
Collision detection and avoidance system
based on computer vision

Andreas Kalvå

Master of Science in Cybernetics and Robotics

Supervisor: Amund Skavhaug, ITK

Department of Engineering Cybernetics

Submission date: February 2014

Norwegian University of Science and Technology

REPORT

Collision detection system using
computer vision on low power

devices

by

Andreas Kalvå

February 21, 2014

1

Project description

There is a need for computer vision and especially stereo vision for perceiving
depth with regard to collision avoidance in a wide range of scenarios. This
need is amplified by the current trend of wanting more autonomy in new robot
systems.

At the Department of Engineering Cybernetics at the Norwegian Univer-
sity of Science and Technology, we wish to develop a module for this, based
on open source libraries, where hardware is interchangeable and with a cer-
tain emphasis on the limitations present both in computational- and energy
resources.

The objectives are:

1. Familiarize with the necessary literature.

2. Familiarize with previous work done at the institute (and if practically
possible other places as well.)

3. Evaluate existing methods and libraries.

4. Evaluate possible hardware platforms.

5. If possible suggest a complete and generic architecture.

6. If time allows implement said architecture for a given hardware platform,
usage area etc.

7. Evaluate the viability of the implementation.

Submission date: February 2014

Supervisor: Amund Skavhaug
Department of Engineering Cybernetics.

I

Summary

A wide selection of stereo matching algorithms have been evaluated for the
purpose of creating a collision avoidance module. Varying greatly in the accu-
racy, a few of the algorithms were fast enough for further use.

Two computer vision libraries, OpenCV and MRF, were evaluated for their
implementations of various stereo matching algorithms. In addition OpenCV
provides a wide variety of functions for creating sophisticated computer vision
programs and were evaluated on this basis as well.

A stereo camera were constructed using low cost, of-the-shelf web cameras.
Two low-power platforms, The Pandaboard and the Beaglebone Black, were

evaluated as viable platforms for developing a computer vision module on top.
In addition they were compared to an Intel platform as a reference.

Based on the results gathered, a fast, but simple, collision detector could be
made using the simple block matching algorithm found in OpenCV. A more
advanced detector could be built using semi-global stereo matching. These
were the only implementations that were fast enough. The other energy min-
imization algorithms (Graph cuts and belief propagation) did produce good
disparity maps, but were too slow for any realistic collision detector.

In order for the low-power platforms to be fast enough, a combination of
improvements must be used. OpenCV should be compiled with aggressive
optimization options enabled with support for hardware accelerated floating
point math. Choice of low-power platform matters, but it is possible to work
around this by reducing the workload.

The most effective speedup that enables the low-power platforms were re-
ducing the resolution of the images to be matched. When reducing the size of
the sub-problems enough to align with cache size, considerable speedups were
found with little penalty in the corresponding disparity map.

II

III

Sammendrag

Et større utvalg av algoritmer for stereosyn har blitt vurdert med det formål
å lage en kollisjons- deteksjon og unngåelsesmodul. Med varierende grad av
nøyaktighet har et fåtall av algoritmene som var raske nok blitt valgt for videre
bruk.

To programmeringsbibliotek for datasyn, OpenCV og MRF, har blitt vur-
dert for sine stereosynsimplementasjoner. OpenCV har i tillegg blitt vurdert ut
i fra hvilke funksjoner og datastrukturer den tilbyr med tanke på å konstruere
denne kollisjons- deteksjon og unngåelsesmodulen.

En stereokamera ble bygget ved hjelp av et par billige webkameraer.
To laveffekts plattformer, The Pandaboard og BeagleBone Black, ble vurdert

etter hvilken evne de har som en underliggende platform for datasyn. Som
referanse ble en Intel-basert arbeidsstasjon brukt som referanse.

Ut i fra resultatene som ble funnet, kan en rask, men i overkant enkel, kol-
lisjonsdetektor kan lages ved å bruke OpenCVs «Block Match» -algoritme. En
mer avansert kollisjonsdetektor kan lages ved å bruke OpenCVs «Semi-Global
Block Match» -algoritme.

Det var kun de her to algoritmene som kunne kjøre raskt nok på laveffekts
platformene. Andre algoritmer som ble testet som «Graph Cut» og «Belief
Propagation» ga nøyaktige resultat, men de brukte for lang tid til at det var
realistisk å bruke dem til kollisjonsdeteksjonsformål.

For at laveffektsplattformene skulle være raske nok, ble en kombinasjon
av forbedringer tatt i bruk. OpenCV ble kompilert med maskinvareakselerert
flyttalls-støtte og automatisk vektorisering skrudd på. Det anbefales å velge en
kjapp laveffektsplatform, men det lar seg gjøre å kompensere ved å redusere
arbeidsmengden.

Den mest effektive hastighetsøkningen som i det hele tatt gjorde det mulig å
bruke laveffektsplattformene til dette formålet, var å redusere oppløsningen på
bildene som skulle sammenlignes. Ved å redusere størrelsen, oppnådde man
en stiuasjon der delproblemer av stereosyns-algoritmene samsvarte tilstrekke-
lig bra med prosessorenes «cache» -størrelse uten at det ble redusert noe særlig
i kvaliteten på dybdekartene.

IV

V

Preface

This master thesis were done during the fall of 2013 to mid winter in 2014 at
the Department of Engineering Cybernetics at the Norwegian University of
Science and Technology.

The purpose of this thesis was to gain a better insight into the field of com-
puter vision and to create a module that there has been requested a need for.

The project work was supervised by associate professor Amund Skavhaug.
I would like to that my supervisor for being a source of inspiration during

this thesis.
February 2014, Trondheim Andreas Kalvå

VI

CONTENTS CONTENTS

Contents

1 Introduction 1

2 Theory 2
2.1 Computer Vision . 2

2.1.1 Stereo Vision . 2
2.1.2 Epipolar Geometry . 2
2.1.3 Occlusion . 4
2.1.4 Disparity map . 5
2.1.5 Converting from disparity to distance 7

2.2 Image Source . 11
2.2.1 Non-linear defects . 11
2.2.2 Undistort/rectification of camera 13

2.3 Feature based computer vision 15
2.3.1 Edge detection . 15

3 Stereo Matching 17
3.1 Region Based . 17

3.1.1 Block Matching . 17
3.1.2 Semi-Global Block Match 17

3.2 Energy minimization algorithms 18
3.2.1 Iterated conditional modes, (ICM) 18
3.2.2 Graph cuts . 18
3.2.3 Belief propagation . 19
3.2.4 Tree-reweighted message passing, TRW 19
3.2.5 Variational stereo matching 19

4 Platform 20
4.1 Software . 20

4.1.1 OpenCV . 20
4.1.2 MRF . 21
4.1.3 Operating System . 21
4.1.4 Compilers . 21
4.1.5 Other . 22

4.2 Programming languages used . 23
4.2.1 C and C++ . 23

VII

CONTENTS CONTENTS

4.2.2 Bourne Again SHell, bash 23
4.3 Hardware . 23

4.3.1 Intel platform . 24
4.3.2 Pandaboard . 24
4.3.3 BeagleBone Black . 25
4.3.4 Logitech C250 web cameras 26

4.4 Choice of stereo matching algorithm 28
4.4.1 Libraries evaluated . 28
4.4.2 Criteria for evaluation . 29
4.4.3 Middlebury stereo data sets 30
4.4.4 Testing methodology . 32

4.5 Results from OpenCV . 34
4.5.1 Block matching . 34
4.5.2 Semi-global block matching 36
4.5.3 Semi-global block matching, all directions 38
4.5.4 Variational stereo matching with consistency constraint

left/right . 40
4.6 MRF library . 42

4.6.1 Iterated conditional mode 42
4.6.2 Expansion-move graph cut 43
4.6.3 Swap-move graph cut . 46
4.6.4 Sequential tree-reweighted message passing for energy

minimization . 48
4.6.5 Synchronous belief propagation 50
4.6.6 Max product belief propagation 52

4.7 MRF’s accuracy problems revisited 54
4.8 Closer look at performance issues 56

4.8.1 Pandaboard vs BeagleBone Black 56
4.8.2 Pandaboard vs Intel . 57
4.8.3 Improving ARM performance using aggressive compiler

options . 58
4.8.4 Improving Intel performance using aggressive compiler

options . 59
4.9 Special cases where stereo matching does not work 62
4.10 Improving performance by shaping workload 65

4.10.1 Threading . 65
4.10.2 Lower resolution . 65

VIII

CONTENTS CONTENTS

4.11 Camera calibration . 69
4.11.1 Calibrating with OpenCV 69
4.11.2 Rectification timings . 72

4.12 Collision detection and avoidance 73

5 Focused CV 76
5.1 The stationary case . 76
5.2 The non-stationary case . 77
5.3 Path-based focus vision with peripheral vision 77
5.4 Deadline based feedback for movement control 78

6 Discussion 79
6.1 Obstacles . 79
6.2 Algorithmic evaluation . 79
6.3 Software Evaluation . 81
6.4 Hardware Evaluation . 84
6.5 Future Work . 86
6.6 Recommendations . 87
6.7 Similar work, OpenVX . 88

7 Conclusion 89

A Contents of project 94

IX

LIST OF FIGURES LIST OF FIGURES

List of Figures

1 Pipeline . 3
2 Epipolar views . 3
3 Teddy data set. Image pair and disparity maps. 6
4 Middle point S at infinity. 7
5 The point X forms a triangle. 8
6 Finding the angle A . 9
7 Distance to the center of the camera from disparity value 10
8 Barrel distortion . 11
9 Pincushion distortion . 12
10 Mustache distortion pattern . 12
11 Tangential distortion . 13
12 The Pandaboard . 25
13 The BeagleBone Black . 26
14 The stereo camera constructed . 27
15 The Tsukuba set . 30
16 The Venus set . 31
17 The Cones set . 31
18 The Teddy set . 32
19 Accuracy results using block matching 34
20 Accuracy results using semi-global block matching 36
21 Accuracy results using semi-global block matching with all di-

rections evaluated . 38
22 Accuracy results using Variational stereo matching 40
23 Accuracy results using ICM . 43
24 Accuracy results using expansion 44
25 Accuracy results using swap . 46
26 Accuracy results using Sequential Tree-re-weighted Message Pass-

ing . 48
27 Accuracy results using Synchronous Belief Propagation 50
28 Accuracy results using max product belief propagation 52
29 Accuracy versus disparity levels allowed in MRF’s Expansion-

move . 55
30 Scene with ambiguous areas . 62
31 OpenCV-algorithms on ambiguous scene 63
32 Large SAD-window gives wide leg. 64

X

LIST OF FIGURES LIST OF FIGURES

33 Threading visualized . 66
34 Improvement factor gained by using smaller resolution 67
35 Original and resized resolution 68
36 Image retrieval subsystem . 69
37 8x8 chessboard used . 70
38 The detected corners marked . 70
39 Calibrated spot of roof with repeating pattern 71
40 Wrongly calibrated camera . 71
41 Module for computer vision with collision detection 74
42 Path-based focus vision . 78

Unless otherwise stated, each figure is the work of the author.

XI

LIST OF TABLES LIST OF TABLES

List of Tables

1 Listing of the Intel platform specifications. 24
2 Listing of the Pandaboard specifications. 24
3 Listing of the BeagleBone Black specifications. 26
4 Listing of the Logitech C250 specifications. 27
5 Block matching . 35
6 Semi-global block matching . 37
7 Semi-global block matching, all directions 39
8 Variational . 41
9 Iterated conditional mode . 43
10 Expansion-move graph cut . 45
11 Swap-move graph cut . 47
12 Sequential tree-reweighted message passing 49
13 Synchronous belief propagation 51
14 Max product belief propagation 53
15 Increase in time with more disparity levels using expansion-move

on Teddy set . 54
16 Percentage-wise improvement when running on the BeagleBone

Black over the Pandaboard. 56
17 Improvement of auto-vectorized code on the Pandaboard 59
18 timings of algorithms running auto-vectorized code 60
19 Percentage-wise improvement of auto-vectorized code 60
20 Evaluation of the OpenCV computer vision library 81
21 Evaluation of the Middlebury MRF library 82
22 Evaluation of the Arch Linux operating system 83
23 Evaluation of the Angstrom operating system 83
24 Evaluation of the cameras used 84
25 Evaluation of the Pandaboard . 85
26 Evaluation of the BeagleBone Black 86

XII

1 INTRODUCTION

1 Introduction

Robots are on the rise. We create robots to replace an ever increasing amount
of labor, but they are still very dependent on our programming to act in this
world. Simple procedure is not enough if we are to bring robots further into
our world.

