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Summary

The towing tank at NTNU campus Alesund is used by students in ship-design and other
disciplines to test designed ships, ROVs and other vessels.

When doing research on ship designs, small scale testing with models is used to verify
theoretical results. For analysis, it’s very useful to get exact results of the movement of the
ship. As of today, a mechanical solution is installed above the tank. A trolley runs along
the length of the tank. An arm from the trolley runs down in the middle of the tank to the
ship model. This system provides information about the ship’s movement in 4 degrees of
freedom as movement to the sides and rotation in yaw is restricted by the arm.

NTNU Department of Ocean Operations and Civil Engineering (IHB) wants to inves-
tigate the possibilities of developing a new system to track the movement and rotation of
their ship-models.

In this paper, we present a computer vision solution using multiple cameras and ArUco
markers for tracking of vessels in 6 degrees of freedom. The system has adequate accuracy
in the initial camera views but suffers from a compounding error when calculating the
absolute position of the vessel after switching camera frames. Despite this, the data the
system acquires should still be useful to see how a vessel behaves in the tank.

The developed application can be refitted for many purposes. The system is designed
to easily be taken down and re-deployed somewhere else since it automatically calibrates
the camera positions with regard to the object for each individual run. As long as one
can provide camera coverage of the area where the object should be tracked, and there
are possibilities to attach a marker on the object, one should be able to get a live pose
estimation of the tracked object.

We have implemented an user-friendly GUI with accompanying user manual. The
system should be usable by anyone and requires no prior knowledge of vision systems.
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Chapter

Introduction

NTNU Department of Ocean Operations and Civil Engineering (IHB) wants to investigate
the possibilities of developing a new system to track the movement and rotation of their
ship-models. The models are tested in a towing tank at campus.

The system should be able to find the right position and rotation relative to a set ref-
erence point. The pose data should be collected so it can later be used to analyze and
improve the vessels.

Neither IHB nor our supervisors had any specific accuracy requirement. Given the
dimensions of models used, we considered a accuracy of + 10 mm for position and + 2
degrees rotation relative to the starting-pose to be an achievable goal which would result
in a useful product.

An important requirement was to have a robust system that is usable for students and
teachers. Therefore the system should have a good GUI and be usable on the PC that
already controls the other systems in the towing tank.

The department of ICT and natural sciences (IIR) are setting up Computer Vision as a
area of interest for the years to come. It’s therefore desirable from IIR to focus our work
around using computer vision.

Please note this report is not a manual for the system. A user manual is found in
appendix A.

1.1 Background

The towing tank at campus is used by students in ship-design and other disciplines to test
designed ships, ROVs and other vessels.

When doing research on ship designs, small scale testing with models is used to verify
theoretical results. For analysis it’s very useful to get exact results of the movement of the
ship. As of today, a mechanical solution is installed above the tank. A trolley runs along
the length of the tank. An arm from the trolley runs down in the middle of the tank to the
ship model, see figure 1.1. The vessel model is fastened to the arm. In total this system
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can provide information in 4 degrees of freedom as movement to the sides and rotation in
yaw is restricted by the arm.

Figure 1.1: Tank trolley and arm connected to model.

This system is according to the contractor not very user-friendly and tends to give
noisy measurements.

1.2 Project Objectives

The main objective of the project is to develop a system that can detect and track vessels.
It should improve the user experience and the accuracy should be better than the older
solution.

A solution for wave analysis has also been requested. This is considered a secondary
objective.

1.3 Project Requirements

* No definite accuracy requirement was specified from our contractor or from our
supervisors, but we considered £10mm and +2° relative to the starting pose to be
an achievable goal.

* Create a robust system that is usable by students and teachers.
* Get the results of the pose estimation and video feed from the cameras in real-time.

* Give the same amount or more data than the current system.




Chapter

Literature Review

In this chapter, we will go over some of the literature that has been used in the research
phase and also later in the project to make comparisons. It is important to note that we have
not done an intensive literature search through databases to find all relevant research re-
lated to our task, reviewed, critiqued and compared it like you would in a proper literature
review. We also make no claim that the texts listed and used are the most comprehensive
or most accurate within the field. We have instead listed the textbooks and articles that
have been very helpful for us to gain understanding and inspiration and that we feel would
be helpful to others undertaking a project like this.

The notations and definitions used for spatial descriptions and transformation are taken
from chapter 1 & 2 of "Introduction to Robotics: Mechanics and Control" by Craig (2005).
While this is a textbook covering robotics, the first two chapters, and their examples are
easy to understand while comprehensive enough to cover everything we needed regarding
these topics in the project.

For image processing and computer vision we have primarily used the textbooks "Mul-
tiple View Geometry in Computer Vision" by Hartley and Zisserman (2004) and "Learning
OpenCV" by Bradski and Kaehler (2013) to educate ourselves on the topics while sup-
plementing with information from the online documentation of OpenCV (Open Source
Computer Vision Library) and lectures by Hoff (2014). Together these gave us a compre-
hensive view of core concepts and terminology. The ArUco library for OpenCV is well
documented by its creators in articles Garrido-Jurado et al. (2014), Garrido-Jurado et al.
(2016) and Romero-Ramirez et al. (2018).

In this paper, we have used Pentenrieder et al. (2019) and Lépez-Cerén and Cafias
(2016) for comparison of our accuracy results. Both of these articles use marker-based
position tracking but not ArUco markers.

In chapter 3 pieces of information from sources mentioned in this chapter and numer-
ous others will be put into more context.







Chapter

Theory

In this chapter, we will go over some of the concepts, definitions and information we found
during research that we feel are important. Both for the reader to have knowledge of to
better understand the information presented in later chapters and for us to refer to when
explaining our decision making and implementations.

3.1 Description and Transformation of Positions and Ori-
entations

There are several ways to describe where a point is and how it is oriented in three-
dimensional space. Some methods give clarity to the end user, while others offer arith-
metical advantages when performing transformations. The following methods are chosen
with both readability and usability in mind. The definitions used in this paper can be found
in Craig (2005).

3.1.1 Position

After we have defined a coordinate system we can describe any point in 3D space using a
3x1 position vector. The position vector will have a preceding superscript to indicate what
system it is defined in. For example, a position P in system A will be written as 4 P. When
working with transformation between systems, a vector indicating position will some times
be called a translation vector as it represents the difference in XYZ coordinates between
the two systems.

3.1.2 Orientation

To describe orientation we attach a coordinate system to a point and describe this coor-
dinate system relative to a reference system. A system A relative to system B will be
described in a 323 rotation matrix written as & R. The orientation of system B relative to
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system A can be found by taking the inverse of QR. The inverse of a rotation matrix is the
rotation matrix transposed so 4R = & RT

A detailed explanation of how you compute the rotation matrix and its inverse can be
found in chapter 2.2 of Craig (2005).

3.1.3 Transformation Between Systems

Transforming from multiple relative coordinate systems into a single absolute coordinate
system has been important in order to keep a common reference in our data.

If you have a position and/or orientation in system A and you want to represent it in
terms of system B you will have to remap the values.

Translation

When system A and system B have the same orientation the only difference between
the systems is a translation and you can solve the mapping with pure vector addition. If
B Paorg is the origin of system A represented in system B then Bp—-Ap4 B Pporg

Rotation

When a point in system A and system B have the same position but different orientation
you can show Z P as 4 P multiplied by the rotation matrix § R (The orientation of system
A relative to system B). This gives us 2P = ERAP

Homogeneous Transformation

Combining the two previous solutions we get the general solution P = ERAP+5 Py,
we can rewrite this as a homogeneous transformation on the form

Ap
1

Bp
1

ER BPAorg
0 o0 0o 1

3.1

This lets us do the mapping in a single matrix operation. We call the combined rotation
and translation of system A with regard to B the transformation E T

Compound Transformations

If you know the transformation matrices 47 and 57T the transformation of system C' with
regard to system A can be shown as éT = ngT

A more detailed explanation of transformation and mapping can be found in chapter
2.3 of Craig (2005)

3.1.4 Pose (Z-Y-X Euler angles)

While rotational matrices are useful and have good clarity during calculations, the most
common way to describe the orientation of a vessel in layman’s terms is to use Euler
angles, more commonly known as roll, pitch and yaw. Instead of using the 3x3 rotation
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matrix to show orientation we can present it by three consecutive rotations around the

principal axes attached to the moving object.

The convention we use is Z-Y-X Euler angles, also known as Z-Y-X Tait-Bryan angles.
The angles of rotation around these axes are commonly called ¢ (Yaw) for the rotation
around Z, 8 (Pitch) around Y and ¢ (Roll) around X. We can write the set of rotations as:

cosyp  sinyy 0 cos 0 —sinf
Ry = |—siny cosyp 0| Rg=| O 1 0 Ry
0 0 1 sind 0  cost
cosfcosgp  sinpsinfcosep — cosysing
RyRoRy = |cosfsing sinypsinfsing + cosipcosd
—sinf sinycost

The general representation of a rotation matrix is:

i1 Ti2 Ti13
21 T22 T23
31 T32 T33

Using this we can get the Euler angle representations from
0 # +90:

T32

r3o = sinycosl, r33 = cosycosd — -

P = arctan2(r3a, r33)

T21
T11

ro1 = cosfsing, r11 = cosbcos¢p —
¢ = arctan2(ra1,711)

r39 = sincosl, rsz = cosycosh, r33 = —sinb
13y = siny?cosh?, ri; = cosyp?cosh?

135 + 133 = (siny)® + cosyp?)cos0? = cos0® — cosl = \/13, + 13,
= tand — 6 = arctan2(—r3y, \/M)

_ sinb
cosf

—T31

/2 2
T32F 733

1 0 0
=10 cos¢p sing
0 —sing cosop

cosysinfcosy + sinpsing
cosysinfsing — sinpcosp

cospcost
(3.3)

34

any rotation matrix where

siny

cosyy = tany (3.5)

coep = tan (3.6)
3.7)

These equations can not be used if 6 is £90 as cosf = 0. When this happens we will
have to calculate the rotations differently as seen in Slabaugh (1999). The trigonometric
identities used are not listed in the paper but can be found in Adams and Essex (2014).

For 6 = g:

Ris = sincosp — cospsing = sin(y) — @)
R13 = costbcoso + sinsing = cos() — ¢)

Ros = sinysing + cospcosd = cos(v — ¢) = R
Ro3 = costsing — sincos¢p = —sin(y —

(¥ — ¢) = atan2(Ry2, Ry3)
’L/) = (b - atanZ(ng, R13)

¢) = —Rio (38)




For 0 = —%:
Ris = —sinycosdp — cospsing = —sin(y + ¢)
Ry3 = —costpcosg + sinypsing = —cos(y + )
Roo = —sinysing + cospcosp = cos(¢ + ¢) = —Ry3
Ro3 = —cossing — sincosg = —sin(¢ + ¢) = Ria
(w + Qs) == atan2(—R12, —R13)
’L/) = —(b — atanZ(—ng, —ng)

(3.9)

We can see that for both cases roll ¢ and yaw @ are linked and we have lost 1 DOF. This
is called Gimbal lock or singularity and we can see that there are infinite solutions for ¢
and ¢. For us, it is convenient to pick one solution so we set ¢ = 0 and solve for .

3.2 Camera Properties

The definitions used in this paper for describing the camera properties mathematically are
the same as you will find used in most papers and places online. One text using these
definitions in the context of single and multiple view geometry is Hartley and Zisserman
(2004). By using a mathematical camera model, in this case, the pinhole model, we are
able to calculate where a point in three-dimensional space will get projected to a two-
dimensional image frame.

3.2.1 Extrinsic Camera Matrix

The camera’s extrinsic matrix describes the location and orientation between the camera
and the world. It is used in transformations from 3D world coordinates to 3D camera
coordinates. The matrix is often on the form

c c
whszs Y Pagi

o | (3.10)

Where §, R is a 323 rotation matrix and “P is a 321 translation vector indicating the
position of the world origin expressed in the camera coordinate system where the camera
origin is in the camera focal point.

To find the camera pose relative to the world coordinate system you take the inverse of
the extrinsic matrix. You can simplify this by transposing the rotation and subtracting the
rotated translation. This means gVR =8¢ R and C = —ZVVRCP where C is the camera
center position in world coordinates

3.2.2 Intrinsic Camera Matrix

The intrinsic matrix describes the characteristics of a camera and is a perspective trans-
formation of 3D camera coordinates to 2D homogeneous image coordinates. The intrinsic




camera matrix is on the form

fz s m
K=|0 f, v 3.11)
0 O 1

Focal Length f,, f,

The focal length is the distance between the focal point of the camera (where all the light
rays converge) and the film/sensor. For a pinhole camera, the focal length is the distance
from the pinhole to the image plane. For the intrinsic camera matrix used to suit our needs,
the focal length is measured in millimetres but pixel units are also used.

Camera Sensor Focal Point

Figure 3.1: Illustration of how focal length, f, is defined.
For a true pinhole camera model f, and f, are the same but from Simek (2013) the
reasons they can be different are:
 Flaws in digital camera sensor
* The image used to calibrate has been non-uniformly scaled in post-processing
* The camera’s lens introduces unintentional distortion

* The camera uses an anamorphic format, where the lens compresses a widescreen
scene into a standard-sized sensor.

e Errors in camera calibration.
In all these instances the image has non-square pixels. Some texts use a single focal length
and aspect ratio to describe the deviation from a perfectly square pixel.
Principal Point Offset x, 3o

The point where a line perpendicular to the image plane passes through the center of the
lens and intersects the image plane/sensor/film. The coordinates x(y and yq are relative to
the image plane origin (for us this is in the top left corner of the image).

Axis skew s

The axis skew is the shear distortion of the image. In most cases, this will be zero.




3.2.3 Perspective Transform

Perspective transform is the method used to map homogeneous world coordinates in 3D
space to homogeneous 2D image coordinates.

— K [ Rss “Pon (3.12)

%)
e 8

X
Y
A
1

Where s is a scaling factor. The product of the camera intrinsic matrix and the extrinsic
matrix is some times called the camera projection matrix.

3.3 Camera Calibration

The purpose of the camera calibration functions in OpenCV is to determine the camera
distortion coefficients (k1 k2 p1 p2 k3) and intrinsic camera matrix K. In Bradski and
Kaehler (2013) the entire camera calibration process is explained in detail in chapter 11
with example code using OpenCV. From there we also see that the camera distortion co-
efficients are used to describe the difference between the distorted and ideal (corrected)
image coordinates. For radial distortion:

eorrected = (1 + kir? + kor® + kar®) (3.13)
Yeorrected = Y(1 + k1r® + kor® + kar®) (3.14)
r=V@—2)+y—y.)? (3.15)

where x. and y. is the coordinates of the distortion center. For tangential distortion:
Teorrected = T + (2p1y + Pa(r® + 22%)) (3.16)
Yeorrected = Y + (p1(r? + 2°) + 2pax) (3.17)

Also according to Bradski and Kaehler (2013) the other forms of distortion have less of an
effect than the radial and tangential distortion and this is why OpenCV does not account
for them.

Using a chessboard as our calibration object at least 10 images using a 7 x 8 or larger
board is recommended for high quality calibration results (page 388). This is only if you
move the chessboard enough between images to get a "rich" view.
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3.4 Image analysis

341 HSV

HSYV is an alternative representation of the RGB color model as seen in figure 3.2. Color
segmentation for individual colors can easily be done by creating a mask with upper and
lower bounds for the three parameters hue, saturation and value.

anep >

Figure 3.2: HSV cylinder color chart from Wikimedia (2010)

3.4.2 Contours

A contour is defined as an outline representing or bounding the shape or form of some-
thing. Contours in image processing are explained in detail in chapter 8 of Bradski and
Kaehler (2013). In this paper we use the OpenCV function findContours() that imple-
ments the algorithm for contour detection found in Suzuki and Abe (1985).

3.4.3 Shape Factor

Shape factors are used in image processing to describe the shape of an object regardless
of its size. For a circle the shape factor is described in equation 3.18 found in Friel (2000)
Where A is the area of the blob created by the contour and P is the arc length/circumference
of the contour. A perfect circle has a shape factor f.;..;c = 1 and any other shape has a
factor fcircle > 1.

47 A

Jeircie = N3 (3.18)
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3.5 ArUco-Markers

ArUco markers is a type of binary square fiducial markers. Each of the markers have a
distinguishable bit pattern and this makes them ideal for use in vision applications such as

EE
B [

Figure 3.3: ArUco marker examples from OpenCV documentation

Marker configurations varies as seen in figure 3.3. The ones used in this paper have
6x6 squares (bits) where the outer squares are used to create the border leaving us 16 bits
to create distinguishable markers.

To minimize the amount of inter marker confusion errors i.e. a marker being mistak-
enly identified as a different marker, special considerations have to be taken when gener-
ating marker libraries. One method for doing this effectively is outlined in Garrido-Jurado
et al. (2016) and is the method used in the ArUco library for OpenCV.

3.5.1 ArUco Marker Detection

The ArUco marker detection algorithm is developed and works as described by Garrido-
Jurado et al. (2014). The algorithm can be briefly summarized by the following steps:

» Convert input image to gray scale

* Perform adaptive thresholding

* Find contours

* Find rectangles

» Check if each rectangle is a marker by:

— Warping the marker to a square
— slice into (n+2) x (n+2) squares

— check if edges are black

Calculate ID for detected marker

12



The markers have built in error-correction that prevents false negatives even if one of the
bits in the marker is flipped.

o[r[o]o]olo]o

- [o]o

Figure 3.4: From Garrido-Jurado et al. (2014): ArUco algorithm steps: (a) Original Image. (b)
Adaptive thresholding. (c) Contour detection. (d) Polygonal approximation and removal of irrelevant
contours. (e) Example of marker after perspective transformation. (f) Bit assignment for each cell.

3.6 Perspective n Points

Perspective n Point (PnP) is a method for finding the six degrees of freedom of a 3D
object, given a 2D image. The PnP problem solutions can be divided into two camps,
iterative and analytic. According to Lucchese (2005) iterative methods are usually more
computationally costly but are less sensitive to errors while analytic methods are faster
and can therefore be more suited for real-time applications if you have high-quality image
processing. In this paper we use iterative methods but we will mention both for context.

To use any PnP method n distinguishable points in 2D image coordinates need to be
known together with the camera intrinsic matrix. All the points need to be on a rigid object
and their position relative to each other in 3D space need to be known. For iterative PnP
methods, an initial guess pose with depth z # 0 is also needed. It is preferable that the
guess pose is as close to the solution as possible. This is to avoid errors caused by the
algorithm finding local minimums.

Analytic solutions can be found with n > 3 but P3P can have up to 8 different solutions
where 4 have positive z-axis (appear in front of the camera) Fischler and Bolles (1981).
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For n > 4 a single analytic solution can be found but some configuration criteria have to
be met and some exceptions exist as seen in Quan and Lan (1999) and Hu and Wu (2002).

Iterative solutions for the PnP problem work by projecting a guess pose x as 2D image
coordinates y and compare these to the measured image point coordinates y, and min-
imizing the squared re-projection error ||y — yo||? using various algorithms. One such
method is shown in the university lecture on pose estimation Hoff (2014) and is used in
the minimum viable product solution in section 4.2.3

One of the more common algorithms for minimizing re-projection error in iterative
PnP is the Levenberg-Marquardt algorithm (for solving non-linear least squares problems
as described by Marquardt (1963)). This is also the algorithm used in the OpenCV function
solvePnP() used by the ArUco library to find the pose of the markers.

3.7 Stereo-Vision

By comparing common points in images taken from different locations, it is possible to
estimate the points 3D location. A more In-depth analysis of multiple view geometry
systems in computer vision can be found in Hartley and Zisserman (2004). The two most
relevant concepts for this paper will be triangulation and stereo image rectification as these
are used in the function triangulatePoints() from the OpenCYV library used in our simple
implementation of 6DOF pose estimation using stereovision.

