
Contents lists available at ScienceDirect

European Journal of Mechanics / A Solids

journal homepage: www.elsevier.com/locate/ejmsol

Effect of the Lüders plateau on ductile fracture with MBL model
Shengwen Tua, Xiaobo Renb, Jianying Hea, Zhiliang Zhanga,⁎

a Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
b SINTEF Industry, Trondheim, 7465, Norway

A R T I C L E I N F O

Keywords:
Lüders plateau
Ductile fracture
Stress triaxiality
Gurson damage model
MBL model

A B S T R A C T

In this study, the effect of Lüders plateau on the ductile crack growth resistance has been investigated with the
Gurson damage model and the modified boundary layer (MBL) model, under mode I plane strain condition. The
Lüders plateau is modeled as horizontal by keeping the plateau stress equaling to the yield stress. A family of
Lüders elongations ranging from 0 to 5% has been considered. The remote boundary condition of the MBL model
is governed by the elastic K-field and T-stress. Numerical results show that the existence of the Lüders plateau on
the stress-strain curve reduces the ductile crack growth resistance. The degree of reduction depends on the scale
of the Lüders elongation. The crack tip stress field analysis indicates that the existence of the Lüders plateau
varies the crack tip stress striaxiality distribution and the magnitude. It is also found that the size of plastic zone
ahead of the crack tip is reduced, compared with the reference case for material without Lüders plateau. It is
demonstrated that the effect of Lüders plateau on ductile crack growth is more significant at lower T-stress or for
materials with higher toughness. The dependence of the initial void volume fraction and the T-stress on the
ductile crack growth resistance are alleviated when the Lüders elongation is large.

1. Introduction

Mechanical properties of structural materials play a very important
role in structural integrity assessment. For some metallic materials, a
so-called Lüders plateau can be observed on the stress-strain curve just
after the elastic regime. Lüders banding, a material instability asso-
ciated with unpinning of dislocations from nitrogen and carbon atmo-
spheres (Cottrell and Bilby, 1949; Johnston and Gilman, 1959; Hall,
2012), was first reported by Guillaume Piobert and later W. Lüders. For
some seamless pipeline steels used in offshore reeling installation and
some structural steels studied for Arctic applications, the Lüders plateau
is observed with the value of Lüders elongation in the range of 1–3% at
room temperatures. Experimental investigations performed by
Tsuchida et al. (2006) demonstrated that for materials exhibiting Lü-
ders plateau, the Lüders elongation increased with the decrease of
temperatures and the ferrite grain size. The Lüders elongation may
increase up to 7% for specimens with ferrite grain size of 1.1 µm tested
at −63 °C at the initial strain rate of × s3.3 10 4 1. The temperature
dependence on the Lüders elongation has also been reported by Ren
et al. (2015).

The existence of Lüders plateau on the stress-strain curves may in-
fluence the bending behavior of steel tubes and the ductile fracture
response of pipeline steels. Hallai and Kyriakides, 2011a, 2011b

performed bending tests on Carbon steel (CS) with the ratio of nominal
diameter (D) and the wall thickness (t), D/t, in the range of 14.7–33.2.
The tubes were firstly heat-treated in a vacuum furnace to reappear
Lüders plateau. After heat treatment the tubes developed Lüders strain
in the range of 1.8–2.7%, with yield stress varying from 220 to
358MPa. The tubes were then bent to collapse in a four-point bending
facility. They found that the Lüders plateau influenced the curvature
distribution on the tension and compression sides, coupled with D/t.
For relatively lower D/t and/or short Lüders elongation, Lüders bands
spread the whole tube and then the tube entered into the hardening
regime until collapse. The limit moment instability was not influenced.
For higher D/t tubes and/or longer Lüders elongation, the propagation
of Lüders bands was terminated by localized collapse, when a critical
length was Lüders deformed while the rest of the tube was essentially
undeformed. By simplifying the Lüders plateau as horizontal and
keeping the plateau stress equaling to the yield stress, some numerical
analyses were performed to study the effect of Lüders plateau on the
tensile strian capacity (Tang et al., 2014) or the crack driving force
(Dahl et al., 2018). Tang et al. (2014) investigated the effect of Lüders
plateau on the tensile strain capacity of welded pipelines and found out
that the relatively small Lüders elongation can cause a relative increase
to tensile capacity while large Lüders elongation can cause a relative
decrease. Tkaczyk et al. (2009) performed numerical analyses to study
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the effect of Lüders plateau on crack driving force of a X65 pipeline
with part circumferential external surface elliptical crack. They found
an abrupt jump of crack driving force (phrased in terms of J-integral)
under tensile loading at the yield strain on the J-strain curve. Dahl et al.
(2018) investigated the effect of Lüders plateau on crack driving force
(phrased in terms of crack tip opening displacement) with single edge
notched tensile (SENT) specimen. They found out that the existence of
Lüders plateau intensified the crack driving force and large Lüders
elongation corresponded to large increment. Nourpanah and Taheri
(2011) conducted numerical analyses to study the effect of Lüders
plateau on fracture response of pipelines subject to plastic bending.
They reported that the existence of Lüders plateau decreased the con-
straint ahead of the crack tip and elevated the equivalent plastic strain
near the crack tip region.