There is a need for improved autonomy in the robots we create. We want them
to be able to operate safely in an environment with other agents. Both other
robots, but also humans eventually. To do so an understanding of the world
around is needed.

We humans have largely solved this problem through evolutionary means. We
have eyesight that let us interpret our surrounding environment and act within
it. If we could mimic our visual system in our robots it would be a great step
towards full autonomy.

So far we are nowhere close to such a technical implementation, but the field
of computer vision has made some progress.

At the same time, low power computers with significant calculation power has
become prevalent. Therefore we want to extend upon that and evaluate how
future technology can become ubiquitous.

This thesis extend upon the work done previously in computer vision at the
Norwegian University of Science and Technology [End10] and [Rø13].

This thesis is divided into four parts. In the first part some theory and methods
for creating computer vision. Then in the second part libraries and platforms
will be introduced. In the third part the results will be reviewed and the last
part will be discussion and conclusion about the work done.

1

2 THEORY

2 Theory

The theory section is divided into three. The first section covers computer vi-
sion. The second ection covers image sources and the last section covers feature
extraction.

2.1 Computer Vision

Computer vision is the area of research which covers all parts of enabling a
computer too see. In this thesis there is a need to sense the external world so
computer vision methods will be evaluated.

2.1.1 Stereo Vision

The central problem that we are trying to solve in this thesis is enabling a robot
to perceive the world and increase it’s autonomy. Although there are many
proposed systems for perceiving the world, we choose to look at nature for
strategies to emulate. A set of two eyes are often used to form a visual system
that perceives the world in a certain direction and objects are correlated by the
visual cortex to form a perceived depth to the world. Clearly the success of
this evolutionary marvel suggests it is a fitting solution to our problem. Stereo
vision is currently a very active area of research.

2.1.2 Epipolar Geometry

Correlating points in two images is difficult as potentially every pixel in one
image could be the corresponding pixel to some point in the other image. A 2D
search for every pixel would be very resource consuming and highly imprac-
tical. Instead we use epipolar geometry. Two image sources of the same scene
from distinct positions, like in figure1 2, will have a number of geometric re-
lations between the 3D-points and their 2D-projections that lead to constraints

1Created by Arne Nordmann, CC-BY-SA-3.0

2

2.1 Computer Vision 2 THEORY

Figure 1: Pipeline

between the image points.

Figure 2: Epipolar views

Epipole

Since the projections are distinct, each projection will project it’s center intro
the other projection. We denote these projections el and er.

Epipolar line

3

2.1 Computer Vision 2 THEORY

The line Ol-X is seen by the left camera as a point while in the right camera it
is a line. This is called an epipolar line. Likewise Or-X is seen as a point in the
right camera.

Epipolar constraints

If the relative translation and rotation of the cameras are known, then two im-
portant observations can be made. First that each point in either camera must
lie on an epipolar line in the other camera. Thus reducing the search down to
1 dimension. Second that if two points are found to correspond, the distance
can be found by triangulation.

Special case

If the two camera image planes coincide, then the search is simplified further
because the epipolar lines will be horizontal. If the cameras are not placed in
such a way, then the projections can be transformed to form a common image
plane using image rectification.

2.1.3 Occlusion

Problem 1 - Order of regions may be different in each camera.

Why simply matching edges detected by a canny filter fails. Feature extraction
using Canny filter (edge) and some color segmentation can be used to iden-
tify regions which in turn can be matched using a region based strategy when
generating the disparity map.

Problem 2 - There may be regions in camera 1 that has no match in camera 2.

Because we are trying to extract depth information from a 2 dimensional pro-
jection of a 3 dimensional world...

The essential part of the second problem is that near objects will occlude differ-
ent regions in the background in each camera. While the near regions are then
easier to identify, there are situations where there are regions in one camera
that has no match in the other camera.

In the more complex situation where there are more than two regions bordering

4

2.1 Computer Vision 2 THEORY

to each other. This easily becomes guesswork since there does not exist enough
information reliably match...

The fast, but naive block matching algorithms completely fails in this regard
as it is dependent on using SAD-windows of a certain size and simply assigns
the matched block to the same depth.

2.1.4 Disparity map

The disparity map is a picture produced by correlating two pictures of the same
scene. Each point in the picture represents the distance between a point in
picture A and the corresponding point in Picture B.

This is best explained with an example. Depicted in figure 3 is the left, fig.
3a, and right, fig. 3b, from the Teddy data set[SS03] made available on the
Middlebury Vision web page. For both the left and the right image there is an
accompanying disparity map for that picture, figure 3c and 3d.

The disparity map is intuitive in that close objects are brighter than objects
further back. Corresponding point that have no distance between then are said
to be placed at infinity and is given the disparity level of 0. If the distance is 1
apart then one way of creating the disparity map is to give the point a disparity
level of 1 and so on. This creates a continuous disparity map.

Some implementations use fewer disparity levels and scale the resulting dis-
parity map instead. For example with 16 discrete levels, the values assigned is
0 to 15. By scaling with a factor of 17, the maximum level becomes 15 × 17 =

255 = 28 − 1 which is the maximum brightness that can be represented in an
8-bit gray level image. By scaling this way it becomes easier to visually inspect
the disparity map, but some information of scaling and what the disparity lev-
els represent is needed.

In this thesis methods for producing a disparity map will be evaluated. These
methods are referred to as stereo matching algorithms.

Another method that is commonly used is structured light[FARW99]. Struc-
tured light is a procedure where a known pattern of light is projected onto a
scene and from the way the pattern is distorted by the scene, the disparity level

5

2.1 Computer Vision 2 THEORY

(a) Left image (b) Right image

(c) Left disparity map (d) Right disparity map

Figure 3: Teddy data set. Image pair and disparity maps.

of a known point can be found by measuring the distance to the known point
in two cameras.

This is the method Kinect uses. It projects many infra red points onto a scene
and matches these point when seen from two cameras.

This method is known to produce good result, but because it is projecting light
is does not work very well outside in sunny weather. The disparity maps from
the Teddy set in figure 3 is constructed using structured light.

6

2.1 Computer Vision 2 THEORY

2.1.5 Converting from disparity to distance

Finding the distance using a disparity map requires some information about
the distance between the cameras and the cameras angle of view.

In figure 4 there are two cameras that point at the point S. Since there is some
distance between camera 1 and camera 2, an angle s is formed. By setting the
point S at infinity, the angle efficiently becomes 0 and can be disregarded.

Figure 4: Middle point S at infinity.

With both cameras pointed at the point S, the distance to the point X can be
found using the disparity d. In figure 5, the point X and the two cameras for a
triangle ABC.

The distance b from camera 1 to the point X is found using the sine rule.

a

sinA
=

b

sinB
=

c

sinC
(1)

Where:
6 C = π − 6 A− 6 B (2)

7

2.1 Computer Vision 2 THEORY

Figure 5: The point X forms a triangle.

To find the angles A and B, the resolution of the camera and the angle of view.
As an example the resolution and the angle of view will be the same as the
cameras used later in this thesis. The resolution is 320x240 and the angle of
view is 0.873 rad from side to side. The change in angle per pixel is found by
0.873/320 = 0.002727

Using geometric distance as in figure 6:

The angle A is then found:

6 A =
0.873

320

√
a2y + a2x (3)

And the angle B:

6 B =
0.873

320

√
b2y + b2x (4)

Because of the epipolar constraint:

by = ay (5)

8

2.1 Computer Vision 2 THEORY

Figure 6: Finding the angle A

While the disparity is used to shift ax:

bx = ax − dax
(6)

In figure 7 the distance to the center of camera 1 is plotted for all possible dis-
parity values:

9

2.1 Computer Vision 2 THEORY

Figure 7: Distance to the center of the camera from disparity value

10

2.2 Image Source 2 THEORY

2.2 Image Source

2.2.1 Non-linear defects

Theoretically, it is possible to construct a camera with no distortions. The prob-
lem is that to do so very a very strict quality control and production process
would be necessary and lenses would be far more expensive. For most appli-
cations such perfection is unnecessary. Instead lenses will have some imperfec-
tions. Among the most common forms of distortions, and the one that matter
in this regard, is the imperfections in the parabolic structure of the lens. These
distortions are called radial distortions because of the symmetrical nature of
the lens. Radial distortions are characterized by that pixels in the center of the
distortion appear at a different distance than the pixels further out. The two
simplest form of radial distortion are called barrel distortion where the edges
appear further away and pincushion distortion where the edges appear nearer
than they actually are.

Figure 8: Barrel distortion

A combination of these imperfections are also possible. For example the mus-
tache distortion:

11

2.2 Image Source 2 THEORY

Figure 9: Pincushion distortion

Figure 10: Mustache distortion pattern

Mathematically barrel and pincushion distortions are quadratic meaning that
they increase as the square of the distance from the center. Mustache is quartic
(4th order). Usually these distortions are found in zoom lenses, but can also be

12

2.2 Image Source 2 THEORY

found in prime lenses. The lens’ characteristics should be explored to see if it
is necessary to correct for radial distortion.

Tangential distortion appears as skewed image and is caused by the physical
elements in the lens not being perfectly aligned.

Figure 11: Tangential distortion

Software correction. Use brown’s distortion model to reverse distortion. Needs
to know the lens’ characteristic for this. The following describes an alternative
method.

2.2.2 Undistort/rectification of camera

Use Brown distortion model for undistortion.

Radial distortions:

xu = (xd − xc)(1 +K1r
2 +K2r

4 + . . .) (7)

yu = (yd − yc)(1 +K1r
2 +K2r

4 + . . .) (8)

13

2.2 Image Source 2 THEORY

Tangential distortions:

xu = (P1(r
2 +2(xd− xc)2) + 2P2(xd− xc)(yd− yc))(1+P3r

2 +P4r
4 + . . .) (9)

yu = (P1(r
2 +2(yd− yc)2)+ 2P2(xd−xc)(yd− yc))(1+P3r

2 +P4r
4 + . . .) (10)

14

2.3 Feature based computer vision 2 THEORY

2.3 Feature based computer vision

2.3.1 Edge detection

An edge in computer vision is a transition between two surfaces meaning a
shift in intensity and/or color. Edge detection is the process of identifying
where these edges are and often marking them as an edge. Although there
exists methods that finds edges and gives a result on how strong the edge is, it
is more common to use some threshold to mark a pixel either as an edge or not.
Edge detection is usually used as an intermediate step in feature-based stereo
vision.

One of the most popular edge detectors is the Canny edge detector[Can86].
Likely so because of of its efficiency and good results. Canny’s aim was to
design an optimal edge detector according to a few criteria:

• Low error rate - Low amounts of false edges.

• Good localization - Edges should be close to the actual edge.

• Minimal response - There should only be one edge response.

Edge detection filters are often used as an intermediate in more complex algo-
rithms where edges provides some information needed for the success of said
algorithm.

The steps of the Canny edge detector is as follows:

The Canny edge detector is susceptible to noise so the first thing we do is to
smooth the surface using Gaussian smoothing. For example a Gaussian filter
of 5x5 such as (11) gives a good result.

K =
1

159

2 4 5 4 2

4 9 12 9 4

5 12 15 12 5

4 9 12 9 4

2 4 5 4 2

 (11)

15

2.3 Feature based computer vision 2 THEORY

Then we find the intensity gradient of the surface by applying convolution
masks in x and y direction (12):

Gx =

−1 0 1

−2 0 2

−1 0 1

 (12a)

Gy =

−1 −2 −1
0 0 0

1 2 1

 (12b)

And gradient strength and direction are found using:

G =
√
G2

x +G2
y (13)

θ = arctan
Gy

Gx
(14)

The direction is rounded off to either 0, 45, 90 or 135 degrees.