3.7.1 Triangulation

From Mussabayev et al. (2018) we see that by using a stereo image pair from two cameras
with parallel optical axes we can calculate the position of a point in 3D space.

Figure 3.5: View of a parallel stereoscopic system. From Mussabayev et al. (2018)
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b-BCY, b-CLV . h-b
xr = = -
BCy, +CRE, Y BCj, —l—C’RE7 BCp + CRg

+h (3.19)

Where b is the baseline distance 0105 and h = PrE = Pp, B and is the same as the focal
length f. It is important to note that in this figure the origin is set in the principal point and
not in the focal point where we set the origin in the camera extrinsic matrix. If we take this
into account and also see that BC';, + C'R is the same as the disparity in x coordinates
between the two images 7, — xr we can rewrite the depth z from the focal point as:

f-b

z= (3.20)
Ty, — TR

3.7.2 Stereo Image Rectification

The image planes being parallel simplifies several functions including triangulation and
finding corresponding image points in both images. When a parallel configuration is not
viable in the physical installation it is possible to re-project both the image planes to the
same plane parallel to the baseline between the two camera focal points. This is called
stereo image rectification and one method of doing this is detailed in Fusiello et al. (2000)
and should showcase the concept. We have been unable to find documentation specifying
the method used in OpenCV.

3.8 Finding angle between camera image plane and marker
plane

ni /
—>
nz

90-6

Figure 3.6: Sketch of angle between planes. Traced from Byju’s (2019)
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Generic Case

As shown in figure 3.6 the angle between the two planes is the same as the angle between
the two normals (n; and no) of the planes. The dot product of two vectors is defined as:

i1 - nin = ||n1]|||n3]| cos (3.21)

where ||nq || indicates the Euclidean norm of the vector and 6 is the angle between them.
This gives us the formula for the acute angle between the planes as:

|ni - 3|

LTy (3.22)
([ [|[|r22 |

0 = acos(

Special Case

For us, it was only relevant to know the angle between the camera image plane and the
plane of the ArUco markers so we simplified the equation for our need.

Every column in a rotation matrix represents one of the principal axes of the object
coordinate system with length 1. For our object system o defined with regard to the camera
system c this can be written as:

rr Y1 2
oR= |72 Y2 2z (3.23)
r3 Ys =3

The camera rotation matrix with regard to itself will just be a 323 identity matrix. For both
our camera and object the normal on the plane created by the first two principal axes will
be the same as the last column of the rotation matrix, n; for the object normal and no for
the camera normal.

ny = [2’1 zZ2 23] , Ng = [0 0 1} (324)

Because of both vector n; and ns being of length 1 the product of their euclidean norms
will also be 1. Following this we get

0 = acos|ny - na| = acos|zs| (3.25)

3.9 Moore-Penrose Inverse

In this project, we used the Moore-Penrose Inverse, commonly called pseudo inverse to
solve the least squares problem of our initial PnP implementation.

The Moore-Penrose inverse is a generalization of the inverse matrix described by
Moore (1920). The pseudoinverse is defined and unique for all matrices whose entries
are real or complex numbers. It can be computed using the singular value decomposition
and has been implemented in the Numpy library for Python. It is used when a matrix is
degenerate/singular and the inverse does not exist, or when determining if the matrix is
invertible is impractical. The most common use of the Moore-Penrose inverse is to solve
the least squares problem, according to MacAusland (2014).
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3.10 Norms(mathematical)

One of the norms used in this paper is the Eucledian norm, see equation 3.26. It is used to
find the length of a vector. The other norm used is the Frobenius norm, see equation 3.27.
This is an extension of the Eucledian norm to m x n matrices.

3] = \fo? + 03+ + 02 (3.26)
NAIF = lai;|? (3.27)
i=1j=1

3.11 Estimated Derivatives and the Jacobian

To implement our initial PnP solution for pose estimation we need to know how we can
estimate the partial derivatives of a vector function.

In this paper, a two-point method is used to numerically estimate the first order partial
derivative of a vector function at a given point. Where € is a very small number and u; is

unit component ¢ of x.
of(@) _ flz+eis)— f(x)

~ 3.28
ox; € ( )
The Jacobian J is a matrix of all first order partial derivatives of a vector function
Ofi(x) Oofi(x) .. Ofi(=)
ox ox ox;
of2(x)  0f(x) . 0pa(n)
J= | o (3.29)
Ofu(z)  Ofaa) . Ofalz)
0z Oxo Ox;

3.12 Programming Principles

For our project Python and object-oriented programming (OOP) is used. In OOP there
are some principles defining how good code should be written. This is mentioned in Mar-
tin (2008). Good code implements all required functionality while being easy fo read,
reusable and as simple as possible. Measurements for these things are coupling and cohe-
sion. Coupling is how connected the classes in the project are to each other. High coupling
means a change in one class forces changes in the other classes as well, which is something
to avoid. Cohesion is based on how many roles a single class has. A good class should
as a rule of thumb not have more than one role. Good code has high cohesion and low
coupling.
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Chapter

Method

In this chapter, we discuss the development process, explain how we have implemented
our solutions and provide justification for the choices we have made along the way. We
will also list all software and hardware used during development.

4.1 Work Preparations

Before starting on the development, plans were made for how the development should be
carried out. There were made plans regarding work hours, responsibilities, formalities and
development. See appendix D for the preliminary report.

As a starting point for development, we wanted to create a minimum viable product
(MVP). We wanted a system that was as simple as possible, while still implementing
all the core functionality needed for relative pose estimation. The goal was to test our
hypothesizes and chosen estimation-method to learn fast and see whether our core ideas
were right.
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4.1.1 Hardware and Software

Software
Name Detail Version Licensing
Python 3 Programming Language | 3.6.7 GPL
Jetbrains Py- | IDE 24 Apache 2
Charm
Git Version control 2.16.1 -
Autodesk Fu- | CAD tool Cloud based Education Li-
sion 360 cence
Blender 3D creation suite 2.79b Open Source
Ultimaker 3D printer slicing appli- | 4.0.0 Open Source
Cura cation
GitKraken Version control program | 5.0.4 -
GanttProject Project time manage- | 2.9 Open Source
ment
NumPy Math lib 1.15.4 MIT
Tkinter GUI lib 8.6 Python license
matplotlib Graphing lib 3.0.1 SD
OpenCV Computer vision lib 4.0.0.21 Open Source
ArUco Marker/pattern detection | 3.4 GPL v3
ttkthemes Visual GUI enhance- | 2.2.3 Open Source
ment
Quaternion Quaternion dtype to | 3.21.14.22.55 | Open Source
NumPy

Table 4.1: Software used for this project
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Hardware

Parts Information Material Amount

Axis-cross Used to mount markers on ship | Steel 1

Ship model Test model for visual represen- | Styrofoam 1
tation

Logitech C920 HD Six cameras used in final imple- | NA 6
mentation

Odroid USB-CAM | Only used for testing NA 2

720P

Axis P3225-V MKII | IP-camera tested functionality NA 4

Markers Painted markers for blob analy- | Wood and | 1
sis Steel

Ultimaker 3D-Printer | Used to create parts NA 2

Camera Stand Stand that is adjustable and flex- | Alu and PLA | 6
ible filament

Test Rig Used to test camera angles and | Alu 1
different ideas

Table 4.2: Hardware used for this project

4.2 Minimum Viable Product

4.2.1 Initial Ideas

At the start of the project we set out with 3 main ideas.

1. Marker-based tracking. Multi-camera (stereo vision) solution with at least 3 distin-
guishable points in the frame. After calibration, the points can by using triangulation
(see section 3.7.1) give 6 degrees of freedom (6DOF) pose.

2. Model-based pose estimation (Perspective n Point). Solves for all 6DOF with only
one camera. This can be expanded with multiple cameras to achieve large enough
coverage and precision.

3. Stereo vision for hull recognition. Using edge detection and possibly artificial in-
telligence to replicate the hull of the ship model in 3D and compare it to known
models. Here only cameras are needed so you are not dependent on markers on the
ship. This idea demands a higher level of knowledge from the group than the other
ideas. Seeing as we are working in an environment with water reflections this can
also make the solution difficult.

The first and the third option utilizes stereo vision triangulation to find depth infor-
mation in the images. In configurations where the two cameras are spaced with ade-
quate distance, we could, in theory, get high depth resolution. An obvious downside with
this approach is that we would need at least two cameras to cover all parts of our entire
workspace.
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The third option appeared to be the most complex solution to our problem. We strug-
gled to see a clear point of entry to how we would start solving this problem, and figured
we would rather implement a working solution before we made an attempt at this im-
plementation. An obvious upside would be that it would not require any markers on the
vessel.

The model-based approach still requires dual camera coverage in the sections of the
tank where a handover from one camera to the next would take place, but outside this area
one camera is sufficient.

Model-based pose estimation using a single also appears to be a solved problem (4.2.3),
which would allow us to focus our attention on figuring out to how to increase our coverage
with multiple cameras and implementing a user-friendly GUL

After these considerations, we decided to implement a working solution for option
three first, and experiment with the other options after the first implementation was work-
ing.

4.2.2 Image Processing
Preparatory Work

Our initial idea was to use HSV segmentation to separate the red color of the spheres of the
axis-cross shown in figure 4.1 from the rest of the image and then use contour detection to
find the exact positions of the sphere centers. We researched this and ways to do this using
the OpenCV library. We also noted that Hough circle transform and SIFT would be ways
to improve our function if needed.

Figure 4.1: Axis cross used as reference model
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Implementation

Initially, we applied a low pass Gaussian blur filter kernel to smooth the image and remove
high-frequency noise. We then applied our HSV mask to separate our spheres from the rest
of the image before running two iterations of erode, followed by two iterations of dilate,
to perform an opening operation on the image to remove lone outliers in the segmented
image that are higher than their neighbours. The opening operation is explained in pages
120-121 of Bradski and Kaehler (2013). To find the contours of our spheres we used the
OpenCV function findContours() (see section 3.4.2) on our filtered image frame.

We checked the circularity of our contours using equation 3.18 where we get the area
A using cv2.contourArea() and our circumference P using cv2.arclength(). If our blobs
meet the threshold set for circularity we use the function cv2.minEnclosingCircles() to
find the center of the sphere in (z, y) coordinates and the radius. This function is explained
on pages 249-250 of Bradski and Kaehler (2013) and checks what minimum size of circle
would fit around our contour. We would keep the values for the 3 largest circles and use
these in our PnP algorithm.

Testing

During testing of our image processing function, we had issues with false detection of
spheres due to poor selection of values for our HSV mask. To fix this we implemented
functionality for manual calibration of the values using simple GUI with sliders for the
different values that would continuously apply the new masks to our image frame so we
could see when our spheres were being detected and nothing else.

highv: 255 Nighv: 255

(a) Before applying mask (b) After applying mask

Figure 4.2: HSV masking tool

Hough circle transform was tested, but we did not achieve robust measurements. We
were unable to tune the parameters of the algorithm to a point where we would get consis-
tent readouts for each marker without also getting false positives, as seen in figure 4.3.
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Figure 4.3: Hough circle transform experiment

4.2.3 Perspective n’ Point Algorithm
Preparatory Work

During initial research on the project, we came across some lectures by William Hoff
from Colorado School of Mines for their computer vision class Hoff (2014). One of these
lectures was on pose estimation proposing an iterative method for solving the PnP problem.
This was a very low-level solution for showing off the concept and we decided this would
suit us well for gaining more understanding of the field through following the lectures
while implementing and testing the solution.

Implementation

The lecture by Hoff (2014) showed us an iterative method for solving the perspective n
point problem. Let y = f(x) where f(x) is a function that projects the image points y in
camera coordinates given a 6DOF pose in ZYX Euler angles x and let y( be the observed
image coordinates of our axis-cross markers. We want to find a pose = that minimizes the
squared re-projection error E = || f(z) — yol|*.

T

y=1[r1 vy 22 Y2 - Ty Yn) 4.1)

T

T = [$ y z ¢ 0 1/1]

To do this we start with an initial guess pose for  where the depth z # 0. We call this

guess pose zg. We also need the camera intrinsic matrix K and the 3D position of the

object points relative to the object coordinate system. For our algorithm, we had n = 3

points from the 3 spheres attached to our axis-cross and we knew their position relative

to the origin of the axis-cross. We defined these points in a 4x3 matrix of homogeneous
model coordinates P.

“4.2)

Tr1 T2 X3

P = Y1 Y2 Y3 4.3)
21 22 Z3
1 1 1
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To project our 3D points in the model coordinate system as 2D image points we use the
formula for perspective transform outlined in section 3.2.3.

sY = K [$ Ryus CPM} P (4.4)

Where g4R3m3 can be calculated using equation 3.3 with the x rotations and C Ps,.q is the
same as the position variables of z. To remove the scaling s we divide the first two rows
of the output matrix Y by the last row before removing the last row and reshaping the
matrix to a 6x1 vector y on the form shown in equation 4.1. We can now find the error
Ay =y — yo.

To find the step distance Az of our next iteration we need to estimate the partial deriva-
tives of f(x), create the Jacobian J and evaluate the derivative at the current guess pose

xZ.
ox; €

0fi(z) Ofi(z) . Ofi(w)
ox ox ox;

0f2(z) Of2(x)  Ofa(x)

J=| o om o (4.6)

Ofu(z)  Of2a) . Ofalz)

oz Oxo ox;

Once we have the Jacobian at x we can solve for Az using the Moore—Penrose inverse.
Axr = J Ay 4.7
We check if the change in x is significant by comparing the euclidean norms of = and Ax.

[|Ax]]
Il

4.8)

if the result of equation 4.8 is sufficiently small we stop the algorithm here. If not we
update the guess pose to x = x + Az and run another iteration. The algorithm keeps
going until the result is acceptable or the cap on iterations is reached.

For the next set of image points, we assume that the current pose estimation is correct
and set the initial guess pose for this new estimation to the current pose of the camera. We
do this because we run up to 20 estimations per second and the object can not realistically
have moved very far away from the previous position in that time.

Testing

When doing initial testing of the algorithm we mounted the camera on the test rig shown
in figure 4.7. We mounted the axis-cross depicted in figure 4.1 on one of the ship models
and placed it under the rig. After calibrating the HSV values so we could distinguish the
red color of the axis cross spheres from the background, we were able to estimate the pose
of the ship model.

Under testing we some times had problems with the algorithm where the projected
guess pose was not converging against the measured image points and the algorithm timed
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out from hitting the iteration cap. This turned out to be because we were unable to distin-
guish the spheres on the axis-cross from each other the order of the measure image points
in o was not constant and would not always match the order of the 3D model points in
P. To combat this we discussed using different colored spheres or objects of different
shapes on the axis-cross before learning about the ArUco marker library for OpenCV that
we would use in the next iterations of the project.

4.2.4 Defining a World Coordinate System

The PnP algorithm returns the pose of the axis-cross relative to the camera. Using the
transformation matrix ;7" from the first pose generated by the algorithm as our world
coordinate system renaming it 7" we could use this as a reference point for all subsequent
transformation matrices. The transformation of the model with regard to world coordinates
would be as shown below.

TG T=0T5T =0T 4.9)

Using the definition of the transformation matrix from section 3.1.3 we can use the equa-
tions for finding the ZYX Euler angles in section 3.1.4 on the rotation matrix 4, R and take
the x, y and z coordinates form the position vector W' P giving us the full 6DOF pose of
the axis-cross with regard to the defined world coordinate system.

4.2.5 Camera Calibration

To use the Perspective n Point algorithm mentioned earlier we need to know the camera
intrinsic matrix K. To do this we need to perform calibration of the camera. The size
of the chessboard used as our calibration object is chosen to meet the recommendations
mentioned in section 3.3.

Preparatory Work

The camera calibration functionality in OpenCV is well documented and numerous ex-
amples of how this can be implemented using a chessboard as the calibration object exist
online in the OpenCV documentation and in the book by Bradski and Kaehler (2013).

Implementation

We first had to define our calibration object in 3D space. In our case, this was a 7 x 9
chessboard found in figure 4.4. The board would be defined in a 7 x 9 X n by 3 matrix
P where every row represented a chessboard square corners position relative to the board
origin. After 7 X 9 rows we copy the board n times where n represents the number of
chessboard images we have where all the image points have been found. It is important
that the coordinates are in millimetres as this is what we want to use as units in this project.
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Figure 4.4: Image of calibration chessboard

To find the 2D image coordinates of the chessboard corners OpenCV has a function
called findChessboardCorners() that takes an image frame and the size of the board in
m X n squares and returns the image coordinates in a m x n by 2 matrix I. These image
points are then refined using the function cornerSubPix() to find the sub-pixel accurate
location of the corners. The image points from the next image frames are in turn added to
the end of the matrix /. The images where the corners cannot all be found are discarded.

After all images have been processed and if a suitable number of calibration images
have been accepted (> 10) the function calibrateCamera() is used taking the object points
P, image points I and also the size of the image to initialize the intrinsic camera matrix.
This function will return the intrinsic matrix K and the distortion coefficients explained in
section 3.3.

To capture images for calibration we created functionality for grabbing a frame from
the video feed at certain intervals once we started the calibration so we could just stand
in place with the board gently moving it around. This made it a lot simpler to perform
calibration alone.

4.2.6 Choice of Camera

Camera Information
Camera Type Resolution | FOV Adjustable Price
Focus
Logitech C920 HD 1920x1080 | 71° Yes 599 NOK
Odroid USB-CAM | 1280x720 | 68° No 150 NOK
720p
Axis P3225-V MKII | 1920x1080 | 92° Yes 4500 NOK
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The Odroid camera provided decent sharpness but its field of view was narrower than the
other cameras and therefore it results in the need for more cameras to cover the entire
towing tank. The model we tested was taken out of production, so we did not have the
option to buy more units. The camera also lacked a tripod mount, and designing a solution
for holding the camera in place would demand more hours being used to create a more
complex design - Therefore it was not usable for our project and was only used for small
scale testing.

The Axis camera provided sharp images, and since it is possible to pan and tilt it, it
could, in theory, give us the advantage of using fewer cameras. It has a horizontal field
of view which ranges from 92° to 34° when zoomed in. The function of panning and
tilting the camera gives an extra movement of +180° panning, -35 to +75° tilting and +95°
rotation.

The Axis camera is more expensive and implementation in Python would require addi-
tional time to create a functional communication protocol. We decided that for this would
become a to great of a task for us to finish. Also, since we got the cameras quite late in the
project, it would require to much time for us to deliver a usable product.

The Logitech C920 is a web camera mostly used for video feed transfer in locations
such as offices. It has a wide angle lens and gives a horizontal FOV of 70.42° and vertical
FOV 78°. Because of this, it can cover larger areas with fewer units. It has better sharpness
than the Odroid and the Axis camera. It is easy to set up, and has its own software for
adjustments.

From usage we found that the cameras we had could have been damaged or have wrong
factory settings. When taking pictures at the same distance, we got different results from
the two cameras we had. The focus at a working distance of 1.2 meter did not meet our
needed requirements.

After researching how to improve the focus, we found a guide that in detail explained
how to open up the camera and adjusting the focus ring without damaging it. This mod-
ification increased the performance. This is shown when comparing figure 5.1b to figure
5.1c and figure 5.1d.

Logitech C920 HD is of good quality relative to its price. The Axis P3225-V MKII is
a better camera but at a far more expensive price range. It also needs to be setup in a more
comprehensive way. The camera would need a static IP address and controlling it is done
by an own protocol that would demand that the user has far more knowledge than the other
cameras.

Our tests show that the Logitech C920 HD gives good quality compared to the price.
It is also easy fixed in the tank because it has a tripod mount that can be used to fasten it
to a stand.