As introduced above, most investigations focused on the effect of
Lüders plateau on bending behavior or the crack driving force. The
effect of Lüders plateau on the crack growth resistance is not well un-
derstood. In this study, we performed numerical analyses with the
complete Gurson damage model under mode I plane strain condition to
investigate the Lüders plateau influence on ductile crack growth re-
sistance. The modified boundary layer model (MBL) was utilized with
the remote boundary condition governed by elastic K-field and T-stress.
The effect of Lüders plateau on ductile crack growth resistance was
studied and discussed by comparing the cases with Lüders plateau and
the reference case without Lüders plateau.

2. The complete Gurson damage model

It is widely acknowledged that ductile failure in metals is a result of
the nucleation, growth and coalescence of microvoids. In the past
decades, many damage models have been developed to simulate ductile
fracture and to predict ductile crack growth resistance. Among these
models, the one, originally proposed by Gurson (1977) and latter
modified by Tvergaard and Needleman (Tvergaard, 1981, 1982), is very
popular and known as the Gurson–Tvergaard–Needleman (GTN) model.
By introducing stress triaxiality and a void volume fraction parameter
in the yield function, the GTN model takes into account the hydrostatic
stress effect on plastic yielding and has the following form:
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where q and m are the von Mises stress and the hydrostatic stress. f is
the flow stress of the matrix materials and is a function of the

equivalent plastic strain, p. q1 and q2 are the parameters introduced by
Tvergaard, 1981, 1982 and fixed values =q 1.51 and =q 12 are used for
all the analyses in present study. f is the void volume fraction para-
meter. Due to its robustness in modelling ductile fracture, the GTN
model is widely applied in engineering failure analyses and some ex-
tended versions have been developed for anisotropy materials (Grange
et al., 2000), shear dominated failure (Nahshon and Hutchinson, 2008).
Modifications of the GTN model by incorporating void shape effect
under loading have been reported by Madou and Leblond in ref.
(Madou and Leblond, 2012a, 2012b).

For numerical analyses with the GTN model, the void nucleation
model should be determined beforehand (Zhang et al., 2000; Zhang and
Niemi, 1994). For the cluster void nucleation model, voids are assumed
to be nucleated at the early stage of plastic deformation and the void
volume fraction is solely contributed by the void growth while new void
nucleation is ignored. This model is suitable for metallic materials
containing large inclusion, such as manganese sulfide. For some en-
gineering materials where voids are nucleated from carbides or

Fig. 1. Illustration of the flow stress-strain curve with Lüders plateau used in
this study.

Fig. 2. Modified boundary layer model used for numerical analysis: (a) Global
mesh; (b) Local mesh.

Fig. 3. Normalized resistance curves in terms of J-integral for materials with
various Lüders elongations.
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intermetallic phase, a continuous void nucleation model which links the
amount of voids nucleated to the equivalent plastic strain increment
may be applied. In present study, only the cluster nucleation model is
considered. Due to the incompressible nature of the matrix material, the
void volume fraction increment can be expressed as:

=df f d I(1 ) :growth
p (2)

where d p is the plastic strain increment tensor and I is the second-order
unit tensor. As void volume grows continuously, void coalescence will
occur in the following. Tvergaard and Needleman (1984) proposed a
function to simulate the effect of void coalescence on the load carrying
capacity of the matrix material:
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where =f q1/u
*

1. In Eq. (3), void coalescence takes place when a critical
volume fraction, fc, is reached. When the condition >f fc is satisfied, f *
replaces f in Eq. (1). With the void volume fraction increasing up to fF ,
void coalescence is finished. Meanwhile, the element is assumed to lose
load carrying capacity and cracks are supposed to propagate. An em-
pirical equation, = +f f0.2 2F 0 is used in this study (Zhang et al., 2000).

