary of the body-fixed grid. The spacing between free-
surface markers in the body-fixed grid is significantly smaller than in the station-
ary background grid, where the markers are distributed so that their horizontal
positions coincide with the vertical grid nodes.

z

x

Figure 5.2: Portion of stationary background grid where the fluid variables are
modelled in the inertial reference frame associated with the Oxz coordinate sys-
tem. The different node types are explained in Section 3.2. The free-surface mark-
ers are indicated with blue circles, and the instantaneous boundaries of the body-
fixed grid that follows the cylinder’s motion are indicated with red dashed lines.

The grid density in the two grids, the extent of the body-fixed grid and the time
step chosen for the cases in Table 5.1 are listed in Table 5.2. All of the grids are uni-
form with square cells. The grid spacing ∆x in the stationary background grid is
chosen so that there are 18 grid nodes per wavelength λ. This is found sufficient,
since the radiated waves some distance from the cylinder have mild steepness.
The length Lbf of the body-fixed grid, equal to the grid height, is taken so that it is
always larger than or equal to 5R. The grid spacing ∆xbf in the body-fixed grid is
taken so that there are never less than five grid nodes perR, which is considered a
minimum value to ensure a proper representation of the cylinder geometry mod-
elled as an immersed boundary. With increasing oscillation frequency, the number
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zbf

xbf

Figure 5.3: Portion of body-fixed grid following the cylinder’s motion where the
fluid variables are modelled in the body-fixed reference frame associated with the
Oxbfzbf coordinate system. The different node types are explained in Section 3.2.
The free-surface markers are indicated with blue circles.

of grid points per cylinder is increased towards R/∆xbf = 9. This is because the
higher oscillation frequencies involve stronger non-linearities. For the same rea-
son, the number of time steps per oscillation period is increased from 55 for the
lowest frequency towards 200 for the two highest oscillation frequencies.

Table 5.2: Simulation parameters used in numerical analysis of cylinder under-
going forced heave motion with non-dimensional amplitude εη3 = 0.2 and non-
dimensional frequency ω2R/g. Lbf is the dimension of the square body-fixed grid,
∆x and ∆xbf are the uniform grid spacings of the square cells in the station-
ary background grid and body-fixed grid, respectively, ∆t is the time step and
T = 2π/ω is the heave oscillation period.

ω2R/g (−) Lbf (m) ∆x (m) ∆xbf (m) T/∆t (−)
0.20 2.00 0.176 0.017 55
0.40 1.00 0.087 0.014 70
0.60 0.85 0.059 0.013 85
0.80 0.70 0.044 0.012 85
1.01 0.60 0.035 0.012 150
1.19 0.50 0.030 0.012 150
1.38 0.50 0.025 0.011 200
1.61 0.50 0.022 0.011 200
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The ratio ∆x/∆xbf ranges from 10 for ω2R/g = 0.20 to 2 for ω2R/g = 1.61.
This demonstrates how the IBOGM enables us to significantly refine the solution
close to the body, while using square cells throughout, in an efficient manner. The
temporal and spatial discretization used in the analysis are confirmed through
convergence checks for ω2R/g = 1.61.

For the highest oscillation frequencies in Table 5.1, large curvatures of the free
surface occasionally develop close to the wave-body intersection points so that
the jet-cutting scheme described in Section 3.2.8 is invoked to ensure numerical
stability. An example of how the free surface close to the wave-body intersection
points behaves just before and immediately after the jet cutting is performed is
shown in Figure 5.4.

5.1.3 Results

The added mass and damping coefficients and the mean and 2nd order forces
derived from the heave-force time series with expressions (5.4) - (5.7) are com-
pared with reference results from various sources in Figure 5.5. The theoretical
results for A33 and B33 are derived by Tasai and Koterayama (1976) with a linear
theory, while the theoretical results for F (0)

3 and F3,2 are computed by Papaniko-
laou (1980) using a 2nd order theory. The experimental results are by Tasai and
Koterayama (1976), while the results by Sun (2007) are obtained from a non-linear
boundary element method (BEM). All the reference results are taken from the
curves presented by Sun (2007).

The present results are generally found to be in good agreement with the ref-
erence results. Some differences can be observed for the mean heave force, where
there is also some scatter in the experimental data. The differences between the
IBOGM and Sun (2007) for F (0)

3 , in particular for the largest oscillation frequen-
cies, may be due to small differences in the flow near the wave-body intersection
points. Since the mean force is low relative to the other forces, it is sensitive to the
time window used to average the time series. This is an error source in the present
results as well as in the experimental results and in the results by Sun (2007).
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5.1. Forced Heave Motion of a Semi-Submerged Circular Cylinder in Still Water

(a) t = tjc − 0.05T (b) t = tjc

(c) t = tjc + 0.005T (d) t = tjc + 0.05T

Figure 5.4: Jet-cutting scheme invoked for heaving cylinder triggered by the angle
between the free surface and body boundary becoming less than 5◦ at t = tjc. The
free-surface profile is shown for time instants t = tjc − 0.05T ≤ t ≤ tjc + 0.05T ,
where T = 2π/ω is the oscillation period of the forced heave motion.
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(d) 2nd order force

Figure 5.5: Added mass and damping coefficients and mean and 2nd order forces
in heave for cylinder undergoing forced heave motion with non-dimensional am-
plitude εη3 = 0.2 and non-dimensional frequency ω2R/g. The theoretical results
for A33 and B33 are given by Tasai and Koterayama (1976) and by Papanikolaou
(1980) for F (0)

3 and F3,2. The experimental results are given by Tasai and Koter-
ayama (1976). The results by Sun (2007) are computed by a non-linear BEM, and
the present results are denoted IBOGM.
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The case with ω2R/g = 1.61 is found to be the most numerically challenging
case in Table 5.1 because large free-surface curvatures develop close to the cylin-
der. Therefore, this case is further examined. The time series of the heave force
on the cylinder is compared with results from the analysis by Sun (2007) in Fig-
ure 5.6. Even though the forced heave motion is harmonic, the resulting force is
clearly non-linear as seen through the existence of higher-order harmonics. The
behaviour of the two time series is globally consistent, although there are some
differences, particularly in the troughs. Bearing in mind that this is a numerically
challenging case, and that two different numerical methods are compared, differ-
ences of this magnitude are nevertheless considered acceptable.

1 2 3 4 5 6 7 8
t/T (-)

−0.4

−0.2

0.0

0.2

0.4

F* 3(
t) 

(-)

Sun (2007) IBOGM

Figure 5.6: Non-dimensional heave force F ∗3 (t) = (F3(t) − ρgS0)/(2ρgRη3a) for
cylinder undergoing forced heave motion with non-dimensional amplitude εη3 =
0.2 and non-dimensional frequency ω2R/g = 1.61. Present IBOGM results are
compared with non-linear BEM results by Sun (2007).

Snapshots showing the free-surface elevation around the cylinder are com-
pared with Sun (2007) in Figure 5.7. Both close to the wave-body intersection
points and further away from the cylinder, the two solutions are in good agree-
ment. This indicates that the numerical modelling of the flow at the wave-body
intersection points is reasonable, even in the case where significant non-linear be-
haviour of the free surface is observed locally. It is noted that the results by Sun in
Figures 5.6 and 5.7 were not given explicitly in Sun (2007), but have been obtained
through personal communication.

The wave-radiation problem studied here shows that the IBOGM used in the
present work is able to predict the linear added mass and damping forces, as well
as higher-order forces, with good accuracy for a surface-piercing body with non-
vertical sides oscillating in still water.
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Sun (2007)
IBOGM

(a) t/T = 4.0 (b) t/T = 4.2

(c) t/T = 4.4 (d) t/T = 4.6

(e) t/T = 4.8 (f) t/T = 5.0

Figure 5.7: Free-surface profile plotted at different time instants through heave cy-
cle of cylinder undergoing forced heave motion with non-dimensional amplitude
εη3 = 0.2 and non-dimensional frequency ω2R/g = 1.61. Present IBOGM results
are compared with non-linear BEM results by Sun (2007).

5.2 Fixed Two-Dimensional Ship Section in Beam-Sea Regular
Waves

The previous section dealt with an oscillating body in still water, corresponding
to a wave-radiation problem. We now consider a wave-diffraction problem, with
a fixed 2D ship section in beam-sea regular waves with different amplitudes and
frequencies. This scenario was studied numerically by Tanizawa et al. (1999) and
experimentally by Nojiri and Murayama (1975)1. The latter work also includes
theoretical results based on a linear theory. The same case is used further to exam-
ine a freely floating body in the next chapter.

The layout of the wave tank used is shown in Figure 5.8. In the present nu-

1In Japanese.
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merical study, we set the length of the tank to Ltank = 8λ and the water depth to
h = λ, where λ is the wavelength based on the linear dispersion relation. Forces
and moments are reported in the global coordinate system with z-axis positive up-
wards, x-axis positive in the wave-propagation direction and y-axis orthogonal to
the ship section. Waves are generated by a moving flap-type wavemaker hinged
at half the water depth. The 2D ship section is placed in the middle of the tank,
and is characterized by a breadth B = 0.50 m, a draught d = 0.25 m and a bilge
radius 0.064 m. The vertical center of gravity, that is only relevant when the body
is free to move, is KG = 0.135 m. This case is studied in the next chapter. Since
the analysis is performed in 2D, the length Ls of the ship section in y direction
used to normalize results is taken as unity. The characteristic values of the ship
section are chosen to be consistent with Nojiri and Murayama (1975). Towards
the ends of the tank, numerical beaches are used to prevent reflection of waves
back into the tank. On the side opposite of the wavemaker, artificial damping is
added in the kinematic and dynamic free-surface conditions operating on the to-
tal wave signal. Next to the wavemaker, artificial damping terms are added for
the reflected wave, which is taken as the total wave minus the incident wave pre-
dicted by linear wavemaker theory as given by e.g. Dean and Dalrymple (1991).
The advantage of using this approach is that also irregular waves can be handled
in a straightforward manner without the need to perform an additional simula-
tion to obtain the incident-wave signal. The theory behind the numerical beaches
is given in Appendix B, including a dedicated investigation of the performance of
the beach next to the wavemaker. The lengths of the numerical damping zones are
here taken as Lbeach = 2λ on both sides of the tank. It is noted that the length of
the tank used in the present analysis is 2λ longer than in the analysis by Tanizawa
et al. (1999). This is related to the length of the numerical damping zones. If Ltank
was set to 6λ, the numerical damping zones would have to be shortened and their
associated dissipation coefficients increased. Studies performed here indicate that
this is unfavourable, since it easily leads to wave reflections from the damping
zones themselves. However, the distance from the end of the numerical damping
zones to the ship section is similar to in Tanizawa et al. (1999).

z

x

Figure 5.8: Sketch of wave tank with length Ltank and water depth h for a fixed
2D ship section in beam-sea regular waves. Waves are generated by a flap-type
wavemaker hinged at half the water depth. Numerical damping zones with equal
lengths Lbeach are located at both ends of the tank. B, d and KG indicate the
breadth, draught and vertical center of gravity of the body, respectively. The
global, Earth-fixed Oxz coordinate system is located in the middle of the com-
putational domain with origin in the still waterline.
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5.2.1 Definition of Cases

The simulation cases are characterized by the non-dimensional wave frequency
ξB = ω2B/2g = kB/2, where ω is the angular wave frequency, g is the acceleration
of gravity and k is the wave number as given by the linear dispersion relation
assuming deep-water conditions. Taking Tanizawa et al. (1999) as reference, two
wave heights (H = 1 cm and H = 7 cm) are simulated for each wave frequency.
The wave frequencies for each wave height are listed in Table 5.3. The steepness
kζA of the waves increases with ξB , and is so that significant wave non-linearities
(trough-crest asymmetry) can be expected for the largest kζA values.

Table 5.3: Simulation cases for a fixed 2D ship section in beam-sea waves. ξB =
ω2B/2g and ω are the non-dimensional and dimensional wave frequencies, re-
spectively, k is the wave number and kζA is the wave steepness based on the
linear wave amplitude ζA.

ξB k ω kζA,H=1cm kζA,H=7cm

(−) (m−1) (s−1) (−) (−)
0.250 1.000 3.132 0.005 0.035
0.500 2.000 4.429 0.010 0.070
0.550 2.200 4.645 0.011 0.077
0.600 2.400 4.851 0.012 0.084
0.650 2.600 5.049 0.013 0.091
0.700 2.800 5.240 0.014 0.098
0.750 3.000 5.424 0.015 0.105
1.000 4.000 6.263 0.020 0.140
1.250 5.000 7.002 0.025 0.175
1.500 6.000 7.671 0.030 0.210
1.750 7.000 8.285 0.035 0.245
2.000 8.000 8.857 0.040 0.280

5.2.2 Numerical Setup

For all cases in Table 5.3, a time step ∆t = T/45 is used, where T is the incident
wave period. The ramp time of the wavemaker is set to tramp = 4T . Simulations
are performed with duration 20T , since it is found that steady-state conditions for
wave loads are obtained already after approximately 12− 14 wave periods. Three
grids are present, namely a stationary background grid and two overlapping grids
fixed to the wavemaker and the body, respectively. All the grids are uniform with
square cells. The grid spacing in the background grid and in the wavemaker-fixed
grid is set to λ/25. The extent of the ship section-fixed grid varies with the wave-
length, but is never smaller than 2.5B. The grid spacing in this grid is taken as
min(B/12, λ/25). An example of the entire computational grid used in the anal-
ysis is shown in Figure 5.9 (a) at the initial time step, and with emphasis on the
regions around the body-fixed grids on the wavemaker and on the ship section
in (b) and (c). The free surface is described with the fully Lagrangian formulation
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in Section 3.2.1 with markers uniformly distributed in x direction with marker
spacing ∆dm. ∆dm is generally set equal to the grid spacing ∆xbf in the body-
fixed grid on the body, but is in the same way as in Section 4.5 restricted by a CFL
requirement in order to ensure numerical stability. The CFL requirement is here
formulated as

CFL =
um∆t

∆dm
≤ 1.0, (5.8)

where um is a characteristic velocity related to the linear phase speed c = ω/k. As
a result, the marker spacing is increased to ∆dm = 2∆xbf for the case ξB = 0.25.

(a) Entire domain

(b) Close up of wavemaker (c) Close up of body

Figure 5.9: Example of grids used for the case ξB = 0.25 shown at the initial time
t = 0. The stationary background grid is indicated with black grid lines, while the
body-fixed grids are indicated with red grid lines.

In order to ensure that the numerical modelling is adequate, an analysis of
fluid energy and fluid volume in the tank as a function of time is given in Ap-
pendix D for a few of the cases in Table 5.3.
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5.2.3 Results

It is noted that we here refer to the forces in x and z direction as sway and heave
forces, respectively, and to the moment about the y axis as the roll moment. This
notation is chosen because the examined structure is a ship section.

The time history of the non-dimensional sway force, heave force and roll mo-
ment for three wave frequencies ξB = (0.5, 1.0, 2.0) are shown in Figure 5.10 with
wave heights H = 1 cm and H = 7 cm. It is evident that the non-linearity in-
creases with the wave frequency, especially for the largest wave height. This is
seen as crest-to-trough asymmetry and through the presence of higher-order har-
monic components in the time series. Since the body is restrained from moving,
these non-linearities can be attributed to the non-linearity of the incident waves
and wave-body interactions without any contribution from floater motions.

A Fourier analysis is performed over the last 4 wave periods of the wave load
time histories to derive transfer functions. Figure 5.11 shows the transfer func-
tions for the mean sway wave drift force F (0)

x as well as for the 1st order sway
force F

(1)
x , heave force F

(1)
z and roll moment M (1)

y . The results of the present
analysis are compared with experimental results and numerical results from a
linear theory, both by Nojiri and Murayama (1975). For the mean wave drift
force, theoretical results are from a 2nd order theory based on the linear solution
by Nojiri and Murayama (1975). The wave height used in the experiments is un-
known to the present author. The results from a fully non-linear boundary element
method (BEM) by Tanizawa et al. (1999) for H = 7 cm are also included. For the
mean wave drift force they provide two estimates, respectively, from direct pres-
sure integration (DPI) and from conservation of fluid momentum (CFM) through
Maruo’s formula, explained in Appendix C. In the present work, the mean wave
drift force is evaluated from DPI and from CFM, using the exact method described
in Appendix C with vertical control surfaces located a distance 0.5λ away from the
body’s center. While Maruo’s formula is a 2nd order theory, the exact method does
not truncate the solution to any specific order. The difference between approxi-
mate methods, such as Maruo’s formula, and the exact method for estimating the
mean wave drift force will be further elaborated in the next chapter dealing with
freely-floating body motions.

Figure 5.11 (a) shows that the mean wave drift force obtained with DPI and
with CFM are consistent with each other with the present IBOGM. For wave fre-
quencies ξB ≥ 1.0, the mean wave drift force obtained with the IBOGM, especially
for H = 7 cm, becomes smaller than the theoretical value and those estimated
by Tanizawa et al. (1999). This tendency can also be observed for the 1st order
sway force and roll moment, and is believed to be due to increasing wave non-
linearity. Indeed, the same qualitative trend is also observed in the experimental
results. For later discussions when the body is freely floating, it is pointed out that
the mean wave drift force obtained from direct pressure integration by Tanizawa
et al. (1999) is in close agreement with the present results for low and intermedi-
ate wave frequencies, and remains in fair agreement with the linear results for all
wave frequencies.

Transfer functions for the 1st − 4th order wave loads found from Fourier anal-
ysis are shown in Figure 5.12. It is clearly seen that the higher-order components
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(b) Sway force (H = 7 cm)
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(d) Heave force (H = 7 cm)
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(e) Roll moment (H = 1 cm)
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(f) Roll moment (H = 7 cm)

Figure 5.10: Non-dimensional wave load time series for fixed 2D ship section in
beam-sea waves for non-dimensional wave frequencies ξB = (0.5, 1.0, 2.0).

increase when ξB increases for H = 7 cm. Considering the mean wave drift force
in Figure 5.11, it is plausible that the decreasing drift force for higher wave fre-
quencies can be related to higher-order effects. It is not clear why this trend is
not observed in the results by Tanizawa et al. (1999) using direct pressure integra-
tion, although it could be due to the way of generating the incident wave in their
work. It is understood that in their analysis, the incident waves are generated by
imposing a fluid velocity corresponding to linear wave theory at a fixed control
surface. Furthermore, it is stated that the wave tank is 6λ long, which means that
the distance between the surface where the incident wave is generated and where
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Figure 5.11: Wave load transfer functions for fixed 2D ship section in beam-sea
waves. The results from the present IBOGM are compared with experimental, lin-
ear and theoretical results by Nojiri and Murayama (1975) and non-linear BEM
results by Tanizawa et al. (1999). The results in (a) denoted CFM are estimated
from conservation of fluid momentum, using the exact method in the IBOGM
and Maruo’s formula in Tanizawa et al.’s results.
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the body is located is one wavelength shorter than in the present analysis. It is
possible that this distance is too short for wave non-linearities to fully develop,
since they initially impose the incident wave as a linear wave. In connection with
the present analysis, it has been found that the magnitude of higher-order wave
load components indeed depends on the distance between the wavemaker and
the body.
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Figure 5.12: Transfer function for 1st − 4th order wave loads for fixed 2D ship
section in beam-sea waves from IBOGM analysis.
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5. Wave Radiation and Diffraction Studies

5.3 Summary

In this chapter the immersed boundary-overlapping grid method (IBOGM) pro-
posed in Chapter 3 has been applied to wave-radiation and wave-diffraction prob-
lems.

First, a circular cylinder undergoing forced, harmonic heave motion in still wa-
ter with different oscillation frequencies was analyzed. Added mass and damp-
ing coefficients, as well as the mean and 2nd order heave forces, were derived
and shown to compare well with analytical, experimental and numerical refer-
ence results. The 2nd order force amplitude was seen to increase with oscillation
frequency, indicating increased non-linearity. For the highest oscillation frequen-
cies, strong non-linear features of the radiated waves developed locally close to
the body. This leads to small angles between the free surface and the body sur-
face, so that a jet-cutting scheme had to be invoked in the potential-flow analysis.
It was shown that this scheme ensures numerical stability, and a free-surface pro-
file that is consistent with results from a different numerical method. The results
indicate that the present numerical method is able to account for free surface-body
interactions for bodies with non-vertical walls through the free surface, and that
it remains numerically robust even when strong free-surface non-linearities are
present close to the body.

Thereafter, a fixed 2D ship section in beam-sea incident waves with different
amplitudes and frequencies was considered. The 1st order wave loads, as well
as the mean wave drift force in sway, were compared to theoretical, experimen-
tal and numerical reference results. When the wave steepness was high, signif-
icant high-order components were present in the time series of the wave loads
on the body. For higher wave frequencies, and in particular for the waves with
largest amplitude, the mean wave drift force was found to deviate from theoret-
ical and numerical reference results, but in qualitative agreement with the exper-
imental results. It was argued that the difference from theoretical and numerical
reference results were related to higher-order load components due to increas-
ing wave steepness. Indeed, the 2nd order sway force was found to increase with
wave steepness. It was shown that the mean wave drift force obtained from in-
tegration of the fluid pressure over the instantaneous wetted body surface was
consistent with results estimated from conservation of fluid momentum using an
exact method, i.e. without any additional approximations.

The studies in the previous chapter, involving propagation of non-linear
waves, and the present chapter, involving water-body interactions with either ra-
diation or diffraction effects, highlighted important features and capabilities of the
numerical method. The next chapter combines all these phenomena through ex-
amining incident waves interacting with a freely floating body. This chapter also
investigates available methods to estimate the mean wave drift force, showing
significant individual differences under certain conditions.
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Chapter 6

A Freely Floating Body in Waves

The 2D ship section in regular beam-sea waves, studied as fixed in Section 5.2, is
now examined as a freely floating body. The numerical setup is similar, except for
the addition of a linear stiffness and damping in sway. With these included, the
total external force vector Fbf,ext in the equation of translational motion in (3.35)
in Section 3.2.10 includes an additional force vector defined as

Fbf,add = −Λi→b · (Bl · Ṙ0 + C ·R0), (6.1)

where R0 and Ṙ0 are the position and velocity of the body’s center of gravity in
the inertial reference frame, respectively. Λi→b is the rotation matrix defined in
equation (2.1). Bl is a linear damping matrix defined as

Bl =

(
Bl22 Bl23

Bl32 Bl33

)
, (6.2)

and C is a stiffness matrix

C =

(
C22 C23

C32 C33

)
. (6.3)

The damping and stiffness forces are applied in the body’s center of gravity, and
all terms except Bl22 and C22 are set equal to zero in (6.2) and (6.3). The values
of the linear sway damping and stiffness are set equal to the values used in the
experiments by Nojiri and Murayama (1975), respectively Bl22 = 19.8 Nsm−1 and
C22 = 197.58 Nm−1. As indicated in (6.1), the damping and stiffness forces re-
late to the body motion in the inertial coordinate system. This is in order to be
consistent with the experimental setup. The body’s roll moment of inertia, also
set equal to the value used in the experiments, is Iyy = 4.0145 kgm2. The verti-
cal center of gravity, already defined in Section 5.2, is KG = 0.135 m. The effect
of adding quadratic roll damping will also be investigated. In that case, an addi-
tional roll moment My,add = −Bl55η̇5|η̇5|, where η̇5 is the roll velocity, is added to
the equation of angular motion in (3.35).