Since we only want a single edge response we use non-maximum suppression
to remove pixels that we don’t consider an edge and we are left with thin lines.

Finally we compare each pixel to two thresholds, upper and lower. Ia a pixel
is above the upper threshold it is accepted as an edge. If it is under the lower
threshold it is discarded. If it is between the upper and lower threshold it is
accepted only if it is connected to a pixel above the upper threshold.

Canny recommends an upper:lower threshold between 2:1 and 3:1.

16

3 STEREO MATCHING

3 Stereo Matching

An introduction to the various algorithms used in this thesis.

3.1 Region Based

3.1.1 Block Matching

Matching pixel for pixel usually gives more than one match and therefore does
not give a good result. Block matching can roughly be explained as matching
blocks of pixels in order to reduce the amount of matches. This usually works
better, but regions of pixels that are larger than the block where there is little
contrast will typically give more than one match.

Methods used for determining the similarity between two blocks of pixels:

SAD - Sum of Absolute Differences

SAD = |(A1 −B1)|+ |(A2 −B2)|+ . . .+ |(An −Bn)| (15)

Modern processors

MSE - Mean Squared Error

E =
(A1 −B1) + (A2 −B2) + . . .+ (An −Bn)

n
(16)

MSE = E2 (17)

Out of these two, SAD is preferable since it is an easier test.

3.1.2 Semi-Global Block Match

Introduced in [Hir05] by Hirschmuller and is an extension upon the simple
block matching

Semi-global algorithms are used to locate transitions in a picture when very
little a priori knowlegde i had bout the picture.

17

3.2 Energy minimization algorithms 3 STEREO MATCHING

3.2 Energy minimization algorithms

Energy minimization is the process of defining an energy function for a prob-
lem and the minimizing this thus giving a minimum. Depending on the algo-
rithm it may be either a local minimum or a global minimum. A collection of
such algorithms are covered in [SZS+08] and will be part of the basis for the
algorithms tested.

3.2.1 Iterated conditional modes, (ICM)

Iterated conditional mode [HD92] is a deterministic, greedy algorithm. The
way it works is that for each iteration it will choose the disparity that gives
the greatest reduction in energy until it converges. Because it always chooses
a lower value, it will converge, and usually quite fast. The problem is that it
usually converges to a local minimum and not a global minimum.

Since it converges to a local minimum, it is very dependent on the initial esti-
mate.

3.2.2 Graph cuts

There are two graph cut algorithms that will be evaluated. They are Swap-
move and Expansion-move. Both introduced in [BVZ01] and improved upon
in [KZ02]. an implementation is described in [BK04] using max-flow.

Compared to ICM, these graph cuts work my solving a global minimization
problem instead of a global one.

Swap-move works by taking two subsets of two disparity levels, α, β, and
swap their disparity levels and recalculate the energy function. If it produces a
lower minimum, the swap-move is kept.

Expansion-move works similarity, but for a set of pixels assigned the disparity
level α, it will add more pixels and recalculate the energy function. Keeping it
if it produces a lower energy.

18

3.2 Energy minimization algorithms 3 STEREO MATCHING

3.2.3 Belief propagation

Belief propagation is a message passing algorithm for performing inference on
graphical models. It calculates the marginal distribution for each unobserved
node, conditional on any observed nodes.

A thorough description is given in [FH04] the implementation used later is
described in [TF03].

Note that belief propagation is not guaranteed to converge and may get stuck
in an infinite loop repeatedly reassign disparity levels.

3.2.4 Tree-reweighted message passing, TRW

Tree-reweighted message passing was introduced in[WJW05] and an imple-
mentation is described in [Kol06].

TRW works similarity to the way belief propagation, but the message passing
is different. See implementation for further information.

3.2.5 Variational stereo matching

Variational stereo matching usually is solved the following way. The disparity
is embedded in a functional. Then the function is converted to solve a Euler-
Lagrange function and a numerical method is then used to solve the Euler-
Lagrange function.

The implementation evaluated later is described in [ZLDH11].

19

4 PLATFORM

4 Platform

In this section an overview of the various hardware and software used for eval-
uating stereo matching algorithms and building a computer vision module.

4.1 Software

In the following section the various software used in this thesis is presented.

4.1.1 OpenCV

OpenCV (Open Source Computer Vision Library) is an open source computer
vision library. It provides a foundation for making computer vision applica-
tions by providing accelerated functions for many of the graphics operations
needed. OpenCV is available under a BSD-license and the version used i this
thesis is 2.4.8.

In this project OpenCV has been used for:

• Calibrating the cameras

• Grabbing frames from the cameras

• Rectifying the frames

• Useful data formats for images of varying characteristics, matrices etc

• Displaying the images.

• Normalizing the disparity maps for visual inspection.

• Provides optimized Block Match, Semi-Global Block Match and Varia-
tional stereo matching implementations.

• Gaussian blur.

• Conversions between color spaces.

• Set camera properties.

20

4.1 Software 4 PLATFORM

4.1.2 MRF

MRF 2.2, Markov random fields, is a library offered from the Middlebury Vi-
sion lab. It provides a set of stereo matching algorithms that will be evaluated
in this thesis.

4.1.3 Operating System

Arch Linux
Arch Linux is rolling release type Linux distribution which means that instead
of releasing a new version periodically, Arch Linux is continuously updated
with the latest software available.

Arch Linux only supports 32-bit and 64-bit x86-computers but the similarly
named project Arch Linux Arm offers optimized packages for ARMv5te, ARMv6
and ARMv7 and root filesystem archives for both the Pandaboard and the Bea-
gleBone Black. Both with hardware accelerated floating point math enabled.

Angstrom Linux
Angstrom Linux is the default Linux installed on the BeagleBone Black. By
default hardware accelerated floating point math is not enabled which explains
some results found later. The author does not have any personal experience
with this Linux variant besides that gained during this thesis which is minimal.

4.1.4 Compilers

GCC
The default C-compiler found in most Linux distributions is the Gnu Compiler
Collection. The version used in this thesis is the 4.8 series.

GCC were used to compile auto-vectorized versions of OpenCV on both x86_64
and ARMv7. The results are covered in their own sections.

21

4.1 Software 4 PLATFORM

LLVM and Clang
As a supplement to GCC, LLVM with Clang were used to evaluate the auto-
vectorization capabilities of both compilers in order to choose the best one.
LLVM did not provide any added benefit and further use were discontinued.

ARMCC
ARM does offer a compiler for its own platform and it would be interesting to
see if, and if so, how much better the code produced would perform. Some
time were spent on getting a working environment going but due to license
issues and little time available, the effort were abandoned.

ICC
Intel does also offer a compiler collection for their processors. While the bina-
ries produced by GCC were good enough, some evaluation of the vectorization-
capabilities offered by ICC could be interesting.

4.1.5 Other

Various other software were also used and a short description is offered here.

Git
Git is a revision control system used to keep track of code, results and thesis
writing.

ImageMagick
ImageMagick is a collection of image manipulation tools used to resize images,
change brightness, compare disparity maps and stitching together images.

LaTeX
LaTeX is a typesetting language used to produce this thesis.

22

4.2 Programming languages used 4 PLATFORM

Libreoffice
Libreoffice is a freely available office suite used in this thesis for spreadsheets
and constructing graphs.

4.2 Programming languages used

A short summary of the various programming languages used in this thesis.

4.2.1 C and C++

Programming started in C until it was realized that the C-API offered by OpenCV
was broken. After some investigation into why seemingly correct programs re-
fused to compile, language used switched to C++. Some demonstrations are
offered in C as they worked as expected.

4.2.2 Bourne Again SHell, bash

Most of the benchmarking were done using bash-script to systematically test
various aspects of the stereo matching algorithms.

4.3 Hardware

Each piece of hardware used in evaluating the algorithms.

During this thesis, three different hardware platforms were used to evaluate
the stereo matching software. They are each given a section of their own where
relevant information regarding that platform is listed.

In addition a summary of relevant specifications for the cameras used to con-
struct a stereo camera is given at the end of the hardware section.

23

4.3 Hardware 4 PLATFORM

4.3.1 Intel platform

The main development and testing were done on a Dell Optiplex 9010 work-
station, hereby referred to as the Intel platform. A summary of relevant speci-
fications is given in table 1

CPU: Ivy Bridge i5-3470 (3.2 GHz, 4 cores)
Cache: L1: 128 KiB (instruction) / 128 KiB (data)

L2: 1024 KiB
L3: 6144 KiB

RAM: 8 GiB (DDR3), 1600MHz
OS: Arch Linux 64-bit
Year: 2012

Table 1: Listing of the Intel platform specifications.

4.3.2 Pandaboard

The Pandaboard were chosen to represent a low power ARM-platform and the
main ARM-testing were done on this platform.

A summary of relevant specifications is given in table 2

CPU: OMAP4430, ARMv7 Cortex A9 (1.0 GHz, 2 cores)
Cache: L1: 32 KiB (instruction) / 32 KiB (data)

L2: 1024 KiB
RAM: 1 GiB (DDR2), 400MHz
OS: Arch Linux ARM
Year: 2009

Table 2: Listing of the Pandaboard specifications.

24

4.3 Hardware 4 PLATFORM

Figure 12: The Pandaboard

4.3.3 BeagleBone Black

A BeagleBone Black were borrowed from a different project to supplement the
evaluation of the ARMv7 platform.

A summary of relevant specifications is given in table 3

Unlike the other platforms, the default Linux distribution on the BeagleBone
Black is Angstrom Linux which does not enable the hardware accelerated float-
ing point capabilities by default. Since the platform was only temporarily
available, the operating system were not replaced by Arch Linux ARM.

25

4.3 Hardware 4 PLATFORM

Figure 13: The BeagleBone Black

CPU: AM3359, ARMv7 Cortex A8 (1.0 GHz, 2 cores)
Cache: L1: 32 KiB (instruction) / 32 KiB (data)

L2: 256 KiB
RAM: 512 MiB (DDR3), 800MHz
OS: Angstrom Linux
Year: 2013

Table 3: Listing of the BeagleBone Black specifications.

4.3.4 Logitech C250 web cameras

In order to evaluate the stereo matching algorithms in a real-world scenario,
a stereo camera were constructed using a pair of low cost Logitech C250 web
cameras. The stereo camera were constructed by removing the plastic casing
and mounting on a Plexiglas frame 10cm apart. This distance were chosen
simply because 10cm is an easy number to work with. The stereo camera is
depicted in figure 14

A summary of relevant specifications is given in table 4

26

4.3 Hardware 4 PLATFORM

Figure 14: The stereo camera constructed

Connector USB1
Max resolution 640x480
Resolution used 320x240

Table 4: Listing of the Logitech C250 specifications.

Because the USB-controller does not have enough bandwidth available to run
both cameras on the native resolution of 640x480, the next available resolution,
320x240, were chosen. While regrettable at first, this reduction in resolution
turns out to be a nonissue for reasons that are further explored in a later section.

The cameras used in this thesis are on the low-end. Better cameras are available
without the bandwidth problems and may have features like timestamping
which could prove to be useful when estimating the state of the surrounding
environment.

27

4.4 Choice of stereo matching algorithm 4 PLATFORM

4.4 Choice of stereo matching algorithm

The overall goal is to design a computer vision module for collision detection
and avoidance. Specifically we want to emulate how humans observe their
surroundings using stereo vision. In this section stereo matching algorithms
along with the libraries that provide the implementations will be evaluated.

The algorithms will be evaluated according to a clear set of criteria and recom-
mendations for which algorithms and libraries to further use will be given.

4.4.1 Libraries evaluated

The work required to implement the algorithms given earlier is substantial.
Even more so to get fast implementations. Since there already exists available
implementations of these algorithms, any effort to implement them would be
wasted effort. Instead the implementations available are the ones that will be
evaluated.

The first library to be evaluated is the OpenCV library that offers implementa-
tions of the following algorithms:

• Block Matching.

• Semi-Global Block Matching.

• Variational Stereo Matching.

• Belief Propagation (GPU-only)

Because neither the Pandaboard nor the Beaglebone Black has OpenCL drivers
available, The GPU-implementations will not be evaluated.