After choosing a camera type, it was placed on the side of the tank. It gave a smaller
field of view than wanted. This was improved by mounting the cameras to a track on the
ceiling. It gave a larger field of view than original, which also resulted in the need of fewer
cameras.

4.2.7 Simulation

in order to test our image processing- and tracking algorithms, we needed images of the
axis cross. We wanted to test the system without the added noise and distortion we could
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expect from a camera, so we created a simulator for exporting pictures of a 3D modeled
vessel with the attached markers from different camera angles.

Figure 4.5: 3D drawing of possible solution for markers on boat

The 3D-model was initially drawn in Autodesk Fusion 360 and later exported to Blender
for rendering. Blender provided us with easy to use rendering options, where we could
recreate our exported images with good control over the location, orientation, camera set-
tings and lighting.

Figure 4.6: Generated camera angle from Blender

4.2.8 Camera frame for small scale testing

In order to get consistent setups for our cameras under testing, we created a test rig on
which we would attach our cameras. The vessel would then be moved under the frame
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during testing as we checked if our results were consistent with the actual movement of
the vessel.

Figure 4.7: Photo of test rig: The rigs measurement is 1x1x0.5 meters.

4.2.9 Software Architecture
Preparatory Work

To start with the coding a software language and method was chosen. We considered Java,
C++ and Python. Everyone was familiar with Java from earlier courses, but the OpenCV
documentation is not very thorough for this language. When considering C++, we found
out it had the potential to run more effectively in the final product. An obvious downside
was that none of the team members had used it before, and it is not known to be beginner
friendly. Python was well known for one of the team members who had used it in a project
the past year. In the end, Python was chosen due to our past experience with it, and because
it appeared to work well with OpenCV.

Python supports both object-oriented (OOP) and functional programming (FP) archi-
tectures. FP can often provide more compact than OOP, which could, in theory, mean that
we as developers could write less code. Object-Oriented code is known to be well suited
for coding in teams since it offers high modularity in each code block.

The entire team already had experience with OOP, but only limited experience with
FP. We would have to consider relearning programming patterns specific for functional
programming if we decided to go for that route. Instead we decided to go for the Object-
Oriented Programming approach, as it seemed to fit our skills and needs well.
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MYVP processes

The primary goal for the architecture for MVP was to separate the processes into differ-
ent classes, with the goal that a design change in one part shouldn’t require a complete
refactoring in the rest. The planned architecture is shown in figure 4.8.

The fundamental processes needed to be done:

1. All cameras takes a picture
2. Find model points in images

3. Estimate the position of the axis-cross with regard to the world coordinate system
for each image.

4. Sensor fusion and comparison and validation of the results.

5. The results are given to GUI, visualization and logging section.

Figure 4.10a visualizes how the processes is solved. Each camera would run their own
thread and send their image frame and PnP-solution to the PoseEstimator, where a final
pose would be found. This would be sent through the Connector to the UI, csv-file and
graph plotting.

MissinglmageException

— Main
FailedCalibrationException oal: Start application

PoseEstimator
Goal: Find estimated pose
based on all vision entities' data. Keep track f[«— |
of each vision entity.

Connector
Goal: Be a connection
between Ul and logic.

I
VisionEntity.
Goal: Represents a stand et
alone vision entity that handles Sezl Ba @ sl venizee i | B
a camera and the logic that test everything in real life.
can be applied to a single
video stream cul
Goal: Be a simple and user [ |
friendly interface
Camera Visualisation
Goal: Represent a webcam Goal: Standardize and PR
Contains intrinsic matrix, systemize visualisation.
distortion coefficients
Datacollector
SingleFramePointDetector Goal: Collect, sort and

— > Goal: Filter and find keep all data.
keypoints in a frame.

SingleCamPoseEstimator
Goal: Find estimated pose
for single cam, based on
— multiple frames.
Compare to ref.

Figure 4.8: Class architecture for MVP.
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Figure 4.9: Data flow diagram

As the purpose of MVP is to create a useful prototype, the only interface created was
a Text UI that runs in the command line. TextUI is explained in section 4.2.10.

Implementation

The first step of implementation was to write, test and validate the classes for a single
camera. None of the classes was used in the main program before they were working well
alone. The image processing was described in section 4.2.2, and the pose estimation in
section 4.2.3.

Since the pose estimation from several cameras would run in parallel, threading was
used. Each created VisionEntity is run in a separate thread, as well as the PoseEstimator.
It required some planning for how variables were accessed but presented no problem.

To debug and report errors in the code, the inbuilt logging-library was used instead of
the normal print function. It can immediately see where the message was written from and
see the most critical errors easily. We also write all detected errors to an error-file for ease
debug.
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In order to make a robust application, you need to keep track of which cameras are
where.

Camera indexing

When using multiple USB-cameras with OpenCYV, there is no protocol for identifying
which camera is connected on what port.

Webcam access in OpenCV is based on indexing. OpenCV makes a secret list of
available cameras connected and when asked returns the camera found in the position that
corresponds to the index asked for. This means, the list used one day, isn’t necessarily the
same the next day. No info about what camera is connected where is stored. This means
we can’t automatically assign calibration files and eventual extrinsic camera parameters to
cameras directly as we don’t know which cameras are connected. Instead the user must
check the stream of each camera and assign a calibration file corresponding to the given
camera name.

With library win32com ("Windows Python 3.2 Communication") we are able to get a
list of IDs, where one ID is one USB-connection. From the ID list we can read off the ID
of the webcam driver and the USB port-number. But since we don’t have camera-unique
numbers (i.e. serial numbers), this is not useful if we use several cameras of the same type.
Unfortunately, as OpenCV is written in C++ the OpenCV camera-list is not accessible in
Python. OpenCV supports using USB port-number to access a camera, but only for Linux
and not for Windows.

Since we were unable to address cameras directly, we created a solution that would
let the user preview each connected camera before adding it to the tracking system. This
would let them choose the relevant cameras and decide the calibration file that should be
assigned for each camera.

4.2.10 Text User Interface
Preparatory Work

To test the system, an interface was needed. A graphical user interface is often very com-
plex and time-consuming, which means the interface itself needs many hours of work
to function properly. Early in the project, a bug-free and simple interface is much more
important than a nice looking one. We, therefore, created a command line interface.

Implementation

The focus was to make things simple and functional. We wanted the interface to have the
same functionality as the GUI would have in the future. Implementing the TUI took less
than two working days.
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eencam

Figure 4.11: Main menus in TextUI

Usage

The TUI did its job well as a debugging tool before we got to the point where a working
GUI was implemented. It made it easy to add, remove and edit functionality in the code
without spending much time in rewriting the user interface.

4.3 Implementing ArUco

Due to our not so successful attempts to achieve a robust system based on the spherical
marker approach, we were on the lookout for alternative approaches for a tracking and
pose estimation engine. Square planar markers, normally associated with QR-codes, could
provide us with solutions to our most obvious problem - namely getting a unique identifier
associated with each point of interest.

After a dive into available tech - the ArUco library based on OpenCV stood out to us as
an excellent candidate, promising high performance, robustness, and free to use software.

4.3.1 Tracking ArUco Boards
Preparatory work

A coarse implementation with a single camera detecting the pose of a single marker was
implemented as a proof of concept, and both the performance and resolution of this demo
program was better than our spherical marker based implementation. In addition, we had
no problems with false readouts. Due to the performance, compatibility with our existing
solution written in Python and open source accessibility, we decided to switch to an ArUco
maker based approach. We also saw value in the fact that the ArUco Markers could be
printed on paper, and thus be virtually massless compared to our spherical marker rig
made from wooden spheres and steel rods.
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Implementation

The ArUco Library conveniently implemented a lot of our previous work. The library
implemented point detection and the solving of the perspective N-point problem neatly
into its own functions, so the goal for our first iteration in the development of our system
was to express these solutions as Euler Coordinates in a coordinate system where we could
decide the origin.

The OpenCV solution to the SolvePnP-algorithm provides an answer in the format
of two vectors, rvec - the rotation vector, and tvec - the translation vector. Our initial
plan was to stick with this regime since most of the OpenCV- and ArUco-library uses the
translations and rotations in this format. This did, however, pose some challenges.

A Rodrigues’ rotation vector is a convenient and compact way of representing a rota-
tion, but in order to do actual calculations where rotations are combined, or inverted, we
would have to transform the vector into a matrix first, or even use quaternions.

If we were dealing with rotations only, quaternions would be an obvious choice, since
they are compact, more readable and are less computationally demanding than rotation
matrices. They do however lose some of their desired properties when our pose contains
both rotations and translations. Dealing with a translation vector on the side of quaternions
would not be impossible, but it seemed less readable and convenient than the alternative
we eventually went for.

A 4x4 Homogeneous Matrix combines a 3x3 rotational matrix, a 1x3 translation col-
umn vector and fills the last row with three trailing zeros followed by a one. The property
that makes this matrix so desirable for us is that they can be combined with simple matrix
multiplication, and they can easily be decomposed back to their rotational and transla-
tional form (see section 3.1.3). By building a small class of helper functions we were able
to supplement these matrices with functions for converting them to the OpenCV rvec/tvec
regime when needed.

The final implementation of the ArUco Board Tracker runs in each of our so-called
"Vision Entity"-objects, which are threaded objects within the software that is responsible
for the data collection and processing of a single camera.
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Figure 4.12: Live tracking a Vessel

Each Vision Entity is continually reading frames from their respective cameras and
analyzes the frames looking for ArUco Boards. When a board is found, the Vision Entity
records the position of the board relative to the camera. This transformation will be written
as ;T in the next section 4.3.2.

4.3.2 Multi Camera Tracking
Calculating Relative Position of each Camera

When a tracked board enters the image frame of one of the cameras for the first time, the
world coordinate system is defined to set the boards position and rotation to the origin.
How we define the world origin is the same as explained in section 4.2.4 When a camera
that has not yet calculated its pose sees a board that has an affiliated position related to
the world coordinate system, the camera will use the boards’ position to calculate its own
pose in relation to the world coordinate system.

Wr=Wr{r-t="YrMT (4.10)

This transformation can then be used to find the board position relative to the world for all
subsequent poses found by the new camera.

wr=%r5,T 4.11)
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Improving Camera Position

When calculating the subsequent cameras positions we run into the same issue as when
merging boards. A new camera position is initially calculated when the board is in the
edge of the camera frame, and while most of the boards’ markers are still outside the
image frame. This means that we, in theory, should be able to calculate the position of the
subsequent camera at a later time when the entire board is visible in order to improve upon
the initial estimate of the cameras pose.

This was solved by implementing a certainty measurement algorithm that would amend
the subsequent cameras positions if a higher certainty estimate of the position was avail-
able. The algorithm works as follows:

The camera pose certainty of the first camera is always set to 1, as the quality of the
initial camera position can never be improved upon, as it is the first static variable in or
world coordinates.

As the board is being tracked, the tracking camera is updating the Board Pose Cer-
tainty. The certainty of the poses of the different objects are measured on a scale from
zero to one, and this scale is defined by the fraction of visible markers on the board.

Visible Board Markers

Board Pose Certainty = Camera Pose Certainty *
Total Board Markers

4.12)

Similarly, when the subsequent cameras have a board in sight that is still being tracked
by another camera, they will compare their current pose quality with their potential pose,
and if they believe that their pose can get a higher quality, they will make a new estimate
for their positions, and update heir pose quality to the new value.

Visible Board Markers
Total Board Markers
4.13

Potential Camera Pose Certainty = Board Pose Certainty *

Calculating Board Position when Several Cameras has Board in Sight

When more than one camera has the same board in sight at the same time, only the camera
that can offer the highest board quality will write its estimated pose to the board.

37



Camera 1

v

Analyze frame

s board in
sight?

Yes

v

Set camera pose
certainty to 1

v

Set board pose
certainty to fraction
of visible markers

2

Calculate board pose

Y

certainty and write to
board

Analyze frame

Camera 2

v

Analyze frame

Yes
v

Set camera pose certainty to

board pose certainty times [€
fraction of seen markers

v

Analyze frame

Y

Is board in
sight?

Yes

Can camera pose be

—No Yes—

improved?

Figure 4.13: Algorithm for calculating camera pose certainty

Automatic Switching in Camera Views

The GUI offers an "automatic” setting that always shows the camera that is currently writ-
ing poses to the board. This function relies on the same algorithm as in the previous
sub-chapter.
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4.3.3 Multi-Object Tracking

The system has built-in functionality to track several boards simultaneously. When more
than one board is being tracked, the cameras detect all the visible markers in the frame and
calculates and saves the position of each respective board.

The multi-object tracking was one of the simpler implementations of the project, as
most of the programming of this functionality was done by abstracting the tracking classes
to accept lists of boards and repeating some of the tracking steps for each board.

4.3.4 Software Architecture

Switching to ArUco markers naturally meant some changes in the code, but the class
structure mostly stayed the same. See figure 4.14. The old classes for image filtering
and pose estimation wasn’t used anymore and removed. To keep track of markers, a class
ArUcoBoard was added. The class-object would hold a single board, with a distinct ID
according to the ArUco dictionary. The boards would be created and managed from GUI
but will be sent down PoseEstimator as soon as tracking starts.

Main
(Goal: Start application
1
Connector GUI
Goal: Be a connection Goal: Be a simple and user
between Ul and logic friendly interface

PoseEstimator
Goal: Find estimated pose
based on all vision entities' data. Keep track —> Goal: Represent a
of each vision entity. Aruco board.

ArucoBoard

VisionEntity VEConfigUnit
Goal: Represents a stand Goal: Offline-control
alone vision entity that handles of cameras.
a camera and the logic that
can be applied to a single

video stream GUIDataPlotting
Goal: Take care of

plotting data.

Camera IntrinsicCalibrator
Goal: Represent a webcam Goal: Represent a webcam
Contains infrinsic matrix, Contains intrinsic matrix,
distortion coefficients distortion coefficients

Figure 4.14: First SW architecture with ArUco markers
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43.5 GUI
Preparatory Work

For the GUI, a library had to be chosen. The most important features except the basic
things were the possibility of good live video streaming and live graph plotting. The
choices are shown in table 4.3. From earlier, one team member had much experience with
Kivy ! but that was mostly specialized for touch and tablet hardware. Qt ? is the largest
and possibly most feature-rich GUI library for Python. But from our earlier experience
we knew setting it up was not trouble-free, and the price was high if we wouldn’t go
Open Source. After some research, we decided to go with Tkinter 3. This mainly because
Tkinter would do everything we wanted, like visualizing graphs and integrating video
streams. Based on previous experience we knew that Tkinter would be able to solve our
problems regarding the GUIL.

GUI Library
Feature Priority Kivy Tkinter Qt
Live video High Yes Yes Yes
Live graphing High Not di- | Yes Yes
rectly
Earlier  experi- | Medium-High | Yes Yes No
ence
GUI Builder Medium No No Yes
. . Free if Open Source
Price Medium Free Free $459/mo. Commercial
Table 4.3: Features of considered GUI libraries
Implementation

It was early decided to separate the different parts of the GUI by tabs. That would make
things easier to program and more user-friendly. We started out by creating five sections,
or tabs:

* Live screen - camera stream and overview

* Calibration - intrinsic calibration

* ArUco - to create ArUco markers

* Graphing - display graphs

» Configuration - for cameras

1
2
3

www.Kivy.org
www.Qt.io
www.wiki.python.org/moin/TkInter
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Live Calibration Aruco Graph Configuration

Figure 4.15: Initial GUI tabs

The final result were 3 tabs, where ’Calibration’ has been moved under Configuration and
’Graphing’ is in a separate window.

Configuration-tab

In the configuration-tab, the user can select which cameras to use in the system. Figure
4.16 show camera options in the GUL

The camera can be connected to the system, the camera-stream can be shown and
calibrations-parameters can be loaded. These options are a necessity because the user
must identify and connect each camera individually by themselves. This necessity is given
by the problem described in section 4.2.9, where OpenCV or Windows doesn’t recognize
USB-cameras individually themselves.

Camera O: Disconnect ‘ Preview Blcalib.npz

Figure 4.16: GUI: Camera options.

Creating ArUco Boards

ArUco boards can be customized in the GUI, see figure 4.17. A number of markers and
their size can be set. The markers are not randomly created. By default, a number of
markers are created, in our program 50. They are listed with an index. No matter the
length of the list, the first marker will always be id O and have the same bit-mapping every
time. Same with second, third, etc. This means we can use the board placed on the model
again and again, as long as the creation order is the same. When a board is customized, it
can be saved and a pdf-document will be created with the board. The user can then print it
out and it’s ready to use.
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Figure 4.17: GUI: Creation of markers in Marker-tab.

4.4 Final Development ArUco

Here we describe the final development of the software. The main functionality added
was the possibility to merge’ boards, meaning setting up so several markers can act as a
single one. This was seen useful when a model had several markers added since we aren’t
interested in several poses for the same boat.

4.4.1 ArUco Merger

In addition to creating boards, we also wanted functionality for merging several boards
together. An ArUco board can be created either by creating a grid board, which is a
collection of markers placed in a square grid, or by defining the position of the corners of
each marker in 3D space.

The first option makes for easily defined boards but limits our marker placement to a
single plane, and to a grid pattern. If we could place markers outside the square grid, we
would be able to track our model from more angles, and we would also imagine that we
could get more accurate measurements since we could read more depth information from
a frame with markers placed in more than a single plane.

The latter option for creating boards, where we would define the position of each
individual marker is not suited for manual creation, since it is unpractical to measure and
enter all the positions by hand.

We, therefore, proposed a solution where we would create two or more grid boards,
define one of them as the main board, and the others as sub-boards. Then we would
estimate the pose of the sub-boards relative to the main board, and get a transformation
matrix we could use to transform the corner points of the sub-boards into the coordinate
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system of the main board. By appending these new corner points to the list of corner points
in the main board, the main board and the sub-boards would be merged into a single board.

Preparatory Work

When we prepared this functionality, we had to answer the question of how the transfor-
mation between the sub-boards and the main board would be calculated.

In the simplest case, where we had one main board and a single sub-board, the only
way to find the relative pose between the sub-board and the main board would be to cal-
culate the pose for both from a single image frame. See figure: 4.18

(&)

Figure 4.18: ArUco Merger: Single sub-board graph

However, when there are more than two boards, it should be possible to know the rela-
tive position between the two sub-boards, and between one of the sub-boards and another
sub-board. By chaining the relative poses together, we could find the relative position be-
tween the second sub-board and the main board without observing this relation directly.
see figure: 4.19

@ @
Figure 4.19: ArUco Merger: Chained graph
Considering more complex situations, we quickly run into the next problem to con-

sider: What do we do in a case where we have more than one way from a sub-board to the
main board? See figure: 4.20
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Figure 4.20: ArUco Merger: Weighted graph

By defining some cost between each transformation, it is possible to search for the path
with the lowest cost. By implementing a shortest path algorithm, like Dijkstra’s algorithm
or the A* search algorithm, we could calculate the lowest cost transformations for a sub-
board to the main board.

Before starting the work with implementing this solution, we decided to seek advice
from Arne Styve, who after a fruitful conversation advised us not to go for a solution this
complex, and instead only consider direct transformations between each sub-board and the

main board.

Figure 4.21: ArUco Merger: Graph using only direct transformations

This advice was easily justifiable since each transformation in practice would have a
cost so high that a direct transformation would almost always be preferable to an indirect
one. By completing the board merging prior to starting the actual logging of the model
pose, we would get high-quality transformations for all sub-boards, and we would not
worry about having "down time" where some of the sub-boards were unconnected to the
main board.

The downside to this approach is that we would need at least one measurement where
each sub-board and the main board would be in the same image frame during the calibra-
tion, but we considered this as easily solvable in most cases.