The dimensions of the numerical wave tank are equal to those discussed in
connection with Figure 5.8, and are therefore not repeated here. The remainder of
the numerical setup, including the spatial and temporal discretization, is similar
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6. A Freely Floating Body in Waves

to in Section 5.2 except for the duration of the simulations. This is here taken as
60T , where T is the incident wave period. This is to allow for the transient phase of
the body motions to die out so that the time signals used in Fourier analysis have
reached steady state. It is however to be noted that the decay of transient motions
is a function of both wave frequency and amplitude, and especially low-frequency
sway motions may decay slowly. This can in a few cases make the simulation
time required to achieve true steady-state conditions as high as 100T or more. The
choice of 60T as simulation duration is thus taken as a reasonable compromise
under the assumption that the presence of small low-frequency sway motions will
have little or negligible influence on the quantities of interest. In this connection
one could argue that some quadratic sway damping would have been appropriate
in order to increase the decay rate of low-frequency motions. The reason for not
applying this in the present work is in order to stay as consistent as possible with
the analysis by Tanizawa et al. (1999), where such damping is not mentioned.
Transfer functions of wave loads and motions are derived from Fourier analysis
of the time histories after the simulations are completed. As a general rule, the
time window used in the Fourier analysis is 40T ≤ t < 60T . Minor adjustments
are made to the time window for a few cases in order to have a time signal that is
visually at steady state in the Fourier analysis.

Results from the immersed boundary-overlapping grid method (IBOGM) are
compared with the experiments and numerical results based on a linear theory by
Nojiri and Murayama (1975) and non-linear BEM results by Tanizawa et al. (1999)
and by Koo and Kim (2004). Results from recent dedicated numerical simulations
with the non-linear BEM used by Greco (2001) are considered for a further in-
depth assessment of the IBOGM.

6.1 Definition of Cases

Compared with the cases analyzed for the fixed body in Section 5.2, an interme-
diate wave height H = 3 cm is added for the freely floating body. In addition,
a larger number of wave frequencies is considered in the wave-frequency range
0.5 ≤ ξB ≤ 0.6 that includes the body’s natural heave and roll frequencies. The
complete set of cases for the freely floating body is shown in Table 6.1. It is noted
that the wave frequencies ξB = 0.525 and ξB = 0.575 are only simulated for wave
heights H = 1 cm and H = 3 cm. For the largest wave height H = 7 cm, the heave
and roll motions for these particular wave frequencies become so large that the
simulations break down. Results from these simulations are hence omitted. It is
also noted that results for wave frequency ξB = 0.5 with H = 7 cm are omitted by
Tanizawa et al. (1999), citing that this case lead to numerical divergence. Further-
more, Koo and Kim (2004) do not include non-linear results for 0.4 < ξB < 0.6.
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Table 6.1: Simulation cases for a freely floating 2D ship section in beam-sea waves.
ξB = ω2B/2g and ω are the non-dimensional and dimensional wave frequencies,
respectively, k is the wave number and kζA is the wave steepness based on the
linear wave amplitude ζA.

ξB k ω kζA,H=1cm kζA,H=3cm kζA,H=7cm

(−) (m−1) (s−1) (−) (−) (−)
0.250 1.000 3.132 0.005 0.015 0.035
0.500 2.000 4.429 0.010 0.030 0.070
0.525 2.100 4.538 0.011 0.032 -
0.550 2.200 4.645 0.011 0.033 0.077
0.575 2.300 4.749 0.012 0.035 -
0.600 2.400 4.851 0.012 0.036 0.084
0.650 2.600 5.049 0.013 0.039 0.091
0.700 2.800 5.240 0.014 0.042 0.098
0.750 3.000 5.424 0.015 0.045 0.105
1.000 4.000 6.263 0.020 0.060 0.140
1.250 5.000 7.002 0.025 0.075 0.175
1.500 6.000 7.671 0.030 0.090 0.210
1.750 7.000 8.285 0.035 0.105 0.245
2.000 8.000 8.857 0.040 0.120 0.280

6.2 Comparison with Linear Numerical, Theoretical and
Experimental Results

The transfer functions for the mean sway wave drift force and 1st order rigid-body
motions in sway, heave and roll from the IBOGM for all the cases in Table 6.1 are
compared with the linear and theoretical results by Koo and Kim (2004) and the
experimental results by Nojiri and Murayama (1975) in Figure 6.1. The motion
amplitudes in sway, heave and roll, denoted η1a, η3a and η5a, respectively, are
taken in, and about, the body’s center of gravity in the inertial reference frame.
The mean wave drift force by Koo and Kim (2004) is based on a 2nd order theory.

For wave frequencies around ξB = 0.5, that is close to the body’s natural heave
and roll frequencies, the IBOGM motions display non-linear behaviour. This is ev-
ident by the fact that the normalized response amplitudes decrease with increas-
ing wave height. It is believed that the non-linear behaviour of the heave motion
is partially due to coupled effects as a result of large roll motions. Another likely
contributing factor is an increase of the 2nd order heave wave-excitation force with
increasing wave height. This was clearly observed in Figure 5.12 when the body
was restrained from moving. Although the peak of the heave transfer function
increases with decreasing wave height, it is consistently lower than the linear re-
sults. A possible explanation for this is that even for H = 1 cm the roll motion is
close to 10◦. Hence, the assumption of small body motions, which is central in a
linear approximation, is never fulfilled for frequencies close to resonance.

The experimental results indicate that the roll damping around resonance is
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Figure 6.1: Transfer functions for a freely floating 2D ship section in beam-sea
waves. The results from the present IBOGM are compared with linear and the-
oretical results by Koo and Kim (2004) and experimental results by Nojiri and
Murayama (1975). The mean wave drift force F (0)

x is in the IBOGM obtained from
direct integration of fluid pressure.
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significantly greater than that in the numerical analysis, with a response ampli-
tude less than half that of the IBOGM results for H = 7 cm. As a consequence,
the effect of adding quadratic roll damping in the IBOGM analysis is examined
in Section 6.2.1. In connection with the experimental results, it is here pointed out
that the paper by Nojiri and Murayama (1975) is largely written in Japanese. As a
consequence, the details of the experimental setup are not fully understood, nor
is it possible to assess the experimental uncertainty. As far as possible, the paper
by Tanizawa et al. (1999) is used to complement the missing information from the
experiments.

The normalized sway motion from the IBOGM analysis agrees well with the
linear theory, except in the frequency range 0.6 ≤ ξB < 1.0 forH = 7 cmwhere the
IBOGM predicts notably lower 1st order sway motions. This trend is also observed
in the experimental results. Moreover, the experimental results show significantly
higher heave response and lower roll response than both the linear analysis and
the IBOGM analysis for wave frequencies below heave resonance. The reason for
this is not well understood, most notably because the details of the experimental
procedure and related uncertainties are not known.

For the mean wave drift force, the same behaviour is observed as for the fixed
body in Figure 5.11 both in the IBOGM analysis and in the experimental results.
That is, for higher wave frequencies, the mean drift force becomes smaller than
the theoretical results. For the IBOGM, the difference increases with increasing
wave height, indicating non-linear behaviour. Moreover, since the 1st order mo-
tions are moderate for ξB > 1.0, it is likely that the observed trend is mainly
related to non-linearity of the incident waves. It is to be noted that the normalized
drift force in the IBOGM analysis has an amplitude larger than unity for all wave
heights around ξB = 0.50, which is not possible according to 2nd order theory.
This indicates non-linear effects in the IBOGM analysis, likely related to large-
amplitude 1st order heave and roll motions. Indeed, normalized mean wave drift
forces above unity were not observed for the fixed body in Figure 5.11. One should
also keep in mind that the absolute value of the mean drift force is much smaller
than the 1st order wave force, which makes the Fourier analysis more sensitive to-
wards the choice of time window. Although the time windows used in the present
analysis are selected carefully, this should nevertheless be considered as a source
of uncertainty in processing both experimental and simulated time signals. The
mean wave drift force is here obtained by direct integration of fluid pressure over
the instantaneous wetted body surface. It is sometimes claimed that this method
is less accurate than estimating the mean wave drift force from conservation of
fluid method. As it will be shown in Section 6.2.2, however, the direct pressure
integration is considered to be the most accurate method in the present analysis.

To further understand the behaviour of the transfer functions in Figure 6.1, the
transfer functions for the 1st − 4th order wave loads for the freely floating body
for all wave heights are computed in Figure 6.2. One should keep in mind that
these are total wave loads obtained from integration of the fluid pressure over the
instantaneous wetted body surface, and therefore include both wave excitation,
radiation and restoring loads. Indeed, the amplitudes of both the 2nd and 3rd or-
der sway force are non-negligible around ξB = 0.5. For higher wave frequencies,
and with increasing wave height, the 2nd order sway force increases while the
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6. A Freely Floating Body in Waves

1st order amplitudes decrease. This trend is similar to the trend observed for the
fixed body in Figure 5.12. Also for the heave force and roll moment an increase
of the higher-order load components, accompanied with reduced 1st order loads,
occurs. This is most notably seen for the roll moment, where the normalized 1st

order component for H = 7 cm is approximately half of that for H = 1 cm. More-
over, the peak frequency is shifted towards the heave natural frequency, which
indicates a non-linear heave-roll coupling. Due to the increase of higher-order
components in Figure 6.2, one may question whether a 1st or 2nd order analysis
is sufficient to estimate the wave loads and resulting body motions close to heave
and roll resonance for high waves, or to estimate the mean wave drift force for
steep waves associated with high ξB values.

6.2.1 Influence of Roll Damping

Near resonance, the roll motion is clearly over-predicted in the IBOGM analysis
in Figure 6.1 compared with the experimental results. As explained by Faltinsen
(1993), the potential roll damping is small for a typical ship cross section at roll
resonance. The discrepancy between the experimental and numerical results is
therefore likely due to viscous roll damping. Thus, in order to examine the in-
fluence that roll damping has on coupled motions and on the mean wave drift
force near roll resonance, quadratic roll damping is added in the IBOGM analy-
sis with H = 7 cm and with wave frequencies ξB densely distributed in the range
0.425−0.575. Two values of the quadratic roll-damping coefficientBq55 are consid-
ered, corresponding to equivalent linear roll damping coefficients Bl,eq55 approxi-
mately equal to 3% and 5% of the critical roll damping B55,cr at the roll resonance
frequency ξB = 0.5, respectively. In estimating the critical roll damping the added
roll inertia is neglected so that B55,cr = 2

√
IyyC55. C55 is the hydrostatic roll stiff-

ness ρg∇GM5, where ∇ is the volume displacement and GM5 is the metacentric
height. In steady-state conditions, and with motions oscillating with a single fre-
quency ω, Bl,eq55 is linked to Bq55 through

Bl,eq55 = Bq55|η5a|
8ω

3π
, (6.4)

see e.g. Faltinsen (1993). η5a is the roll amplitude (in radians), here taken as
the maximum observed roll motion during a simulation without quadratic roll
damping. The corresponding quadratic damping coefficients Bq55 are 1 kgm2 and
2 kgm2, respectively.

Transfer functions for the mean sway wave drift force and 1st order rigid-body
motions for the simulations with quadratic roll damping are shown in Figure 6.3.
Clearly, the analysis with Bq55 = 2 kgm2 gives roll amplitudes closest to the exper-
iments near resonance. The roll damping has a significant influence also on sway
and heave motions, confirming that there are significant coupling effects between
the motion in these three degrees of freedom. With increasing roll damping, the
heave amplitudes move towards the linear results, but tend to converge against
a lower response in the same way as the results with decreasing wave height in
Figure 6.1. The added roll damping reduces sway amplitudes for ξB < 0.5 and
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Figure 6.2: Transfer function for 1st− 4th order wave loads for a freely floating 2D
ship section in beam-sea waves from IBOGM analysis.

increases sway amplitudes for ξB > 0.5. However, the sway response does gener-
ally not agree with the linear results. In combination with the fact that the IBOGM
analysis gives lower heave amplitudes than the linear results, this may indicate
that non-linear effects are important in this frequency range also when roll damp-
ing is added. Here it can be noted that, even though roll motions are reduced,
the roll amplitudes are still as large as η5a ≈ 15◦. It is also clear that adding roll
damping does not make the mean wave drift force converge towards the theoret-
ical curve, although it is seen to have a significant influence, with reduced values
of F (0)

x when increasing the roll damping for ξB ≥ 0.5. The latter is an observation
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of practical importance when analysing ship-shaped floaters that are exposed to
large roll motions. In particular if the ship has bilge keels, the viscous damping
may be significant. If the ship behaviour is analyzed using perturbation theory,
the motion coupling effects observed in the present simulations may not be cap-
tured. Similarly, if the wave drift force in addition is based on a 2nd order approx-
imation, it may not be accurately calculated. Validation against model test data of
high quality is thus suggested as appropriate in these scenarios.

The discussion above suggests that adding roll damping does not necessarily
make the results of the non-linear IBOGM analysis approach the linear or theoret-
ical solution. The roll motions are still significant near resonance, and the added
roll damping appears to influence the coupling between sway, heave and roll mo-
tions. For a further investigation, the normalized amplitudes of the 1st−4th order
sway force components are plotted in Figure 6.4. The magnitudes of all compo-
nents decrease with increasing roll damping. However, the relative decrease of
the 1st order component is stronger than that of the 2nd order component around
ξB = 0.5. One may therefore say that the 2nd order force component becomes
more important when non-linear roll damping is added. Moreover, the 1st order
component is smaller with Bq55 = 2 kgm2 than with Bq55 = 1 kgm2 for ξB < 0.525,
but larger for ξB > 0.525. This supports the claim that adding roll damping in
the non-linear analysis does not necessarily make the problem more linear-like
for wave frequencies close to roll resonance.

6.2.2 Conservation of Fluid Momentum versus Direct Pressure
Integration for Estimation of the Mean Wave Drift Force

Until now we have presented the mean sway drift force obtained from integra-
tion of the fluid pressure over the wetted body surface, often denoted as direct
pressure integration (DPI). It is also possible to obtain the mean wave drift force
from conservation of fluid momentum (CFM). In analysis based on perturbation
theory, this method is traditionally considered more robust than DPI (DNV GL,
2017). In the context of fully non-linear time domain analysis, this conclusion is
less obvious. In the following, three methods for estimating the mean wave drift
force from CFM are investigated:
• Exact evaluation of the fluid momentum.

• A 2nd order approximate method.

• Maruo’s formula.
The drift force from the 2nd order approximate method is expressed as

F (0)
x =

1

4
ρg(ζ2

A + ζ2
R − ζ2

T )

[
1 +

2kh

sinh2kh

]
, (6.5)

where ζA is the incident wave amplitude taken as H/2, ζR is the reflected wave
amplitude found from a reconstruction of the wave signal using the method de-
scribed in Appendix E and the transmitted wave amplitude ζT is taken as the
wave amplitude measured in a wave probe located between the body and the nu-
merical beach on the opposite side of the wavemaker. Maruo’s formula follows
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Figure 6.3: Transfer functions for a freely floating 2D ship section in beam-sea
waves. The linear and theoretical results are from Koo and Kim (2004), and the
experimental results are from Nojiri and Murayama (1975) with H = 7 cm.
The IBOGM results without and with quadratic roll damping coefficients Bq55 =
1 kgm2 and Bq55 = 2 kgm2 are all for H = 7 cm, and with the mean wave drift
force F (0)

x obtained from direct integration of fluid pressure.
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Figure 6.4: Transfer function for 1st − 4th order sway forces for a freely float-
ing 2D ship section in beam-sea waves from IBOGM analysis with H = 7 cm.
Comparison of analysis without and with quadratic roll damping coefficients
Bq55 = 1 kgm2 and Bq55 = 2 kgm2.

directly from (6.5) by in addition assuming that fluid energy is conserved,

F (0)
x =

1

2
ρgζ2

A(1− C2
T )

[
1 +

2kh

sinh2kh

]
. (6.6)

Here,CT is the wave transmission coefficient defined as ζT /ζA. Both (6.5) and (6.6)
make use of the same assumptions as in linear theory, i.e. that non-linear parame-
ters such as the wave amplitude and body motions are small and can be approx-
imated by truncated series around their mean values. While the exact method
requires that the fluid-momentum flux across control surfaces is evaluated dur-
ing the simulation, the methods in (6.5) and (6.6) only require time histories of the
wave elevation. The exact method is therefore computationally somewhat more
expensive. The theories behind the methods are elaborated in Appendix C.

The mean wave drift force estimated from CFM is compared to theoretical
results and DPI for H = 1 cm in Figure 6.5, for H = 3 cm in Figure 6.6 and for
H = 7 cm in Figure 6.7. The results for ξB = 0.525 and ξB = 0.575 are omitted for
all wave heights, since these frequencies resulted in unstable simulations for the
largest wave height. The mean wave drift force from the exact CFM formulation
is evaluated with the vertical control surfaces located a distance 0.5λ and λ from
the initial center of the body. In addition to the CFM results, the mean wave drift
force is also estimated from the mean sway position x of the body, i.e. F (0)

x = C11x.
This simple estimate can be done because there are no other environmental loads
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than those due to waves, so that the mean offset is solely due to wave action. As
it can be seen, the mean wave drift force obtained from DPI is consistent with the
offset estimate for most frequencies. Notable differences can only be seen for a
few frequencies around ξB = 0.5, and are likely related to the significant higher-
order sway force components seen in Figure 6.2 in this frequency range. From
this argument, the mean sway drift force obtained from DPI can be considered
consistent with the mean offset of the body.

For ξB ≥ 1.0, the mean wave drift force from the exact CFM mostly agrees with
DPI for all wave heights, and shows small or negligible differences with respect
to the location of vertical control surfaces. For ξB closer to the natural heave and
roll frequencies, the mean wave drift force from the exact CFM tends to be signif-
icantly lower than from DPI, and with different results depending on the location
of the vertical control surfaces. The results obtained with the vertical control sur-
face located closer to the body are generally closer to the results from DPI around
ξB = 0.5. The results for the fixed body in Figure 5.11, on the other hand, showed
that the mean wave drift force from exact CFM remains in excellent agreement
with DPI for all frequencies. The observed differences between the exact CFM
and DPI here are thus related to large body motions. Results from the 2nd order
approximate method (6.5) show no consistent agreement with neither the theoret-
ical results nor with results from DPI, and the degree of correlation varies with
both wave height and frequency. The results obtained with Maruo’s formula (6.6)
are qualitatively consistent with the theoretical results and in fair agreement with
the results from DPI up to ξB = 1.0. However, Maruo’s formula never predicts
normalized drift forces above unity.

The results here indicate that the mean wave drift force is most reliably
obtained from DPI. The exact CFM results agree well with DPI when wave-
frequency motions are limited, but give smaller wave drift forces around the
heave and roll resonance frequencies. More research is required to fully under-
stand these discrepancies. However, the results indicate that they are associated
with large body motions.

The approximate formulas (6.5) and (6.6) appear inappropriate to estimate the
mean wave drift force, especially for the highest waves. Significant differences are
observed both close to the heave and roll resonance frequencies, where rigid-body
motions are large, and for higher wave frequencies, associated with steep waves.
Clearly, the underlying assumptions in deriving these formulas are violated in
both these scenarios. One should therefore be careful to use such approximate
formulas in relation with non-linear simulations, since important non-linear ef-
fects may not be adequately captured. Estimating the mean wave drift force from
the mean position of the body appears to be a more robust method in this respect,
generally giving results in close agreement with DPI. However, this approach is
not possible if other environmental loads, such as wind and current, are included,
since the body motion is then not only due to wave action.
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Figure 6.5: Mean sway wave drift force for a freely floating 2D ship section in
beam-sea waves for H = 1 cm. The theoretical results are from Koo and Kim
(2004), the results denoted DPI are from direct pressure integration, the results
denoted CFM are from conservation of fluid momentum using either exact or 2nd

order approximate formulations (including Maruo’s formula), and the results de-
noted offset are estimated from the mean sway offset.
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Figure 6.6: Same as Figure 6.5 with H = 3 cm.
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Figure 6.7: Same as Figure 6.5 with H = 7 cm.

6.3 Comparison with Greco’s Non-Linear Numerical Results

Not all the details from the numerical reference results examined in this chap-
ter are available. Therefore, a verification is performed against dedicated studies
with a fully non-linear potential-flow solver. The cases withH = 7 cm in Table 6.1,
except for a few wave frequencies, are analyzed using the BEM code developed
by Greco (2001). This was originally used to study highly non-linear wave-on-
deck problems, including extensive validation against experimental data. The nu-
merical wave tank is similar to Figure 5.8, including the length and depth of the
tank. The numerical setup, including the duration of the simulation, the length
and formulation of the numerical beaches, the geometry of the body and the in-
ertia, damping and restoring coefficients, are similar to the IBOGM analysis. The
required time step in the BEM was found to be half of that used in the IBOGM
analysis in order to obtain numerically stable simulations for the most challeng-
ing cases with large body motions. The incident waves are generated by an iden-
tical moving flap with the same wavemaker signal as in the IBOGM analysis. As
in the present work, the time derivative of the velocity potential ϕ is obtained by
solving an auxiliary boundary value problem (BVP) for this variable. The Fourier
analysis to obtain transfer functions are performed by the present author using
the same methodology as in post-processing of results from the IBOGM analysis
in order to remove this as a source of uncertainty. The major difference between
the two analyses is thus that Greco (2001) uses a BEM as potential-flow solver
and that the two BVPs for ϕ and for its time derivative are solved in an Earth-
fixed inertial reference frame. The simulations performed with Greco’s code are
therefore considered as an independent verification of the IBOGM analysis using
a fundamentally different potential-flow solver from the one in the present work,
but with identical boundary conditions.
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Transfer functions for the mean sway drift force and 1st order rigid-body mo-
tions are compared between the two analyses in Figure 6.8, where also the lin-
ear and theoretical results by Koo and Kim (2004) and the experimental results
by Nojiri and Murayama (1975) are included. All the non-linear and experimental
results are for H = 7 cm. Figure 6.1 showed that the sway motion in the IBOGM
analysis for H = 7 cm deviated from the linear solution as well as from results
with smaller wave heights in the frequency range 0.6 ≤ ξB < 1.0. This behaviour
of the IBOGM results is confirmed by Greco’s analysis. Also the amplitudes of
the 1st order heave and roll motions in the frequency range close to resonance are
qualitatively in good agreement, even though minor differences are visible.

The analysis by Greco includes the mean sway drift force evaluated by CFM
using the exact method described in Appendix C. The included CFM results from
both the IBOGM analysis and Greco’s analysis are with the vertical control sur-
faces located 0.5λ from the initial position of the body’s center. For ξB > 1.0,
the deviation of the mean wave drift force from theoretical results observed in
the IBOGM analysis, also indicated by the experiments, is reproduced by Greco.
The results obtained with CFM in Greco’s analysis show the same qualitative be-
haviour as in the IBOGM analysis. In particular, the difference between DPI and
CFM around ξB = 0.5 is observed also in Greco’s results. The mean wave drift
force obtained with DPI is generally in good agreement between the IBOGM and
Greco’s analysis, except for in the frequency range 0.5 ≤ ξB ≤ 0.7 around the
heave and roll natural frequencies. It is believed that the difference in the mean
wave drift force between the two analyses in this frequency range is related to the
minor differences observed in the 1st order heave motion, since the mean wave
drift force depends strongly on the relative motions between the body and the free
surface. When the relative motions are large, differences in numerical techniques
for dealing with the wave-body intersection points in the two analyses may also
be a source of uncertainty (reference is made to Figure 6.11).

The difference between the IBOGM analysis and Greco’s analysis close to
heave and roll resonance is further examined by comparing time histories of wave
loads and motions for ξB = 0.5 in Figure 6.9. While the loads and responses in
heave and roll are in good agreement, differences are observed for sway. The crests
in the sway force are in excellent agreement, while the behaviour and magnitude
of the troughs differ. This explains why the mean wave drift force in the two anal-
yses differ.

Figure 6.10, shows that the difference in sway behaviour at ξB = 0.5 is asso-
ciated with a larger 3rd order sway force in the IBOGM analysis than in Greco’s
analysis. This may be due to the local flow close to the wave-body intersection
points, since the body has large heave and roll motions. Another possible expla-
nation is that the HPC method, used as potential-flow solver in the IBOGM, is a
higher-order method with better spatial accuracy than the BEM.