The Semi-Global Block Matching has option to reduce the search directions
evaluated. Both options will be evaluated to conclude if the full search is nec-
essary.

The secondary library to be evaluated is Middlebury’s Markov Random Field
library, MRF for short. MRF offers implementations for quite a few graph cuts

28

4.4 Choice of stereo matching algorithm 4 PLATFORM

and belief propagation algorithms. The ones offered are:

• Iterated Conditional Modes.

• Expansion-move graph cut.

• Swap-move graph cut.

• Convergent Tree-reweighted Message passing. (TRWS).

• Synchronous Belief Propagation.

• Max Product Belief Propagation.

It should be noted that this library limits the possible disparity levels to 16. The
results will be less smooth, but a good result may yet be had.

4.4.2 Criteria for evaluation

In order to fairly judge the algorithm-implementations, the following set of
criteria is proposed:

1. Accuracy.

2. Efficiency.

Evaluating accuracy will be done by using a set of pictures, left and right, of a
scene to compute a disparity map. Then this disparity map will be compared
to the accompanying ground truth for that scene.

Efficiency will be evaluated by timing the algorithm-implementations on the
available platforms.

In addition to the two criteria above, the algorithms that are selected as possible
candidates will also be used in a set of special cases where they are expected
to produce bad results. This to serve as a reminder that computer vision still is
early in its infancy.

29

4.4 Choice of stereo matching algorithm 4 PLATFORM

4.4.3 Middlebury stereo data sets

The Middlebury stereo data sets [SSZ01][SS03][SP07][HS07] refer to a set of
data sets with 9 pictures each, 0-indexed, of a scene accompanied by ground
truth for image 2 and 6. Image 2 and 6 will be used as left and right picture
of the scene and the results will be compared to the ground truth belonging to
the left image.

These data sets are the standard for which stereo matching algorithms are com-
pared and evaluated.

There is a total of 38 data sets, so only 4 of them will be used. The Tsukuba set
and the Venus set from the 2001 publication [SSZ01] and the Cones set and the
Teddy set from the 2003 publication [SS03].

Tsukuba set
In figure 15 we have the left image, fig 15a, and the right, fig 15b, image of
the Tsukuba scene accompanied by the ground truth, fig 15c, seen from the left
image’s point of view.

(a) Left image (b) Right image (c) Ground truth

Figure 15: The Tsukuba set

The ground truth were computed using known disparity of specific segments.

Venus set
In figure 16 we have the left image, fig 16a, and the right, fig 16b, image of
the Tsukuba scene accompanied by the ground truth, fig 16c, seen from the left
image’s point of view.

30

4.4 Choice of stereo matching algorithm 4 PLATFORM

(a) Left image (b) Right image (c) Ground truth

Figure 16: The Venus set

Similarly to the Tsukuba set, the ground truth were computed from know dis-
parity.

Cones set
In figure 17 we have the left image, fig 17a, and the right, fig 17b, image of
the Tsukuba scene accompanied by the ground truth, fig 17c, seen from the left
image’s point of view.

(a) Left image (b) Right image (c) Ground truth

Figure 17: The Cones set

In the 2003 sets, ground truth were found using the structured light technique.
The same that is used in the Kinect system.

31

4.4 Choice of stereo matching algorithm 4 PLATFORM

Teddy set
In figure 18 we have the left image, fig 18a, and the right, fig 18b, image of
the Tsukuba scene accompanied by the ground truth, fig 18c, seen from the left
image’s point of view.

(a) Left image (b) Right image (c) Ground truth

Figure 18: The Teddy set

Like the Cones set, ground truth were found using structured light.

4.4.4 Testing methodology

Each algorithm will produce a disparity map from each of the data sets avail-
able. In some cases the produced disparity map will be scaled differently for
the ground truth. When comparing the produced disparity map to the ground
truth, two correctly identified segments corresponding to the brightest and
darkest segments in the ground truth are used to scale the produced dispar-
ity map so that these segments have the same intensity. Every level in between
should then also be the correct level unless the algorithm has done something
wrong.

The scaled disparity map is subtracted from the ground truth and then a thresh-
old of 3% is applied. Every pixel above 3% is then marked as black in a new
image hereby referred to as the error map. The black pixels represent the errors
made by the algorithm.

Rating the accuracy of the algorithms are done by visual inspection of both the
disparity map and the error map.

32

4.4 Choice of stereo matching algorithm 4 PLATFORM

A good result is one that captures the main features in the ground truth and
have few to none black pixels in the error map.

A poor result is one where there is an extensive amount of black pixels in the
error map but the main features from the ground truth can still be found in the
disparity map.

A bad result is one where there is little to no similarity between the disparity
map and the ground truth. The error map will have few to none white pixels
left in such a result.

For each algorithm the computed disparity map and the error maps is pre-
sented alongside with the left image from the data set used and its correspond-
ing ground truth for easy comparison.

A discussion on the accuracy of the algorithm is presented after the results.
Then the efficiency results are presented with a short comment or a minor dis-
cussion should there be any results that need further explanation.

After the results from each library is presented, a short summary is given.

33

4.5 Results from OpenCV 4 PLATFORM

4.5 Results from OpenCV

4.5.1 Block matching

In figure 19, from left to right, first column is the left image from the Mid-
dlebury 2001 and 2003 data sets (Tsukuba, Venus, Cones and Teddy), second
column is the ground truth, third is the computed disparity map using block
match and in the last column the erroneous pixels are colored black.

Figure 19: Accuracy results using block matching

The most noticeable feature in the results is the large, black bar on the left side
and is caused by the algorithm skipping that amount into the picture before

34

4.5 Results from OpenCV 4 PLATFORM

matching. It is possible to reduce this area an increased computational cost.

Except from a few problematic segments in the Venus set, the black areas in the
computed disparity map for a contour to the individual objects in the scene. It
is noticeably stronger on the left side, especially in the Teddy set, and is caused
by occlusion and a left-centric approach. The disparity map is computed for
the left image’s point of view and occluded areas in the right image is ignored.

The few segments not accounted for is caused bye there being segments with
little detail which gives multiple false matches. This is seen to the top right
area in the Tsukuba set, top right in the Venus set and around the teddy in the
Teddy set.

Overall there are quite the few erroneous pixels, but the at the same time we
see that main features in the ground truth is found using block matching.

The time used to run block matching on the data sets is given in table 5

Block Matching Tsukuba Venus Cones Teddy
Intel platform 7.3 ms 7.0 ms 7.0 ms 7.3 ms
Pandaboard 313 ms 600 ms 611 ms 607 ms
BeagleBone Black 196 ms 427 ms 425 ms 425 ms

Table 5: Block matching

The difference is staggering between the Pandaboard and the Intel platform.
For this specific algorithm the Pandaboard uses about 80 times as much time
as the Intel platform. Even if it is this slow, it can be used in an application that
need a fast response to changes in the surroundings.

35

4.5 Results from OpenCV 4 PLATFORM

4.5.2 Semi-global block matching

In figure 20, from left to right, first column is the left image from the Mid-
dlebury 2001 and 2003 data sets (Tsukuba, Venus, Cones and Teddy), second
column is the ground truth, third is the computed disparity map using semi-
global block match and in the last column the erroneous pixels are colored
black.

Figure 20: Accuracy results using semi-global block matching

Compared to simple block matching, semi-global block matching produces far
lest black spots. There is still a black area to the left, but much smaller. In
Tsukuba, to the top right, the black spot is smaller. The problematic areas in

36

4.5 Results from OpenCV 4 PLATFORM

Venus are gone and the only prominent feature is caused by occlusion in Teddy.

Some errors are produced by the disparity level being slightly wrong. The
computed segments are not as smooth as the corresponding areas found in the
ground truth.

Besides the errors produced by being left-centric, the results are very good.

The time used to run semi-global block matching on the data sets is given in
table 6

SG Block Matching Tsukuba Venus Cones Teddy
Intel platform 32.9 ms 59.7 ms 62.6 ms 62.6 ms
Pandaboard 2571 ms 4986 ms 5040 ms 5072 ms
BeagleBone Black 1700 ms 3362 ms 3527 ms 3580 ms

Table 6: Semi-global block matching

Already here it shows that by itself the ARM based platforms can not be used
without considerable speedup. 1 frame per 5 seconds is too slow to avoid any
collision.

The Intel platform still performs very good with about 17 frames per second.

37

4.5 Results from OpenCV 4 PLATFORM

4.5.3 Semi-global block matching, all directions

Essentially the same as the previous algorithm but with all directions evalu-
ated.

In figure 21, from left to right, first column is the left image from the Mid-
dlebury 2001 and 2003 data sets (Tsukuba, Venus, Cones and Teddy), second
column is the ground truth, third is the computed disparity map using semi-
global block match with all directions evaluated and in the last column the
erroneous pixels are colored black.

Figure 21: Accuracy results using semi-global block matching with all direc-
tions evaluated

38

4.5 Results from OpenCV 4 PLATFORM

The results are essentially the same as those found by SGBM so the conclusion
is simple. Evaluating all eight directions is unnecessary as it does not add any
benefit.

The time used to run semi-global block matching (all directions) on the data
sets is given in table 7

SGBM-all Tsukuba Venus Cones Teddy
Intel platform 47.0 ms 88.9 ms 91.4 ms 91.6 ms
Pandaboard 3373 ms 6608 ms 6656 ms 6701 ms
BeagleBone Black 2338 ms 4460 ms 4641 ms 4700 ms

Table 7: Semi-global block matching, all directions

Evaluating all directions increases the computational cost and that is no good
for the ARM-platforms. On the Intel platform the frame rate is down to about
11 frames per second which is still very good and enough to detect a collision
within reason.

39

4.5 Results from OpenCV 4 PLATFORM

4.5.4 Variational stereo matching with consistency constraint left/right

In figure 22, from left to right, first column is the left image from the Mid-
dlebury 2001 and 2003 data sets (Tsukuba, Venus, Cones and Teddy), second
column is the ground truth, third is the computed disparity map using varia-
tional stereo matching and in the last column the erroneous pixels are colored
black.

Figure 22: Accuracy results using Variational stereo matching

With a slight exception in Teddy, there are no black spots meaning that oc-
cluded spots are assigned a disparity level. This would have been an improve-
ment over SGBM and BM had it only been accurate as well. Comparing the

40

4.5 Results from OpenCV 4 PLATFORM

result with the ground truth reveals that OpenCV’s implementation produces
a poorer result compared to SGBM.

It would be unfair to conclude that the results are poor as they do in each one
get the main features found in the ground truth. The problem however it that
some errors are not just a little off, but quite a lot. The disparity map produced
using the Cones set is very problematic as there are several bright spots that
are clearly quite wrong.

It should be noted that the Cones set produces the worst result, but the other
sets are not that far behind. In each result, where there should be clear, crisp
edges, there is instead patchy or diffuse edges.

Despite the lack of black areas produced by occlusion, the results produced
using variational stereo matching are not better than those produced by SGBM.

The time used to run variational stereo matching on the data sets is given in
table 8

Variational Tsukuba Venus Cones Teddy
Intel platform 141 ms 404 ms 409 ms 409 ms
Pandaboard 4570 ms 13269 ms 13310 ms 13380 ms
BeagleBone Black 8782 ms 20386 ms 21410 ms 20773 ms

Table 8: Variational

Variational stereo matching is the most costly of the algorithms provided by
OpenCV. The Pandaboard uses 13 seconds on one frame while the BeagleBone
Black uses as much as 21 seconds. Clearly something is different here since the
BeagleBone is slower. This issue is will be explored further in the next section.

The Intel platform is also slowing down to just over 2 frames per second. Con-
sidering the performance of the other algorithms offered, there is little reason
to use variational stereo matching in any collision detection module.

41

4.6 MRF library 4 PLATFORM

4.6 MRF library

The second library evaluated is the algorithms implemented in the MRF library
found on the Middlebury Vision website. Details in given in [SZS+08]

It should be noted that unlike OpenCV’s algorithms, all the ones found in MRF
specifies a discrete disparity levels. For each algorithm, 16 discrete disparity
levels where used.