For some applications of the GTN model, fc was determined arbi-
trarily or empirically, solely taking into account the homogenous de-
formation mode (Han et al., 2014). As a results, different pairs of f f( , )c0
give identical predictions. Thomason (Thomason and Thomason) pro-
posed that the localized deformation mode (which can be described by
the so-called plastic limit load model) of void coalescence should be
considered. The competition between the homogeneous deformation
mode and the localized deformation mode determines void coalescence.
In the early state, voids are so small that the stress required for localized
deformation is much higher than that for homogeneous deformation
and the latter one is followed. As plastic deformation increases and void
grows, the stress required for localized deformation decreases. When
the stress for localized deformation is equal to the stress for homo-
genous deformation, localized deformation becomes dominate and the
void coalescence will occur. By introducing the competition of homo-
geneous void growth model and the Thomason's plastic limit load
model, a so-called “complete Gurson model” which can not only si-
mulate the void nucleation and growth, but also the coalescence pro-
cess without a pre-selected critical void volume fraction was developed
and implemented into Abaqus using a user subroutine UMAT by Zhang
(Zhang et al., 2000; Zhang and Niemi, 1994). “Complete” means the
model can capture the void nucleation, growth and coalescence

Fig. 4. Normalized resistance curves for materials with various Lüders elon-
gations at short crack advance.

Fig. 5. Stress triaxiality distribution ahead of current crack tip: (a) =a mm0.1 ;
(b) =a mm0.5 ; (c) =a mm1 .
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automatically once the nucleation parameters are given, and no para-
meter such as the critical void volume fraction should be determined
beforehand. It should be pointed out that the critical void volume
fraction in the GTN model is sometimes chosen arbitrary in many stu-
dies. However, the “complete Gurson model” determines the critical
void volume fraction automatically and physically, since void coales-
cence is a result of the competition of stresses required for global de-
formation and the localized deformation. The so-called complete
Gurson model is used in this work to study the effect of the Lüders
plateau on ductile crack growth. It may be interesting to verify whether
the Thomason criterion is accurate for the materials with Lüders pla-
teau, since only smooth stress-strain curve was considered in the past
studies. However, this is out of the scope of the present study and will
not be discussed below.

3. Numerical procedure

3.1. Materials properties

In this study, the Lüders plateau is assumed to be horizontal and the
plateau stress is equal to the yield stress. Flow stress-strain curve of the
matrix is described by the following rule:

=
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where 0, 0 and n are the yield stress, yield strain and the strain
hardening exponent, respectively. For all the analyses, = 4000 MPa,

=E/ 0.0020 and = 0.3 are used. E is the Young's modulus and ν is the
Poisson ratio. The elastic part of the materials is simply characterized
by the yield stress and the Young's modulus. p and L are the equivalent
plastic strain and Lüders elongation. Fig. 1 presents the flow stress-
strain curves for = 0L , 0.05 with =n 0.05, as an example. When = 0L ,
material enters into strain hardening domain just after the elastic re-
gime and no Lüders behavior is expected.

3.2. Finite element modelling of MBL model

In elastoplastic fracture mechanics, the MBL model was widely used
to study the crack tip constraint (O'dowd and Shih, 1991, 1992; Xia and
Shih, 1995), the loading path effect (Jin et al., 2017), ductile and
cleavage fracture under small scale yielding (Ren et al., 2009, 2010,
2011) in 2 and 3 dimensions. In this work, the MBL model in 2D plane
strain condition is chosen to study the Lüders plateau effect on ductile
crack growth for mode I fracture under small scale yielding. Due to the
symmetry of the MBL model, only the upper-half part of the geometry is
modeled and the symmetry boundary constraint is used. The radius of
the MBL model is 1000mm to ensure that the small scale yielding
condition is satisfied. The initial crack length is mm1000 with an initial
opening of mm0.02 . Mesh of the MBL model can be seen in Fig. 2. Close
to the crack tip, very fine mesh is applied with the element size of

× mm0.1 0.1 , see Fig. 2b. A single layer of elements with the size of
× mm0.1 0.05 are assigned at the symmetric plane where crack is sup-

posed to propagate. In the following context, lc refers to the length of
the uniformly sized element. Out of the uniform size region, the ele-
ment size is gradually increased with radial distance from the crack tip.
There are 20 sections within angular region from 0 to π along the cir-
cumference. 4-node plane strain elements (CPE4) are applied and finite
strains are accounted for in all the analyses.