A detailed analysis of the wave elevation close to the ship section, and the
dynamic pressure distribution over the instantaneous wetted body surface, for
ξB = 0.5 is presented in Figure 6.11. Here, snapshots are shown for different time
instants over two complete wave periods towards the end of the simulation. Con-
sidering the large rigid-body motions, the agreement between the two methods
is deemed satisfactory. It appears that there is a small phase difference between
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Figure 6.8: Transfer functions for a freely floating 2D ship section in beam-sea
waves. IBOGM analysis compared with the linear and theoretical results by Koo
and Kim (2004), the experimental results by Nojiri and Murayama (1975) and the
non-linear BEM results by Greco. All the non-linear and experimental results are
for H = 7 cm. The mean wave drift force F (0)

x in the IBOGM and Greco results is
obtained from both DPI and CFM.
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Figure 6.9: Comparison of wave load and motion response time series from
IBOGM analysis and non-linear BEM analysis by Greco for a freely floating 2D
ship section in beam-sea waves for ξB = 0.50, H = 7 cm.

the two simulations, however, this is mostly related to the fact that the results are
generally not reported at the exact same time instants. This can be seen in the
small sub plots that indicate the time instant of the two simulations in the sway-
force time series. These show that, when the time of the snapshots coincide, e.g. at
t/T ≈ 52.9, the phase difference is small. The pressure distribution over the wet-
ted surface clearly has local differences, but is qualitatively consistent. Two likely
explanations for the difference in pressure distribution is 1) that the refinement
of the body boundary in the IBOGM method is dictated by the grid spacing in
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Figure 6.10: Transfer function for 1st − 4th order wave loads for freely floating 2D
ship section in beam-sea waves from IBOGM analysis compared with the non-
linear BEM by Greco with H = 7 cm.

the body-fixed grid, while points can be distributed arbitrarily in the BEM, and 2)
that the IBOGM has higher spatial accuracy than the BEM. The local flow at the
body boundary in the IBOGM can be refined in an efficient manner by e.g. mod-
elling the body-fixed grid with an octree technique. This is suggested as a further
improvement of the IBOGM, that would enhance its general applicability.
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Figure 6.11: Dynamic pressure distribution and free-surface elevation at different
time instances for H = 7 cm, ξB = 0.5 for IBOGM analysis (black) and Greco’s
non-linear BEM analysis (red). The corresponding time instants in the sway force
time series are indicated.
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6.4 Comparison with other Non-Linear Numerical Results

We now compare the present IBOGM analysis with the non-linear analysis
by Tanizawa et al. (1999) and Koo and Kim (2004) for H = 7 cm. Both use a
fully non-linear numerical wave tank based on BEM, and both solve an auxiliary
BVP for the time derivative of ϕ. While Tanizawa et al. (1999) use a computa-
tional domain 6λ long with 1λ long numerical beaches on both sides, Koo and
Kim (2004) use a domain similar to the one used in the IBOGM analysis illus-
trated in Figure 5.8. In both cases, it appears that the incident waves are gener-
ated by applying a velocity flux on a fixed position rather than having a physical
wavemaker. The spatial and temporal discretization used by Koo and Kim (2004)
is somewhat finer than that used by Tanizawa et al. (1999). Transfer functions for
the mean sway wave drift force as well as 1st order rigid-body motions are plot-
ted in Figure 6.12, where also the linear and theoretical results by Koo and Kim
(2004) and experimental results by Nojiri and Murayama (1975) are included for
reference. Results near roll resonance were not given by Tanizawa et al. (1999),
stating that these diverged due to large roll motions. The mean wave drift force
in the latter reference is presented both from DPI and from CFM using Maruo’s
formula (6.6). Koo and Kim (2004) do not include results for the roll resonance
frequency ξB = 0.5, for which no particular explanation is given. However, given
that they predict larger roll response at ξB = 0.6 than in the IBOGM analysis, it
can be speculated that this case resulted in numerical instability.

Away from the heave and roll resonance frequencies, all the numerical results
give 1st order motions in good agreement. Close to the natural frequencies, Koo
and Kim (2004) predict lower sway and larger heave and roll motions than the
IBOGM analysis. More significant differences are found when considering the
mean wave drift force. Based on the few plotted points, the results from DPI
by Tanizawa et al. (1999) show a diverging trend from both the theoretical and ex-
perimental results, and the correlation is generally unsatisfactory. Also the mean
wave drift force by Koo and Kim (2004) compares poorly with the theoretical and
experimental results. In particular, the mean wave drift force at ξB = 0.6 is 50%
larger than the theoretical value. On the other hand, the results computed with
Maruo’s formula by Tanizawa et al. (1999) agree well with the theoretical values
for all the plotted frequencies. As a consequence, they claim that the method of
DPI is not reliable, and that the results computed from Maruo’s formula are more
trustworthy. The investigation of different methods to estimate the mean wave
drift force in Section 6.2.2 do however contradict this conclusion. In particular,
it was shown that using approximate methods such as Maruo’s formula in con-
nection with non-linear simulations is questionable, and that the mean wave drift
force estimated from DPI agrees best with the mean sway offset of the body.

A substantial effort has been devoted to investigate the difference between
the DPI results from Tanizawa et al. (1999) and from Koo and Kim (2004) and
the present IBOGM analysis. The major finding from this is that the mean wave
drift force, in particular near roll resonance, is sensitive to the body-boundary
condition used when solving the auxiliary BVP for the time derivative of ϕ, and
that this may be a contributing factor to the conclusions drawn by Tanizawa et al.
(1999). This is elaborated in the next section.

135



6. A Freely Floating Body in Waves

0.5 1.0 1.5 2.0
ξB (-)

0.0

0.5

1.0

1.5

F(
0) x
/1 2ρ

gζ
2 A
 (-
)

Theoretical
Experimental
Tani.
Tani. CFM
Koo
IBOGM

(a) Mean sway drift force

0.5 1.0 1.5 2.0
ξB (-)

0.0

0.5

1.0

1.5

η 1
a/ζ

A
 (-
)

Linear
Experimental
Tani.
Koo
IBOGM

(b) 1st order sway motion

0.5 1.0 1.5 2.0
ξB (-)

0.0

0.5

1.0

1.5

2.0

2.5

η 3
a/ζ

A
 (-

)

(c) 1st order heave motion

0.5 1.0 1.5 2.0
ξB (-)

0.0

2.5

5.0

7.5

η 5
a/k

ζ A
 (-

)

(d) 1st order roll motion

Figure 6.12: Transfer functions for a freely floating 2D ship section in beam-sea
waves. IBOGM analysis compared with the linear and theoretical results by Koo
and Kim (2004), the experimental results by Nojiri and Murayama (1975), the
non-linear BEM results by Tanizawa et al. (1999) and the non-linear BEM re-
sults by Koo and Kim (2004). All the non-linear and experimental results are for
H = 7 cm. In addition to DPI, the mean wave drift force F (0)

x obtained by CFM
based on Maruo’s formula is included from Tanizawa et al. (1999).
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6.5 Sensitivity towards the Body-Boundary Condition for the
Time Derivative of ϕ

A key aspect in computing the pressure on the body boundary is to reliably es-
timate the time derivative of the velocity potential ϕ that goes into the Bernoulli
equation discussed in Section 2.3.2. When this estimate is obtained by solving an
auxiliary BVP for the time derivative of ϕ, posing the correct body-boundary con-
dition is of key importance. As it will be shown through a sensitivity analysis,
the mean sway wave drift force close to roll resonance is sensitive to errors in
this body-boundary condition. In the following discussion it is to be noted that
Tanizawa has been one of the pioneers in defining the BVP for the time derivative
of ϕ, and both Koo and Kim (2004) and other authors use the implementation in
his papers. An apparent difference between this formulation and the one derived
herein is highlighted, and its consequences are investigated.

6.5.1 Comparison of Formulations

In equation (2.10) in Section 2.2.2, it was stated that the acceleration of a fixed
point P on the surface of a moving rigid body is given as

d2R

dt2
= R̈0 + ω × Ṙ0 + ω̇ × r + ω × (ω × r),

where all the time derivatives on the right-hand side are relative to the body-
fixed reference frame. Ṙ0 and R̈0 are the velocity and acceleration, respectively,
of the body’s center of rotation that is here taken as the body’s center of gravity,
r is a vector from the body’s center of rotation to P and ω is the angular velocity
vector. We note that all the ω× terms in the above equation are due to the time
rate of change of unit vectors in the body-fixed coordinate system seen by an
inertial observer. In the present work, where the BVP for the time derivative of ϕ
is formulated in the body-fixed reference frame, these terms were hence omitted
in the body-boundary condition given by equation (2.35) in Section 2.3.4 as

∇DBOϕ

Dt
· n = (R̈0 + ω̇ × r) · n,

where DBO/Dt is the time derivative following a point P moving with the body
and n is the normal vector in P . It is implicit that all the vectors in the above
equation are given in the body-fixed reference frame.

Tanizawa et al. (1999) state a body-boundary condition for the Eulerian time
derivative ∂ϕ/∂t that is derived in Tanizawa (1995). We here repeat the main steps
of this derivation, starting by defining a variable

Φ =
∂ϕ

∂t
+

1

2
(∇ϕ)2. (6.7)

Φ is called the acceleration potential, in that the acceleration of a fluid particle is
given by its gradient∇Φ. In deriving the relevant boundary condition, we consid-
ered a fixed point on the body surface. We now initially consider a point that is not
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fixed, but that instead slides along the body. Hence, the Neumann body-boundary
condition for Φ can be written as

∇Φ · n = (R̈0 + r̈ + ω̇ × r + ω × Ṙ0 + 2ω × ṙ + ω × (ω × r)) · n. (6.8)

By using the definition of the material derivative following a fluid particle,
D/Dt = ∂/∂t+∇ϕ · ∇, it can be shown that

∇Φ = ∇(
∂ϕ

∂t
+

1

2
(∇ϕ)2) = ∇∂ϕ

∂t
+∇ϕ · ∇(∇ϕ) =

D(∇ϕ)

Dt
. (6.9)

The gradient of Φ is hence equivalent to the material derivative of the fluid veloc-
ity ∇ϕ. The body-boundary condition for the Lagrangian time derivative of ϕ for
a fluid particle sliding on the body surface in the inertial reference frame is hence

D(∇ϕ)

Dt
· n = (R̈0 + ω × Ṙ0 + r̈ + ω̇ × r + 2ω × ṙ + ω × (ω × r)) · n. (6.10)

If we now assume that the point is fixed on the body surface rather than sliding
along it, (6.10) becomes

D(∇ϕ)

Dt
· n = (R̈0 + ω × Ṙ0 + ω̇ × r + ω × (ω × r)) · n. (6.11)

The body-boundary condition for ∇Φ given in Equation (11) of Tanizawa
(1995) reads

n · a = n · (a0 + ω̇ × r) + n · ω × (ω × r) + n · [a] + n · 2ω × [v], (6.12)

where a = ∇Φ, [v] = ṙ and [a] = r̈. Tanizawa (1995) states that a0 + ω̇ × r
is the acceleration due to the translational and angular acceleration of the body.
There are two ways to interpret this: If a0 = R̈0 + ω × Ṙ0, a0 is the acceleration
of the body’s center of rotation as observed from the inertial reference frame. If,
on the other hand, a0 = R̈0, it is the acceleration of the body’s center of rotation
observed from the body-fixed reference frame. In the former interpretation, the
expression in (6.12) is consistent with (6.10). Thus, in order for (6.12) to be formally
correct, one must take a0 as R̈0 + ω × Ṙ0. Tanizawa et al. (1999) use (6.12) as
body-boundary condition in their numerical implementation. Furthermore, the
body-boundary condition for Φ stated in Equation (28) in Koo and Kim (2004) is
the same as that used by Tanizawa (1995).

As highlighted in the above discussion, it is crucial that a0 is interpreted in
the correct way in order for the body-boundary condition to be consistent. In the
following, it will be shown that correctly accounting for the non-linear term ω×Ṙ0

has a significant effect on the mean sway wave drift force when heave and roll
motions are large.

6.5.2 Sensitivity Study

The influence of the ω × Ṙ0 term in the body-boundary condition for the time
derivative of ϕ is studied by modifying the original body-boundary condition in
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the body-fixed reference frame defined above into

∇DBOϕ

Dt
· n = (R̈0 − ω × Ṙ0 + ω̇ × r) · n. (6.13)

In the inertial reference-frame interpretation, this corresponds to disregarding the
ω×Ṙ0 term. The analysis is repeated forH = 7 cm, modifying the body-boundary
condition for the time derivative of ϕ into (6.13), with otherwise unchanged condi-
tions. With this, the simulation with non-dimensional wave frequency ξB = 0.55
became unstable and is hence not included in the discussion to follow.

Motion time histories for non-dimensional wave frequencies ξB =
(0.5, 1.0, 1.5) and incident wave height H = 7 cm are here considered. The re-
sults from the present analysis are compared with time series shown by Tanizawa
et al. (1999). Despite stating that the simulation for ξB = 0.5 diverged due to large
angular motions, they nevertheless present time series for this case in their pa-
per. The time series for this case as well as for the two other frequencies are thus
included in the comparison, although the accuracy of the reproduced curves is
limited1. With this in mind, the comparison is only interpreted in a qualitative
sense.

For the wave frequency close to heave and roll resonance, ξB = 0.5, Figure 6.13
shows that the modified boundary condition leads to a significant increase in the
mean sway offset in the IBOGM simulations. The effect on wave frequency mo-
tions is much smaller, with limited changes to the heave and roll response. The
transient sway response in the simulations by Tanizawa et al. (1999) is much larger
than in the present simulation. This can be partially explained by difference in the
ramp function used for the incident waves, as well as in the strategy to generate
them. However, the sway transient phase from Tanizawa et al. (1999) is somehow
closer to the IBOGM solution with modified body-boundary condition. Moreover,
they are associated with similar mean offsets in steady-state condition, in both
cases larger than predicted with the original body-boundary condition.

Figures 6.14 and 6.15 show that the influence of the modified body-boundary
condition is much smaller for ξB = 1.0, and practically invisible for ξB = 1.5. This
is because the heave and roll motions for ξB = 1.0 and ξB = 1.5 are much smaller
than for ξB = 0.5, so that the non-linear term ω × Ṙ0 becomes orders of magni-
tude smaller for these frequencies. The general trend of the sway motion in the
IBOGM simulations compares qualitatively well with Tanizawa et al. (1999) for
ξB = 1.0 and ξB = 1.5, although the mean sway offset is lower. In the steady-state
part of the time series, the relative difference in mean sway offset between the two
sets of simulations, (η1,Tani − η1,IBOGM )/η1,Tani, is estimated as approximately
0.03 for ξB = 0.5, 0.21 for ξB = 1.0 and 0.25 for ξB = 1.5. Although the reason
for this difference is not fully understood, it is qualitatively consistent with Fig-
ure 6.12 where the mean wave drift forces estimated from the IBOGM analysis are
approximately 30% lower than those reported by Tanizawa et al. (1999) using DPI
in the frequency range 1.25 ≤ ξB ≤ 1.75.

1Time series are captured from plots in Tanizawa et al. (1999) with low resolution.
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Figure 6.13: Comparison of motion series for ξB = 0.5, H = 7 cm. The results
denoted Tanizawa are from Tanizawa et al. (1999), and the IBOGM mod. BC results
are obtained with (6.13) as body-boundary condition in the IBOGM analysis. Note
that the roll motion from Tanizawa et al. (1999) is plotted with the opposite sign
as in their paper.
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Figure 6.14: Same as Figure 6.13 with ξB = 1.0, H = 7 cm.
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Figure 6.15: Same as Figure 6.13 with ξB = 1.5, H = 7 cm.
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Transfer functions for the mean sway wave drift force as well as 1st order rigid-
body motions for H = 7 cm are shown in Figure 6.16, where the mean wave drift
force is estimated from DPI in all the non-linear numerical results. No visible dif-
ference is seen in the IBOGM results with the two body-boundary conditions for
ξB > 1.0, where heave and roll motions are moderate. In general, the modified
body-boundary condition shows limited influence on wave-frequency motions,
with only a small increase in sway, heave and roll motions around ξB = 0.5. It is
therefore not evident from only considering the wave-frequency motions that the
the body-boundary condition in (6.13) is erroneous. Dramatic differences are how-
ever seen in the mean wave drift force for ξB < 1.0. Close to the heave resonance
frequency, at ξB = 0.6, where also the roll motion is large, the mean wave drift
force is close to three times higher than the theoretical value when the modified
body-boundary condition is used. The results by Koo and Kim (2004) show the
same trend in a qualitative sense, but in their case the mean wave drift force never
becomes higher than approximately 1.5 times the theoretical value. Tanizawa et al.
(1999) do not provide results from direct pressure integration in this frequency
range, noting that they believe their results from DPI to be unreliable. However,
since the mean steady-state sway offset in Figure 6.13 is comparable to the IBOGM
analysis with modified body-boundary condition, it is plausible that the mean
wave drift force also is comparable for ξB = 0.5.

Figure 6.16, and the fact that Koo and Kim (2004) use the formulation
of Tanizawa (1995) to solve for the acceleration potential, would suggest that they
may have interpreted a0 in (6.12) as the acceleration in the body-fixed reference
frame instead of in the inertial reference frame, as it should be. In that case, the
claim made by Tanizawa et al. (1999) that the mean wave drift force estimated
from DPI is inaccurate, would be questionable. However, one must keep in mind
that there are several factors that may influence the mean wave drift force esti-
mated from a time domain analysis, related to e.g. spatial and temporal discretiza-
tion. The mean wave drift force is small compared to the 1st order wave force,
and is sensitive to the time window used to average the force. Furthermore, if for
some reason there are spikes in the wave force time history with duration in the
order of one time step, these may influence the estimate of F (0)

x without notably
affecting the sway motion. Differences may also be present in other boundary
conditions used in the BVP for the time derivative of ϕ, such as the free-surface
boundary condition, that have not been investigated here. Another possible rea-
son for the disagreement could be in the different fluid-body motions coupling
strategy adopted, i.e. intrinsic in the case of Koo and Kim (2004) and iterative in
the IBOGM analysis. Nevertheless, the present study shows that the mean wave
drift force is sensitive to the body-boundary condition used in the BVP, whereas
1st order motions are relatively insensitive.
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Figure 6.16: Transfer functions for a freely floating 2D ship section in beam-
sea waves. Original IBOGM analysis and IBOGM analysis with (6.13) as body-
boundary condition compared with the linear and theoretical results by Koo
and Kim (2004), the experimental results by Nojiri and Murayama (1975), the
non-linear BEM results by Tanizawa et al. (1999) and the non-linear BEM re-
sults by Koo and Kim (2004). All the non-linear and experimental results are for
H = 7 cm, and the mean wave drift force F (0)

x is obtained from DPI in all non-
linear analyses.
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6.6 Summary

A freely floating 2D ship section in beam-sea regular waves has been considered
in a range of wave frequencies and in different wave heights. Numerical analyses
were performed with the fully non-linear immersed boundary-overlapping grid
method (IBOGM) developed in the present work, with particular focus on non-
linear effects due to large wave steepness and large rigid-body motions. It was
found that both when rigid-body motions are large, close to heave and roll res-
onance, and when the waves are steep, the mean sway wave drift force deviates
from the 2nd order theoretical value.

Compared with experiments, the roll damping was found to be under-
estimated in the numerical analysis, probably due to viscous effects in the exper-
iments. The roll response in the numerical analysis was brought closer to the ex-
perimental results by adding quadratic roll damping, with best agreement when
the added damping corresponded to an equivalent linearized damping level ap-
proximately equal to 5% of the critical damping near resonance. The additional
roll damping was found to also influence sway and heave motions through cou-
pling effects, as well as the mean sway wave drift force. An interesting observation
is that adding roll damping to reduce motions did not necessarily mean that the
system behaved more linearly. In particular, it was found that the 1st order wave
force in sway relatively speaking was reduced more than the 2nd order force when
the quadratic roll damping increased.

The method of direct pressure integration (DPI) to estimate the mean wave
drift force was compared to using conservation of fluid momentum (CFM). Three
different CFM methods were considered, including an exact method, where no
additional approximations are made, and two 2nd order approximate methods in-
cluding the widely used Maruo’s formula. The mean wave drift force was also
estimated from the mean sway position of the body. In general, it was found that
the latter method gave consistent results with DPI. The exact CFM method was
found to give results that were consistent with DPI, but with differences observed
close to heave and roll resonance. Although the reason for this is not fully under-
stood, it is likely related to large body motions. It is clear that the 2nd order ap-
proximate methods may neglect important non-linear contributions, and should
be used with care in connection with non-linear simulations.

The IBOGM was verified against dedicated analyses carried out with the non-
linear boundary element method (BEM) solver developed by Greco (2001). Satis-
factory agreement was observed, even for the most challenging scenarios involv-
ing significant heave and roll motions of the body.

Compared against other available non-linear numerical results by Tanizawa
et al. (1999) and Koo and Kim (2004), mean wave drift forces of significantly dif-
ferent magnitudes were observed close to heave and roll resonance. Tanizawa
et al. (1999) claimed that the method of DPI to estimate the mean wave drift force
was inaccurate, although the mean wave drift force estimated for DPI was in good
agreement with reference results when the body was restrained from moving in
their work. An in-depth investigation revealed that a non-linear term in the body-
boundary condition for the auxiliary boundary value problem (BVP) used to es-
timate the time derivative of the velocity potential significantly influences the
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mean wave drift force when rigid-body motions are large, but has only a mod-
erate influence on 1st order rigid-body motions. A sensitivity analysis showed
that, by neglecting such non-linear term, the mean wave drift force may be sig-
nificantly over-estimated close to heave and roll resonance. Tanizawa et al. (1999)
and Koo and Kim (2004) use the same body-boundary condition in this BVP, and
by neglecting the non-linear term in the IBOGM analysis, a similar steady-state
mean sway offset as in Tanizawa et al. (1999) was obtained at roll resonance. Fur-
thermore, the transfer function of the mean wave drift force from the IBOGM
analysis with the modified body-boundary condition showed qualitatively sim-
ilar behaviour as in Koo and Kim (2004), although with different magnitudes.
Since the IBOGM analysis with the correctly posed body-boundary condition
compared well with Greco’s independent analysis, it is possible that Tanizawa
et al. (1999) and Koo and Kim (2004) have neglected the non-linear term in their
body-boundary conditions. Either way, the analysis showed that when an aux-
iliary BVP is solved to estimate the time derivative of the velocity potential, the
mean wave drift force is sensitive towards the imposed body-boundary condi-
tion. Since the linear quantities are much less sensitive, it may be misleading to
only consider these when determining the adequacy of a numerical solution. This
should be kept in mind during validation and verification of a non-linear numer-
ical implementation.

The roll response near resonance represents an example where viscous effects
may matter. In order to properly account for these, a viscous-flow solver is re-
quired. In the next chapter, a strategy to couple the present IBOGM solver with an
existing viscous-flow solver is proposed. By doing this, viscous effects can be ac-
counted for where they matter, while benefiting from the strengths of the present
potential-flow solver elsewhere.
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Chapter 7

Coupling with a Viscous-Flow Solver
through Domain-Decomposition

Potential-flow methods are generally able to propagate waves in an accurate and
efficient manner. However, there are scenarios where they are insufficient. Two
examples of this examined in the present thesis are the focused and eventually
breaking wave in Chapter 4, and the roll motion for a freely floating body near
resonance in Chapter 6. In the former case, we were able to suppress the wave
breaking numerically in order to make the simulation more robust. The details
of the process where the overturning wave impacts the underlying free surface,
leading to circulation and vortical structures (Battjes, 1988), is on the other hand
outside the validity of potential flow. For the freely floating body, the simulated
roll response near resonance was approximately twice as large as in experiments,
which indicated that there were viscous effects leading to roll damping in the
latter.