4.6.1 Iterated conditional mode

In figure 23, from left to right, first column is the left image from the Mid-
dlebury 2001 and 2003 data sets (Tsukuba, Venus, Cones and Teddy), second
column is the ground truth, third is the computed disparity map using iterated
conditional mode, ICM, and in the last column the erroneous pixels are colored
black.

The disparity maps computed using iterated conditional mode are somewhat
different from those found in OpenCV.

The disparity maps computed using the Tsukuba set and the Venus set are
the least problematic. A visual inspection of the results will tell that several
features like the lamp, the head and the newspaper is close to being correct.
The rest of the disparity map is filled with errors.

The disparity maps produced using the Cones set and the Teddy set are very
problematic. Any observer would have great difficulty telling what the scene
is supposed to be from the results.

In conclusion the results produced using iterated conditional mode are too
poor for any further use.

The time used to run iterated conditional mode on the data sets is given in table
9

Out of the algorithms offered by MRF, ICM is the fastest. Yet only comparative
to variational stereo matching.

42

4.6 MRF library 4 PLATFORM

Figure 23: Accuracy results using ICM

ICM Tsukuba Venus Cones Teddy
Intel platform 0.4 s 0.4 s 0.5 s 0.4 s

Table 9: Iterated conditional mode

4.6.2 Expansion-move graph cut

In figure 24, from left to right, first column is the left image from the Middle-
bury 2001 and 2003 data sets (Tsukuba, Venus, Cones and Teddy), second col-
umn is the ground truth, third is the computed disparity map using expansion-

43

4.6 MRF library 4 PLATFORM

move method and in the last column the erroneous pixels are colored black.

Figure 24: Accuracy results using expansion

The results found by using the Tsukuba set and the Venus set are quite good.
There are few black spots. The edges are crisp and the areas that are marked
as wrong are for the most part marked as such because of only allowing 16
disparity levels. Some segments are marked wrong, but they are not far off.

The results found by using the Cones set is chaotic and a poor match to the
ground truth.

The Teddy set is less chaotic, but most segments are similarly far off.

44

4.6 MRF library 4 PLATFORM

Disparity maps produced using expansion are also too poor for further use.

The time used to run expansion-move graph cut on the data sets is given in
table 10

Exp Tsukuba Venus Cones Teddy
Intel platform 2.7 s 5.5 s 9.8 s 12.2 s

Table 10: Expansion-move graph cut

Even for the rather small resolution of the Tsukuba set, 2.7 seconds is still far
too long. The extreme case of the Teddy set is even worse.

45

4.6 MRF library 4 PLATFORM

4.6.3 Swap-move graph cut

In figure 25, from left to right, first column is the left image from the Mid-
dlebury 2001 and 2003 data sets (Tsukuba, Venus, Cones and Teddy), second
column is the ground truth, third is the computed disparity map using Swap
method and in the last column the erroneous pixels are colored black.

Figure 25: Accuracy results using swap

The results found using the swap method are comparable to those found us-
ing expansion. The Tsukuba set and the Venus set produces some errors, but
nothing major, while the Cones set and the Teddy set are too chaotic.

46

4.6 MRF library 4 PLATFORM

As with the other energy minimization algorithms, Swap is too poor for further
use.

The time used to run swap-move graph cut on the data sets is given in table 11

Swap Tsukuba Venus Cones Teddy
Intel platform 2.5 s 4.7 s 5.8 s 9.9 s

Table 11: Swap-move graph cut

The timing results from swap-move is comparative to expansion-move and
that is too slow.

47

4.6 MRF library 4 PLATFORM

4.6.4 Sequential tree-reweighted message passing for energy minimization

In figure 26, from left to right, first column is the left image from the Middle-
bury 2001 and 2003 data sets (Tsukuba, Venus, Cones and Teddy), second col-
umn is the ground truth, third is the computed disparity map using Sequential
Tree-re-weighted Message Passing and in the last column the erroneous pixels
are colored black.

Figure 26: Accuracy results using Sequential Tree-re-weighted Message Pass-
ing

Like Swap-move and Expansion-move, TRWS produces comparable results.
The Tsukuba set and the Venus set are the ones that produces the best results

48

4.6 MRF library 4 PLATFORM

with minor errors, while the Cones set and the Teddy set produces chaotic
results.

Like the previous algorithms, TRWS is also producing too poor results.

The time used to run sequential tree-reweighted message passing on the data
sets is given in table 12

TRWS Tsukuba Venus Cones Teddy
Intel platform 6.1 s 10.1 s 47.7 s 47.7 s

Table 12: Sequential tree-reweighted message passing

Tree-reweighted message passing is even slower. The results from the Teddy
set and the Cones set especially stand out. The explanation is that the algorithm
is “stuck” and sort of times out.

49

4.6 MRF library 4 PLATFORM

4.6.5 Synchronous belief propagation

In figure 27, from left to right, first column is the left image from the Mid-
dlebury 2001 and 2003 data sets (Tsukuba, Venus, Cones and Teddy), second
column is the ground truth, third is the computed disparity map using syn-
chronous belief propagation and in the last column the erroneous pixels are
colored black.

Figure 27: Accuracy results using Synchronous Belief Propagation

Out of the energy minimization techniques, synchronous belief propagation is
the one that has produced the most accurate disparity map for the Tsukuba
set. There are some segments at the top and at the bottom that are marked as

50

4.6 MRF library 4 PLATFORM

errors, except for those the result is comparable to SGBM.

The disparity map produced using the Venus set is also quite good. Most of
the errors can be attributed to the limited amount of disparity levels allowed.

The results produced using the Cones set and the Teddy set are comparable til
the previous MRF-algorithms. They are chaotic and of such low accuracy that
this algorithm will not be used any further.

The time used to run synchronous belief propagation on the data sets is given
in table 13

BP-S Tsukuba Venus Cones Teddy
Intel platform 1.4 s 4.7 s 34.3 s 34.3 s

Table 13: Synchronous belief propagation

Synchronous belief propagation gives a decent result on the Tsukuba set. And
like TRWS is seems “stuck” on the Cones set and the Teddy set.

51

4.6 MRF library 4 PLATFORM

4.6.6 Max product belief propagation

In figure 28, from left to right, first column is the left image from the Mid-
dlebury 2001 and 2003 data sets (Tsukuba, Venus, Cones and Teddy), second
column is the ground truth, third is the computed disparity map using Belief
Propagation M and in the last column the erroneous pixels are colored black.

Figure 28: Accuracy results using max product belief propagation

Similar to synchronous belief propagation, but slightly worse. More segments
are marked as wrong in the Tsukuba set, the Venus set is almost identical and
the two last ones are similarly chaotic. Neither this algorithm will see any
further use.

52

4.6 MRF library 4 PLATFORM

The time used to run max product belief propagation on the data sets is given
in table 14

BP-M Tsukuba Venus Cones Teddy
Intel platform 9.4 s 10.3 s 36.2 s 33.7 s

Table 14: Max product belief propagation

Max product belief propagation is the slowest of the algorithms. Like the pre-
vious algorithm, it also seems stuck on the last two data sets.

It seems likely that the chaotic result and the “stuck” energy minimization is
related.

53

4.7 MRF’s accuracy problems revisited 4 PLATFORM

4.7 MRF’s accuracy problems revisited

The most unsettling about the accuracy of the results produced so far with
MRF is that the results in other publications are very good. Clearly something
is wrong and it turns out that MRF was used in a sub-optimal manner.

It is possible to set the amount of disparity levels allowed to a much higher
number than the default of 16. The problem is that MRF was ruled out because
of the time and not the accuracy, but a fairer test with handpicked disparity
levels should be used if proper accuracy were to be tested.

By the time MRF were revisited, there were too little time left to redo the ex-
periments. To mend the situation, this section is provided instead.

The results from the MRF-algorithms is clear. The Tsukuba set will do nicely
with 16 disparity levels.

According to the paper published on MRF[SZS+08] suggests that 20 disparity
levels should be used on the Venus set and 60 on the Teddy set.

In figure 29 a comparison of accuracy versus the amount of disparity allowed
is presented.

Given enough disparity levels, MRF’s expansion-move will give good results
but at an increased cost as seen in table 15.

Disparity 16 24 32 40 48 60
Time(s) 12.2 s 19.4 s 19.3 s 28.7 s 34.0 s 44.0 s

Table 15: Increase in time with more disparity levels using expansion-move on
Teddy set

The problem should be clear where this is going. Increasing the amount of dis-
parity levels, greatly increases the computational cost. Going from 16 disparity
levels up to 60 increases the computational cost by a factor of almost 4.

What then is the value of the results gathered so far? The first thing is that
methods like graph cuts and belief propagation needs to be allowed a certain

54

4.7 MRF’s accuracy problems revisited 4 PLATFORM

(a) 24 disparity levels (b) 32 disparity levels

(c) 40 disparity levels (d) 48 disparity levels

Figure 29: Accuracy versus disparity levels allowed in MRF’s Expansion-move

amount of disparity to produce good results. If not, then they don’t work at
all.

Secondly is that even if the method were efficient enough for use in a live sys-
tem in the first place, the methods would have to be efficient enough to use
with a large range of values. This creates a situation were the MRF would ei-
ther work or not at all unless some guarantee can be made about the maximum
depth in the picture.

The conclusion still stands that MRF simply is too slow for any use even if the
accuracy-issue is addressed.

55

4.8 Closer look at performance issues 4 PLATFORM

4.8 Closer look at performance issues

The results are quite clear that there is a significant gap in performance between
the ARM-platforms and the Intel-platform. In this section a closer into what
happens under the surface that would explain some gap as well as what steps
can be taken to reduce it.

4.8.1 Pandaboard vs BeagleBone Black

Except for variational stereo matching, all test ran faster on the BeagleBone
Black than it did on the Pandaboard. The improvement is listed in table 16.

Alg. Tsukuba Venus Cones Teddy
BM 60 % 41 % 44 % 43 %
SGBM 51 % 48 % 43 % 42 %
SGBM-all 44 % 48 % 43 % 43 %
Var. -48 % -35 % -38 % -36 %

Table 16: Percentage-wise improvement when running on the BeagleBone
Black over the Pandaboard.

The most peculiar result here is that variational stereo matching is slower while
all the others are faster. This is because variational stereo matching is very
dependent on floating point math which is hardware accelerated by default on
Arch Linux ARM. Had it been enabled in Angstrom, then the results would be
very different.

The Tsukuba set which is a lower resolution than the other data sets. This is a
peculiar result which will be further explored later in this section.

The last thing to note is that the BeagleBone Black is about 40 % to 60 % faster
than the Pandaboard which is most likely explained by faster RAM and the
difference between ARC Cortex A9 and ARM Cortex A8.

56

4.8 Closer look at performance issues 4 PLATFORM

4.8.2 Pandaboard vs Intel

Considering the results found when running the same code on the Intel plat-
form and the Pandaboard, the difference in performance is vast. In some test
cases the Pandaboard used as much as 75 times as much time.

This performance gap raises some questions. Why is the performance of the
Pandaboard so poor. The ARM processor is clocked slower than the Intel pro-
cessor. The Pandaboard is equipped with DDR2 ram compared to DDR3 on
the Intel platform, yet neither of these things are sufficient to explain the per-
formance gap.

To explain this it is perhaps best to look at it differently. Why does the In-
tel platform perform so much better? Part of the answer lies in the nature of
what OpenCV works, which is a lot of matrix operations. Accelerating such
operations will yield a better performance. Which leads to the matter of SIMD-
instructions sets like MMX and SSE2.

OpenCV started as an Intel project. That the code were written to take advan-
tage of the capabilities present on modern Intel processors should come as no
surprise.

As mentioned earlier, the block matching algorithms compare blocks by either
computing the Sum of Absolute Differences, SAD, or by computing the Mean
Square Error, MSE. Of these, SAD is preferable because the operation costs
less CPU-cycles. But the real improvement comes from special instructions
provided by SSE2, psadbw, which computes the Sum of Absolute Differences
of an x by x block in 3 or 4 cycles.