For the MBL model, the load is applied at the outer surface through
a displacement field, controlled by stress intensity factor KI and T-
stress. Values of displacement components ux and uy are calculated
from the plane strain K TI stress field:

Fig. 6. Plastic zone size at given crack increment: (a) =a mm0.1 ; (b)
=a mm0.5 ; (c) =a mm1 .
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where =K EJ/(1 )I
2 , J is the far-field J-integral. The displace-

ments are loaded at the out surface of the model proportionally. To
obtain crack growth resistance curves in terms of J-integral in the
analyses, domain integral method is used to calculate the J-integral on
the contour close to the out surface. This is due to that close to the crack
tip where non-proportional loading may occur, J-integral displays path-
dependence issue. For the complete Gurson model, the crack advances
when the void volume fraction at the crack tip reaches fF . The crack
length is therefore calculated by multiplying the original element
length (0.1mm) by the number of failed elements.

4. Results and discussion

4.1. Effect of Lüders plateau on ductile crack growth resistance

Resistance curves from numerical analyses with the MBL model are
displayed in Fig. 3, with =T/ 00 . The strain hardening exponent and
the initial void volume fraction used in Fig. 3 are =n 0.05 and

=f 0.0010 . The Lüders elongation varies from 0 to 5%. Resistance curve
for the elastic – perfectly plastic material is also presented. It is noted
that the two limiting cases are considered: material without Lüders
elongation ( = 0L ) and the elastic – perfectly plastic material (legended
as = E PL in the following text). J-integral in Fig. 3 is normalized by

the product of 0 and lc while the crack growth is normalized by lc. It
can be seen that resistance curves for materials with Lüders plateau are
lower than the reference case for = 0L . As expected, the resistance
curve for the elastic – perfectly plastic material is higher than other
cases in Fig. 3. It can also be observed in Fig. 3 that the resistance
curves decrease with the increasing L when the Lüders elongation is
very small. As L increases to 0.02, the corresponding resistance curve
appears to be the lowest in Fig. 3 and almost overlaps to the resistance
curve for = 0.03L . After reaching the lowest one, resistance curve shifts
up with the increase of the Lüders elongation gradually. For = 0.05L ,
the resistance curve is slightly higher than the lowest one but still lower
than that for = 0L . It may be expected that for larger Lüders elonga-
tion, the resistance curve will shift up and even be higher than the
reference case for = 0L , see the resistance curve for the elastic – per-
fectly plastic material. However, for most engineering metallic mate-
rials exhibiting Lüders plateau, Lüders elongation is usually smaller
than 5%, though slightly increase with temperature decrease.

Resistance curves in Fig. 3 are replotted with a l/ c up to 10 and are
presented in Fig. 4. It can be seen that the toughness at crack initiation
( =a mm0.1 ) decreases slightly with the increase of the Lüders elon-
gation. The reduction of the crack initiation toughness due to the Lü-
ders elongation has also been reported by Nourpanah and Taheri
(2011). For the elastic – perfectly plastic material, the toughness at
crack initiation is the lowest. After crack initiation, the resistance curve
rises rapidly and becomes the highest. For L increasing up to 0.03, the
resistance curves shift down uniformly. The resistance curve for

= 0.05L is the lowest after crack initiation. Up to =a l/ 3c , it presents

Fig. 7. Resistance curves from MBL model under different T-stresses: (a) =T/ 10 ; (b) =T/ 0.50 ; (c) =T/ 0.50 ; (d) =T/ 10 .
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to be higher than the corresponding resistance curves for = 0.02L and
= 0.03L . Though the gap between the resistance curves for = 0.02L

and = 0.03L is very small, it can still be observed that resistance curve
for = 0.03L is slightly lower than that for = 0.02L in Fig. 4. While in
Fig. 3, resistance curve for = 0.03L is slightly higher than the one for

= 0.02L when a l/ 15c . The resistance curve for = 0.03L rises more
rapidly than = 0.02L with crack propagation.