Implementation

As this part of the project was implemented at a late stage, the implementation was initially
done in a separate environment. As a general test for this functionality, we decided to use
a cube with a marker placed on each side, with the goal of merging five faces of the cube
to a single board. See figure: 4.22
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Figure 4.22: Aruco Merger: Photo of marker cube

We observed that when we rotated the cube to reveal the next face, the first measure-
ment we got was weak, due to the steep angle between the newly revealed marker and the
camera. This made us consider how we would calculate the transformation between the
boards since the first measurement surely would not be the best.

By finding the angle between the camera plane and the observed marker as described
in chapter 3.8, we found that the cosine of the angle between the camera and the marker
would increase with the visibility of the markers. This variable was easily obtainable from
the camera to model rotation matrix, (3.4) as 33, as described in equation 3.22.

We considered averaging several measurements, where we weighted each measure-
ment as the minimum of the cosines of the angle between each board and the camera. The
problem that arose from this weighting was a need to calculate an average between the
rotations of each transformation. There are several implementations of averaging rotations
in the quaternion space, but we decided against using it and decided to use our single
strongest measurement, due to the complexity of these operations, and that the expected
payoff seemed low.

Testing

Unfortunately, the current implementation of our merger is not consistent in giving good
result for the merged boards. Small errors in the relative pose of the boards results in large
errors when calculating the pose in the merged board. The PnP-algorithm seems to give
us some strange answers when the object points are incompatible with the observations.

We believe that the merger can be improved by using more accurate methods of mea-
surement, like a stereo camera solution, or by using a more robust method of considering
the pose of the merged board. One can imagine measuring the pose each board separately,
and only considering the main board when more than one board is visible, and only using
the most visible sub-board when more than one sub-board is visible.

4.4.2 Pose Quality

We decided that having a numerical value representing the quality of the pose estimation
would be helpful seeing as we use multiple cameras to provide images for our estimations
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and some can be more suited than others depending on multiple factors.

Preparatory work

We hypothesized that the accuracy would be most heavily impacted by three factors; The
number of markers recognized by the algorithm (marker occlusion), the distance from the
camera to the object and the angle of the marker plane with regard to the camera plane.
During research, we found information that corroborates with our hypothesis about angle
and distance in Pentenrieder et al. (2019) and Lépez-Cerén and Caiias (2016).

Implementation

The number of identified markers was found by taking the length of the list of marker Ids
returned by the ArUco function detectMarkers().

To find the distance D from the camera to the marker corner we defined as origin we
took the Eucledian norm of the position vector {; P of the transformation of the marker
object M with regard to the camera C, §;T.

D =|§Pl (4.14)

To find the angle of the object plane with regard to the camera plane we use the equa-
tion found in section 3.8. We set our accuracy value gained from the angle between the
object and the camera as the cosine of the angle as this will be 0 when the board is perpen-
dicular on the camera and 1 when they are facing each other.

cost =|nqy - na| =|z3] (4.15)

We assumed that marker occlusion, distance to marker and angle of the camera would
not impact the result the same so we needed to add weights to the coefficients. These
weights would be decided by our own testing done in section 4.7 and by analyzing results
from other similar projects like Pentenrieder et al. (2019) and Lépez-Cerén and Caiias
(2016). We never got to implementing these weights because of time limitations and this
not being of high priority.

4.4.3 Software Architecture

The software architecture wasn’t affected much by the latest development. The biggest
change was GUI becoming the starting class. It was some discussion about whether GUI
or Connector should run the main loop for the program. In earlier versions, the main
loop was initiated in the Connector. This meant the Connector would have the GUI about
changes in the GUI. We decided to move the main loop to GUL This cleaned up the data
flow between Connector and GUI, although the GUI got a bit more responsibility.
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Figure 4.23: Software Architecture Final Version




444 GUI

Functionality for doing calibration was added. The user could now calibrate all cameras
from the GUI. It was refactored functionality so a VE could be connected and previewed in
the calibration tab, the same way as in the camera config tab. After the calibration, which
now takes between 15-60 seconds for each camera, the created file with parameters be-
comes available as a choice in the camera-config tab and is directly inserted to the camera
when chosen.

Figure 4.24: GUI Calibration Tab

Functionality for the merging was also added. Main marker and which markers to
merge with can be set. During merging, live feed is given and bars showing the quality of
each merge is displayed, see figure 4.25.

# Merge boards - O X

Quality of merge:
Board 0
Board 1
Board 3

Board 4

Abort

Figure 4.25: Screenshot taken during merging process

48



4.4.5 User Manual

Since the system was meant used for students and teachers, a user manual was created.
The manual is found in appendix A. It goes through all necessary steps to get every feature
working.

4.5 Installation

Before mounting the camera setup in the towing tank, preliminary work had to be done.
Measuring distance between cameras and testing handover from one camera feed to an-
other at a given distance. This was done at the operational distance of the trolley. After
this, more camera stands were put on the side of the tank. A testing zone for the computer
was also setup, so that we could use a smaller area of the tank. This was to make sure we
were of no hindrance to other people that also used the tank for testing other projects.

This gave an indication of how many cameras were needed to cover the entire opera-
tional length of the towing tank. We needed to use at least 5 cameras with a 90 cm distance
between them.

Also when testing, we have to check if the first alternative of putting the cameras on the
side of the tank is the best solution. The second alternative is to use a track that is mounted
in the ceiling so that the camera stand can be fastened to this and the camera would have to
be rotated upside down. Also, an extra bracket is made so that we can connect the camera
stand to the track in the ceiling. Drawing of this can be found in appendix B page 7. This is
made so that it can be slid into the track and connected to the already made camera stand.
An image of how this was done is show in figure 6.4b

If we were to have the cameras on the side of the tank, it would be a much larger
operation to implement them. We would have to either create holes to fasten them by
drilling in the frame of the tank. This is not ideal since we do not have the equipment to
do it. And also it could also be needed to drain the tank to be able to do this.

We used the program that already exists to control the towing tank. It has the possibility
to specify where the trolley should move to, and also generating waves with a given height
and interval. This was used to test if the handover from camera to camera worked. We
fixed the boat to the trolley and towed it at a given distance with a given length of towing
specified in the program.

4.5.1 Camera Stand

A camera stand was made to place the camera in the right position on the side of the
towing tank. This was done by creating different drawings of solutions which later on was
3D-printed, figure 6.4a. The first version, drawing shown at appendix B page 1, did not
produce a good result. It is based on adding multiple ball joints together with a locking
ring to prevent it from loosening.

Because the design was complex, the parts were also sensitive to change of heat when
it was printed. The result was not up to standard and a new solution had to be made. A
more robust design principal with fewer parts and less complexity provided a good result.
It is also mountable on the side of the tank or the ceiling. And the height is adjustable.
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Appendix B, page 3 shows drawing of this. Each camera stand should be placed with a
distance of 90 cm between them to ensure that the cameras are overlapping so that the
handover from camera to camera works when using the trolley on the towing tank.

4.6 Logging and Storing Data

4.6.1 Displaying Real-Time Data in GUI

In order to analyze the vessels movement over time, we decided to implement a system
for displaying this data in a clear manner. We considered two options for the real-time
logging:

Our first option was to display the boat position as a line in a 3D graph. This approach
would be intuitive and would show the vessels path through the towing tank. Displaying
the orientation of the vessel would not be as easy in a set up like this, and we would also
lose the time dimension.

Therefore, we decided to go for a six window set up, where we would plot each degree
of freedom in separate subplots, see figure 4.26. This is also similar to how the data is
displayed by the sensor currently implemented in the tank, and would, therefore, be easy
to understand for the user.
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Figure 4.26: Logging window from GUI. Orientations are displayed in radians, but are changed to
degrees in the final product. One can see the tow starting at 20 seconds in the x-plot. Also observe
the z-plot, where waves from the wave generator hits the vessel at about 18 seconds.

4.6.2 Saving Logs to CSV-Files

In order to save a session for the future or do further analysis on the data gathered, we have
implemented functionality for saving the logged data to CSV-files.
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We decided to do this since both our client and our supervisors advised us to, and we
believe that it drastically increases the systems utility value. Storing the data is critical in
order to compare how different vessels behave in the tank and even if this is a small part
of our system, it is an important one.

The logger stores 20 data points each second for each tracked board, and all the data is
written to a CSV-file on the users request.

4.7 Position Accuracy Testing
We wanted to determine the accuracy in 3D position of the object at different angles of the

camera to see how this would affect the result. To do this we mounted a 3x3 ArUco board
with 40x40mm markers to a UR3 robot as shown below in figure 4.27.

Figure 4.27: Photo of accuracy test setup

We made a square board out of wood with known dimensions with accurate markings
for where it would be mounted on the robot and how we would have to tape the paper sheet
with the markers to the board. We would know from doing this what offset to add to the
tool center point (TCP) to get accurate readings.

We mounted the camera 100cm away directly opposite of the robot using a table vice
and a wooden board so that the angle between the camera and the board would be 180
degrees (facing each other). The camera was mounted on a height such that the board,
when placed in origin, would be at the center of the image. We wrote a short script to
broadcast the calculated angle between the board and the camera so we would not have to
measure it. To simplify the reading of the robot TCP position we set this current position
as origin in the teach pendant so we could directly compare the readings from the pendant
and our systems GUI.
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When testing the accuracy we would move the robot along a single axis in 10mm
intervals from O up to and including 50mm before moving back to origin and repeating for
the remaining axes. When we finished testing along all 3 axes we would rotate the board
around the x-axis (roll) to 150 degrees followed by 135 degrees and finally 120 degrees.
This would give us 6 measurements for each axis at all 4 angles. To confirm the angle
between the board and the camera we created a script using the formula from section 3.8.

when evaluating the results we saw some discrepancies in the trends of our average
errors. We decided to do another series of tests. This time we would repeat the same
experiment, but rotate the board around the y-axis (pitch) instead. This was to see if it
would give us significantly different results. While doing this we realized the discrepancies
between our initial test results, and the ones we have found recorded in other papers such as
Pentenrieder et al. (2019) and Lépez-Cerén and Cafias (2016), are likely due to inaccurate
definitions of the robot TCP. We have explained this further in section 6.3.1. Due to this
we redefined the TCP and redid the tests but this time using smaller increments in rotation
to make the results more comparable to the ones found in the other papers.

4.8 Testing of Accuracy in Roll, Pitch and Yaw

To test the accuracy of the orientation estimation we had to be able to accurately define the
TCP of the robot as the origin in our ArUco board. If this was not done, the orientation
shown in the teach pendant would not match the orientation of the coordinate system
defined by the board. We saw some of the problems that could occur by not doing this
correctly in section 4.7. We used the same mounting of the board as used for the second
sets of tests done in that section.

We would rotate the board around a single axis at a time in intervals of 5° from 0° to
40° and note the display value of all 3 axes.

4.9 Experimental implementation of stereo vision solu-
tion for 6DOF estimation

We hypothesized that by using stereo-vision techniques we would be able to increase ac-
curacy in orientation tracking by identifying points on the model we were tracking as far
apart as possible and calculating the orientation using the knowledge of how these points
relate to each other. When the tracked points are further apart a small error in position
between two points would not result in a large error in the angle between them. We also
knew that some problems we had with compounding errors could be reduced by using
stereo calibration to find two cameras position in relation to each other and a common
reference point. To get a feel of how difficult a stereo vision implementation could be we
decided to do a small scale test using some functionality in OpenCV we had come across
during research.

One method for getting orientation using stereo-vision was by having 3 distinguishable
points each pointing a known distance away from a common known origin in the direction
of the principal axes as done with the axis cross in the MVP. This puts a lot of limitations
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on the distance between the points and also adds non-negligible weight to the model that
will have to be accounted for.

A different solution is to have two distinguishable points p; and po along the first
principal axis x where one of them is assigned as the origin and a third distinguishable
point p3 anywhere on the side of the positive second principal axis y on the plane created
by the x and y-axes. Doing this we can find the principal axis z using the cross-product of
the normalized vector created by the two points on the x-axis and the normalized vector
created by the origin point on the x-axis and the third point.

T = p1p3 (4.16)
Z= p1p3 X z (417)

We can then find the direction of the y axis by taking the cross product of the normal-
ized vectors representing the x and z axes.

J=7xZ 4.18)

This solution is preferable if and only if the model has a flat surface plane that lies par-
allel to the plane created by the models x and y-axes. It makes it very simple to place two
markers along the model x-axis and the third marker is very flexible letting us maximize
distance. The weight added by ArUco markers on the flat surface is also considerably less
than an axis cross. Because the ship models have a flat surface plane like mentioned this
is what we felt would be the best solution.

Implementation

To find the 2D coordinates corresponding to each point we used the same method as the
PnP ArUco marker solution as this was already implemented. We had 3 ArUco markers
placed on the object and used the image coordinates corresponding to the point in the top
left corner of each marker.

For image rectification and triangulation we used the OpenCV function triangulate-
Points(). This function takes pairs of corresponding image points from two images to-
gether with the camera projection matrix for each camera and returns the 3D position of
the points with regard to the world coordinate system used in the projection matrix.

Using the second solution outlined in the previous section we can then use these 3
points to calculate the orientation of the object. Together with the position of the point
defined as origin we then have a 6DOF description of the object in 3d space.
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Chapter

Results

5.1 Code

The complete code is published as open source code under the GNU General Public Li-
cense V3.0 on Github, link in reference; Drugli et al. (2019).

5.2 User Manual

A user manual for the system can be found in Appendix A.

5.3 Result of Camera Sharpness Testing

Testing of camera sharpness was done by taking a picture at a given distance of an object
that shows the focus capacity of the camera. The more vertical lines that are clear, the
higher the sharpness. Also, the images is taken under the same light conditions, to show if
the white balance is off. See figure 5.1
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(a) Odroid Camera

(¢) C920 nr 1 modified

(b) C920 Unmodified

(d) C920 nr 2 modified

(e) Axis P3225-V MKII (f) New C920 cameras unmodified

Figure 5.1: Results from Focus Test of Cameras

Figure 5.1a is the Odroid web camera. Figure 5.1b is the Logitech C920 web camera,
before manually adjusting the focus of the lens. Figure 5.1c and 5.1d is two different c920
cameras with modified lens. Figure 5.1e is the IP camera. Figure 5.1f is the newly bought
c920 web camera. This is also not modified.
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5.4 Results of Position Accuracy Testing

The setup used for these tests is outlined in section 4.7. Each table represents tests done
at a certain angle between the board of markers and the camera image plane. The tables
are divided into three sections one section for movement along each axis separated by
double lines. The values x-y-z are the reference values from the robot and the values K-
§-Z are the measured values from our camera system. Some values in the tables can be
highlighted using bold text with an explanation given under the table. The measurements
are in millimetres (mm).

5.4.1 Series1:

o x | & [*x[ v [ § [ 9y 2z [ 2 [2z]
0 JOI[OI 0 |05 05 ] 02 097]077
999 [ 101|011 | 10 | 985 [-015| 10 | 9 | -1

1999 | 20 | 0.01 20 189 | -1.1 1998 | 21.5 | 1.52
30.01 | 30.5 | 0.49 || 30.1 2877 | -1.4 || 30.01 | 35 | 499
40.01 | 40.6 | 0.59 40 38.17 | -1.83 || 40.03 | 45 | 4.97
50.01 | 50.7 | 0.69 || 49.99 | 48.07 | -1.92 50 522 | 22

Table 5.1: Position accuracy testing series 1. Distance to camera: 100cm, Angle: 175°

L x [ & [ x| v [ 9 [ 9y ][ z | 2 [2z]
001 | 1 [ 099 || 003 ] 01 007 ] 002 ] I ]098
998 | 93 | -068 || 1001 9 |-101] 10 | 8 | 2
2002 | 195 | 0.52 || 2002 | 18.7 | -1.32 || 2001 | 23 | 2.99
30.01 | 29.7 | 031 || 29.99 | 285 | -1.49 || 30.01 | 32 | 1.99
39.98 | 39.9 | -0.08 || 40.02 | 38.5 | -1.52 || 40.02 | 43 | 2.98
50 | 499 | 0.1 || 5002 | 483 | -1.72 || 49.99 | 535 | 3.51

Table 5.2: Position accuracy testing series 1. Distance to camera: 100cm, Angle: 161°

L x [ & [ x| v [ 9 [ 9y ][ z | 2 [2]
001 | 25 | 249 || 001 | 03 | 029 || 0 | 45 | 45
101 | 75 | 26 || 998 | 9.1 |-088 | 998 | 10 | 002
1998 | 178 | 218 || 20 | 187 | -13 || 1999 | 23 | 3.01
29.99 | 283 | -1.69 || 30.02 | 29 | -1.02 || 30.02 | 31.5 | 148
40 | 383 | -17 || 3997 | 388 | -1.17 | 40.01 | 44 | 399
50.01 | 485 | -1.51 || 49.98 | 48.2 | -1.78 || 50.01 | 51.5 | 149

Table 5.3: Position accuracy testing series 1. Distance to camera: 100cm, Angle: 132°

57



Lx [ [ v [ § [y [ 2z [ 2 ]2z |
001 | 3 [ 299 | 003 ] 0 |-003] 00L | 4 | 399
998 | 72 | 278 || 1001 | 7.2 | -2.81 | 998 | 35 | -6.48
20 | 172] 2.8 || 2001 | 199 | -0.11 || 1998 | 255 | 5.52
29.99 | 27.1 | 289 || 30.03 [ 29.7 | -0.33 || 29.99 | 28 | -1.99
4001 | 373 | 271 | 39.99 | 393 | -0.60 || 39.99 | 37.5 | -2.49
50 | 478 | 22 | 5003 | 483 | -1.73 || 50 | 465 | -35

Table 5.4: Position accuracy testing series 1. Distance to camera: 100cm, Angle: 117°

Series 1:

3t}
tn

w

25 ——Avg error: X
Avg error: Y

Avg error: 2

175* 160.7° 132* 17

Figure 5.2: Average error comparison to angle of camera series 1

The graph shows the average error of each of the axes x-y-z at every recorded angle of the
board. It is important to note the trend of the average errors where the average error of Y
seems to be constant or decreasing as the angle changes. The error of X seems to have a
sharp increase while the error of Z seems more like a convex curve.
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5.4.2 Series 2:

L x [ 2 [&x v [ § [y [ 2z | 2 [22]
001 | 01 [009 || 002 [ 03 [028] 0 | 05 |05
999 | 97 | -029 || 1003 | 97 [-033| 10 | 95 |-05
20 203 | 03 | 2001 | 195 | -0.51 || 2001 | 22 | 1.9
30.01 | 306 | 059 || 2997 | 29.1 | -0.87 || 299 | 375 | 76
40.01 | 405 | 049 | 39.99 | 37.6 | -2.39 || 40.02 | 40.25 | 0.23
50 | 504 | 04 || 5002|479 | 212 | 49.99 | 4999 | 0

Table 5.5: Position accuracy testing series 2. Distance to camera: 100cm, Angle: 173°

[ x X [ax [ v [ 5 [ [ 2z [7] 7]
0.01 0.7 0.69 0.01 0.2 0.19 0.02 1 0.98
10.01 9.3 | -0.71 10 10 0 10.02 | 7.2 | -2.82
19.99 | 19.7 | -0.29 || 20.01 | 194 | -0.61 19.99 | 20 | 0.01
30.01 | 29.7 | -0.31 || 29.99 | 294 | -0.59 || 29.97 | 31 1.03
40.01 | 40.1 | 0.09 40 39.5 | -0.5 40.02 | 40 | -0.02
50.03 | 499 | -0.13 || 50.02 | 49.2 | -0.82 || 49.99 | 46 | -3.99

Table 5.6: Position accuracy testing series 2. Distance to camera: 100cm, Angle: 161°

Lx [ R [ & v [ § [y [ 2 [ 2 ]2 |
001 | 25 | 249 | 002 | 03 [ 028 | 0 | 2 | =2
1002 | 7.8 | 222 || 998 | 102 | 022 || 998 | 7.5 | 248
1998 | 17.9 | 2.08 | 19.98 | 19.9 | -0.08 || 2001 | 21 | 099
30.02 | 287 | -132 | 30 | 298 | 02 || 3001 | 29 | -1.01
39.99 | 38.5 | -149 | 3998 | 39.8 | -0.18 || 39.99 | 405 | 051
50.01 | 484 | -1.61 || 5001 | 49.7 | -0.31 || 49.98 | 49.5 | -0.48

Table 5.7: Position accuracy testing series 2. Distance to camera: 100cm, Angle: 133°

~

L x [ & [*x [ v [ 9 [ 9y [ z |2 ]2 |
0 | 2 | 2 ool 03029 0 | 2] 2
1001 | 67 | 331 | 10 | 98 | 02 |/ 1002 | 35 | 652
20 | 172 28 || 2001 | 199|011 | 20 | 20 | 0
29.98 | 27.1 | -2.88 || 30.02 | 29.7 | -032 || 29.87 | 26 | -3.87
40 |379| 21 (3999 | 39 |-099 | 40 | 35 | -5
50.02 | 47.8 | 222 || 50.01 | 492 | -0.81 || 49.84 | 50.5 | 0.66

Table 5.8: Position accuracy testing series 2. Distance to camera: 100cm, Angle: 117°
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Series 2:
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Figure 5.3: Average error comparison to angle of camera series 2

Again we see the errors following the same trends as in graph ??, but this time with more
of a decline in the average error of Y and the error of Z seems to be lower overall.