Disassembling parts of the OpenCV libraries and looking for psadbw should
give positive results:

objdump -d libopencv_core.so | grep sad

21 e760 : 66 0 f f6 ca psadbw %xmm2,%xmm1
21 e7b3 : 66 0 f f6 ca psadbw %xmm2,%xmm1

objdump -d libopencv_imgproc.so | grep sad

19d616 : 66 41 0 f f6 d6 psadbw %xmm14,%xmm2

57

4.8 Closer look at performance issues 4 PLATFORM

ARMv7 (Non-x86 platforms in general) does not have this SSE2-instruction
set. Instead ARM has their own SIMD-instruction set called NEON. Like SSE2,
NEON provides an instruction for computing the Sum of Absolute Differences,
USAD.

Disassembling the ARMv7-versions of OpenCV does not find this NEON-instruction.

In Arch Linux, one can find the default build options in /etc/makepkg.conf.
These build options can in turn be overridden in each separate package. In-
specting these files suggest that OpenCV was not built with NEON-support
but only with VFPv3.

4.8.3 Improving ARM performance using aggressive compiler options

In the previous section it was found that OpenCV was most likely not com-
piled with NEON-support. Rebuilding OpenCV with NEON-support is a good
starting step to increase the performance.

Since OpenCV is not specifically written with NEON-support, an attempt at
increasing performance is done by using the compilers auto-vectorization ca-
pabilities.

The following compiler options were used:

armv7l−unknown−l inux−gnueabihf−g++ −O3 stereo_match . cpp
$ (pkg−conf ig −− l i b s opencv) −mfpu=neon −f t r e e−v e c t o r i z e
−mfloat−abi=hard −funsafe−math−opt imizat ions

The results are listed in table 17

The results are impressive given that no changes to OpenCV were necessary.

Block matching had improved by about 11% which is good. Semi-global block
matching improved the most both reduced directions and full directions. Since
it is the same code that is running, the lower improvement on the full directions
suggests that the part of the code responsible for checking directions were not
improved much or at all and instead a part of the code that is the same both
times. The 8 % improvement of an algorithm that uses much floating point

58

4.8 Closer look at performance issues 4 PLATFORM

BM 313 ms 600 ms 611 ms 607 ms
NEON 285 ms 538 ms 549 ms 547 ms
Imp. 10 % 12 % 11 % 11 %
SGBM 2571 ms 4986 ms 5040 ms 5072 ms
NEON 1839 ms 3539 ms 3604 ms 3608 ms
Imp. 40 % 41 % 40 % 41 %
SGBM-all 3373 ms 6608 ms 6656 ms 6701 ms
NEON 2571 ms 4948 ms 5029 ms 5034 ms
Imp. 31 % 34 % 32 % 33 %
Var. 4570 ms 13269 ms 13310 ms 13380 ms
NEON 4234 ms 12238 ms 12306 ms 12341 ms
Imp. 8 % 8 % 8 % 8 %

Table 17: Improvement of auto-vectorized code on the Pandaboard

math is also impressive.

There are clear improvements here, but still far off. Disassembly of the new
libraries did not show any sign of the USAD-instruction.

The auto-vectorized binary was only tested on the Pandaboard as the Beagle-
Bone Black required invasive changes to the software stack. Since it was bor-
rowed from a different project it was decided against spending time on this.

4.8.4 Improving Intel performance using aggressive compiler options

Considering the improvement gained by using aggressive compiler flags on
the ARMv7 platform, it is natural to consider the possible improvements on
the Intel platform as well. As previously noted, OpenCV is already favorably
optimized on x86_64.

As noted previously, Arch Linux provides OpenCV-binary libraries built with
SSE2 optimizations. It is unlikely that there is much more to gain from further
optimizations compared to the standard binary.

59

4.8 Closer look at performance issues 4 PLATFORM

The Intel processor supports the following instruction sets in addition to SSE2:
PNI(SSE3), SSSE3, SSE4(SSE4.1 and SSE4.2) and AVX.

The following compiler options where used:

−march=x86−64 −mtune=nat ive −O3 −mssse3 −msse4 . 1 −msse4 . 2
−mavx −pipe −f s t a c k−p r o t e c t o r −−param=ssp−buffer−s i z e =4

Alg. Tsukuba Venus Cones Teddy
BM 6.7 s 6.3 s 8.9 s 6.7 s
SGBM 32.5 s 58.6 s 61.5 s 61.8 s
SGBM-all 46.6 s 87.6 s 90.7 s 90.4 s
Var. 144 s 413 s 417 s 417 s

Table 18: timings of algorithms running auto-vectorized code

Alg. Tsukuba Venus Cones Teddy
BM 9 % 11 % -22 % 9 %
SGBM 1 % 2 % 2 % 1 %
SGBM-all 1 % 1 % 1 % 1 %
Var. -2 % -2 % -2 % -2 %

Table 19: Percentage-wise improvement of auto-vectorized code

The small difference before and after can easily be attributed to other factors
like competing processes and the accompanying scheduling. There is no bene-
fit to further optimization on the Intel platform. The large percentage fluctua-
tions from BM is simply because it is very fast to begin with.

Disassembly of the compiled OpenCV library shows that where there previ-
ously were psadbw-instructions, there is now found the AVX counterpart vp-
sadbw.

Similarly, if AVX is not used, GCC produces binaries with the SSE4.1 counter-
part mpsadbw.

In order to gain the benefit of these wider instructions, changes in the form of

60

4.8 Closer look at performance issues 4 PLATFORM

better alignment is needed in the OpenCV library.

61

4.9 Special cases where stereo matching does not work 4 PLATFORM

4.9 Special cases where stereo matching does not work

Considering the disparity maps produced when running OpenCV algorithms
on the Middlebury data sets, the results seem very optimistic in what they
are capable of. In reality the scenes are often far less perfect. Occlusion has
already been covered earlier. That is to say segments in a stereo image set that
only exists i one of them as some other segment is overlapping where it should
have been.

Another case where these algorithms fail to perform is in scenes with ambigu-
ous segments. For example a white wall will have very little information to
match against. Take for example the scene in figure 30:

(a) Left (b) Right

Figure 30: Scene with ambiguous areas

Running each of the OpenCV-algorithms with this set produces results that are
not very good. The disparity maps produced are presented in figure 31.

The simple block matching only gets the areas that are not ambiguous. Which
can be to an advantage. By marking all the black segments as unreliable, a the-
oretical path planner could take this information into account when deciding
where to go.

The semi-global block matching fares similarly, but both of them mark spots in
the black segments with a wrong disparity level as the gray should be some-
where between the intensities of the segments it does get right.

62

4.9 Special cases where stereo matching does not work 4 PLATFORM

(a) Block Matching. (b) Semi-Global Block Matching.

(c) Semi-Global Block Matching, full (d) Variational Stereo Matching

Figure 31: OpenCV-algorithms on ambiguous scene

Variational are perhaps the worst one as the ambiguous segments are wrongly
marked as well as the non-ambiguous segments are also wrongly marked. An-
other reason to not using this algorithm for any proper solution.

63

4.9 Special cases where stereo matching does not work 4 PLATFORM

(a) Left image. (b) Wide leg.

Figure 32: Large SAD-window gives wide leg.

On a related issue. The effects of using a large SAD-window also gives inter-
esting results on scenes with ambiguity. Figure 32 gives an example of this:

Here the disparity segment corresponding to the table’s leg is quite much larger
than the actual size which is a result from the large SAD-window used, 25, and
the ambiguous area behind it. It would be best to avoid large SAD-windows
where it is possible to avoid such results.

64

4.10 Improving performance by shaping workload 4 PLATFORM

4.10 Improving performance by shaping workload

In this section other was of improving performance on the ARM-platforms will
be evaluated.

4.10.1 Threading

Since it is more and more common to have multi-core CPUs, one way of speed-
ing up the stereo matching algorithm by slicing up the image pair and then
match each new pair instead. A visualization of this is depicted in figure 33 for
parallelization using 4 threads.

For parallelization using SGBM, the process is as follows:

1. Retrieve an image pair.

2. Slice each image into n parts where n is the number of threads used.

3. For each slide run SGBM in its own thread to produce part of the dispar-
ity map.

4. Reassemble the slices to produce the final disparity map.

The increase in performance is theoretically linear, but there are many factors
that can reduce the performance so in practice there is not such an improve-
ment.

There are downsides to this approach as well. The other processes will be
starved of resources if all the cores are busy with stereo matching.

4.10.2 Lower resolution

Accelerating the code through the various methods mentioned previously can
and do give improvements, but for platforms like the Pandaboard they are not
enough. So the last thing then is to make the workload small enough so that
the platform becomes a viable one.

65

4.10 Improving performance by shaping workload 4 PLATFORM

Figure 33: Threading visualized

Using the Cones set, a test were devised to test the possible speedup gained by
scaling the data set down. The Cones set used earlier is 450 pixels wide and
375 pixels tall. From this pair, 25 new pairs were created each time reducing
the height by 10 pixels while maintaining aspect ratio.

Using the NEON-enabled OpenCV-library to stereo match using the SGBM-
method and running each pair 5 times to get an average running time. The
speedup is calculated as follows in equation. 18:

Improvement factor =
Rate of reduced image (Hz)
Rate of original image (Hz)

(18)

66

4.10 Improving performance by shaping workload 4 PLATFORM

The factor of improvement is plotted against image height in figure 34.

Figure 34: Improvement factor gained by using smaller resolution

There are two results of special note here. The first is that by reducing the
resolution enough, SGBM becomes viable on the Pandaboard and it is not nec-
essary to shirk it all the way down to a third in height either.

The second interesting result here is the abrupt jumps from 335 to 325 pixels
and from 225 to 215 pixels in height. Especially the last jump that is almost the
double in performance improvement. Most likely these jumps are caused by
fewer cache misses.

It is important here to remember that these results are specific to the Pand-
aboard running a self-compiled version of OpenCV. Other implementations
will not necessarily give the same results. What is offered is instead a method
for tuning said implementations so that “sweet spots” like the above can be
found and taken advantage of.

There is one concern regarding this method and that is what detail is lost? To
address this the Cones pair were resized to 288x240 pixels which is the same
height as one of the resolutions supported by the Logitech cameras, 320x240

67

4.10 Improving performance by shaping workload 4 PLATFORM

pixels. From the graph above this should be an improvement factor of just
below 3.

A disparity map were produced from the 288x240 pixel pair and is presented in
figure 35b alongside the disparity map produced using the original resolution
in figure 35a.

(a) 450x375 px (b) 288x240 px

Figure 35: Original and resized resolution

Note the difference in brightness. This change reflects the change in distance in
the corresponding pixels which is now less. Further note that all the main fea-
tures of the disparity map is still there while the occluded areas are marginally
reduced. As long as there is sufficient detail in the image pair used then suffi-
ciently good disparity maps can still be constructed.

It should be noted that the aspect ratio of the camera resolution here is 3/4

and not 6/5. To get to the “sweet spot” a lower resolution can be selected or a
region of interest can be used within the image pair.

68

4.11 Camera calibration 4 PLATFORM

4.11 Camera calibration

As mentioned earlier in the theory it is near impossible to create cameras with-
out optical distortions. Some distortions are acceptable because there exists
mathematical models that can be used to rectify the images taken.

OpenCV offers implementations for both measuring the distortions in a camera
for correcting the image using the detected intrinsic and extrinsic properties of
the camera.

Figure 36: Image retrieval subsystem

4.11.1 Calibrating with OpenCV

The implementation uses a set of pictures with a known pattern. Different
patterns are supported but in this thesis a 8x8 chessboard pattern is used. The
chessboard in question is depicted in figure 37.

Then the corners are detected using OpenCV:

findChessboardCorners ()

The results are shown here in figure 38:

This generates a set of matrices with the extrinsic and intrinsic properties of
the cameras. In turn using this to rectify the image using OpenCV:

in i tUndis tor tRec t i fyMap ()

69

4.11 Camera calibration 4 PLATFORM

Figure 37: 8x8 chessboard used

Figure 38: The detected corners marked

An example of the remapped image is found in figure 39

Notice that the spots align.

Although the method is not perfect and may need a few tries. An extreme
example is presented in figure 40.