Resistance curves in Figs. 3 and 4 indicate that the introduction of
Lüders plateau on the stress-strain curve reduces materials' ability to
resist crack propagation. To understand the effect of Lüders plateau on

Fig. 8. Resistance curves dependence on T stress for materials with the same Lüders elongation: (a) = 0L ; (b) = 0.01L ; (c) = 0.02L ; (d) = 0.03L ; (e) = 0.05L .
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the ductile crack growth resistance curves, the stress triaxiality (ratio of
hydrostatic stress over the von Mises equivalent stress) ahead of the
crack tip corresponding to =a 0.1, 0.5 and mm1 are presented in
Fig. 5, as a function of the distance from the current crack tip. In Fig. 5a,
the stress triaxiality distribution differs to each other. For materials
with Lüders plateau, the maximum stress triaxiality is higher than the
reference case for = 0L , except = 0.05L . This indicates that small
Lüders elongations elevate the magnitude of stress triaxiality ahead of
the crack tip; larger Lüders elongations in return reduces the magnitude
of stress triaxiality. For materials under higher stress triaxiality, damage
evolution happens at relatively early stage which will result in smaller
fracture strain. Therefore, small Lüders elongations accelerate the da-
mage accumulation, which as a result facilitate the crack propagation.
It can also be observed that the distance corresponding to the maximum
stress triaxiality reduces for materials with Lüders plateau, compared
with = 0L . It means that void volume fraction ahead of the crack tip
for materials with Lüders plateau will increase more quickly and less
energy is required for crack propagation. The distribution and magni-
tude in Fig. 5a well explain the decrease of crack initiation toughness
( =a mm0.1 ) in Fig. 4, except = 0.05L and the elastic – perfectly
plastic material. In Fig. 5b and c, the maximum stress triaxiality for

= 0.01L , 0.02, 0.03 are slightly higher and locate more closer to the
crack tip than the case = 0L . Correspondingly, lower resistance curves
can be seen in Figs. 3–4. Though the maximum stress triaxiality for

= 0.01L is slightly larger than = 0.02L and 0.03, the corresponding
distance to the maximum stress triaxiality is longer and higher re-
sistance curve is obtained. For = 0.05L , the maximum stress triaxiality
is lower than = 0.02L and 0.03, higher resistance curve can be ex-
pected and are seen in Fig. 3. The stress triaxiality ahead of the current
crack tip for the elastic – perfectly plastic material is the lowest and the
maximum stress triaxiality locates further than other cases. As a result,
the resistance curve for the elastic – perfectly plastic material

= E PL is the highest in Fig. 3 after crack initiation.
The plastic zone size for 0.01%p at =a 0.1, 0.5 and mm1 are

presented in Fig. 6. The plastic zone size for a given material increases
with crack growth. For =a mm0.1 in Fig. 6a, the plastic zone size
decreases with the increase of Lüders elongation. It can be seen that the
plastic zone size for the elastic – perfectly plastic material is the smal-
lest. This well explains the reduction of crack initiation toughness in
Fig. 4: less energy is required at crack initiation for crack tip exhibiting
smaller plastic zone size. For =a 0.5 and mm1 , the plastic zone size
reduces with the increase of Lüders elongation, up to = 0.03L . For

= 0.05L , the plastic zone size is larger than that for = 0.02L and
smaller than = 0.01L . Correspondingly, resistance curve for = 0.05L
locates between the two cases in Fig. 3. The plastic zone size for all the
materials with Lüders plateau is smaller than the reference case for

= 0L and the resistance curves are lower. For the elastic – perfectly
plastic material, the plastic zone size is the maximum and higher re-
sistance is seen in Fig. 3. The plastic zone size in Fig. 6b and c again well
explain the trend transition of resistance curves in Fig. 3. The existence
of Lüders plateau reduces the plastic zone size at the crack tip and
lowers down the materials' ability to resist ductile crack growth, com-
pared to the case for material without Lüders plateau.

4.2. Effect of Lüders plateau on ductile crack growth under different T/ 0

Ductile crack growth depends significantly on the crack tip con-
straint. For the MBL model, constraint at the crack tip can be controlled
by introducing the T-stress. Previous studies on the effect of T-stress on
ductile crack growth shows that negative T-stress (low constraint) rises
the resistance curve rapidly while positive T-stress (high constraint)
lowers down fracture resistance (Zhang et al., 2000). In this study, the
effect of Lüders plateau on ductile crack growth with =T/ 10 , 0.5,
0.5 and 1 is investigated. The T-stress is loaded at the MBL model out
surface firstly and the K-field is applied in the following. The initial void
volume fraction is fixed to be 0.1% and the hardening exponent

Fig. 9. Effect of Lüders plateau on resistance curves for materials with different
strain hardening: (a) =n 0.05; (b) =n 0.1; (c) =n 0.15.
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Fig. 10. Resistance curves dependence on strain hardening for materials with the same Lüders elongation: (a) = 0L ; (b) = 0.01L ; (c) = 0.02L ; (d) = 0.03L ; (e)
= 0.05L .
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Fig. 11. Resistance curves dependence on the initial void volume fraction for materials with the same Lüders elongation: (a) = 0L ; (b) = 0.01L ; (c) = 0.02L ; (d)
= 0.03L ; (e) = 0.05L .