In order to deal properly with wave breaking and fragmented flows, and
with important viscous effects, a Navier-Stokes solver is required. Navier-Stokes
solvers are however more computationally expensive than potential-flow solvers,
and may be less accurate in propagating free-surface waves due to numerical dis-
sipation. To benefit from the strengths of both classes of solvers, an increasing
interest in coupling potential-flow and Navier-Stokes solvers is seen lately. In this
framework, a Navier-Stokes solver can be applied where viscous effects matter,
while a potential-flow solver can be used in the remaining part of the considered
fluid domain. An example of this is given by Colicchio et al. (2006), where a 2D
strong domain-decomposition (DD) strategy between a level-set Navier-Stokes
(LS-NS) solver and a non-linear potential-flow solver based on the boundary ele-
ment method (BEM) was devised to analyze a dam-breaking problem and subse-
quent wave impact on a vertical wall. Here, we propose a DD scheme to couple the
same LS-NS solver as used by Colicchio et al. (2006), but with single-phase (water)
formulation as proposed by Colicchio et al. (2011), with the immersed boundary-
overlapping grid method (IBOGM) developed in the present work. A version of
the LS-NS code modified for the present application has been provided by Colic-
chio, where the exchange of information and control of the time-integration pro-
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cess is managed through external ASCII files.
A version of the DD scheme proposed in the following was initially presented

in Hanssen et al. (2019).

7.1 Level-Set Navier-Stokes Solver

A complete overview of the theory behind the applied LS-NS solver can be found
in Colicchio et al. (2006) and Colicchio et al. (2011). A short summary of key as-
pects is given in the following. It is here emphasized that for the present work,
a modified version of the LS-NS solver has been provided by Colicchio where
the communication of fluid variables is managed by reading from and writing
to ASCII files in a dedicated information interface. The LS-NS solver is therefore
coupled with the potential-flow solver as a standalone program, and has not been
implemented numerically by the present author.

The governing equations for the fluid problem are the continuity equation,

∇ · V = 0, (7.1)

and the Navier-Stokes equations,

∂V

∂t
+ (V · ∇)V = −∇p

ρ
+

2∇ · (µD)

ρ
+ g. (7.2)

The equations are here formulated in Eulerian form in the Earth-fixed, inertial
coordinate system, where V is the water particle velocity, p is the pressure, ρ is
the density, µ is the dynamic viscosity, D is the rate-of-strain tensor and g is the
acceleration of gravity vector. (7.1) and (7.2) are solved on a staggered, stationary
Cartesian grid by a 2nd order finite difference method (FDM) in space, and with a
2nd order projection method in time. In the staggered spatial scheme, the horizon-
tal and vertical velocity components are defined, respectively, on the center of the
vertical and horizontal cell sides, while the pressure is defined in the cells’ center.
In the temporal scheme, a predictor step is first performed to estimate V ∗n+1 and
p∗n+1/2. These are the initial ”guesses” for the fluid pressure and velocity at time
t = tn + ∆t and tn + 0.5∆t, respectively, where ∆t is the time step and tn = n∆t.
This is followed by a corrector step, where the divergence-free velocity V n+1 and
pressure pn+1/2 are obtained.

The air-water interface, which corresponds to the free surface in the single-
phase (water) formulation, is defined by the level-set function φ which represents
the signed distance from the free surface so that φ < 0 in the water, φ > 0 out-
side the water and φ = 0 on the exact position of the interface. The free surface
evolution is captured in time through solving the following equation:

∂ρ

∂φ

(
∂φ

∂t
+ V · ∇φ

)
= 0. (7.3)

As mentioned above, the LS-NS solver used in the present work represents
a single-phase incompressible method, where only the water-phase is modelled.
The pressure in the air is set to zero with a smooth transition from the pressure in
the water, and with the water velocity extended in air.
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7.2 Domain-Decomposition Scheme

The general idea of the proposed DD between the potential-flow IBOGM and LS-
NS solvers is illustrated for the two problems described in the introduction of the
chapter in Figure 7.1. In (a), we know the position where a breaking wave will de-
velop, either from experiments or from potential-flow analysis, and locate a LS-NS
domain around this region. The waves on either sides of the breaking-wave region
are propagated by the IBOGM solver. This is of interest if we for instance would
like to estimate the fluid kinematics in the overturning wave. In (b), a LS-NS do-
main is located around the position of a rolling ship section, covering the region
where significant fluid vorticity due to flow separation from the ship’s bilges is
generated. On either sides of the ship section, the waves are propagated by the
IBOGM solver. In this way, the particular flow phenomena can be studied in an
efficient manner. There are several other examples where such DD strategy is ben-
eficial, including lowering and lifting of subsea modules through the splash zone,
and viscous contributions to wave drift loads on a semi-submersible. The latter
problem was highlighted in the introduction given in Section 1.1.

LS-NS domainIBOGM domain

x

z

(a) Breaking wave

LS-NS domainIBOGM domain

x

z

(b) Flow separation from ship bilges

Figure 7.1: Two relevant scenarios for coupling of a IBOGM and LS-NS solvers.
The global Oxz coordinate system is located in the middle of the LS-NS domain
with origin in the still waterline.

Following Colicchio et al. (2006), the proposed DD involves an overlapping
between the two solvers to allow a more relaxed, robust and accurate coupling
of the solutions. The details of the spatial and temporal coupling in the proposed
DD scheme are given next.

7.2.1 Spatial Coupling Scheme

We here describe the spatial coupling scheme, i.e. how information is exchanged
between the two solvers at a given time instant. A principal outline of the two
domains is shown in Figure 7.2, where the LS-NS domain is indicated in grey and
with the global Oxz coordinate system shared by both solvers located in the mid-
dle of the LS-NS domain with origin in the still waterline. The domains are over-
lapped, so that information is exchanged between the two solvers at locations that
are separated in space. In the case examined in the figure, the overlapping region
has a thickness equal to eight nodes of the LS-NS domain. The IBOGM solver can
have a coarser mesh than the LS-NS domain, provided that this is suitable for an
accurate solution of the problem.
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Two classes of intersection boundaries are defined in Figure 7.2: At the LS-
NS→IBOGM boundary, the pressure and velocity, as well as the free-surface inter-
section with the vertical sides of the boundary, are written from the LS-NS solver
to the IBOGM solver. The LS-NS→IBOGM boundary points, indicated with red
pentagons with black borders, are predefined, so that variables are also written
above the free surface. The values above the free surface are however never used
by the IBOGM solver. At the IBOGM→LS-NS boundary, the data are written from
the IBOGM solver to the LS-NS solver. More specifically, the water-velocity com-
ponents and pressure are provided consistently with the LS-NS staggered grid,
i.e. the horizontal water velocity ∂ϕ/∂x is written in the points indicated with
green dots, the vertical water velocity ∂ϕ/∂z is written in the points indicated
with blue x’s and the water pressure is written in the points indicated with red
+’s. In addition, the free-surface elevation is written to the LS-NS solver in the
points indicated with blue circles with black borders. In the points above the in-
stantaneous IBOGM free-surface position, the pressure and fluid velocities are set
to zero. The LS-NS solver needs information on more grid layers than the IBOGM
solver to properly estimate the gradients involved in convective terms.

Figure 7.2: Principal outline of spatial coupling scheme. The black lines indicate
the IBOGM grid, while the grey area indicates the LS-NS domain.

Boundary Conditions from LS-NS to IBOGM Solver

As indicated in Figure 7.2, the IBOGM grid is fitted to the LS-NS→IBOGM
boundary. The details of a highlighted part of the IBOGM grid around the LS-
NS→IBOGM boundary are shown in Figure 7.3. As in Section 3.2, the IBOGM
domain is constituted by an active (yellow) and an inactive (grey) part. The sub-
set of cells where the free surface is considered as an immersed boundary are
blue-shaded with ghost nodes above the free surface in their upper parts. The
grid region enclosed by the LS-NS→IBOGM boundary is always inactive for the
IBOGM solver. In the nodes indicated with red squares with black borders, bound-
ary conditions from the LS-NS solver are imposed. In the BVP for the velocity po-
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tential, we impose Neumann conditions in the grid nodes that coincide with the
LS-NS→IBOGM boundary and are below the free surface. Considering a particu-
lar node with coordinates (x, z) and with normal vector n(x, z) pointing into the
active IBOGM domain, the Neumann condition for the velocity potential is stated
as

8∑
i=1

 8∑
j=1

cj,i∇fj (x, z) · n(x, z)

ϕi = V (x, z) · n(x, z), (7.4)

where V (x, z) is the fluid velocity given by the LS-NS solver in the corresponding
point. (x, z) are the node’s coordinates in the local coordinate system in a cell that
contains the node along one of its sides. In the BVP for the time derivative of the
velocity potential, we impose Dirichlet conditions in the form

ϕt,i = ϕt(x, z), (7.5)

where i is the global index of a node on a LS-NS→IBOGM boundary and ϕt(x, z)
is estimated from the pressure given by the LS-NS solver in (x, z) through expres-
sion (7.9) in the next section. Since the points along the LS-NS→IBOGM boundary
are fixed in space, the cells used to impose the boundary conditions can be prede-
termined at the beginning of the simulation.

(a) Highlighted part of IBOGM domain (b) IBOGM domain details

Figure 7.3: Details of IBOGM domain close to the LS-NS→IBOGM boundary. Yel-
low and grey cells indicate the active and inactive parts of the instantaneous com-
putational domain. Boundary conditions from the LS-NS solver are imposed in
the nodes indicated by red squares with black borders.

A consequence of imposing Neumann conditions for the velocity potential and
Dirichlet conditions for its time derivative along the LS-NS→IBOGM boundary,
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is that the coefficient matrices for the two respective global matrix systems dif-
fer. Although associated with a slight increase in computational cost, this choice
is made because it is found to enhance the robustness of the coupled numerical
solution over time.

Boundary Conditions from IBOGM to LS-NS Solver

In the points along the IBOGM→LS-NS boundary where velocities are passed
from the IBOGM solver as boundary conditions for the LS-NS solver, these are
estimated from the known velocity potential in the IBOGM domain by using (3.2)
in Section 3.1.1:

∂ϕ

∂x
(x, z)ux

=

8∑
i=1

 8∑
j=1

cj,i
∂fj
∂x

(x, z)ux

ϕi,
∂ϕ

∂z
(x, z)uz

=

8∑
i=1

 8∑
j=1

cj,i
∂fj
∂z

(x, z)uz

ϕi.
(x, z)ux

and (x, z)uz
are the coordinates of a point where the horizontal and ver-

tical velocity component are estimated, respectively. (x, z)ux and (x, z)uz are the
corresponding local coordinates in the cells where the expressions are evaluated.
To estimate the pressure in the points (x, z)p along the IBOGM→LS-NS boundary
where this is passed to the LS-NS solver, we use (3.2) and (3.4) in Section 3.1.1 to
estimate the velocity and the time derivative of the velocity potential,

∂ϕ

∂x
(x, z)p =

8∑
i=1

 8∑
j=1

cj,i
∂fj
∂x

(x, z)p

ϕi,
∂ϕ

∂z
(x, z)p =

8∑
i=1

 8∑
j=1

cj,i
∂fj
∂z

(x, z)p

ϕi.
ϕt(x, z)p =

8∑
i=1

 8∑
j=1

cj,ifj (x, z)p

ϕt,i.
The pressure is evaluated by using these in the Bernoulli equation (2.20).

Since the points along the IBOGM→LS-NS boundary are fixed in space, the
eight cells that contain each of them need only to be determined once at the be-
ginning of the simulation. Generally, the cell where a particular IBOGM→LS-NS
point is closer to the cell’s center is chosen. When evaluating the expressions, a
check is performed to ensure that all the cell nodes are part of the instantaneous
active IBOGM computation domain. This may lead to a different choice of cell for
some of the points just beneath the free surface. Since the points are fixed in space,
the associated HPC coefficients also only need to be determined once. By utilizing
this, the computational efficiency of the IBOGM is enhanced.
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7.2.2 Temporal Coupling Scheme

In the IBOGM simulations presented in Chapter 4 - 6, the 4th order Runge-Kutta
scheme (RK4) given by (3.33) was applied to evolve the solution in time. Here,
since the LS-NS solver uses a 2nd order predictor-corrector temporal scheme, a
2nd order Runge-Kutta midpoint scheme (RK2) is used for the time evolution of
the free surface properties in the IBOGM solver. For a general variable y with
time derivative given in the form ẏ = ẏ(y, t), the evolution from the known state
yn = y(tn) at time tn = n∆t to the unknown state at tn+1 = tn + ∆t is given as

yn+1 = yn + ∆tk2,y, (7.6)

where ∆t is the constant time step, set equal in the IBOGM and LS-NS solvers.
The coefficient k2,y is given as

k2,y = ẏ(yn + 0.5∆tk1,y, tn + 0.5∆t), (7.7)

where k1,y = ẏ(yn, tn). Since the free surface is the only boundary evolved in
time in the IBOGM domain using (7.6) and (7.7), y here represents the position
and velocity potential, respectively, for the free-surface markers. The free surface
is described with the hybrid formulation in Section 3.2.1, where the free-surface
marker at the wavemaker moves in a fully-Lagrangian manner and thus never
separates from the wavemaker surface, while the markers in the background grid
towards the LS-NS domain are semi-Lagrangian and thus restricted to move along
trajectories parallel to the inertial z-axis.

The temporal coupling scheme between the two solvers is illustrated schemat-
ically in Figure 7.4. Starting from a time tn, where the solution in both domains
is known, the first IBOGM RK2 sub step is performed, during which the free-
surface elevation is frozen (i.e. not updated). First, the time derivative of the free-
surface velocity potential is estimated from the dynamic free-surface condition,
and the first RK2 sub step is performed to estimate the free-surface potential at
tn + 0.5∆t. In relation with (7.7), the first RK2 sub step consists of an Euler step
expressed as yn+ 0.5∆tk1,y . Since the pressure and velocity from LS-NS along the
LS-NS→IBOGM boundary are only known up to tn, the values at tn + 0.5∆t are
extrapolated through

pn+1/2 =
1

2
(3pn − pn−1),

V n+1/2 =
1

2
(3V n − V n−1),

(7.8)

where pn−1 and V n−1 are the pressure and velocity at tn −∆t, respectively. Fur-
thermore, we use the Bernoulli equation (2.20) to estimate the time derivative of
the velocity potential:

ϕ
n+1/2
t = −p

n+1/2

ρ
− 1

2
(V · V )n+1/2 − gz. (7.9)

ρ and g are here the water density and the acceleration of gravity, respectively,
and the atmospheric pressure is set to zero. Although not relevant in the present
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work, it is noted that the latter cannot be done in case of gas-cavity entrainment.
In this way, the boundary conditions described above for the velocity potential ϕ
and its time derivative ϕt in the IBOGM domain become available at tn + 0.5∆t,
and corresponding boundary value problems (BVP) can be solved. From these, the
fluid pressure pn+1/2

RK2,1 along the IBOGM→LS-NS boundary for the LS-NS domain
can be estimated, as required for the predictor step.

The LS-NS predictor step is performed next, after which the pressure and ve-
locity p∗n+1/2 and V ∗n+1 are obtained along the LS-NS→IBOGM boundary. The
free-surface position is frozen during the predictor step. The second IBOGM RK2
sub step is then performed, where the time derivatives of the free-surface position
and velocity potential are estimated from the kinematic and dynamic free-surface
conditions from the solution at tn + 0.5∆t obtained after the first RK2 sub step.
These time derivatives constitute k2,y in (7.7). (7.6) is used to integrate the free-
surface position and velocity potential to their states at tn+ ∆t. Since the pressure
after the LS-NS predictor step is known up to tn + 0.5∆t, this is extrapolated to
tn + ∆t through

pn+1 = 2p∗n+1/2 − pn, (7.10)

and the time derivative of the velocity potential ϕn+1
t is estimated from the

Bernoulli equation in the same way as in (7.9). The BVPs for ϕ and ϕt at tn+ ∆t in
the IBOGM domain are solved, and from their solutions the pressure pn+1

RK2,2 and

velocity∇ϕn+1
RK2,2 can be estimated along the IBOGM→LS-NS boundary. pn+1/2

RK2,2 is
then obtained by interpolation in time so that the corrector step can be performed.
In addition, the free-surface elevation, at and near the IBOGM→LS-NS boundary,
is given from the IBOGM solver to the LS-NS solver.

To complete the DD time step, the LS-NS corrector step is performed, giving
the pressure pn+1/2 and velocity V n+1. A time extrapolation of the pressure is
performed to estimate pn+1 along the LS-NS→IBOGM boundary. At this stage,
both the LS-NS and the IBOGM solvers update their free-surface configuration at
tn + ∆t.

The above algorithm is carried out until the end of the simulation defined as
t = tend.
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Figure 7.4: Temporal coupling scheme for IBOGM-LS-NS DD.

7.3 A Numerical Example considering Propagation of Periodic
Waves

When different solvers are coupled in a DD, and in particular in a strong coupling
like the one proposed here, proper exchange of information between the solvers
is of key importance. By this we mean that the variables that are communicated
are consistent in space and time, and that they are interpreted correctly. A nu-
merical test case is defined, where the objective is to examine the performance
of the DD in a condition when no significant viscous-flow phenomena are antici-
pated inside the LS-NS domain. Periodic waves with frequency ω = 4.429 s−1,
amplitude ζA = 0.035 m, wavelength λ = 3.14 m and steepness kζA = 0.07
are generated in the IBOGM domain by a flap-type wavemaker and propagated
through the LS-NS domain and out in the IBOGM domain on the other side. The
numerical setup is shown in Figure 7.5, where the water depth is h = λ, implying
deep-water conditions. The total length of the numerical domain is Ltank = 18 m,
corresponding to approximately 5.7 wavelengths. A numerical beach with length
Lbeach = 2λ and with a damping coefficient νmax = 2.0 s−1 is placed on the op-
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posite side of the wavemaker in order to prevent wave reflections from the tank
wall. In this test case, the LS-NS domain has dimensions LLS−NS = 4.0 m and
HLS−NS = 2.5 m. The distance from the bottom of the LS-NS domain to the still
waterline is hLS−NS = 2.2 m. The left boundary of the LS-NS domain is located
4 m, corresponding to a little more than one wavelength, from the position of the
wavemaker.

Figure 7.5: Sketch of computational domain used in numerical DD simulation.
The global Oxz coordinate system is located in the middle of the LS-NS domain,
indicated by the red transparent region, and with origin in the still waterline.

The uniform grid size ∆x = ∆z in the IBOGM solver is approximately equal
to 0.125 m, giving λ/∆x ≈ 25. The cell size in the LS-NS solver is ∆x = ∆z ≈
0.02 m, or λ/∆x ≈ 157. The time step, equal in the two solvers, is ∆t = 0.0025 s.
This gives T/∆t ≈ 567, where T = 2π/ω is the incident wave period. Sensitivity
studies have shown that both the cell size in the LS-NS solver and the time step
can be increased, but the parameters given here are found to be slightly more
favourable overall for the considered case. The ramp period of the wavemaker is
set to tramp = 4T .

As a reference for the free-surface elevation, a potential-flow simulation is per-
formed with the IBOGM solver without the presence of the LS-NS solver, other-
wise using the same computational domain as illustrated in Figure 7.5. Snapshots
of the free-surface elevation at different time instants 4.2 ≤ t/T ≤ 14.1 are shown
in Figure 7.6. The two simulations are initially in good agreement at t/T = 4.2,
while a slight phase shift and amplitude reduction of the wave inside the LS-NS
domain can be observed at t/T = 5.6. After t/T = 8.5, which coincides with the
time where the waves entering the LS-NS domain becomes stationary, the phase
shift introduced in the LS-NS domain is approximately constant. This suggests
that the phase shift may be associated with the initial transient waves. No sensi-
tivity studies are performed to examine the effect of the wavemaker ramp period,
although this may be instructive. The wave elevation in the IBOGM domain left of
the LS-NS domain is in good agreement with the pure potential-flow simulation
throughout, although a moderate increase in wave height can be seen towards
t/T = 14.1. This shows that the wave reflection from the LS-NS domain is small.
Apart from the phase shift introduced in the LS-NS domain, the wave form on the
right side of the LS-NS domain agrees well with the pure potential-flow simula-
tion, although with a slight reduction in wave amplitude.

To further investigate the observations in Figure 7.6, the dynamic pressure and
velocity fields are examined at three different time instants in Figures 7.7 - 7.9.
With dynamic pressure we here refer to the total pressure, that is zero at the in-
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Figure 7.6: Snapshots of wave elevation plotted as a function of distance from the
initial position of the wavemaker xwm. Comparison of results between potential
theory (IBOGM) and the DD, where DD (IBOGM) and DD (LS-NS) represent re-
spectively the solution in the IBOGM and LS-NS domain.
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Figure 7.6: Continued.
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stantaneous free surface, minus the hydrostatic pressure. The pressure generally
appears smoothly varying between the solvers, although minor differences may
be hidden due to the contour scale in the plots. A more systematic investigation
of the consistency in pressure fields between the two solvers should be performed
as future work. Although the velocity fields computed by the IBOGM and LS-NS
solvers are comparable inside the overlapping regions, small differences in the di-
rection and magnitude of the velocity vectors are seen moving towards the free
surface, see e.g. Figure 7.8 c). An explanation for this may be that only the normal
velocity from the LS-NS solver is specified as a boundary condition for ϕ along
the LS-NS→IBOGM boundary (see Figure 7.3). In particular, differences may oc-
cur when the flow direction in the LS-NS domain is predominantly parallel to
the boundary. Considering alternative strategies to more rigorously specify both
the horizontal and vertical velocity as boundary conditions in the IBOGM solver
along the LS-NS→IBOGM boundary simultaneously is thus expected to enhance
the consistency between the velocity fields in the two solvers, particularly in and
near the the overlapping region.
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(a) Dynamic pressure

(b) Velocity (left overlapping region) (c) Velocity (right overlapping region)

Figure 7.7: Dynamic pressure and velocity field at t/T = 5.6. The red and blue
velocity vectors are from the LS-NS and IBOGM solutions, respectively. The free
surface inside the LS-NS domain is indicated with red markers.
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(a) Dynamic pressure

(b) Velocity (left overlapping region) (c) Velocity (right overlapping region)

Figure 7.8: Dynamic pressure and velocity field at t/T = 11.3. The red and blue
velocity vectors are from the LS-NS and IBOGM solutions, respectively. The free
surface inside the LS-NS domain is indicated with red markers.
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(a) Dynamic pressure

(b) Velocity (left overlapping region) (c) Velocity (right overlapping region)

Figure 7.9: Dynamic pressure and velocity field at t/T = 14.1. The red and blue
velocity vectors are from the LS-NS and IBOGM solutions, respectively. The free
surface inside the LS-NS domain is indicated with red markers.
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7.4 Future Perspectives

Figure 7.6 showed that with the present implementation of the DD, the amplitude
and phase of the propagating periodic waves examined in the previous section
were slightly modified in the LS-NS domain compared with a pure potential-flow
solution. This is likely related to somewhat inconsistent solution fields in and near
the overlapping region between the two solvers illustrated in Figures 7.7 - 7.9. The
case considered here is conceptually similar to that illustrated in Figure 7.1 a), with
the exception that the waves have low steepness and are not breaking inside the
LS-NS domain. However, the exchange of information between the two solvers is
similar irrespective if wave breaking occurs or not, or if viscous-flow phenomena
associated with a body such as illustrated in Figure 7.1 b) are present inside the
LS-NS domain. One must however be cautious to select the LS-NS domain large
enough to prevent vorticity from being convected to the LS-NS→IBOGM bound-
ary, since potential-flow theory assumes irrotational flow.