70

4.11 Camera calibration 4 PLATFORM

Figure 39: Calibrated spot of roof with repeating pattern

Figure 40: Wrongly calibrated camera

OpenCV does also provide calibration options for stereo cameras that in ad-
dition will provide information such as rotation matrix between the cameras
coordinate systems and translation vector between the coordinate systems.

71

4.11 Camera calibration 4 PLATFORM

4.11.2 Rectification timings

Since rectifying the images is cost computational resources some effort were
put into identifying the required cost. Using a resolution of 320x240 pixels
and running on the Intel-platform, a running average of the rectification used
about 7.5 ms. This cost were deemed small compared to the stereo matching
algorithm and therefore only a minor issue.

72

4.12 Collision detection and avoidance 4 PLATFORM

4.12 Collision detection and avoidance

Images of a scene accompanied with a disparity map is enough to begin rudi-
mentary 3D-scene reconstruction. Extending this to a continuous stream of im-
ages and disparity maps, motion estimation of objects is possible. In turn more
complex path planning is possible and estimation of collision course with other
agents2 can be avoided.

Clearly there is room for complex motion planning and this is the reason why
the choice of algorithm for stereo matching is important. It is desirable to build
upon this to construct a robust computer vision system module. However, ad-
vanced motion planning is outside the scope of this thesis as it is only intended
to set the foundation for it.

Instead the simplest possible collision detection system is proposed; Is there
anything closer than a set threshold? If yes, then stop.

1. Decide on a minimum safe distance.

2. Calculate the corresponding disparity level.

3. Threshold the disparity map at the selected disparity level.

4. Sum the remaining pixels as a filter to exclude the possibility of wrongly
matched segments.

It should be clear that the quality of the disparity map is negligible, as long it is
capable of detecting objects that are close to the cameras. The results in figure
22, made using variational stereo matching, have such bright spots and would
perhaps not be a good candidate at all.

In this instance we can use simple block matching to create the disparity map.
And thus enabling the evaluated ARM-based platforms for this specific sce-
nario.

2Other entities acting acording their own set of rules

73

4.12 Collision detection and avoidance 4 PLATFORM

Figure 41: Module for computer vision with collision detection

Extending the collision detection

The described collision detection above is of little value as it does not provide
anything beyond what a simple ultrasound based distance sensor would pro-
vide. To justify constructing a collision detection module based on computer
vision, more is needed.

The most promising aspect of using computer vision is by visually sensing the
surroundings like humans and estimating what will happen given the current
and previous state. In a multi-agent environment it is necessary to act accord-
ingly. For example a crowded street is filled with individual agent who all are
able to maneuver to their destination by observing others and passively com-
municating their own trajectory simply by walking along an available route
with minor modifications as they arise. By emulating such behavior, we would
increase a robotss autonomy.

While creating the modules necessary for such autonomy is outside the scope
of this thesis, instructions for how one might extend upon the foundation set
is given instead.

Each segment in the disparity map represents at least one object or agent as
the segments themselves are insufficient to determine the boundaries between
possible objects and/or agents. Further steps to clearly identify this is needed
and research into object recognition is suggested. By using a spherical coordi-
nate system, the segment’s disparity value can be used to find the distance, r,

74

4.12 Collision detection and avoidance 4 PLATFORM

to the object or agent.

Using an edge detector like the Canny edge detector on the segments and fit a
box around it. The coordinates of the center of the box is a good candidate for
that object or agents coordinates, θ,φ.

To reduce the amount of objects this approach would identify, it is suggested to
merge segments proximity and similar disparity level. This could potentially
merge an agent with the surroundings so it is clearly not this straightforward.

Keep a list of identified agents together with coordinates from the last few sec-
onds. Use this to extrapolate path and determine speed and in turn determine
what steps, if any, is required to avoid any collision with any of the detected
agents. Avoiding stationary objects should simply be left to the path planner.

While avoiding any situation where a possible collision may happen, it is im-
portant at the same time to have some assertive behavior or else risk being
unable to perform.

75

5 FOCUSED CV

5 Focused CV

While simply reducing the resolution of the image pairs gives considerable
gains, a more refined approach is proposed in this section. An important ob-
servation:

• A scene usually changes little from frame to frame.

This fact can be taken advantage of in various circumstances. A few ideas are
proposed in this section.

5.1 The stationary case

When standing still, each subsequent frame can be subtracted from the pre-
vious frame to produce a new frame when the non-zero portions represent a
change since the point in time the last frame were taken. Because the observer
is not moving, any movement must belong to other agents in the scene.

If it is an agent moving, there is a likelihood that the shape of the agent can
be extracted from a disparity map of the scene given that one has been made.
Should this be the case, then fitting a box around the old and new position of
the agent and the new disparity of the agent can be found as well as any area
that were previously occluded.

More complex situations where the temporal difference frame contains seg-
ments belonging to overlapping agents. It this case it becomes increasingly
difficult to identify an optimal box to investigate. Either a box is encompassed
around all the overlapping segments or an attempt at partitioning the problem
into smaller problems can be attempted.

The boxes need to be wide enough to include the necessary information from
each camera.

By computing the disparity map for these boxes, the old disparity map can be
updated as all new information is accounted for.

76

5.2 The non-stationary case 5 FOCUSED CV

5.2 The non-stationary case

When actively moving around there will constantly be changes in the robot’s
view. Simply subtracting one frame from the next will no longer work as there
will be introduced changes over the whole angle of view. The only plausible
segments that can be ruled out is the background and that is if there is no
rotation in the movement.

However, given an disparity map and information about the movement, a es-
timation of how the disparity map should look like and thus also how the pre-
vious frame would look now. Subtracting this frame instead, along with some
suppression of the errors introduced, there is a possibility that there is enough
hints to successfully identify the other agents and minimize the needed work.

When rotating, there will be a percentage of the screen that cannot be estimated
as the new part has been outside of the angle of view up until this moment. If
the angle of rotation is known along with the angle of view, then it is possible
to calculate how much of the disparity map the must be updated and the rest
of the disparity map is shifted likewise.

A different approach would be to identify the background and static objects in
order to reduce size of the problem.

5.3 Path-based focus vision with peripheral vision

Yet another suggestion is to keep a list of interesting objects and continuously
updating this list. By fitting a box around the proposed path acquired from the
path planner, a reduction i the computational cost can be had by only calculat-
ing the disparity map of these boxes.

The box should be expanded enough to compensate for the size of the robot to
avoid finding non-traversable paths being suggested.

See figure 42 for a visualization.

The green box represent an object that is somehow in the path an therefore
interesting to know where it is.

77

5.4 Deadline based feedback for movement control 5 FOCUSED CV

Figure 42: Path-based focus vision

The rest of the view should continuously subtracted from the next to create a
frame with potential candidates for further inspection.

5.4 Deadline based feedback for movement control

Depending on the success of the methods described above, there might become
too much work to do. By using soft deadlines for each disparity frame, there
becomes a possibility of signaling the motor control to slow down or in the
worst case to stop in order to the back into a state where enough is known
about the scene in the angle of view to continue on without matching the whole
view.

For example, sharp turns will reset everything that is known about the view
and a new disparity map must be found. In such a situation it would be advis-
able to stop for a moment before continuing on.

78

6 DISCUSSION

6 Discussion

6.1 Obstacles

USB-camera wants whole USB-bandwidth. Solution is to use USB2/3-cameras
So that more bandwidth is available. FireWire went out of style years ago and
finding compatible hardware is difficult. In the end this proved to be a non
issue as the algorithms could not handle the full resolution satisfactory.

6.2 Algorithmic evaluation

Considering the algorithms evaluated, only block matching and semi-global
block matching were fast enough. Variational stereo match were too slow and
the results were somewhat disappointing.

The energy minimization algorithms were interesting, but not suitable for the
task at hand.

79

6.2 Algorithmic evaluation 6 DISCUSSION

80

6.3 Software Evaluation 6 DISCUSSION

6.3 Software Evaluation

OpenCV

Pros Cons

• Provides methods for most of
the things needed to create a
computer vision module.

• Useful data structures avail-
able. Less code needed to
create such things and more
time for experimentation.

• Optimized for modern x86-
processors thus enabling this
sort of work to even be possi-
ble to do without specialized
hardware.

• Algorithms give good
enough. According to the
middlebury research site
there have been published
“better” algorithms that
give less erroneous pixels
compared to ground truth.
If the MRF-library should
be any indication then it is
unlikely that any of these
algorithms have optimized
implementations that would
enable them to be used for
real-time purposes. As such
they are of little interest.

• Not researched in detail,
but rudimentary support for
GPU algorithms have been
implemented.

• Little to no NEON sup-
port. This effectively makes
ARM platforms without
GPU-acceleration nonviable.

• OpenCV provides APIs for C,
C++, Java and Python. Or
at least that is what the doc-
umentation would have you
believe. What is less obvious
is that close too all develop-
ment is being done in C++
and features are not ported
back to the other APIs. This is
problematic when code that
once run, no longer runs.
Code that should compile no
longer compiles or even com-
pile in the first place. This
could easily be avoided by
marking the outdated APIs
as deprecated, but the current
politics wants to keep them.

Table 20: Evaluation of the OpenCV computer vision library

81

6.3 Software Evaluation 6 DISCUSSION

Middlebury MRF

Pros Cons

• For the most part the source
for advanced stereo vision al-
gorithms.

• Disappointing results.

• Impractically slow.

• The README suggests that
some optimization has been
done. However not enough
to make the library useful for
real time performance.

• According to the README
the library was updated in
2012 in order to make it
compile on 64 bit platforms
and reduce warnings pro-
duced by GCC 4.6. Other-
wise code suggests that most
work were done in 2006 and
it is unlikely that any mean-
ingful further development
will take place. It seems that
the library is meant for re-
search purposes and not real
time is not a criterion. Which
is understandable.

• Did not compile on ARMv7.
No effort were done to in-
vestigate this as it was al-
ready concluded that the li-
brary was not fit for this task.

Table 21: Evaluation of the Middlebury MRF library
82

6.3 Software Evaluation 6 DISCUSSION

Arch Linux (x86_86 and ARMv7)

Pros Cons

• Consistent environment on
all platforms.

• Provides resent packages of
programs used on platforms.

• Hard floating point ABI is en-
abled by default on ARMv7.

• A large selection of ARM
based development boards
are supported.

• Obscure and choice of distri-
bution is biased

Table 22: Evaluation of the Arch Linux operating system

Angstrom Linux

Pros Cons

• Unlike other Linux distri-
butions, Angstrom does not
change rapidly.

• Hard floating point ABI is not
enabled by default. The per-
formance hit is devastating
if the algorithm of choice is
dependent on floating point
performance.

Table 23: Evaluation of the Angstrom operating system

83

6.4 Hardware Evaluation 6 DISCUSSION

6.4 Hardware Evaluation

Logitech C250 Web Camera.

Pros Cons

• Surprisingly little lens distor-
tion.

• Low prototyping costs.

• Limited bandwidth on the
USB-controller. Could not
use full resolution.

• MJPEG stream. Lossy com-
pression and CPU-time
needed to decode the stream
resulting in another perfor-
mance hit.

Table 24: Evaluation of the cameras used

PandaBoard

84

6.4 Hardware Evaluation 6 DISCUSSION

Pros Cons

• Hard floating point.

• NEON SIMD instructions.

• Nearing 5 years old. Not rep-
resentative of current hard-
ware options.

• Despite having a GPU on die,
no suitable driver is offered
by Texas Instruments.

• Relatively large and has
many peripherals not
needed.

• No on-board storage options
and needs SD-cards. Not
a very robust solution al-
though makes for easy proto-
typing.

Table 25: Evaluation of the Pandaboard

BeagleBone Black

85

6.5 Future Work 6 DISCUSSION

Pros Cons

• Faster than PandaBoard
despite both being ARMv7
based and clocked at 1 GHz.
Tests showed 40% increase.

• Physically smaller.

• On-board storage. No need
for SD-cards.

• Very restrictive on peripher-
als. Only 1 USB-port so a
USB-hub is at least needed
for the implementation in
this thesis.

• Comes with Angstrom
Linux. Not a very enticing
Linux variant.