5.5 Results of Position Accuracy Testing after Redefined
TCP

These tests are done after redefining the robot tool center point (TCP). The data follow the
same structure as in section 5.4. The measurements are in millimetres (mm)

5.5.1 Series 3:

~

Lx T & [&x vy [ 9 [$y [l 2z [ 2 ]22]
0 | 016016 003 ] 018 [015] 0 | 2 | 2
1001 | 102 | 019 | 10.02 | 99 | -012 | 10.01 | 1255 | 2.49
19.99 | 2056 | 0.57 || 20.01 | 207 | 0.69 || 20.01 | 20.1 | 0.09
2999 | 309 | 091 | 30 | 315 | 15 | 30 |324 | 24
39.99 | 416 | 1.61 || 40 | 4206 | 2.06 | 40 | 437 | 37
5001 | 52.3 | 2.29 || 49.99 | 522 | 2.21 | 50.01 | 52.2 | 2.19

Table 5.9: Position accuracy testing series 3. Distance to camera: 100cm, Angle: 176°
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If you look at the highlighted column Z — = you will see that the error is larger the further
from origin you move. This happens for column ¢ — y also and seems with few exceptions
to hold true for all angles

L x [ & [*x[ v [ § [ 9y 2z [ 2 ]2 ]
0 [053]053] 005 012 007 ] 0 |-38] 38
10 [102] 02| 99 | 98 |09 10 | 7 | 3

19.99 | 20.5 | 0.51 || 20.02 | 20.03 | 0.01 || 20.01 | 14.5 | -5.51
30.01 | 31.5 | 1.49 || 30.02 | 30.7 | 0.68 || 30.01 | 26.4 | -3.61
40.01 | 42.2 | 2.19 || 40.01 | 41.3 1.29 || 40.01 | 36.6 | -3.41
50.05 | 52.3 | 2.25 || 50.01 | 51.7 1.69 || 50.01 | 49 | -1.01

Table 5.10: Position accuracy testing series 3. Distance to camera: 100cm, Angle: 166°

L x [ & [ *x | v [ 9 [y 2z [ 2 [ 2z |
002 | 07 | -072] 00 | 03 | 031 001 | 45 ] -451
1001 | 10.18 | 0.17 || 1002 | 97 | 032 || 10.02 | 5 | -5.02
20 | 212 | 12 [ 1997 | 205 | 0.53 || 2001 | 15 | -5.01
30.02 | 315 | 148 || 308 | 312 | 04 | 3001 | 18.6 | -11.41
4001 | 423 | 229 || 4002 | 41.6 | 1.58 | 40.01 | 344 | 561
50 | 523 | 23 | 5098 | 518 | 0.82 || 5001 | 434 | -6.61

Table 5.11: Position accuracy testing series 3. Distance to camera: 100cm, Angle: 156°

[« TR & v [ 5 [ 9 [ 7z [ 7 %]
002 | -0.3 | -0.32 || -0.06 | -0.9 | -0.84 0.01 -8 -8.01
9.98 10.3 | 0.32 10.03 | 9.8 | -0.23 10.01 | 3.2 | -6.81
20.01 | 20.7 | 0.69 20.05 | 20.9 | 0.85 20.03 | 15.1 | -4.93
29.99 | 30.9 | 091 30 30.8 0.8 30.01 | 264 | -3.61
40.01 | 41.7 | 1.69 40.01 | 419 | 1.89 40.01 | 31.6 | -8.41
50 52.6 2.6 4997 | 524 | 243 4998 | 44.2 | -5.78

Table 5.12: Position accuracy testing series 3. Distance to camera: 100cm, Angle: 146°

~

L x [ & [*x [ v [ 9 [ 9y [ z |2 ]2 |
0.03 | 02 | 023 || 002 | -08 | 082 ] 001 | 75 | 751
1001 | 99 | -0.11 | 1002 | 94 | -0.62| 10 | 45 | 55
1998 | 207 | 072 || 20.01 | 203 | 0.29 || 19.99 | 149 | -5.09
30.01 | 314 | 1.39 || 3001 [ 309 | 089 || 30 | 209 | 9.1
40 | 424 | 24 | 4002 | 417 | 168 || 40.01 | 355 | -4.51
4999 | 52.1 | 211 | 49.99 | 52.3 | 231 || 5001 | 457 | -4.31

Table 5.13: Position accuracy testing series 3. Distance to camera: 100cm, Angle: 136°
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L x [ 2 [ & v [ § [§v ] 2z [ 2 ][22 ]
005 | 07 [ 075 || 002 | 0.9 | 088 || 0.01 | -7.7 | -7.71
997 [ 101 | 013 || 999 | 97 |-029 || 10 | 43 | 57
2002 [ 207 | 068 | 20 | 206 | 0.6 [ 2001 | 131 | -691
30.02 | 312 | 118 || 30.04 | 31.06 | 1.02 || 2099 | 22.4 | -7.59
39.99 | 412 | 121 | 3999 | 417 | 171 || 4002 | 326 | -7.42
50.02 | 522 | 218 | 5002 | 524 | 2.38 || 5002 | 454 | -4.62

Table 5.14: Position accuracy testing series 3. Distance to camera: 100cm, Angle: 126°

Series 3
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Figure 5.4: Average error comparison to angle of camera series 3

After the adjustment of the robot tool center point, we now see the average errors of
X and Y following each other much more closely and being somewhat constant while the
average error of Z has a sharp rise. There is a high average error in Z at 156° and 146° and
we have highlighted some outlier values of Z — z in tables 5.11 and 5.12 that contributes
to this.
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5.6 Results of Roll, Pitch and Yaw Accuracy Testing

Lol ¢ lé-9l0] 6 6-0v] d [d-v]
0 0.1 0.1 0 0 0 0 0
5 5.2 0.2 0 0.6 0.6 0 0 0
10 | 9.8 -0.2 0 0.8 0.8 0 0.1 0.1
15 | 14.3 -0.7 0 0.8 0.8 0 0 0
20 | 18.7 -1.3 0 0.3 0.3 0 0.1 0.1
25 | 23.6 -14 0 0.8 0.8 0 0.3 0.3
30 | 28.7 -1.3 0 0.2 0.2 0 0.1 0.1
35 | 34.1 -0.9 0 0.5 0.5 0 0.3 0.3
40 | 38.5 -1.5 0 0.5 0.5 0 0.3 0.3
0 1 1 5 3.9 -1.1 0 0.1 0.1
0 0.5 0.5 10 7 -3 0 0.1 0.1
0 1.7 1.7 15 | 13.1 -1.9 0 0.5 0.5
0 0.7 0.7 20 | 18.7 -1.3 0 0.4 0.4
0 1.2 1.2 25 | 23.1 -1.9 0 0.8 0.8
0 1.1 1.1 30 | 28.5 -1.5 0 1 1
0] 2 2 35 | 342 -0.8 0 1.5 1.5
0 1.3 1.3 40 | 384 -1.6 0 1.8 1.8
0 0.2 0.2 0 2.2 2.2 5 5 0
0 0.2 0.2 0 -1.9 -1.9 10 10 0
0 0.5 0.5 0 -1.2 -1.2 15 | 14.9 -0.1
0 0.5 0.5 0 -1.3 -1.3 20 | 199 -0.1
0 0.7 0.7 0 -1.6 -1.6 25 | 247 -0.3
0 -1.3 -1.3 0 -0.5 -0.5 30 | 29.8 -0.2
0 -1.9 -1.9 0 0.2 0.2 35 | 34.8 -0.2
0 0.2 0.2 0 0.5 0.5 40 | 40.1 0.1

Table 5.15: Roll, Pitch and Yaw accuracy testing series 1. Distance to camera: 100cm

How this test was performed is outlined in section 4.8. It is important to note that the mea-
surements are taken with the z-axis pointing perpendicular to the board directly towards
the camera when it is placed in origin. This will cause the angle between the camera and
the markers to change when the angles of roll ¢ and pitch 6 are changed, but not when we
change the angle of yaw . This means how we have defined the world coordinate system
with regard to the camera will likely affect the accuracy of the system and we should not
read too much into how accurate roll and pitch is compared to yaw. The values from our
camera system are denoted (ﬁ —6— 1& and the values from the robot ¢ — 6 — v. The
measurements are in degrees (°).
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Chapter

Discussion

6.1 Minimum Viable Product

The goal of the Minimum Viable Product (MVP) was to create a system that could tell
us whether a solution with axis cross was an idea to work on further. At this point, we
wanted to prioritize creating a working tracking algorithm, and wait for later versions to
implement more complex functionality that could eventually be discarded because of the
bad results of another subsystem.

Spherical markers mounted in a cross configuration (figure 6.1a), was our first attempt
to create a model based pose estimation tracking system. When deployed in a carefully
controlled environment, we were able to obtain accurate data, but the system proved to
be unstable and unreliable. Some of the instability was due to the axis cross spheres
overlapping each other for the camera or they were indistinguishable from the background.
This could have been solved with more markers and better image processing algorithms.
Since we did not have a clear way to distinguish each marker from each other, the PnP-
algorithm stopped working when the markers were read in the wrong order.

These problems were most likely solvable, and we could have improved this system
to be usable. But this was discarded since early testing with ArUco markers gave good
results.

The test rig proved to be useful since our first implementation of markers - an axis
cross made with steel, proved to be too heavy to use on the ship models. It could affect the
buoyancy and movement of the ship model.

The text user interface we created was adequate for its use. It let us control our system,
and its quick implementation gave us more time working with other things.

The ArUco solution (figure 6.1b), was the last thing we implemented in the MVP since
we were satisfied with the performance of the algorithm. We also considered the weight of
the paper ArUco markers to be light enough to not impact the vessel models performance.

Summarized, the MVP provided an environment for experimentation, but also worked
as a stepping stone for further improvements of the system with more functionality and
more streamlined user experience.
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(a) Axis cross marker (b) ArUco markers

Figure 6.1: Markers mounted on vessel

6.2 Sharpness Testing of Cameras

From the result from sharpness testing in section 5.1 we can see that adjusting the lens of
the C920 camera gave a greater focus distance. But after we bought new C920 cameras,
it became clear to us that the old C920 were not functioning as well as they should, even
after the lens adjustment. You can see the difference between the old and new cameras in
figures 5.1c, 5.1d and 5.1f. This can be the result of many things. These cameras have
been used before by other students and have probably not been taken good care of.

The Odroid camera has a narrower field of view than the C920s. When taking two
snapshots from the same distance, the target in the Odroid frame takes up more of the
image frame, and this results in an advantage for the Odroid when comparing sharpness.
This means that we should not compare the Odroid image directly to the c920 in figure
5.1a.

The Axis camera had a variable zoom function, but we did not adjust the field of view
to match the other cameras. Because of this, we do not compare the sharpness test results
between the different types of cameras.
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6.3 ArUco Marker Solution

6.3.1 Accuracy of Estimated Pose

After comparing the results in section 5.4 and 5.5 we concluded that we should disregard
the results in section 5.4 as we don’t think they are valid and instead use only the results
in section 5.5.

The reason for this is that we found some discrepancies when comparing the result of
the average error in test series 1 in figure 5.2 to the results in section 5.2 of Pentenrieder
et al. (2019). There the change in error as the angle between the marker and camera
increases is not only very low but also the same for x and y while the error in depth z
increases sharply as the angle increases. In our results, x and y don’t seem to follow each
other at all and the average depth error z looks more like a convex curve than a linear
increase. We did another series of tests and it did not seem like the discrepancies in series
1 was a one-off occurrence as can be seen in figure 5.3.

We had a few different ideas about what could do this. The most likely one seemed for
us to be that the robot tool center point (TCP) was defined wrong or the robot was poorly
calibrated. When we rotated about what we thought would be the origin of the board we
instead rotated about a different point close to it and this would create a discrepancy in
the values shown in the robot teach pendant and the values from our camera system. To
verify this we tried to change the board pitch instead of the roll when increasing the angle
between the board and the camera view because if our theory was correct we would see a
different trend in the errors. While doing this we quickly realized our theory was correct
and remade the board mounting for the robot tool and swapped to a different UR3 robot
before redoing the tests. You can see the results of these new tests in figure 5.4 in section
5.5. These results more closely resemble the results in Pentenrieder et al. (2019).

The goals for accuracy we set ourselves of £10mm in position (z y z) and +2° in
rotation (¢ 6 1) have been achieved when looking at the results in section 5.5 for position
and section 5.6 for rotation. Both of these tests have been done at a distance of 100cm.
Assuming the results in Pentenrieder et al. (2019) and Lopez-Cerén and Caiias (2016)
regarding accuracy getting worse with increased distance to the markers holds true for us
also it is hard to make a definite claim regarding accuracy in the actual installation. Our
system is designed to be very flexible in how the cameras are set up so the distance to the
tracked object can vary. Accuracy at different distances is also very much impacted by the
camera focus adjustment. We have not performed a test to see how distance in excess of
100cm impacts the accuracy.

The tests done here also don’t take into account the decrease in accuracy that can
happen when we use multi-camera tracking. This is covered more in section 6.3.4.

6.3.2 Refresh rate

From our log files, we found that the system could find a new pose for the board faster
than the cameras could provide us with new frames. Because of this we decided to limit
the refresh rate to 20Hz, which should be adequate for most applications.
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Since the system provided us with up to a 60Hz refresh rate before it was limited, we
reason that we could add even more cameras or use images with a higher resolution and
still maintain an adequate refresh rate.

6.3.3 ArUco Merger

The ArUco merger covered in section 4.4.1 did not give us satisfying results and we rec-
ommend not using it without first making improvements. The pose of the subsequent
boards in relation to the primary board is not accurate enough and will cause large errors
in pose estimation of the vessel. One way to solve this would be to physically measure the
location of the markers in relation to each other but this would go against having a simple
user-friendly solution.

6.3.4 Multi Camera Tracking and Pose Quality

The tracking of the vessel using multiple cameras is working as intended. There are still
improvements to be made when it comes to the handover between the different cameras.
Choosing what camera that would probably give us the most accurate pose estimation
when multiple cameras can see the vessel at the same time is one of these. A solution for
this was started in section 4.4.2 but not completed. A different issue we had was that even
small errors in the orientation of a camera lead to growing errors in the vessels location.
This relationship is explained in figure 6.2, and in equation 6.1.
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Figure 6.2: Errors from camera orientation estimation compounds over the distance travelled. Solid
line: Actual position. Dashed line: Estimated position. a: Error in camera orientation. e: Error in
vessels location.

Z—z=ursina 6.1)

The error in the z-position increases as the vessel moves in the x-direction, where the slope
of this error is given by the sine of the error of the angle. To solve this problem we need
to be able to more accurately define the position of the cameras.

6.4 Implementation in tank

The physical implementation of the system provides coverage over most of the tank. The
cameras are mounted in such a way that they are both easily accessible for modifications
or maintenance. Since they are attached to a rail in the ceiling, they have the added benefit
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of not being in the way when adding or removing vessels for testing. This is an important
point, as the towing tank also is used for larger vessels such as ROVs.

The current implementation can be improved by adding better cable management for
the cameras, since we don’t consider the current set up to satisfy the needs for a permanent
solution.

We have five cameras installed, but we have not been able to use more than three of
them at the same time with our personal computers, due to a limitation of one camera
per USB port on the computer. This can be solved by using a computer with more USB-
ports. This was apparently not an unknown problem, but we could not find anyone who
was successful in circumventing this with USB-webcams. We believe the camera failure
is rooted in a limitation in the USB-interface, and that we can avoid the problem by using
[P-cameras instead. These cameras are running as stand-alone entities on the network, and
should always be able to provide a frame on request.

Figure 6.3: Photo from towing tank: Vessel with ArUco marker attached to trolley
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(a) Initial: On side of the Tank (b) Final: On the track in roof

Figure 6.4: Camera mountings in tank

To improve the system, it can be better to create the 3D printed parts in stainless steel
or steel with painting on to stop corrosion. This will add weight to the parts but it prevents
water damage caused by a highly humid environment.

6.4.1 Software and GUI

The current GUI provides an easy to use interface that should be usable for anyone, even
without technical knowledge of vision systems. We have put effort into preventing the
system from crashing from obvious user errors, and have provided in depth help for the
users when doing more complex tasks such as camera calibration.

The system is not completely self explanatory, but coupled with the appended user
manual the system is ready to be released for anyone to use.

The current state of the code is that most of it is thoroughly commented, and we have
had readable variable and function names in mind while coding. The code is released
under a open source license, which means that anyone can further develop our system.

We do have some complexity creep in our GUI-classes which should have been refac-
tored, but we assess the back end of our system to be most interesting for future develop-
ers.
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Chapter

Conclusion

Our objective was to develop a vision system that can detect and track vessel position and
orientation in the Department of Ocean Operations and Civil Engineering’s towing tank.
We considered accuracy of £10mm in position and +2° in orientation or better to be
achievable. We should create an easy to use robust system that would give the results of
the pose estimation and video feed in real-time and provide the same amount or more data
than the existing system. If time permitted we should also create a tool for wave analysis.

We have developed a vision system that tracks an object in six degrees of freedom and
implemented this system in the Department of Ocean Operations and Civil Engineering’s
towing tank. The system has adequate accuracy in the initial camera views but suffers from
a compounding error when calculating the absolute position of the vessel after switching
camera frames. Despite this, the data the system acquires should still be useful to see how
a vessel behaves in the tank.

The developed application can be refitted for many purposes. The system is designed
to easily be taken down and re-deployed somewhere else since it automatically calibrates
the camera positions with regard to the object for each individual run. As long as one
can provide camera coverage of the area where the object should be tracked, and there
are possibilities to attach a marker on the object, one should be able to get a live pose
estimation of the tracked object.

We have implemented a user-friendly GUI with accompanying user manual. The sys-
tem should be usable by anyone and requires no prior knowledge of vision systems.