Although the present results are considered promising, the consistency be-
tween the two solvers needs to be further enhanced before investigations of rel-
evant phenomena such as illustrated in Figure 7.1 can be pursued. In order to
achieve this, the following activities are suggested:

1. Introducing techniques that allow the fluid velocity in both horizontal and
vertical direction to be specified simultaneously as boundary conditions for
the IBOGM solver along the LS-NS→IBOGM boundary, as well as other
strategies to ensure a more accurate exchange of information between the
two solvers.

2. A systematic parameter investigation of the size of the overlapping region
between the IBOGM and LS-NS domains, both relative to the grid spacing
in the IBOGM solver, the cell size in the LS-NS solver and the characteristic
wavelength.

3. Systematic numerical convergence studies, considering both the temporal
and spatial discretization.

In performing the above activities, the solution in the two solvers should be com-
pared quantitatively in the overlapping region. Also conservation of physical
properties such as energy and mass should be investigated.

7.5 A Note on the Challenges in Coupling Different Solvers

Combining a potential-flow solver and a Navier-Stokes solver in a strong DD
scheme like the one outlined here is indeed a challenging task. In particular, since
the governing equations differ in the two solvers, to properly exchange infor-
mation at the intersection between their respective domains is not straightfor-
ward. An initial attempt was made as part of the present research to couple the
IBOGM solver with the open-source Navier-Stokes solver InterFOAM included in
OpenFOAM version 5.0 (www.openfoam.org). The spatial coupling scheme was
comparable to that in Figure 7.2, with overlapping domains, and where the ex-
ternalCoupled boundary condition included in OpenFOAM was used to impose
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the boundary conditions from the IBOGM solver to InterFOAM. Similarly, Open-
FOAM probes were defined where variables were written from InterFOAM to the
IBOGM solver.

There are distinct differences between InterFOAM and the LS-NS solver
above:

1. InterFOAM uses the volume of fluid (VOF) method to capture the free sur-
face.

2. InterFOAM uses the finite volume method (FVM) to discretize the Navier-
Stokes equation.

Compared with the level-set function, the VOF gives a less sharp description of
the free-surface position. Moreover, it poses more challenges in exchanging the
free-surface position and the velocity close to the free surface from the IBOGM to
the NS solver. While in the FDM velocities are defined at cell sides and the pres-
sure is defined in the cell center, both velocities and pressure are defined in the
cell center in the FVM. As a consequence, it was not possible to impose both ve-
locity and pressure from the IBOGM solver to InterFOAM, because this created
large velocity and pressure gradients in the InterFOAM domain even when the
water was practically at rest. The reason for this is that imposing velocity and
pressure in a single point makes the solution over-determined. As a consequence,
only the velocity was imposed as boundary condition from the IBOGM solver.
Moreover, it was generally found that the velocity field just inside the InterFOAM
domain was not fully consistent with the imposed boundary field. It is thus ques-
tioned whether the externalCoupled boundary condition in OpenFOAM works as
it is intended to. Indeed, the available documentation for this boundary condi-
tion is scarce. The philosophy behind the temporal coupling scheme between the
IBOGM solver and InterFOAM was similar to Figure 7.4. However, since we did
not attempt to intervene with the source code of OpenFOAM, we were not able to
impose boundary conditions for InterFOAM other than at the beginning of each
time step. This made the coupling less controllable than in the coupling with the
LS-NS solver, which is likely to contribute to a less accurate solution.

Attempts were made to propagate regular waves with moderate steepness
generated in the IBOGM domain through the InterFOAM domain in the same
way as in Section 7.3, with the InterFOAM domain configured in a similar way as
illustrated in Figure 7.4. Both spatial and temporal convergence studies were per-
formed without being able to obtain an accurate solution. In general, waves were
reflected from the InterFOAM domain in opposite direction of the wave propaga-
tion, as well as internally in the InterFOAM domain. In other words, the incident
waves were not properly propagated neither in nor out of the InterFOAM domain.
In addition, the InterFOAM solution was slow to converge, resulting in excessive
computational time.

The unsuccessful attempt to couple the IBOGM and InterFOAM solvers de-
scribed here illustrates a fundamental difficulty beyond the fact that the govern-
ing equations differ. Because the InterFOAM solver was used as an isolated stan-
dalone solver, we could not control the solver’s behaviour at the different stages
of each time step. This is in contrast with the LS-NS solver, were we explicitly
control the boundary conditions for both the predictor and corrector steps. One
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would imagine that the same obstacle remains also if a potential-flow solver is
coupled with other commercial NS solvers, unless one is able and willing to mod-
ify the solver’s source code. This does not mean that such endeavour is without
purpose for particular scenarios. For instance, Siddiqui et al. (2018) were able to
radiate waves from a heaving ship section in OpenFOAM to an exterior potential-
flow domain where the HPC method was used as solver. However, in their case
the coupling was weak in the sense that it did not allow for a proper two-way
transfer of information.

7.6 Summary

A domain-decomposition (DD) scheme to couple the potential-flow solution from
the immersed boundary-overlapping grid method (IBOGM) developed in the
present work with the viscous-flow solution from an existing level-set Navier-
Stokes (LS-NS) solver in a strong way has been proposed. This means that the
two solvers exchange information mutually in terms of velocity, pressure and
free-surface elevation, both at the beginning and during each time step of the sim-
ulation. A purpose-fitted version of the LS-NS solver was made available for the
present work, allowing the exchange of information between the two solvers to
be managed through external ASCII files. After outlining the details of the spa-
tial and temporal coupling schemes, a numerical test case was presented in or-
der to examine the DD’s ability to properly exchange information between the
two solvers. The case consisted in propagating periodic waves with low steep-
ness through the LS-NS domain, that was located in the interior of the IBOGM
domain. Without having performed systematic convergence studies, the results
showed that the general form of the waves remained intact when compared with
a pure potential-flow solution, and with little reflections from the LS-NS domain
back towards the wavemaker. However, a slight phase shift and reduction in wave
amplitude were observed. It was indicated that these were due to small inconsis-
tencies in the solution fields in the overlapping region between the two solvers.
Developing strategies to enhance the exchange of information between the two
solvers was thus suggested as further work. Although the case considered here
did not involve violent wave phenomena nor viscous wave-body interactions in-
side the LS-NS domain, the exchange of information between the two solvers is
similar also for these scenarios. Hence, by improving the DD for the considered
test case, no additional challenges are expected dealing also with these types of
cases.

Towards the end, an unsuccessful attempt to couple the IBOGM solver with
the open-source Navier-Stokes solver OpenFOAM, used as a standalone solver,
was described. This highlighted the challenges in coupling two solvers using dif-
ferent sets of governing equations to describe the flow, and where two-way ex-
change of information other than at the beginning of each time step of the simu-
lation is impossible.
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Chapter 8

Summary and Further Work

Non-linear wave propagation and wave-body interaction problems have been ex-
amined numerically. The main purpose of the work has been to develop a fully
non-linear numerical framework to study these problems in an efficient and accu-
rate manner, and to identify important non-linear wave-body interaction effects.
The main features of the numerical framework are summarized in Section 8.1,
while main findings from the investigation of wave-body interaction effects are
given in Section 8.2. In Section 8.3, the original contributions of the present work,
in the opinion of the author, are highlighted. Relevant topics for further work are
proposed in Section 8.4.

8.1 Numerical Framework

A numerical method capable of simulating fully non-linear potential-flow prob-
lems in 2D has been proposed. The recently developed harmonic polynomial cell
(HPC) method, shown to have high accuracy and to be numerically efficient, is
used to solve the governing Laplace equation for the velocity potential. The HPC
method is a field method, so that the entire fluid domain has to be discretized. A
study has shown that, in order to benefit from the high-order accuracy of the HPC
method, Cartesian grids with square cells are preferable. To easily model arbi-
trary boundaries in an accurate manner using square cells, an immersed boundary
method has been applied. Because the HPC method is an interpolation method,
no additional interpolation schemes were required in doing this. To refine the
fluid flow locally where needed, and to allow for moving bodies, a technique
using overlapping Cartesian, body-fixed grids was used. Inside the overlapping
grids, the fluid problem is modelled in a non-inertial, body-fixed reference frame,
while the majority of the fluid domain is modelled in a stationary background
grid. In the latter, the fluid problem is considered in the Earth-fixed inertial ref-
erence frame. The combined method was denoted as an immersed boundary-
overlapping grid method (IBOGM). With this, complex boundaries can be mod-
elled accurately solely using Cartesian grids, without increasing the total number
of grid nodes and computational time unnecessarily.

An auxiliary boundary value problem (BVP) was solved for the time deriva-
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tive of the velocity potential, which is required in order to estimate the pressure
and the resulting loads on a body. It was shown that, using the IBOGM, the bound-
ary conditions on moving bodies are simplified compared to modelling the prob-
lem in an inertial reference frame. The terms that are numerically challenging in
the inertial reference frame are instead accounted for in a more straightforward
way in the coupling between the body-fixed grids and the stationary background
grid.

Techniques to account for small angles developing between the free surface
and rigid boundaries, as well as wave breaking, have been introduced to improve
the method’s numerical robustness.

It is found that the proposed IBOGM essentially preserves the numerical ef-
ficiency of the HPC method. However, a drawback is that the global coefficient
matrix in the BVP solved at each time instant is time-dependent due to the mo-
tion of immersed boundaries and the overlapping between different grids. This
is not beneficial with respect to computational efficiency. Numerical techniques
have been introduced to minimize the additional computational cost related to
this, utilizing the fact that the majority of the cells in the water domain are unaf-
fected.

The method has been validated and verified against experimental and numer-
ical reference results in a systematic manner. A range of wave-propagation prob-
lems with different sources of non-linearity, both in deep and shallow water, were
first examined. It was shown that the method is able to accurately model steep
waves close to breaking. By applying a wave-breaking suppression scheme, even
a plunging breaker was modelled. Thereafter, a heaving circular cylinder in still
water and a fixed ship section in regular waves were considered. The distinct non-
linear features in the former problem are related to the non wall-sided geometry
of the body, and to small angles developing near the intersection between the free
surface and the cylinder for high oscillation frequencies. The fixed ship section
in regular waves represents a non-linear wave-diffraction problem. For a freely
floating ship section in regular waves, the IBOGM analysis was compared with
an independent analysis performed with a non-linear boundary element method
(BEM). The simulation parameters and boundary conditions were, as far as pos-
sible, similar in the two solvers. Identical post-processing of the results from both
analyses was performed in order to remove this as a source of uncertainty. The re-
sults between the two solvers were in good agreement, even when the rigid-body
heave and roll motions of the ship section were large.

A domain-decomposition (DD) strategy to couple the IBOGM with an existing
level-set Navier-Stokes (LS-NS) solver based on laminar flow has been outlined.
The exchange of information between the two solvers was examined for a simple
wave-propagation case. This serves as a basis for future research, considering sce-
narios where viscous effects due to e.g. wave breaking or wave-body interaction
matter in restricted regions.
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8.2 Numerical Investigation of Wave-Body Interaction Problem

A freely floating ship section in regular waves with different frequencies and
heights was systematically examined with the IBOGM. The results were com-
pared to experimental and linear and non-linear numerical reference results, with
particular focus on non-linear effects due to large wave steepness and large rigid-
body motions. With roll amplitudes up to 30◦ near resonance for the highest
waves, the mean wave drift force in sway was found to be larger than predicted
by 2nd order theory. For steep waves away from resonance frequencies, the mean
wave drift force was significantly lower than from 2nd order theory. This was
also observed when the body was fixed, and is therefore likely related to non-
linearities in the incident waves and their interaction with the body.

Near resonance, the predicted roll motions were considerably larger than
in the experiments, which was explained by lack of viscous damping in the
potential-flow analysis. By adding quadratic damping, the roll motion was
brought closer to the experiments with amplitudes of approximately 15◦. Also
sway and heave motions, as well as the mean wave drift force, were significantly
modified, which indicated strong coupling effects. An important observation was
that the problem not necessarily became more linear by adding roll damping. In
particular it was seen that the relative decrease of the 2nd order sway force was
smaller than that of the 1st order component.

Different methods to estimate the mean wave drift force were investigated,
showing that the results obtained with direct pressure integration (DPI) generally
were consistent with the mean sway motion of the ship section. The mean wave
drift force was also estimated from conservation of fluid momentum (CFM) with
an exact formulation and with 2nd order approximations, including the widely
used Maruo’s formula. With the exact formulation, the CFM results were in good
agreement with DPI other than when wave-frequency rigid-body motions were
large. This was also observed in the independent BEM analysis. The results from
2nd-order approximate CFM methods compared poorly with DPI and experi-
ments. It was concluded that approximate CFM methods should be used with
caution in connection with fully non-linear simulations.

The finding that DPI is more accurate than CFM methods differs from state-
ments made by other authors, who claimed that the mean wave drift force es-
timated from DPI was unreliable in their analyses. Through performing a sen-
sitivity analysis with the IBOGM, however, it was shown that this conclusion
may have been drawn on a false basis. In particular, the mean wave drift force
was highly sensitive to a non-linear term in the body-boundary condition in the
BVP for the time derivative of the velocity potential. It was shown that this non-
linear term may have been wrongly accounted for in the reference results. Indeed,
by neglecting this non-linear term in the IBOGM analysis, a similar steady-state
sway motion as in one of the reference publications was obtained with the wave
frequency equal to the roll resonance frequency. The non-linear term did on the
other hand not have a significant influence on the wave-frequency body motions.
It was therefore warned against judging a non-linear numerical implementation
solely on the basis of 1st order quantities.
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8.3 Original Contributions

In relation with the fully non-linear numerical method implemented in 2D, novel
concepts include:
• Time derivative of the velocity potential in HPC method: It was shown that in the

HPC method the time derivative of the velocity potential can be computed
with the same local expression inside a cell as the velocity potential. The
boundary conditions differ between the two.

• HPC method in a body-fixed reference frame: It was shown that the formulation
of the velocity potential is similar in an inertial and in a body-fixed reference
frame. The formulation of the time derivative of the velocity potential, on
the other hand, differs due to a convective term associated with the velocity
of the body-fixed reference frame.

• Immersed boundary modelling: The free surface and the boundary of rigid bod-
ies were modelled as immersed boundaries in Cartesian grids, that can ei-
ther be inertial or body-fixed, with ghost nodes outside the water domain. It
was demonstrated that, since the HPC method is formulated as an interpo-
lation method, no additional interpolation schemes need to be constructed.
It was therefore claimed that the proposed immersed-boundary modelling
is natural in the context of the HPC method. The immersed-boundary mod-
elling applies in both the boundary value problem for the velocity potential
and of its time derivative. The formulation would be straightforward to im-
plement also for an elastic body, tracking its flexible motions with markers
in a body-fixed grid like we here have done for the free surface.

• Overlapping computational domains: Using multiple overlapping computa-
tional domains, where the numerical problem can be formulated in different
reference frames, the solution could be refined locally. The solutions in the
different domains were coupled in an implicit manner with little additional
computational cost.

• Combination of immersed boundaries and overlapping domains: By combining
the immersed-boundary and overlapping domain modelling, square cells
could be used throughout in analysis involving wave-body interaction prob-
lems. Moreover, using overlapping domains, the grid could be refined lo-
cally without increasing the total number of cells in the whole domain
unnecessarily. The combined method, denoted as an immersed boundary-
overlapping grid method, allows for accurate and efficient modelling of
wave-body interaction problems.

• Simplified body-boundary condition for time derivative of velocity potential: By
considering the numerical problem for the time derivative of the velocity
potential on moving rigid bodies in a body-fixed reference frame, prob-
lematic terms in the body-boundary condition, involving higher-order spa-
tial derivatives, were avoided. These were instead accounted for in a more
straightforward manner near the intersecting boundaries between different
computational domains.
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• Coupling with Navier-Stokes solver: The first attempt to couple a potential-flow
solver based on the HPC method with a Navier-Stokes solver while account-
ing for non-linear free-surface effects was documented. The exchange of in-
formation is handled through an overlapping zone that includes the free
surface. Initial results were promising, although further work is required to
optimize the exchange of information between the two solvers.

With respect to the examined interactions between waves and a floating body,
the following findings were documented:
• Higher-order loads: When large resonant rigid-body motions occurred, non-

negligible high-order components were identified in the hydrodynamic
loads on the body. High-order components were also significant in steep in-
cident waves, even with frequencies far away from any resonance frequency.

• Effect of adding damping near resonance: Quadratic roll damping was added
near resonance to bring the roll motion closer to experimental results. While
this leads to reduced roll motions, it did not in general make the system’s
behaviour more linear. In particular, the relative importance of the 2nd order
sway force was found to increase when the roll damping increased.

• Strong motion coupling effects: Near heave and roll resonance, the 1st order
heave motion was consistently lower than predicted by linear theory. The
discrepancy increased with increasing wave height, and was reduced with
increased roll damping. Also the 1st order sway motion was influenced
by the roll damping. This indicated strong coupling effects between sway,
heave and roll.

• Mean wave drift force: The normalized mean wave drift force was larger than
the 2nd order theoretical value of unity near heave and roll resonance. This
is likely due to non-linear effects. For higher wave frequencies, the mean
wave drift force was consistently lower than predicted by 2nd order theory.
This was also observed in experimental reference results.

• Estimation of mean wave drift force: Estimating the mean wave drift force from
direct integration of fluid pressure gave results consistent with the horizon-
tal offset of the body. Other than near heave and roll resonance, the mean
wave drift force from conservation of fluid momentum using an exact for-
mulation was in good agreement with direct pressure integration. Approxi-
mate 2nd order methods, such as the widely used Maruo’s formula, did not
reproduce the results from direct pressure integration well. This is possibly
because such approximate methods neglect higher-order effects that matter
for large motions and in steep incident waves.

• The body-boundary condition for the time derivative of the velocity potential: By
comparing with other sources providing results from non-linear numerical
simulations, a large discrepancy was seen in the mean wave drift force near
heave and roll resonance. It was speculated whether this may be related
to an inconsistency in the body-boundary condition used in those studies
when estimating the time derivative of the velocity potential. Performing a
sensitivity study with a similar inconsistency in the body-boundary condi-
tion showed qualitatively the same type of behaviour. However, the influ-
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ence on 1st order rigid-body motions was insignificant. It was noted that
also other aspects may contribute to the observed discrepancies.

8.4 Suggested Further Work

During the present work, several aspects that deserve additional attention have
been identified:
• In order to generalize the proposed numerical method, it should be ex-

tended to 3D applications. Indeed, 3D applications of the HPC method have
been demonstrated by other authors. It is expected that the numerical tech-
niques here developed in 2D, such as the immersed-boundary modelling
and overlapping between different computational domains, are applicable
also in 3D without major modifications.

• In the immersed-boundary modelling, the numerical refinement of a bound-
ary is governed by the density of the grid in the vicinity of the boundary.
Further work is required to refine such boundaries, when needed, in an ef-
ficient manner. An appealing strategy in this respect is to introduce octree
techniques, where the grid size is reduced locally by dividing cells into sev-
eral smaller ones. In this way, a boundary can be refined while still using
Cartesian grids with square cells, and without increasing the total number
of cells excessively. Another strategy is to introduce several layers of smaller
overlapping grids. Using octree grids can be viewed as a particular version
of this.

• Although the immersed-boundary modelling and overlapping domains
provide several benefits with respect to computational efficiency, a draw-
back is that the size and topology of the global coefficient matrix changes
during the analysis. Numerical techniques to reconstruct the global coef-
ficient matrix in an efficient manner have been presented, but there is still
room for improvement. Such means should be further investigated. Further-
more, the computational method can be made more efficient by optimizing
it for parallel computation, or by facilitating it for graphical processor units
(GPU). The method can also be made more efficient by e.g. implementing an
adaptive time-stepping scheme, where the time step is adjusted throughout
the analysis.

• Adaptive methods are also attractive in relation with grid refinements, i.e.
refining the grid locally when this is required. A relevant application could
e.g. be to refine the grid in the vicinity of a steep wave crest.

• The body-boundary condition for the time derivative of the velocity poten-
tial depends on the body’s motion. At the same time, the body motion de-
pends on the fluid pressure, that again depends on the time derivative of
the velocity potential. This recursive dependence was here accounted for
by applying an iterative scheme. A more elegant strategy that has been im-
plemented by other authors is to couple the two problems implicitly. More
work is required to implement such strategy in the present numerical frame-
work.
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• When body motions were large, the mean wave drift force estimated from
conservation of fluid momentum and from direct integration of fluid pres-
sure differed. Further research is required to explain this discrepancy be-
tween the two methods.

• An attempt was made to implement a non-reflective boundary condition
through a multi-transmitting formula on the vertical tank wall on the op-
posite side of the wavemaker. However, a steady drift was observed in
the wave elevation. Applying such boundary condition is appealing from
a computational-efficiency viewpoint because it removes the requirement of
a numerical damping zone to prevent wave reflections, so that the extent of
the computational domain can be reduced accordingly. Further research to
successfully implement such boundary condition in the present numerical
framework is therefore proposed.

• It was demonstrated that, by applying a breaking-suppression scheme,
wave breaking could be avoided in the numerical analysis. This is attrac-
tive to improve numerical robustness in simulations where wave breaking
may occur, but is not of primarily importance. The parameters involved in
the scheme were determined through trial and error until reasonable val-
ues were obtained. For such scheme to be practical for general scenarios, the
scheme’s parameters should be determined as a function of physical quan-
tities such as e.g. the wave steepness.

• Many offshore structures have non-wall sided hull geometry in the free-
surface region. This can be expected to influence both the floater motions
and wave drift loads, and should be further examined. Similarly, wave drift
loads on structures moored in shallow water should be investigated in a
fully non-linear framework. The numerical method proposed in this thesis
can be directly applied to both these scenarios.

• The present analysis is performed for periodic, monochromatic waves. Go-
ing forward, irregular waves should be investigated. In particular, it is of
interest to study how non-linear effects influence the slowly-varying drift
loads and resulting motions of moored structures.

• More research is required to increase the accuracy of the scheme proposed
to couple the potential-flow solver with a Navier-Stokes solver. This can be
achieved through systematic parameter investigations and enhanced strate-
gies to ensure consistent information exchange between the two solvers.
The potential of doing so is considerable, allowing for proper treatment
of viscous effects where they matter combined with the accurate and effi-
cient wave-propagation abilities demonstrated by the potential-flow solver.
Through a further extension to 3D, such strategy could be used to inves-
tigate several problems of practical relevance. Examples of such scenarios
include wave drift loads on semi-submersibles in severe sea states, where it
is found that viscous contributions are significant, and determination of en-
vironmental windows for lowering and lifting of complex subsea structures
through the free-surface zone in waves.
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Appendix A

Boundary Condition for Time
Derivative of ϕ on Moving Rigid
Boundaries

In problems where fluid forces and moments on a body are required, the time
derivative of the velocity potential ϕ must be estimated in order to calculate the
pressure. In the present work, an auxiliary boundary value problem is solved for
this variable. The body-boundary condition imposed in this problem is here elab-
orated on. The time derivative of ϕ is considered as the time derivative following
the motion of the body,

DBOϕ

Dt
=
∂ϕ

∂t
+ (uP · ∇)ϕ, (A.1)

where uP is the velocity of a point P on the surface of, and moving with, the rigid
body. This is defined as uP = ẋ+ω×r, where ẋ is the translational body velocity
in the center of rotation, ω is the rotational velocity vector of the body and r is the
position vector of P relative to the center of rotation.

The objective in the following is to define a proper Neumann boundary condi-
tion on the surface of the body for DBOϕ/Dt. We here start from the correspond-
ing boundary condition for the velocity potential, given as

∇ϕ · n = uP · n. (A.2)

A.1 Derivation of the Body-Boundary Condition

When we in the following refer to the body-fixed reference frame, this is what can
be denoted as the true body-fixed reference frame. This is emphasized in order to
avoid confusion, as one may find that in some cases the term body-fixed refers to
a quantity defined in the body-fixed coordinate system, yet evaluated relative to
an inertial observer.
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The body-boundary condition for DBOϕ/Dt follows from taking the time
derivative of (A.2) following the motion of the body, i.e.