Table 26: Evaluation of the BeagleBone Black

Compared to each other, BeagleBone Black is the superior choice.

Intel platform
The vast performance difference gives an overly optimistic view of the viability
of the evaluated algorithms.

6.5 Future Work

the stereo camera constructed should be viewed as a simple toy. A better one
should be made that is tailored to the specific application in mind.

ARM as a platform is barely viable if the steps mentioned earlier is taken. It
would be more interesting to see what GPU-acceleration could bring but for
now there is little code to test.

OpenCV might get NEON acceleration, but there is no indication of this at the
moment.

After a suitable solution for the algorithmic challenges has been found, an

86

6.6 Recommendations 6 DISCUSSION

environment-aware path-planner with collision avoidance capabilities should
be made.

A higher level CSP-style way for communication with other modules would
be best. Easier integration. Up to the constructors of this system to decide.

6.6 Recommendations

Software
Besides the obvious flaws, OpenCV is good enough. If the flaws are mended or
worked around in a compatible way, (Like using OpenCL, writing NEON sup-
port or choosing a better ARM-device), then it is this thesis recommendation
that OpenCV is used. OpenCV sort of wins by being the only viable contender.

It is not recommended writing a separate library as an alternative to OpenCV.
Such a task is fairly large and complex. Furthermore this has already been done
in the form of UncannyCV. For it to be worth it, such a library must outperform
OpenCV and at least match UncannyCV.

SGBM(partial and full) gives good enough results. SGBM is at least recom-
mended. Should resources be available for performing the full SGBM then this
is recommended as well.

The author is convinced that GPGPU is the only reasonable way forward. Cre-
ating disparity maps is a massively parallel problem and CPU-time is better
spent on other aspects of robot software like motor control and decision mak-
ing. This thesis recommends OpenCL over SIMD optimization. (Cuda is too
hardware specific.)

Hardware
BeagleBone Black is not an option unless the software situation changes. The
same goes for the PandaBoard.

If one should choose an ARM-based solution then a platform should be chosen
that has a decent community behind it and proper OpenCL drivers available.
On board storage is a must since SD-card are not very rugged.

87

6.7 Similar work, OpenVX 6 DISCUSSION

Low power x86 is an alternative. Intel reports that Haswell-based solutions
can be found in as low power as 4.5 W. Both Intel and AMD does a far better
job at supporting Linux than any of the ARM-licensees.

No recommendation with regard to choice of cameras. This needs to be de-
cided according to the needs and possibilities in each individual project. That
said there exists stereo cameras that are far better than what was constructed
for this thesis or the ones chosen in for example eurobot 2010

6.7 Similar work, OpenVX

Is the work done in this thesis the right approach to increasing autonomy in
robots? Well, as a case in point, Khronos announced a new standard called
OpenVX during this thesis work. It is a standardization for computer vision
describing itself as complementary to OpenCV yet describes OpenCV as best
used for rapid prototyping, while itself is suited for production deployment.
The fact that OpenVX is a standard validates the approach taken with this the-
sis.

On the negative side there is only a specification and no implementations avail-
able yet. This is likely to change.

88

7 CONCLUSION

7 Conclusion

A wide selection of stereo matching algorithms have been evaluated for the
purpose of creating a collision avoidance module. Varying greatly in the accu-
racy, a few of the algorithms were fast enough for further use.

Two computer vision libraries, OpenCV and MRF, were evaluated for their
implementations of various stereo matching algorithms. In addition OpenCV
provides a wide variety of functions for creating sophisticated computer vision
programs and were evaluated on this basis as well.

A stereo camera were constructed using low cost, of-the-shelf web cameras by
Logitech.

Two low-power platforms, The Pandaboard and the Beaglebone Black, were
evaluated as viable platforms for developing a computer vision module on
top. In addition they were compared to an Intel platform as a reference.

Considerable efforts were conducted into elevating the low-power platforms
to a state were a collision avoidance module could be deployed.

Based on the results gathered, a fast, but simple, collision detector could be
made using the simple block matching algorithm found in OpenCV. A more
advanced detector could be built using semi-global stereo matching. These
were the only implementations that were fast enough. The other energy min-
imization algorithms (Graph cuts and belief propagation) did produce good
disparity maps, but were too slow for any realistic collision detector.

OpenCV as a library contains a very large set of functionality which were more
than enough to construct rudimentary demos to demonstrate the potential for
a collision detection module. However there are major drawbacks present.
OpenCV is optimized for x86-instruction sets like SSE2 which the low-power
platforms cannot take advantage of. OpenCV has APIs for other languages
than C++ which it is written in, but all features are not necessarily ported to
these APIs which can be a frustrating experience.

In order for the low-power platforms to be fast enough, a combination of im-
provements must be used. OpenCV should be compiled with aggressive opti-

89

7 CONCLUSION

mization options enabled with support for hardware accelerated floating point
math. Choice of low-power platform matters, but compensations can be made
elsewhere.

The most effective speedup that enables the low-power platforms were reduc-
ing the resolution of the images to be matched. When reducing the size of the
sub-problems enough to align with cache size, considerable speedups were
found with little penalty in the corresponding disparity map.

There were not enough time to construct a proper collision avoidance module,
but the necessary groundwork is laid to be built upon.

90

REFERENCES REFERENCES

References

[BK04] Yuri Boykov and Vladimir Kolmogorov. An experimental com-
parison of min-cut/max-flow algorithms for energy minimization
in vision. IEEE Trans. Pattern Anal. Mach. Intell., 26(9):1124–1137,
September 2004.

[BVZ01] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate
energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach.
Intell., 23(11):1222–1239, November 2001.

[Can86] J Canny. A computational approach to edge detection. IEEE Trans.
Pattern Anal. Mach. Intell., 8(6):679–698, June 1986.

[End10] Kai Hugo Hustoft Endresen. Tracking objects in 3D using Stereo
Vision. Master’s thesis, Norwegian University of Science and Tech-
nology, Tronheim, Norway, 2010.

[FARW99] R.B. Fisher, A. P. Ashbrook, C. Robertson, and N. Werghi. A low-
cost range finder using a visually located, structured light source.
In 3-D Digital Imaging and Modeling, 1999. Proceedings. Second Inter-
national Conference on, pages 24–33, 1999.

[FH04] P.F. Felzenszwalb and D.P. Huttenlocher. Efficient belief propaga-
tion for early vision. In Computer Vision and Pattern Recognition,
2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Con-
ference on, volume 1, pages I–261–I–268 Vol.1, June 2004.

[HD92] Y. Hu and T.J. Dennis. Simulated annealing and iterated conditional
modes with selective and confidence enhanced update schemes.
In Computer-Based Medical Systems, 1992. Proceedings., Fifth Annual
IEEE Symposium on, pages 257–264, Jun 1992.

[Hir05] Heiko Hirschmuller. Accurate and efficient stereo processing by
semi-global matching and mutual information. In Proceedings of the
2005 IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition (CVPR’05) - Volume 2 - Volume 02, CVPR ’05, pages
807–814, Washington, DC, USA, 2005. IEEE Computer Society.

91

REFERENCES REFERENCES

[HS07] H. Hirschmuller and D. Scharstein. Evaluation of cost functions for
stereo matching. In Computer Vision and Pattern Recognition, 2007.
CVPR ’07. IEEE Conference on, pages 1–8, 2007.

[Kol06] Vladimir Kolmogorov. Convergent tree-reweighted message pass-
ing for energy minimization. IEEE Trans. Pattern Anal. Mach. Intell.,
28(10):1568–1583, October 2006.

[KZ02] Vladimir Kolmogorov and Ramin Zabih. What energy functions
can be minimized via graph cuts? In Proceedings of the 7th Euro-
pean Conference on Computer Vision-Part III, ECCV ’02, pages 65–81,
London, UK, UK, 2002. Springer-Verlag.

[Rø13] John Magne Røde. Continous Calibration of 3D Vision Systems.
Master’s thesis, Norwegian University of Science and Technology,
Tronheim, Norway, 2013.

[SP07] D. Scharstein and Chris Pal. Learning conditional random fields for
stereo. In Computer Vision and Pattern Recognition, 2007. CVPR ’07.
IEEE Conference on, pages 1–8, 2007.

[SS03] D. Scharstein and R. Szeliski. High-accuracy stereo depth maps
using structured light. In Computer Vision and Pattern Recognition,
2003. Proceedings. 2003 IEEE Computer Society Conference on, vol-
ume 1, pages I–195–I–202 vol.1, 2003.

[SSZ01] D. Scharstein, R. Szeliski, and R. Zabih. A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms. In Stereo and
Multi-Baseline Vision, 2001. (SMBV 2001). Proceedings. IEEE Work-
shop on, pages 131–140, 2001.

[SZS+08] Richard Szeliski, Ramin Zabih, Daniel Scharstein, Olga Veksler,
Vladimir Kolmogorov, Aseem Agarwala, Marshall Tappen, and
Carsten Rother. A comparative study of energy minimization
methods for markov random fields with smoothness-based priors.
IEEE Trans. Pattern Anal. Mach. Intell., 30(6):1068–1080, June 2008.

[TF03] Marshall F. Tappen and William T. Freeman. Comparison of graph
cuts with belief propagation for stereo, using identical mrf param-
eters. In Proceedings of the Ninth IEEE International Conference on

92

REFERENCES REFERENCES

Computer Vision - Volume 2, ICCV ’03, pages 900–, Washington, DC,
USA, 2003. IEEE Computer Society.

[WJW05] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. Map estimation
via agreement on trees: Message-passing and linear programming.
IEEE Trans. Inf. Theor., 51(11):3697–3717, November 2005.

[ZLDH11] Wenqiao Zhu, Dongming Lu, Changyu Diao, and Jingzhou Huang.
Variational stereo matching with left right consistency constraint.
In Soft Computing and Pattern Recognition (SoCPaR), 2011 Interna-
tional Conference of, pages 222–226, Oct 2011.

93

A CONTENTS OF PROJECT

A Contents of project

Calibration

Image files needed for calibration.

Code

Various code demoes and examples.

Papers

Background litterature.

Results

Where all the results are gathered.

94

	Introduction
	Theory
	Computer Vision
	Stereo Vision
	Epipolar Geometry
	Occlusion
	Disparity map
	Converting from disparity to distance

	Image Source
	Non-linear defects
	Undistort/rectification of camera

	Feature based computer vision
	Edge detection

	Stereo Matching
	Region Based
	Block Matching
	Semi-Global Block Match

	Energy minimization algorithms
	Iterated conditional modes, (ICM)
	Graph cuts
	Belief propagation
	Tree-reweighted message passing, TRW
	Variational stereo matching

	Platform
	Software
	OpenCV
	MRF
	Operating System
	Compilers
	Other

	Programming languages used
	C and C++
	Bourne Again SHell, bash

	Hardware
	Intel platform
	Pandaboard
	BeagleBone Black
	Logitech C250 web cameras

	Choice of stereo matching algorithm
	Libraries evaluated
	Criteria for evaluation
	Middlebury stereo data sets
	Testing methodology

	Results from OpenCV
	Block matching
	Semi-global block matching
	Semi-global block matching, all directions
	Variational stereo matching with consistency constraint left/right

	MRF library
	Iterated conditional mode
	Expansion-move graph cut
	Swap-move graph cut
	Sequential tree-reweighted message passing for energy minimization
	Synchronous belief propagation
	Max product belief propagation

	MRF's accuracy problems revisited
	Closer look at performance issues
	Pandaboard vs BeagleBone Black
	Pandaboard vs Intel
	Improving ARM performance using aggressive compiler options
	Improving Intel performance using aggressive compiler options

	Special cases where stereo matching does not work
	Improving performance by shaping workload
	Threading
	Lower resolution

	Camera calibration
	Calibrating with OpenCV
	Rectification timings

	Collision detection and avoidance

	Focused CV
	The stationary case
	The non-stationary case
	Path-based focus vision with peripheral vision
	Deadline based feedback for movement control

	Discussion
	Obstacles
	Algorithmic evaluation
	Software Evaluation
	Hardware Evaluation
	Future Work
	Recommendations
	Similar work, OpenVX

	Conclusion
	Contents of project