S. Tu, et al. European Journal of Mechanics / A Solids 78 (2019) 103840

9



=n 0.05 is considered. Normalized resistance curves are displayed in
Fig. 7. It can be seen that for different T/ 0, materials with = 0L pre-
sents the highest fracture resistance. The introduction of Lüders plateau
reduces the crack growth resistance curves, for all the constraint levels
considered in this section. In Fig. 7a, =T/ 10 , the resistance curves
shift down uniformly with the increases of Lüders elongation and the
one corresponding to = 0.05L is the lowest. For =T/ 10 in Fig. 7d,
similar findings in Fig. 3 can be seen. Compared with the subfigures in
Fig. 7, the gap between the highest resistance curve and the lowest one
in each subfigure decreases with the increase ofT/ 0. It is demonstrated
that the effect of Lüders plateau on ductile crack growth resistance is
more significant under low constraint.

Resistance curves in Figs. 4 and 7 are then regrouped by Lüders
elongation and are presented in Fig. 8. As expected, resistance curves
lower down with the increase of T/ 0, for materials with the same Lü-
ders elongation. In Fig. 8a, the resistance curves under negative T-stress
rises rapidly while the reduction of fracture resistance under positive T-
stress is relative minor in Fig. 8d. With the increases of Lüders elon-
gation, the gap between the highest and lowest resistance curves de-
creases gradually. Fig. 8 shows that the Lüders plateau reduce the T-
stress dependence on ductile crack growth resistance. The reduction
becomes more pronounced as Lüders elongation increases.

4.3. Effect of Lüders plateau on ductile crack growth resistance for different
hardening exponents

Strain hardening plays an important role on ductile crack growth
resistance, though its effect on crack resistance curve is not fully un-
derstood. Xia and Shih (1995) reported that increasing strain hardening
increases the crack ductile resistance curve rapidly while Østby and Ren
(Ren et al., 2010; Østby et al., 2007) demonstrated opposite results. In
the section, the effect of Lüders plateau on ductile crack growth re-
sistance is further studied, coupled with strain hardening exponent. The
initial void volume fraction is fixed to be 0.01% while the T-stress is set
to be 0. Hardening exponents =n 0.05, 0.1 and 0.15 are considered.
Corresponding resistance curves are presented in Fig. 9. As can be seen,
for materials with Lüders plateau, the resistance curves are lower than
the one for = 0L . The reduction of fracture resistance (compared with

= 0L ) increases with strain hardening, for materials with the same
Lüders elongation. Especially, for =n 0.15, the resistance curves for
materials with Lüders plateau distribute very close to each other and
are much lower than the resistance curve for = 0L . Resistance curves
in Fig. 9 show that the existence of Lüders plateau reduces ductile crack
growth. The reduction of degree also depends on the materials' strain
hardening capacity.

Resistance curves in Fig. 9 are regrouped in terms of the Lüders
elongation and are presented in Fig. 10. Similar to the findings in Østby
and Ren's work (Ren et al., 2010; Østby et al., 2007), materials with
lower strian hardening yield higher resistance curves. This is valid for
materials with or without Lüders plateau. The gaps between the re-
sistance curves for = 0.01L and 0.02 are larger than that for = 0L .
While for = 0.03L and 0.05, the gaps tends to contract. In our previous
study (Tu et al., 2018), we found that when = 0.1L , resistance curves
from SENT specimens with =n 0.05, 0.1 and 0.15 almost overlapped to
each other totally, showing insignificant strain hardening effect. The
results in this study and in ref. Tu et al. (2018) may draw the conclusion
that the strain hardening effect is more considerable for materials with
small Lüders elongation and becomes less significant for larger Lüders
elongation.