7.1 Recommendations

The camera setup itself needs improvement. With the solution of having the cameras in
the ceiling above the tank will need an addition to the track that is already there. This is
to be able to cover the entire operational length of the towing tank. Also the stand itself
needs better locking of parts so that the risk of it falling down after a long time usage and
adjustments diminishes. Now the parts have the possibility to be screwed together, but it is
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not implemented. Now it is only using a interference fit between the rod and the brackets.
This can over time loosen if the part is moved and should be secured.

7.2 Further Work

7.2.1 Improving Camera Position to Increase Accuracy

The camera pose accuracy is critical to avoid compounding errors in the vessels absolute
location. If a cameras orientation is off by a few degrees, the error in the vessels position
will increase with the sine of this angles error over the distance traveled.

Stereo Vision

OpenCV has a calibration function for finding the relative poses between two cameras
using a set of common points in each image. These common points could be the corner
points of the board, and an amendment to our current code to test this could be done with
a only a small amount of coding. We believe that this function could give more accurate
poses for the subsequent cameras than the algorithm that is currently implemented.

Implementing Additional Markers as Reference Points

By adding markers to known locations in the tank, it would be possible to calibrate the
camera poses directly from these markers. By utilizing these fixed points, it would be
possible to eliminate the compounding errors we get by doing subsequent measurements
of the vessel, and the error of each cameras pose would only be reliant on it’s own mea-
surement rather than every measurement done before it.

Calibration Using Towing

A method that is limited to calibration in the tank, but would result in a coordinate system
that is in line with the water surface, is to perform a calibration run, towing the vessel
through the tank, and calibrating from this data. This method would use the nature of
growing errors in of position as a result of small errors in orientation (see figure 6.2 and
equation 6.1) as a mean to calibrate each camera pose.

When towing, the vessels y-axis is locked, the x-position is always increasing, while
the z-position is oscillating in the waves. When the vessel has reached its set speed, the
speed in the x-direction should stay constant. Given these assumptions, it should be pos-
sible to calculate the orientation of each camera relative to the path the vessel is traveling
along.

The towing tank also allows for setting specific start and end points for the tow, and
these positions can be used as a reference when estimating camera position. We see a
clear potential for using this as a way forwards, but we have not yet thought up a clear
implementation of the solution.
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7.2.2 Integration with Towing Tank

By letting the system control the towing trolley the calibration function could be tuned
even more precisely by using the trolley position as a controllable reference.

7.2.3 Saving and exporting video files

Coupling the numerical data with a video of the vessel in the tank could possibly put the
data in context. Reviewing videos of different vessels could grant useful insights when
reviewing different hull designs. It would be especially useful for reviewers who did not
see the vessel in the water.

7.2.4 DP-simulation

Since the system can output a vessels current pose over six degrees of freedom, it could be
used as the sensor in a closed loop system for dynamic positioning simulations.

7.2.5 3D-simulation with ArUco-markers

Simulating a 3D-space with multiple cameras and a movable ArUco-board, it would be
possible to test our algorithms under ideal conditions. This would be valuable when com-
paring tracking and camera handover algorithms, as it would present an environment ab-
sent of outside factors that could impact the pose estimation for the algorithms to be tested
in. It would also be a lot easier to set up experiments in a system like this than it has been
for us using the UR3 robots and other physical setups.

7.2.6 Using the System in Other Environments

Since the system has been built to be set up anywhere, it is not limited to use in the towing
tank. It could be used for tracking other vehicles, like cars or drones, or even robot arms.
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1 INNLEDNING

Ved forsek med skipsmodeller og andre modeller vanntank, er det enskelig & kunne hente ut data om
modellens posisjon og orientering, samt beregne belgeform og -heyde i tanken.

Oppgaven gar ut pa a finne losninger for dette. Det er planlagt & bruke flere kamera til 4 lose oppgaven, hvor
punkter pa fartoyet sammenlignes fra flere vinkler for & fa en 3D representasjon av farteyet/objektet.

Prosjektet er en avsluttende bacheloroppgave i Automatiseringsteknikk, gitt av NTNU IHB og IIR.

2 BEGREPER

IHB - Institutt for havromsoperasjoner og byggteknikk
IIR - Institutt for IKT og realfag

Marker based motion Capture - Teknikk for & fange bevegelse i et objekt ved hjelp av flere kameraer som
logger referansepunkter.

Model based pose estimation - Teknikk for logging av posisjon og rotasjon av objekt ved hjelp av ett kamera
og en fysisk modell med kjente dimensjoner.

MVP - “Minimum Viable Produkt”, enkleste brukbare produkt

3 PROSJEKTORGANISASJON
3.1 Prosjektgruppe

Studentnummer(e)

Even Drugli 476122
Vegard Fjortoft 460011
Kai Hagseth 997480
Ole Kristian Sande | 476134

3.1.1 Oppgaver for prosjektgruppen - organisering

Gruppen vil besta av en prosjektleder, sekretar, kodeansvarlig og en ansvarlig for hardware og innkjep. Nar en
deloppgave blir tildelt vil det vaere en person som som er ansvarlig og en person som er hjelper.

3.1.2 Oppgaver for prosjektleder

- Skal vaere kontaktperson for oppdragsgiver og veiledere.

- Skal holde oversikt over fremdrift og utfordringer i prosjektet, og rapportere disse til veiledere og evt.
oppdragsgiver nar det sees negdvendig eller hensiktsmessig.

- Skal serge for at alle i gruppen har oppgaver til enhver tid.

- Serge for god trivsel i gruppa.
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3.1.3 Oppgaver for sekretaer

- Skal ha hovedansvar for at rapport blir skrevet og at denne blir av hey kvalitet.
- Ansvar for utarbeiding av metereferat og fremdriftsrapporter.
- Ansvar for dokumentasjon av systemet.

3.1.4 Oppgaver for kodeansvarlig

- Ansvarlig for den underliggende arkitekturen i programvareutviklingen

- Har ansvar for god kodestruktur

- Skal holde oversikt over hva som ma gjeres i kode

- Har ansvar for kompatibilitet og ryddig versjonskontroll

- Ansvar for dokumentasjon av kode (gode kommentarer i kode og i sourcetree).

3.1.5 Oppgaver for Hardware og Innkjgpsansvarlig

- Ansvar for innkjep av nytt utstyr
- Budsjettansvarlig
- Ansvar for fremgang i implementering av fysisk utstyr

3.2 Styringsgruppe (veileder og kontaktperson oppdragsgiver)

Veiledere: Ottar L. Osen og Robin Bye
Oppdragsgiver IHB: Karl Henning Halse

4 AVTALER

4.1 Avtale med oppdragsgiver

Oppdragsgiver er Karl Henning Halse fra NTNU IHB. Det foreligger ingen skriftlig avtale mellom studenter og
oppdragsgiver per na.

4.2 Arbeidssted og ressurser

Fast arbeidssted blir pa campus Alesund, fortrinnsvis L167 eller Tunglab (L044) pd NTNU.

Moter med oppdragsgiver/veiledere vil skje pA NTNU.

Oppdateringsmete med veiledere vil skje hver andre uke. Disse matene blir berammet til 30 minutter. Trengs
det mer tid ifm. tekniske sporsmal eller lignende skal dette avtales for metet. Oppdragsgiver kan delta om det

sees behov. Gruppen skal lage ukesrapport siste arbeidsdag i uken.

Prosjektet inneholder ingen informasjon som er taushetsbelagt. Derfor er det ikke et krav om at prosjektet skal
veare skjult fra offentligheten.
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4.3 Gruppenormer — samarbeidsregler — holdninger

Gruppen er blitt enig om:
- Alle i gruppen skal mete opp pa avtalt klasserom alle hverdager innen klokken 09:00.
- Helgearbeid avtales fortlepende, minst 24 timer pa forhand.
- Dagen avsluttes pa eget skjonn, men det forventes at ingen gar for klokken 16:00 dersom man ikke
har god grunn og koordinerer med resten av gruppa.
- Avspasering skal avklares fortrinnsvis minimum 1 uke pa forhdnd. Sykdom e.l. skal informeres om s&
snart som mulig.
- God kommunikasjon gruppen imellom nar det kommer til fremgang i forhold til tidsfrister pa delmél
slik at gruppen kan diskutere eventuelle utsettelser eller tildeling av ekstra arbeidskraft.
- Deloppgave ansvarlig skal levere inn en oppsummering av ukas fremgang (hva som har blitt gjort,
eventuelle problemer og hva som skal gjeres neste uke) til sekretaer innen klokka 11:00 hver fredag
slik at en rapport kan utformes for gruppemete klokka 13:00
Prosjektet skal gjenspeile et arbeid som er gjort av automasjonsingenierer. Det vil si at arbeidet skal ha hay
kvalitet. Det betyr god kildekode, gode systemmanualer og at alle opptrer profesjonelt. Det betyr at enhver star
ansvarlig for & levere innenfor frister, med en god kvalitet som en selv kan vere stolt av.

5 PROSJEKTBESKRIVELSE

5.1 Problemstilling - malsetting - hensikt

Problemstilling:
- Er det mulig gjennom et kamerasystem a registrere et skipsmodells posisjon og retning gjennom
kamerasyn?
- Er det mulig & innhente data om belgeheyde og -bevegelser gjennom samme kamerasystem, eller
tilherende system?
- Kan dette presenteres pa en mate som gjor det aktivt nyttig i testing og forskning av skips- og
havmodeller i belgevanntank?
Et godt resultatmal vil vaere a fa et ja pa problemstillingene ovenfor, eventuelt fa et godt begrunnet nei. I tillegg
har man prosess- og effektmaél. Hva enskes & oppnas som folge av jobbingen under prosessen og hva er det
langsiktige malet hvor prosjektet kun er et delmal. Et stort prosessmaél er & kunne bruke dette prosjektet som en
overgang fra student til arbeidsliv. Stor del av arbeidslivet er prosjektbasert, og derfor kan et slikt prosjekt sees
pa en provelse for det virkelig arbeidsliv, hvor mye mer star pa spill tidsmessig og ekonomisk.
Et faglig stort prosessmél er & kunne utvide kompetanse, serlig innen vision, og fa en effekt av dette i et
fremtidig arbeidsliv.

5.2 Krav til lasning eller prosjektresultat — spesifikasjon

Prosjektet sikter pa hoyest mulig presisjon i mélinger. Et matematisk begrunnet anslag for neyaktigheten
Et mal er & fa pose-estimasjon pa en negyaktighet pa +-1 mm. Hva dette utgjer i rotasjon kommer an pa
dimensjonene i skipet og utstyret.

Akser: Maks avvik
Posisjon +- 1 mm
Rotasjon +- 0.5 grader

Prosjektresultatet skal vere en ferdig oppkoblet lasning ved vanntanken som kan brukes av andre studenter for
datainnsamling. Det skal vaere utarbeidet manual for styring og bruk av systemet.
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5.3 Planlagt framgangsmater for utviklingsarbeidet - metoder

Gruppen har blitt enig om at vi skal bruke en iterativ og inkrementell modell for systemutviklingen. Fokuset
for denne modellen er & utvikle systemet gjennom gjentakende faser, (iterativ), og pd den maten kunne justere
systemet etter hvert som vi legger til ny funksjonalitet(inkrementell).

For & komme i gang med denne utviklingsmodellen er det gitt at man har en plan for hvilken funksjonalitet
man egnsker at systemet skal ha nér prosjektet er ferdig, hvilken funksjonalitet man trenger for a lage en
fungerende prototype, og hvordan man kan implementere fungerende iterasjoner mellom disse.

Etter at prosjektplanen er lagt starter den initielle fasen av utviklingen hvor en enkel modell av systemet
utvikles, testes, og evalueres. Denne fasen etterfolges av repeterende iterasjoner hvor mer funksjonalitet legges
til, og hvor eksisterende funksjonalitet forbedres og refaktoreres.

Fordelen med en iterativ og inkrementell prosess at man far et fungerende system pa et tidlig stadium, og at
man hele tiden har et klart scope for hva som skal gjeres i prosjektet. I evalueringsfasen mellom iterasjonene
kan man finne feil og mangler ved arbeidet man har gjort, og kan reagere og reparere kort tid etter.

Nar det kommer til ulemper er det lett & fa problemer med systemarkitekturen dersom man gjor feilaktige
antakelser om fremtiden. Det vil si at hvis systemet bygges pé grunnlag av at neste iterasjon skal kunne fungere
tilfredsstillende, uten at man tar hensyn lenger frem i tid, vil man fa problemer. Dette kan forebygges gjennom
god planlegging, og at man tar seg tid til & snakke sammen om hvordan iterasjonen vi begynner pa er
fremtidssikret i planleggingsfasene.

5.4 Informasjonsinnsamling — utfert og planlagt

Det skal utredes hvilke metoder som gir best presisjon og nytte ved plassering av datapunkt pa modellen. Vi
har droftet tre metoder.

Alternativ 1: Markerbasert posisjonssporing. Dette er en flerkameralesning som gir oss stor frihet i hvordan
markerene plasseres, og hvor mange markerer vi gnsker & bruke. Etter en kalibrering av alle kameraene kan et
markerpunkts posisjon estimeres i tre dimensjoner ved hjelp av triangulering. Dersom man har minst tre
punkter i bildet og antar at objektet er rigid kan man estimere alle de seks frihetsaksene til objektet. Denne
metoden ber i teorien ogsa kunne estimere fordreining i objektet hvis man bruker mer enn tre punkter per
objekt. Ved & bruke mer enn to kameraer kan man oppna heyere presisjon, dekningsomrade og redundans, pa
bekostning av tregere prosessering og heyere materialkostnader. For & gke ytelsen i denne metoden er det
mulig & bruke IR-dioder som markerpunkt, og filtrere ut lys som ikke er infraredt. Da vil man kunne finne alle
punktene i bildet med en ressursvennlig terskel-operasjon. I vare undersekelser har vi ikke funnet noen
implementeringer av denne metoden for var use-case, og lesninger med &pen kildekode er vanskelig & komme
over. Dette kan bety at implementeringen er ressurskrevende, eller at dette ikke er en hensiktsmessig metode
for vért scenario.

Alternativ 2: Modellbasert positurestimering. Dette alternativets storste fordel er at man kan lese av
informasjon om alle de seks frihetsaksene til objektet med kun ett kamera, og at det ser ut til & ha mange
implementasjoner pa lignende caser som vér egen fra for. Det gar ut pa at det plasseres et objekt med kjente
dimensjoner, for eksempel en figur med tre linjer som peker i X, y og z-retning med en kule pa enden av hver
linje. Ut fra denne modellen er det mulig & bade kalibrere kamera og spore objektet. Denne metoden har
tidligere blitt delvis utredet her pa instituttet av @. Gjelseth og I I. Flatval sa i oppgaven “Posisjons- og
avstandsmaling med ett enkelt kamera for maritime lofteoperasjoner” (2015). Vi ser for oss at denne metoden
kan utvides med flere kamera for & kunne oppna bedre presisjon og sterre dekningsomrade. Ved bruk av flere
modeller ber vil ogsa kunne gke presisjonen orientering om de pares, og man dpner mulighet for
flerobjektssporing. Vi ser for oss at ogsd denne metoden kan pares med IR-dioder for bedre ytelse, hvor
endepunktene pa figuren vér byttes ut med dioder.
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Alternativ 3: Stereosyn for skroggjenkjenning. Her er fordelen at man i teorien ikke ville trenge markerer av
noe slag for a estimere de seks frihetsaksene. Gjennom en utvidelse av stereo-syn algoritmer kan man lage en
3d-modell av skroget, og beregne modellens positur ut fra et satt utgangspunkt. Dette alternativet er det mest
ressurskrevende, og vil neppe fungere i sanntid. I tillegg fungerer ikke disse algoritmene med refleksjon og
refraksjon, noe som ikke er ideelt nar vi jobber i og rundt vann. Vi tror ikke dette er en god lesning for var
case.

Litteratur:
Multiple View Geometry in Computer Vision, R. Hartley, A. Zisserman, Mars 2004, ISBN: 9780521540513
Programming Computer Vision. Jan Erik Solem. Juni 2012 ISBN: 9781449316549

5.5 Vurdering — analyse av risiko

Matrise for risikovurderinger ved NTNU

Sveert Alvorlig
C£ Alvorlig
=
= | Moderat
o
=
b Liten
<
£ | Svert liten A5
Sveert liten Stor Sveert stor
SANNSYNLIGHET
Farge Beskrivelse
Red Uakseptabel risiko. Tiltak skal gjennomferes for & redusere risikoen
Gul Vurderingsomrade. Tiltak skal vurderes
Gronn Akseptabel risiko. Tiltak kan vurderes ut fra andre hensyn.

Vi anser prosjektet som vellykket hvis vi meter gitte krav til presisjon og ender med et brukervennlig
sluttprodukt.

For a realisere prosjektet er vi nedt til & fa presisert en del krav. Dette inkluderer:
- Presisjonskrav i posisjon og pose i mm og grader.
- Om vi skal ha statiske kamera eller disse skal folge rigg
- Skal data/video feed veare i real-time
- Budsjett

Mulige problemer som kan oppsté underveis i arbeidet kan vaere:
Risiko B2 - Liten konsekvens, liten sannsynlighet:
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Tapt arbeidstid pa grunn av sykdom eller annet fraveer. Det er ikke mye vi kan gjere nar sykdom
oppstar men vi kan legge planer rundt ferie ol. hvis det blir informert om i forkant (se 4.3). Vi er ogsd
en relativt stor gruppe med fire medlemmer, og vi tror det skal veere mulig & fylle inn for hverandre
dersom et medlem far et illebefinnende.

Tiltak: Vi kommer ikke til & innfore flere tiltak.

Risiko B3 - Liten konsekvens, middels sannsynlighet.

Leveringsforsinkelser for utstyr. Dersom vi far en forsinkelse i bestilling kameraer eller i utstyret vi
trenger for & sette opp riggen var kan det pavirke kvaliteten pa prosjektet.

Tiltak: Vi har fatt tilgang pa det vi trenger av utstyr for a bygge og teste et fungerende produkt, sa selv
med forsinkelser vil det ikke pavirke fremgangen vér i stor grad. Vi har satt opp en plan for & bestille
produktene vi trenger tidlig. Vi anser konsekvens redusert til svert liten og sannsynligheten til liten,
risiko A2.

Feil i hardware. Noe av dette kan oppdages ved a teste utstyr tidlig slik at vi kan returnere defekt
utstyr & fa tilsendt nytt. Ellers har dette punktet mye til felles med forrige punkt.

Tiltak: Vi har fatt tilgang pa fungerende utstyr som er tilstrekkelig for progresjon i utviklingen. Som
nevnt i forrige punkt skal vi bestille utstyr i god tid, slik at vi har mulighet til & reparere eller erstatte
eventuelle feilvarer. Vi anser risikoen etter tiltak som A2. Liten sannsynlighet, og sveert liten
konsekvens.

Risiko C3 - Middels konsekvens, middels sannsynlighet

Scope creep. Dette oppstar nar vi itererer for mye pa en problemstilling og legger til
tilleggsfunksjoner som ikke var definerte i oppgaven og ender med et storre scope enn det som var
planlagt.

Tiltak: Vi har satt opp en rigid fremdriftsplan, og gjennom prosjektmetoden vér har vi bestemt oss for
a gjennomfore fungerende iterasjoner av produktet for vi legger til mer funksjonalitet. I tillegg har vi
daglige stand-up-meter for & rapportere og drefte fremgangen til alle gruppemedlemmene, som bidrar
til at vi far oversikt om noen preover a overprodusere funksjonalitet underveis. Vi anser risikoen
redusert til liten gjennom metene, og konsekvensen redusert til liten gjennom prosessmetoden. Risiko
B2.

Risiko E2 Sveert alvorlig konsekvens, liten sannsynlighet.

