

Bacheloroppgave

Bachelor i ingeniørfag, Automatiseringsteknikk

Sea farm platform

10031, 10038, 10004, 10027

Totalt antall sider inkludert forsiden: 412

Innlevert Ålesund, 02.06.2017

Obligatorisk egenerklæring/gruppeerklæring

Den enkelte student er selv ansvarlig for å sette seg inn i hva som er lovlige hjelpemidler, retningslinjer

for bruk av disse og regler om kildebruk. Erklæringen skal bevisstgjøre studentene på deres ansvar og

hvilke konsekvenser fusk kan medføre. Manglende erklæring fritar ikke studentene fra sitt ansvar.

Du/dere fyller ut erklæringen ved å klikke i ruten til høyre for den enkelte del 1-6:

1. Jeg/vi erklærer herved at min/vår besvarelse er mitt/vårt eget arbeid,

og at jeg/vi ikke har brukt andre kilder eller har mottatt annen hjelp

enn det som er nevnt i besvarelsen.

2. Jeg/vi erklærer videre at denne besvarelsen:

• ikke har vært brukt til annen eksamen ved annen

avdeling/universitet/høgskole innenlands eller utenlands.

• ikke refererer til andres arbeid uten at det er oppgitt.

• ikke refererer til eget tidligere arbeid uten at det er oppgitt.

• har alle referansene oppgitt i litteraturlisten.

• ikke er en kopi, duplikat eller avskrift av andres arbeid eller

besvarelse.

3. Jeg/vi er kjent med at brudd på ovennevnte er å betrakte som fusk og

kan medføre annullering av eksamen og utestengelse fra universiteter

og høgskoler i Norge, jf. Universitets- og høgskoleloven §§4-7 og 4-8 og

Forskrift om eksamen.

4. Jeg/vi er kjent med at alle innleverte oppgaver kan bli plagiatkontrollert

i Ephorus, se Retningslinjer for elektronisk innlevering og publisering av

studiepoenggivende studentoppgaver

5. Jeg/vi er kjent med at høgskolen vil behandle alle saker hvor det

forligger mistanke om fusk etter NTNUs studieforskrift.

6. Jeg/vi har satt oss inn i regler og retningslinjer i bruk av kilder og

referanser på biblioteket sine nettsider

http://www.lovdata.no/all/nl-20050401-015.html

Publiseringsavtale

Studiepoeng: 20

Veileder: Ottar Osen, Houxiang Zhang

Fullmakt til elektronisk publisering av oppgaven

Forfatter(ne) har opphavsrett til oppgaven. Det betyr blant annet enerett til å gjøre verket

tilgjengelig for allmennheten (Åndsverkloven §2).

Alle oppgaver som fyller kriteriene vil bli registrert og publisert i Brage med forfatter(ne)s

godkjennelse.

Oppgaver som er unntatt offentlighet eller båndlagt vil ikke bli publisert.

Jeg/vi gir herved NTNU i Ålesund en vederlagsfri rett til å
gjøre oppgaven tilgjengelig for elektronisk publisering: ja nei

Er oppgaven båndlagt (konfidensiell)? ja nei
(Båndleggingsavtale må fylles ut)
- Hvis ja:
Kan oppgaven publiseres når båndleggingsperioden er over? ja nei

Er oppgaven unntatt offentlighet? ja nei
(inneholder taushetsbelagt informasjon. Jfr. Offl. §13/Fvl. §13)

Dato: 02.06.2017

http://www.lovdata.no/all/hl-19670210-000.html#13
http://www.lovdata.no/all/tl-19610512-002-001.html#2
http://www.lovdata.no/all/hl-20060519-016.html#13

 1

Sea farm platform

June 2017

BACHELOR THESIS

Faculty of information and electrical engineering

Norwegian University of Science and Technology

Supervisors: Ottar Lauritz Osen, Dr. Houxiang Zhang

i

Preface

This bachelor thesis is written by four students from Automatiseringsteknikk at NTNU Ålesund,

and marks the end of a three year bachelor degree. The purpose of the project is to develop a

low-cost USV, capable of handling several tasks due to its versatile design.

This type of technology is mainly developed by large companies such as Rolls-Royce and

Kongsberg. This is expensive technology to purchase and have high operating cost. This USV

however, is meant as an affordable alternative for smaller companies that could benefit using

automated surveillance or inspection at sea.

What intrigued us with this project, was that it included many of the fields that our three

year study contained. Many of the topics and fields learn earlier were theoretical principles but

never physically tested. This project helped us better understand many of these theories.

ii

Acknowledgement

We would like to thank the following persons for their great help with this bachelor thesis.

• Our mentors Ottar Osen and Houxiang Zhang for help and support.

• Professor Henrique M. Gaspar and professor Karl Henning Halse for help with bouncy and

stability calculation.

• Associate Professor Girts Strazdins for Linux and wireless communication assistance.

• Senior engineer Anders Sætersmoen for help with equipment and orders.

• Assistant Professor Arne Styve for software project management and software develop-

ment support.

• Family and friends for time and support over the last years.

• Senior engineer Anders Sætersmoen for help with equipment and orders.

• Engineer André Tranvåg and staff for help in manufacturing parts

• Engineer Øyvind Andre Hanken for help with practical matters and equipment.

• Assistant Professor Mikael Tollefsen for android software development support.

• Pipelife Norge AS for sponsoring PE tubes.

• Anda-Olsen AS for sponsoring batteries.

• Tingstad AS for sponsoring stainless bolts.

iii

Summary and Conclusions

This report concerns the development of a sea farm vessel, a concept by Ottar L. Osen, and is

given as a bachelor thesis from NTNU in Ålesund. The purpose of this project is to develop the

concept to a full-size working prototype. The prototype is meant to be the foundation of future

work, towards a complete system. A detailed description regarding how to design this type of

sea farm vessel is found in the report, and is focused on functionality and low-cost components.

Implemented features in this project are a active self-stabilising system, autopilot and a man-

ual manoeuvring functionality. The prototype is designed as the base for handling a remotely

operated vehicle doing sub sea inspections. The control system runs on an Odroid XU4 mini-

computer with the software programmed in Java. The user interface is based on a Lenovo tablet

with an Android application, also programmed in Java. As for instrumentation, the Arduino is

a key component with inexpensive sensors for input. The final test results shows that a full-

size prototype with autopilot and active self-stabilisation, can be developed with the solutions

presented.

Contents

Preface . i

Acknowledgement . ii

Summary and Conclusions . iii

Acronyms . 2

1 Introductions 11

1.1 Background . 12

1.2 Problem Formulation . 12

1.3 Literature Survey . 13

1.4 Objectives . 13

1.5 Limitations . 13

1.6 Approach . 13

1.7 Structure of the Report . 14

2 Theoretical basis 15

2.1 Buoyancy and stability . 15

2.1.1 Buoyancy . 15

2.1.2 Angle of list . 16

2.1.3 Stability . 16

2.1.4 Inertia . 18

2.2 Motion variables . 19

2.3 Reference Frames . 20

2.3.1 Earth-Centred Reference Frames . 20

2.3.2 Geographic Reference Frames . 21

iv

CONTENTS v

2.3.3 Conversion from geodetic reference frame to NED reference frame 22

2.4 Kinematics . 23

2.4.1 Principal rotations . 23

2.5 Mathematical optimisation . 25

2.5.1 Convex Optimisation . 25

2.5.2 Linear Optimisation . 26

2.6 Wireless Communication . 26

2.7 Dynamic Positioning . 30

2.7.1 Classification . 30

2.8 Euler angles . 30

2.9 Haversine formula . 31

2.10 PID Controller . 32

2.10.1 Ziegler-Nichols method . 33

2.11 Kalman filter . 34

2.12 Linux . 34

2.13 Android Application Programming . 35

2.14 Java Programming . 35

2.14.1 Thread . 35

2.14.2 Concurrent Programming in Java . 35

2.15 GPS . 36

2.16 Inertial Measurement Unit . 36

2.17 Communications Protocol . 36

2.17.1 OSI Model . 37

2.17.2 TCP . 37

2.17.3 UDP . 38

2.17.4 Internet Protocol . 38

2.17.5 Socket . 38

2.17.6 USB . 39

2.17.7 Wireless LAN . 39

2.17.8 I2C . 40

CONTENTS vi

2.17.9 SPI . 40

3 Method 42

3.1 Project Organisation . 42

3.2 Data . 43

3.2.1 NMEA 0183 Standard . 43

3.3 Control device . 45

3.4 GUI . 45

3.4.1 GUI design . 45

3.5 Platform design and modelling . 48

3.5.1 Materials . 48

3.5.2 CAD tools . 49

3.6 Stability and buoyancy calculation . 49

3.7 Stability system . 50

3.7.1 Stabilisation method . 50

3.7.2 Control system . 51

3.7.3 Sensors . 51

3.8 Autopilot . 52

3.8.1 Sensor . 52

3.8.2 Testing the autopilot . 52

3.8.3 Collision avoidance . 53

3.9 Communication . 54

3.10 Video stream . 55

3.11 Software . 55

3.11.1 NetBeans IDE 8.2 . 55

3.11.2 Android Studio . 56

3.11.3 Arduino IDE . 56

3.11.4 inSSIDer Home . 56

3.12 Software development . 56

3.12.1 Overview . 56

CONTENTS vii

3.12.2 Libraries . 57

3.13 Materials . 59

3.13.1 Lenovo Tab 2 A10 . 59

3.13.2 Odroid XU4 . 59

3.13.3 Linksys TL-WN722N V2 . 59

3.13.4 Linksys Archer c5 v2 . 60

3.13.5 Arduino Uno . 60

3.13.6 Arduino Mega . 61

3.13.7 Haswing 20 . 61

3.13.8 Bilge pump . 62

3.13.9 Relay module . 62

3.13.10Pololu motor controller . 62

3.13.11CP1232 Battery . 63

3.13.12Multiplexer . 64

3.13.139DoF IMU . 64

3.13.14Pressure sensor . 65

3.13.15Check valve . 65

3.13.16GPS module . 65

4 Result 66

4.1 Designing the platform . 66

4.1.1 Four legged version . 67

4.1.2 Hexagon model 1 . 68

4.1.3 Hexagon model 2 . 69

4.1.4 Hexagon model 3 . 70

4.1.5 Hexagon model 4 . 71

4.1.6 Octagon model . 72

4.1.7 Catamaran model . 73

4.1.8 Rectangular model 1 . 74

4.1.9 Simulation-sketches . 75

CONTENTS viii

4.2 Data collection and calculation . 75

4.3 Choosing design . 77

4.4 Final design . 79

4.4.1 Rectangular model 2 . 80

4.4.2 Rectangular model 3 . 81

4.4.3 Rectangular model 4 . 82

4.4.4 Weighing of parts . 83

4.4.5 Buoyancy test in water . 85

4.5 Stabilisation system . 87

4.5.1 Water vs air as control medium . 87

4.6 Mounting the stability system . 90

4.6.1 Water pumps and hardware . 90

4.6.2 Water level sensors . 92

4.6.3 IMU . 93

4.6.4 Control system . 93

4.6.5 Stabilisation software . 94

4.6.6 Stabilising time . 95

4.7 Thruster allocation . 96

4.7.1 Thruster configuration . 97

4.7.2 Actuator Models . 99

4.7.3 Solution by quadratic programming and JOptimizer 99

4.8 Software . 102

4.8.1 Flow chart of the complete system . 102

4.8.2 Server-Client . 103

4.8.3 Float chart software . 104

4.8.4 Class Diagram . 107

4.8.5 Graphical User Interface . 107

4.8.6 Server application . 109

4.8.7 Reading sensors on the platform . 109

4.8.8 Sensor data processing on the platform . 110

CONTENTS ix

4.8.9 Autopilot and Dynamic positioning . 113

4.8.10 PID control for thrust . 114

4.8.11 Thruster control . 114

4.9 Results from tests at sea . 114

4.9.1 Autopilot mode . 115

4.9.2 Manual mode . 115

4.10 Results from wave test . 115

4.10.1 Results from one vs four IMUs . 116

4.10.2 Kalman filter . 118

4.10.3 Low-pass filter . 120

4.10.4 Platform movement from waves . 121

4.11 Wireless communication . 122

5 Discussion 126

5.1 Test results . 126

5.1.1 Platform design and buoyancy . 126

5.1.2 Stability system . 126

5.1.3 Software solutions . 127

5.1.4 Autopilot and Dynamic Positioning . 128

5.1.5 Wireless Communication system . 129

5.1.6 Thruster feedback . 129

5.2 Stabilisation method . 129

5.3 Version control Git . 130

5.4 Necessary improvements . 130

5.4.1 Buoyancy . 130

5.4.2 Motor controllers . 130

5.4.3 Client - Server connection . 130

5.5 Experiences . 131

5.5.1 Size and complexity of the project . 131

5.5.2 Project planning . 131

CONTENTS 1

5.5.3 Working as a team . 131

5.6 Possible operations for a semi-submersible USV . 131

6 Conclusions 133

6.1 Further development . 134

Appendices 135

A Preproject report . 135

B Gantt diagram . 135

C Project A3 . 135

D Progress report 26.01.17 . 135

E Progress report 10.02.17 . 135

F Progress report 24.02.17 . 135

G Progress report 24.03.17 . 135

H Progress report 02.05.17 . 135

I Meeting report 13.01.17 . 135

J Meeting report 30.01.17 . 135

K Meeting report 10.02.17 . 135

L Meeting report 24.03.17 . 135

M Meeting report 02.05.17 . 135

N Platform mechanical drawings . 136

O Electrical drawing stability system . 136

P Electrical drawing thruster control . 136

Q Stability calculation Rectangular platform . 136

R Stability calculation Hexagon platform . 136

S Server source code . 136

T Client source code . 136

U Arduino source code . 136

Bibliography 137

CONTENTS 2

Terminology

PID Proportional integral derivative controller

GUI Graphical User Interface, makes it possible to interact with a computer

API Application Programming Interface, activates functions from a remote software

TCP Transmission Control Protocol, connection oriented transmission protocol of informa-

tion.

UDP User Datagram Protocol, non connection based transmission protocol of information.

IP Internet Protocol is a "best effort" delivery protocol

RxTx A Serial communication library

USB Universal Serial Bus

LAN Local Area Network

Three Way Handshake A three step method to establish TCP connection

JSON object a text based standard for data exchange in computer programming.

IDE Integrated Development Environment, software for computer programming

OSI-model seven-layer model for network communication

Notation

Kp Proportional term of a PID controller

Ki Integral term of a PID controller

Kd Derivative term of a PID controller

Kg System International unit for Kilogram

ACK acknowledge message

CONTENTS 3

Abbreviations

IEEE Institute of Electronical and Electronic Engineers

AES Advanced Encryption Standard

I2C Inter Integrated Circuit

Gnd Ground in electronical circuits

USV Unmanned Surface Vehicle

IMU Inertial Measurement Unit, sensor with accelerometer, gyro and magnetometer

DOF Degrees of Freedom, number of configurations for a object

DP Dynamic Positioning

ECI Earth-Centred inertial frame

ECEF Earth-Centred Reference Frame

NED North-East-Down coordinate system

BODY Body-fixed reference frame

ROV Remote Operated Vehicle

IMO International Maritime Organization

GPS Global Positioning System

DGPS Differential Global Positioning System

EGNOS European Geostationary Overlay Service

OSI Open Systems Interconnection

CPU Central Processing Unit

SPI Serial Peripheral Interface

CONTENTS 4

MOSI Master Output Slave Input

MISO Master Input Slave Output

SS Slave Select

SCK/SCLK Serial Clock

List of Figures

2.1 Angle of list. 16

2.2 Pressure centres. 17

2.3 Steiner‘s theorem . 19

2.4 Body-fixed reference points. 20

2.5 ECEF, ECI, NED and BODY reference frames 22

2.6 Rotation over yaw angle ψ . 24

2.7 Rotation over pitch angle θ . 24

2.8 Rotation over pitch angle φ . 24

2.9 Omnidirectional radiation pattern . 27

2.10 Omnidirectional radiation pattern with antenna gain 28

2.11 Simplified wireless communication system . 28

2.12 Block diagram of a PID controller . 33

2.13 Block diagram of a feedback system with process G(s), PID controller and a

sensor with transfer function Hs(s) . 33

2.14 OSI-model . 37

2.15 . 39

2.16 . 39

3.1 NMEA messages, GPRMC and GPGGA . 43

5

LIST OF FIGURES 6

3.2 Client design 1 Manual Mode . 46

3.3 Client design 2 Manual Mode . 46

3.4 Client design 3 Manual Mode . 47

3.5 Client design 1 Auto Pilot . 47

3.6 Arduino test rig . 53

3.7 Illustration of object detection . 54

3.8 Lenovo Tab 2 A10 . 59

3.9 Odrois XU4 . 59

3.10 Linksys Archer c5 v2 . 60

3.11 Arduino Uno . 60

3.12 Arduino Mega . 61

3.13 Haswing 20 . 61

3.14 Biltema bilge pump . 62

3.15 Sainsmart 4-channel relay module . 62

3.16 Pololu simple motor controller . 62

3.17 CP1232 Battery . 63

3.18 TCA9548A . 64

3.19 Adafruit 10-DoF . 64

3.20 MPX2010DP . 65

3.21 Biltema check valve . 65

3.22 ublock vk-162 . 65

4.1 Four legged version . 67

4.2 Four leg Bow . 67

4.3 Hexagon model 1 . 68

LIST OF FIGURES 7

4.4 Hexagon model 1 Top . 68

4.5 Hexagon model 2 . 69

4.6 Hexagon model 2 Bow . 69

4.7 Hexagon model 3 . 70

4.8 Hexagon model 3 Bow . 70

4.9 Hexagon model 4 . 71

4.10 Hexagon model 4 Top . 71

4.11 Octagon model . 72

4.12 Octagon model Bow . 72

4.13 Catamaran model . 73

4.14 Catamaran model Top . 73

4.15 Rectangular model 1 . 74

4.16 Rectangular model 1 Top . 74

4.17 Simple hexagon . 75

4.18 Simple catamaran . 75

4.19 Simple rectangular . 75

4.20 Rectangular model 2 . 80

4.21 Rectangular model 2 Top . 80

4.22 Rectangular model 3 . 81

4.23 Rectangular model 3 Top . 81

4.24 Rectangular model 4 . 82

4.25 Rectangular model 4 Top . 82

4.26 Weighing of parts . 83

4.27 Battery packs are weighed . 84

4.28 Finished platform weighed . 84

LIST OF FIGURES 8

4.29 Finished platform weighed . 85

4.30 Finished platform weighed . 86

4.31 Finished platform weighed . 86

4.32 Test with air . 87

4.33 Test with air . 87

4.34 Test with water pumps . 88

4.35 Test with water pumps . 88

4.36 Placement of the water pumps . 90

4.37 Flow capacity to pressure table . 91

4.38 Ventilation hole . 91

4.39 Amplifier array . 92

4.40 Array of six MPX2010DP . 93

4.41 Inertial measurement unit . 93

4.42 Payload placement . 95

4.43 Thruster configuration . 97

4.44 Control force . 99

4.45 General flow chart for complete system . 102

4.46 Float chart client . 105

4.47 Float chart server . 106

4.48 Clas Diagram Client . 107

4.49 Mode GUI . 107

4.50 Manual mode GUI . 108

4.51 Autopilot GUI . 108

4.52 Flow chart sensor data . 110

4.53 One vs Four IMU . 116

LIST OF FIGURES 9

4.54 One vs Four IMU . 117

4.55 Kalman filter . 118

4.56 Kalman filter . 119

4.57 Low-pass filter . 120

4.58 Low-pass filter . 121

4.59 Low-pass filter . 122

4.60 Wireless range max distance . 124

4.61 Wireless range comparison . 125

List of Tables

2.1 The notation of SNAME (1950) for marine vessels [11] 19

2.2 Ziegler-Nichols method . 34

3.1 $GPGGA . 43

3.2 $GPRMC . 44

4.1 Model comparison . 78

4.2 Overview . 83

4.3 Stability system, water and air comparison . 89

4.4 Stabilization before draft compansation . 96

4.5 Stabilization and draft compansation . 96

4.6 Stabilization with fixed payload in position A with changes in Amplitude A

and period time T on the waves . 96

4.7 Definition of actuators and variables . 101

10

Chapter 1

Introduction

NTNU, Rolls Royce and Kongsberg are some of the largest companies that currently are devel-

oping autonomous water crafts and its technology in Norway. NTNU in Ålesund wish to further

develop their USV. The current USV is a small dinghy fitted with a dynamic positioning system,

developed through previous bachelor theses. This project aims to further develop the concept of

the dinghy into a low-cost, small scale platform, with capacity to carry sensors and small ROVs.

The design is inspired by a semi-submersible platform because of its great abilities to withstand

waves. A small platform such as this can perform a wide range of maritime operations within

sheltered waters and lakes, such as surveying, inspection of fish farms, collecting maritime sen-

sor data and hoisting.

Challenges such as design, stability control, navigation, obstacle avoidance and a control ap-

plication for android devices has been the centre of development. Many of these challenges

are currently being researched by the maritime industry. In this project, evaluations have been

made to keep the concept focused on low-cost and flexibility. A prototype was designed and

built for testing the solutions of the stability control, navigation, obstacle avoidance and the

control application.

11

CHAPTER 1. INTRODUCTIONS 12

1.1 Background

Norway is among the world’s leading maritime nations, and is experiencing a new era of changes

where efficiency and cost reduction are central. Development through innovation, Industry 4.0

and automation could contribute to increasing the Norwegian industry’s competitive ability in

the future. Automated systems used in maritime operations and autonomous maritime crafts

are pioneering domains within the Norwegian industrial research, where NTNU is among the

leading researching groups.

Currently in the maritime industry there is an increased number of operations, where humans

are being replaced by USVs (Unmanned surface vehicles) or ASVs (Autonomous surface vehi-

cles). This allows operations to be carried through using smaller vessels equipped with the

necessary sensors and instruments. This redistribution of workforce results in less expensive

production and operating costs, and a safer working environment for the operators, as they can

be stationed at shore.

1.2 Problem Formulation

Would a semi-submerged autonomous platform be suitable as a data collecting or monitoring

unit in coastal areas?

The project can be divided into two main sections. One part is to design and create a seaworthy

prototype for maritime operations, and the other is to develop a control system for the platform.

Problems to be addressed

• Design and build new seaworthy prototype

• Develop solutions to deal with autopilot, dynamical positioning, manual control, stabili-

sation and object detection

CHAPTER 1. INTRODUCTIONS 13

1.3 Literature Survey

This thesis is based a earlier bachelor thesis "USV" - Unmanned surface vessel published in

2016.

1.4 Objectives

The Objectives for this bachelor thesis are:

1. Make a seaworthy prototype that can be used for further development

2. Implement active stabilisation

3. Create a control unit software for a suitable device

4. Implement manual control

5. Implement Autopilot and DP

1.5 Limitations

In this particular project regarding a semi sub, all necessary facilities for testing are located on,

or in the immediate area around the campus. NTNU in Ålesund has a wide and long experience

in the field of offshore vessels, and can provide advice and counsel. The main limitation is the

time disposable for the project. This affects all applications of the platform and the depth on

each topic.

1.6 Approach

In this project the group will analyse the problems and look at several ways to solve them. Then

the group will test and compare the different approaches and from the result decide which so-

lutions that solves the problems best.

CHAPTER 1. INTRODUCTIONS 14

1.7 Structure of the Report

The rest of the report is structured as follows.

Chapter 2 - Theoretical basis: Chapter two gives an introduction to the theoretical side of the

bachelor thesis. The finished product is based on principles and methods from the theory men-

tioned in this chapter.

Chapter 3 - Method: Contains a description of the methodology and materials that were con-

sidered throughout the thesis. Several methods were noted for all tasks, with pros and cons for

each. The decision for which method used are not noted in this chapter.

Chapter 4 - Result: Contains a description of the finished prototype, which includes the thruster

allocation, dynamic positioning, autopilot and the active stabilisation of the vessel. All methods

used in the project are defended through either testing, or from careful research. The explana-

tion of the developed software and programs, as well as test results are presented at the end of

this chapter.

Chapter 5 - Discussion: A summary of the objectives met, and what objectives were not com-

pleted. There is also a section of what the group would have done different, in hindsight of the

project period.

Chapter 6 - Conclusions: This chapter present an overall conclusion from the project, and the

final answer of the thesis are given.

Chapter 2

Theoretical basis

2.1 Buoyancy and stability

2.1.1 Buoyancy

Buoyancy is a force that effects all objects that are submerged in a liquid. The main principle

of this force is described in Archimedes law. It states that the upward force that is exerted on a

object submerged in a liquid. Is equal to the weight of the liquid displaced by the object. The

force is parallel to the force from gravity, but has the opposite direction.

The magnitude of the force depends on the volume of the object and the type of liquid.

Concerning the watercraft described in this paper, the watercraft will only be operated in salt

and fresh water. The density of fresh water is 1kg pr litre, while salt water has 1.025kg pr litre.

This means that the platform will have a larger buoyancy force in salt water than in fresh water.

The form of the object does not affect the buoyancy only volume. For a simple cuboid form

the volume is given by

V =W ×L×D (2.1)

Multiplying the volume with the density of the liquid and gravity gives the buoyancy force.

Fbuoy anc y =V ×ρ× g (2.2)

The object will float as long as the weight of the object is smaller than Fbuoy anc y .

15

CHAPTER 2. THEORETICAL BASIS 16

As with gravity, buoyancy has a point where the combined forces of all submerged objects

works through. This is called centre of buoyancy and has the notation B. [11]

2.1.2 Angle of list

The angle of list is the average angle a ship have over a period of time. Must not be confused

with the roll angle, which is the angle at any given moment. The list angle changes when the

centre of gravity shifts. The ship will stay at this angle until the centre of gravity is moved or

countered. This happens because the buoyancy point will change according to the angle and

hull form. When the new centre of gravity aligns with the buoyancy point, the forces become

equal and the vessel will stop leaning over and hold the current angle. [11]

Figure 2.1: Angle of list.

2.1.3 Stability

Stability is a ships ability to right it self. A ship can also have a stable angle of list, meaning that

the angle do not change. If a force has made the ship to roll, it will return to the same angle of

list.

Looking at the forces righting the vessel, it is a combination of gravity and the buoyancy

force. When these two forces are aligned, the forces cancel each other, and the ship will hold the

current angle. [11]

CHAPTER 2. THEORETICAL BASIS 17

Metacentre

The Meta centre is the point the buoyancy force crosses the vessels centre line. At small angles

the vessel will rotate around this point. In this case a small angle is less then 10°. At larger angles

the meta centre will start to move, and the stability will no longer be linear. [11]

Figure 2.2: Pressure centres.

Centre of Gravity

Centre of gravity is the average location of the weight of an object and has the notation G. See

figure 2.2

Keel point

The keel-point is the point where the horizontal line from G passes the lowest point of the vessel.

See figure 2.2

GM

GM is the distance between the centre of gravity and the meta centre. The value of GM deter-

mines the stability of the vessel. GM<0 the vessel is unstable, GM=0 vessel is marginally stable

and GM>0 the vessel is stable.

CHAPTER 2. THEORETICAL BASIS 18

BM

The distance between the buoyancy point and the metacentre.

GZ

GZ is the righting arm. The arm is defined at the horizontal distance between centre of gravity

and the buoyancy point. This is the force that will right the vessel. A large GZ indicates good

stability, but if GZ becomes negative the ship is unstable. A negative GZ will topple the vessel

even at flat sea.

2.1.4 Inertia

Inertia is an objects resistance to change its speed, direction or state of rest. [11]

Moment of inertia

Determines the torque needed to overcome the inertia, and make an object rotate around a

rotational axis.

2nd moment of inertia

Also known as area moment of inertia. This is the inertia an object has as seen from a plane,

of-centred from the object itself.

Steiner‘s theorem

Steiner‘s theorem is for finding the 2nd moment of inertia of objects comprised of several sub

objects. And the axis is not aligned with the area of mass.

Iz = Ix + Ad 2

Where Ix the inertia of the object trough its mass centre. A is the area of the object and d is

the distance between the plane trough the mass centre and the of-centred plane.

CHAPTER 2. THEORETICAL BASIS 19

Figure 2.3: Steiner‘s theorem

2.2 Motion variables

When manoeuvring a marine craft, it experiences motions in 6 degrees of freedom. The 6 de-

grees of freedom can be represented by a set of independent displacements and rotations that

describe the craft’s position and rotation. Motions in the horizontal plane are surge(motion

along the X-axis), sway(motion along the Y-axis) and yaw(rotation about the Z-Axis). The re-

maining three degrees of freedoms are roll (rotation about the X-axis), pitch (rotation about the

Y-axis) and heave(vertical motion along Z-axis) [11].

Table 2.1: The notation of SNAME (1950) for marine vessels [11]

DOF
Forces and

moments

Linear and

angular velocities

Positions and

Euler angles

1 motions in the x direction (surge) X u x

2 motions in the y direction (sway) Y v y

3 motions in the z direction (heave) Z w z

4 rotation about the x axis (roll, heel) K p φ

5 rotation about the y axis (pitch, trim) M q θ

6 rotation about the z axis (yaw) N r ψ

CHAPTER 2. THEORETICAL BASIS 20

Figure 2.4: Body-fixed reference points.

2.3 Reference Frames

When analysing guidance systems, and the motion of marine crafts, it’s convenient to define

several coordinate systems.

2.3.1 Earth-Centred Reference Frames

ECI

The Earth-centred inertial (ECI) frame
{
i
}= {

xi , yi , zi
}

is an inertial frame for terrestrial naviga-

tion, that is a nonaccelerating reference frame in which Newton’s laws of motion apply.

ECEF

The Earth-centred Earth-fixed (ECEF) reference frame
{
e
}= {

xe , ye , ze
}

has its origin oe fixed to

the centre of the Earth but the axes rotate relative to the inertial frame ECI, which is fixed in

space. The angular rate of rotation is ωe = 7.2921×10−5rad/s. For marine craft moving at rel-

CHAPTER 2. THEORETICAL BASIS 21

atively low speed, the Earth rotation can be neglected and hence
{
e
}

can be considered to be

inertial.

2.3.2 Geographic Reference Frames

NED

The North-East-Down (NED) coordinate system
{
n

} = {
xn , yn , zn

}
Where the X- and Y- axis de-

fine a tangent plane on the surface of the Earth moving with the craft. For this system the X-axis

points towards true North, and the Y-axis points towards East. The Z-axis points downwards

normal to the Earth’s surface. Origin is located in the center of the craft. The location of
{
n
}

relative to
{
e
}

is determined by using two angles l and µ denoting the longitude and latitude,

respectively. For a marine craft operating in a local area, with approximately constant longitude

and latitude, can one assume that
{
n
}

is inertial such that Newton’s laws still apply.

BODY

The body-fixed reference frame
{
b
} = {

xb , yb , zb
}

is a moving coordinate frame that is fixed to

the craft. The position and orientation of the craft are described relative to the inertial reference

frame usually approximated
{
n
}

for marine craft, while the linear and angular velocities are de-

scried as
{
b
}
. The origin Ob is usually chosen to coincide with a point midships in the water line.

This point will be referred to as CO (see Figure 2.4) [11]

The reference frames are illustrated in figure (2.5), which is retrieved from [10].