DBO

Dt
(∇ϕ · n) =

DBO

Dt
(uP · n). (A.3)

Expanding this, we get

DBO(∇ϕ)

Dt
· n +∇ϕ · DBOn

Dt
=
DBOuP
Dt

· n + uP ·
DBOn

Dt
. (A.4)

It is of key importance to note that while in the inertial reference frame we have
DBOn/Dt = ω×n, it is zero in the body-fixed reference frame. This is because the
time derivative of n in the inertial reference frame reflects the time rate of change
of the unit axes of the body-fixed reference frame. This is not seen by an observer
in the body-fixed reference frame. Hence, the boundary condition, written in the
body-fixed reference frame becomes

DBO(∇ϕ)

Dt
· n =

DBOuP
Dt

· n. (A.5)

It has already been shown in Chapter 2 that the right-hand side of this equation
is written (R̈0 + ω̇ × r) · n. However, in order to have a Neumann condition
for DBOϕ/Dt, we must express the left-hand side as ∇(DBOϕ/Dt) · n instead
of DBO(∇ϕ)/Dt · n. This is rigorously proved by Greco (2001) and later by Sun
(2007) in the inertial reference frame. In the present work we show this when
the problem is solved in the body-fixed reference frame. For an observer in this
reference frame, DBOϕ/Dt thus corresponds to the Eulerian time derivative of ϕ.
The change fromDBO(∇ϕ)/Dt to∇(DBOϕ/Dt) in the body-fixed reference frame
is thus analogue with the change between ∂(∇ϕ)/∂t and ∇(∂ϕ/∂t) for a fixed
point in the inertial reference frame. Consequently, the body-boundary condition
for DBOϕ/Dt in the body-fixed reference frame is

∇DBOϕ

Dt
· n = (R̈0 + ω̇ × r) · n. (A.6)

It is emphasized that R̈0 is the acceleration in the center of gravity observed from
the body-fixed reference frame. If we instead let the problem be observed from
an inertial, Earth-fixed reference frame, the corresponding boundary condition
would be

∇DBOϕ

Dt
· n = (R̈0 − ω × Ṙ0 + ω̇ × r) · n. (A.7)

This expression is similar to the one given in equation (32) in Bandyk and Beck
(2011). In this case, R̈0 = d2R0/dt

2 is the acceleration of the center of gravity
in the inertial reference frame. We note that d2R0/dt

2 − ω × Ṙ0 coincides with
the acceleration of the center of gravity in the body-fixed reference frame, see for
this the acceleration terms in the left-hand sides of (2.11) and (2.12) in Chapter 2.
Therefore, (A.6) and (A.7) are equivalent. This is confirmed by the consistency
between the present results and those from the BEM by Greco (2001) for a floating
body in waves, discussed in Chapter 6.
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A.2. Special Considerations for HPC Implementation using Overlapping Grids

To further elaborate, the boundary condition for the Eulerian time derivative
∂ϕ/∂t = ϕt in the inertial reference can according to equation (18) in Bandyk and
Beck (2011) be written as

∇ϕt · n = (R̈0 + ω̇ × r) · n + (ω × n) · (Ṙ0 −∇ϕ)

−
[
(Ṙ0 + ω × r) · ∇(∇ϕ)

]
· n,

(A.8)

where all time derivatives are relative to the inertial reference frame. Clearly, the
right-hand side of (A.8) contains 2nd order spatial derivatives of ϕ. These are not
straightforward to evaluate, and may be a source for numerical inaccuracies. By
instead formulating the boundary condition for DBOϕ/Dt, either in the body-
fixed reference frame as in (A.6) or in the inertial reference frame as in (A.7), this
is avoided.

A.2 Special Considerations for HPC Implementation using
Overlapping Grids

To prove the derivation of (A.6), we use the numerical expression for the gradient
of the velocity potential inside a cell in the HPC method:

∇ϕ (x, z) =

8∑
i=1

 8∑
j=1

cj,i∇fj (x, z)

ϕi. (A.9)

cj,i are here coefficients, fj are harmonic polynomials and ϕi is the velocity poten-
tial in node i of the cell. (x, z) are the coordinates of a fixed point in the cell in the
local cell coordinate system, i.e. they do not change as a function of time. This is
also true for the gradient operator ∇, since everything in the equation is resolved
along the axes of the body-fixed coordinate system. Taking the time derivative of
the right-hand side of (A.9), and noting that none of the terms inside the bracket
on the right-hand side depend on time, we get

DBO

Dt

 8∑
i=1

 8∑
j=1

cj,i∇fj (x, z)

ϕi
 =

8∑
i=1

 8∑
j=1

cj,i∇fj (x, z)

 DBOϕi
Dt

. (A.10)

Thus, the order change between the gradient operator and time-derivative opera-
tor is allowed.

An important consequence is that, while the solution field for ϕ is consistent
between the inertial and body-fixed reference frame, this is not true for the time
derivative of ϕ. While the Eulerian time derivative ∂ϕ/∂t is solved for in the iner-
tial background grid, DBOϕ/Dt is solved for in the body-fixed grid. Thus, when
numerically coupling the solutions in the different grids, the following relation is
applied:

DBOϕ

Dt
=
∂ϕ

∂t
+ uP · ∇ϕ. (A.11)
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A. Boundary Condition for Time Derivative of ϕ on Moving Rigid Boundaries

The last term on the right-hand side is easily evaluated once ϕ is known. Further-
more, uP is the rigid-body velocity of the body-fixed grid in the point where the
two time derivatives are coupled.

An advantage of solving for different time derivatives in the different grids,
is that computationally challenging terms in the Neumann condition on the body
surface discussed in connection with (A.8) are avoided. The continuity of the so-
lution across the grids with different reference frames is ensured by instead taking
the coupling into account through Dirichlet conditions.
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Appendix B

Numerical Beaches

If simulations are carried out for a sufficiently long time in a numerical wave
tank, waves will be reflected from the tank walls. Other than in special appli-
cations, such as comparing simulations with experimental data without wave-
damping devices, this is highly undesirable. In order to avoid influence from re-
flected waves, the wave tank would accordingly need to be very long, which leads
to excessive computational time. As an alternative, numerical beaches or damping
zones are used as effective means to prevent that waves are reflected from tank
walls. This allows for long-time simulations without unreasonably long compu-
tational domains. The term numerical beach is used as an analogy to the damping
beaches often used for the same purpose in laboratory experiments.

The theory of the numerical beaches applied in the present work is outlined in
the following. Two types of beaches are illustrated by Figure B.1. One is referred
to as upwave, and is located next to the wavemaker. The purpose of the upwave
beach is to dissipate waves reflected from and radiated by a surface-piercing body,
which otherwise will reach the wavemaker and from thereon reflect back into the
tank. This is mainly an issue in 2D simulations, since the reflected and radiated
waves in 3D will decay moving away from the body. The other beach is located
next to the tank wall on the opposite side of the wavemaker, and is thus referred
to as downwave.

Upwave beach

x

z

Downwave beach

Figure B.1: Numerical wave tank with upwave and downwave damping zones.
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B. Numerical Beaches

B.1 Theory

Inside a numerical damping zone, damping terms are added to the dynamic and
kinematic free-surface conditions. The fully Lagrangian dynamic and kinematic
free-surface conditions including damping terms are written in an inertial, Earth-
fixed Oxz coordinate system as

Dϕ

Dt
=

1

2
|∇ϕ|2 − gz − ν(x, t)(ϕ− ϕref ), (B.1)

Dx

Dt
= ∇ϕ− ν(x, t)(x · k − ζref ), (B.2)

where x = (x, z) and ϕ are the position of and velocity potential in a fluid particle
on the free surface z = ζ(x), respectively. ϕref and ζref are reference values for
the velocity potential and free-surface elevation. g is the acceleration of gravity, k
is the unit vector in z direction and ν(x, t) is the damping coefficient associated
with the numerical beach. This is defined as ν(x, t) = ν(x)δ(t0), where δ(t0) is a
step function which is zero for t ≤ t0 and 1 for t > t0. t0 is the time when the
beach is activated, and has a non-zero value only for the upwave beach in order
to ensure that the transient waves associated with start up of the wavemaker are
not affected.

ν(x) is taken from Greco (2001) and is defined as

ν(x) =


0 x ≤ x0

νmax(−2ξ3 + 3ξ2) x0 < x ≤ x1 (downwave)
νmax(1 + 2ξ3 − 3ξ2) x0 < x ≤ x1 (upwave)
νmax x > x1,

(B.3)

where νmax is an empirically chosen coefficient. x0 and x1 are the start and end-
point of the beach as illustrated in Figure B.2. ξ is an auxiliary normalized coordi-
nate defined as

ξ =
x− x0

Lbeach
, (B.4)

where Lbeach = x1 − x0 is the length of the beach. As a general guidance Lbeach
can be taken as two times the characteristic wavelength. There is a close relation
between νmax and Lbeach: If Lbeach is too short, νmax has to be set to a high value in
order to dissipate the waves. However, a high νmax may lead to wave reflections
from the beach itself. Reasonable values for νmax is generally found to be in the
range 2− 4 s−1.

It can be noted that the direction of the coordinate ξ for the upwave beach
differs from the formulation by Greco (2001). However, since also ν(x) in (B.3) is
formulated differently for the upwave beach, it can be shown that the two formu-
lations indeed are equivalent.

The damping terms in (B.1) and (B.2) are similar also when the free-surface
conditions are not stated in the Lagrangian form. They remain unchanged also
when the problem is formulated in a body-fixed reference frame, i.e. x would still
be defined in the inertial reference frame.
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x

�(x)

�max

x0 x1

Lbeach

(a) Upwave beach

x

�(x)

�max

x0 x1

Lbeach

(b) Downwave beach

Figure B.2: Damping coefficients for numerical beaches as a function of the auxil-
iary coordinate ξ.

B.1.1 Choosing Reference Solutions

The reference values ϕref and ζref in (B.1) and (B.2) require some additional at-
tention. Their purpose is to ensure that only the desired parts ϕ−ϕref and z−ζref
of the wave are dissipated. For the downwave beach, the entire wave should be
damped, i.e. ϕref = ζref = 0. On the upwave side, however, only the wave com-
ponent propagating towards the wavemaker should be operated on by the beach.
ϕref and ζref should consequently represent the incident wave generated by the
wavemaker. In the following we will for simplicity use the term reflected waves
for all waves propagating in opposite direction of the incident wave.

There are several possibilities to obtain ϕref and ζref or to directly identify the
reflected waves, for instance

1. performing a simulation without a body in the tank, taking the velocity po-
tential and free-surface elevation measured in the region of the beach as
reference solution

2. using some analytical wave theory to describe the incident waves

3. using control algorithms to identify the reflected waves and modify the sig-
nal of the wavemaker to counteract them.

While the first option above can be considered the most accurate, it is impractical
because it involves a significant increase in computational cost. The last option
listed requires knowledge of control theory and is outside the scope of the present
work. The second option is thus pursued in the present work.

Several non-linear wave theories exist that can be used to describe incident
waves generated by the wavemaker, such as Stokes 2nd or 5th order theory or
stream function theory. Most of the available non-linear theories are however re-
stricted to regular waves. In the present work the reference solution has thus been
obtained from linear wavemaker theory, which is particularly attractive because
it describes both regular and irregular waves in a straightforward manner. This is
similar to the approach by Tanizawa et al. (1999), with the exception that we here
also include standing wave modes close to the wavemaker.
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B. Numerical Beaches

B.1.2 Linear Wavemaker Theory

The linear wavemaker theory described below is taken from Dean and Dalrymple
(1991), but is modified due to a difference in the definition of normal vectors and
to allow for a flap wavemaker hinged at an arbitrary water depth. We define an
inertial, Earth-fixed coordinate system Oxz with origin in the nominal position of
the wavemaker and in the still water level as shown in Figure B.3.

x

n

z

Seabed

h

h1

h2

(a) Flap wavemaker

x

n

z

Seabed

h

x(t)

(b) Piston wavemaker

Figure B.3: Flap and piston type wavemakers.

The velocity potential for the wave generated by the wavemaker is represented
as

ϕ(x, z, t) = Ap cosh[k(h+ z)] sin(kx− ωt+ θ)+
∞∑
n=1

Cne
−ks(n)x cos[ks(n)(h+ z)] cos(ωt+ θ),

(B.5)

where the first part is associated with the propagating wave and the second part
is associated with standing waves. h is here the water depth, ω and k are the wave
frequency and wave number of the propagating wave, ks(n) is the wave number
associated with the nth standing mode and θ is a phase angle. The standing waves
decay fast as a function of the distance from the wavemaker, and it is thus suffi-
cient to truncate the summation to only include a few (e.g. 5) terms. The wave
number k is found from the linear dispersion relation,

ω2 = gk tanh(kh), (B.6)

while ks(n) is found from the following expression:

ω2 = −gks(n) tan(ks(n)h). (B.7)
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B.2. Numerical Examples for Performance of Upwave Beach

(B.7) has an infinite number of solutions, each giving a different ks(n). However,
as already stated, we here restrict ourself to consider a limited number of standing
wave modes. The amplitudes Ap and Cn associated with the propagating wave
and the standing wave modes are given as

Ap =
1

2

∫ 0

−h S(z)ω cosh[k(h+ z)]dz

k
∫ 0

−h cosh2[k(h+ z)]dz
, (B.8)

Cn = −1

2

∫ 0

−h S(z)ω cos[ks(n)(h+ z)]dz

ks(n)
∫ 0

−h cos2[ks(n)(h+ z)]dz
. (B.9)

The function S(z) describes the wavemaker stroke, and depends on the type
of wavemaker. For a piston type wavemaker, the instantaneous position of the
flap is defined as x(t) = xa sin(ωt + θ) where xa is the piston displacement
amplitude. Then angular displacement of a flap type wavemaker is defined as
α(t) = αa sin(ωt+ θ), where αa is the flap angular displacement amplitude. With
reference to Figure B.3, S(z) is then defined as

S(z) =


2xa (piston wavemaker)

2h2 tan(αa)(1 +
z

h2
) z ≥ −h1

0 z < −h1.
(flap wavemaker)

(B.10)

The reference value ϕref for the upwave numerical beach is determined by
evaluating (B.5) at the linearised free-surface position z = 0, while the free-surface
elevation ζref = ζ is found from the linearised dynamic free-surface condition:

ϕref (x, t) = Ap cosh(kh) sin(kx− ωt+ θ)+
∞∑
n=1

Cne
−ks(n)x cos(ks(n)h) cos(ωt+ θ),

(B.11)

ζref (x, t) =
ωAp
g

cosh(kh) cos(kx− ωt+ θ)+

ω

g

∞∑
n=1

Cne
−ks(n)x cos(ks(n)h) sin(ωt+ θ).

(B.12)

In the case of irregular waves, solutions for each individual wave component
applying the above equations are linearly superimposed.

B.2 Numerical Examples for Performance of Upwave Beach

In order to study wave-body interactions in a numerical wave tank applying an
upwave numerical beach, it is crucial that the beach effectively dissipates waves
reflected from the body without modifying the incident wave. Indeed, one may
question the application of the reference solution based on linear wavemaker the-
ory. A verification study is therefore performed, in which waves are generated
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B. Numerical Beaches

with a flap type wavemaker in a numerical wave tank without a body. We focus
on the wave elevation measured in the two wave probes illustrated in Figure B.4,
one located inside the upwave numerical beach and one in the middle of the tank.

Wave probe 1

Upwave beach Downwave beach

Wave probe 2

Figure B.4: Sketch of numerical wave tank with flap type wavemaker used in ver-
ification study.

Simulations are carried out for both regular and irregular waves with low and
high steepness. Each case is performed with a downwave beach, with an upwave
beach and with both a downwave and an upwave beach. The simulations are
carried out long enough for the waves to be reflected several times across the tank.
A temporal ramp function is applied to the wavemaker motion for 0 ≤ t ≤ tramp
in order to prevent numerical instabilities due to impulsive waves. t0 in (B.1) and
(B.2) is chosen accordingly to allow the initial transient waves due to this to pass
by the numerical beach before the beach is activated. In doing so, one must take
into consideration the length of the beach and the phase speed of the propagating
waves. For irregular waves, the choice should be based on the shortest harmonic
wave component, i.e. the wave component with the lowest phase speed.

An overview of the simulation cases, both for regular and irregular waves, is
given in Table B.1, where kζA is the wave steepness, L is the tank length, λ is the
wavelength and c is the phase speed. For the irregular waves, the information
is listed for each of the three harmonic components that the wavemaker signal
is composed of. The length of the wave tank is set to 8λchar, where λchar is the
characteristic wave length which is taken as λ for the regular wave cases and as
the wave length of the longest wave component in the irregular wave cases. The
length of all beaches is set equal to 2λchar and with νmax = 2.5 s−1. Only the
sloped part of the beach is included, i.e. the part between x0 and x1 in Figure B.2.
The quantities L/c and Lbeach/c indicate how long time the wave will use to prop-
agate across the length of the tank and across the beach, respectively. Transient
waves generated during start up of the wavemaker may however propagate with
a different velocity.

Selected results for the cases in Table B.1 are discussed below. The main focus is
to ensure that the upwave beach is able to successfully dissipate reflected waves,
and that it does not significantly change the propagating wave away from the
wavemaker. The two wave probes shown in Figure B.4 are considered. These are
located approximately 1.1λchar and 4.0λchar away from the wavemaker.
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Table B.1: Simulation cases for assessment of the performance of upwave beaches.

Case kζA Lbeach/λ L/c Lbeach/c tramp t0
(−) (−) (s) (s) (s) (s)

Reg low 0.04 2.00 6.00 1.50 2.25 4.25Reg high 0.29

Irr low
0.04 3.21 9.63 2.41

2.85 6.05

0.03 2.50 8.49 2.12
0.02 2.00 7.60 1.90

Irr high
0.22 3.21 9.63 2.41
0.08 2.50 8.49 2.12
0.04 2.00 7.60 1.90

B.2.1 Regular Waves

Figure B.5 shows the results for regular waves with a downwave beach compared
with the results obtained with both an upwave and downwave beach. Since waves
are dissipated by the downwave beach in both cases, no waves are reflected from
the downwave tank wall. We can therefore assess how the upwave beach affects
the propagating wave. The black vertical line indicates the time it takes for the
propagating wave starting from the wavemaker at t0 to arrive at the position of
the wave probe assuming that it propagates with the linear phase speed c. With
low steepness, the wave is essentially unaffected by the upwave beach in both
wave probes. This is as expected, since a wave with such low steepness is close to
linear. For the higher steepness, it is clear that the wave is modified in the probe
located in the middle of the upwave beach when this is activated. For the probe
located in the middle of the tank, however, the waves generated with and with-
out the upwave beach are in close agreement when steady state is settled after
approximately 9s. This means that the propagating wave has regained its non-
linear properties away from the upwave beach, even though a linear wavemaker-
theory solution is enforced close to the wavemaker. This clearly indicates that the
upwave beach can be applied in simulations with relatively steep regular waves
with a body in the tank, as long as this is placed some distance away from the
wavemaker. Typically, the position of the body will be close to the middle of the
tank.

Next we focus on the upwave beach’s ability to dissipate reflected waves.
In Figure B.6 results for the regular wave with low steepness are shown with a
downwave and upwave beach at two probes inside the upwave beach. In addi-
tion to probe 1, probe 0, which is not shown in Figure B.1, is located approxi-
mately 0.15Lbeach away from the wavemaker. The red vertical line indicates the
time when the wave is reflected from the downwave tank wall to the wavemaker
and back to the position of the probe if a downwave beach is not present. While
the results for probe 1 eventually show some discrepancies as a result of reflection
from the downwave tank wall, they remain in close agreement in probe 0. This
indicates that the upwave beach fully dissipates the reflected wave close to the
wavemaker, leaving only the incident wave. The beach thus works as intended.
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One should note that the wave in the simulation without a downwave beach is
fully reflected from the tank wall. This is obviously not always the case in simula-
tions with a body in the tank.

B.2.2 Irregular Waves

Figure B.7 shows the results for irregular waves with a downwave beach com-
pared with the results obtained with both an upwave and downwave beach. The
vertical lines here indicate arrival times for the fastest travelling wave compo-
nent in the irregular wave train estimated from its phase speed. As for the regular
waves, the waves are insignificantly modified by the upwave beach when the
wave steepness is small. With the higher steepness, the waves measured in the
probe inside the upwave beach are modified when the beach is activated. The dif-
ference is clearly dependent on the instantaneous wave steepness in the location
of the probe, i.e. how well the instantaneous wave is described by linear theory.
For the probe in the middle of the tank, larger differences are observed for the
case of irregular waves than for regular waves. Based on the results in probe 1,
this is likely because the upwave beach introduces some dispersion effects. Still,
the largest crests and smallest troughs are deemed to be in acceptable agreement.

B.2.3 Discussion

The results in Figures B.5 - B.7 show that, even though the upwave beach uses
linear wavemaker theory as a reference solution, it is successful in dissipating re-
flected waves without significantly affecting the incident wave towards the mid-
dle of the tank. For regular waves, this holds true for waves with both low and
high steepness. For irregular waves, it is seen that the upwave beach may slightly
modify the incident waves in the middle of the tank if the wave steepness is high.
Thus, in case an upwave beach is used in simulations with steep irregular waves,
it is considered good practice to verify that the generated waves behave as in-
tended at the location of interest on a case to case basis. Depending on the prob-
lem definition, this may involve comparisons similar to Figure B.7, deriving wave-
and wave-group spectra, or deriving the crest distribution function.
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(b) Probe 1 (high steepness)
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(c) Probe 2 (low steepness)
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Figure B.5: Time series of wave elevation in probes 1 and 2 for regular waves with
low and high steepness.
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Figure B.6: Time series of wave elevation in probes 0 and 1 for regular waves with
low steepness.
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(a) Probe 1 (low steepness)
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(b) Probe 1 (high steepness)
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(c) Probe 2 (low steepness)
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Figure B.7: Time series of wave elevation in probes 1 and 2 in for irregular waves
with low and high steepness.
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Appendix C

Wave Drift Force from Conservation
of Fluid Momentum

Within potential-flow theory, the mean wave drift forces on a body can be ob-
tained by conservation of fluid momentum in a closed control volume (3D), or
closed control surface (2D), surrounding the body. Different methods to deter-
mine the mean horizontal wave drift forces are discussed here. One is an exact
formulation, where no assumptions regarding the order of the problem are made.
The others are 2nd order approximations with and without assuming conservation
of fluid energy.

C.1 Exact Method

Following Faltinsen and Timokha (2009), the fluid momentum M(t) inside a con-
trol volume Q(t) bounded by a closed control surface SQ(t) is written as

M(t) =

∫
Q(t)

ρudQ, (C.1)

where u = ∇ϕ is the fluid velocity vector. The problem is formulated in an in-
ertial, Earth-fixed coordinate system. Since we here operate in the xz plane, we
can imagine that the control volume has unit length in the y direction, and that all
variables are uniform along this axis. With this, the integral in y dimension can be
omitted. We define Q(t) bounded by SQ(t) in Figure C.1 so that it surrounds the
body at its initial position, and located so that the body never intersects SQ(t) dur-
ing the simulation. The normal vectors n on SQ(t) are defined pointing out from
Q(t). SQ(t) is separated into vertical control sides S1,2 extending up to the instan-
taneous free surface ζ, a flat bottom S0, the instantaneous wetted body surface SB
and the instantaneous free surface Sζ± on either side of the body.