Datatap. Dersom vi skulle miste storre mengder med data, enten i form av kode eller rapporter star vi i
fare for at vi ma gjore store deler av prosjektet pa nytt. Dette kan forebygges med gode rutiner for
lagring og backup.

Tiltak: For koden har alle medlemmer lokale kopier av néverende kode, og alle bruker
versjonskontroll i Source Tree. Vi har ogsa bade lokale kopier, og kopier i googles sky av de storste
rapportene vére. Gjennom disse tiltakene anser vi sannsynligheten redusert til sveert liten, mens
konsekvensen fortsatt er alvorlig. Risikogruppe E1. Gjennom diskusjon i gruppen har vi vurdert denne
risikoen til & vaere akseptabel, siden sannsynligheten er minimal.

5.6 Hovedaktiviteter i videre arbeid

Se Vedlegg A: Gantt-diagram for bachelorgruppe Estimering av modellposisjon og belgebevegelse i belgetank

5.7 Framdriftsplan — styring av prosjektet

5.7.1 Hovedplan

Kapittel 5.6 er ganske detaljert og beskriver planlagt fremgang.

Forste tunge avgjerelse er & avklare hvilken metode man skal bruke. Om man skal bruke “motion capture”
eller “model based” gir store foringer pa hva som méa gjere i geometri-delen av prosjektet, som er den storste
delen av prosjektet.
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5.7.2

5.7.3

574

Planen er & ha et MVP ferdig 8. februar. Dette vil veere en versjon hvor systemet har et minimum av features.
Tanken er 4 tidlig kartlegge eventuelle utfordringer ift noyaktighet og praktisk bruk som vi ikke har tatt hayde
for.

Videre er det planlagt & ha det meste av software klart for fullstendig testing i starten av mars. Deretter vil det
bli tre uker med testing og optimalisering av software, parallelt med at GUI blir utviklet. A utfylle Metodedel
og resterende teoridel vil gjores mens man arbeider med dette, hovedsakelig til en fastsatt dag i uken.

Styringshjelpemidler

- Gantt-Project
- Google Drive
- Office 365

Utviklingshjelpemidler

- MATLAB
- AutoDesk Fusion 360
- Blender

- Bitbucket
- Sourcetree
- Git

- Overleaf

- LaTeX

- PyCharm
- Python3

- Numpy

- OpenCV

- Matplotlib

Intern kontroll — evaluering

Intern kontroll i prosjektet med hensyn pa fremdrift vil gjennomferes ved bruk av daglige stand-up meter hvor
det blir gjennomgétt hva arbeid som forventes gjennomfort den dagen og fremgang i forhold til garsdagens
mal. I slutten av hver uke vil det vaere et gruppemete hvor fremgangen for alle deloppgaver diskuteres og
eventuelle problemstillinger blir tatt opp slik at vi kan evaluere om det ma gjores endringer i fremgangsplan
eller om det ma legges til flere deloppgaver for a lose problemene.

Et delmal ansees som gjennomfert nar det det foreligger en implementerbar losning pé gitt problemstilling.
Losningen skal bli presentert til en uavhengig tredjepart internt i gruppen for evaluering slik at eventuelle feil

kan lukes ut eller forbedringer kan gjores.

Det vil ogsa vere meter med veiledere annenhver uke hvor fremgang blir diskutert og rad blir gitt.

5.8 Beslutninger — beslutningsprosess

Alle viktige avgjarelser skal bli tatt ved avstemning etter diskusjon i plenum. Dersom konflikt oppstar (2 mot 2
stemmer) vil gruppeleder ta avgjerelsen. Alle beslutninger skal dokumenteres med begrunnelse (argumenter
for og imot) i ukesrapporten.

Ved arbeid med forprosjekt har alle avgjerelser blitt tatt etter diskusjon i gruppa og det har ikke oppstétt noen
konflikter.



NTNU I ALESUND Sme 11
FORPROSIEKTRAPPORT — BACHELOROPPGAVE

6 DOKUMENTASJON

6.1 Rapporter og tekniske dokumenter

Bacheloroppgaven skal skrives etter mal gitt pa Blackboard IE303612 Bacheloroppgave (2019
VAR)\Undervisningsmateriell\Rapportmaler\. Det kommer til & bli lagt stor vekt pa teori, metode og utforelse.

Gruppen vil dokumentere fremgang hver uke ved bruk av ukesrapporter som inneholder fremgang, avgjerelser
som er tatt og mulige problemer eller uforutsette hendelser som har oppstatt. En kopi av denne rapporten vil bli
sendt til styringsgruppen. Det vil bli holdt en timeliste med tid for oppmete og arbeidsslutt for alle pa gruppen.

Alle rapporter, dokumenter, timeliste og tekniske datablad som felger utstyr vi har brukt skal lagres pa
gruppens delte rom pa Google Drive. Det er tenkt at dette rommet bare skal vere tilgjengelig for gruppen og
eventuelt veiledere.

7 PLANLAGTE M@TER OG RAPPORTER

7.1 Moter

711

7.1.2

Mgter med styringsgruppen

Oppdateringsmete med veiledere vil skje hver andre uke. Disse matene blir berammet til 30 minutter. Trengs
det mer tid ifm. tekniske sporsmal eller lignende skal dette avtales for metet. Oppdragsgiver kan delta om det
sees behov.

Prosjektmoter

Prosjektmater skal skje hver fredag klokken 13:00. For klokken 11:00 samme dag skal det leveres inn
oppsummering av ukas fremgang av deloppgave ansvarlige slik at en ukesrapport kan fremstilles for matet. 1
dette motet skal eventuelle endringer i fremgangsplan dreftes i forhold til problemstillinger eller uforutsette
hendelser som har oppstatt underveis i arbeidet, se kap 8.

7.2 Periodiske rapporter

7.21

Framdriftsrapporter

En fremdriftsrapport (ogsa kalt ukesrapport i dette dokumentet) skal leveres til styringsgruppen hver fredag.
Denne skal vere pa formen gitt eksempelvis i Blackboard 1E303612 Bacheloroppgave (2019
VAR)\Undervisningsmateriell\Rapportmaler\Framdriftsrapport (progress report) - eksempel (example)

8 PLANLAGT AVVIKSBEHANDLING

Dersom prosjektets framdrift ikke blir holdt er alternativene a arbeide ut over vanlig arbeidstid i hverdagene
eller eventuelt & arbeide i helger for a komme ajour.
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For hver arbeidsoppgave er det ansvarlig for denne oppgaven sitt ansvar og gjennomfore innenfor tidsfristen.
Vanlig prosedyre dersom dette ikke skulle skje er & gjennomfere en diskusjon i plenum om tiltak for & igjen
kunne folge fremdriftsplanen. Deretter er det prosjektleders ansvar om en diskusjon ikke forer til losning &
avgjore hvilke tiltak som er nedvendig. Der ett eksempel er & utsette sluttdato pd deloppgaven.

9 UTSTYRSBEHOV/FORUTSETNINGER FOR
GJENNOMFQRING

For gjennomfering av prosjektet kreves det innkjeop av kamera og markerer for sporing av objekter i
belgetanken. Innkjop av materiale for a lage en testrigg for skalerbar testing av lgsningen og feste for kamera
pa belgetanken er ogsa nedvendig.

Det er ogsé nedvendig med opplaring i bruk av belgetanken og vognen for & fjerne risiko for feil bruk eller
skade pa utstyr eller personell.

10 REFERANSER
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lofteoperasjoner”, NTNU Alesund

Hartley, R; Zisserman, A; (2004); “Multiple View Geometry in Computer Vision”, Cambridge University
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Vedlegg A: Gantt-diagram for bachelorgruppe Estimering av modellposisjon og belgebevegelse i belgetank.
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Innhold

1 TUse the system

2 Choosing cameras

3 Adding Aruco-board

4 Calibrating camera



Sammendrag

This guide explains how a user can interact with the system tracking
system installed in the water tank at NTNU Alesund. The system was a
bachelor thesis in 2019.

1 Use the system

— If you haven’t done it, do section 2 and 3 before starting.

— When done just press 'Start’ on the home screen and the program should
start and show a videofeed.

— To reset the starting point for the boat in program, press 'Reset starting-
pose’.

— To start logging to a file, press ’Start logging’. To access the file, press
Save log to file’ and it can be found in the program root folder as a
csv-file.

— To access the graphs open the graph window with ’Show graph window’.

X-VALUE: 9524  Y-VALUE: 1058  ZVALUE: 31708  QBoard 077

ROLL: 1554 PITCH: -1.23 YAW: 1131

Figur 1: The main screen.

2 Choosing cameras

1. Start up the application.



2. Make sure all cameras you want to use is connected to USB, either directly
or through a USB-hub.

3. Go in Configuration Camera config tab.

4. No you can select what cameras to use. The list starts at 0 and go upwards
(if no camera on 3, no camera on 4 or 5 either). If you don’t know which
cameras to use:

5. If the PC in use has a in-built camera, it is most often on index 0. But
for a few PCs its on a other index. The best is to ’Connect’ camera 0 and
see whether its the inbuilt camera or not. If it is, you can 'Disconnect’ it
again, and leave it.

6. Then you can use the checkbox to the left and mark the cameras you want
to use. Whether they are already ’Connected’ or not yet, doesn’t matter.

7. Press 'Apply’ and wait. It can take a small while (normally 15-20sec, up
to 1 minute.)

8. In the end all cameras should have "Used in PE’ stated in green. Otherwise
"Failed’ in red will come up, then connection was unsuccessful.

Camera = Markers  Configuration

Camera config  Calibration

u can checkout and configure cameras you wan't to use.
‘Connecting' th mera allows you to select the calibration file for the camera (default the same file as the camera label), and to preview
the video so you know you got right. To use the cameras in operation, mark the checkbox and press Apply. ‘Used in PE' should then be stated.

Camera 0t Disconnect Hide preview A2calib.npz

Camera 1: Disconnect Preview Blcalib.npz

Camera 2 Disconnect Preview B2calib.npz

Camer Connect
Camera 4: Connect

Camera 5: Connect

Figur 2: Camera setup page.



3 Adding Aruco-board

1.
2.

10.

11.

Go to the Marker tab.

Here you can create markers.

. Choose how many markers you want to use. This depends on how big your

area on tracking object. A marker shouldn’t be less than 40x40mm if the
camera is 1-1.5m from the tracking object. If you have three markers, the
total are taken will be about 40mm*3 + 25mm spacing = 145mm across.
If you have less space available, reduce number of markers to less than
3x3. 3x2 or 2x1 is also fine etc.

. Set the square size (as said at least 40mm) and the gap (at least 5mm).

. You can then ’Generate board’ to see how it would become. The marker

displayed in the window is not a relative scale!

. If you want to use it, do ’Add to tracking list’. The marker will now be

used in the estimation.

. If you want to print out the marker:
. Press 'Save Aruco board’.

. The board can now be found as a PDF in the root folder of the pro-

gram, called ’arucoBoard.pdf’. Where the program folder lies, depends on
installation.

When printing out, be sure to use landscape mode and set scaling to 100%
or None! Otherwise the markers will be printed in wrong size.

You can now repeat the process if you want to use more boards. The
program can easy track 4-5 boards or even more. But it doesn’t support
more than a total of 50 markers in total.



Length:
Width:
Size(mm):

Gap(mm)

Generate board Add to tracking list Save Aruco Board Merge

Deactivate ] Log this board ID:3 Deactivate

I L~

Figur 3: Aruco marker page.

4 Calibrating camera

Camera calibration is done so the physical properties of the camera can be
known to the system.

NOTE! Calibration is only needed once for each camera type, as long as
the lens on the cameras hasn’t been tampered with.

1. Go in Configuration — Calibration tab.
2. Select the camera you want to calibrate.

3. If it hasn’t been Connected yet, please do so. You can also preview so you
know you got right camera.



4. You can choose between calibrating with a film or with a set of images.
Generally images is recommended, but video is a bit easier.

5. Then choose number of images or seconds of film you want to take. The
higher the better, but we recommend at least 10 images or 15 seconds of
film.

6. Set the size of thew chessboard. Note it’s the inner corners that are
counted. A normal 8x8 chessboard, have 7 vertical and 7 horizontal in-
nercorners.

7. When ready press ’Calibrate’. The calibration starts right away. Remem-
ber to turn the checkboard as many ways as possible, and in total fill the
whole frame (some images down and some far up). If Images where choo-
sen, you need to press 'Space’ on the keyboard between each image. The
image is displayed. The image is taken right away. With video, it takes 3
images per second. Remember to move slowly when using film, otherwise
it will become blurry and useless.

8. When finished, the program will show the result, before it closes all calibra-
tion windows. The file created should now be visible in the dropdown-menu
for the cameras.

¢ Boat pose Estimator - o X
File EditSetup
Markers  Configuration

fig  Calibration

- Doing calibrati

Select camera to calibrate

Disconnect Hide preview

Number of secs/frames 12

Name of calibration file, 2 letters. A5

Inner CB comers y

Inner CB corners x

Figur 4: Calibration tab.
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5 1 |Bracket Bracket for mounting camera
stand to towing tank
4 3 |M5x30 Umbraco screws for fastening
3 1 |LogitechC920 Web Camera
2 1 |Camera_holder Connector between camera and
holder
1 1 | Shaft Aluminium shaft @16 mm
ltem | Qty Part Number Description
Parts List
Dept. Technical reference Created by Approved by
NTNU NA Ole Kristian Sande 08.05.2019

Document type Document status

Assembly Complete
Title DWG No.
adjustable stand 1
Rev. Date of issue Sheet
A |08.05.2019 1/1
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Camera | Markers  Configuration
Start Stop

Available cameras:

Boards:
@ Board 0

Running options:

L3

Poses:

X-VALUE: 24261

ROLL: 0.66

Y-VALUE:

PITCH:

14.62

45

Z-VALUE:

YAW:

9.42

0.35

: Live screen

Figure C.1
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Generate board

Add to tracking list

Figure C.2: Aruco marker tab
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[
Q Boat Pose Estimator

File Edit Setup

Camera  Markers  Configuration

Camera config ~ Calibration

Please read!
- Doing calibration is not necessary for daily use.
necessary when using new cameras, or changing the lenses on the old.
- For guidance on calibration, please refer to the user manual.

Select camera to calibrate

Disconnect

Number of secs/frames
Name of calibration file, 2 letters.
Inner CB comers y

Inner CB corners x

Calibrate

oard for camera calibration
20x20 mm if printed 16 11 scale on a A4 paper

Calibration.

.

Figure C.3
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Estimering av modellposisjon og bglgebevegelse i bglgetank

KANDIDATNUMMER(E) :

DaTo: EMNEKODE EMNE: DOKUMENT TILGANG:
IE303612 Bacheloroppgave - ARpen

STUDIUM: ANT SIDER/VEDLEGG: BiBL. NR:

AUTOMATISERINGSTEKNIKK / - Ikke i bruk -

OrpDRAGSGIVER(E)/VEILEDER(E) :
Oppdrag gitt av NTNU Institutt for havromsoperasjoner og byggteknikk/Institutt for IKT og

realfag
Veiledere: Ottar L. Osen og Robin Bye

OprpGAVE/ SAMMENDRAG

Ved forsgk med skipsmodeller og andre modeller vanntank, er det gnskelig & kunne hente ut
data om modellens posisjon og orientering, samt beregne bglgeform og -hgyde i tanken.

Oppgaven gar ut pd & finne Igsninger for dette. Det er planlagt & bruke flere kamera til 8 Igse
oppgaven, hvor punkter p3 fartgyet sammenlignes fra flere vinkler for 8 fa en 3D
representasjon av fartgyet/objektet.

Prosjektet er en avsluttende bacheloroppgave i Automatiseringsteknikk, gitt av NTNU IHB og
IIR.

Denne oppgaven er en eksamensbesvarelse utfprt av student(er) ved NTNU i Alesund.
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1 INNLEDNING

Ved forsek med skipsmodeller og andre modeller vanntank, er det enskelig & kunne hente ut data om
modellens posisjon og orientering, samt beregne belgeform og -heyde i tanken.

Oppgaven gar ut pa a finne losninger for dette. Det er planlagt & bruke flere kamera til 4 lose oppgaven, hvor
punkter pa fartoyet sammenlignes fra flere vinkler for & fa en 3D representasjon av farteyet/objektet.

Prosjektet er en avsluttende bacheloroppgave i Automatiseringsteknikk, gitt av NTNU IHB og IIR.

2 BEGREPER

IHB - Institutt for havromsoperasjoner og byggteknikk
IIR - Institutt for IKT og realfag

Marker based motion Capture - Teknikk for & fange bevegelse i et objekt ved hjelp av flere kameraer som
logger referansepunkter.

Model based pose estimation - Teknikk for logging av posisjon og rotasjon av objekt ved hjelp av ett kamera
og en fysisk modell med kjente dimensjoner.

MVP - “Minimum Viable Produkt”, enkleste brukbare produkt

3 PROSJEKTORGANISASJON
3.1 Prosjektgruppe

Studentnummer(e)

Even Drugli 476122
Vegard Fjortoft 460011
Kai Hagseth 997480
Ole Kristian Sande | 476134

3.1.1 Oppgaver for prosjektgruppen - organisering

Gruppen vil besta av en prosjektleder, sekretar, kodeansvarlig og en ansvarlig for hardware og innkjep. Nar en
deloppgave blir tildelt vil det vaere en person som som er ansvarlig og en person som er hjelper.

3.1.2 Oppgaver for prosjektleder

- Skal vaere kontaktperson for oppdragsgiver og veiledere.

- Skal holde oversikt over fremdrift og utfordringer i prosjektet, og rapportere disse til veiledere og evt.
oppdragsgiver nar det sees negdvendig eller hensiktsmessig.

- Skal serge for at alle i gruppen har oppgaver til enhver tid.

- Serge for god trivsel i gruppa.
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3.1.3 Oppgaver for sekretaer

- Skal ha hovedansvar for at rapport blir skrevet og at denne blir av hey kvalitet.
- Ansvar for utarbeiding av metereferat og fremdriftsrapporter.
- Ansvar for dokumentasjon av systemet.

3.1.4 Oppgaver for kodeansvarlig

- Ansvarlig for den underliggende arkitekturen i programvareutviklingen

- Har ansvar for god kodestruktur

- Skal holde oversikt over hva som ma gjeres i kode

- Har ansvar for kompatibilitet og ryddig versjonskontroll

- Ansvar for dokumentasjon av kode (gode kommentarer i kode og i sourcetree).

3.1.5 Oppgaver for Hardware og Innkjgpsansvarlig

- Ansvar for innkjep av nytt utstyr
- Budsjettansvarlig
- Ansvar for fremgang i implementering av fysisk utstyr

3.2 Styringsgruppe (veileder og kontaktperson oppdragsgiver)

Veiledere: Ottar L. Osen og Robin Bye
Oppdragsgiver IHB: Karl Henning Halse

4 AVTALER

4.1 Avtale med oppdragsgiver

Oppdragsgiver er Karl Henning Halse fra NTNU IHB. Det foreligger ingen skriftlig avtale mellom studenter og
oppdragsgiver per na.

4.2 Arbeidssted og ressurser

Fast arbeidssted blir pa campus Alesund, fortrinnsvis L167 eller Tunglab (L044) pd NTNU.

Moter med oppdragsgiver/veiledere vil skje pA NTNU.

Oppdateringsmete med veiledere vil skje hver andre uke. Disse matene blir berammet til 30 minutter. Trengs
det mer tid ifm. tekniske sporsmal eller lignende skal dette avtales for metet. Oppdragsgiver kan delta om det

sees behov. Gruppen skal lage ukesrapport siste arbeidsdag i uken.