• xb - longitudinal axis (directed from aft to fore)

• yb - transversal axis (directed to starboard)

• zb - normal axis (directed from top to bottom)

CHAPTER 2. THEORETICAL BASIS 22

Figure 2.5: ECEF, ECI, NED and BODY reference frames

2.3.3 Conversion from geodetic reference frame to NED reference frame

The conversion between geodetic and NED reference frames, begins with finding small changes

in latitude dµ and longitude dl by calculating the difference between the new values µ and l,

and the initial reference values µ0 and l0.

dµ=µ−µ0 (2.3)

dl = l − l0 (2.4)

To convert geodetic coordinates to North-East coordinates, the radius of the curvatures in the

prime vertical(RN) and the meridian (RM) are used. RM and RN are defined by the following

relationships. [26]

RN = R√
1− (2 f − f 2)sin2(µ0)

(2.5)

RM = RN
1− (2 f − f 2)√

1− (2 f − f 2)sin2(µ0)
(2.6)

where R is the equatorial radius of the earth and f is it’s flattening. Small changes in North

(dN) and East (dE) are approximated from small changes in the North and East positions by:

CHAPTER 2. THEORETICAL BASIS 23

d N = dµ

arctan(1
RM

)
(2.7)

dE = dl

arctan(1
RN cosµ0

)
(2.8)

2.4 Kinematics

It is customary to describe Rn
b (Θnb) by three principal rotations about the z, y and x axes (zyx

convention). Note that the order in which these rotations is carried out is not arbitrary. In guid-

ance, navigation and control applications it is common to use the zyx convention from
{
n
}

to{
b
}

specified in terms of the Euler angles φ, θ and ψ for the rotations.[11]

2.4.1 Principal rotations

Rotation

Euler angle rotation sequence (zyx convention). The vessel is rotated from
{
n
}

to
{
b
}

by using

three principal rotations.[11]

This matrix is denoted Rb
n(Θnb) = Rn

b (Θnb)T . The matrix transpose implies that the same

result is obtained by transforming a vector from
{
b
}

to
{
n
}
, that is by reversing the order of the

transformation. This rotation sequence is mathematically equivalent to

Rn
b (Θnb) = Rz ,ψRy ,θRx ,φ (2.9)

and the inverse transformation is then written (zyx convention)[11]

Rn
b (Θnb)−1 = Rn

b (Θnb)−1 = Rz ,TψRy ,Tθ Rx ,Tφ (2.10)

The three rotation matrices Rn
b (Θnb) is presented by rotating on each of the xyz axis. These

three matrices can be merged to one rotation matrix.[11]

CHAPTER 2. THEORETICAL BASIS 24

cψ −sψ 0

sψ cψ 0

0 0 1

Principal rotation matrix for Z axis:

Figure 2.6: Rotation over yaw angle ψ

cθ 0 sθ

0 1 0

−sθ 0 cθ

Principal rotation matrix for Y axis:

Figure 2.7: Rotation over pitch angle θ

1 0 0

0 cφ −sφ

0 sφ cφ

Principal rotation matrix for X axis:

Figure 2.8: Rotation over pitch angleφ

CHAPTER 2. THEORETICAL BASIS 25

Rotational matrix from BODY - coordinates to NED - coordinates yields:

Rn
b (Θnb) =

cψcθ −sψcθ+ cψsθsφ sψsφ+ cψcφsθ

sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ

−sθ cθsφ cθcφ

 (2.11)

2.5 Mathematical optimisation

Mathematical optimising is a method to determine a set of optimised minimum or maximum

values for a set of variables.[16] A mathematical optimization problem, has the general form

minimise f0(x)

subject to fi (x) ≤ bi , i = 1, . . . ,m.
(2.12)

Where x = (x1, x2, . . . , xn) is the optimisation variable of the problem, f0 :Rn →R is the objective

function, fi : Rn → R, i = 1, . . . ,m, are the constraint functions and the constants b1, . . . ,bm are

the limits for the constraints.[5]

2.5.1 Convex Optimisation

A convex optimisation problem is a problem where the objective and constraint functions satisfy

the inequality

fi (αx +βy) ≤α fi (x)+β fi (y)∀x, y →Rn and ∀α,β→R with α+β= 1,α≥ 0,β≥ 0 (2.13)

There are no general analytic formula to solve convex optimization problems, but there are

very effective algorithms to solve them.

CHAPTER 2. THEORETICAL BASIS 26

A special form of convex optimisation which can be relevant for this project is on the form

minimise f0(x)

subject to fi (x) ≤ bi , i = 1, . . . ,m.

Ax = b

(2.14)

Where A is a matrix A → Rq×n with rank p < n. Such problem is classified as a quadratic pro-

gramming problem. And can be solved by inner points method, which is explained in detail in

Convex Optimization, by Stephen Boyd andLieven Vandenberghe, page 561[5]

2.5.2 Linear Optimisation

Another important class of optimisation problems is linear optimisation. All the objective and

all the constraint functions are linear:

minimise cT x

subject to aT
i x ≤ bi , i = 1, . . . ,m.

(2.15)

The vectors c, a1, . . . , am ∈ Rn and scalars b1, . . . ,bm ∈ R are parameters that specity the objec-

tive and constraint functions. As with convex problems, there are no simple analytic formula

for a solution. A varity of very effective algorithms can be used for solving linear optimisation

problems, such as the Dantzig’s simplex method which is explained in [5]

2.6 Wireless Communication

Antenna

An antenna is a device used to transmit and receive electromagnetic waves. In a transmitting an-

tenna, high frequency, alternating currents are transformed into electromagnetic waves, which

travels through space at the speed of light. Radio waves from the transmitting antenna will then

induce electrical currents and voltages in a receiving antenna.[15]

There are many types of antennas, and they can be classified in many ways.

CHAPTER 2. THEORETICAL BASIS 27

1. Shapes or geometries

(a) Wire antennas: dipole, loop, helix

(b) Aperture antennas: horn, slot

(c) Printed antennas: patch, printed dipole, spiral

2. Gain

(a) High gain: dish

(b) Medium gain: horn

(c) Low gain: dipole, loop, slot, patch

3. Beam shapes

(a) Omnidirectional: dipole, monopole

(b) Pencil beam: dish

(c) Fan beam: array

Monopole and dipole antennas are great for broadcasting wireless signals due to their omni-

directional radiation pattern, while yagi and parabolic dish antennas are pencil and fan beam

antennas which are more sensitive to alignment, but provide better range properties.[7] An om-

nidirectional radiation pattern is illustrated in figure 2.9 and and a omnidirectional radiation

with more gain is illustrated in figure 2.10. The illustrations 2.9 and 2.10 are retrieved from [36]

Figure 2.9: Omnidirectional radiation pattern

CHAPTER 2. THEORETICAL BASIS 28

Figure 2.10: Omnidirectional radiation pattern with antenna gain

Wireless range

The theoretical range between a transmitter and a receiver of WI-FI and other radio signals,

illustrated in Figure 2.11, can be calculated by the Friis transmission equation. 2.22

Where Pt is the output power that is fed to the transmitting antenna Gt . On the other end

the signal is picked up by a receiving antenna with gain Gr . The received power is Pr and the

distance is R. By assuming there is no atmospheric loss, polarisation mismatch. Impedance

mismatch at the antenna feeds, misalignment and obstructions. The antennas are operating

in the far-field regions. A far-field region is the region far away from the transmitting antenna,

where the transmitting signals of the antenna resemble a spherical wave fronts coming from a

point. The formula is derived from several equations, retrieved from the book RF and Microwave

Wireless Systems, by KAI CHANG section 8.2[7].

Figure 2.11: Simplified wireless communication system

The power density p of a receiving antenna for an omnidirectional transmitting antenna is

given by

p = Pt

4πR2
(W /m2) (2.16)

Since an omnidirectional antenna is used, it has a transmitting gain Gt in the direction of the

CHAPTER 2. THEORETICAL BASIS 29

receiving antenna, the power density is given by

p = Pt

4πR2
Gt (W /m2) (2.17)

The received power is equal to the power density multiplied by the effective area Aer of any

antenna, where Aer for any receiving antenna can be expressed as

Aer =
Gλ2

0

4π
(2.18)

Pr = PtGt

4πR2
Aer (W) (2.19)

The effective area is related to the antenna gain by the following expression:

Gr = 4π

λ2
0

Aer (2.20)

Aer =
Grλ

2
0

4π
(2.21)

By substituting equation 2.21 into equation 2.19 we get the expression 2.22

Pr =
PtGtGrλ

2
0

(4πR)2
(2.22)

known as the Friis transmission formula. If Pr = Ss,mi n , the minimum signal required for the

system, we have the maximum range R given by:

R =
[

PtGtGrλ
2
0

(4π)2Si ,mi n

]1/2

(2.23)

One can also include various factors such as misalignment, polarisation mismatch, impedance

mismatch, and atmospheric loss as a variable Ls y s .

Range derived with the factor for different types of loss:

R =
[

PtGtGrλ
2
0

(4π)2Si ,mi nLs y s

]1/2

(2.24)

CHAPTER 2. THEORETICAL BASIS 30

2.7 Dynamic Positioning

Dynamical positioning is used to keep a vessel such as a boat, rig or drone to stay put at a fixed

position. In the maritime industry DP is controlled by thrusters, which makes it easier to keep

stationed both at shallow waters and far out on the ocean without anchor handling. The DP sys-

tem takes sensor data from currents and waves into consideration, thous it can predict the direc-

tion of the drift and counteract it with delegation of thruster power and thruster direction.[34]

2.7.1 Classification

Based on IMO - International Maritime Organization publication 645 the Classification Soci-

eties [24] have issued rules for dynamically positioned ships described as Class 1, Class 2 and

Class 3.

Equipment Class 1 has no redundancy. Loss of position may occur in the event of a single fault

Equipment Class 2 has redundancy so that no single fault in an active system will cause the

system to fail. Loss of position should not occur from a single fault of an active component or

system such as generators, thruster, switchboards, remote controlled valves etc. But may occur

after failure of a static component such as cables, pipes, manual valves etc.

Equipment Class 3 which also has to withstand fire or flood in any one compartment without

the system failing. Loss of position should not occur from any single failure including a com-

pletely burnt fire sub division or flooded watertight compartment

2.8 Euler angles

According to Euler’s rotation theorem, any rotation may be described using three angles. If the

rotations are written in terms of rotation matrices D, C, and B, then a general rotation A can be

written as [27]

CHAPTER 2. THEORETICAL BASIS 31

A = B*C*D

The three angles giving the three rotation matrices are called Euler angles. There are several

conventions for Euler angles, depending on the axes about which the rotations are carried out.

Write the matrix A as [27]

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

The so-called "x-convention," illustrated above, is the most common definition. In this conven-

tion, the rotation given by Euler angles (φ, θ,ψ), [27]

1. the first rotation is by an angle φ about the z-axis using D,

2. the second rotation is by an angle θ in [0,pi] about the former x-axis (now x
′
) using C, and

3. the third rotation is by an angle ψ about the former z-axis (now z
′
) using B.

2.9 Haversine formula

In navigation, a widely used formula of trigonometry is used to calculate the distance between

two points on a sphere. This formula is called the haversine formula [31] and is given by:

CHAPTER 2. THEORETICAL BASIS 32

hav

(
d

r

)
= hav

(
ϕ2 −ϕ1

)+ cos
(
ϕ2

)
cos

(
ϕ−2

)
hav

(
λ2 −λ1

)
(2.25)

• hav is the haversine function give by:

hav
(
θ
)= si n2(θ

2

)= 1− cos
(
θ
)

2
(2.26)

• d is the distance between two points

• r is the radius of the sphere

• ϕ1 , ϕ2 is latitude of point 1 and 2, in

• λ1, λ2 is longitude of point 1 and 2, in radians

2.10 PID Controller

In industrial control systems the PID controller [14] (Proportional - Integral - Derivative con-

troller) is a widely used feedback system used to calculate the error between a wanted value and

the actual value. In a time domain, the output signal can be described as:

y(t) = kp ×x(t)+kI ×
∫

x(t)d t +kD × dx(t)

d t
(2.27)

The constants Kp , K I and KD are adjusted accordingly to reach the wanted value from the

feedback system. In the Laplace domain, the transfer function of a PID controller is written as:

Y (s)

X (s)
= Kp + K I

s
+KD s = Kp s +K I +KD s2

s
=

KD

(
s2 + Kp

KD
s + KI

KD

)
s

(2.28)

The proportional component, weighted by kp , is the gain factor. kp determines the overall loop

gain, and a large loop gain leads to low sensitivity, small steady-state error, and good disturbance

rejection. Unfortunately, kp usually has some upper limits, either physical limits or stability and

overshoot limits.

The integral component is responsible for eliminating the steady-state error. We know that an

CHAPTER 2. THEORETICAL BASIS 33

integrator can only reach equilibrium if its input is zero. If the input of the PID controller is the

control deviation error , the integrator component will continue changing the corrective action

until error = 0. Since the integrator component contains energy storage, it can lead to undesir-

able transient responses and even instability. Because of this, kI are in most cases kept relatively

small.

The derivative component helps providing a rapid transient response. If a transient distur-

bance occur, the first derivative is huge and causes a correspondingly strong control action. The

derivative component also improves relative stability.

Figure 2.12: Block diagram of a PID controller

Figure 2.13: Block diagram of a feedback system with process G(s), PID controller and a sensor
with transfer function Hs(s)

2.10.1 Ziegler-Nichols method

The Ziegler-Nicholas method [19] is a step by step method to tune a PID. First set all values to

zero. The proportional gain is then increased from zero to it comes to the ultimate gain. The

ultimate gain is when the output has a stable oscillation. This has the notation Ku and the oscil-

CHAPTER 2. THEORETICAL BASIS 34

lation period is Tu . Kp , Ki and Kd is then calculated from a table.

Table 2.2: Ziegler-Nichols method

Kp Ti Td

P-regulator 0,5Ku ∞ 0

PI-regulator 0,45Ku Tu/1,2 0

PID-regulator 0,6Ku Tu/2 Tu/8 = Ti /4

2.11 Kalman filter

Is a filter algorithm co-designed by Rudolf E. Kalman and thus was given his name. The filter

makes an estimate of the real value that is more correct than the real value. The input may

have noise and or other errors. Such as the accelerometer that is very sensitive, and therefore

the output will tend to vary a lot. The Kalman filter [21] measures the signal over time and

calculates a estimate of the signal as a new output. The filter only work with a signal that has

statistical noise and other inaccuracies. It is widely used in just about all disciplines from science

to economics.

2.12 Linux

Linux is an open source operating system, developed by the Finnish student Linus Torvalds

during the mid 90s as a hobby. Linux was originally developed for the Intel x86architecture.

The popularity of Linux has grown proportional to it’s functionality, which have lead to faster

development of the operating system.Today, Linux is most versatile operating system. Linux is

used on platforms such as mini computers, personal computers, super computers, servers, as

well as the core of the Android operating system used on smartphones.

CHAPTER 2. THEORETICAL BASIS 35

2.13 Android Application Programming

Android Studio [1] is the official integrated development environment (IDE) for Android plat-

form development. Based on JetBrains’ IntelliJ IDEA software, Android Studio is designed specif-

ically for Android development It is available for download on Windows, Mac OS X and Linux,

and replaced Eclipse Android Development Tools (ADT) as Google’s primary IDE for native An-

droid application development.

2.14 Java Programming

Java is a general-purpose, class-based object-oriented computer programming language devel-

oped by James Gosling and several other software developers at Sun Microsystems.

2.14.1 Thread

A thread [2] is a thread of execution in a program. The Java Virtual Machine allows an application

to have multiple threads of execution running concurrently. Every thread has a priority. Threads

with higher priority are executed in preference to threads with lower priority.

2.14.2 Concurrent Programming in Java

A concurrent java program is a program made up of two or more threads that cooperate to a

common goal.

In a concurrent program, multiple threads can share CPU access, and which thread that get

CPU time is decided by a Scheduler. A thread can have access to any object in the program,

and to prevent data corruption thread safety is important. This is done by using semaphores

or synchronised access to parts of the code. This prevent multiple threads to read or write to a

shared resource. Concurrent programs allows to leverage multiple cores of a modern CPU.[37]

CHAPTER 2. THEORETICAL BASIS 36

2.15 GPS

GPS, Global Positioning System is a satellite based radio navigation system owned by the U.S.

Government, and run by the American Department of Defence. The GPS system function by

measuring the travel time of the signal from the satellite to a GPS receiver. The receiver’s position

and time is computed from set of equations with four unknown variables. In order to solve the

equations, the receiver need at least GPS signals from four GPS satellites. By using just one

receiver, it is realistic to achieve an accuracy of 5 to 10m [9].

To improve the accuracy of the location and time further, a technology called Differential

GPS (DGPS) can be used. This technology is based on using a known position on earth to sup-

plement and correct the inaccuracy of the GPS signal. With this correction of the inaccuracy,

it is possible to determine the position of the GPS receiver within 1.5 meters. In Europe, this

technology is called EGNOS (European Geostationary Overlay Service). The EGNOS Open Ser-

vice has been available since 2009, and the EGNOS Safety of Live Service was officially declared

available in March 2011. [3]

The development of the GPS started in the late 1960s, and it was designed as a military sys-

tem. The GPS was declared operational in 1993, and it consist of 24 satellites orbiting the earth

at approximately 20.2 kilometre. Today more than 90% of the user base are civilians. [9]

2.16 Inertial Measurement Unit

An inertial measurement unit is an electronic device, capable of measuring the specific forces

applied to a body, and reports them. The device is a combination of accelerometers, gyrometers

an sometimes magnetometer. [23]

2.17 Communications Protocol

A communications Protocol defines the format and the order of messages exchanged between

two or more communicating entities in a network, aswell as actions taken on the transmission

and/or receipt of a message or other events. [25]

CHAPTER 2. THEORETICAL BASIS 37

2.17.1 OSI Model

The Open Systems Interconnection(OSI) model is a seven-layer model for network communi-

cation. Illustrated in figure 2.14.Each layer offer different services by either performing actions

or using the services from the layer directly below it. [25]

Figure 2.14: OSI-model

2.17.2 TCP

The Transmission Control Protocol(TCP) operate in the network layer, and together with the

Internet Protocol(IP) they make up two of the most important protocols in the Internet. Thus the

Internet’s protocols are collectively known as TCP/IP. TCP is a control procedure between sender

and receiver of data packets in a network, and ensure the transmitted datagram is delivered

without packet loss and in correct order. In order to ensure no packet loss, TCP use a "three-

way-handshake". A Three way handshake is a procedure where the client sends a small TCP

segment to the server, the server acknowledges(ACK) and responds with a small TCP segment,

and, finally the client acknowledges back to the to the server. Combined with the last ACK from

the client to the server, the client also requests the datagram of interest. The TCP connection

remains open until the client choose to close it. [25] Internally in the transport layer, the data

packets are transmitted accordingly to the control procedure Internet Protocol(IP). [6]

CHAPTER 2. THEORETICAL BASIS 38

2.17.3 UDP

The UDP protocol provides for communication that is not guaranteed between two applications

on the network. UDP is not connection-based like TCP. Rather, it sends independent packets

of data, called datagrams, from one application to another. Sending datagrams is much like

sending a letter through the postal service: The order of delivery is not important and is not

guaranteed, and each message is independent of any other. [8]

2.17.4 Internet Protocol

Internet Protocol(IP) operate in the network layer in the OSI-model 2.14. The IP protocol defines

fields in the datagram as well as how end systems in a network act on these fields. There are two

versions of the IP protocol, IPv4 and IPv6, and every component with a network layer must run

the IP protocol. The IP service model is a “best-effort delivery service”, which means IP make

its “best-effort” to deliver segments between communication hosts, but it makes no guarantees.

IPv4 is the most common and uses a 32-bit address space, and the successor, IPv6 uses a 128-bit

address space. The reason for the change in address type was that the pool of unallocated IPv4

addresses were running out. [25]

2.17.5 Socket

Definition: A socket is one endpoint of a two-way communication link between two programs

running on the network. A socket is bound to a port number so that the TCP layer can identify

the application that data is destined to be sent to. [29]

Normally, a server runs on a specific computer and has a socket that is bound to a specific

port number. The server just waits, listening to the socket for a client to make a connection re-

quest.

On the client-side: The client knows the hostname of the machine on which the server is run-

ning and the port number on which the server is listening. To make a connection request, the

client tries to rendezvous with the server on the server’s machine and port. The client also needs

to identify itself to the server so it binds to a local port number that it will use during this con-

CHAPTER 2. THEORETICAL BASIS 39

nection. This is usually assigned by the system.

Figure 2.15

If everything goes well, the server accepts the connection. Upon acceptance, the server gets

a new socket bound to the same local port and also has its remote endpoint set to the address

and port of the client. It needs a new socket so that it can continue to listen to the original socket

for connection requests while tending to the needs of the connected client.

Figure 2.16

On the client side, if the connection is accepted, a socket is successfully created and the

client can use the socket to communicate with the server. The client and server can now com-

municate by writing to or reading from their sockets.

2.17.6 USB

Universal Serial Bus(USB) is a standard for data transfer between computers and peripheral

units. USB replaced the majority of serial and parallel ports on computers, and simplified the

installation process on new peripheral units. USB 2.0, redefined in 2000 can reach data transfer

rates up to 480 Mbps, while USB 3.0 defined in 2008 has data transfer rates 10 times faster. [32]

2.17.7 Wireless LAN

Wireless LAN(Local Area Network) more known as WiFi. WiFi is based on IEEE(Institute of Elec-

trical and Electronic Engineers) 802.11 technology, and operates in the frequency range from

CHAPTER 2. THEORETICAL BASIS 40

2.4-2.485 GHz and from 5.1-5.8 GHz. There are several 802.11 standards for WiFi. The standards

802.11b/a/g operates in the 2.4GHz band and the 802.11n/ac standard can operate in both, 2.4

GHz and 5GHz frequency bands. A Wireless LAN should also have some sort of encryption to

ensure some level of data privacy. WEP (Wired Equivalent Protection) is ranked as the lowest

type of protection and WPA2 (Wi-Fi Protected Access II + AES (Advanced Encryption Standard)

as the highest, where AES is an encryption algorithm. The first IEEE specification was released

in 1997 and had a air data rate of maximum 2 Mbps. Today air data rates are rated to more than

6 Gbps. [25]

2.17.8 I2C

The Inter-integrated Circuit (I2C) [13] is a multi-master, multi-slave, serial computer bus in-

vented in order to simplify the board schematics, thanks to the fact that it needs two wires only

(apart from the GND) to do its job. It’s widely used in embedded computers to connect on-board

sensors/actuators to the main CPU.

Despite the fact that the I2C bus is a multi-master, a typical configuration is a single master

device (the CPU) connected to several slave devices (the sensors/actuators); for the USB bus,

the master directs all the transfers. However, a main difference should be outlined: an I2C de-

vice can have a dedicated interrupt line connected to the CPU that can be used to signal that

a message must be read by the master (in the USB bus, the interrupt messages go over the bus

too!). So, a simple I2C connection needs two wires while they only, in case of interrupt lines,

need three or more lines.

2.17.9 SPI

The Serial Peripheral Interface bus (SPI) is a serial communication specification mostly used

for short distance communication between a microcontroller unit and peripheral devices. The

interface includes Master and Slave mode, bi-directional mode, slave select output, mode fault

error flag with CPU interrupt capability, double-buffered data register, serial clock with pro-

grammable polarity and phase, control of SPI operation during wait mode.

CHAPTER 2. THEORETICAL BASIS 41

The signal pins on the SPI module is defined as follows:

MOSI (Master Output Slave Input):

This pin is used to transmit data out of the SPI module when it is configured as a Master and

recieve data when configured as Slave.

MISO (Master Input Slave Output):

This pin is used to transmit data out of the SPI module when configured as a Slave and recieve

data when configured as Master.

SS (Slave Select):

This pin is used to output the select signal from the SPI module to another peripheral with which

a data transfer is to take place when its configured as a Master, and its used as an input to recieve

the Slave select signal when the SPI is configured as Slave.

SCK/SCLK (Serial Clock):

This pin is used to output the clock with respect to which the SPI transfers data or receive clock

in case of Slave [18]

Chapter 3

Materials and methods

3.1 Project Organisation

The group consists of a permanent Project Leader, and a rotation of the secretary role between

the remaining group members. Decisions concerning the project has been taken in plenary ses-

sions, where every group member has shared their opinion. The group has had internal meet-

ings when necessary, for discussing problems. Meetings with the supervisors has been held

approximately every 14 days. A Gantt form has been the basis of the project planning as well as

the SCRUM managing tool Jira, a lean software development method.

To maintain a great dynamics in the group, it was agreed to specify certain guidelines, such as

when and where to show up in the mornings, and what to do if one got stuck on a topic. The

project is partly separated in to several subjects. Each member was given the responsibility for

their own subject. By doing this, everyone is on point for making their part of the project as good

as possible.

42

CHAPTER 3. METHOD 43

3.2 Data

3.2.1 NMEA 0183 Standard

National Marine Electronics Association has defined a standard data format for marine equip-

ment, such as GPS, AIS, Sonar and Autopilot etc. All the positioning data for the platform is read

from a GPS as NMEA messages. There are many different types of NMEA messages, $GPGGA,

$GPRMC, $GPGLL to list a few. $GPGGA, $GPRMC, $GPGLL have a couple of common data

fields, such as longditude, latitude, time and a checksum. The remaining fields differ. Every

NMEA message start with a $, and the data fields are separated by a comma. An example is

illustrated in figure 3.1, and the fields are explained in table 3.1 and 3.2.

Figure 3.1: NMEA messages, GPRMC and GPGGA

Table 3.1: $GPGGA

Field Name Example Data Description

1 Sentence Identifier $GPGGA Global Positioning System Fix Data

2 Time 105435.00 Fix taken at 10:54:35 UTC

3 Latitude 6228.32447,N Latitude 62 deg 28.32447’ N

4 Longditude 00614.02623,E Longitude 6 deg 1.402623’ E

5 Fix Quality: 1 0 = Invalid, 1 = GPS, 2 = DGPS

6 Number of Satellites 06 6 Satellites are in View

7 Horizontal Dilution of Precision 1.38 Relative accuracy of horizontal position

8 Altitude 22.5,M 22.5 Meters above average sea level

9 Height of geoid abvove WGS84 ellipsoid 43.4,M 43.4 Meters

10 Time since last DGPS update Null No last update

11 DGPS reference station id Null No station id

12 Checksum *6E Used to check for transmission errors

CHAPTER 3. METHOD 44

Table 3.2: $GPRMC

Field Name Example Data Description

0 Sentence Identifier $GPRMC Recommended minimum specific

GPS/Transit data

1 Time 15435.00 Fix taken at 10:54:35 UTC

2 Status A Status A=active or V=void

3 Latitude 6228.32447,N Latitude 62 deg 28.32447’ N

4 Longditude 00614.02623,E Longitude 6 deg 1.402623’ E

5 Speed over the ground in knots 0.145 Speed over the ground in knots

6 Angle null(false) Track angle in degrees(true)

7 Date 230217 Date fix taken 23.02.17

8 Magnetic variation Null Magnetic variation in degrees

9 Checksum *7D Used to check for transmission er-

rors

CHAPTER 3. METHOD 45

3.3 Control device

The group chose to use an app based control system, because devices such as tablets and smart

phones are becoming more and more used as control and monitoring units. A tablet or smart

phone are also more convenient to carry around. They are also smaller and more compact than

for instance a computer.

3.4 GUI

An important part of the platform‘s control system is to have a user friendly GUI which makes

it easy to master the fundamentals of controlling it. The design process started with several

simple drawings at the web- based sketching program draw.io. Using such a tool makes it easier

to predict what code is needed in the application to make the wanted functionality in the app.

The control system should contain a Manual Mode, and Autopilot.

3.4.1 GUI design

Initial designs

The designs, see figures(3.2, 3.3, 3.4 and 3.5), must take to consideration which data to send and

receive. The output of the Manual Mode should be data that can easily be transmitted and put

to use in the end station, which in this case is the motor controllers on the platform. The buttons

and slide bars shown in the GUI designs all send different data values to the server. This trigs

the programmed thruster methods, and thus, the platform can move in the wanted direction.

The Manual Mode does not need any input data to be functional, but some data feed on GPS

data and connection status should be implemented.

The design for the autopilot is based on the Google Map API that is included in Android Studio.

Some text fields for monitoring position, thruster power, connection status and heading should

be displayed. Also, a table with the waypoints on the map must be implemented.

CHAPTER 3. METHOD 46

Figure 3.2: Client design 1 Manual Mode

Figure 3.3: Client design 2 Manual Mode

CHAPTER 3. METHOD 47

Figure 3.4: Client design 3 Manual Mode

Figure 3.5: Client design 1 Auto Pilot

Manual mode designs has no limitations, and can have whatever design the group sees best.

The Autopilot GUI on the other hand, must have the Google Maps API fragment implemented,

which narrows down the design options. Therefore, the group has only one draft of the Autopilot

GUI.

CHAPTER 3. METHOD 48

3.5 Platform design and modelling

This section contains a description of the alternatives considered for designing the platform

such as materials and tools for design purpose.

3.5.1 Materials

Platform tubes

The materials used on the platform has a big impact for the behaviour and overall durability.

Since the relative design is already made to look like a platform, some sort of pipes had to be

used. The cheapest option would be to use PVC plumbing tubes, they also has a low weight and

great buoyancy. However, there are some downsides to using these, they are hard to weld (if

needed later on), and if left in the cold for too long (for example in seawater) they may crack on

impact since they don’t withstand the low temperatures very well.

Another option would be aluminium tubes, they are relatively light weight and are very durable

in sea. There are some drawbacks to using aluminium as well, if struck or hit by a object at sea,

the material may bend and cause leak. Even so, the preferred material is plastic due to its weight

and strength ratio compared to metal.

The third option was PE plastic tubes. Polyethylene is both durable and light weight. The mate-

rial is also often used in marine equipment such as fish farms, due to the material properties of

polyethylene. The material withstands the rough conditions very well and low temperatures are

not an issue, the weight of PE is 0.96kg/litre and compared to seawater which is about 1.025kg/l-

itre so it even has a slight buoyancy. It is also a more flexible material so if struck or is hit by

something, the walls would bounce back to its original form. [30]

Platform frame

Since the structure is made to withstand rough conditions, the frame also has to be stiff enough

to hold everything together. One way is to use thick aluminium plates that doesn’t bend very

easily but the weight of it would be too much.

Another way is to use two thin plates of aluminium with some sort of trusses designed in be-

tween for stiffness.

A third option is to use square aluminium tubes and weld them together in the corners, this way

CHAPTER 3. METHOD 49

both stiffness and weight would be met in a reasonable way.

A fourth option is to use extruded aluminium profiles, as they are rigid, have a light weight de-

sign, and provides possibilities to screw the pieces together instead of welding them.

3.5.2 CAD tools

Since the platform has a somewhat complex design and is relatively large, building and rebuild-

ing the whole thing several times until reaching desired behaviour seemed like a waste of time

and resources. Using CAD tools for design was decided at an early stage.

The software used for drawing the platform was Autodesk Fusion 360. This is a cloud-based

platform that works on both Mac and PC, the work done is at all times synchronised on the

account which prevent any data loss and provides simplicity for changing work location. As-

suming there is a computer with Fusion 360 installed, all files are available. There is also an

application for mobile devices, both Android and iOS, in which you can display all your work

and even do minor changes to the drawing.

The reason for using this software compared to for example Siemens NX or Solidworks, is

that none of the participants of the thesis had experience with 3D modelling and Fusion 360

seemed to be the easier one for learning to use.

3.6 Stability and buoyancy calculation

There are several ways to calculate the buoyancy and stability of a vessel. The two main ways to

do this is manual calculations or computer aided calculation.

Manual calculation

By using the basic formulas for stability and buoyancy. Buoyancy and stability of a vessel can

be calculated with relative ease. The challenge is that any change of weight or angles, forces the

calculation of a whole new model. This means that to calculate all the attitudes a vessel can

have, requires a large number of calculations. Another issue is calculating the effect of waves,

which requires very much calculation and is therefore not a practical solution.

CHAPTER 3. METHOD 50

Computer aided calculation

Modern computer programs can make all these calculations, and simulate the vessels move-

ment. Most of these programs are made to calculate for ships, and are not that suitable for cal-

culations of platforms. These programs are very specific, and the models needs to be sketched

in the specific program.

3.7 Stability system

One of the features of this platform is its stabilisation system, a system that automatic stabilise

the platform to level after adding a payload.