By using Reynolds transport theorem, the definition of the Euler equations
and the generalized Gauss theorem, the time derivative of the volume integral in
(C.1) can be rewritten as a surface integral over SQ(t):

dM(t)

dt
= −

∫
SQ

pndS − ρg
∫
SQ

zndS − ρ
∫
SQ

u(un − Usn)dS. (C.2)
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Figure C.1: Control volume Q(t) for evaluation of fluid momentum bounded by
control surface SQ(t) = S0,1,2 + SB + Sζ±.

Here, p is the fluid pressure relative to the atmospheric pressure as defined by the
Bernoulli equation, un = ∇ϕ·n is the local normal component of the fluid velocity
on the surface SQ(t) and Usn is the local normal velocity of the surface SQ(t) itself.

For convenience, we define S0 to coincide with the seabed. As a consequence,
we have that un = Usn = 0 on S0. On the vertical sides S1,2, we have that Usn = 0
since their x positions are fixed. Due to the dynamic and kinematic free surface
conditions we have that p = 0 and un = Usn on Sζ±, and on SB it follows from
the body-boundary condition that un = Usn. With this, (C.2) can be written as

dM(t)

dt
= −

∫
SB

pndS −
∫
S0,1,2

pndS − ρg
∫
SQ

zndS − ρ
∫
S1,2

unudS. (C.3)

The first term on the right hand side of (C.3) is recognized as the fluid force F (t)
on the body, hence

F (t) = −dM(t)

dt
−
∫
S0,1,2

pndS − ρg
∫
SQ

zndS − ρ
∫
S1,2

unudS. (C.4)

In regular waves and under steady-state conditions, the average momentum flux
over n periods T of oscillation is zero,

dM(t)

dt
=

1

nT

∫ t0+nT

t0

dM(t)

dt
dt = 0, (C.5)

where t0 is some time instant when steady-state conditions have been achieved
and n ≥ 1. Using (C.5), and noting that the third term in the right hand side
of (C.4) only gives a contribution in vertical direction, the mean wave force in x
direction can be expressed as

Fx = −
∫
S1,2

pnxdS − ρ
∫
S1,2

unϕxdS. (C.6)

nx and ϕx are here the x components of n and ∇ϕ, respectively, and the overbar
denotes time averaging over n periods of oscillation. In a non-linear simulation,
the integrals in the right-hand side of (C.6) must be evaluated at each time step
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and stored as a time series. The time averaging is performed as post-processing af-
ter the simulation is completed. It is emphasized that the integrals over S1,2 must
be evaluated up to the instantaneous free surface ζ without any approximation.
After the simulation is completed, the time average is taken over an appropriate
steady-state time window t0 ≤ t < t0 + nT in the same way as when the mean
wave drift force is obtained from direct pressure integration. In the present work
we typically use n ≥ 5 in (C.6), and the resulting mean wave drift force is denoted
as exact.

C.2 2nd Order Approximate Method

The same type of analysis that gives the mean wave drift force in (C.6) can be per-
formed within the framework of perturbation theory. By assuming incident regu-
lar waves, and that the floating body oscillates in steady-state conditions around
a mean position, the problem is truncated so that effects up to 2nd order are in-
cluded. The mean wave drift force in x direction can then be written as

F (0)
x =

1

4
ρg(ζ2

A + ζ2
R − ζ2

T )

[
1 +

2kh

sinh2kh

]
, (C.7)

see e.g. Faltinsen (1993). The second term inside the brackets represents a cor-
rection for finite water depth. ζA, ζR and ζT are amplitudes of the incident, re-
flected and transmitted wave, respectively, k is the wave number and h is the
water depth. The mean wave drift force obtained from (C.7) is referred to as 2nd

order in the present work.
By in addition assuming that the average work done by the body over one

period of oscillation is zero, (C.7) can be expressed as

F (0)
x =

1

2
ρgζ2

A(1− C2
T )

[
1 +

2kh

sinh2kh

]
, (C.8)

where CT is the wave transmission coefficient defined as ζT /ζA. (C.8) is a ver-
sion of the well-known Maruo’s formula, where the finite-water depth correction
was derived by Longuet-Higgins (1977). Maruo’s formula was published in 1960
(Maruo, 1960), and has since been extensively applied. One may speculate that
much of the popularity gained by the formula is due to its elegance and simplic-
ity. The mean wave drift force obtained from (C.8) is denoted Maruo in the present
work.

Maruo’s formula can also be written by means of ζR, but the form in (C.8) is
more convenient for post-processing of results from a time domain analysis, since
it may be difficult to separate the incident and reflected wave amplitudes.

It is emphasized that the assumptions made in deriving Maruo’s formula are
the same as in linear theory, i.e. that non-linear parameters such as the wave am-
plitude and body motions are small parameters that can be approximated by trun-
cated series around their mean values. The squared wave amplitudes involved in
the formula are therefore connected with linear incident waves and linear wave-
body interactions.
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Appendix D

Conservation of Fluid Properties

The framework used to evaluate fluid energy and fluid volume in a non-linear
numerical wave tank is outlined in the following. It is noted that the derivations
assume a general 3D scenario, even though the present work solely addresses 2D
analysis. One should therefore read this appendix as if the problem is defined
with unit length and uniform properties in y direction.

D.1 Fluid Energy

With reference to Figure D.1, the fluid energy inside the control volume Q(t) and
the energy flux across control surfaces SQ(t) are evaluated.

S1

n n

n

n n

n

S2

S0

SB

S�- S�+

Q

x

z

Figure D.1: Control volume Q(t) for evaluation of fluid properties bounded by
control surface SQ(t) = S0,1,2 + SB + Sζ±.

The total kinetic and potential fluid energy E(t) inside Q(t) is

E(t) = ρ

∫
Q(t)

[
gz +

1

2
∇ϕ · ∇ϕ

]
dQ, (D.1)

in which ρ is the fluid density, g is the acceleration of gravity and ϕ is the velocity
potential. It is however impractical to evaluate the gradient of the velocity po-
tential anywhere inside Q(t). The expression (D.1) is therefore transformed into a
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surface integral over SQ(t),

E(t) = ρ

∫
SQ(t)

[
1

2
gz2n · k +

1

2
ϕ∇ϕ · n

]
dS, (D.2)

where k is the unit vector in z-direction and n is the normal vector defined in
Figure D.1.

Starting from (D.1) and using the Reynolds transport theorem, the energy flux
across SQ(t) can be written as

Ė(t) =
dE(t)

dt
=

∫
SQ(t)

[
ρ
∂ϕ

∂t
(un − Usn)− pUsn

]
dS, (D.3)

where un = ∇ϕ ·n, p is the fluid pressure given by the Bernoulli equation and Usn
is the normal velocity of the boundary itself. Details of the derivation are given
by Faltinsen and Timokha (2009). We let S0 coincide with the seabed, so that on
this boundary un = Usn = 0. On Sζ± we have that un = Usn and p = 0 due to the
kinematic and dynamic free-surface conditions, respectively, and on SB we have
un = Usn due to the body-boundary condition. Usn = 0 on the vertical side walls
S1,2. (D.3) then reduces to

Ė(t) = ρ

∫
S1,2

∂ϕ

∂t
undS −

∫
SB

pundS. (D.4)

The last term in (D.4) can be recognized as the work done by the body on the
water.

(D.2) and (D.4) are evaluated at every time step of the simulation for the in-
stantaneous computational domain SQ(t).

In evaluating the results of (D.2), we define a quantity

Em0 =
1

nT

∫ t0+nT

t0

E(t)dt, (D.5)

where T is the wave period, t = t0 is a time instant when steady-state behaviour
is obtained and n ≥ 1 is an integer. Furthermore, we define the running-average
energy

Em(t) =
1

T

∫ t

t−T
E(t)dt, (D.6)

which can be calculated for t ≥ T . The relative change of fluid energy inside Q(t)
can then be assessed through the parameter

εE(t) =
Em(t)− Em0

Em0
. (D.7)

The energy flux (D.4) is assessed relative to the wave power Pw in a linear,
propagating wave,

εĖ(t) =
Ėm(t)

Pw
, (D.8)
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where Ėm(t) is a running average of the energy flux similar to expression (D.6).
Pw is defined by Faltinsen and Timokha (2009) as

Pw =
1

4
ρg2 ζ

2
a

ω
, (D.9)

in which ζa is the incident wave amplitude and ω is the angular wave frequency.
Note that these definitions imply that both εE and εĖ are time-dependent param-
eters.

D.2 Fluid Volume

Conservation of fluid volume is assessed by the integral of the free-surface eleva-
tion ζ(t). The relative error of the fluid volume is defined through the parameter

εV (t) =
Vm(t)

V0
. (D.10)

V0 is the approximate initial fluid volume in the tank, given as the product be-
tween the tank length L and the water depth h, while Vm(t) is the running aver-
age, defined in a similar way as in expression (D.6), of the integrated wave eleva-
tion V (t) in the tank:

V (t) =

∫
L

ζ(x, t)dx. (D.11)

V (t) represents the change in volume due to the wave elevation, meaning that
V (t) = 0 when no waves are present. In comparison, the total volume at any
given time instant is expressed as V0+V (t). Vm(t) is thus connected with the mean
change of volume due to waves, equal to zero if the volume is fully conserved.

D.3 Numerical Examples for Ship Section in Beam-Sea Waves

Examples of how fluid properties are conserved for the 2D ship section in beam-
sea waves analysed in Chapter 5 and 6 are here given. The influence of wave
steepness and large body motions is emphasised.

Three non-dimensional wave frequencies ξB = (0.5, 1.0, 2.0) are considered for
wave heights H = 2ζa = (1cm, 7cm), where ξB is defined in Chapter 5. The case
ξB = 2.0, H = 7cm has a wave steepness kζa = 0.28, which implies significant
wave non-linearity. ξB = 0.5 is close to the natural heave and pitch frequency of
the body, which implies large motions when the body is freely floating.

Results for a fixed and a freely floating body are plotted side by side in Fig-
ures D.2 - D.4. εĖ(t) is seen to oscillate around a mean value close to zero towards
the end of the time series, with amplitudes that do not change significantly with
either wave height nor wave frequency in the case of a fixed body. For the freely
floating body, the oscillation amplitudes of the energy flux are larger, which can
be explained by the fact that the body exerts work on the fluid when allowed
to oscillate. Indeed, the amplitudes are largest close to the motion resonance fre-
quencies. The mean value of εĖ(t) over the last two oscillation periods examined
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in the figures are listed in Table D.1. The mean energy flux relative to the wave
power is seen to be relatively insensitive to both wave height and frequency for
the fixed body. For the freely floating body, the mean values decrease away from
the natural motion frequencies, but do not show strong dependency on the wave
height except for at ξB = 0.5.

Table D.1: Mean value of εĖ(t) over last two wave periods.

ξB
Fixed body Floating body

H = 1 cm H = 7 cm H = 1 cm H = 3 cm H = 7 cm
0.5 3.56E-03 5.03E-03 4.38E-02 1.73E-01 1.34E-01
1.0 7.50E-03 9.03E-03 1.54E-02 1.95E-02 2.57E-02
2.0 5.05E-03 -1.81E-02 1.91E-02 1.55E-02 -1.48E-03

εE(t) also oscillates around close to zero in the last part of the time series, but
the oscillation amplitudes increase with wave height. The order of magnitude of
εE(t) is comparable for the fixed and freely floating body. The same can be said
for εV (t), other than for at ξB = 0.5 where values are higher for the freely floating
body. The mean value of εV (t) is seen to always be less than 1.5 · 10−4 towards
the end of the time series, which is deemed acceptable considering that the largest
wave with highest frequency has significant non-linear characteristics.

One should be aware that the notable shifts that can be seen in all of the evalu-
ated properties at t/T ≈ 10, in particular for steep waves, are correlated with the
time the numerical beach next to the wavemaker has been activated. As discussed
in Appendix B, this enforces a linear free-surface elevation in a confined region
close to the wavemaker, which is why the influence is more evident when wave
non-linearity increases.
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Figure D.2: Conservation of fluid properties, fixed and freely floating body with
non-dimensional wave frequency ξB = 0.5.
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Figure D.3: Conservation of fluid properties, fixed and freely floating body with
non-dimensional wave frequency ξB = 1.0.

206



D.3. Numerical Examples for Ship Section in Beam-Sea Waves

0 2 4 6 8 10 12 14 16 18 20
t/T (-)

-1.0e-01

0.0e+00

1.0e-01

2.0e-01

3.0e-01

4.0e-01

5.0e-01

6.0e-01

ε
̇ E(
t) 
(-)

H=1cm
H=̇cm

18 19 20
t/T (-)

-8.0e-02

-6.0e-02

-4.0e-02

-2.0e-02

0.0e+00

2.0e-02

4.0e-02

6.0e-02
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Figure D.4: Conservation of fluid properties, fixed and freely floating body with
non-dimensional wave frequency ξB = 2.0.
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Appendix E

Reconstruction of Reflected Waves

Hughes (1993) outlines three strategies to reconstruct irregular, reflected waves in
a wave tank using

1. a horizontal array of two or more wave probes,

2. a vertical array of probes measuring wave elevation and fluid velocities or

3. a single probe measuring fluid velocities in horizontal and vertical direction.
In the present work the second strategy is used, i.e. measuring the free surface el-
evation in a probe and the fluid velocity in a fixed point in the water underneath.
The probe is located between the wavemaker and the body. Care is taken so that
the probe is not located inside the zone of the numerical damping zone next to
the wavemaker. A principal sketch showing the position of the wave and velocity
probes is shown in Figure E.1. We here always locate the velocity probe a distance
0.20λ− 0.25λ below the still water level, where λ is the characteristic wavelength.
The velocity probe must not be so far down in the fluid that velocities are negligi-
ble, nor located too close to the free surface so that it is in danger of getting out of
water.

x

z
Incident wave 

propagation direction Wave probe

Velocity 

probe

Figure E.1: Conceptual sketch of wave and velocity probe used to reconstruct re-
flected waves.
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E.1 Theory

The analysis follows from assuming constant water depth h and linear wave the-
ory. The time-varying velocity potential in the fluid is expressed through a sum of
harmonic components:

ϕ(x, z, t) =

∞∑
i=1

gAIi
ωi

cosh [ki(h+ z)]

cosh kih
sin (kix− ωit+ εIi) +

∞∑
i=1

gARi

ωi

cosh [ki(h+ z)]

cosh kih
sin (kix+ ωit+ εRi

).

(E.1)

g is the acceleration of gravity, ωi and ki are the frequency and wave number of
the ith wave component, AIi and εIi are the amplitude and phase angle of the ith

incident wave component and ARi and εRi are the amplitude and phase angle of
the ith reflected wave component.

The wave elevation follows from the linear dynamic free-surface condition,

ζ(x, t) = −1

g

∂ϕ

∂t

∣∣∣∣
z=0

=

∞∑
i=1

[AIi cos(φIi − ωit) +ARi
cos(φRi

+ ωit)], (E.2)

where

φIi = kix+ εIi ,

φRi
= kix+ εRi

.
(E.3)

The fluid velocity is given by the gradient of the velocity potential, (u,w) =
∇ϕ, and can be written as

u(x, z, t) =

∞∑
i=1

[AIiZi cos(φIi − ωit) +ARi
Zi cos(φRi

+ ωit)],

w(x, z, t) =

∞∑
i=1

[AIiYi sin(φIi − ωit) +ARi
Yi sin(φRi

+ ωit)].

(E.4)

Zi and Yi are velocity transfer functions defined as

Zi =
gki
ωi

cosh [ki(h+ z)]

cosh kih
,

Yi =
gki
ωi

sinh [ki(h+ z)]

cosh kih
.

(E.5)

The expressions for the wave elevation and the horizontal velocity component
can be rearranged in the form of Fourier series as

ζ(x, t) =

∞∑
i=1

[Pi cos(ωit) +Qi sin(ωit)],

u(x, z, t) =

∞∑
i=1

[Ci cos(ωit) +Di sin(ωit)],

(E.6)
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where the Fourier coefficients are given as

Ci
Zi

= AIi cos(φIi)−ARi
cos(φRi

),

Di

Zi
= AIi sin(φIi) +ARi

sin(φRi
),

Pi = AIi cos(φIi) +ARi
cos(φRi

),

Qi = AIi sin(φIi)−ARi
sin(φRi

).

(E.7)

The coefficients Pi, Qi, Ci and Di in (E.6) are obtained by performing Fourier
analysis of the recorded wave elevation and fluid velocity in the probes in Fig-
ure E.1. The velocity transfer functions in (E.5) are calculated by taking ki as the
wave number given by the linear dispersion relation for the ith component. Hav-
ing obtained these, the amplitudes and phases of the propagating and reflected
wave components can be obtained:

AIi =
1

2

√
(Pi +

Ci
Zi

)2 + (Qi +
Di

Zi
)2,

ARi =
1

2

√
(Pi −

Ci
Zi

)2 + (Qi −
Di

Zi
)2,

φIi = tan−1(
Qi +Di/Zi
Pi + Ci/Zi

),

φRi = tan−1(
−Qi +Di/Zi
Pi − Ci/Zi

).

(E.8)

By inserting (E.8) into (E.2), the wave elevation is separated into propagating and
reflected waves. In practice, the number of wave components i taken into consid-
eration in (E.1) and following expressions must be truncated to a finite number.
In the present work we use 100 components with evenly spaced frequencies cov-
ering the range of expected wave frequencies.

E.2 Numerical Examples

The performance of the reconstruction is illustrated in Figure E.2 for two values of
the wave steepness kAI , where AI is the specified incident wave amplitude. The
wave probe is located between approximately a distance λ from the moving wave-
maker, and the velocity probe is located approximately 0.23λ below the still free
surface. For both values of kAI , the wave is generated as a single regular wave.
However, the performance of the method has been confirmed to be similar for ir-
regular waves generated by superimposing multiple regular wave components.
The figure shows that the sum of the wave elevation of the reconstructed propa-
gating and reflected wave is in good agreement with the wave elevation measured
in the probe except for in the last part of the time series. Minor differences can be
observed at the crest and troughs, which is likely due to the fact that the method
assumes linear wave theory whereas the simulated waves are non-linear.
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Figure E.2: Elevation of measured wave in wave probe ζprobe, reconstructed prop-
agating wave ζI , reconstructed reflected wave ζR and total reconstructed wave
ζI + ζR for two values of kAI . The axes are normalized against the specified inci-
dent wave period T and amplitude AI .
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E.2. Numerical Examples

The initial intention for implementing the reconstruction method was to iden-
tify the reflected wave in real time so that this could be damped out by the damp-
ing zone next to the wavemaker. The main idea is that the amplitudes and phases
in (E.8) can be calculated during the simulation in the x coordinate of the wave
and velocity probes. Using (E.1) - (E.2), the velocity potential and elevation of in-
cident and reflected waves can be predicted at the position of the numerical beach
to ensure that only the reflected part of the wave is damped.

In order to spatially extrapolate the propagating and reflected wave compo-
nents in real-time from the probe position to the numerical beach, it is imperative
that the waves are accurately reconstructed for the last time step of the recorded
probe time series. As shown in the enlarged panels in Figure E.2, however, the re-
construction clearly fails to reproduce the measured wave elevation towards the
end of the time series1. As a consequence, attempts to implement this strategy to
damp reflected waves were unsuccessful.

Even though the method was found to be inapplicable to damp reflected
waves, it remains a powerful tool to identify propagating and reflected waves in
the interior part of a time series for post-processing purposes such as to determine
the wave reflection coefficient.

1This is likely related to the so-called Gibb’s phenomenon, that states that an overshoot occurs at
discontinuities of a Fourier series. Indeed, the reconstruction also fails at the beginning of a time series.
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Johansen, Vegar Modelling flexible slender system for real-time 
simulations and control applications 

IMT-
2007-25 

Wroldsen, Anders Sunde Modelling and control of tensegrity structures. 
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(PhD Thesis, CeSOS) 

IMT-
2007-26 

Aronsen, Kristoffer Høye An experimental investigation of in-line and 
combined inline and cross flow vortex induced 
vibrations. (Dr. avhandling, IMT) 

IMT-
2007-27 

Gao, Zhen Stochastic Response Analysis of Mooring Systems 
with Emphasis on Frequency-domain Analysis of 
Fatigue due to Wide-band Response Processes 
(PhD Thesis, CeSOS) 

IMT-
2007-28 

Thorstensen, Tom Anders Lifetime Profit Modelling of Ageing Systems 
Utilizing Information about Technical Condition. 
(Dr.ing. thesis, IMT) 

IMT-
2008-29 

Refsnes, Jon Erling Gorset Nonlinear Model-Based Control of Slender Body 
AUVs (PhD Thesis, IMT) 

IMT-
2008-30 

Berntsen, Per Ivar B. Structural Reliability Based Position Mooring. 
(PhD-Thesis, IMT) 

IMT-
2008-31 

Ye, Naiquan Fatigue Assessment of Aluminium Welded Box-
stiffener Joints in Ships (Dr.ing. thesis, IMT) 

IMT-
2008-32 

Radan, Damir Integrated Control of Marine Electrical Power 
Systems. (PhD-Thesis, IMT) 

IMT-
2008-33 

Thomassen, Paul Methods for Dynamic Response Analysis and 
Fatigue Life Estimation of Floating Fish Cages. 
(Dr.ing. thesis, IMT) 

IMT-
2008-34 

Pákozdi, Csaba A Smoothed Particle Hydrodynamics Study of 
Two-dimensional Nonlinear Sloshing in 
Rectangular Tanks. (Dr.ing.thesis, IMT/ CeSOS) 

IMT-
2007-35 

Grytøyr, Guttorm A Higher-Order Boundary Element Method and 
Applications to Marine Hydrodynamics. 
(Dr.ing.thesis, IMT) 

IMT-
2008-36 

Drummen, Ingo Experimental and Numerical Investigation of 
Nonlinear Wave-Induced Load Effects in 
Containerships considering Hydroelasticity. (PhD 
thesis, CeSOS) 

IMT-
2008-37 

Skejic, Renato Maneuvering and Seakeeping of a Singel Ship and 
of Two Ships in Interaction. (PhD-Thesis, CeSOS) 

IMT-
2008-38 

Harlem, Alf An Age-Based Replacement Model for Repairable 
Systems with Attention to High-Speed Marine 
Diesel Engines. (PhD-Thesis, IMT) 

IMT-
2008-39 

Alsos, Hagbart S. Ship Grounding. Analysis of Ductile Fracture, 
Bottom Damage and Hull Girder Response. (PhD-
thesis, IMT) 

IMT-
2008-40 

Graczyk, Mateusz Experimental Investigation of Sloshing Loading 
and Load Effects in Membrane LNG Tanks 
Subjected to Random Excitation. (PhD-thesis, 
CeSOS) 

IMT-
2008-41 

Taghipour, Reza Efficient Prediction of Dynamic Response for 
Flexible amd Multi-body Marine Structures. (PhD-
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thesis, CeSOS) 

IMT-
2008-42 

Ruth, Eivind Propulsion control and thrust allocation on marine 
vessels. (PhD thesis, CeSOS) 

IMT-
2008-43 

Nystad, Bent Helge Technical Condition Indexes and Remaining Useful 
Life of Aggregated Systems. PhD thesis, IMT 

IMT-
2008-44 

Soni, Prashant Kumar Hydrodynamic Coefficients for Vortex Induced 
 Vibrations of Flexible Beams,  PhD 
thesis, CeSOS 

IMT-
2009-45 

Amlashi, Hadi K.K. Ultimate Strength and Reliability-based Design of 
Ship Hulls with Emphasis on Combined Global and 
Local Loads. PhD Thesis, IMT 

IMT-
2009-46 

Pedersen, Tom Arne Bond Graph Modelling of Marine Power Systems. 
PhD Thesis, IMT 

IMT-
2009-47 

Kristiansen, Trygve Two-Dimensional Numerical and Experimental 
Studies of Piston-Mode Resonance. PhD-Thesis, 
CeSOS 

IMT-
2009-48 

Ong, Muk Chen Applications of a Standard High Reynolds Number   
Model and a Stochastic Scour Prediction Model for 
Marine Structures. PhD-thesis, IMT 

IMT-
2009-49 

Hong, Lin Simplified Analysis and Design of Ships subjected 
to Collision and Grounding. PhD-thesis, IMT 

IMT-
2009-50 

Koushan, Kamran Vortex Induced Vibrations of Free Span Pipelines, 
PhD thesis, IMT 

IMT-
2009-51 

Korsvik, Jarl Eirik Heuristic Methods for Ship Routing and 
Scheduling. PhD-thesis, IMT 

IMT-
2009-52 

Lee, Jihoon Experimental Investigation and Numerical in 
Analyzing the Ocean Current Displacement of 
Longlines. Ph.d.-Thesis, IMT. 