Prosjektet inneholder ingen informasjon som er taushetsbelagt. Derfor er det ikke et krav om at prosjektet skal
veare skjult fra offentligheten.
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4.3 Gruppenormer — samarbeidsregler — holdninger

Gruppen er blitt enig om:
- Alle i gruppen skal mete opp pa avtalt klasserom alle hverdager innen klokken 09:00.
- Helgearbeid avtales fortlepende, minst 24 timer pa forhand.
- Dagen avsluttes pa eget skjonn, men det forventes at ingen gar for klokken 16:00 dersom man ikke
har god grunn og koordinerer med resten av gruppa.
- Avspasering skal avklares fortrinnsvis minimum 1 uke pa forhdnd. Sykdom e.l. skal informeres om s&
snart som mulig.
- God kommunikasjon gruppen imellom nar det kommer til fremgang i forhold til tidsfrister pa delmél
slik at gruppen kan diskutere eventuelle utsettelser eller tildeling av ekstra arbeidskraft.
- Deloppgave ansvarlig skal levere inn en oppsummering av ukas fremgang (hva som har blitt gjort,
eventuelle problemer og hva som skal gjeres neste uke) til sekretaer innen klokka 11:00 hver fredag
slik at en rapport kan utformes for gruppemete klokka 13:00
Prosjektet skal gjenspeile et arbeid som er gjort av automasjonsingenierer. Det vil si at arbeidet skal ha hay
kvalitet. Det betyr god kildekode, gode systemmanualer og at alle opptrer profesjonelt. Det betyr at enhver star
ansvarlig for & levere innenfor frister, med en god kvalitet som en selv kan vere stolt av.

5 PROSJEKTBESKRIVELSE

5.1 Problemstilling - malsetting - hensikt

Problemstilling:
- Er det mulig gjennom et kamerasystem a registrere et skipsmodells posisjon og retning gjennom
kamerasyn?
- Er det mulig & innhente data om belgeheyde og -bevegelser gjennom samme kamerasystem, eller
tilherende system?
- Kan dette presenteres pa en mate som gjor det aktivt nyttig i testing og forskning av skips- og
havmodeller i belgevanntank?
Et godt resultatmal vil vaere a fa et ja pa problemstillingene ovenfor, eventuelt fa et godt begrunnet nei. I tillegg
har man prosess- og effektmaél. Hva enskes & oppnas som folge av jobbingen under prosessen og hva er det
langsiktige malet hvor prosjektet kun er et delmal. Et stort prosessmaél er & kunne bruke dette prosjektet som en
overgang fra student til arbeidsliv. Stor del av arbeidslivet er prosjektbasert, og derfor kan et slikt prosjekt sees
pa en provelse for det virkelig arbeidsliv, hvor mye mer star pa spill tidsmessig og ekonomisk.
Et faglig stort prosessmél er & kunne utvide kompetanse, serlig innen vision, og fa en effekt av dette i et
fremtidig arbeidsliv.

5.2 Krav til lasning eller prosjektresultat — spesifikasjon

Prosjektet sikter pa hoyest mulig presisjon i mélinger. Et matematisk begrunnet anslag for neyaktigheten
Et mal er & fa pose-estimasjon pa en negyaktighet pa +-1 mm. Hva dette utgjer i rotasjon kommer an pa
dimensjonene i skipet og utstyret.

Akser: Maks avvik
Posisjon +- 1 mm
Rotasjon +- 0.5 grader

Prosjektresultatet skal vere en ferdig oppkoblet lasning ved vanntanken som kan brukes av andre studenter for
datainnsamling. Det skal vaere utarbeidet manual for styring og bruk av systemet.
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5.3 Planlagt framgangsmater for utviklingsarbeidet - metoder

Gruppen har blitt enig om at vi skal bruke en iterativ og inkrementell modell for systemutviklingen. Fokuset
for denne modellen er & utvikle systemet gjennom gjentakende faser, (iterativ), og pd den maten kunne justere
systemet etter hvert som vi legger til ny funksjonalitet(inkrementell).

For & komme i gang med denne utviklingsmodellen er det gitt at man har en plan for hvilken funksjonalitet
man egnsker at systemet skal ha nér prosjektet er ferdig, hvilken funksjonalitet man trenger for a lage en
fungerende prototype, og hvordan man kan implementere fungerende iterasjoner mellom disse.

Etter at prosjektplanen er lagt starter den initielle fasen av utviklingen hvor en enkel modell av systemet
utvikles, testes, og evalueres. Denne fasen etterfolges av repeterende iterasjoner hvor mer funksjonalitet legges
til, og hvor eksisterende funksjonalitet forbedres og refaktoreres.

Fordelen med en iterativ og inkrementell prosess at man far et fungerende system pa et tidlig stadium, og at
man hele tiden har et klart scope for hva som skal gjeres i prosjektet. I evalueringsfasen mellom iterasjonene
kan man finne feil og mangler ved arbeidet man har gjort, og kan reagere og reparere kort tid etter.

Nar det kommer til ulemper er det lett & fa problemer med systemarkitekturen dersom man gjor feilaktige
antakelser om fremtiden. Det vil si at hvis systemet bygges pé grunnlag av at neste iterasjon skal kunne fungere
tilfredsstillende, uten at man tar hensyn lenger frem i tid, vil man fa problemer. Dette kan forebygges gjennom
god planlegging, og at man tar seg tid til & snakke sammen om hvordan iterasjonen vi begynner pa er
fremtidssikret i planleggingsfasene.

5.4 Informasjonsinnsamling — utfert og planlagt

Det skal utredes hvilke metoder som gir best presisjon og nytte ved plassering av datapunkt pa modellen. Vi
har droftet tre metoder.

Alternativ 1: Markerbasert posisjonssporing. Dette er en flerkameralesning som gir oss stor frihet i hvordan
markerene plasseres, og hvor mange markerer vi gnsker & bruke. Etter en kalibrering av alle kameraene kan et
markerpunkts posisjon estimeres i tre dimensjoner ved hjelp av triangulering. Dersom man har minst tre
punkter i bildet og antar at objektet er rigid kan man estimere alle de seks frihetsaksene til objektet. Denne
metoden ber i teorien ogsa kunne estimere fordreining i objektet hvis man bruker mer enn tre punkter per
objekt. Ved & bruke mer enn to kameraer kan man oppna heyere presisjon, dekningsomrade og redundans, pa
bekostning av tregere prosessering og heyere materialkostnader. For & gke ytelsen i denne metoden er det
mulig & bruke IR-dioder som markerpunkt, og filtrere ut lys som ikke er infraredt. Da vil man kunne finne alle
punktene i bildet med en ressursvennlig terskel-operasjon. I vare undersekelser har vi ikke funnet noen
implementeringer av denne metoden for var use-case, og lesninger med &pen kildekode er vanskelig & komme
over. Dette kan bety at implementeringen er ressurskrevende, eller at dette ikke er en hensiktsmessig metode
for vért scenario.

Alternativ 2: Modellbasert positurestimering. Dette alternativets storste fordel er at man kan lese av
informasjon om alle de seks frihetsaksene til objektet med kun ett kamera, og at det ser ut til & ha mange
implementasjoner pa lignende caser som vér egen fra for. Det gar ut pa at det plasseres et objekt med kjente
dimensjoner, for eksempel en figur med tre linjer som peker i X, y og z-retning med en kule pa enden av hver
linje. Ut fra denne modellen er det mulig & bade kalibrere kamera og spore objektet. Denne metoden har
tidligere blitt delvis utredet her pa instituttet av @. Gjelseth og I I. Flatval sa i oppgaven “Posisjons- og
avstandsmaling med ett enkelt kamera for maritime lofteoperasjoner” (2015). Vi ser for oss at denne metoden
kan utvides med flere kamera for & kunne oppna bedre presisjon og sterre dekningsomrade. Ved bruk av flere
modeller ber vil ogsa kunne gke presisjonen orientering om de pares, og man dpner mulighet for
flerobjektssporing. Vi ser for oss at ogsd denne metoden kan pares med IR-dioder for bedre ytelse, hvor
endepunktene pa figuren vér byttes ut med dioder.
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Alternativ 3: Stereosyn for skroggjenkjenning. Her er fordelen at man i teorien ikke ville trenge markerer av
noe slag for a estimere de seks frihetsaksene. Gjennom en utvidelse av stereo-syn algoritmer kan man lage en
3d-modell av skroget, og beregne modellens positur ut fra et satt utgangspunkt. Dette alternativet er det mest
ressurskrevende, og vil neppe fungere i sanntid. I tillegg fungerer ikke disse algoritmene med refleksjon og
refraksjon, noe som ikke er ideelt nar vi jobber i og rundt vann. Vi tror ikke dette er en god lesning for var
case.

Litteratur:
Multiple View Geometry in Computer Vision, R. Hartley, A. Zisserman, Mars 2004, ISBN: 9780521540513
Programming Computer Vision. Jan Erik Solem. Juni 2012 ISBN: 9781449316549

5.5 Vurdering — analyse av risiko

Matrise for risikovurderinger ved NTNU

Sveert Alvorlig
C£ Alvorlig
=
= | Moderat
o
=
b Liten
<
£ | Svert liten A5
Sveert liten Stor Sveert stor
SANNSYNLIGHET
Farge Beskrivelse
Red Uakseptabel risiko. Tiltak skal gjennomferes for & redusere risikoen
Gul Vurderingsomrade. Tiltak skal vurderes
Gronn Akseptabel risiko. Tiltak kan vurderes ut fra andre hensyn.

Vi anser prosjektet som vellykket hvis vi meter gitte krav til presisjon og ender med et brukervennlig
sluttprodukt.

For a realisere prosjektet er vi nedt til & fa presisert en del krav. Dette inkluderer:
- Presisjonskrav i posisjon og pose i mm og grader.
- Om vi skal ha statiske kamera eller disse skal folge rigg
- Skal data/video feed veare i real-time
- Budsjett

Mulige problemer som kan oppsté underveis i arbeidet kan vaere:
Risiko B2 - Liten konsekvens, liten sannsynlighet:
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Tapt arbeidstid pa grunn av sykdom eller annet fraveer. Det er ikke mye vi kan gjere nar sykdom
oppstar men vi kan legge planer rundt ferie ol. hvis det blir informert om i forkant (se 4.3). Vi er ogsd
en relativt stor gruppe med fire medlemmer, og vi tror det skal veere mulig & fylle inn for hverandre
dersom et medlem far et illebefinnende.

Tiltak: Vi kommer ikke til & innfore flere tiltak.

Risiko B3 - Liten konsekvens, middels sannsynlighet.

Leveringsforsinkelser for utstyr. Dersom vi far en forsinkelse i bestilling kameraer eller i utstyret vi
trenger for & sette opp riggen var kan det pavirke kvaliteten pa prosjektet.

Tiltak: Vi har fatt tilgang pa det vi trenger av utstyr for a bygge og teste et fungerende produkt, sa selv
med forsinkelser vil det ikke pavirke fremgangen vér i stor grad. Vi har satt opp en plan for & bestille
produktene vi trenger tidlig. Vi anser konsekvens redusert til svert liten og sannsynligheten til liten,
risiko A2.

Feil i hardware. Noe av dette kan oppdages ved a teste utstyr tidlig slik at vi kan returnere defekt
utstyr & fa tilsendt nytt. Ellers har dette punktet mye til felles med forrige punkt.

Tiltak: Vi har fatt tilgang pa fungerende utstyr som er tilstrekkelig for progresjon i utviklingen. Som
nevnt i forrige punkt skal vi bestille utstyr i god tid, slik at vi har mulighet til & reparere eller erstatte
eventuelle feilvarer. Vi anser risikoen etter tiltak som A2. Liten sannsynlighet, og sveert liten
konsekvens.

Risiko C3 - Middels konsekvens, middels sannsynlighet

Scope creep. Dette oppstar nar vi itererer for mye pa en problemstilling og legger til
tilleggsfunksjoner som ikke var definerte i oppgaven og ender med et storre scope enn det som var
planlagt.

Tiltak: Vi har satt opp en rigid fremdriftsplan, og gjennom prosjektmetoden vér har vi bestemt oss for
a gjennomfore fungerende iterasjoner av produktet for vi legger til mer funksjonalitet. I tillegg har vi
daglige stand-up-meter for & rapportere og drefte fremgangen til alle gruppemedlemmene, som bidrar
til at vi far oversikt om noen preover a overprodusere funksjonalitet underveis. Vi anser risikoen
redusert til liten gjennom metene, og konsekvensen redusert til liten gjennom prosessmetoden. Risiko
B2.

Risiko E2 Sveert alvorlig konsekvens, liten sannsynlighet.

Datatap. Dersom vi skulle miste storre mengder med data, enten i form av kode eller rapporter star vi i
fare for at vi ma gjore store deler av prosjektet pa nytt. Dette kan forebygges med gode rutiner for
lagring og backup.

Tiltak: For koden har alle medlemmer lokale kopier av néverende kode, og alle bruker
versjonskontroll i Source Tree. Vi har ogsa bade lokale kopier, og kopier i googles sky av de storste
rapportene vére. Gjennom disse tiltakene anser vi sannsynligheten redusert til sveert liten, mens
konsekvensen fortsatt er alvorlig. Risikogruppe E1. Gjennom diskusjon i gruppen har vi vurdert denne
risikoen til & vaere akseptabel, siden sannsynligheten er minimal.

5.6 Hovedaktiviteter i videre arbeid

Se Vedlegg A: Gantt-diagram for bachelorgruppe Estimering av modellposisjon og belgebevegelse i belgetank

5.7 Framdriftsplan — styring av prosjektet

5.7.1 Hovedplan

Kapittel 5.6 er ganske detaljert og beskriver planlagt fremgang.

Forste tunge avgjerelse er & avklare hvilken metode man skal bruke. Om man skal bruke “motion capture”
eller “model based” gir store foringer pa hva som méa gjere i geometri-delen av prosjektet, som er den storste
delen av prosjektet.
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5.7.2

5.7.3

574

Planen er & ha et MVP ferdig 8. februar. Dette vil veere en versjon hvor systemet har et minimum av features.
Tanken er 4 tidlig kartlegge eventuelle utfordringer ift noyaktighet og praktisk bruk som vi ikke har tatt hayde
for.

Videre er det planlagt & ha det meste av software klart for fullstendig testing i starten av mars. Deretter vil det
bli tre uker med testing og optimalisering av software, parallelt med at GUI blir utviklet. A utfylle Metodedel
og resterende teoridel vil gjores mens man arbeider med dette, hovedsakelig til en fastsatt dag i uken.

Styringshjelpemidler

- Gantt-Project
- Google Drive
- Office 365

Utviklingshjelpemidler

- MATLAB
- AutoDesk Fusion 360
- Blender

- Bitbucket
- Sourcetree
- Git

- Overleaf

- LaTeX

- PyCharm
- Python3

- Numpy

- OpenCV

- Matplotlib

Intern kontroll — evaluering

Intern kontroll i prosjektet med hensyn pa fremdrift vil gjennomferes ved bruk av daglige stand-up meter hvor
det blir gjennomgétt hva arbeid som forventes gjennomfort den dagen og fremgang i forhold til garsdagens
mal. I slutten av hver uke vil det vaere et gruppemete hvor fremgangen for alle deloppgaver diskuteres og
eventuelle problemstillinger blir tatt opp slik at vi kan evaluere om det ma gjores endringer i fremgangsplan
eller om det ma legges til flere deloppgaver for a lose problemene.

Et delmal ansees som gjennomfert nar det det foreligger en implementerbar losning pé gitt problemstilling.
Losningen skal bli presentert til en uavhengig tredjepart internt i gruppen for evaluering slik at eventuelle feil

kan lukes ut eller forbedringer kan gjores.

Det vil ogsa vere meter med veiledere annenhver uke hvor fremgang blir diskutert og rad blir gitt.

5.8 Beslutninger — beslutningsprosess

Alle viktige avgjarelser skal bli tatt ved avstemning etter diskusjon i plenum. Dersom konflikt oppstar (2 mot 2
stemmer) vil gruppeleder ta avgjerelsen. Alle beslutninger skal dokumenteres med begrunnelse (argumenter
for og imot) i ukesrapporten.

Ved arbeid med forprosjekt har alle avgjerelser blitt tatt etter diskusjon i gruppa og det har ikke oppstétt noen
konflikter.
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6 DOKUMENTASJON

6.1 Rapporter og tekniske dokumenter

Bacheloroppgaven skal skrives etter mal gitt pa Blackboard IE303612 Bacheloroppgave (2019
VAR)\Undervisningsmateriell\Rapportmaler\. Det kommer til & bli lagt stor vekt pa teori, metode og utforelse.

Gruppen vil dokumentere fremgang hver uke ved bruk av ukesrapporter som inneholder fremgang, avgjerelser
som er tatt og mulige problemer eller uforutsette hendelser som har oppstatt. En kopi av denne rapporten vil bli
sendt til styringsgruppen. Det vil bli holdt en timeliste med tid for oppmete og arbeidsslutt for alle pa gruppen.

Alle rapporter, dokumenter, timeliste og tekniske datablad som felger utstyr vi har brukt skal lagres pa
gruppens delte rom pa Google Drive. Det er tenkt at dette rommet bare skal vere tilgjengelig for gruppen og
eventuelt veiledere.

7 PLANLAGTE M@TER OG RAPPORTER

7.1 Moter

711

7.1.2

Mgter med styringsgruppen

Oppdateringsmete med veiledere vil skje hver andre uke. Disse matene blir berammet til 30 minutter. Trengs
det mer tid ifm. tekniske sporsmal eller lignende skal dette avtales for metet. Oppdragsgiver kan delta om det
sees behov.

Prosjektmoter

Prosjektmater skal skje hver fredag klokken 13:00. For klokken 11:00 samme dag skal det leveres inn
oppsummering av ukas fremgang av deloppgave ansvarlige slik at en ukesrapport kan fremstilles for matet. 1
dette motet skal eventuelle endringer i fremgangsplan dreftes i forhold til problemstillinger eller uforutsette
hendelser som har oppstatt underveis i arbeidet, se kap 8.

7.2 Periodiske rapporter

7.21

Framdriftsrapporter

En fremdriftsrapport (ogsa kalt ukesrapport i dette dokumentet) skal leveres til styringsgruppen hver fredag.
Denne skal vere pa formen gitt eksempelvis i Blackboard 1E303612 Bacheloroppgave (2019
VAR)\Undervisningsmateriell\Rapportmaler\Framdriftsrapport (progress report) - eksempel (example)

8 PLANLAGT AVVIKSBEHANDLING

Dersom prosjektets framdrift ikke blir holdt er alternativene a arbeide ut over vanlig arbeidstid i hverdagene
eller eventuelt & arbeide i helger for a komme ajour.
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For hver arbeidsoppgave er det ansvarlig for denne oppgaven sitt ansvar og gjennomfore innenfor tidsfristen.
Vanlig prosedyre dersom dette ikke skulle skje er & gjennomfere en diskusjon i plenum om tiltak for & igjen
kunne folge fremdriftsplanen. Deretter er det prosjektleders ansvar om en diskusjon ikke forer til losning &
avgjore hvilke tiltak som er nedvendig. Der ett eksempel er & utsette sluttdato pd deloppgaven.

9 UTSTYRSBEHOV/FORUTSETNINGER FOR
GJENNOMFQRING

For gjennomfering av prosjektet kreves det innkjeop av kamera og markerer for sporing av objekter i
belgetanken. Innkjop av materiale for a lage en testrigg for skalerbar testing av lgsningen og feste for kamera
pa belgetanken er ogsa nedvendig.

Det er ogsé nedvendig med opplaring i bruk av belgetanken og vognen for & fjerne risiko for feil bruk eller
skade pa utstyr eller personell.

10 REFERANSER
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11 VEDLEGG

Vedlegg A: Gantt-diagram for bachelorgruppe Estimering av modellposisjon og belgebevegelse i belgetank.
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