To correct an list angle due to an off centred payload, we need to move weight from the heavy

side to the opposite side. Centre of gravity needs to be moved back in the centre of the platform.

The most common way is to have a closed loop system were water is pumped from one side to

another to correct the offset weight. Because of the limited payload, a closed loop system would

only add more weight to the platform. The method chosen is a system which fill and empty

the tanks from the surrounding water. This also means that dept adjustment can be made if

necessary.

3.7.1 Stabilisation method

Weight, power consumption, speed, controllability, these aspects has to be taken into consider-

ation due to the limited power and payload limit on the platform. Two methods were analysed

and tested before any implementation.

Stabilise by compressed air:

An air compressor sends compressed air to an array of solenoid-valves in which each valve dis-

tributes air to its designated cylinder. The air inside the chamber will build up pressure and

force the water out a hole in the bottom of the cylinder. By opening the valves, the weight of the

platform would press the air back out and letting the water flow back inside. An alternative to

letting the air back out would be to use a pneumatic vacuum valve to help draw the air back out.

A disadvantage of using compressed air to remove water is that the air continues to expand after

CHAPTER 3. METHOD 51

the valve is shut, the result could be difficult to control in an exact manner.

Stabilise by water pumps:

Two different systems using water are considered. An enclosed, and an open system. Using an

enclosed system would imply moving water between the vertical columns, which removes the

possibilities of raising and lowering the draft of the platform. Using an open system however,

gives the possibilities of pumping water in- and out of the vertical columns. This would allow

the platform to change its draft within the buoyancy limits of the design. An advantage of using

water over air, is that a water based balance system would be easier to control because water is

incompressible under normal conditions.

3.7.2 Control system

Since the stability system changes the centre of gravity, it can not only stabilise the platform but

also destabilise the platform. Therefore it is important that the system is designed as safe as

possible. There are two main ways to control a system like this, with a main computer system or

a separate system with it’s own computing power. The stability system needs to operate even if

the main system goes down. A server with many different tasks and that handles communica-

tion, has a grater likelihood than a stand alone system to fail. It is vulnerable for errors, and may

freeze or shut down. If this happens, the system might give wrong input to the stability system,

and the platform could potentially capsize or sink.

3.7.3 Sensors

To know the attitude of the platform, some sort of sensor input is needed. Information needed

are pitch, roll, heading and draft. Two different systems were tested for accuracy and reliability.

One system with inertial measurement units (IMU) (3.19), and another using pressure sensors

(3.20).

water level sensor The attitude can be measured using pressure sensors with one is mea-

suring the outside pressure of each column of the platform. From the height of the water on

CHAPTER 3. METHOD 52

one corner compared to another the angle would be calculated. This approach however can not

measure the heading of the platform.

IMU sensor The inertial measurement unit has 9 degrees of freedom, measuring all angles

as well as the heading.

3.8 Autopilot

The section of autopilot contains the methodology of using GPS for manoeuvring the vessel.

3.8.1 Sensor

For coordinate input to the system, a GPS module is needed. To create an autopilot system, the

system needs the current location as a coordinate, the vessel’s current heading and a waypoint

to navigate to. While the GPS provide both coordinates and heading, the heading is only accu-

rate while the GPS module is moving in a specific direction and speed. The vessel is not intended

to move very fast, which means the heading needed has to be more accurate than the GPS can

provide at slow speed. As an addition to a GPS, IMUs are often used. An IMU can provide a fairly

accurate heading and movement calculation due to its internal magnetometer. Another advan-

tage of using an IMU along with the GPS, is that the IMU can provide a continuous estimation

of the vessel’s movement, even if the GPS lose connection to the satellites.

3.8.2 Testing the autopilot

For testing the autopilot, some sort of test rig would be preferred, seeing that the platform is

meant to move only in water. The rig developed for testing the way-point follower, consisting

of an Arduino Uno with a breadboard and several LEDs. The Arduino simulates the Thrust con-

troller, and the LEDs are used as indicators of in which direction the vessel is moving. In front

there are four yellow lights that represent forward, backwards, right and left. In the centre, two

blue LEDs are located to indicate rotational movement and two red LEDs in the bottom for side-

ways movement, see figure 3.6.

CHAPTER 3. METHOD 53

Figure 3.6: Arduino test rig

3.8.3 Collision avoidance

Proximity sensor

Since the platform is designed to be autonomous, it has to recognise objects in its path. There

are several methods to do this. A common solution is to use a camera and image processing,

along with machine learning. This method is however very complex and time consuming. An-

other method is to use a proximity laser sensor, that measure distances horizontally in 360 de-

grees. This method turned out to be the most reasonable one to use on the platform. A proximity

sensor called Sweep was ordered to use on the platform. The Sweep sensor is a low-cost device

with a 360 degrees horizontal searching area, and can detect obstacles out to 40m. The draw-

back of this sensor was that it was a Kickstarter project, with release date in mid April.The sensor

did not arrive in time for the project, however the idea of how to use it were made.

Object detection

The Sweep sensor comes with an Arduino library which detects objects and outputs its distance

and angle relative to the sensor itself. While knowing the objects distance, angle and the sensors

sampling rate, one can calculate the objects travelling speed and travelling direction.

CHAPTER 3. METHOD 54

Figure 3.7: Illustration of object detection

Figure 3.7 illustrates the concept of knowing when the platform is on an collision course with

an object. The blue line indicates the platform’s travelling route and the red line is the other

objects travelling route. If the angle v1 towards the object is equal to v2 towards the object, it

indicates a collision course. With knowledge of if and when the two are colliding, the software

could automatically set a new waypoint for preventing the incident. The yellow line illustrates

the new waypoint for the platform to follow.

3.9 Communication

The choice of communication to the platform is based on several criteria for functionality and

range.

• Wireless communication

• Compatibility among equipment

CHAPTER 3. METHOD 55

• Range of approximately 200m

• Enough bandwidth to transmit sensor data and camera feed

• Weight

• Robust and Flexible

• Expansion possibilities

To meet the specified criteria, several options to WiFi were considered, such as transceivers that

operate in a lower frequency band and implementation of communication over mobile network.

Using USB transceivers for a lower frequency band would increase the range, but limit the band-

width. By utilising the mobile 3G or 4G network one can communicate with the marine craft

anywhere where it has mobile coverage, and thereby eliminate the range concern while retain

great bandwidth.

3.10 Video stream

A USB web-cam is mounted in front of the vessel. The server captures camera frames, and send

them as a stream to the client device using the UDP protocol. In the manual control mode, the

video stream will be an operating tool, and function as the "eyes" of the operator due to the

manoeuvring difficulties over long distances, taking the desired range of the wireless network

into consideration. See the range specification in section 3.9

3.11 Software

3.11.1 NetBeans IDE 8.2

NetBeans IDE 8.2 a free, open source software development environment used to program the

java server software running on the Odroid XU4. NetBeans is mainly developed for Java pro-

gramming, and supports several types of version control systems. NetBeans is compatible with

every OS that support JVM.

CHAPTER 3. METHOD 56

3.11.2 Android Studio

Android Studio is the official IDE for Android development, and is based on Intellij IDEA. An-

droid studio is used to develop the client application running on an Android tablet. Android

Studio’s project structure and Gradle-based builds provide flexibility when generating APK for

all android device types. Android studio is available for Windows, Linux and Mac, and supports

JVM.

3.11.3 Arduino IDE

The open source Arduino software is used to program the Arduino/Genuino micro-controllers.

By connecting the micro-controllers to a computer with USB, one can upload the software writ-

ten in a simplified version of the C-language.

3.11.4 inSSIDer Home

inSSIDer Home is a WiFi troubleshooting and optimisation tool that provides a simple graphical

view of WiFi information and signal strength of every network within reach. [28]

3.12 Software development

3.12.1 Overview

The programming language used in this project is Java and C. These programming languages

are similar in many aspects, and relatively easy to use together. As the project depends on real

time data, a necessary feature for the code language is the possibility of concurrent program-

ming, and Java provide this option.

The Java code is written on two different platforms, NetBeans IDE and Android Studio. The rea-

son for this is that the Android Studio gives very useful API‘s to create the user interface on the

client side. In NetBeans, the whole server software is developed. It runs on an Odroid XU4 mini

computer. The code written in C, is developed in Arduino IDE. The web-based hosting service

Bitbucket and the version control system GIT, were used as platforms for the Java code devel-

CHAPTER 3. METHOD 57

opment. The group started the development with making a overview of wanted features using

A3 forms, GANT diagram and JIRA Rapid Board. JIRA is a tool that makes it very easy to plan

"sprints" of 14 days intervals, where everyone can update and monitor progress of the "to - do"

list. Issues to be solved follows:

• Develop code to handle active stabilisation

• Develop code to handle communication between client and server

• Develop code to handle sensor data

• Develop code to handle thruster power

It is crucial for a program of this size that the objects and data are thread safe. To handle this

issue, semaphores are used as "permissions" to access the data storage classes, and thus, it can

be controlled that only one class has access at a time.

3.12.2 Libraries

The following external libraries are used in the project:

• RXTX

• JOptimizer

• Apache Commons Math

• JSON

• OpenCV

The JSON library is used to create a object that can hold all the values we want to send across-

and between the client and server. The methods in this library makes it easy to store and fetch

data using "key" words for the different data stored in the object.

To handle the math for thruster allocation, JOptimizer and Apache Commons Math is used.

CHAPTER 3. METHOD 58

RXTX is a library for serial communication used to communicate over USB to the Arduinos and

the GPS

. OpenCV is used to handle the image capture from the webcamera on the server side.

CHAPTER 3. METHOD 59

3.13 Materials

3.13.1 Lenovo Tab 2 A10

In this project, the client program for

manual control and autopilot runs on

a Lenovo Tab 2 A10.

Figure 3.8: Lenovo Tab 2 A10

3.13.2 Odroid XU4

The server side of the control program

runs on a Odroid XU4 and is placed on

the platform itself. With a Octa Core

CPU and 2 Gb of RAM it runs the the

multi threaded server program seam-

lessly.
Figure 3.9: Odrois XU4

3.13.3 Linksys TL-WN722N V2

TL-WN722N V2 is a USB network adapter used on the Odroid XU4 to communicate through

WiFi with a client. It support data rates up to 150Mbps, and has a transmit power for 2.4GHz is

20dBm, and a reception Sensitivity for 2.4GHz at 11n HT20 is -68 dBm. TL-WN722N V2 is based

on the IEEE 802.11n standard. It has a 4dBi antenna connected with an SMA connector which

makes it possible to change antenna.

CHAPTER 3. METHOD 60

3.13.4 Linksys Archer c5 v2

The router used in this project is a

Linksys Archer c5 v2 WiFi router. It

is the connection between the client

and server for data transmitting. It

supports the IEEE 802.11ac/n/a 5GHz

and IEEE 802.11b/g/n 2.4GHz stan-

dards, and support data rates up to

300Mbps on the 2.4GHz band and

867Mbps at 5GHz band. The transmit

power for 2.4GHz is 20dBm, and the

reception Sensitivity for 2.4GHz at 11n

HT20 is -73 dBm.

Figure 3.10: Linksys Archer c5 v2

3.13.5 Arduino Uno
Arduino Uno is a microcontroller

board based on the ATmega328P. It has

14 digital input/output pins (of which

6 can be used as PWM outputs), 6 ana-

log inputs, a 16 MHz quartz crystal,

a USB connection, a power jack, an

ICSP header and a reset button. The

platform has two of the Arduino Uno,

one for controlling the thrusters, and

one for controlling the lidar stabilizing

gimbal.

Figure 3.11: Arduino Uno

CHAPTER 3. METHOD 61

3.13.6 Arduino Mega

The Arduino Mega is a microcontroller board

based on the ATmega2560 It has 54 digital

input/output pins (of which 15 can be used

as PWM outputs), 16 analog inputs, 4 UARTs

(hardware serial ports), a 16 MHz crystal oscil-

lator, a USB connection, a power jack, an ICSP

header, and a reset button. Two Arduino Megas

are used, one for reading IMUs and the other to

control the thrusters.

Figure 3.12: Arduino Mega

3.13.7 Haswing 20

The Haswing 20 is an electrical outboard motor

rated for 9kg of thrust and consume 17Amp at

max speed. The thruster motors are are cut off

its shaft, and new mounts are made for them

specifically for the platform. The thrusters are

very cheap compared to the amount of thrust

they produce and the fact that they already are

waterproof. An alternative thruster considered

was the BlueRobotics T200 thruster, but they

are much more expansive and produce a lot less

thrust.

Figure 3.13: Haswing 20

CHAPTER 3. METHOD 62

3.13.8 Bilge pump

A bilge pump rated at 32 l/min at 12 volts and

consume 2.5A. Weighs approx. 300g each. The

platform has eight of these for the active stabil-

isation system.

Figure 3.14: Biltema bilge pump

3.13.9 Relay module

Sainsmart 4-channel relay module, each chan-

nel rated for 10A. Two modules are used for

controlling the eight bilge pumps in the stabil-

isation system. The modules are digitally con-

trolled by one of the Arduino Mega boards.

Figure 3.15: Sainsmart 4-channel relay module

3.13.10 Pololu motor controller
The Pololu Simple Motor Controllers are ver-

satile, general-purpose motor controllers foro

brushed, DC motors. They have a wide operat-

ing range of up to 5.5-40V and the ability to de-

liver up to several hundred Watts in a small form

factor make these controllers suitable for many

motor control applications. The platform use

these for controlling its thrusters, they commu-

nicate via serial through an Arduino Uno and

give the motors 3200 steps of speed in each di-

rection.

Figure 3.16: Pololu simple motor controller

CHAPTER 3. METHOD 63

3.13.11 CP1232 Battery

For powering the platform, it has two bat-

tery packs with five CP1232 batteries in each.

The batteries are 12V and are rated for 3.5Ah

each, giving the total of all ten batteries 35Ah.

They are rechargable batteries and are lead-lead

dioxide systems. The dilute sulfuric acid elec-

trolyte is absorbed by separators and thus im-

mobilized. Should the battery be accidentally

overcharged producing hydrogen and oxygen,

special one-way valves allow the gases to escape

thus avoiding excessive pressure build-up. Oth-

erwise, the battery is completely sealed and is,

therefore, maintenance-free, leak proof and us-

able in any position. [4]

Figure 3.17: CP1232 Battery

CHAPTER 3. METHOD 64

3.13.12 Multiplexer

Even though the number of devices you can

connect to a bus is very large, (for example 127

for 7-bit), it is still limited by the fact that none

of the devices can have the same address. The

TCA9548A multiplexer is needed for the plat-

form to read all four of its IMU’s at the same

time since they all have the same address. The

TCA9548A device has eight bidirectional trans-

lating switches that can be controlled through

the I 2C bus. The SCL/SDA upstream pair fans

out to eight downstream pairs, or channels. Any

individual SCn/SDn channel or combination of

channels can be selected, determined by the

contents of the programmable control register.

[35]

Figure 3.18: TCA9548A

3.13.13 9DoF IMU
For navigation and stabilisation functionality,

an IMU (Inertial Measurement Unit) is needed.

The platform is installed with four IMU’s, one

on each corner, for enhanced accuracy. The

sensors has a 3-axis accelerometer, 3-axis gy-

rometer and a 3-axis magnetometer, which de-

fines 9 degrees of freedom. One of the platforms

sensors are a 10DoF, this has barometric/tem-

perature sensor as well as the other three. This

functionality is not used on the platform. [35]

Figure 3.19: Adafruit 10-DoF

CHAPTER 3. METHOD 65

3.13.14 Pressure sensor

To measure water level the MPX2010dp is used.

The sensor is a piezoresistive pressure sensor. It

is self compensated between 0 and 85 degrees

Centigrade. It has good accuracy and have a lin-

ear voltage output proportional to the applied

pressure. [33]
Figure 3.20: MPX2010DP

3.13.15 Check valve

For stopping water of flowing the wrong direc-

tion in the stabilisation system, each pump is

installed with a check-valve. The valves are

from Biltema, a low-cost solution for the issue.

Figure 3.21: Biltema check valve

3.13.16 GPS module
The Ublock vk-162 is used to as the GPS receiver

on the vessel. It has an update frequency of

10Hz, and supports DGPS(WAAS, EGNOS and

MSAS). The average accuracy in the 2D plane of

3.5m, and average startup time is 32 second for

both warm and cold start, and 1 second for hot-

start. The VK-162 suports the following operat-

ing systems, Windows, Android and linux.
Figure 3.22: ublock vk-162

Chapter 4

Result

4.1 Designing the platform

This section presents a walk through of designing and building the prototype as well as decisions

made for choosing methods and equipment.

During the design part of the project, a focus was to keep the material cost as low as possible and

the durability of the structure as high as possible. These two arguments counteracts each other

in some level so they had to meet half way. The durability of the platform is emphasised first of

all due to the rough conditions at sea but also for withstanding transportation and handling.

During the design and modelling, the latest model would continuously be tested for its weight,

volume and centre of mass through a mathematical calculation of stability and buoyancy.

As seen in the models, polyethylene tubes were decided to use from the very beginning. The

material properties of PE for the tubes and aluminium for the frame was used in the calculations

for each model.

The following subsections displays all the models that were drawn.

66

CHAPTER 4. RESULT 67

4.1.1 Four legged version

Figure 4.1: Four legged version

Figure 4.2: Four leg Bow

The four leg idea, figure 4.1 and 4.2, was brought

up early on because of its simple design, based

on the original "oil rig" look. The vertical pipes

would produce the needed buoyancy, and the

bottom horizontal pipes would contain battery

packages. The batteries would be placed in the

bottom pontoons to increase the stability by

lowering the centre of gravity. The model is a

working concept, but the pipes has to be scaled

up to reach the payload and stability criteria.

CHAPTER 4. RESULT 68

4.1.2 Hexagon model 1

Figure 4.3: Hexagon model 1

Figure 4.4: Hexagon model 1 Top

To increase the stability and buoyancy from the previous

design, the six legged version was created. Figure 4.4 and

4.6. With six legs, buoyancy and stability were increased.

The reason for the hexagon shape is a theory of having the

longest possible distance from centre platform and out to

the pontoon at all times, making it as difficult as possible

for it to capsize.

CHAPTER 4. RESULT 69

4.1.3 Hexagon model 2

Figure 4.5: Hexagon model 2

Figure 4.6: Hexagon model 2 Bow

A more detailed version of the Hexagon model

was made. See figure 4.5 and 4.7. The vertical

columns are 60cm tall in this version.

CHAPTER 4. RESULT 70

4.1.4 Hexagon model 3

Figure 4.7: Hexagon model 3

Figure 4.8: Hexagon model 3 Bow

A shorter version of the hexagon model.See

figure 4.8 and 4.9. While the buoyancy were

decreased, the stability would increase with a

lower center of mass. The vertical columns are

40cm tall in this version.

CHAPTER 4. RESULT 71

4.1.5 Hexagon model 4

Figure 4.9: Hexagon model 4

Figure 4.10: Hexagon model 4 Top

While running calculations of stability, another

idea was to have two "modes" for it to run in.

One called "transport mode" where the whole

platform would rise above the water surface,

floating only on the four bottom pontoons. This

would increase the GM, giving the platform to

be more seaworthy and behave similar to a

catamaran. In the other mode, called "sen-

sor mode". The platform would lower itself to

where the waterline would meet the middle of

the vertical columns. This would increase its

stability, which would result in better accuracy

when using sonar or other equipment. Calcu-

lating the stability and buoyancy for transport

mode turned out to be somewhat difficult rea-

son being the horizontal pipes in the water sur-

face due to its cylindrical shape. See figure 4.9

and 4.10.

CHAPTER 4. RESULT 72

4.1.6 Octagon model

Figure 4.11: Octagon model

Figure 4.12: Octagon model Bow

An octagon shaped model were started but left

aside early on. Figure 4.11 and 4.12. There were

a couple of reasons for this, while the size of

the platform was an issue and the number of

columns were increased, they all joined in on

creating a bigger surface area for waves to hit

in the ocean. Secondly, the complexity of the

model increased with the number of columns,

which was unwanted. Even though the mod-

els were fine and seemed stable in the calcu-

lations, all of the hexagon and octagon models

were eventually discarded due to the poor hy-

drodynamics.

CHAPTER 4. RESULT 73

4.1.7 Catamaran model

Figure 4.13: Catamaran model

Figure 4.14: Catamaran model Top

A catamaran inspired model was started as a

light weight alternative for the platform. Se fig-

ure 4.13 and ??. This model could not be semi-

submerged, but had to float on the surface like

a regular boat. The idea was left aside because

it didn’t meet the requirements of the platforms

stability and payload.

CHAPTER 4. RESULT 74

4.1.8 Rectangular model 1

Figure 4.15: Rectangular model 1

Figure 4.16: Rectangular model 1 Top

This is a rectangular model, see figure 4.15 and

??, with the same theoretical buoyancy of the

hexagon model but slightly increased stability

due to it being longer. The model was designed

in parallel with the hexagon model, therefore

the concept of having two operating states were

still implemented.

CHAPTER 4. RESULT 75

4.1.9 Simulation-sketches

Figure 4.17: Simple hexagon

Figure 4.18: Simple catamaran

Figure 4.19: Simple rectangular

As an interesting approach, the models were to

be tested in a physics simulator to visualise the

behaviour and not only the calculations. For

simulation purpose, the models doesn’t have to

be exact, the simulator only need the physical

properties of the model such as centre of mass,

buoyancy and weight, everything else is calcu-

lated by the physics engine. Since the simulator

only need these parameters, the design is less

important for the simulation. A simple design

made it easier for the visualisation software to

run the simulation. Se figure 4.17, 4.18 and 4.19.

4.2 Data collection and calculation

During the design stage, a minimum payload of 15 kg was set to handle a winch and a ROV.

Several design ideas was made for researching their stability and how they are affected by the

platform geometry.

Three main concepts were chosen, a Catamaran version, a Hexagon shaped version and a

rectangular version. The Catamaran was discarded due to low payload, and that it was heavily

CHAPTER 4. RESULT 76

affected by waves. To find the stability of the two remaining models, some testing was done

using different computer programs. A lesson learned is that these programs need a skilled user

to produce a satisfactory result. The decision was made to use the manual calculation method,

since this provided better control over the result. In consultation with professor Henrique M.

Gaspar, an excel spreadsheet was made to calculate the stability and buoyancy.

The heading of the spreadsheet contain information of the platform, such as the number

of columns and dimensions. It also need specified water density, and the weight of the plastic

pipes that is used.

While designing the platform and choosing materials, the weight and volume of each com-

ponents were known at all times. Some of the small parts like nuts, bolts and brackets were only

estimated, and added as a constant to the calculations. For simplifying the model, the weight

measurements for each part are combined in one component. For instance, the weight of one

column is considered with nuts, bolts and support rods, and then all the main components were

added together in the spreadsheet. One component is added as a point object, which means

that you add the centre of gravity of the object in the x, y and z axis, and then specify the weight.

From this one can calculate the centre of gravity of the platform as a whole.

The spreadsheet has a section were the volume of each of the main components are listed,

and the buoyancy is calculated. This calculation uses the weight of the platform and payload to

calculate the draft of the platform, it also separate between watertight and volumes that can be

filled with water. The draft are given in both meters and percent.

Next is the calculation of the moment of inertia. Here Steiner’s theorem (2.1.4) is used. The

calculation is done in three stages. First the inertia of one column is calculated, then the trans-

ferred inertia is calculated. And then the two are combined. This is done for longitudinal inertia

and transverse inertia.

In the section "Stability semi submerged" KB, KG, BM and GM (2.1.3) is calculated. To visu-

alise the stability, a calculation of GZ for different angels is made. For a semi-submerge platform,

the GZ is nearly linear for angles up to 17 degrees. After that this method of calculation is not

precise enough. Because of that we do not have GZ for angles over 17 degrees. The GZ values are

showed in a diagram, here the differences in stability between the longitudinal- and transverse

stability are easy to see. The stability calculation only take in to account, movement in the z-axis

CHAPTER 4. RESULT 77

of CG. Therefore there is a last section for calculating the angle of list.

With the help of this spreadsheet, the two remaining platform designs were tested and both

designs were stable, and had good buoyancy. The Hexagon shaped platform had equal stability

in any direction. But the rectangular platform has better stability transverse than longitudinal.

This because it has three columns that adds buoyancy and thus inertia in the transverse, and

only two longitudinal. This was unexpected, we believed that the longer moment arm of the

longitudinal columns would compensate for this. Tests in the wave tank confirmed the calcula-

tions.

Since the stability of both the hexagon and rectangular was satisfying, the decision of choos-

ing one design over another, was not made on the basis of stability or buoyancy.

4.3 Choosing design

To make a correct decision about design. Pros and cons are listed in the table 4.1

CHAPTER 4. RESULT 78

Design Advantage Disadvantage

Four legged version Simple design Pipes has to be scaled up to a

point where the model is larger

then the other models to pro-

vide the same buoyancy. It is

preferred to increase the num-

ber of columns instead of the

diameter of them.

Hexagon and Oc-

tagon versions

The design provides extra sta-

bility by having several arms

reaching out in more than four

directions.

While the design provides extra

stability, the arms also prevents

some waterflow in the front and

read part of the platform. Also,

the design is found to be more

complex than necessary.

Catamaran version Lightweight design, for a small

scale use this could be a plausi-

ble design

The model would not be semi-

submersible which means, the

waves would influence the ves-

sel more than the other models.

Rectangular version The model provides both buoy-

ancy and stability. It has a nat-

ural front and rear, considering

the placement of the vertical

columns. Since the model has

six legs, the pipes doesn’t have

to be as big as in the four legged

one. Only two columns are visi-

ble in front and rear, so the wa-

ter would easily flow through

the vessel.

None significant.

Table 4.1: Model comparison

CHAPTER 4. RESULT 79

From the result of the table, the decision was made to continue with the rectangular shape.

4.4 Final design

With the general design locked, the group started on detail drawing and specifications of the

final prototype. A detailed CAD drawing was made to reveal as many mechanical difficulties as

possible, as well as having the model on the drawing board. The method made the actual build

of the platform itself an easy job with very little difficulties.

CHAPTER 4. RESULT 80

4.4.1 Rectangular model 2

Figure 4.20: Rectangular model 2

Figure 4.21: Rectangular model 2 Top

While sticking to the design of having a rect-

angular model, the question of where and how

to place the thrusters was concidered. In this

model the idea was to have the thrusters in front

and rear, mounted to the end of the rods. Doing

this, the thrusters could rotate 360 degrees in-

dividually like an Azimuth. See figure 4.20 and

4.21.

CHAPTER 4. RESULT 81

4.4.2 Rectangular model 3

Figure 4.22: Rectangular model 3

Figure 4.23: Rectangular model 3 Top

While working on the rectangular model, the buoy-

ancy and stability was found to be OK, however the

structural integrity of the platform was not yet very

good. Using only thin sheets of aluminium, the plat-

form wouldn’t be as rigid as necessary for the envi-

ronment. This model,see figure 4.22 and ??, was cre-

ated for the purpose of stiffening the top section, alu-

minium plate rods would be bent and welded to the

top frame. While the design would definitely do its

job, it was a little overkill and making it only more

complex than necessary. Another problem with this

design, was that while the thrusters were turned 90

degrees and pointed straight into the bottom pon-

toons, the thrust would cancel out by hitting the

platform itself. Along with the thrust problem, the

concept would be too complicated to implement on

this project within the given deadline.

CHAPTER 4. RESULT 82

4.4.3 Rectangular model 4

Figure 4.24: Rectangular model 4

Figure 4.25: Rectangular model 4 Top

The fourth and final design, see figure 4.24 and

??, where thruster mounts and location were

changed. The structural integrity of the plat-

form were maintained by using aluminium pro-

files instead of a complex design. The verti-

cal columns are mounted with end caps and

the whole platform is held together by threaded

rods. The thrusters are located in way that

keeps the platform directional, which means it

has bow, stern, starboard and port sides. Even

though it has a naturally "forward" manoeuvre,

it can move in any direction.

CHAPTER 4. RESULT 83

4.4.4 Weighing of parts

All the parts of the main structure of the platform was weighed (fig4.26) before assembly. Some

changes were made while ordering parts and building, which caused the weight to deviate from

the table below 4.2.

Figure 4.26: Weighing of parts

Bottom frame, with battery pontoons, end caps and stainless rods, W/O batteries 24.2 Kg

Top frame 8.8 Kg

One vertical pontoon with four stainless rods with nuts and washers 5.14 Kg

Six vertical pontoons with 24 stainless rods with nuts and washers 30.84 Kg

One thruster 1.25 Kg

Four thrusters 5 Kg

Two packs of five batteries 16.784 Kg

Eight water pumps 2.4 Kg

Two boxes for electrical installation 4.3 Kg

Total 92.324 Kg

Table 4.2: Overview

CHAPTER 4. RESULT 84

Figure 4.27: Battery packs are weighed

Table 4.2 shows the weight of the individual parts of the platform, this is however only the

main parts of the platform. Cables, valves, electrical components and lights were not weighed

before mounting.

Figure 4.28: Finished platform weighed

After completing the prototype, the platform was weighed and found to be at total 114.385

Kg. See figure 4.28

CHAPTER 4. RESULT 85

4.4.5 Buoyancy test in water

The platform was tested in segments, the first test was just after completing the general build,

only the pipes, frame and thrusters was mounted and the batterypontoons were open in both

ends. See figure 4.29.

Figure 4.29: Finished platform weighed

Even though there were no equipment mounted, the platform’s draft is little low. The reason

for this is the open batterypontoons. Without closing the pipes, there is far less buoyancy in

them. The total weight of the platform at this stage is 60 Kg.

CHAPTER 4. RESULT 86

Figure 4.30: Finished platform weighed

In the second test, the battery pontoons were enclosed, and had the batterypacks inside.

See figure 4.30. The result is that the platform got an increased buoyancy, causing a higher draft.

The platform had at this stage a total weight of 86,824 Kg.

Figure 4.31: Finished platform weighed

In the third test, the platform was complete with all the equipment mounted. The weight of

the platform was measured to 114Kg, and the draft of the platform has 4.31, 114 Kg, plus some

water for stabilising the platform to level.

CHAPTER 4. RESULT 87

4.5 Stabilisation system

This section presents the analysis made for all the methods considered using in the stabilisation

system.

4.5.1 Water vs air as control medium

Control by air

Figure 4.32: Test with air

The first method of control medium tested, was

air. An acrylic tube with a heavy load at the bot-

tom end, pneumatic hose for the air, pneumatic

solenoid valve for controlling on and off, com-

pressed air, and a power supply for the solenoid

valve is mounted and used as a test rig. The first

image 4.32 shows how the tube standing verti-

cally in the water due to the payload at the bot-

tom.

Figure 4.33: Test with air

Using compressed air for moving ballast, the

tank doesn’t have to stay above the surface for

being able to rise. See figure 4.33

CHAPTER 4. RESULT 88

Control by water pumps

Figure 4.34: Test with water pumps

To control the water with pumps, a two-

directional pump or just using one for each di-

rection is required. For this test there were used

one pump for filling and another one for emp-

tying the cylinder. At first, the results from the

test seemed fairly close to the one using com-

pressed air. Both managed to rise and lower the

cylinder with ease. See figure 4.34 and 4.35.

Figure 4.35: Test with water pumps

While the method of using compressed air was

versatile and had the possibility of rising the

cylinder from beneath the surface, this method

has no possibility for doing such thing. If the

cylinder were to fill itself and sink below the sur-

face, there is no way to get it back up. If the

method were to be implemented to the plat-

form, some sort of fail-safe had to be imple-

mented so if the stability system failed, the plat-

form wouldn’t sink. After analysing both meth-

ods, the data was collected and presented to the

following table.4.3

CHAPTER 4. RESULT 89

Water Air

Power consumption

Bilge pump with a capacity of 32 l/min

2.5 Amp at 12 Volts Total: 2.5 Amp at 12

Volt

Air compressor with capacity of 12 l/min

6 Amp at 12 Volts Solenoid air valves

1 Amp at 12 Volts Since the air is only

pumped into the cylinders and not out,

we can halve the consumption of the air

compressor. Total: 4 Amp at 12 Volt

Weight

Each bilge pump has a weight of 300g

and for the total system it’s needed eight.