4.4. Effect of Lüders plateau on ductile crack growth resistance for different
initial void volume fraction

Ductile fracture depends significantly on the material toughness. In
damage mechanics, materials with smaller initial volume fraction are
expected to yield higher crack resistance curves. It may be interesting to

study the effect of Lüders plateau on ductile crack growth resistance,
coupled with initial volume fraction. For this consideration, we per-
formed numerical analyses, by keeping all the parameters the same in
section 4.1 and only changing the initial void volume fraction para-
meter, f0. In this section, analyses for =f 0.00010 , 0.0005 and 0.001 are
studied and compared.

In Figs. 3 and 9a, all the parameters are the same, except f0. The
initial volume fraction in Fig. 9a is only 10% for that in Fig. 3. It can be
observed that resistance curves in Fig. 9a are much higher than those in
Fig. 3, for materials with the same Lüders elongation. The lowest re-
sistance curve in Fig. 9a corresponds to = 0.05L while in Fig. 3 the
lowest resistance curve yields from materials with = 0.02L . It is de-
monstrated the effect of Lüders plateau on ductile crack growth re-
sistance for materials with higher toughness is even more remarkable.
Resistance curves in Figs. 3 and 9a are then grouped by Lüders elon-
gation and are presented in Fig. 11. In addition to the results for cases
with =f 0.00010 and 0.001, resistances curves corresponding to

=f 0.00050 are also included. Obviously, resistance curves for materials
with smaller initial void volume fraction rise rapidly and are much
higher than those with larger f0. This is valid for all the materials
considered in this section, with or without Lüders plateau. It is can also
be seen that as the Lüders elongation increase, the gaps between the
resistance curves in the subfigures in Fig. 11 decreases. For = 0.05L ,
the gaps are remarkably smaller than those in Fig. 11a for = 0L . It can
be concluded that the effect of the initial void volume fraction on
ductile crack growth is slightly alleviated at large Lüders elongation.

5. Concluding remarks

In this study, the effect of Lüders plateau on ductile crack growth
resistance was investigated numerically with the MBL model, with the
remote boundary condition controlled by K-field and T-stress. The finite
element analyses were performed in 2D plane strain condition with
finite strain theory. The complete Gurson model was utilized to simu-
late crack propagation. The Lüders plateau was idealized as horizontal
and the plateau stress was assumed to be equal to the yield stress.
Lüders elongations varying from 0 to 5% were considered. In addition,
the effect of Lüders plateau was further investigated, coupled with T-
stress, the strain hardening and the initial void volume fraction. The
main findings are listed:

1. The existence of Lüders plateau on stress-strain curve reduces ma-
terials' ductile crack growth, for the cases studied. The Lüders pla-
teau modifies the distribution and magnitude of the stress triaxiality
ahead of the crack tip. Due to the Lüders plateau, deformation is
highly localized at the crack tip and smaller plastic zone size is
formed, resulting in lower crack resistance curves.

2. It is found out that the effect of Lüders plateau on ductile crack
growth resistance is more significant under lower crack tip con-
straint (lower T-stress) and becomes less pronounced at higher T-
stress. The dependence of crack resistance curves on T-stress is re-
duced with the increasing Lüders elongation.

3. The effect of strain hardening on ductile crack growth coupled with
Lüders plateau was investigated. The results indicate that, similar to
the Lüders plateau effect at lower T-stress, the Lüders plateau effect
for materials with lower strain hardening is more significant. Small
Lüders elongation enhances the strain hardening effect while large
Lüders elongation has the opposite modification.

4. Results from the numerical analyses with different initial void vo-
lume fractions show that materials with higher toughness are more
sensitive to the Lüders plateau. The effect of initial void volume
fraction on ductile crack growth is reduced as Lüders elongation
becomes large.

It should be noted that the Lüders plateau in this study is idealized
as horizontal. In reality, the Lüders plateau is very complex and the way
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of modelling the Lüders behavior in numerical analysis may also be
important. Further research can be focused on the way of modelling
Lüders plateau on fracture response. In fracture mechanics, the com-
petition between the crack driving force and the crack resistance con-
trols the fracture event. Previous investigations on the effect of Lüders
plateau on crack driving force show that the Lüders plateau intensifies
the crack driving force (Dahl et al., 2018) while this study indicates that
the Lüders plateau reduced ductile crack growth. This two-side effect
facilitate ductile fracture for materials exhibiting Lüders plateau. At-
tentions should be paid in engineering application for materials with
Lüders plateau.
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