IMT-
2009-53 

Vestbøstad, Tone Gran A Numerical Study of Wave-in-Deck Impact usin a 
Two-Dimensional Constrained Interpolation Profile 
Method, Ph.d.thesis, CeSOS. 

IMT-
2009-54 

Bruun, Kristine Bond Graph Modelling of Fuel Cells for Marine 
Power Plants. Ph.d.-thesis, IMT 

IMT 
2009-55 

Holstad, Anders Numerical Investigation of Turbulence in a Sekwed 
Three-Dimensional Channel Flow, Ph.d.-thesis, 
IMT. 

IMT 
2009-56 

Ayala-Uraga, Efren Reliability-Based Assessment of Deteriorating 
Ship-shaped Offshore Structures, Ph.d.-thesis, IMT 

IMT 
2009-57 

Kong, Xiangjun A Numerical Study of a Damaged Ship in Beam 
Sea Waves. Ph.d.-thesis, IMT/CeSOS. 

IMT 
2010-58 

Kristiansen, David Wave Induced Effects on Floaters of Aquaculture 
Plants, Ph.d.-thesis, CeSOS. 
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IMT 
2010-59 

Ludvigsen, Martin An ROV-Toolbox for Optical and Acoustic 
Scientific Seabed Investigation. Ph.d.-thesis IMT. 

IMT 
2010-60 

Hals, Jørgen Modelling and Phase Control of Wave-Energy 
Converters. Ph.d.thesis, CeSOS. 

 

IMT 
2010- 61 

Shu, Zhi Uncertainty Assessment of Wave Loads and 
Ultimate Strength of Tankers and Bulk Carriers in a 
Reliability Framework. Ph.d. Thesis, IMT/ CeSOS 

IMT 
2010-62 

Shao, Yanlin Numerical Potential-Flow Studies on Weakly-
Nonlinear Wave-Body Interactions with/without 
Small Forward Speed, Ph.d.thesis,CeSOS.  

IMT 
2010-63 

Califano, Andrea Dynamic Loads on Marine Propellers due to 
Intermittent Ventilation. Ph.d.thesis, IMT. 

IMT 
2010-64 

El Khoury, George Numerical Simulations of Massively Separated 
Turbulent Flows, Ph.d.-thesis, IMT 

IMT 
2010-65 

Seim, Knut Sponheim Mixing Process in Dense Overflows with Emphasis 
on the Faroe Bank Channel Overflow. Ph.d.thesis, 
IMT 

IMT 
2010-66 

Jia, Huirong Structural Analysis of Intect and Damaged Ships in 
a Collission Risk Analysis Perspective. Ph.d.thesis 
CeSoS. 

IMT 
2010-67 

Jiao, Linlin Wave-Induced Effects on a Pontoon-type Very 
Large Floating Structures (VLFS). Ph.D.-thesis, 
CeSOS. 

IMT 
2010-68 

Abrahamsen, Bjørn Christian Sloshing Induced Tank Roof with Entrapped Air 
Pocket. Ph.d.thesis, CeSOS. 

IMT 
2011-69 

Karimirad, Madjid Stochastic Dynamic Response Analysis of Spar-
Type Wind Turbines with Catenary or Taut 
Mooring Systems. Ph.d.-thesis, CeSOS. 

IMT -
2011-70 

Erlend Meland Condition Monitoring of Safety Critical Valves. 
Ph.d.-thesis, IMT. 

IMT – 
2011-71 

Yang, Limin Stochastic Dynamic System Analysis of Wave 
Energy Converter with Hydraulic Power Take-Off, 
with Particular Reference to Wear Damage 
Analysis, Ph.d. Thesis, CeSOS. 

IMT – 
2011-72 

Visscher, Jan Application of Particla Image Velocimetry on 
Turbulent Marine Flows, Ph.d.Thesis, IMT. 

IMT – 
2011-73 

Su, Biao Numerical Predictions of Global and Local Ice 
Loads on Ships. Ph.d.Thesis, CeSOS. 

IMT – 
2011-74 

Liu, Zhenhui Analytical and Numerical Analysis of Iceberg 
Collision with Ship Structures. Ph.d.Thesis, IMT. 

IMT – 
2011-75 

Aarsæther, Karl Gunnar Modeling and Analysis of Ship Traffic by 
Observation and Numerical Simulation. 
Ph.d.Thesis, IMT. 
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Imt – 
2011-76 

Wu, Jie Hydrodynamic Force Identification from Stochastic 
Vortex Induced Vibration Experiments with 
Slender Beams. Ph.d.Thesis, IMT. 

Imt – 
2011-77 

Amini, Hamid Azimuth Propulsors in Off-design Conditions. 
Ph.d.Thesis, IMT. 

 

 

IMT – 
2011-78 

Nguyen, Tan-Hoi Toward a System of Real-Time Prediction and 
Monitoring of Bottom Damage Conditions During 
Ship Grounding. Ph.d.thesis, IMT. 

IMT- 
2011-79 

Tavakoli, Mohammad T. Assessment of Oil Spill in Ship Collision and 
Grounding, Ph.d.thesis, IMT. 

IMT- 
2011-80 

Guo, Bingjie Numerical and Experimental Investigation of 
Added Resistance in Waves. Ph.d.Thesis, IMT. 

IMT- 
2011-81 

Chen, Qiaofeng Ultimate Strength of Aluminium Panels, 
considering HAZ Effects, IMT 

IMT- 
2012-82 

Kota, Ravikiran S. Wave Loads on Decks of Offshore Structures in 
Random Seas, CeSOS. 

IMT- 
2012-83 

Sten, Ronny Dynamic Simulation of Deep Water Drilling Risers 
with Heave Compensating System, IMT. 

IMT- 
2012-84 

Berle, Øyvind Risk and resilience in global maritime supply 
chains, IMT. 

IMT- 
2012-85 

Fang, Shaoji Fault Tolerant Position Mooring Control Based on 
Structural Reliability, CeSOS. 

IMT- 
2012-86 

You, Jikun Numerical studies on wave forces and moored ship 
motions in intermediate and shallow water, CeSOS. 

IMT- 
2012-87 

Xiang ,Xu Maneuvering of two interacting ships in waves, 
CeSOS 

IMT- 
2012-88 

Dong, Wenbin Time-domain fatigue response and reliability 
analysis of offshore wind turbines with emphasis on 
welded tubular joints and gear components, CeSOS 

IMT- 
2012-89 

Zhu, Suji Investigation of Wave-Induced Nonlinear Load 
Effects in Open Ships considering Hull Girder 
Vibrations in Bending and Torsion, CeSOS 

IMT- 
2012-90 

Zhou, Li Numerical and Experimental Investigation of 
Station-keeping in Level Ice, CeSOS 

IMT- 
2012-91 

Ushakov, Sergey Particulate matter emission characteristics from 
diesel enignes operating on conventional and 
alternative marine fuels, IMT 

IMT- 
2013-1 

Yin, Decao Experimental and Numerical Analysis of Combined 
In-line and Cross-flow Vortex Induced Vibrations, 
CeSOS 
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IMT- 
2013-2 

Kurniawan, Adi Modelling and geometry optimisation of wave 
energy converters, CeSOS 

IMT- 
2013-3 

Al Ryati, Nabil Technical condition indexes doe auxiliary marine 
diesel engines, IMT 

IMT-
2013-4 

Firoozkoohi, Reza Experimental, numerical and analytical 
investigation of the effect of screens on sloshing, 
CeSOS 

IMT- 
2013-5 

Ommani, Babak Potential-Flow Predictions of a Semi-Displacement 
Vessel Including Applications to Calm Water 
Broaching, CeSOS 

IMT- 
2013-6 

Xing, Yihan Modelling and analysis of the gearbox in a floating 
spar-type wind turbine, CeSOS 

IMT-7-
2013 

Balland, Océane Optimization models for reducing air emissions 
from ships, IMT 

IMT-8-
2013 

Yang, Dan Transitional wake flow behind an inclined flat 
plate-----Computation and analysis,  IMT 

IMT-9-
2013 

Abdillah, Suyuthi Prediction of Extreme Loads and Fatigue Damage 
for a Ship Hull due to Ice Action, IMT 

IMT-10-
2013 

Ramìrez, Pedro Agustìn Pèrez Ageing management and life extension of technical 
systems- 
Concepts and methods applied to oil and gas 
facilities, IMT 

IMT-11-
2013 

Chuang, Zhenju Experimental and Numerical Investigation of Speed 
Loss due to Seakeeping and Maneuvering. IMT 

IMT-12-
2013 

Etemaddar, Mahmoud Load and Response Analysis of Wind Turbines 
under Atmospheric Icing and Controller System 
Faults with Emphasis on Spar Type Floating Wind 
Turbines, IMT 

IMT-13-
2013 

Lindstad, Haakon Strategies and measures for reducing maritime CO2 
emissons, IMT 

IMT-14-
2013 

Haris, Sabril Damage interaction analysis of ship collisions, IMT 

IMT-15-
2013 

Shainee, Mohamed Conceptual Design, Numerical and Experimental 
Investigation of a SPM Cage Concept for Offshore 
Mariculture, IMT 

IMT-16-
2013 

Gansel, Lars Flow past porous cylinders and effects of 
biofouling and fish behavior on the flow in and 
around Atlantic salmon net cages, IMT 

IMT-17-
2013 

Gaspar, Henrique Handling Aspects of Complexity in Conceptual 
Ship Design, IMT 

IMT-18-
2013 

Thys, Maxime Theoretical and Experimental Investigation of a 
Free Running Fishing Vessel at Small Frequency of 
Encounter, CeSOS 

IMT-19-
2013 

Aglen, Ida VIV in Free Spanning Pipelines, CeSOS 
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IMT-1-
2014 

Song, An Theoretical and experimental studies of wave 
diffraction and radiation loads on a horizontally 
submerged perforated plate, CeSOS 

IMT-2-
2014 

Rogne, Øyvind Ygre Numerical and Experimental Investigation of a 
Hinged 5-body Wave Energy Converter, CeSOS 

IMT-3-
2014 

Dai, Lijuan  Safe and efficient operation and maintenance of 
offshore wind farms ,IMT 

IMT-4-
2014 

Bachynski, Erin Elizabeth Design and Dynamic Analysis of Tension Leg 
Platform Wind Turbines, CeSOS 

IMT-5-
2014 

Wang, Jingbo Water Entry of Freefall Wedged – Wedge motions 
and Cavity Dynamics, CeSOS 

IMT-6-
2014 

Kim, Ekaterina Experimental and numerical studies related to the 
coupled behavior of ice mass and steel structures 
during accidental collisions, IMT 

IMT-7-
2014 

Tan, Xiang Numerical investigation of ship’s continuous- mode 
icebreaking in leverl ice, CeSOS 

IMT-8-
2014 

Muliawan, Made Jaya Design and Analysis of Combined Floating Wave 
and Wind Power Facilities, with Emphasis on 
Extreme Load Effects of the Mooring System, 
CeSOS 

IMT-9-
2014 

Jiang, Zhiyu Long-term response analysis of wind turbines with 
an emphasis on fault and shutdown conditions, IMT 

IMT-10-
2014 

Dukan, Fredrik ROV Motion Control Systems, IMT 

IMT-11-
2014 

Grimsmo, Nils I. Dynamic simulations of hydraulic cylinder for 
heave compensation of deep water drilling risers, 
IMT 

IMT-12-
2014 

Kvittem, Marit I. Modelling and response analysis for fatigue design 
of a semisubmersible wind turbine, CeSOS 

IMT-13-
2014 

Akhtar, Juned The Effects of Human Fatigue on Risk at Sea, IMT 

IMT-14-
2014 

Syahroni, Nur Fatigue Assessment of Welded Joints Taking into 
Account Effects of Residual Stress, IMT 

IMT-1-
2015 

Bøckmann, Eirik Wave Propulsion of ships, IMT 

IMT-2-
2015 

Wang, Kai Modelling and dynamic analysis of a semi-
submersible floating vertical axis wind turbine, 
CeSOS 

IMT-3-
2015 

Fredriksen, Arnt Gunvald A numerical and experimental study of a two-
dimensional body with moonpool in waves and 
current, CeSOS 

IMT-4-
2015 

Jose Patricio Gallardo Canabes Numerical studies of viscous flow around bluff 
bodies, IMT 
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IMT-5-
2015 

Vegard Longva Formulation and application of finite element 
techniques for slender marine structures subjected 
to contact interactions, IMT 

IMT-6-
2015 

Jacobus De Vaal Aerodynamic modelling of floating wind turbines, 
CeSOS 

IMT-7-
2015 

Fachri Nasution Fatigue Performance of Copper Power Conductors, 
IMT 

IMT-8-
2015 

Oleh I Karpa Development of bivariate extreme value 
distributions for applications in marine 
technology,CeSOS 

IMT-9-
2015 

Daniel de Almeida Fernandes An output feedback motion control system for 
ROVs, AMOS 

IMT-10-
2015 

Bo Zhao Particle Filter for Fault Diagnosis: Application to 
Dynamic Positioning Vessel and Underwater 
Robotics, CeSOS 

IMT-11-
2015 

Wenting Zhu Impact of emission allocation in maritime 
transportation, IMT 

IMT-12-
2015 

Amir Rasekhi Nejad Dynamic Analysis and Design of Gearboxes in 
Offshore Wind Turbines in a Structural Reliability 
Perspective, CeSOS 

IMT-13-
2015 

Arturo Jesùs Ortega Malca Dynamic Response of Flexibles Risers due to 
Unsteady Slug Flow, CeSOS 

IMT-14-
2015 

Dagfinn Husjord Guidance and decision-support system for safe 
navigation of ships operating in close proximity, 
IMT 

IMT-15-
2015 

Anirban Bhattacharyya Ducted Propellers: Behaviour in Waves and Scale 
Effects, IMT 

IMT-16-
2015 

Qin Zhang Image Processing for Ice Parameter Identification 
in Ice Management, IMT 

IMT-1-
2016 

Vincentius Rumawas Human Factors in Ship Design and Operation: An 
Experiential Learning, IMT 

IMT-2-
2016 

Martin Storheim Structural response in ship-platform and ship-ice 
collisions, IMT 

IMT-3-
2016 

Mia Abrahamsen Prsic Numerical Simulations of the Flow around single 
and Tandem Circular Cylinders Close to a Plane 
Wall, IMT 

IMT-4-
2016 

Tufan Arslan Large-eddy simulations of cross-flow around ship 
sections, IMT 
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IMT-5-
2016 

Pierre Yves-Henry Parametrisation of aquatic vegetation in hydraulic 
and coastal research,IMT 

IMT-6-
2016 

Lin Li Dynamic Analysis of the Instalation of Monopiles 
for Offshore Wind Turbines, CeSOS 

IMT-7-
2016 

Øivind Kåre Kjerstad Dynamic Positioning of Marine Vessels in Ice, IMT 

IMT-8-
2016 

Xiaopeng Wu Numerical Analysis of Anchor Handling and Fish 
Trawling Operations in a Safety Perspective, 
CeSOS 

IMT-9-
2016 

Zhengshun Cheng Integrated Dynamic Analysis of Floating Vertical 
Axis Wind Turbines, CeSOS 

IMT-10-
2016 

Ling Wan Experimental and Numerical Study of a Combined 
Offshore Wind and Wave Energy Converter 
Concept 

IMT-11-
2016 

Wei Chai Stochastic dynamic analysis and reliability 
evaluation of the roll motion for ships in random 
seas, CeSOS 

IMT-12-
2016 

Øyvind Selnes Patricksson Decision support for conceptual ship design with 
focus on a changing life cycle and future 
uncertainty, IMT 

IMT-13-
2016 

Mats Jørgen Thorsen Time domain analysis of vortex-induced vibrations, 
IMT 

IMT-14-
2016 

Edgar McGuinness Safety in the Norwegian Fishing Fleet – Analysis 
and measures for improvement, IMT 

IMT-15-
2016 

Sepideh Jafarzadeh Energy effiency and emission abatement in the 
fishing fleet, IMT 

IMT-16-
2016 

Wilson Ivan Guachamin Acero Assessment of marine operations for offshore wind 
turbine installation with emphasis on response-
based operational limits, IMT 

IMT-17-
2016 

Mauro Candeloro Tools and Methods for Autonomous  Operations on 
Seabed and Water Coumn using Underwater 
Vehicles, IMT 

IMT-18-
2016 

Valentin Chabaud Real-Time Hybrid Model Testing of Floating Wind 
Tubines, IMT 

IMT-1-
2017 

Mohammad Saud Afzal Three-dimensional streaming in a sea bed boundary 
layer 

IMT-2-
2017 

Peng Li A Theoretical and Experimental Study of Wave-
induced Hydroelastic Response of a Circular 
Floating Collar 

IMT-3-
2017 

Martin Bergström A simulation-based design method for arctic 
maritime transport systems 
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IMT-4-
2017 

Bhushan Taskar The effect of waves on marine propellers and 
propulsion 

IMT-5-
2017 

Mohsen Bardestani A two-dimensional numerical and experimental 
study of a floater with net and sinker tube in waves 
and current 

IMT-6-
2017 

Fatemeh Hoseini Dadmarzi Direct Numerical Simualtion of turbulent wakes 
behind different plate configurations 

IMT-7-
2017 

Michel R. Miyazaki Modeling and control of hybrid marine power 
plants 

IMT-8-
2017 

Giri Rajasekhar Gunnu Safety and effiency enhancement of anchor 
handling operations with particular emphasis on the 
stability of anchor handling vessels 

IMT-9-
2017 

Kevin Koosup Yum Transient Performance and Emissions of a 
Turbocharged Diesel Engine for Marine Power 
Plants 

IMT-10-
2017 

Zhaolong Yu Hydrodynamic and structural aspects of ship 
collisions 

IMT-11-
2017 

Martin Hassel Risk Analysis and Modelling of Allisions between 
Passing Vessels and Offshore Installations 

IMT-12-
2017 

Astrid H. Brodtkorb Hybrid Control of Marine Vessels – Dynamic 
Positioning in Varying Conditions 

IMT-13-
2017 

Kjersti Bruserud Simultaneous stochastic model of waves and 
current for prediction of structural design loads 

IMT-14-
2017 

Finn-Idar Grøtta Giske Long-Term Extreme Response Analysis of Marine 
Structures Using Inverse Reliability Methods 

IMT-15-
2017 

Stian Skjong Modeling and Simulation of Maritime Systems and 
Operations for Virtual Prototyping using co-
Simulations  

IMT-1-
2018 

Yingguang Chu Virtual Prototyping for Marine Crane Design and 
Operations 

IMT-2-
2018 

Sergey Gavrilin Validation of ship manoeuvring simulation models 

IMT-3-
2018 

Jeevith Hegde Tools and methods to manage risk in autonomous 
subsea inspection,maintenance and repair 
operations 

IMT-4-
2018 

Ida M. Strand Sea Loads on Closed Flexible Fish Cages 

IMT-5-
2018 

Erlend Kvinge Jørgensen Navigation and Control of Underwater Robotic 
Vehicles 
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IMT-6-
2018 

Bård Stovner Aided Intertial Navigation of Underwater Vehicles 

IMT-7-
2018 

Erlend Liavåg Grotle Thermodynamic Response Enhanced by Sloshing 
in Marine LNG Fuel Tanks 

IMT-8-
2018 

Børge Rokseth Safety and Verification of Advanced Maritime 
Vessels 

IMT-9-
2018 

Jan Vidar Ulveseter Advances in Semi-Empirical Time Domain 
Modelling of Vortex-Induced Vibrations 

IMT-10-
2018 

Chenyu Luan Design and analysis for a steel braceless semi-
submersible hull for supporting a 5-MW horizontal 
axis wind turbine 

IMT-11-
2018 

Carl Fredrik Rehn Ship Design under Uncertainty 

IMT-12-
2018 

Øyvind Ødegård Towards Autonomous Operations and Systems in 
Marine Archaeology 

IMT-13- 
2018 

Stein Melvær Nornes Guidance and Control of Marine Robotics for 
Ocean Mapping and Monitoring 

IMT-14-
2018 

Petter Norgren Autonomous Underwater Vehicles in Arctic Marine 
Operations: Arctic marine research and ice 
monitoring 

IMT-15-
2018 

Minjoo Choi Modular Adaptable Ship Design for Handling 
Uncertainty in the Future Operating Context  

MT-16-
2018 

Ole Alexander Eidsvik Dynamics of Remotely Operated Underwater 
Vehicle Systems 

IMT-17-
2018 

Mahdi Ghane Fault Diagnosis of Floating Wind Turbine 
Drivetrain- Methodologies and Applications 

IMT-18-
2018 

Christoph Alexander Thieme Risk Analysis and Modelling of Autonomous 
Marine Systems 

IMT-19-
2018 

Yugao Shen Operational limits for floating-collar fish farms in 
waves and current, without and with well-boat 
presence 

IMT-20-
2018 

Tianjiao Dai Investigations of Shear Interaction and Stresses in 
Flexible Pipes and Umbilicals 

IMT-21-
2018 

Sigurd Solheim Pettersen 
 

Resilience by Latent Capabilities in Marine 
Systems 
 

IMT-22-
2018 

Thomas Sauder 
 

Fidelity of Cyber-physical Empirical Methods. 
Application to the Active Truncation of Slender 
Marine Structures 
 

IMT-23-
2018 

Jan-Tore Horn 
 

Statistical and Modelling Uncertainties in the 
Design of Offshore Wind Turbines 
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IMT-24-
2018 

Anna Swider Data Mining Methods for the Analysis of Power 
Systems of Vessels 
 

IMT-1-
2019 

Zhao He Hydrodynamic study of a moored fish farming cage 
with fish influence 
 

IMT-2-
2019 

Isar Ghamari 
 

Numerical and Experimental Study on the Ship 
Parametric Roll Resonance and the Effect of Anti-
Roll Tank 
 

IMT-3-
2019 

Håkon Strandenes 
 

Turbulent Flow Simulations at Higher Reynolds 
Numbers 
 

IMT-4-
2019 

Siri Mariane Holen 
 

Safety in Norwegian Fish Farming – Concepts and 
Methods for Improvement 
 

IMT-5-
2019 

Ping Fu 
 

Reliability Analysis of Wake-Induced Riser 
Collision 
 

IMT-6-
2019 

Vladimir Krivopolianskii 
 

Experimental Investigation of Injection and 
Combustion Processes in Marine Gas Engines using 
Constant Volume Rig 
 

IMT-7-
2019 

Anna Maria Kozlowska Hydrodynamic Loads on Marine Propellers Subject 
to Ventilation and out of Water Condition. 

IMT-8-
2019 

Hans-Martin Heyn Motion Sensing on Vessels Operating in Sea Ice: A 
Local Ice Monitoring System for Transit and 
Stationkeeping Operations under the Influence of 
Sea Ice 

IMT-9-
2019| 
 

Stefan Vilsen 
 

Method for Real-Time Hybrid Model Testing of 
Ocean Structures – Case on Slender Marine 
Systems 

IMT-10-
2019 

Finn-Christian W. Hanssen Non-Linear Wave-Body Interaction in Severe 
Waves 
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