8x300g = 2400g Water hoses and the ac-

tual water in them adds to this. Total:

2400g

The air compressor weighs 2500g and

each of the solenoid valves weighs 300g

For the total system it’s needed eight

solenoid valves. 8x300g = 2400g 2400g

+ 2500g = 4900g Air hoses add to this

weight. Total: 4900g

Controlling ability

Water is not compressible, easier to cal-

culate actual weight of each cylinder.

Since the water is pumped both in and

out, the amount of water pumped is

equal both in and out per time unit.

Air is compressible, making it more

challenging to regulate the amount of

lift in the cylinders. For lowering the

cylinders, the weight of the platform is

the only thing pressing the air out of the

cylinder, which means the amount of air

in and out is not equal per time unit.

Speed

At 32 l/min the water pump speed is suf-

ficient for the application

Compressed air is very fast but only as

long as there is air inside the reservoir,

the compressor has to keep up with the

air consumption and to match 32 l/min

the weight of the equipment increases.

Table 4.3: Stability system, water and air comparison

CHAPTER 4. RESULT 90

At first glance, the two methods preformed equally. The comparison of the methods indi-

cates that using water pumps is simpler, uses less power and the components of water pumps

weigh less than the components of using the air method.

4.6 Mounting the stability system

4.6.1 Water pumps and hardware

Each pump is installed with a check valve to prevent water to flow in the wrong direction. With-

out these valves, the chambers would be filled with water by gravity alone. The outside check-

valves prevent water to run back down the hose while the pumps are on standby, this way the

the pump doesn’t have to refill the hose on every start-up. The inside valves keep the water from

flowing back in the cylinder through the pump. See figure 4.36

(a) Inside pump with direct outlet (seen from below)
(b) Outside pump with hose going through top

Figure 4.36: Placement of the water pumps

Since the cylinders are air tight, the water pumps would create either pressure or vacuum

depending on which way the water flows. The pressure would eventually build up to where the

CHAPTER 4. RESULT 91

water pumps stall and the pressure sensors would react to the change in pressure. Therefore a

ventilation hole was necessary. The hole would have to be big enough to match the specification

of the pumps (32 l/min), in such way that pressure nor vacuum would influence the sensors.

Figure 4.37: Flow capacity to pressure table

The graph in figure 4.37 indicates needed di-

mensions for given pressure and air flow. One

standard cubic feet of gas per minute equals

28.32 litres per minute, so in this case where the

pumps capacity is 32 l/min it’s a little over one

(scfm), and the air pressure inside the cylinder

is ideally 1 bar, or equal to atmospheric pres-

sure. Considering this information, the value

read from the table is 1/4 inch hole is sufficient

to prevent unwanted pressure change. 1/4 inch

equals to 6,35mm so the hole was rounded up

to a diameter of 7mm. Se figure 4.38
Figure 4.38: Ventilation hole

CHAPTER 4. RESULT 92

4.6.2 Water level sensors

Figure 4.39: Amplifier array

Pressure sensors are used for measuring the water level in-

side each column. The sensors are placed in the electri-

cal box on top of the platform (figure 4.39) with a hose

each reaching down to the bottom of each column. The

sensors used are the MPX2010DP [33] sensors which mea-

sures the pressure difference between two inputs. In this

case, one is placed in the bottom of the columns while the

other is not connected, so the measured values are the differ-

ence between the water level and the atmospheric pressure.

The sensor output is in a mV signal, so it has to be amplified to

be readable. Each sensor has it’s own instrumental amplifier,

AD620, with a gain of 100, and outputs a voltage depending on it’s input voltage. Since the

amplifiers’ output is an analog voltage signal, the microcontroller has to convert the signals

through an ADC (Analog to Digital Converter). While building this array of amplifiers, the idea

of using a Raspberry Pi for the stabilisation system were considered, and since the Pi doesn’t

have an in-build ADC like the Arduino has, an external ADC was implemented to the drawings.

The array of amplifiers also consisted of one LM358N operational amplifier, all references from

the array connects to the op-amp and creates a common reference to the ADC. The op-amp is

powered from a buffered voltage divider, the basic content of the wiring scheme is borrowed

from Analog Devices AD620 datasheet. Later on when deciding on using the Arduino instead of

the Pi, both the ADC and the LM358N was removed. [17]

CHAPTER 4. RESULT 93

4.6.3 IMU

Figure 4.40: Array of six MPX2010DP

Adafruit’s 9-DoF sensor is used for measur-

ing the platforms attitude. By using four of

them, enhances stability and accuracy of the

measurements compared to using just one.

Since the platform has four of them and they

all communicate via I 2C to the Arduino, a

multiplexer was needed to separate their ad-

dresses. This way the Arduino can read all

of them, one by one, almost simultaneously.

The 9-DoF sensors distributes 3-axis readings from gyrometer, accelerometer and magnetome-

ter. The sensors are used for reading the platform’s angle of list as input to the stability sys-

tem, and it’s heading as input for the autopilot. The placement of the sensors are on the

corners of the platform. The reason for having four is actually the placement options, since

they are located symmetrically they generate an average center at the platforms exact center.

The mounting brackets for the IMUs seen in figure 4.41 are drawn in the same software as the

platform and 3D-printed in PLA.

4.6.4 Control system

Figure 4.41: Inertial measurement unit

To make the control system as safe as possi-

ble, the stability system is made as a stand

alone system. Therefore the decision was

made to use a method called cyber-physical

systems, where software and hardware are

closely linked, and computing are decen-

tralised. In this way the stability system is not

reliable on the server to operate, and a failure

in any other system would not affect the sta-

bility of the platform.

CHAPTER 4. RESULT 94

All components of the stability system is connected to a microcontroller, which controls the

system and sends the required information to the server. The Arduino Mega is chosen for this

task because it has an easy setup, and for its number of I/Os. Another advantage of using Ar-

duino is the simple operating system with less things possible of failing. The other alternatives

like Raspberry Pi and Beagle Bone, were rejected because they are much too powerful and un-

necessary complex for its purpose.

Sensors used are IMUs and pressure sensors. Four IMUs are used to get a more stable and

accurate measurement. They are mounted on each corner of the platform, and the average

value of all four IMUs are calculated. This increases the accuracy and the average value has its

pressure point in the centre of the platform. IMUs are prone to noise, and because of this the

signals are run through a Kalman filter. In waves, the constant rolling will make the stability

system to run at all times. This system is not designed to stop rolling, therefore a low pass filter

is added to cancel this motion. Then the system only sees the list angle, which it can correct.

The pressure sensors are used to measure the draft of the platform and the height of the

water inside the columns. The sensors are calibrated to show the depth in cm.

4.6.5 Stabilisation software

The software makes all the calculations and filtering. The only hardware components for the

system is the sensors, relay modules and the microcontroller. In the software, a setpoint for the

different motions are set. It states what is the wanted roll, pitch and draft of the platform. It tests

if the filtered values exceeds the setpoint plus a tolerance. The tolerance will give the maximum

list the platform will tolerate before it starts to correct. These values can be adjusted individually

to set the wanted attitude of the platform. The roll and pitch have a default value of 0, for getting

the platform level. The draft has to be set to adjust the current payload.

Calculating the output is done by a PID controller (chapter 2.12). It uses the Kalman filtered

values as input. And since we have relays operating the water pumps, the PID output is used

to calculate the time of the pumps being activated. The output value of the PID is between 0

and 100. This value is then scaled and used as the time the pumps is on before it turns off and

a new on time is calculated. In this way the activation time becomes shorter and shorter the

closer to the setpoint the platform gets, and the correction movement slows down preventing

CHAPTER 4. RESULT 95

an overshoot. To find the Kp, Ki and Kd, the Ziegler Nichols (2.2) method was used.

To control the draft, the pressure sensor at column 2 and 5 is used. The average of these two

values are calculated. The draft is not run through a Kalman filter or a low pass filter. This was

done because tests in the wave tank showed that the vertical movement was much slower then

pitch and roll. Therefore there was no need for filtering or a PID. The draft has a PID allocated,

but it is not used. With further testing in heavy waves and when large payloads are on board, the

platform starts to heave and depth correction starts. To prevent this a low pass filter had to been

implemented for the draft as well. When it comes to the need for a PID for the depth correction,

the tests shows that that is not necessary. The correction movement is so slow that the system is

self controlled, and a PID would only make the correction even slower.

4.6.6 Stabilising time

Several tests of the stabilising system were executed in the wave tank. Due to depth limitations

of the wave tank, the tests were limited on wave size, payload capacity and payload placement.

The payload placement (Figure4.42) and results are displayed in the tables below (Tables 4.4, 4.5,

4.6). The red numbers indicate test times where the platform touched the floor of the tank, and

therefore might have slightly lower values. The "No Data" fields are tests that did not provide

reasonable data due to the platform was resting heavily on the floor of the wave tank or high risk

of causing damage to it because of oscillation caused by waves.

Figure 4.42: Payload placement

CHAPTER 4. RESULT 96

Table 4.4: Stabilization before draft compansation

Pos/Kg 3 Kg 5Kg 10Kg

A 6.1s 8.7s 14.9s

B 7.8s No Data No Data

C 13.4s 19.7s No Data

Table 4.5: Stabilization and draft compansation

Pos/Kg 3 Kg 5Kg 10Kg

A 6.1s 8.7s 14.9s

B 7.8s No Data No Data

C 20.4s 20.7s No Data

Table 4.6: Stabilization with fixed payload in position A with changes in Amplitude A and period
time T on the waves

Pos/3Kg A=150mm T=4s A=150mm T=3s A=200mm T=4s

A stabilization 6.0s 6.9s 5.3s

A draft correction 9.5s 6.9s 17.3s

B No Data No Data No Data

C No Data No Data No Data

From the results, the average time to stabilise before draft correction is 11.8 seconds, and

with draft correction the average time were 15.2 seconds. The average stabilising time with draft

during wave test is 31.1 seconds, and the total time to stabilise with draft correction regardless

of environment is 23.3 seconds.

4.7 Thruster allocation

The thruster allocation- and configuration is based on the same algorithms used in the previous

bachelor thesis USV -UnmannedSurfaceVessel [22], but modified in therms to fit the design and

thruster configuration of the platform.

CHAPTER 4. RESULT 97

For marine craft with n DOF it is necessary to distribute generalised control forces τ ∈ Rn to the

thrusters in X and Y direction in a 2 dimensional plane. The wanted forces are generated in the

manual mode of the control system or in the autopilot/DP system on the server.

Figure 4.43: Thruster configuration

4.7.1 Thruster configuration

A force vector τr e f =
[

X Y N
]T

is used as the input to the thruster allocation. X is the de-

sired thrust in x-direction, Y is the desired thrust in y-direction and N is desired thrust about

the z-axis. A positive momentum about the z-axis in a right-handed coordinate system will act

clockwise, see figure(4.43). The control thrust from a single thruster is F = u. The thrust gen-

erated by each thruster can be denoted in a vector u =
[

u1,u2,u3,u4
]

, while the thrust and

momentum generated can be related to the control thrust τr e f by the equation

τr e f = Tu (4.1)

CHAPTER 4. RESULT 98

Where T is a matrix that describe the thruster configuration on the craft. [22]

For u1 we have

τ=

1

0

Ly1

u1 (4.2)

For u2 we have

τ=

1

0

−Ly2

u2 (4.3)

For u3 we have

τ=

1

0

−Lx1

u3 (4.4)

For u4 we have

τ=

1

0

Lx2

u4 (4.5)

which gives the following thruster configuration system

τr e f =

X

Y

N

=

1 1 0 0

0 0 1 1

Ly1 −Ly2 −Lx1 Lx2

=

u1

u2

u3

u4

 (4.6)

The thruster allocating consist of finding values that satisfy eq.(4.6). Measured distances per-

pendicular on the axis to the thrusters are as follows: Lx1 = Lx2 = 0.45 metres, and Ly1 = Ly2 =
0.19 metres, see fig(4.43). The theoretical centre of mass is retrieved from the cad drawing of the

prototype without taking in account the weight of the pumps, thrusters and the electric system.

CO is located where the X and Y axis cross, see fig(4.43).

CHAPTER 4. RESULT 99

4.7.2 Actuator Models

The control force due to a propeller, a rudder or a fin can be written (assuming linearity)

Figure 4.44: Control force

where k is the force coefficient and u is the control input depending on the actuator consid-

ered; The linear model F = ku can also be used to describe nonlinear monotonic control forces.

4.7.3 Solution by quadratic programming and JOptimizer

Taking the thrusters limitations in consideration, the optimisation problem has to be reformu-

lated. The problem formulation used to solve the thruster allocation problem is based on the

presented solution in section IV([12]),Linear Quadratic Constrained Control Allocation, The no-

tation is from, USV -UnmannedSurfaceVessel [22] to match the values and variables used, and is

as follows:

minimise
u,s

uT W u + sT Qs

subject to Tu = τr e f + s

umi n ≤ u ≤ umax

(4.7)

where s is a vector of slack variables that takes in consideration incidents of where τr e f

can’t be reached by Tu. The condition umi n ≤ u ≤ umax ensures that the thrusters don’t ex-

ceed their mininmum(umi n) and maximum (umax) values. By choosing the weighting matrix

Q À W > 0, the slack variable should be close to zero, and an accurate generalised force Tu can

be archived.[12]

The following explanation of the ThrustAllocator class is from(page 77-78,[22]) By defining

CHAPTER 4. RESULT 100

p =
[
τT

r e f uT
mi n uT

max

]
and z =

[
uT

max sT
] (4.8)

then the problem can be reformulated to the form as shown in eq. (2.14) in subsection 2.5.1

minimise
z

zTΦz

subject to A1z =C1p

A2z ≤C2p

(4.9)

where

Φ=
 W 04×3

03×4 Q

A1 =

[
T −I3×3

]
C1 =

[
I3×3 03×8

]
A2 =

−I4×4 04×3

I4×4 04×3

C2 =

04×3 −I4×4 04×4

04×3 04×4 I4×4

(4.10)

The open-source library JOptimizer for java is used to solve this optimalisation problem. In

the class ThrustAllocator these matrices are initiated in the constructor. Then a PDQuadratic-

MultivariateRealFunction-object, which is the objective function that is being minimised. This

object then take the matrix Φ as a parameter in the constructor. An array ConvexMultivariate-

RealFunction-objecs that set the constraint function is also initialised in the constructor. Finally

an object of the class JOptimizer is instantiated. The JOptimizer object take care of the actual

optimisation. This object use a primal-dual interior point algorithm to solve the quadratic pro-

gramming problem[20]. A description of this algorithm can be found in [5]

To calculate the vector u for a given τr e f the method calculateOutput in the ThrustAllocator-

class. This method returns an array of dimension 4 of the type double, where the elements in

CHAPTER 4. RESULT 101

the array represent the thrust each thruster should generate.

Table 4.7: Definition of actuators and variables

CHAPTER 4. RESULT 102

4.8 Software

The software is programmed as a server-client system, where the platform functions as a server,

and the control unit functions as a client. The software on the platform is written in Java and a

simplified version of C. The platform is controlled by an application on an Android tablet. In the

control application The operator can choose between two modes, Manual mode and Autopilot

mode. The platform has two independent software systems. One system is used to control the

balance system, running on a microcontroller. The other system is a concurrent system, read-

ing GPS data, receiving and sending data over WiFi, and communicate with the micro controller

that controls the thrusters as well as reading IMU data from the balance system. The third party

software used to program the platform is Netbeans 8.2 and Arduino Studio. The android appli-

cation is programmed in Android Studio.

4.8.1 Flow chart of the complete system

Figure 4.45 illustrates the data flow on- and between the client and the server.

Figure 4.45: General flow chart for complete system

CHAPTER 4. RESULT 103

4.8.2 Server-Client

Manual Mode

The main purpose of the Manual Mode is to send parameters to the server for every action the

operator performs. This is done by putting "key" String into a JSON Object with a value attached

to each "key". Every time Manual mode is initiated, it starts with sending a JSON Object with

"Mode", 1 to the server. This lets the server know that Manual mode is chosen, and the server

start the corresponding thread for handling manual mode. From here on a constant TCP stream

of data will be exchanged between the tablet and the platform, the client sending manoeuvring

commands to server, and the server sending sensor data for the operator to monitor. When the

operator is not pressing any of the buttons, the application constant sends zero power to all the

thrusters, thous it will stand at rest. If the operator sets a thruster power value using the slide bar

in the GUI, and then press a button, the setOnTouchListener method in Android Studio reads

that the button is pressed and the application sends the new thruster values to the server, mov-

ing the vessel in the wanted direction. The Sending and receiving data is handled in real time

by two separate Threads, this results in a fast and responsive way of communicating. The client

also receives a UDP camera feed from the server with live camera feed to make it easier to oper-

ate the vessel over long distances.

The Manual mode application version created for this thesis has functionality with the pos-

sibilities to manoeuvre the platform in eight directions, activate the signal horn and lanterns, as

well as displaying a camera feed received from the platform seamlessly. Alternatives are Joystick,

Xbox control or a GUI interface on a remote computer

Autopilot

The Autopilot gets its functionality from the Google Maps API on Android Studio. The app lo-

cates the vessels position by reading the GPS data received on the TCP input stream, and zooms

the map to that very position. In this map application, the operator can set waypoints at desired

positions to make a path for the platform to follow. The communication between the client

and the server works basically the same way as the manual mode. When Autopilot mode is se-

CHAPTER 4. RESULT 104

lected in the android application, it creates and sends a JSON Object with a String "key" and

a value. Every time Autopilot is initiated, it starts with sending a JSON Object with "Mode", 2

to the server. This lets the server know that Autopilot is chosen, and the corresponding thread

for handling autopilot mode is started. The application works by storing the positions put on

the map into two separate JSON Array lists, where one handle the latitude coordinates, and the

other the longitude coordinates. Both those lists are then stored into a single JSON Object before

it is sent to the server. When this data is sent, the server receives and process the data, where co-

ordinates are extracted in longitude and latitude pairs. Direction and distance to the waypoint

is calculated by using GPS data combined with the received coordinate data and the platform

will perform various calculations before the thrust is set. When the platform has reached its

destination within 5 metres of a waypoint it is set to extract a new pair of coordinates and repeat

the process. If a new pair of coordinates can’t be found in the received path, it will try to hold

the position of the last coordinate pair of the path.

The version of the Autopilot mode in the android application in this thesis sends and receives

position data, and the operator can monitor the platform’s position in real time. The signal

horn and lanterns functionality is not implemented as a part of the autopilot due to priorities of

features with more importance for the autopilot system. The same applies for the DP simulation

on the application.

4.8.3 Float chart software

Figure 4.38 and 4.39 shows the data float in the server and client

CHAPTER 4. RESULT 105

Figure 4.46: Float chart client

CHAPTER 4. RESULT 106

Figure 4.47: Float chart server

CHAPTER 4. RESULT 107

4.8.4 Class Diagram

Client

Figure 4.48: Clas Diagram Client

Server

4.8.5 Graphical User Interface

Figure 4.49: Mode GUI

This is the start up GUI, see figure 4.49, that meets the operator, and the client automatically

connects to the server. From this screen, the operator get to choose between Manual mode and

CHAPTER 4. RESULT 108

Autopilot by tapping either one of the buttons.

Figure 4.50: Manual mode GUI

Manual mode, illustrated in figure 4.50, let the operator control every movement of the ves-

sel. A continuous stream of commands are sent to the server when the operator tap a button.

The On the left hand side the buttons moves the vessel forward, backwards, and turns it right

and left. The slidebar in the right top corner sets the output thrust. The buttons with a circular

arrow below the slidebar makes the vessel pivot, and the symbols < and > makes it go straight

sideways. The squared buttons controls the lantern and the foghorn, while the rectangular text

boxes are used to display sensor data from the vessel, and connection status.

Figure 4.51: Autopilot GUI

The Autopilot, illustarted in figure 4.51, gives a GUI that shows the operating area and dis-

plays the current position of the vessel. Markers can be set anywhere on the map by a touch

CHAPTER 4. RESULT 109

and hold action on the location where it’s desired. The GPS coordinates will be listed in the blue

margin to the right in the screen. A path can be created by placing multiple markers. By tapping

the START button, the vessel will start moving towards the destination, while the green marker

indicates the trajectory by updating the current position once a second. The rectangular text

boxes are uses to display sensor data from the vessel and connection status.

4.8.6 Server application

The program running on the Odroid XU4 is launched from a "main" class which. See illustration

in figure 4.47. The main class has one purpose, and that is to start five of the total eight threads

when the server starts. The "Server Handler Thread" handles the TCP socket connection with

the client. If the client tries to connect, it accepts and starts a receiving and sending thread. The

"Platform Mode Thread" will start corresponding "mode thread" on request from the client.

Each thread has it’s own task. Whether it’s reading a sensor, sending- and reading data over

WiFi, or gathering it before processing.

4.8.7 Reading sensors on the platform

The GPS and Arduinos were connected to the Odroid by USB, and the RXTXcomm.jar library

were used to communicate through serial. The Arduinos use the built in Serial library to com-

municate with the server application. In the server application the GPS is assigned a Thread

that read the GPS input data at a constant time interval that is set to 200ms. To read the input

data on the USB ports the method "getInputStream()" from the SerialPort class is used, and to

send data over the USB the "getOutputStream()" method from the same class is used. SerialPort

is a class found in the RXTXcomm library. Due to difficulties with the opencv2413 library on the

Odroid, the Odroid were substituted by a computer running Windows 10 for several tests of the

UDP stream in manual mode.

CHAPTER 4. RESULT 110

4.8.8 Sensor data processing on the platform

Figure 4.52: Flow chart sensor data

Communication between threads, illustarted in figure(4.52), are done by having shared resources,

referred to as storage boxes, and Semaphores that are used to maintain a thread safe structure

between them. NMEA sentences are read from the GPS dongle in the GPSReader thread, and lat-

itude, longitude and speed are extracted from the NMEA sentence and stored as lat, lon and spd

of the type double. Latitude and Longitude are transformed to radians before the GPSReader

thread then put the variables lat, lon and spd into storageBoxGPS, and a JSONObject containing

coordinate data as radians and degrees as well as speed into the storageBoxNorthEast object.

Then the "conductor thread" will check if the storageBoxGPS and storageBoxNorthEast contain

GPS data, and if they do, the conductor thread will retrieve information and store it as two dif-

ferent JSONObjects. The JSONObject with the information containing only GPS data as degrees

will be passed toward the socketSend thread. The other, that contains the complete GPS data

will be extended with waypoint data received from the socketRecieve thread which reads a TCP

CHAPTER 4. RESULT 111

input stream from the client. The waypoint data is received as a JSONObject containing two

JSONArrays and a "mode field", where one of the JSONArray lists contain Latitude the other

Longitude coordinates. If the mode field equals "autopilot", represented by the int 2, The con-

ductor thread will pass the received mode parameter to the Platform Mode thread, which then

will start autopilot mode, and stop the manual mode if that current mode is already running.

The received waypoint lists are extracted and the coordinates are converted to radians. Way-

points are set, and before the the position info is sent to the StorageBoxRunningMode object,

which is shared between the conductor and autopilot thread, a method called "getFlatEarth-

Coordinates()" within the "posInfo()" method is called. getFlatEarthCoordinates() converts the

geodetic position of the craft into the North-East frame, from chapter(2.3.3). The method for

conversion between the two reference frames are shown below.

Listing 4.1: NEDTransform Java code

public JSONObject getFlatEarthCoordinates (JSONObject jsonFlatEarth) {

/ / Tar ut enkelte variabler av JSONObjektet

try {

double latBody = jsonFlatEarth . getDouble ("xyLatBody") ;

double lonBody = jsonFlatEarth . getDouble ("xyLonBody") ;

double l a t R e f = jsonFlatEarth . getDouble ("xyLatWaypoint") ;

double lonRef = jsonFlatEarth . getDouble ("xyLonWaypoint") ;

/ / *

double dMy = latBody − l a t R e f ;

double dL = lonBody − lonRef ;

double rN = (R / (Math . sqrt (1 − (2 * f − f * f)

* Math .pow(Math . sin (l a t R e f) , 2)))) ;

double rM = rN * ((1 − (2 * f − f * f)) / (1 − (2 * f − f * f)

* Math .pow(Math . sin (l a t R e f) , 2))) ;

double dN = (dMy / Math . atan (1 / rM)) ;

double dE = (dL / Math . atan (1 / (rN * Math . cos (l a t R e f)))) ;

CHAPTER 4. RESULT 112

jsonFlatEarth . remove (" latBody ") ;

jsonFlatEarth . remove ("lonBody") ;

jsonFlatEarth . remove (" l a t R e f ") ;

jsonFlatEarth . remove (" lonRef ") ;

jsonFlatEarth . put ("dNorth" , dN) ;

jsonFlatEarth . put (" dEast " ,dE) ;

} catch (JSONException ex) {

Logger . getLogger (NEDTransform . class . getName ()) . log (Level . SEVERE, null , ex) ;

}

return jsonFlatEarth ;

}

The input parameter is a JSONObject containing the geodetic position of the craft, and way-

points received from the client. latBody and lonBody is the crafts geodetic position in radians,

latRef and lonRef is the geodetic reference coordinates of the waypoint. R is the equatorial ra-

dius of the earth, and f is its flattening. The method Math.pow(Math.sin(latRef), 2) returns the

value of the first argument raised to the power of the second argument. The deviation in north

and east is respectively dN and dE, which then replaces the old values of the JSONObject used

in the method.

In the autopilot thread a distance check to the waypoint is done by calling the "haversine()"

method, as shown below.

Listing 4.2: Haversine Java code

public s t a t i c double haversine (double lat1 , double lon1 , double lat2 , double lon2) {

double dLat = Math . toRadians (l a t 2 − l a t 1) ;

double dLon = Math . toRadians (lon2 − lon1) ;

CHAPTER 4. RESULT 113

l a t 1 = Math . toRadians (l a t 1) ;

l a t 2 = Math . toRadians (l a t 2) ;

double a = Math .pow(Math . sin (dLat / 2) , 2)

+ Math .pow(Math . sin (dLon / 2) , 2)

* Math . cos (l a t 1) * Math . cos (l a t 2) ;

double c = 2 * Math . asin (Math . sqrt (a)) ;

distanceToWaypoint = RADIUS * c ;

return distanceToWaypoint ;

}

The first two parameters, lat1 and lon1 are the crafts geodetic position, and the last two

parameters lat2 and lon2 are the geodetic reference coordinates to the first coordinate pair of the

waypoint lists received from the client, all coordinate parameters are in degrees. The methods

Math.pow(Math.sin(dLat / 2), 2) and Math.pow(Math.sin(dLon / 2), 2), returns the value of the

first argument raised to the power of the second argument. RADIUS is the equatorial radius of

the earth. The return value of the method is the distance to the waypoint in metres.

4.8.9 Autopilot and Dynamic positioning

When the platform is in autopilot mode, the Conductor thread read the GPS position that is

already stored in the storageBoxNorthEast (see figure 4.52). Waypoint coordinate lists are re-

trieved from a JSONObject received from the client, and values are converted to N-and E- val-

ues in NED by utilising the NEDTransform class. A JSONObject, containing the transformed

coordinates are put to the common object storageBoxRunningMode, between the Conductor

thread and the Autopilot thread. The Autopilot thread starts by reading the IMU heading from

an Arduino, before it retrieves the coordinate data from the storage box. The autopilot thread

will check if it is within a range of two metres by utilising the haver si ne formula described in

section 2.9 and as a Java implementation in 4.2, before calculate a heading and a distance to

the waypoint. The PID controllers generate an output thrust on each thruster based on the co-

ordinates and from the NEDTransformation, IMUheading and heading to the waypoint. The

CHAPTER 4. RESULT 114

plattform will try to hold the position on the last waypoint.

4.8.10 PID control for thrust

A standard PID controller 2.12 is used. One for latitude, one for longitude and one for heading.

Input for the latitude and the longitude PIDs are GPS- and waypoint coordinates transformed to

radians. Because of very small numbers, the radian values are increased by a factor of a hundred

on the PID input. The tuning of the PID is done in the constructor of the Autopilot class.

4.8.11 Thruster control

In autopilot mode the thrusters are controlled by the AutoPilot class, which is instantiated as

a thread. After the PID controller has generated the output thrust, the thrust is transformed to

BODY-coordinates, (see 2.3.2), by using the rotation matrix 2.4.1 for rotation about the Z-axis.

Then the a thruster allocation is executed by the method calculateOutput(XYNtransformed),

where XYNtransformed is the transformed thrustvector. The thrust for each thruster is set by

calling the method setThrustForAll(forceOutputNewton) and write thrust, where forceOutput-

Newton is an array consisting of four double values, from an object made of the ThrustWriter

class. The Manual mode also use an object of the ThrustWriter class to write the output thrust

to the platform, but the output values are set in the client application.

Arduino thruster control

The Arduino controlling the thrusters read a char array on the input stream, sent from the

ThrustWriter’s writeThrust() method. The char array is parsed to a JSONObject, and values from

the JSONObject is extracted- and casted as integers. The integers are then fed directly into the

thruster speed methods, one for each thruster.

4.9 Results from tests at sea

Wheels were mounted on the platform to ease the transportation from the workshop, and to set

it afloat. A sheet of Styrofoam was placed below deck to add extra buoyancy as a fail-safe effort,

CHAPTER 4. RESULT 115

because the potential the stabilisation system has to sink the platform if the software would

freeze. This however was not a problem while testing seeing the system performed as it were

supposed to.

4.9.1 Autopilot mode

During testing of the autopilot, the platform behaved different than expected. There were done

several tests on land before the tests at sea. during the land tests, a waypoint was placed in

the test area on the map, and the group pushed the platform in the thruster directions. The

thrusters seemed to function properly. During the tests in the sea, the feedback from the plat-

form movement exceed the expectations. The platform pivoted too quickly, and the PID would

overcompensate the thrust in order to correct the heading. The PID were adjusted, but the plat-

form kept pivoting to the left in a curved trajectory from where it started toward its waypoint.

4.9.2 Manual mode

The manual mode has been working while testing in the wave tank at school. What was noticed

during the sea test however, is that one of the thrusters didn’t run at all, the Arduino seemed to

deliver the correct information to the motor controllers.

4.10 Results from wave test

After completing the platforms mechanical structure and electrical wiring, some tests were run

in the water-tank at the university. The main goal of the tests was to observe how the platform

behaves in waves, while the stabilisation system is active. During the tests, a gathering of data

were done for each of the sensors on the platform and the results are presented in this section

of the report.

CHAPTER 4. RESULT 116

4.10.1 Results from one vs four IMUs

Figure 4.53: One vs Four IMU

In this specific test, illustrated with figure 4.53, the platform was placed lengthwise so the waves

hit the front and a 5kg payload was placed on top. The amplitude of the wave was 150mm and

a wave-period of 2 seconds. As the graph indicates, the signal difference between one and four

IMUs is mainly the location around zero, but the average of four is also a bit more accurate.

A reason for why the single IMU lays above the other may be that this sensor has a slight tilt

forward compared to the others or that the platform itself is not completely level at all corners.

CHAPTER 4. RESULT 117

Figure 4.54: One vs Four IMU

In another test, illustrated in figure 4.54, the platform was turned 90 degrees so that the

waves came in from the side. Wave amplitude 150mm, wave-period 4 seconds, 10kg payload.

As stated above, the pitch from the one IMU seems to be offset by around 3 degrees and the

roll is consistent around the average. What is learned from this is that using several sensors

increases the accuracy overall, the signal is more stable and is stabilised relatively close to zero.

CHAPTER 4. RESULT 118

4.10.2 Kalman filter

Even though the signals were improved using four sensors, they were still too noisy to be used.

Some filtration methods were tested beforehand but the Kalman filter seemed to give the best

result.

Figure 4.55: Kalman filter

As shown in figure 4.55, the Kalman filter calculates its input-values and predict the next

step. For doing this it uses the sensors angular output as well as the angular acceleration. The

filter cancels noise but leaves a slight delay, this however is very small and not at all noticeable

in real time. This test was run with a wave amplitude of 150mm, wave-period of 3 seconds and

no payload.

CHAPTER 4. RESULT 119

Figure 4.56: Kalman filter

Figure 4.56 shows another example of behaviour, the platform is turned 90 degrees with

waves in from the side, wave amplitude of 150mm, wave-period of 4 seconds and 10kg payload.

As the already accurate signals of the four IMUs as input, the Kalman filter generates smooth

predictions of the signal. The results from Kalman filtration is a good real-time input for know-

ing the exact angle of the platform.

CHAPTER 4. RESULT 120

4.10.3 Low-pass filter

For the angular signals to be usable for the stability system, yet another filter is needed. If the

Kalman values were to be used as input for the stability system, the platform would start to

oscillate, creating an unstable system.

Figure 4.57: Low-pass filter

Wave amplitude: 150mm Wave-period: 3 seconds Payload: 0kg

The low-pass filter inputs the Kalman values and has a filter frequency of 0.02. As seen from

graph 4.57, the low-pass filter is slow enough to cancel oscillations on the platform, making the

stability-system only capable of correcting a consistent angle of list.

CHAPTER 4. RESULT 121

4.10.4 Platform movement from waves

Figure 4.58: Low-pass filter

Wave amplitude: 150mm Wave-period: 2 seconds Payload: 5kg

Considering only the design of the platform, it is very resistant for creating oscillations. The top

blue line in figure 4.58 is created by the platforms water height sensor, in this graph the line gen-

erates a good presentation of the waves. With this wave illustration you can see just hos little the

pitch is oscillating from it, only a couple of degrees as the waves are 300mm from top to bottom.

There are some parts of the graph that is cut off and the reason for this is the system "thinks"

that the platform is too high or too low in the water, and therefore starts a sequence for height

compensation. As the platform could very well bounce up and down a bit, this is not a reason-

able solution. This was first noticed while running these tests so later on there was implemented

a low-pass filter for the water height as well as the pitch and roll.

CHAPTER 4. RESULT 122

Figure 4.59: Low-pass filter

Turned 90 degrees, waves in from side. Wave amplitude: 150mm Wave-period: 4 seconds

Payload: 10kg

At this wave setting, something interesting happens in graph 4.59, as the platform seems un-

stable and starts to oscillate. The small waves are creating large angular oscillations, in other

means, the wave frequency hit the platforms resonance frequency with its given payload.

4.11 Wireless communication

The wireless system was tested on land between the router TP-Link Archer C5 v2 and two lap-

tops. The laptop that was used to test network range, used a TL-WN722N USB network adapter,

while on the other laptop the built in wireless network card was used.

By utilising Friis transmission formula from chapter 2.22, a range estimate was calculated by

the formula derived for range without signal loss to the surroundings from, and with an estimate

of 10 dB signal loss from (2.24).

Transforming the dB and dBm values to real vectors:

CHAPTER 4. RESULT 123

Pt = 20dBm = 102W Pr = Si ,mi n =−68dBm = 10−6.8

Gt = 8dBi = 100.8 Gr = 8dBi = 100.8

f = 2.45G H z c = 3×108

λ0 = c

f
= 3×108

2.45×109
= 0.1224m

Ls y s = 10dB = 101

From eq.(2.23)

R =
[

PtGtGrλ
2
0

(4π)2Si ,mi n

]1/2

=
[

102100.8100.80.12242

(4π)210−6.8

]1/2

= 1544m

By adding an estimate of 10 dB signal loss due to antenna atmospheric loss, polarization mis-

match, impedance mismatch at the antenna feeds, misalignment, and obstructions, the eq(2.24)

gives following range estimate:

CHAPTER 4. RESULT 124

R =
[

PtGtGrλ
2
0

(4π)2Si ,mi nLs y s

]1/2

=
[

102100.8100.80.12242

(4π)210−6.8101

]1/2

= 488m

During the range test, the command window with the built in ping function to send data

packets, and the third party software inSSIDer Home to read the wireless signal strength every

25m out to 225m. Then a final test at approximately 385m (Figure 4.60) were taken with several

antenna combinations on the router and the laptop (Figure 4.61).

Figure 4.60: Wireless range max distance

CHAPTER 4. RESULT 125

Figure 4.61: Wireless range comparison

Chapter 5

Discussion

5.1 Test results

5.1.1 Platform design and buoyancy

The platform performed very well in waves, it countered movement from waves exceptionally,

however the buoyancy of the platform could definitely be better. It floats a bit low in the water

due to its total weight. As mentioned in chapter 4.4.5, the weight of the platform at the second

test was 86.824 Kg, which seemed to be ideal for a weight to buoyancy ratio. The weight of

equipment such as electrical components and cables was greatly undervalued at the design part

of the project, as the end result weighed 114 Kg. For getting closer to the ideal ratio, an option

would be to increase the pipe diameter in the bottom two battery pontoons from 160mm to

180mm, this way you would benefit from having more buoyancy as well as possibility of adding

more batteries. Since the increasing of buoyancy would be at the bottom part of the platform,

the stability would also be influenced, but overall the platform is believed to perform better.

5.1.2 Stability system

The stability system on the platform performs as expected during the tests, the amount of time

from a payload is placed and until the platform is level is well within the specified 30 seconds.

As stated in chapter 4.6.5, the water pumps are driven directly from relays, which is either ON

or OFF. The decision of using relays was only the fact that the parts were available at the time

126

CHAPTER 5. DISCUSSION 127

being and were not reconsidered until the testing of the system. While the pumps only can be

turned on or off, the only way to regulate the process is by regulating the amount of time they are

turned on. For doing this the, system is integrated with a PID controller. After doing these tests,

an idea of using the same motor controllers for the water pumps as used for the thrusters came

to mind. These controllers regulate the voltage to the pumps with 3200 steps in each direction,

even though the pumps only function in one direction, the regulation process would be much

smoother. If these controllers were used along with the PID controller, the stabilisation system

would have definitely performed smoother and perhaps even faster. An unknown factor to this

theory is the amount of water delivered from the pump at given PWM. This would have to be

tested and documented for use in the controlling.

5.1.3 Software solutions

Client

The client application running on Android was a interesting experience where the group

learned a lot of the strengths of app programming and the possibilities of developing software

on mobile units. One of the biggest advantages of developing the client in Android Studio is that

there is a easy and lucid way of designing a GUI and implement it with the actual software code.

More and more systems will have this kind of programming and it has been very useful to work

with this software development. However, there where only a few members of the group that

had a little experience with Android programming, and of course, this results in a lot of research

to find good solutions for making the client work. Also, the class structure in the application

suffers from this lack of experience. Separating each thread into individual classes is something

that can and should be done, and thus improve cohesion and loose coupling, but the group

decided to keep the first version of the application since it works and is crucial for testing the

whole project.

Server The server application was programmed as a concurrent Java program. The reasons for

this was because of the responsiveness, and utilisation of the hardware on the Odroid XU4.

Semaphores were used as a Thread safe mechanism, which worked fine. An option would be

to utilise synchronized blocks and methods. The code seemed to work very well on windows 10

and Linux 64-bit systems, but the Odroid’s arm7l 32-bit architecture caused several problems

CHAPTER 5. DISCUSSION 128

with certain libraries, such as RXTXcomm and openCV. The RXTXcomm problems where the

operative system would assign the USB ports randomly were solved after the final test. But once

again the ".so" files for the libraries could not be located when the java application was exported

as a ".jar" file. Optimally a Bourne shell script should launch the server application on startup.

The platform mode thread seem to not stop and start the threads as requested from the client.

5.1.4 Autopilot and Dynamic Positioning

To implement a functional and reliable autopilot to this vessel, it needs a sensor input for know-

ing where to go, and what to avoid. As discussed in chapter 3, the plan was to mount a 360

degree proximity sensor on the platform. The solution for how the platform handles this input

has yet to be implemented to the software. Since this platform is designed to operate itself, it

has to recognise foreign obstacles in the surface, such as smaller boats. Larger ships mounted

with an AIS system could potentially be scanned and taken into consideration without actually

seeing them. The current autopilot system was intended to navigate along a path created on

the client application. During out test of this system, a problem seemed to occur over and over

again which caused the rear thruster to stop. The autopilot will follow the path by correcting the

error between its current position and the waypoints of the path in the order they are set in the

client application. This causes the autopilot to function much like a DP system, except it does

not provide any sort of mechanism to control the heading as it moves along a path, or trying

to hold the last waypoint. A proper DP system would benefit this platform by keeping it on a

certain location while performing a job, with a known and controllable bearing, and without

drifting away. Even though this system is not yet implemented to the platform, it is believed to

be a short way from the current autopilot to a functional dynamic positioning system.

As a first version of the autopilot, the group is satisfied with the functionality Android Studio

has given with Google Maps API, and user friendly GUI options. This could be solved in sev-

eral different ways, using a laptop and other API‘s for maps and monitoring. As mentioned, the

remaining time was not enough to finish a DP simulation function on the client side, so the op-

erator could monitor the vessel closing in on a single waypoint. All the data needed to make this

simulation is available from the server side, and the group has a general idea how to implement

its functionality.

CHAPTER 5. DISCUSSION 129

5.1.5 Wireless Communication system

The wireless communication system exceeded the desired range specification for this proto-

type, but did not completely meet the estimated range. The reasons for the result’s aberration to

the estimated range are many, and mentioned in 2.6, but antenna miss alignment and obstacles

were obvious sources to signal loss. The router use a 12v power supply, which made the solution

very portable because of the easy access to 12v batteries. The TP-link Archer C5 v2 has a very

intuitive interface with many customisation possibilities, and the TP-link WN722N is a great

plug and play, high gain USB wireless adapter. Both TP-link devices have detachable antennas,

which were replaced by omnidirectional indoor antennas with a gain of 8dBi. The WLAN solu-

tion worked for this project, but the antennas should be replaced with outdoor antennas for a

more rigid solution.

5.1.6 Thruster feedback

While testing the platform in sea, one of the motor controllers stopped working, the only way

to recognise the fault was visually as the propeller didn’t move. A feedback system to the client

would be a good addition to the system where the motor controller register any errors, and could

distribute these to the server.

5.2 Stabilisation method

As the platform uses water pumps for controlling its ballast, there is no possibility of raising it

from beneath the surface if the ballast tanks are completely filled with water. As seen in chapter

4.5.1, this would be possible if using compressed air. This method would need separate tanks for

storing compressed air, and a compressor for filling them while at surface. If the method were to

be used, the height of the platform could then be controlled by separate thrusters, or by having

rotatable thrusters like some ROV’s have today. This could even be controlled by a system which

control the air inlet on and off, creating more or less buoyancy. This method would spend a lot

of air, and since an air compressor only works above surface this would only work for as long as

the air tanks are pressurised.

CHAPTER 5. DISCUSSION 130

5.3 Version control Git

In a project of this scale, a version control of the software has been crucial. The possibility to

create separate branches to test new functionality without altering the main code, is a safe and

excellent way to develop the software. Without version control, the merging of codes from the

group members would be a tedious and difficult task, and the safety of being able to return to

previous versions of the software would not be possible.

5.4 Necessary improvements

5.4.1 Buoyancy

The prototype could definitely benefit from some additional buoyancy. As discussed in section

5.1.1, the simplest solution for handling this issue would be to replace the battery pontoons with

larger ones, and swap the current batteries to lithium batteries.

5.4.2 Motor controllers

During the outdoor testing of the vessel, it was observed that one of the thrusters would shut

down after some time. Since the Arduino sends the information it is supposed to, and it is always

the same thruster which stopps, there reason to believe that the problem is located in the motor

controllers. This controller should be changed or inspected before further work on the platform.

5.4.3 Client - Server connection

The communication between client and server works without any trouble and connection is

established every time. However, if the operator of the client application wants to switch oper-

ation mode, the server has an handling issue. To switch mode, both the client and server must

be restarted and then choose the wanted mode.

CHAPTER 5. DISCUSSION 131

5.5 Experiences

5.5.1 Size and complexity of the project

One of the main experiences and perhaps the most important one, is that development takes

more time than expected in most occasions. When the pre-report was made, the group and

supervisors was a bit ambitious on the scale of this project. Making an own design from scratch,

develop software and autonomous operation, is a bit much to grasp, even for four students. A

project with less objectives would make the function perform better, as the group could spend

more time on improvement and tuning.

5.5.2 Project planning

During the pre project, a Gantt form was made to plan each activity and the time to spend on the

different aspects of the project. As mentioned earlier, the group experienced that the amount of

work was too great in order to finish on time, and the time estimates on some of the activities

are not met.

5.5.3 Working as a team

To get the most out of every group member, a workplace based on mutual respect, discipline

and high work ethic has been the foundation of this project. As a result, this makes members of

the group look forward to meet again day after day to reach the common goal. All members have

different backgrounds and experiences, but this has never been an issue, in fact, it has been an

benefit for the group as members have been able to learn from each other.

5.6 Possible operations for a semi-submersible USV

As intended, the platform is designed and developed for operations at sea farms, but due to the

design’s versatility, it is capable of doing other tasks as well.

Since the idea is to have the platform fully autonomous, the vessel can do tedious operations

like scanning the sea bed for world map improvements, or scanning the sea for contamination

CHAPTER 5. DISCUSSION 132

around an oilfield.

As mentioned in the above section, the platform could, given the correct equipment, also be

used as a fully submersible- as well as a semi-submersible vessel. This opens a lot of opportuni-

ties while the platform could perform operations beneath the surface as well as above.

Another concept is using several of these platforms and combine them for heavier loads. There

could theoretically be hundred platforms combined and controlled using swarm technology.

The combination could operate as a barge for transporting heavy equipment, or even as a tem-

porary bridge for vehicles to use.

Chapter 6

Conclusions

The specification of the thesis was to develop a platform designed for handling a ROV attached

to a winch. The vessel design should withstand waves better than a regular boat hull considering

the operation of the ROV. Active stabilisation must be implemented for the purpose of correct-

ing an angle of list within 30 seconds. The platform is meant to run autonomously but with a

manual override functionality.

The platform is designed with a large opening in the bottom reaching up to the deck as seen in

figure 4.24. There is room enough for a regular sized ROV to be hoisted in to the center of the

platform and it has a buoyancy which allows up to 15 Kg of payload, which is sufficient for the

intended equipment. Having the open design, it allows water to run through hull with very lit-

tle interference. The test results of stability in figure 4.58 supports this statement. The platform

withstands waves with shorter wavelengths, but as figure 4.59 indicates, larger wavelengths may

cause the platform to oscillate. On the coast, which is the operation area of interest, the plat-

form would have very little oscillations. Considering the design for both ROV operation and

wave resistance, the platform is believed to meet the given requirements. The stability system is

capable of correcting an angle of list within the specification as seen in table 4.4 and 4.5.

With the developed client application, you can choose between manual- or autopilot mode,

which works as intended. The manual mode gives the possibility to manoeuvre the platform in

all directions as well as a live feed from the platform using the on board camera. The autopilot

mode has a user friendly interface where one can make a list of way-points for the platform to

follow. The autopilot works as intended until the vessel starts to handle the incoming sensor

133

CHAPTER 6. CONCLUSIONS 134

values. The handling of these values has to be tested and adjusted further with the platform in

sea, for reaching a desirable behaviour.

A valuable experience from the project is that it is possible to develop sustainable prototypes us-

ing only low-cost components. The Arduino is more than capable of handling continuous work,

such as the stability system, and the Odroid is powerful enough to operate as the server with

all the software threads running at once. An application for a tablet or smart-phone is a good

solution as user interface, because the hardware is cheap and the software can be downloaded

directly from the internet.

Overall the group agrees on the project being a success. The experience from planning, working

as a team, software development, hydrodynamics, and all the other topics are greatly appreci-

ated, and will be a valuable asset in future working careers.

6.1 Further development

In the course of the project, we have had some ideas and thoughts of possible use and changes.

Here we have listed the most interesting of them.

• Implement full autonomous system.

• Attach a winch and a ROV.

• Expand client application with more data and functionality.

• Rewrite the server code in such manner that it can handle every client function flawlessly.

• Upgrade stability system with fuzzy logic.

• Use motor controllers to run pumps instead of relays.

• 4G mobile network to eliminate range limits.

• Swarm technology, multiple platforms working together to solve more complex challenges.

Appendices

A Preproject report

B Gantt diagram

C Project A3

D Progress report 26.01.17

E Progress report 10.02.17

F Progress report 24.02.17

G Progress report 24.03.17

H Progress report 02.05.17

I Meeting report 13.01.17

J Meeting report 30.01.17

K Meeting report 10.02.17

L Meeting report 24.03.17

M Meeting report 02.05.17

135

CHAPTER 6. CONCLUSIONS 136

N Platform mechanical drawings

O Electrical drawing stability system

P Electrical drawing thruster control

Q Stability calculation Rectangular platform

R Stability calculation Hexagon platform

S Server source code

T Client source code

U Arduino source code

Bibliography

[1] Meet android studio. https://developer.android.com/studio/intro/index.html.

[2] Thread. https://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html.

[3] European Space Agency. European geostationary navigation overlay service. URL http:

//www.esa.int/Our_Activities/Navigation/EGNOS/What_is_EGNOS.

[4] Anda-Olsen-AS. CP1232 Datasheet. Anda-Olsen-AS, 1 edition, 1 2003. CP1232 Datasheet.

[5] Stephen Boyd andLieven Vandenberghe. Convex Optimization. Cambridge University

Press, The Edinburgh Building, Cambridge, CB2 8RU, UK, 2004.

[6] Halvor Bothner-By. Tcm – nettverksprotokoll. URL https://snl.no/TCM_-_

nettverksprotokoll.

[7] KAI CHANG. RF and Microwave Wireless Systems. JOHN WILEY and SONS, INC., John Wiley

and Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, 2000.

[8] Oracle Java Documentation. Networking basics. URL https://docs.oracle.com/

javase/tutorial/networking/overview/networking.html.

[9] Børje Forssell. Global positioning system. URL https://snl.no/GPS.

[10] Thor I. Fossen. Lecture notes ttk 4190 guidance and control of vehicles (t. i. fossen). URL

http://www.fossen.biz/wiley/Ch2.pdf.

[11] Thor I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control. JOHN WI-

LEY and SONS, Ltd., John Wiley and Sons Ltd, The Atrium, Southern Gate, Chichester, West

Sussex, PO19 8SQ, United Kingdom, 2011.

137

https://snl.no/GPS
http://www.fossen.biz/wiley/Ch2.pdf
http://www.esa.int/Our_Activities/Navigation/EGNOS/What_is_EGNOS
https://docs.oracle.com/javase/tutorial/networking/overview/networking.html
https://snl.no/TCM_-_nettverksprotokoll
http://www.esa.int/Our_Activities/Navigation/EGNOS/What_is_EGNOS
https://docs.oracle.com/javase/tutorial/networking/overview/networking.html
https://snl.no/TCM_-_nettverksprotokoll

BIBLIOGRAPHY 138

[12] Thor I. Fossen and Tor A. Johansen. A survey of control allocation methods for ships

and underwater vehicles. Mathematical Association of America, 6(1):1–6, 2006 14th

Mediterranean Conference on Control and Automation. doi: http://ieeexplore.ieee.org/

document/4124854/.

[13] Rodolfo Giometti. BeagleBone Essentials. Packt Publishing, Birmingham, UK, 2015.

[14] Mark A. Haidekker. Linear FeedBack Controls - The Essensials. Elsevier, 32 Jamestown Road,

London NW1 7BY, UK, 2013.

[15] Jakob Sandstad Thor Hansen. antenne – radioteknikk. URL https://snl.no/antenne_

-_radioteknikk.

[16] Helge Holden. matematisk programmering. URL https://snl.no/matematisk_

programmering.

[17] Analog Devices Inc. AD620 Datasheet. Analog Devices Inc., 1 edition, 1 2003. AD620

Datasheet.

[18] Motorola Inc. SPI Block Guide. Motorola Inc., 2 edition, 2 2003. S12SPIV3/D.

[19] N. B. Nichols J. G. Zigeler. Optimum settings for automatic controllers. URL http://chem.

engr.utc.edu/Student-files/x2008-Fa/435-Blue/1942-paper.pdf.

[20] joptimizer.com. Primal-dual interior-point method. URL http://www.joptimizer.com/

primalDualMethod.html.

[21] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. Trans-

actions of the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960.

[22] 829 Kandidatnummer: 807, 819. Usv - unmanned surface vessel. Bachelor oppgave, 368

(10):74–77, 26.05.2016.

[23] A.D. King. Inertial navigation, forty years of evolution. URL link:http://www.

imar-navigation.de/downloads/papers/inertial_navigation_introduction.

pdf.

http://chem.engr.utc.edu/Student-files/x2008-Fa/435-Blue/1942-paper.pdf
https://snl.no/matematisk_programmering
link: http://www.imar-navigation.de/downloads/papers/inertial_navigation_introduction.pdf
https://snl.no/matematisk_programmering
http://www.joptimizer.com/primalDualMethod.html
https://snl.no/antenne_-_radioteknikk
https://snl.no/antenne_-_radioteknikk
link: http://www.imar-navigation.de/downloads/papers/inertial_navigation_introduction.pdf
http://chem.engr.utc.edu/Student-files/x2008-Fa/435-Blue/1942-paper.pdf
http://www.joptimizer.com/primalDualMethod.html
link: http://www.imar-navigation.de/downloads/papers/inertial_navigation_introduction.pdf

BIBLIOGRAPHY 139

[24] Kongsberg. Imo dp clasification. URL https://www.km.kongsberg.com/ks/web/

nokbg0240.nsf/AllWeb/D9479D5DB35FCA01C1256A4C004A876E?OpenDocument.

[25] James F. Kurose and Keith W. Ross. Computer Networking Sixth Edition. Pearson, Edin-

burgh Gate, Harlow CM20 2JE, England, 2013.

[26] MathWorks. Estimate flat eart position from geodetic latitude, longitude and altitude,

mathworks. 2011. URL http://se.mathworks.com/help/aerotbx/ug/lla2flat.html?

requestedDomain=www.mathworks.com.

[27] Wolfram Mathworld. Euler angles. URL link:http://mathworld.wolfram.com/

EulerAngles.html.

[28] LLC MetaGeek. inssider. URL http://www.metageek.com/products/inssider/.

[29] Oracle. Socket programming. http://docs.oracle.com/javase/tutorial/networking/sockets/definition.html.

[30] PipeLife. Pipelife. URL http://www.pipelife.no/no/.

[31] C. C. Robusto. The cosine-haversine formula. (USA). Mathematical Association of America,

64(1):38–40, 1957. doi: http://www.jstor.org/stable/pdf/2309088.pdf.

[32] Eirik Rossen. Usb – it. URL https://snl.no/USB_-_IT.

[33] Freescale Semiconductor. MPX2010 series Datasheet. Freescale Semiconductor, 13 edition,

10 2008. MPX2010 Datasheet.

[34] Asgeir J. Sørensen. A survey of dynamic positioning control systems. Annual Reviews

in Control, 35(1):123–136, 2011. doi: http://www.sciencedirect.com/science/article/pii/

S1367578811000095.

[35] Texas-Instruments-Inc. TCA9548A Datasheet. Texas-Instruments-Inc., 2 edition, 1 2015.

TCA9548A Datasheet.

[36] tp link.com. How to improve my wireless speed or range? URL http://www.tp-link.

com/us/faq-468.html.

http://www.pipelife.no/no/
link: http://mathworld.wolfram.com/EulerAngles.html
https://www.km.kongsberg.com/ks/web/nokbg0240.nsf/AllWeb/D9479D5DB35FCA01C1256A4C004A876E?OpenDocument
https://www.km.kongsberg.com/ks/web/nokbg0240.nsf/AllWeb/D9479D5DB35FCA01C1256A4C004A876E?OpenDocument
http://se.mathworks.com/help/aerotbx/ug/lla2flat.html?requestedDomain=www.mathworks.com
http://www.metageek.com/products/inssider/
https://snl.no/USB_-_IT
http://www.tp-link.com/us/faq-468.html
http://se.mathworks.com/help/aerotbx/ug/lla2flat.html?requestedDomain=www.mathworks.com
http://www.tp-link.com/us/faq-468.html
link: http://mathworld.wolfram.com/EulerAngles.html

BIBLIOGRAPHY 140

[37] Andy Wellings. Concurrent and Real-Time Programming in Java. JOHN WILEY and SONS,

Ltd., John Wiley and Sons, Ltd., The atrium, Southern Gate, Chichester, West Sussex PO19

8SQ, England, 2004.

NTNU SIDE 1
PREPROJECT REPORT – BACHELOR THESIS

TITLE:

Autonomous platform

CANDIDATES (NAMES):

Christer Bakken, Per Martin Leinan, Matias Heggen, Martin Blom

DATE: SUBJECT CODE: SUBJECT: DOCUMENT ACCESS:

16.01.17 IE303612 Bachelor thesis - Open

STUDIUM: NR PAGES/APPENDIX: BIBL. NR:

AUTOMATION TECHNIQUE / - Not in use -

PRINCIPALS/SUPERVISORS

Ottar Osen, Houxiang Zhang

SUMMARY:

NTNU SIDE 2
PREPROJECT REPORT – BACHELOR THESIS

CONTENTS

1 INTRODUCTION 3

2 NOTION 3

3 PROJECT ORGANIZATION 3

3.1 PROJECT GROUP 3
3.2 SUPERVISORS(VEILEDER OG KONTAKTPERSON OPPDRAGSGIVER) 4

4 AGREEMENTS 4

4.1 AGREEMENTS WITH PRINCIPAL SUPERVISORS 4
4.2 WORKPLACE AND RESOURCES 4
4.3 GROUP NORMS– AGREEMENT ON CO-OPERATION– ATTITUDES 4

5 PROJECT DESCRIPTION 4

5.1 PROBLEM- GOAL- PURPOSE 4
5.2 SPECIFICATIONS AND DEMANDS OF END RESULT 4
5.3 SCHEDULED PROGRESS FOR DEVELOPMENT- METHOD(S) 4
5.4 INFORMATION COLLECTION 5
5.5 RISK ANALYSIS 5
5.6 MAIN ACTIVITIES 5
5.7 PROGRESS MANAGEMENT 5
5.8 DECISION-MAKING PROCESS 6

6 DOCUMENTATION 6

6.1 REPORTS AND TECHNICAL DOCUMENTS 6

7 PLANNED MEETINGS AND REPORTS 6

7.1 MEETINGS 6
7.2 PERIODIC REPORTS 6

8 TREATMENT OF NONCONFORMANCE 6

9 EQUIPMENT REQUIREMENTS / CONDITIONS FOR IMPLEMENTATION 7

10 REFERENCES 7

 APPENDIX

NTNU SIDE 3
PREPROJECT REPORT – BACHELOR THESIS

1 INTRODUCTION
In maritime industry there are numerous operations that could be improved by using
smart systems. Operations such as survey, inspection, sensor and hoisting are examples
that needs positioning control and stability. In addition, acquisition and operating cost
are among the most important factors when new systems are being accessed.
A solution for/to this could be an autonomous platform with the capability of self -
operating, DP1 and active stabilization. Equipped with different types of sensors, there
are no restriction to what operations a system like this could perform. Not only would the
efficiency be increased, but also the safety, since there are no operator on the platform
itself. This makes it versatile, thus more cost efficient.

NTNU SIDE 4
PREPROJECT REPORT – BACHELOR THESIS

2 NOTION
- GUI: Graphical User Interface
- GPS: Global Positioning System
- DP1: Dynamic Positioning System. A standard from Germanischer Lloyd that describes the

requirements of the system. DP1 has no redundancy.

NTNU SIDE 5
PREPROJECT REPORT – BACHELOR THESIS

3 PROJECT ORGANIZATION

3.1 Project members
Per Martin Leinan (Chief executive)
Christer Bakken
Matias Heggen (Report supervisor)
Martin Blom

3.1.1 Project tasks - organization

Platform design (Primary)

- Martin, with assistance from Per Martin

Stabilization (Primary)

- Martin, with assistance from Per Martin

Autopilot (Primary)

- Christer, with assistance from Matias

Dynamic positioning (Primary)

- Christer, with assistance from Matias

Autonomous (Primary)

- Per Martin, with assistance from Martin

Communication (Primary)

- Matias, with assistance from Christer

GUI (Primary)

- Matias, with assistance from Christer

3.1.2 Project leader responsibilities
- Convene meetings with bachelor supervisors every second friday
- Update progress reports

3.1.3 Secretary responsibilities
- Log activities and progress every week
- Write meeting report

3.1.4 Other group members responsibilities
- All members are responsible for continuous update of documentation and main

report.

3.2 Supervisors (veileder og kontaktperson oppdragsgiver)
Houxiang Zhang and Ottar L. Osen

NTNU SIDE 6
PREPROJECT REPORT – BACHELOR THESIS

4 AGREEMENTS

4.1 Agreement with supervisors
From the first meeting between students and supervisors, several things were
discussed considering the size and use of time in the project. An agreement was
made that the students grasp a wide spectrum of functionalities, four or five, and
do some research whether it is possible to achieve all or not. The supervisors
made it clear that a final result with 2-3 of this functionalities would be sufficient.

4.2 Workplace and resources
 NTNU Ålesund

4.3 Group Norms - Agreement on cooperation - Attitudes

The workdays will be as in any normal company where work hours and place is accordingly.
A normal day of work is 0800 to 1600 and work place is NTNU Ålesund. The group has to be
notified if there are deviations from this.

Respect for each other. We are all working toward a common goal and we are dependent of
each other. The product we develop is a proof of what we are able to create together as a group
and what knowledge from our studies we are able to use in a real life project.

NTNU SIDE 7
PREPROJECT REPORT – BACHELOR THESIS

5 PROJECT DESCRIPTION

5.1 Problem - goal - purpose
For the bachelor thesis, the main goal is to make the concept idea of an
autonomous platform to a real life application.

The final product is to be an autonomous platform with DP capabilities and self
stabilizing system for solving a vary of general purposes.
The platform can also be equipped with accessories that fits several types of
maritime operations. Things to take in consideration is:

1. Make a design to fit several types of applications
2. Decide what sensors are necessary to reach final result
3. How will the design behave in different types of water conditions

5.2 Specifications and demands of end result

The platform will be a prototype, capable of doing numerous autonomous
operations.
Runtime for a minimum of two hours in transport-mode, this means two of the
thrusters run on max capacity for two hours straight.
Routing is done by the GUI, plotting a course for the platform to run, inspect or
other. A manual override safe-mode will be implemented with an RC-controller on
its own frequency spectrum.

A winch will be mounted on top of the platform for handling subsea equipment,
the load capacity of this winch will be limited by the carrying capacity of the
platform.
Dynamic positioning is one of the specifications needed for the platform to be
versatile, to aid equipment for accuracy.

Instruments implemented would be, sonar for observing and logging the sea
bottom as well as giving the platform information on depth, thermistors for
logging sea temperature, GPS for route navigation, 360 degree laser sensor for
detecting obstacles and an accelerometer for stabilization and direction.

Thrusters has to meet requirements for use in saltwater, the natural selection is
ROV thrusters since they are already dimensioned for this specific use. There will
be four thrusters, giving the opportunity to maneuver in all directions, this will
help the DP functionality tremendously.
A 360 degree camera for remote platform maneuvering.

NTNU SIDE 8
PREPROJECT REPORT – BACHELOR THESIS

5.3 Scheduled progress for development - method(s)
The scheduled progression-plan for the bachelor-thesis:
Lean project management is used for planning and executing the project. The
method used for this is Deming cycle, also known as A3.
The benefit of this method is that the progres is reevaluated continuously.
This gives the opportunity to look at the problem from different angles.
One document explains the whole problem.
A disadvantage with the A3 method can be time consumption.

5.4 Information gathering
Earlier bachelor thesis and projects regarding autonomous systems will be used as
background information. Furthermore, companies as Rolls Royce and Sintef are
currently working on autonomous water vehicles, and will be contacted for general
information and guidance.
Two of the students in the group worked on a platform project in Introduction to
Mechatronics and will bring a lot of valuable experience into the project.

5.5 Risk analysis

Probability

Very
High

Single day absence

Software issues Hardware
issues

High Health/illness Miscalculations
Time issues

Medium

Low Bad
communication

Very Low

 Very Low Low High Very High

Impact

Issues like single day absence and illness are things that are difficult to anticipate. But
they can result in bad communication, if the work is not properly documented
continuously.
If illness occur among group members, another member must be able to continue the
work. The consequence of stalling the project because only one student, will have
massive impact concerning time issues. Ways to prevent this is to document the progress
properly and work in pairs to keep the workflow running.

Time issues are best solved by proper planning and continuously supplementing the
report.
Hardware and software issues will occur. To avoid spending unnecessary time on the
issues, we will have to do proper research, cooperate on problems within the group, and
use our supervisors or other persons with high competence within the specific field.

NTNU SIDE 9
PREPROJECT REPORT – BACHELOR THESIS

To minimize the effect of one software component failing, the different software
components are independent. i.e. If the autonomous system fails, the dynamic
positioning software will remain functional.

NTNU SIDE 10
PREPROJECT REPORT – BACHELOR THESIS

5.6 Main activities

Nr Main activity Responsibility Cost Time/scope

A1 Platform design Martin/Per 15600,- 26.01.17 - 20.02.17

A2 Autopilot Christer/Matias 2000,- 26.01.17 - 06.04.17

A3 Dynamic positioning Christer/Matias 0,- 26.01.17 - 06.04.17

A4 Autonomous Per/Martin 10000,- 21.02.17 - 07.04.17

A5 Communication Matias/Christer 3000,- 26.01.17 - 01.03.17

A6 GUI Matias/Christer 5000,- 26.01.17 - 01.03.17

A7 Active stabilization Per/Martin 2000,- 26.01.17 - 20.02.17

NTNU SIDE 11
PREPROJECT REPORT – BACHELOR THESIS

5.7 Progress management

5.7.1 Master plan
Platform design (Primary)

- With only a concept idea of what the platform should look like, it has to be made specifications
for what it is supposed to do and calculations given its requirements. The platforms requirements
considering payload lays the groundwork for buoyancy needs.
Start date: 26.01.17
Estimated date of completion: 26.01.17

- When this requirements is definite, all things considered, there will be made several sketches of

the platform with different designs. All the designs will be run i 3D simulator and from there we
will use the prefered model.

- Draw Prototypes
Start date: 27.01.17
Estimated date of completion:30.01.17

- Calculate mass and center of gravity
Start date: 27.01.17
Estimated date of completion: 30.01.17

- 3D simulation
Start date: 30.01.17
Estimated date of completion: 1.02.17

- When the prefered model is identified, the platform will be, as much as possible, built in 3D

before ordering parts. This helps detecting build issues for eliminating them before the actual
build. To keep time spent on building and modifying parts as low as possible, all parts will be
ordered as is on drawing.
Start date: 30.01.17
Estimated date of completion: 31.01.17

- Ordering of parts for the platform.

Start date: 01.02.17
Estimated date of completion: 14.02.17

- Building the platform

Start date: 15.02.17
Estimated date of completion: 20.02.17

Autopilot (Primary)

- For the autopilot and the DP part of the project, a report considering these issues is at hand and
has to be read through carefully. The plan is to improve the result from the earlier group and not
redo the mistakes of the project.
Start date: 26.01.17
Estimated date of completion: 02.02.17

- Get to know the GPS and how it works on Odroid. An issue to be solved is to get a
communication between NetBeans and the GPS itself.
Start date: 03.02.17
Estimated date of completion:08.02.17

NTNU SIDE 12
PREPROJECT REPORT – BACHELOR THESIS

- A GUI with a map and possibility to insert coordinates will be our solution to make the platform
find the wanted waypoints.
Start date: 09.02.17
Estimated date of completion: 15.02.17

- Create final software
Start date: 16.02.17
Estimated date of completion: 28.03.17

- Implement on platform
Start date: 29.03.17
Estimated date of completion: 03.04.17

- Test system
Start date: 04.04.17
Estimated date of completion: 06.04.17

Dynamic positioning (Primary)

- The DP will be based on the autopilot system. A program that identifies if there is a offset from
the wanted position to the actual position of the platform will regulate this accordingly.
Information collection as first step.
Start date: 26.01.17
Estimated date of completion: 02.02.17

- Create software for testing the functionality
Start date: 07.04.17
Estimated date of completion: 09.05.17

- Implement system to main software
Start date: 10.05.17
Estimated date of completion: 10.05.17

- Test DP on the platform
Start date: 11.05.17
Estimated date of completion: 16.05.17

Autonomous (Primary)

- To make the platform autonomous it has get to the waypoints and maneuver through obstacles
which is not seen by the GPS. For this task the platform will be equipped with some sort of
sensor for detecting obstacles.

- The first task is to find the desirable sensors and learn how it’s used.

Start date: 21.02.17
Estimated date of completion: 27.02.17

- Order sensor and other needed equipment for the task.
Start date: 28.02.17
Estimated date of completion: 23.03.17

- Create software for sensors with I/O for use in main software.
Start date: 28.02.17
Estimated date of completion: 07.04.17

NTNU SIDE 13
PREPROJECT REPORT – BACHELOR THESIS

Communication (Primary)
- The communication between server (operator computer) and client (platform) has a required

distance of 200m. The primary communication link will be through WiFi, and an optional would
be to use a lower frequency radio controller. WiFi will provide enough bandwidth for camera feed
and GPS plots. An appropriate secondary solution is to use a Radio Controller with a lower
operating frequency than WiFi in order to eliminate interference. A Radio Controller with a lower
operating frequency will naturally have a farther range.

- In order to meet our requirements we will have to do necessary research and information

collection.
Start date: 26.01.17
Estimated date of completion: 02.02.17

- Decide transmission protocol, UDP or TCP, and get familiar with programing sockets in java
language according to prefered protocol choice.
Start date: 31.01.17
Estimated date of completion: 07.02.17

- Establish communication over WiFi and send data packets with relevant information to what we
will be transmitting on the final product.
Start date: 08.02.17
Estimated date of completion: 15.02.17

- Implement into main code
Start date: 16.02.17
Estimated date of completion: 28.03.17

GUI (Primary)

- The user interface for the platform would consist of a program on the computer, able to override
the platform maneuvering as well as showing live stream from the onboard camera. The
program displays a map, on the map you would see the platforms current location as well as the
possibility of setting a new waypoint or route for it to go. Designing a GUI consist of several
phases.

- Gather information and knowledge about how to make a GUI.

Start date: 26.01.17
Estimated date of completion: 01.02.17

- Make a simple GUI and do some testing in order to get familiar with concepts like screen scaling.
Start date: 30.01.17
Estimated date of completion:03.02.17

- Make a visual sketch to use as a guide for the layout
Start date: 06.02.17
Estimated date of completion: 07.02.17

- Start developing a final layout and bind keyboard buttons to the visual buttons in the GUI
Start date: 08.02.17
Estimated date of completion: 22.02.17

- Merge the GUI with functional code.
Start date: 23.02.17
Estimated date of completion: 01.03.17

Stabilization (Primary)

NTNU SIDE 14
PREPROJECT REPORT – BACHELOR THESIS

- To stabilize the platform it would need some way to move ballast from one tank to another. This

would be controlled by the onboard accelerometer and a water pump system. The Ballast tanks
itself will be designed along with the main platform design.
Start date: Along with platform design.
Estimated date of completion:

- The system will use water for stabilization, a water pump with valves for controllability is used in

the idea. Which water pump to use, what extra equipment is needed and how to implement it to
a whole system is what to figure out as of this step.

- Start date: 26.01.17
- Estimated date of completion:26.01.17

- Order parts
- Start date: 03.02.17
- Estimated date of completion:03.02.17

- Build complete system for testing before mounting on platform, create software for testing
- Start date: 06.02.17
- Estimated date of completion:14.02.17

- Mount system on platform
- Start date: 15.02.17
- Estimated date of completion:20.02.17

5.7.2 Project management tools
Gantt diagram, deming cycle using the A3 problem solving method.

NTNU SIDE 15
PREPROJECT REPORT – BACHELOR THESIS

Picture: A3 form

Picture: Gantt diagram

5.7.3 Development tools
In order to complete the project a wide array of tools are required, such as 3D design
tools, simulation tools, material to create a functional prototype of the design, wave
simulation tank, sensors, thrusters, gps, computers, microcontrollers, proper software for
software development, mobile network route.

NTNU SIDE 16
PREPROJECT REPORT – BACHELOR THESIS

5.7.4 Internal control - evaluation
The follow-up process of the progress is based on a gantt table, deming cycle(A3
model),daily and weekly meetings.

5.8 Decision-making process

The decisions made in this preliminary report has been done in unity.
The parts where we had different opinions the decisions were made by a poll.

6 DOCUMENTATION

6.1 Reports and technical documents
- Weekly update on the main report, all work done on project will be

documented in this report.
- All technical documents and data sheet on equipment used is uploaded to

the group folder on Office 365.
This way, all documentation is easily accessed for later use and for
completion of the main report.

NTNU SIDE 17
PREPROJECT REPORT – BACHELOR THESIS

7 PLANNED MEETINGS AND REPORTS

7.1 Meetings

7.1.1 Meeting with supervisors
Meetings with the supervisors are scheduled to every second Friday where
progress is presented.

7.1.2 Project meetings
Every day will be started off with a quick brief of what needs to be done,
unexpected challenges and a review of the schedule.

NTNU SIDE 18
PREPROJECT REPORT – BACHELOR THESIS

7.2 Periodic reports

7.2.1 Progress reports(incl. milestones)
Progress reports will be updated continuously, and presented during the meetings
with the supervisors.

8 TREATMENT OF NONCONFORMANCE
If anyone is struggling with their task for more than a day without progress,
brainstorm with his assistant co-worker to try and find a solution. If another day
passes without progress, talk with the rest of the group or one of our supervisors.
Everyone is responsible for their own task, and to seek aid if needed.

9 EQUIPMENT REQUIREMENTS / CONDITIONS FOR
IMPLEMENTATION

- Welding equipment for PE tubes (located at the school’s workshop)

NTNU SIDE 19
PREPROJECT REPORT – BACHELOR THESIS

10 REFERENCES

APPENDIX

Appendix 1 Gantt diagram

Appendix 2 A3

Appendix 3 Budget

Bachelot thesis Autonomous platform 20.jan.2017

NTNU Aalesund

Prosjektleder Per Martin Leinan
Prosjekt start/slutt datoer 16.jan.2017 - 22.jun.2017

Avsluttet 0%
Oppgave 45
Deltakere 4

Navn Startdato Sluttdato
Project 16.01.17 21.06.17
Preproject 16.01.17 20.01.17

Platform 26.01.17 20.02.17
Platform requirements 26.01.17 26.01.17
Design concepts 27.01.17 31.01.17

Drawing prototypes 27.01.17 30.01.17
Calculate mass and center of gravity 27.01.17 27.01.17
3D simulation 27.01.17 31.01.17

Build in 3D 30.01.17 31.01.17
Order parts 01.02.17 14.02.17
Build platform 15.02.17 20.02.17

Stability 26.01.17 20.02.17
Design ballast tank system 26.01.17 27.01.17
Find desirable equipment 01.02.17 03.02.17
Order parts 03.02.17 03.02.17
Build system for testing 06.02.17 14.02.17
Mount system on platform 15.02.17 20.02.17

Autonomitet 21.02.17 07.04.17
Information collection 21.02.17 27.02.17
Order sensors 28.02.17 23.03.17
Create software with I/O for use in main software 28.02.17 07.04.17

Autopilot 26.01.17 06.04.17
Information collection 26.01.17 02.02.17
Communication from GPS to Odroid 03.02.17 08.02.17
Create GUI for testing 09.02.17 15.02.17

Bachelot thesis Autonomous platform 20.jan.2017

Oppgave 2

Navn Startdato Sluttdato
Create software 16.02.17 28.03.17
Implement on platform 29.03.17 03.04.17
Test 04.04.17 06.04.17

DP 26.01.17 16.05.17
Information collection 26.01.17 02.02.17
Create software for testing 07.04.17 09.05.17
Implement system to main software 10.05.17 10.05.17
Test 11.05.17 16.05.17

GUI 26.01.17 01.03.17
Information collection 26.01.17 01.02.17
Make simple GUI for test 30.01.17 03.02.17
Make sketch for layout 06.02.17 07.02.17
Develop final layout and functionality 08.02.17 22.02.17
Implement to main software 23.02.17 01.03.17

Communication 26.01.17 28.03.17
Information collection 26.01.17 02.02.17
Decide protocol and learn protocol 31.01.17 07.02.17
Establish communication over wifi 08.02.17 15.02.17
Implement to main software 16.02.17 28.03.17

Completetion of project 30.05.17 06.06.17

Bachelot thesis Autonomous platform 20.jan.2017

Oppgave 3

Navn Standardrolle
Per Martin Leinan Prosjektleder
Martin Andreas Blom Task leader
Matias Heggen Task member
Christer Bakken Task leader

Bachelot thesis Autonomous platform 20.jan.2017

Deltakere 4

Bachelot thesis Autonomous platform 20.jan.2017

Ganttskjema 5

Navn Startdato Sluttdato

Project 16.01.17 21.06.17

Preproject 16.01.17 20.01.17

Platform 26.01.17 20.02.17

Platform requirements 26.01.17 26.01.17

Design concepts 27.01.17 31.01.17

Drawing prototypes 27.01.17 30.01.17

Calculate mass and ...27.01.17 27.01.17

3D simulation 27.01.17 31.01.17

Build in 3D 30.01.17 31.01.17

Order parts 01.02.17 14.02.17

Build platform 15.02.17 20.02.17

Stability 26.01.17 20.02.17

Design ballast tank syst...26.01.17 27.01.17

Find desirable equipme...01.02.17 03.02.17

Order parts 03.02.17 03.02.17

Build system for testing 06.02.17 14.02.17

Mount system on platf... 15.02.17 20.02.17

Autonomitet 21.02.17 07.04.17

Information collection 21.02.17 27.02.17

Order sensors 28.02.17 23.03.17

Create software with I/... 28.02.17 07.04.17

Autopilot 26.01.17 06.04.17

Information collection 26.01.17 02.02.17

Communication from G...03.02.17 08.02.17

Create GUI for testing 09.02.17 15.02.17

Create software 16.02.17 28.03.17

Implement on platform 29.03.17 03.04.17

Test 04.04.17 06.04.17

DP 26.01.17 16.05.17

Information collection 26.01.17 02.02.17

Create software for test...07.04.17 09.05.17

Implement system to m...10.05.17 10.05.17

Test 11.05.17 16.05.17

GUI 26.01.17 01.03.17

Information collection 26.01.17 01.02.17

Make simple GUI for test30.01.17 03.02.17

Make sketch for layout 06.02.17 07.02.17

Develop final layout an... 08.02.17 22.02.17

Implement to main soft...23.02.17 01.03.17

Communication 26.01.17 28.03.17

Information collection 26.01.17 02.02.17

Decide protocol and le... 31.01.17 07.02.17

Establish communicati... 08.02.17 15.02.17

Implement to main soft...16.02.17 28.03.17

Completetion of project 30.05.17 06.06.17

2017

januar februar mars april mai juni juli

Bachelot thesis Autonomous platform 20.jan.2017

Personelloversikt 6

Navn Standardrolle

Per Martin Leinan Prosjektleder

Martin Andreas Blom Task leader

Matias Heggen Task member

Christer Bakken Task leader

2017

januar februar mars april mai juni juli

2) Ny ønsket situasjon:

• Stabilized platform

We want a stable platform for

enhancing accuracy of tools and

sensors.

Theme: Stabilization

4) Aksjon: Valg av tiltak

1. Modular

2. Foils

3. Thrusters

4. Water tanks and pump

systems

5. Linear actuators

6. Gyro

5. Hva
Tiltak

Hvordan
gjennomføre?

Hvor? Hvem er
ansvarlig?

Når?

4 Main project NTNU Group platform Now – 06.06

6. Evaluering, standardisering 7 og læring (8)

• Which environment is the platform supposed to operate in?
• In sheltered waters
• In lakes

• Why do we need active stabilizaton?
• Sensor
• Payload

• What challenges might occur?
• Transport
• Ocean currents
• Wind
• Payload

• Safety
• The system can not be able to tip the platform.

3) Analyse (Det helhetlige kunnskapssystemet)

1) Bakgrunn/Nå-situasjon:

• Without active stabilization, the

platform could tilt sideways due to

drag or wind.

Stor effekt
Lite ressurser

Mindre effekt
ressurskrevende

Stor Effekt

Lite ressurser

1

2

3

4

5

6

A3 Eier: Bachelorgruppe Autonom Plattform
Dato: 11.01.17

2) New desireable situation:

Main goal: To have a design that

can be used i several types of

applications.

• It has to be naturally stable

• Maneuverability in every

direction on the surface without

having to turn

• Has to be able to pivot.

Problem: Platform design

4) Aksjon: Valg av tiltak

1. Make sevral concept designs

2. Run the finished designs in a

simulator.

3. Use Li-ion batteries for both

ballast and operation time.

4. Compare suitable materials,

such as: Aluminium, Plastic,

Plastic and Aluminium, Steel

and Aluminium,Carbon fiber

etc.

5. Hva
Tiltak

Hvordan
gjennomføre?

Hvor? Hvem er
ansvarlig?

Når?

1 Main project NTNU Group platform Now – 06.06

2 Main project NTNU Group platform Now – 06.06

3 Main project NTNU Group platform Now – 06.06

4 Main project NTNU Group platform Now – 06.06

6. Evaluering, standardisering 7 og læring (8)

Requirements:
• The platform should be able to run for a minimum of 2 hours.
• Active stabilization must be taken in consideration.
• Top section for mounting equipment
• Minimum payload of ---
• The Haswing 20 thruster use 17A at maximum thrust
• 2 thrusters with 17A gives 34A, other electronics, 6A, total of 40A. Two

hours of operation need at least 80Ah battery.
• With 18650 batteries, this results in 5.2kg of battery pack.
• Li-ion because of low voltage drop over time.

Safety:
• The platform has to be naturally stable.
• Sustainable materials.
• Thrusters must be encapsulated.

3) Analyse (Det helhetlige kunnskapssystemet)

1) Background/current situation:

We have a concept idea and a

prototype which has to be improved.

Stor effekt
Lite ressurser

Mindre effekt
ressurskrevende

Stor Effekt

Lite ressurser

1
2

3

4

A3 Eier: Bachelorgruppe Autonom Plattform
Dato: 11.01.17

2) Ny ønsket situasjon:

A stable solution for implementing
autonomous operation of the
watercraft.

The watercraft has to be able to
maneuver through sea towards a
given target by itself.

Solutions for autopilot using GPS A3 Eier: Bachelorgruppe Autonom Plattform
Dato: 11.01.17

4) Aksjon: Valg av tiltak

1. Compare GPS: Arduino against

GPS: USB

2. Find suitable Accelerometer

3. Design a PID controller

5. Hva
Tiltak

Hvordan
gjennomføre?

Hvor? Hvem er
ansvarlig?

Når?

1 Main project NTNU Group Now – 06.06

2 Main project NTNU Group Now – 06.06

3 Main project NTNU Group Now – 06.06

6. Evaluering, standardisering 7 og læring (8)

Requirements:
• The accuracy of the GPS

• +-1 meter
• The GPS have to have mean value functionality
• Wind and sea current compensation

• PID controller
• Has to follow a track to waypoint.
• Accelerometer for direction

Safety:
GPS loose it’s signal, what happens?

• Safety protocol for GPS signal loss.
• Manual override
• Emergency stop

3) Analyse (Det helhetlige kunnskapssystemet)

1) Bakgrunn/Nå-situasjon:

We need solutions for autopilot for
the watercraft.
We have a partially autonomous
watercraft developed by another
group earlier.

Stor effekt
Lite ressurser

Mindre effekt
ressurskrevende

Stor Effekt

Lite ressurser

1

2

3

2) Ny ønsket situasjon:

A stable solution for implementing

autonomous operation

The vessel has to be able to

manouvre through sea towards a

given target by itself.

Foreign obstacles has to be taken in

consideration.

Solutions for autonomous operations A3 Eier: Bachelorgruppe Autonom Plattform
Dato: 11.01.17

4) Aksjon: Valg av tiltak

1. Design software as a
concurrent program

2. Automatic Identification
System (AIS)

3. Attach a lantern for
visibility

4. Depth sensor
5. Design sensor system to

detect surface obstacles

5. Hva
Tiltak

Hvordan
gjennomføre?

Hvor? Hvem er
ansvarlig?

Når?

1 Main Project NTNU Group Now –06.06

2 Sub Project NTNU Group Now –06.06

3 Main Project NTNU Group Now –06.06

4 Main Project NTNU Group Now –06.06

5 Main Project NTNU Group Now –06.06

6. Evaluering, standardisering 7 og læring (8)

• What to detect and avoid
• Small boats without AIS
• Kayaks
• In general foreign obstacles
• Shallow waters

• How to react meeting obstacles
• The autonomous system should plan a new route around the

obstacle in the way, always keeping a clear distance to other
boats.

• Safety
• Mimimum distance to obstacles
• Visibility

3) Analyse (Det helhetlige kunnskapssystemet)

1) Bakgrunn/Nå-situasjon:

The GPS can not see everything around

the watercraft itself.

Stor effekt
Lite ressurser

Mindre effekt
ressurskrevende

Stor Effekt

Lite ressurser

2

1

3

4

5

2) Ny ønsket situasjon:

We want a wireless communication

with a minimum range of 100m

The GUI to control system.

Wireless communication and GUI from platform to land A3 Eier: Bachelorgruppe Autonom Plattform
Dato: 11.01.17

4) Aksjon: Valg av tiltak

1. Design GUI in JAVA with

neccesary functions to controll

the platform

2. Find GUI software - Reverse

engineering

3. Compare communication

systems, WIFI, Bluetooth, VHF,

cellular network etc.

4. Compare network protocols

5. Redundant manual control

system

6. Camera feed

5. Hva
Tiltak

Hvordan
gjennomføre?

Hvor? Hvem er
ansvarlig?

Når?

1 Main Project NTNU Group GUI Now – 06.06

3 Main Project NTNU Group GUI Now – 06.06

4 Main Project NTNU Group GUI Now – 06.06

5 Main Project NTNU Group GUI Now – 06.06

6 Main Project NTNU Group GUI Now – 06.06

6. Evaluering, standardisering 7 og læring (8)

The communication distance can not be a problem because of the vast
distances the platform is operating in.

• Bandwidth?
• Video stream
• Realtime feed

Safety
• Connection issues

• Distance, weather, operation frequency
• Redundancy

3) Analyse (Det helhetlige kunnskapssystemet)

1) Bakgrunn/Nå-situasjon:

We have a bluetooth system for operating

the vehicle.

Stor effekt
Lite ressurser

Mindre effekt
ressurskrevende

Stor Effekt

Lite ressurser

2

1

3
4

5

6

2) Ny ønsket situasjon:

We want an instrument to show

versatility for the platform.

The system has to be complete and

ready to implement on the vehicle.

Payload A3 Eier: Bachelorgruppe Autonom Plattform
Dato: 11.01.17

4) Aksjon: Valg av tiltak

1. Buy a winch

2. Design and build a winch

3. Attach a sonar

4. Sensor package for plug and play

systems

5. 360 degree camera

5. Hva
Tiltak

Hvordan
gjennomføre?

Hvor? Hvem er
ansvarlig?

Når?

2 sub project NTNU Group

Plaform

Now – 06.06

3 sub project NTNU Group

Platform

Now –

06.06

5 sub project NTNU Group GUI Now –

06.06

6. Evaluering, standardisering 7 og læring (8)

The payload can be a variety of components, such as:
• Sensors
• Winch

Sensors will be external sensors for gathering data of the environment.

The winch has to be designed in such manner that the platform will
retain its stability.

Safety
Point of gravity issues
Overloadsystems

3) Analyse (Det helhetlige kunnskapssystemet)

1) Bakgrunn/Nå-situasjon:

We have no specific task for the platform Stor effekt
Lite ressurser

Mindre effekt
ressurskrevende

Stor Effekt

Lite ressurser

2

1

3
4

5

 BUDGET BACHELOR THESIS

Cost related to different activities 2017 SUM

Activity 1 - Platform main structure 15 600 15 600

Activity 2 - Communication 3 000 3 000

Activity 3 - Autonomous 10 000 10 000

Activity 4 - Autopilot 2 000 2 000

Activity 5 - Active stabilization 2 000 2 000

Activity 6 - GUI 5 000 5 000

Activity 7 - Dynamic positioning 0 0

SUM 30 600 37 600

Cost plan Pcs Price/pcs SUM

Pipe: PE100 SDR41 160mm, 6m 2 500 1 000

Rørkrage: PE 100 SDR41 160m 12 50 600

Monteringsplate/Monteringsmateriell: 1 8 000 8 000

18650 Battery pack 1 6 000 6 000

Rotasjons sensor 1 10 000 10 000

Kommunikasjonsutstyr 1 3 000 3 000

Stabilisering 1 2 000 2 000

GPS 1 2 000 2 000

360 kamera 1 5 000 5 000

SUM 8 550 37 600

Provider 2017 SUM

Brødrene Dahl AS 1 600 1 600

Stette Vannskjæring AS 8 000 8 000

Anda Olsen AS 6 000 6 000

Other 22 000 22 000

SUM 37 600 37 600

Financial plan 2017 SUM

NTNU 37 600 37 600 %-vis

100 %

SUM 37 600 37 600 #REF!

ID301702

Hovedprosjekt

Prosjekt

Autonom platform

Antall møter denne periode 1). Firma - Oppdragsgiver
NTNU Ålesund /

Side

1 av 2

Rapport fra prosess

Framdriftsrapport

Periode/uke(r)

uke 3 og 4

Antall timer denne per. (fra logg) Prosjektgruppe (navn) Dato

26.01.17

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne

rapportperioden

Hovedhensikt / fokus for arbeidet i denne perioden

Gjennomføre et godt forprosjekt. Starte tankeprosessen rundt de forskjellige temaene i

hovedprosjektet og lage en god plan for gjennomføringen.

Planlagte aktiviteter i denne perioden

Gjennomføre forprosjektet. Oppstart på forprosjektet blir sammen med første modul i industri 4.0.

Derfor ligger mye av grunnlaget i forprosjektet i arbeid utført ifm første modul.

Idé myldring på de første temaene, kommunikasjon, autopilot og platform.

Virkelig gjennomførte aktiviteter i denne perioden

Alle planlagte oppgaver ble utført i perioden.

Beskrivelse av/begrunnelse for eventuelle avvik mellom planlagte og virkelige aktiviteter

NIL

Beskrivelse av /begrunnelse for endringer som nå ønskes i selve prosjektets innhold eller i den videre framgangsmåten - eller framdriftsplanen

NIL

Hovederfaring fra denne perioden

Beregne tid er vanskelig. Spesielt på software utvikling og langt frem i tid.

Hovedhensikt/fokus neste periode

Få ferdig designet av Platform til det punkt at deler kan bestilles og 3D modell er tegnet. Få

avklart hvilken kommunikasjonsløsning som skal benyttes og starte utvikling og test av denne.

Informasjonsinnhenting på tidligere utviklede autopilotsystem. Lage en enkel utgave av et

kartsystem.

Planlagte aktiviteter neste periode

Ferdigstille Platform desig frem til endelig design og 3D tegninger. Materialer bestilt.

Informasjonsinnhenting for kommunikasjonsløsning og autopilot.

Avklare krav til kommunikasjonsløsning, lande endelig løsning og sette opp et enkelt testsystem.

Lage en enkel GUI for testing av trustere og kommunikasjon.

Lage et utkast til kartsystem for bruk i autopilotsystemet.

Annet

ID301702

Hovedprosjekt

Prosjekt

Autonom platform

Antall møter denne periode 1). Firma - Oppdragsgiver
NTNU Ålesund /

Side

2 av 2

Rapport fra prosess

Framdriftsrapport

Periode/uke(r)

uke 3 og 4

Antall timer denne per. (fra logg) Prosjektgruppe (navn) Dato

26.01.17

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne

rapportperioden

Ønske om /behov for veiledning, tema i undervisningen – drøfting ellers

Godkjenning/signatur gruppeleder

Signatur øvrige gruppedeltakere

ID301702

Hovedprosjekt

Prosjekt

Autonom platform

Antall møter denne periode 1). Firma - Oppdragsgiver
NTNU Ålesund /

Side

1 av 2

Rapport fra prosess

Framdriftsrapport

Periode/uke(r)

uke 3 og 4

Antall timer denne per. (fra logg) Prosjektgruppe (navn) Dato

26.01.17

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne

rapportperioden

Hovedhensikt / fokus for arbeidet i denne perioden

Platform: Fullføre design og simulering. Lage kommunikasjonssystem og enkel GUI for testing.
Planlagte aktiviteter i denne perioden

Ferdigstille Platform design frem til endelig design og 3D tegninger. Materialer bestilt.

Informasjonsinnhenting for kommunikasjonsløsning og autopilot.

Avklare krav til kommunikasjonsløsning, lande endelig løsning og sette opp et enkelt testsystem.

Lage en enkel GUI for testing av trustere og kommunikasjon.

Lage et utkast til kartsystem for bruk i autopilotsystemet.

Virkelig gjennomførte aktiviteter i denne perioden

Platform design frem til endelig design og 3D tegninger

Informasjonsinnhenting for kommunikasjonsløsning og autopilot.

Avklare krav til kommunikasjonsløsning, lande endelig løsning og sette opp et enkelt testsystem.

Lage en enkel GUI for testing av kommunikasjon.

Lage et utkast til kartsystem for bruk i autopilotsystemet.

Beskrivelse av/begrunnelse for eventuelle avvik mellom planlagte og virkelige aktiviteter

Materialer ikke bestilt. Grunnet vanskeligheter med simulering av stabilitet.

Beskrivelse av /begrunnelse for endringer som nå ønskes i selve prosjektets innhold eller i den videre framgangsmåten - eller framdriftsplanen

NIL

Hovederfaring fra denne perioden

Vanskelig å få den riktige hjelpen og riktig informasjon.

Hovedhensikt/fokus neste periode

Bestille deler til platform, designe stabilitetssystemet.

Toveiskommunikasjon mellom platform og bruker. Lage algoritme for å bestemme kjøreretning.

Planlagte aktiviteter neste periode

Bestille deler. Konsept for stabiliseringssystem. Bestille deler til stabiliseringssystem. Software for

stabiliseringssystem. Matematikken for stabiliseringssystem.

Annet

ID301702

Hovedprosjekt

Prosjekt

Autonom platform

Antall møter denne periode 1). Firma - Oppdragsgiver
NTNU Ålesund /

Side

2 av 2

Rapport fra prosess

Framdriftsrapport

Periode/uke(r)

uke 3 og 4

Antall timer denne per. (fra logg) Prosjektgruppe (navn) Dato

26.01.17

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne

rapportperioden

Ønske om /behov for veiledning, tema i undervisningen – drøfting ellers

Godkjenning/signatur gruppeleder

Signatur øvrige gruppedeltakere

ID301702

Hovedprosjekt

Prosjekt

Autonom platform

Antall møter denne periode 1). Firma - Oppdragsgiver
NTNU Ålesund /

Side

1 av 2

Rapport fra prosess

Framdriftsrapport

Periode/uke(r)

Antall timer denne per. (fra logg) Prosjektgruppe (navn) Dato

23.02.17

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne

rapportperioden

Hovedhensikt / fokus for arbeidet i denne perioden

Bestille deler til plattform, designe stabilitetssystemet.

Toveiskommunikasjon mellom plattform og bruker. Lage algoritme for å bestemme kjøreretning.

Planlagte aktiviteter i denne perioden

Bestille deler. Konsept for stabiliseringssystem. Bestille deler til stabiliseringssystem. Software for

stabiliseringssystem. Matematikken for stabiliseringssystem.

Få avklart hvilken type kommunikasjonsløsning som skal benyttes. Få sendt data mellom klient og

server.

Virkelig gjennomførte aktiviteter i denne perioden

Deler bestilt. Balansesystem avklart, blir pumping av vann. Både luft og vann testet i bassenget.

Software for balanse system påbegynt.

Kommunikasjonsløsning mellom de forskjellige enhetene avklart. Kommunikasjon mellom klient

og server opprettet.

Beskrivelse av/begrunnelse for eventuelle avvik mellom planlagte og virkelige aktiviteter

NIL
Beskrivelse av /begrunnelse for endringer som nå ønskes i selve prosjektets innhold eller i den videre framgangsmåten - eller framdriftsplanen

NIL
Hovederfaring fra denne perioden

Må ha bedre verktøy for styring av programvareutvikling. Er i dialog med Arne Styve for å utstyr

og litt utdanning på dette.

Hovedhensikt/fokus neste periode

Sette sammen plattformen og balansesystemet. Skrive koden for balansesystemet.

Opprette wifi radiolink for kommunikasjon mellom klient og plattform. Få implementert json som

dataformat. Sende kontrolldata fra autopilot og manuell styring.

Planlagte aktiviteter neste periode

Bygge plattform. Montere balansesystem. Skrive kode til balansesystem. Teste plattform og

balansesystem.

Sette opp radiolink og teste denne. Få implementert json som dataformat. Sende data fra autopilot

og manuell modus.

Annet

Ønske om /behov for veiledning, tema i undervisningen – drøfting ellers

Godkjenning/signatur gruppeleder

Signatur øvrige gruppedeltakere

ID301702

Hovedprosjekt

Prosjekt

Autonom platform

Antall møter denne periode 1). Firma - Oppdragsgiver
NTNU Ålesund /

Side

2 av 2

Rapport fra prosess

Framdriftsrapport

Periode/uke(r)

Antall timer denne per. (fra logg) Prosjektgruppe (navn) Dato

23.02.17

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne

rapportperioden

ID301702

Hovedprosjekt

Prosjekt

Autonom platform

Antall møter denne periode 1). Firma - Oppdragsgiver
NTNU Ålesund /

Side

1 av 1

Rapport fra prosess

Framdriftsrapport

Periode/uke(r)

Antall timer denne per. (fra logg) Prosjektgruppe (navn) Dato

23.03.17

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne

rapportperioden

Hovedhensikt / fokus for arbeidet i denne perioden

Sette sammen plattformen og balansesystemet. Skrive koden for balansesystemet.

Opprette wifi radiolink for kommunikasjon mellom klient og plattform. Få implementert json som

dataformat. Sende kontrolldata fra autopilot og manuell styring.

Innføre et kontrollsystem for software utvikling.

Planlagte aktiviteter i denne perioden

Bygge plattform. Montere balansesystem. Skrive kode til balansesystem. Teste plattform og

balansesystem.

Sette opp radiolink og teste denne. Få implementert json som dataformat. Sende data fra autopilot

og manuell modus.

Utdanning i Jira programmvare

Virkelig gjennomførte aktiviteter i denne perioden

Plattform montert. Deler av balansesystem montert og programvare for innhenting av pitch/roll

samt avlesning av trykksensorer er ferdig. Kommunikasjon mellom balansesystem og server

opprettet.

Utstyr til radiolink mottatt og testet. Json implementert. Sender data fra klient til server i manuell

og autopilot modus. Manuell modus er nå fullført men ikke testet.

Server godt på vei, handtering av lese/skrive problematikk implementert.
Beskrivelse av/begrunnelse for eventuelle avvik mellom planlagte og virkelige aktiviteter

Tilpassing av delene tok lengre tid en beregnet.
Beskrivelse av /begrunnelse for endringer som nå ønskes i selve prosjektets innhold eller i den videre framgangsmåten - eller framdriftsplanen

NIL
Hovederfaring fra denne perioden

Avhengighet av eksterne er et usikkerhetsmoment mtp tid.
Hovedhensikt/fokus neste periode

Fullføre balansesystem og få testet dette. Fullføre plattform.

Autopilot

Planlagte aktiviteter neste periode

Ferdigstille plattform. Fullføre software til balansesystem. Lage kontrollalgoritmene. Teste

balansesystemet.

Handtere waypoints. Algoritme for utregning av retning og avstand. Test av manuelt styresystem.

Konfigurere Odroid med server programvare. Teste klient på tablet.
Annet

Ønske om /behov for veiledning, tema i undervisningen – drøfting ellers

Godkjenning/signatur gruppeleder

Signatur øvrige gruppedeltakere

ID301702

Hovedprosjekt

Prosjekt

Autonom platform

Antall møter denne periode 1). Firma - Oppdragsgiver
NTNU Ålesund /

Side

1 av 1

Rapport fra prosess

Framdriftsrapport

Periode/uke(r)

Antall timer denne per. (fra logg) Prosjektgruppe (navn) Dato

23.03.17

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne

rapportperioden

Hovedhensikt / fokus for arbeidet i denne perioden

Ferdigstille plattform og balansesystem.

Test av manuelt styresystem

Teste klient på tablet oppmot server og manuell styring.
Planlagte aktiviteter i denne perioden

Ferdigstille plattform. Fullføre software til balansesystem. Lage kontrollalgoritmene. Teste

balansesystemet.

Handtere waypoints. Algoritme for utregning av retning og avstand. Test av manuelt styresystem.

Konfigurere Odroid med server programvare. Teste klient på tablet.
Virkelig gjennomførte aktiviteter i denne perioden

Platform ferdig og testet. Balansesystem montert og testet. Tatt avgjørelse på forbedring i

programvare og sensor.

Waypoint utregning klar, Systemet klart til test. Testrigg ferdig, programvare utvikles.

Odroid klar til serverprogramvare og klient er testet mot server og platform.
Beskrivelse av/begrunnelse for eventuelle avvik mellom planlagte og virkelige aktiviteter

Grunnet endring i instrumentering av balansesystemet. (Fire sensorer i stedet for 1) Er ikke ny

programvare ferdig.
Beskrivelse av /begrunnelse for endringer som nå ønskes i selve prosjektets innhold eller i den videre framgangsmåten - eller framdriftsplanen

NIL
Hovederfaring fra denne perioden

Endringer ift opprinnelig plan tar lang tid og implementere.
Hovedhensikt/fokus neste periode

Fullføre oppgrader balansesystem.

Teste waypoint handtering.

GUI klient.

Planlagte aktiviteter neste periode

Fullføre installasjon og programvare til nye sensorer. Teste dette.

Fullført testrigg for kontroll av waypoint handling. Knytte Arduinoer opp mot server.

Videreutvikle GUI på klienten.
Annet

Ønske om /behov for veiledning, tema i undervisningen – drøfting ellers

Godkjenning/signatur gruppeleder

Signatur øvrige gruppedeltakere

Meeting report 13.01.17

Opening

A supervisor meeting regarding the Sea farm platform thesis was held at NTNU Ålesund the 13.01.17.

All members participated to the meeting. Matias Heggen, Christer Bakken, Per Martin Leinan, Martin

Blom, Ottar Osen and Houxiang Zhang.

Approval of the progress report

The meeting starts with a review of the first progress report. The supervisors approved of the form, and

agreed with the planned progress of the thesis.

Questions from the members

Since the thesis contains the development of a new product, the members wonder what the supervisors

approve as a final product.

 The platform should have active stabilization, since this is an easy part to implement.

The platform could have several functions, we should consider at least 4-5 of them but it is OK if

the final product only has 2-3.

The group members would like someone in ship design to help with the design and the workshop to

help build the platform, considering that this thesis drifts past what is expected from automation

students.

First of all, the school doesn’t have the capacity of putting this amount of work at any of the

teachers, secondly, automation students should have the basic knowledge considering all parts

of their thesis. There are however teachers who can help us along the way.

Expect to see calculations regarding buoyancy and stability theories, done by the bachelor thesis

members.

Discussion

Houxiang asks why we are designing a new platform when the school already has a boat for such

projects, why would the platform be better and what are the benefits. The reason should be well

explained in the final report.

Since the platform are to have active stabilization, Ottar asks if it should be able of raise and lowering

itself as well? We agree that this should be possible.

Recommendations

Ask for help by Morten or Henrique for designing the platform. Start by reading the book Vessel

Stability.

Meeting report 30.01.17

Opening

A supervisor meeting regarding the Sea farm platform thesis was held at NTNU Ålesund the 30.01.17.

All members participated to the meeting. Matias Heggen, Christer Bakken, Per Martin Leinan, Martin

Blom, Ottar Osen and Houxiang Zhang.

Approval of the progress report

The meeting starts with a review of our progress report. The supervisors approved of the report, and

agreed with the planned progress of the thesis.

Questions from the members

What is the budget of the project?

A budget should be made considering all parts of the platform, if the project is well planned and

documented, the budget will be approved.

Discussion

The group agreed on using an Android application as GUI for the platform, the supervisors did not

seem convinced, if there is an android application, would we need both PC and tablet or could this be

merged to function on only the tablet or only the PC? A layout of the system should be made for the next

meeting.

We presented the low version of the hexagon model, both Ottar and Houxiang said the model was too

low, there would be insufficient buoyancy in it and told us to make it at least taller.

Even though the model wasn’t used, all models should be mentioned and displayed in the final report.

Houxiang wanted to see documentation from simulation for each of the models as well.

Recommendations

For help doing the simulations, Houxiang recommended asking Lars Ivar Hatledal, a student of his.

Meeting report 10.02.17

Opening

A supervisor meeting regarding the Sea farm platform thesis was held at NTNU Ålesund the 10.02.17.

Partisipants: Christer Bakken, Per Martin Leinan, Martin Blom, Ottar Osen and Houxiang Zhang.

Members who didn’t participate in this meeting: Matias Heggen.

Approval of the progress report

The meeting starts with a review of our progress report. The supervisors approved of the report, and

agreed with the planned progress of the thesis.

Discussion

The first rectangular model was presented to the supervisors, they approved of the basic design but

requested further work on the structure since the model was too complex. More models were to be

presented to Houxiang before starting the build.

The calculations for buoyancy and stability was done with help from Henrique, Ottar and Houxiang still

wanted to see some simulations for the models in addition to the calculations, at least for the main two

or three models.

A topic of how to run the thrusters came up, and Ottar believes the thrusters should be controlled

individually for maximizing the maneuverability of the platform.

Recommendations

For communication between separate components, Ottar suggests using the MQTT protocol for several

reasons, quality of service, at most once, at least once and only once. Send a new in three seconds,

redundancy of sending several messages. Low footprint, doesn’t use many bytes. Adds up to a big code

but there are libraries for it. Houxiang believed using 𝐼2𝐶 was the best solution for us.

Meeting report 24.03.17

Opening

A supervisor meeting regarding the Sea farm platform thesis was held at NTNU Ålesund the 24.03.17.

Partisipants: Christer Bakken, Matias Heggen, Per Martin Leinan, Martin Blom and Ottar Osen.

Members who didn’t participate to this meeting: Houxiang Zhang.

Approval of the progress report

The meeting starts with a review of our progress report. Ottar approved of the report, and agreed with

the planned progress of the thesis.

Discussion

A video showing the platform behavior in waves from the second test were displayed, at this stage the

platform was only equipped with thrusters and batteries. Ottar suggested calculating the platform depth

with and without the rest of the electrical components. Verify the center of rotation for seeing the

calculations to be correct.

Meeting report 02.05.17

Opening

A supervisor meeting regarding the Sea farm platform thesis was held at NTNU Ålesund the 02.05.17.

Partisipants: Matias Heggen, Per Martin Leinan, Martin Blom, Ottar Osen and Houxiang Zhang.

Members who didn’t participate to this meeting: Christer Bakken.

Approval of the progress report

The meeting starts with a review of our progress report. The supervisors approved of the report, and

agreed with the planned progress of the thesis.

Discussion

Houxiang requested a draft of the thesis at the end of the week.

Recommendations

Houxiang suggests using a feed forward system for the stability system

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

12.02.2017

1/18

Sea farm platform

Martin Andreas Blom

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

12.02.2017

2/18
Base framework
Sea farm platform

Martin Andreas BlomBase framework

Consists of 20x20mm square

aluminium pipes, 2mm walls.

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

12.02.2017

3/18
Base framework
Sea farm platform

Martin Andreas Blom

7
0
0

8
6
0

1020

833.33

Weld

Equivalent to top frame,

without holes.

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

12.02.2017

4/18
Cylinder caps
Sea farm platform

Martin Andreas Blom
Cylinder caps, total 8 pcs with

the side ears and 2 without.

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

12.02.2017

5/18
Cylinder caps
Sea farm platform

Martin Andreas Blom

Welded

Welded

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

12.02.2017

6/18
Cylinder caps
Sea farm platform

Martin Andreas Blom
3

3
0

Welded

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

12.02.2017

7/18
Cylinder caps
Sea farm platform

Martin Andreas Blom

Ø180

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

12.02.2017

8/18
Cylinder caps
Sea farm platform

Martin Andreas Blom

Ø186

Ø

1

0

1

6

.

9

7

2

.

5

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

12.02.2017

9/18
Battery pontoons
Sea farm platform

Martin Andreas Blom

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

12.02.2017

10/18
Mounting brackets
Sea farm platform

Martin Andreas Blom
Mounting brackets for

bottom pontoons.

8 pieces in total

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

12.02.2017

11/18
Mounting brackets
Sea farm platform

Martin Andreas Blom

R

8

0

R

8

5

17.49

5

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

12.02.2017

12/18
Mounting brackets
Sea farm platform

Martin Andreas Blom

Ø

8

8
0

4
0

2
0

17.49

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

12.02.2017

13/18
Battery pontoons
Sea farm platform

Martin Andreas Blom
PE 100/300, SDR 41

Diameter: 160

Length: 1000mm

2 pieces in total

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

12.02.2017

14/18
Vertical pontoons
Sea farm platform

Martin Andreas Blom

PE 100/300, SDR 41

Diameter:180mm

Length: 600mm

6 pieces in total

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

12.02.2017

15/18
Top framework
Sea farm platform

Martin Andreas Blom
Base framework

Consists of 20x20mm

square aluminium pipes,

2mm walls.

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

12.02.2017

16/18
Top framework
Sea farm platform

Martin Andreas Blom

1020

8
6
0

7
0
0

Ø8

380

226.67

1
6
0

320

3
8
0

2
4
0

833.33

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

12.02.2017

17/18
Top center frame
Sea farm platform

Martin Andreas Blom

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

12.02.2017

18/18
Top center frame
Sea farm platform

Martin Andreas Blom

1020

4
0
0

400

2
3
0

310

8
0

1
4
0

8
6
0

93.33

206.67

Welded

Ø

8

SDR41 SDR26 SDR17
Platform Basic Stability Num. Columns Diameter Lenght C Lenght P Breadth 2,33 3,5 5,4
Assumption: floating on columns (zero deck in top 0,0,0) 6 0,18 0,7 1 0,85 1,88 3 4,26

Stage 1: floating only battery pontoon Density Sea Fresh Weight pipe 5,4
Stage 2: floating columns 1,025 1 4,26 Fresh water Sea water
* Calculation only for Stage 2! Battery weight pr pontoon 8,4 Total Volume
GZ - Small angles (±17o) 147,089368 GZ T GZ L GZ T GZ L

0 0 0 0 0
1 0,007083913 0,006198796 0,006909278 0,006001567

Watertight Volume * Inertia Columns Stability partly submerged 2 0,014165667 0,012395703 0,01381645 0,012001305
Volume Fresh Sea Fresh Sea 3 0,021243107 0,018588835 0,020719415 0,017997388

Stage 1 Bat. A 0,02010619 0,020106193 0,020608848 Original I T 0,00005153 KB 0,604162229 0,588293061 4 0,028314076 0,024776304 0,027616068 0,023987988
Bat. B 0,02010619 0,020106193 0,020608848 Transf T 0,003674532 KG 0,42793638 0,42793638 5 0,03537642 0,030956226 0,034504308 0,029971282
Thrusters 0,002 0,002 0,00205 I T total 0,022356374 BM Trans. 0,229673047 0,23553586 6 0,042427988 0,037126719 0,041382039 0,035945446

BM Long. 0,178957014 0,183525209 7 0,049466632 0,043285902 0,048247164 0,04190866
Total Disp 0,042212386 0,043267696 Original I Long. 0,00005153 8 0,056490208 0,0494319 0,055097593 0,047859109
Kg Left 57,12761403 56,07230438 Transf Long 0,004277624 GMT 0,405898896 0,39589254 9 0,063496577 0,055562841 0,061931238 0,05379498

OK - Valid - Stage 2 OK - Valid - Stage 2 I Long total 0,017419676 GML 0,355182863 0,34388189 10 0,070483604 0,061676857 0,068746018 0,059714464
11 0,077449161 0,067772085 0,075539858 0,065615758

Angle of list 12 0,084391126 0,07384667 0,082310687 0,071497065
* Stage 2 Col 1 0,01781283 13 0,091307385 0,079898759 0,089056444 0,077356594
* Col 2 0,01781283 Submerged Volume GG1 Angle of list 14 0,09819583 0,085926511 0,095775074 0,083192559
* Col 3 0,01781283 Fresh Sea Y-retning 0,000000 0 15 0,105054365 0,091928089 0,102464529 0,089003182
* Col 4 0,01781283 0,09734 0,094917073 16 0,111880898 0,097901665 0,109122773 0,094786695
* Col 5 0,01781283 X-retning 0,000000 0 17 0,118673352 0,103845419 0,115747777 0,100541334
* Col 6 0,01781283

Total 0,10687698 106,8769821 109,5489066
* % 53,45 % 51,18 %
* Draft 0,604162229 0,588293061
*

Structure x y z mass
Col 1 0,45 -0,38 -0,35 5,14
Col 2 0,45 0,38 -0,35 5,14
Col 3 0 -0,38 -0,35 5,14
Col 4 0 0,38 -0,35 5,14
Col 5 -0,45 -0,38 -0,35 5,14
Col 6 -0,45 0,38 -0,35 5,14
Deck 0 0 0 8,8
Base 0 0 -0,7 24,2
Bat. A 0 -0,38 -0,78 8,4
Bat. B 0 0,38 -0,78 8,4
Payload 0 0 0 0
Div electrical 0 0 0 7
Water pumps 0 0 -0,55 2,4
Ventilblokk 0 0 0 0
Water col 1 0,45 -0,38 -0,4 0
Water col 2 0,45 0,38 -0,4 0
Water col 3 0 -0,38 -0,4 0
Water col 4 0 0,38 -0,4 0
Water col 5 -0,45 -0,38 -0,4 0
Water col 6 -0,45 0,38 -0,4 0
Thrustere 0 0 -0,55 5
Cabinet 0,45 0 0 2,15
Cabinet -0,45 0 0 2,15

Total 0 0 -0,45206362 99,34

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Stability in fresh and salt water

Fresh water GZ T Fresh water GZ L Sea water GZ T Sea water GZ L

Platform Basic Stability Num. Columns Diameter Lenght C Lenght P Breadth
Assumption: floating on columns (zero deck in top 0,0,0) 6 0,18 0,6 1 0,85

Stage 1: floating only battery pontoon Density Sea Fresh Weight pipe 2,33
Stage 2: floating columns 1,025 1 1,88 Fresh water Sea water
* Calculation only for Stage 2! Battery weight pr pontoon 20 Total Volume
GZ - Small angles (±17o) 131,8212277 GZ T GZ L GZ T GZ L

0 0 0 0 0
1 0,005762648 0,010292589 0,005558384 0,010201573

Watertight Volume * Inertia Columns Stability partly submerged 2 0,011523542 0,020582042 0,011115075 0,020400038
Volume Fresh Sea Fresh Sea 3 0,017280924 0,030865227 0,01666838 0,03059229

Stage 1 Bat. A 0,02010619 0,020106193 0,020608848 Original I T 0,00005153 KB 0,505789422 0,490931765 4 0,023033043 0,041139009 0,022216608 0,040775222
Bat. B 0,02010619 0,020106193 0,020608848 Transf T 0,002855778 KG 0,301740065 0,301740065 5 0,028778146 0,05140026 0,027758068 0,050945734

I T total 0,011732293 BM Trans. 0,126142842 0,129296413 6 0,034514483 0,061645854 0,033291073 0,061100728
BM Long. 0,385702486 0,395345048 7 0,040240306 0,07187267 0,038813937 0,07123711

Total Disp 0,040212386 0,041217696 Original I Long. 0,00005153 8 0,045953872 0,082077593 0,044324978 0,081351792
Kg Left 52,79561403 51,79030438 Transf Long 0,008906415 GMT 0,330192199 0,318488113 9 0,05165344 0,092257514 0,049822518 0,091441693

OK - Valid - Stage 2 OK - Valid - Stage 2 I Long total 0,035873417 GML 0,589751842 0,584536748 10 0,057337274 0,102409333 0,05530488 0,101503741
11 0,063003642 0,112529957 0,060770397 0,11153487

Angle of list 12 0,068650818 0,122616303 0,066217402 0,121532024
* Stage 2 Col 1 0,01526814 13 0,074277083 0,132665299 0,071644237 0,131492158
* Col 2 0,01526814 Submerged Volume GG1 Angle of list 14 0,079880723 0,142673884 0,077049248 0,141412238
* Col 3 0,01526814 Fresh Sea Y-retning 0,000000 0 15 0,08546003 0,152639009 0,082430789 0,151289243
* Col 4 0,01526814 0,093008 0,090739512 16 0,091013305 0,162557638 0,087787221 0,161120164
* Col 5 0,01526814 X-retning 0,000000 0 17 0,096538856 0,172426751 0,093116913 0,170902005
* Col 6 0,01526814

Total 0,09160884 91,60884178 93,89906282
* % 57,63 % 55,16 %
* Draft 0,505789422 0,490931765
*

Structure x y z mass
Col 1 0,404 0 -0,3 1,398
Col 2 0,2 0,35 -0,3 1,398
Col 3 -0,2 0,35 -0,3 1,398
Col 4 -0,404 0 -0,3 1,398
Col 5 -0,2 -0,35 -0,3 1,398
Col 6 0,2 -0,35 -0,3 1,398
Deck 0 0 0 10,8
Base 0 0 -0,6 17,9
Bat. A 0 -0,35 -0,68 21,88
Bat. B 0 0,35 -0,68 21,88
Mass 1 0 0 0 10
Div 0 0 0 0
Festeklemme 0 0 -0,68 2,16
Ventilblokk 0 0 0 0
Water col 1 0,41 -0,335 -0,4 0
Water col 2 0,41 0,335 -0,4 0
Water col 3 0 -0,335 -0,4 0
Water col 4 0 0,335 -0,4 0
Water col 5 -0,41 -0,335 -0,4 0
Water col 6 -0,41 0,335 -0,4 0

Total 0 0 -0,478259935 93,008

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Stability in fresh and salt water

Fresh water GZ T Fresh water GZ L Sea water GZ T Sea water GZ L

ServerSocketWorkerReceive
/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package serialgpsserver;

import java.io.*;
import java.net.Socket;
import java.util.concurrent.Semaphore;
import java.util.logging.Level;
import java.util.logging.Logger;
import org.json.*;

/**
 *
 * @author Matias
 */
public class ServerSocketWorkerReceive implements Runnable {
//Felt

 private Socket socket = null;
 private StorageBoxSocketReceive storageBoxSocketReceive;
 private Semaphore semaphoreStorageBoxSocketSend;
 private int portNumber;
 private boolean available;
 private JSONObject jsonWaypointRecieved;
 /**
 * Constructor
 * @param storageBox
 * @param semaphore
 * @param portNumber
 * @param socket
 */
 public ServerSocketWorkerReceive(StorageBoxSocketReceive
storageBoxSocketReceive, Semaphore semaphoreStorageBoxSocketSend, int
portNumber, Socket socket) {
 //super("ServerSocketWorker"); // Hva skjer her?

 this.socket = socket;
 this.storageBoxSocketReceive = storageBoxSocketReceive;
 this.semaphoreStorageBoxSocketSend = semaphoreStorageBoxSocketSend;
 this.portNumber = portNumber;
 this.available = false;

 }

 /**
 * Run metode, overrider Thread klassens run()
 */
 @Override
 public void run() {

Side 1

ServerSocketWorkerReceive
 boolean finished = false;
 try {
 while (!finished) {
 InputStreamReader inRead = new
InputStreamReader(this.socket.getInputStream()); //leser input stream på socket
 BufferedReader bufRead = new BufferedReader(inRead); //buffer på
in stream

 String jsonCoordMsg = bufRead.readLine(); // lagrer input på
socket i "msg"
 if(jsonCoordMsg != null && jsonCoordMsg.startsWith("{")){
 this.jsonWaypointRecieved = new JSONObject(jsonCoordMsg);
 System.out.println("Recived from client: " +jsonCoordMsg);
 }
 if(jsonWaypointRecieved != null &&jsonWaypointRecieved.length()>
0){
 System.out.println("Rec acquirer");
 semaphoreStorageBoxSocketSend.acquire();
 System.out.println("Rec Putter");
 storageBoxSocketReceive.putWaypointCoord(jsonWaypointRecieved);
 semaphoreStorageBoxSocketSend.release();
 System.out.println("Rec release");
 }

// if (jsonCoordMsg != null) {
// PrintStream printStream = new
PrintStream(socket.getOutputStream()); //Skriver til output mot klient at msg er
mottat
// printStream.println("Message recieved @ server");
//
//
//
// if (jsonCoordMsg.equals("bye")) {
 // System.out.println("Shutting down server...");
// finished = true;
// }
//
// }

 } // Avslutter Server(test)
 } catch (IOException ex) {

Logger.getLogger(ServerSocketWorkerReceive.class.getName()).log(Level.SEVERE,
null, ex);
 } catch (JSONException ex) {

Logger.getLogger(ServerSocketWorkerReceive.class.getName()).log(Level.SEVERE,
null, ex);
 } catch (InterruptedException ex) {

Logger.getLogger(ServerSocketWorkerReceive.class.getName()).log(Level.SEVERE,

Side 2

ServerSocketWorkerReceive
null, ex);
 }

 }
}

Side 3

ServerSocketWorkerSend
/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package serialgpsserver;

import java.net.*;
import java.io.*;
import java.util.concurrent.Semaphore;
import java.util.logging.Level;
import java.util.logging.Logger;
import org.json.*;

/**
 *
 * @author Matias
 */
public class ServerSocketWorkerSend implements Runnable {

 //Felt
 private Socket socket = null;
 private StorageBoxSocketSend storageBoxSocketSend;
 private Semaphore semaphoreStorageBoxSocketSend;
 private int portNumber;
 private boolean available;
 private long time;
 private long testTime;

 public ServerSocketWorkerSend(StorageBoxSocketSend storageBoxSocketSend,
Semaphore semaphoreStorageBoxSocketSend, int portNumber, Socket socket) {
 //super("ServerSocketWorker");
 this.socket = socket;
 this.storageBoxSocketSend = storageBoxSocketSend;
 this.semaphoreStorageBoxSocketSend = semaphoreStorageBoxSocketSend;
 this.portNumber = portNumber;
 this.available = false;

 }

 @Override
 public void run() {
 boolean finished = false; //Boolean for while loop i run() så den kan
avsluttes uten "break;"

 try {
 PrintWriter outStreamWrite = new
PrintWriter(this.socket.getOutputStream(), true);
 // double p = 62.467067;
 while (!finished) {
 JSONObject jsonData = new JSONObject();
 semaphoreStorageBoxSocketSend.tryAcquire();

Side 1

ServerSocketWorkerSend
 //System.out.println("stuck on
aquire!!!");

 available = storageBoxSocketSend.getAvailable();
 //System.out.println("send Acq");
 time = System.currentTimeMillis();
 if(time > testTime){
 if (available) {
 jsonData = storageBoxSocketSend.getGPSdata();
 outStreamWrite.println(jsonData);
 System.out.println("JSONData_Sent_To_Client: " + jsonData);
 }
 testTime = time +1000;
 }
 semaphoreStorageBoxSocketSend.release();
 }

 socket.close();
 } catch (SocketException se) {
 System.out.println("Client closed connection to server. Ending
client communication.." + se);
 } catch (IOException e) {
 e.printStackTrace();
 }
// catch (InterruptedException ex) {
//
Logger.getLogger(ServerSocketWorkerSend.class.getName()).log(Level.SEVERE, null,
ex);
// }
// catch (JSONException ex) {
//
Logger.getLogger(ServerSocketWorkerSend.class.getName()).log(Level.SEVERE, null,
ex);
// }
 }

}

Side 2

StorageBoxArduinoComm
/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package serialgpsserver;

import org.json.JSONObject;

/**
 *
 * @author Matias
 */
public class StorageBoxArduinoComm {

 private boolean available = false; //Flag
 private JSONObject jsonArduinoData;

 /**
 * Boolean metode for å sjekke om koordinater er tilgjengelig
 *
 * @return true if coordinates are available
 */
 public boolean getAvailable() {
 return available; //Returnerer flag
 }

 /**
 * Putter GPS koordinater i variabel som String
 *
 * @param coords Koorinater lagret som en string
 */
 public void putArduinoData(JSONObject jsonReceived) {
 if (available == false) {
 this.jsonArduinoData = jsonReceived; //Lagrer coordinater som
JSONobject
 }
 available = true; //Setter flag true
 }

 public JSONObject getArduinoData() {
 if (available == true) {
 available = false;
 }
 return this.jsonArduinoData;
 }

}

Side 1

StorageBoxGPS
/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package serialgpsserver;

import java.util.logging.Level;
import java.util.logging.Logger;
import org.json.JSONException;
import org.json.JSONObject;

/**
 *
 * @author Matias
 */
public class StorageBoxGPS {
//Felt

 private boolean available = false; //Flag
 private double lat;
 private double lon;
 private double speed;

 /**
 * Boolean metode for å sjekke om koordinater er tilgjengelig
 *
 * @return true if coordinates are available
 */
 public boolean getAvailable() {
 return available; //Returnerer flag
 }

 /**
 * Putter GPS koordinater i variabel som JSONObjekt Putter feltene; lat,
 * lon, speed, henter disse ut som JSONobjekt
 *
 * @param jsonObj "leash" fra Conductor klassen
 */
 public void getGPSCoord(JSONObject jsonObj) {
 if (available == true) {
 try {
 //Lagrer coordinater og speed som double
 jsonObj.put("lat", lat);

 jsonObj.put("lon", lon);
 jsonObj.put("speed", speed);
 } catch (JSONException ex) {

Logger.getLogger(StorageBoxGPS.class.getName()).log(Level.SEVERE, null, ex);
 }

Side 1

StorageBoxGPS
 }
 available = false; //Setter flag true
 }

 /**
 * Putter datafelter fra GPSRead klassen
 *
 * @param latitude, double
 * @param longitude, double
 * @param speed, double
 */
 public void putGPSCoord(Double latitude, Double longitude, Double speed) {
 if (available == true) { //Sjekker om Available = true
 available = false; // setter available = false før koden
fortsetter.
 }
 this.lat = latitude;
 this.lon = longitude;
 this.speed = speed;

 available = true;
 }

}

Side 2

StorageBoxNorthEastGPS
/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package serialgpsserver;

import java.util.logging.Level;
import java.util.logging.Logger;
import org.json.JSONException;
import org.json.JSONObject;

/**
 *
 * @author Matias
 */
public class StorageBoxNorthEastGPS {
//Felt

 private boolean available = false; //Flag
 private double lat;
 private double lon;
 private double speed;

 private JSONObject northEastJson;

 /**
 * Boolean metode for å sjekke om koordinater er tilgjengelig
 *
 * @return true if coordinates are available
 */
 public boolean getAvailable() {
 return available; //Returnerer flag
 }

 /**
 * Putter GPS koordinater i variabel som JSONObjekt Putter feltene; lat,
 * lon, speed, henter disse ut som JSONobjekt
 *
 * @param jsonObj "leash" fra Conductor klassen
 */
 public void getGPSCoord(JSONObject jsonObj) {
 if (available == true) {
 try {
 //Lagrer coordinater og speed som double
 jsonObj.put("latNE", lat);
 jsonObj.put("lonNE", lon);
 jsonObj.put("speedNE", speed);
 } catch (JSONException ex) {

Logger.getLogger(StorageBoxGPS.class.getName()).log(Level.SEVERE, null, ex);
 }

Side 1

StorageBoxNorthEastGPS

 }
 available = false; //Setter flag true
 }

 /**
 * Putter datafelter fra GPSRead klassen
 *
 * @param latitude, double
 * @param longitude, double
 * @param speed, double
 */
 public void putGPSCoord(Double latitude, Double longitude, Double speed) {
 if (available == true) { //Sjekker om Available = true
 available = false; // setter available = false før koden
fortsetter.
 }
 this.lat = latitude;
 this.lon = longitude;
 this.speed = speed;

 available = true;
 }

 public void putGPSCoord(JSONObject xyNorthEast) {
 if(available == false){
 this.northEastJson = xyNorthEast;
 }
 available = true;
 }

 public JSONObject getNorthEastJson(){
 if(available == true){
 available = false;
 }
 return this.northEastJson;
 }
}

Side 2

StorageBoxPlatformMode
/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package serialgpsserver;

import java.util.logging.Level;
import java.util.logging.Logger;
import org.json.JSONException;
 import org.json.JSONObject;

/**
 *
 * @author Matias
 */
public class StorageBoxPlatformMode {
//Felt

 private boolean available = false; //Flag
// private double lat;
// private double lon;
// private double speed;
 private int mode = 0;
 private JSONObject jsonWPData = new JSONObject();
 private boolean hasArrived;

 /**
 * Boolean metode for å sjekke om ny koordinat er tilgjengelig
 *
 * @return true if coordinates are available
 */
 public synchronized boolean getAvailable() {
 return available; //Returnerer flag
 }
 /**
 * Putter waypoint data fra GUI
 *
 * @param jsonData
 */
 public void putGPSWp(JSONObject jsonData) {
 if (available == false) {
 this.jsonWPData = jsonData; //Lagrer coordinater som JSONobject
 }
 available = true; //Setter flag true
 }

 /**
 * Henter waypoint koordinater satt i GUI
 * @return
 */
 public int getMode() {

Side 1

StorageBoxPlatformMode
 try {
 if(jsonWPData.length() > 0 && jsonWPData.has("Mode")) mode =
jsonWPData.getInt("Mode");
 else System.out.println("No mode recived");
 } catch (JSONException ex) {

Logger.getLogger(StorageBoxPlatformMode.class.getName()).log(Level.SEVERE, null,
ex);
 }
 return mode;
 }

 //***
 //**************Test Metoder ********************************
 //***
 /**
 * Putter waypoint data fra GUI
 *
 * @param jsonData
 */
 public void putGPSCoord(JSONObject jsonData) {
 if (available == false) {
 this.jsonWPData = jsonData; //Lagrer coordinater som JSONobject
 }
 available = true; //Setter flag true
 }

 /**
 * Henter waypoint koordinater satt i GUI
 * @return
 */
 public JSONObject getGPSdata(){
 if (available == true) {
 available = false;
 }
 //System.out.println("Data in PM storage box: " +jsonWPData);
 return this.jsonWPData;

 }

 public void putData(String key, String data){
 if (available == false) {
 try {
 this.jsonWPData.put(key, data);
 } catch (JSONException ex) {

Logger.getLogger(StorageBoxPlatformMode.class.getName()).log(Level.SEVERE, null,
ex);
 }
 }
 available = true;
 }

Side 2

StorageBoxPlatformMode

 public void putDataInt(String key, int data){
 if (available == false) {
 try {
 this.jsonWPData.put(key, data);
 } catch (JSONException ex) {

Logger.getLogger(StorageBoxPlatformMode.class.getName()).log(Level.SEVERE, null,
ex);
 }
 }
 available = true;
 }
}

Side 3

StorageBoxRunningMode
/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package serialgpsserver;

import java.util.logging.Level;
import java.util.logging.Logger;
import org.json.JSONException;
import org.json.JSONObject;

/**
 *
 * @author Bakken
 */
public class StorageBoxRunningMode {

 private boolean available = false; //Flag

 private JSONObject jsonManualData; // Object to store Manual data
 private boolean hasArrived;
 private JSONObject jsonWPData;

 /**
 * Boolean method to check for new incoming data
 *
 * @return true if data are available
 */
 public boolean getAvailable() {
 return available; //Returnerer flag
 }

 /**
 * Method to put data i JSONObject
 */
 public void putManualData(JSONObject jsonReceived) {
 if (available == false) {
 this.jsonManualData = jsonReceived; //Lagrer data som JSONobject
 }
 available = true; //Setter flag true
 }

 public JSONObject getManualData() {
 if (available == true) {
 available = false;
 }
 return this.jsonManualData;
 }
 /**
 * Return true if the platform has arrived the waypoint received from
client.

Side 1

StorageBoxRunningMode
 * @return hasArrived
 */
 public boolean hasArrivedToWaypoint(){
 return hasArrived;
 }

 public void setHasArrivedToWaypoint(boolean value){
 this.hasArrived = value;
 }

 /**
 * Putter waypoint data fra GUI
 *
 * @param jsonData
 */
 public void putGPSWp(JSONObject jsonData) {
 if (available == false) {
 this.jsonWPData = jsonData; //Lagrer coordinater som JSONobject
 }
 available = true; //Setter flag true
 }

 /**
 * Henter waypoint koordinater satt i GUI
 * @return
 */
 public JSONObject getGPSdata(){
 if (available == true) {
 available = false;
 }
 //System.out.println("Data in PM storage box: " +jsonWPData);
 return this.jsonWPData;

 }

 public void putData(String key, double data){
 if (available == false) {
 try {
 this.jsonWPData.put(key, data);
 } catch (JSONException ex) {

Logger.getLogger(StorageBoxPlatformMode.class.getName()).log(Level.SEVERE, null,
ex);
 }
 }
 available = true;
 }
}

Side 2

StorageBoxSocketReceive
/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package serialgpsserver;

import org.json.JSONObject;

/**
 *
 * @author Matias
 */
class StorageBoxSocketReceive {

 private boolean available = false; //Flag
 private String coordinates; // Variabel for å lagre koordinater
 private JSONObject jsonWaypointData;

 /**
 * Boolean metode for å sjekke om koordinater er tilgjengelig
 *
 * @return true if coordinates are available
 */
 public boolean getAvailable() {
 return available; //Returnerer flag
 }

 /**
 * Putter GPS koordinater i variabel som String
 *
 * @param coords Koorinater lagret som en string
 */
 public void putWaypointCoord(JSONObject jsonReceived) {
 if (available == false) {
 this.jsonWaypointData = jsonReceived; //Lagrer coordinater som
JSONobject
 System.out.println("Putter i stbox");
 }
 available = true; //Setter flag true
 }

 public JSONObject getWaypointData() {
 if (available == true) {
 available = false;
 }
 return this.jsonWaypointData;
 }

 public void getWaypointData(JSONObject jsonWaypoint) {
 if (available == true) {
 available = false;//Setter flag true

Side 1

StorageBoxSocketReceive
 jsonWaypoint.equals(this.jsonWaypointData);
 }
 // this.jsonWaypointData = jsonWaypoint;

 }
}

Side 2

StorageBoxSocketSend
/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package serialgpsserver;

import org.json.JSONObject;

/**
 *
 * @author Matias
 */
public class StorageBoxSocketSend {

 private boolean available = false; //Flag
 private JSONObject jsonData; // Variabel for å lagre koordinater

 /**
 * Boolean metode for å sjekke om koordinater er tilgjengelig
 *
 * @return true if coordinates are available
 */
 public boolean getAvailable() {
 return available; //Returnerer flag
 }

 /**
 * Putter GPS koordinater i variabel som String
 *
 * @param coords Koorinater lagret som en string
 */
 public void putGPSCoord(JSONObject jsonData) {
 if (available == false) {
 this.jsonData = jsonData; //Lagrer coordinater som JSONobject
 }
 available = true; //Setter flag true
 }

 public JSONObject getGPSdata() {
 if (available == true) {
 available = false;
 }
 return this.jsonData;
 }

// /**
// * Henter ut Koordinater som string
// * @return
// */
// public String getGPSCoord() {
// if (available == true) { //Sjekker om Available = true

Side 1

StorageBoxSocketSend
// available = false; // setter available = false før koden
fortsetter.
// }
// return coordinates; //Returnerer Koordinat info som en string
// }
}

Side 2

ThrustAllocator
/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package serialgpsserver;

import com.joptimizer.functions.ConvexMultivariateRealFunction;
import com.joptimizer.functions.LinearMultivariateRealFunction;
import com.joptimizer.functions.PDQuadraticMultivariateRealFunction;
import com.joptimizer.optimizers.JOptimizer;
import com.joptimizer.optimizers.OptimizationRequest;
import com.joptimizer.optimizers.OptimizationResponse;
import org.apache.commons.math3.linear.ArrayRealVector;
import org.apache.commons.math3.linear.BlockRealMatrix;
import org.apache.commons.math3.linear.RealVector;

/**
 *
 * @author vegard
 *
 */
public class ThrustAllocator {

 private double[][] Phi;
 private double[][] A1;
 private BlockRealMatrix A2;
 private BlockRealMatrix C2;
 private ArrayRealVector p;
 private PDQuadraticMultivariateRealFunction objectiveFunction;
 ConvexMultivariateRealFunction[] inequalities;
 private JOptimizer opt;

 // NOTE: Lx1 er negativ, Lx2 er positiv, Ly1 er negativ, Ly2 er positiv
 public ThrustAllocator(double Lx1, double Lx2, double Ly1, double Ly2) {
 setUp(Lx1, Lx2, Ly1, Ly2);
 }

 /**
 * Konstruktør for Plattform
 */
 public ThrustAllocator() {
 setUp(-0.45, 0.45, -0.19, 0.19);
 }

 /*
 Sett opp matriser og vektorer
 */
 private void setUp(double Lx1, double Lx2, double Ly1, double Ly2) {
 Phi = new double[][]{{1., 0., 0., 0., 0., 0., 0.},
 {0., 1., 0., 0., 0., 0., 0.,},

Side 1

ThrustAllocator
 {0., 0., 1., 0., 0., 0., 0.},
 {0., 0., 0., 1., 0., 0., 0.},
 {0., 0., 0., 0., 10., 0., 0.},
 {0., 0., 0., 0., 0., 10., 0.},
 {0., 0., 0., 0., 0., 0., 10.}};

 A1 = new double[][]{
 {1., 1., 0., 0., -1., 0., 0.},
 {0., 0., -1., -1., 0., -1., 0.},
 {-Ly1, -Ly2, -Lx1, -Lx2, 0., 0., -1.}};

 A2 = new BlockRealMatrix(new double[][]{
 {-1., 0., 0., 0., 0., 0., 0.},
 {0., -1., 0., 0., 0., 0., 0.},
 {0., 0., -1., 0., 0., 0., 0.},
 {0., 0., 0., -1., 0., 0., 0.},
 {1., 0., 0., 0., 0., 0., 0.},
 {0., 1., 0., 0., 0., 0., 0.},
 {0., 0., 1., 0., 0., 0., 0.},
 {0., 0., 0., 1., 0., 0., 0.}});

 C2 = new BlockRealMatrix(new double[][]{
 {0., 0., 0., -1., 0., 0., 0., 0., 0., 0., 0.},
 {0., 0., 0., 0., -1., 0., 0., 0., 0., 0., 0.},
 {0., 0., 0., 0., 0., -1., 0., 0., 0., 0., 0.},
 {0., 0., 0., 0., 0., 0., -1., 0., 0., 0., 0.},
 {0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.},
 {0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.},
 {0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.},
 {0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.}});

 //Skyvkraft i NEWTON. Dataene er omgjort fra Kg til N
 //Original:
 //p = new ArrayRealVector(new double[]{0., 0., 0., -29., -29., -29.,
-29., 34., 34., 34., 34.});
 p = new ArrayRealVector(new double[]{0., 0., 0., -110., -110., -110.,
-110., 110., 110., 110., 110.});

 objectiveFunction = new PDQuadraticMultivariateRealFunction(Phi, null,
0);
 inequalities = new ConvexMultivariateRealFunction[8];
 opt = new JOptimizer();
 }

 /*
 Beregn output basert på en ønsket kraftvektor
 */
 public double[] calculateOutput(double[] tau) throws Exception {
// long time1 = System.currentTimeMillis();
 // Sett opp p-vektoren med ønskede verdier for tau (kraftvektor)
 p.setEntry(0, tau[0]);
 p.setEntry(1, tau[1]);

Side 2

ThrustAllocator
 p.setEntry(2, tau[2]);

 // Oppsett for ulikheten A2*z <= C2*p
 RealVector v2 = C2.operate(p);

 for (int i = 0; i < 8; i++) {
 // Hver ulikhet settes opp som et LinearMultivariateRealFunction
 inequalities[i] = new LinearMultivariateRealFunction(A2.getRow(i),
-v2.toArray()[i]);
 }
 // Optimaliseringsproblemet
 OptimizationRequest or = new OptimizationRequest();
 // Sett objektivfunksjonen
 or.setF0(objectiveFunction);

 // Sett ulikheten
 or.setFi(inequalities);

 // Sett likheten
 or.setA(A1);
 or.setB(p.getSubVector(0, 3).toArray());

 // Sett toleransen på resultatet. Lavere tall = større nøyaktighet
 or.setTolerance(1.E-1);

 // Optimalisering
 opt.setOptimizationRequest(or);
 int returnCode = opt.optimize();

 if (returnCode == OptimizationResponse.FAILED) {
 System.out.println("Optimization FAIL");
 }
// long time2 = System.currentTimeMillis()-time1;
 //System.out.println("Tidsbruk = " + time2);
 return opt.getOptimizationResponse().getSolution();

 }
}

Side 3

ThrustWriter
package serialgpsserver;

import java.util.logging.Level;
import java.util.logging.Logger;
import org.json.JSONException;
import org.json.JSONObject;

/**
 *
 * @author root
 */
public class ThrustWriter {

 private int pulseWidth1;
 private int pulseWidth2;
 private int pulseWidth3;
 private int pulseWidth4;

 private int i = 0;

 private SerialHandler thrustArduino;
 private JSONObject thrustValuesToArduino;

 /**
 * Klasse for å konvertere newton til pwm og skrive verdier
 *
 * @param serialConnection
 * @param ID
 */
 public ThrustWriter(SerialHandler thrustArduino) {
 pulseWidth1 = 0;
 pulseWidth2 = 0;
 pulseWidth3 = 0;
 pulseWidth4 = 0;

 this.thrustArduino = thrustArduino;
 thrustValuesToArduino = new JSONObject();
 }

 /**
 * skriver verdier via SerialConnection
 */
 public void writeThrust() {
 try {
 pulseWidth2 = (pulseWidth2*4);
 pulseWidth4 = (pulseWidth4*4);
 if(pulseWidth2>3200){
 pulseWidth2 = 3200;
 }
 if(pulseWidth4>3200){
 pulseWidth4 = 3200;
 }

Side 1

ThrustWriter
 thrustValuesToArduino.put("smcSerial1", (-pulseWidth4));
 thrustValuesToArduino.put("smcSerial2", (-pulseWidth2));
 thrustValuesToArduino.put("smcSerial3", (-pulseWidth3));
 thrustValuesToArduino.put("smcSerial4", (-pulseWidth1));
 System.out.println(thrustValuesToArduino);
 thrustArduino.send(thrustValuesToArduino);

 } catch (JSONException ex) {
 Logger.getLogger(ThrustWriter.class.getName()).log(Level.SEVERE,
null, ex);
 }
 }

 /**
 * setter pwm variablene
 *
 * @param newton
 */
 public void setThrustForAll(double[] newton) {
 pulseWidth1 = newtonToPulseWidth(newton[0]);
 pulseWidth2 = newtonToPulseWidth(newton[1]);
 pulseWidth3 = newtonToPulseWidth(newton[2]);
 pulseWidth4 = newtonToPulseWidth(newton[3]);
 }

 /**
 * konverterer newton til pwm
 *
 * @param xNewton
 * @return
 */
 public int newtonToPulseWidth(double xNewton) {

 int pulseWidth = 0;

 if (xNewton > 0.0) {
 double pulseWidthDouble = 32*xNewton;
 pulseWidth = (int) pulseWidthDouble;
 } else if (xNewton <= 0.0) {

 double pulseWidthDouble = 32*xNewton;
 pulseWidth = (int) pulseWidthDouble;
 } else {
 pulseWidth = 0;
 }

 if (pulseWidth < -3200) {
 pulseWidth = -3200;
 }
 if (pulseWidth > 3200) {
 pulseWidth = 3200;

Side 2

ThrustWriter
 }
 return pulseWidth;
 }

 /**
 * lukker seriell forbindelsen
 */
 void closeSerialConn() {
 thrustArduino.close();
 System.out.println("ThrustWriter: Connection closed");
 }

}

Side 3

VideostreamUDP
/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package serialgpsserver;

import java.util.concurrent.Semaphore;
import java.util.logging.Level;
import java.util.logging.Logger;
import no.ntnu.videostream.ImageStorageBox;
import no.ntnu.videostream.UDPCameraStream;
import org.json.JSONObject;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.highgui.VideoCapture;

/**
 *
 * @author Matias
 */
public class VideostreamUDP extends Thread {

 static {
 System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
 }

private boolean isManualMode;
 private Semaphore semaphoreVideoStream;
 private ImageStorageBox imageStorageBox;

 public VideostreamUDP(Semaphore semaphore, ImageStorageBox imgStorageBox) {
 this.semaphoreVideoStream = semaphore;
 this.imageStorageBox = imgStorageBox;
 // String ipAddress = "127.0.0.1";
 String ipAddress = "192.168.0.101";
 int portNumber = 5555;
 UDPCameraStream videoStream = new UDPCameraStream(semaphore, imgStorageBox,
ipAddress, portNumber);
 videoStream.setName("UDP Camera Stream Thread");
 videoStream.start();
 }

 @Override
 public void run(){
 Mat webcamMatImage = new Mat();
 VideoCapture capture = new VideoCapture(0);
 int i = 0;
 isManualMode = true;

 while (isManualMode) {

Side 1

VideostreamUDP
 i++;
 try {
 capture.read(webcamMatImage);
 semaphoreVideoStream.acquire();
 if (!webcamMatImage.empty()) {
 imageStorageBox.putImage(webcamMatImage);
 }
 semaphoreVideoStream.release();
 } catch (InterruptedException ex) {

Logger.getLogger(VideostreamUDP.class.getName()).log(Level.SEVERE, null, ex);
 }
 // System.out.println("Count = " + i);

 }
 }

}

Side 2

ArduinoHandler
/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package serialgpsserver;

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.OutputStream;
import gnu.io.CommPortIdentifier;
import gnu.io.SerialPort;
import gnu.io.SerialPortEvent;
import gnu.io.SerialPortEventListener;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Enumeration;
import java.util.HashMap;
import java.util.List;
import java.util.concurrent.Semaphore;
import java.util.logging.Level;
import java.util.logging.Logger;
import org.json.JSONException;
import org.json.JSONObject;

/**
 *
 * @author Bakken, Per Martin, Matias
 */
public class ArduinoHandler {

 private Enumeration portList;
 private CommPortIdentifier portId;
 private HashMap<String, CommPortIdentifier> comList;

 private ArrayList<String> listOfPorts = new ArrayList<String>();

 private SerialHandler StabilityArduino;
 private SerialHandler remoteOperation;

 SerialPort serialPort;
 StorageBoxRunningMode storageBoxManualMode;
 StorageBoxArduinoComm storageBoxArduinoComm;
 private byte[] b = new byte[2];
 private String[] d;

 String[] sa = new String[2];

 private JSONObject jsonRemoteControl;

 private Semaphore semaphore;
 Boolean available;

Side 1

ArduinoHandler

 private static final String PORT_NAMES[] = {
 "/dev/ttyACM0",
 "COM4",};

 private BufferedReader input;
 private OutputStream output;
 //private DataOutputStream output;
 private static final int TIME_OUT = 2000;
 private static final int DATA_RATE = 9600;
 private SerialHandler LidarArduino;

 private String stabilityArd = "/dev/stabilityArduino";
 private boolean stabilityArdConnected = false;
 private String remoteArd = "/dev/thrustArduino";
 private boolean remoteArdConnected = false;
 private ArrayList<String> comName;

//{

 // }
 public ArduinoHandler() {
 comName = new ArrayList<>();
 comName.add(stabilityArd);
 comName.add(remoteArd);
 for(String name : comName){

 System.setProperty("gnu.io.rxtx.SerialPorts", name);

 comList = new HashMap<>();
 portList = CommPortIdentifier.getPortIdentifiers();
 while (portList.hasMoreElements()) {
 portId = (CommPortIdentifier) portList.nextElement();
 listOfPorts.add(portId.getName());
 comList.put(portId.getName(), portId);

 System.out.println(portId.getName());

 }
 connectToArduino();
 }
 }

 public synchronized void close() {
 if (serialPort != null) {
 serialPort.removeEventListener();
 serialPort.close();
 }
 }

 private void connectToArduino() {

Side 2

ArduinoHandler

 for (String temp : listOfPorts) {
 if (temp.equalsIgnoreCase(stabilityArd)) {
 CommPortIdentifier portId = comList.get(stabilityArd);
 StabilityArduino = new SerialHandler(stabilityArd, 9600,
portId);
 System.out.println("Connected to stability controll Arduino");
 stabilityArdConnected = true;
 }
 if(temp.equalsIgnoreCase(remoteArd)){
 CommPortIdentifier portId = comList.get(remoteArd);
 remoteOperation = new SerialHandler(remoteArd, 9600, portId);
 System.out.println("Connected to thruster controll Arduino");
 remoteArdConnected = true;
 }
 if(temp.equalsIgnoreCase("COM")){
 CommPortIdentifier portId = comList.get("COM");
 StabilityArduino = new SerialHandler("COM", 9600, portId);
 }
 }

 }

 public SerialHandler getArduino(String name){
 SerialHandler temp = null;
 if(name.equalsIgnoreCase("StabilityArduino")){
 temp = StabilityArduino;
 }
 else if(name.equalsIgnoreCase("remoteOperation")){
 temp = remoteOperation;
 }
 else if(name.equalsIgnoreCase("LidarArduino")){
 temp = LidarArduino;
 }
 return temp;
 }

 public boolean isStabilityArdConnected(){
 return stabilityArdConnected;
 }

 public boolean isRemoteArdConnected(){
 return remoteArdConnected;
 }

}

Side 3

AutoPilot
package serialgpsserver;

/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
//import java.io.BufferedReader;
import java.util.concurrent.Semaphore;
import java.util.logging.Level;
import java.util.logging.Logger;
import org.json.JSONException;
import org.json.JSONObject;

/**
 * Klasse for AutoPilot, "Følger waypoints"
 *
 * @author Matias
 */
public class AutoPilot extends Thread {

 public static final double RADIUS = 6378137.0;
 private static double distanceToWaypoint;
 private final StorageBoxRunningMode StorageBoxRunningMode;
 private final Semaphore semaphoreStorageBoxRunningMode;

 private JSONObject xyPosDataJson; //Felt for GPS rådata
 //private JSONObject rawWaypointData; //Felt for Waypoint rådata
 private final JSONObject headingAndVectLength; // Felt for kurs og avstand
 private JSONObject jsonCourse;
 //private JSONObject arduinoData;

 //private BufferedReader input;

 private double headingAngleWaypoint;//Felt for vinkel til waypoint i grader
 private double platformHeading; // Vinkel på plattfrm ift sant nord
 private double headingFromArduino;

 private double outputX;
 private double outputY;
 private double outputN;

 private double refLatBody = 62.00000;
 private double refLonBody = 6.000000;

 private final ThrustAllocator thrustAllocator;
 private final ArduinoHandler ardHandler;
 private RotationMatrix Rz;
 private ThrustWriter tWriter;
 private double[] forceOutputNewton;

 private final PIDController xNorthPID;

Side 1

AutoPilot
 private final PIDController yEastPID;
 private final PIDController headingPID;
 private boolean isRunning;

 private long time;
 private long testTime;

 /**
 * Autopilot Konstruktør
 *
 * @param storageBoxRunningMode
 * @param semaphoreStorageBoxRunningMode
 * @param ardHandler Kontakten med Arduinoer
 */
 public AutoPilot(StorageBoxRunningMode storageBoxRunningMode, Semaphore
semaphoreStorageBoxRunningMode, ArduinoHandler ardHandler) {

 this.StorageBoxRunningMode = storageBoxRunningMode;
 this.semaphoreStorageBoxRunningMode = semaphoreStorageBoxRunningMode;
 this.ardHandler = ardHandler;
 this.headingAndVectLength = new JSONObject();
 this.jsonCourse = new JSONObject();
 forceOutputNewton = new double[4];
 thrustAllocator = new ThrustAllocator();
 if (ardHandler.isRemoteArdConnected()) {
 tWriter = new
ThrustWriter(ardHandler.getArduino("remoteOperation"));
 }
 xNorthPID = new PIDController();
 yEastPID = new PIDController();
 headingPID = new PIDController();
 //pid tunings
 xNorthPID.setTunings(30000, 1, 10);
 yEastPID.setTunings(30000, 1, 10);

 }

 /**
 * Method for å hente heading
 *
 * @return jsonobjekt med vinkel og lengde til ønsket waypoint
 */
 public JSONObject calculateHeadingAndDistance() {
 try {
 double rawLat = xyPosDataJson.getDouble("xyLatBody"); //Rådata fra
GPS
 double rawLon = xyPosDataJson.getDouble("xyLonBody"); //Rådata fra
GPS
 double wpLat = xyPosDataJson.getDouble("xyLatWaypoint");
//Waypointdata fra app
 double wpLon = xyPosDataJson.getDouble("xyLonWaypoint");
//Waypointdata fra app

Side 2

AutoPilot
 double GPSSpeed = xyPosDataJson.getDouble("speed");
// if(GPSSpeed < 0.5){
//
// platformHeading = arduinoData.getDouble("Heading");
// }
 double latitude1 = Math.toRadians(rawLat);
 double latitude2 = Math.toRadians(wpLat);
 double longDiff = Math.toRadians(wpLon - rawLon);
 double y = Math.sin(longDiff) * Math.cos(latitude2);
 double x = Math.cos(latitude1) * Math.sin(latitude2) -
Math.sin(latitude1) * Math.cos(latitude2) * Math.cos(longDiff);
 double vectorLength = Math.abs((wpLat - (rawLat)) + (wpLon -
(rawLon)));
 //Putter til jsonObjekt for senere håntering
 headingAngleWaypoint = (Math.toDegrees(Math.atan2(y, x)) + 360) %
360;
 headingAndVectLength.put("heading", headingAngleWaypoint);
 headingAndVectLength.put("length", vectorLength);

 } catch (JSONException ex) {
 Logger.getLogger(AutoPilot.class.getName()).log(Level.SEVERE, null,
ex);
 }
 return headingAndVectLength;
 }

 @Override
 public void run() {

 //Boolean for å bryte while
 isRunning = true;

 try {
 while (isRunning) {

 if (ardHandler.isStabilityArdConnected()) {
 getHedingFromArduino();
 // System.out.println("Autopilot: " +headingFromArduino);
 }
 time = System.currentTimeMillis();
 if (time > testTime) {
 testTime = time + 500;
 //Tar semaforen for storageBoxAutoPilot
 semaphoreStorageBoxRunningMode.acquire();
 //Sjekker at storageBoxAutoPilot har fått koordinater fra
gps/gui
 boolean isAvailable = StorageBoxRunningMode.getAvailable();

 if (isAvailable) {
 //Lagrer jsonobjektene i egne json objekter
 xyPosDataJson = new JSONObject();

Side 3

AutoPilot
 xyPosDataJson = StorageBoxRunningMode.getGPSdata();
 platformHeading = bearing();
 }
 //haversine(double latPlatform, double lonPlatform, double
latWaypoint, double lonWaypoint)
 if (xyPosDataJson != null && xyPosDataJson.length() > 0 &&
(haversine(xyPosDataJson.getDouble("lat"), xyPosDataJson.getDouble("lon"),
xyPosDataJson.getDouble("waypointLat"), xyPosDataJson.getDouble("waypointLon")))
< 2) {
 StorageBoxRunningMode.setHasArrivedToWaypoint(true);
 } else {
 StorageBoxRunningMode.setHasArrivedToWaypoint(false);
 }
 //Slipper semaforen så storageBoxAutoPilot kan entres av
andre tråder.
 semaphoreStorageBoxRunningMode.release();
 //Sjekker om kriteriene for ny kurs er oppfyllt, json
objektene må inneholde lat og lon
 if (xyPosDataJson != null && xyPosDataJson.length() > 0) {
 jsonCourse = calculateHeadingAndDistance();
 System.out.println("Heading: " +
jsonCourse.getString("heading") + " Degrees");
 System.out.println(bearing());
 //int led = testHeading(); // Test program for å kjøre
test med led og Arduino
 //Henter output fra hver PID regulator
 double X =
xNorthPID.computeOutput((xyPosDataJson.getDouble("xyLatBody")*100),
(xyPosDataJson.getDouble("xyLatWaypoint")*100), false);
 double Y =
yEastPID.computeOutput((xyPosDataJson.getDouble("xyLonBody")*100),
(xyPosDataJson.getDouble("xyLonWaypoint")*100), false);
 double N = headingPID.computeOutput(headingFromArduino,
headingAngleWaypoint, true);
 System.out.println("X output: " + X + " Y Output: " + Y
+" N output: " + N);
 //setter kreftene X og Y, og momentet N.
 setPIDOutputVector(X, Y, N);//synchronized

 Rz = new RotationMatrix(headingFromArduino); //HEADING
MÅ VÆRE FRA IMU
 double[] XYNtransformed = Rz.multiplyRzwithV(outputX,
outputY, outputN);
 forceOutputNewton =
thrustAllocator.calculateOutput(XYNtransformed);

 if (ardHandler.isRemoteArdConnected()) {
 tWriter.setThrustForAll(forceOutputNewton);
 tWriter.writeThrust();
 } else {
 System.out.println("Arduino not connected");
 }

Side 4

AutoPilot
 }
 }
 }
 } catch (InterruptedException ex) {
 Logger.getLogger(AutoPilot.class.getName()).log(Level.SEVERE, null,
ex);
 } catch (Exception ex) {
 Logger.getLogger(AutoPilot.class.getName()).log(Level.SEVERE, null,
ex);
 System.out.println("Error XYNtransformed output force");
 }

 }

 private double getHedingFromArduino() {

 SerialHandler stabArdu = ardHandler.getArduino("StabilityArduino");
 if (ardHandler.isStabilityArdConnected()) {
 double temp = stabArdu.getArduinoData();
 // headingFromArduino = Double.parseDouble(temp);

 headingFromArduino = temp;
 System.out.println("Get heading: " + headingFromArduino);
 }
 return headingFromArduino;
 }

 /**
 * Setter PID kreftene og momentet.
 *
 * @param X
 * @param Y
 * @param N
 */
 public synchronized void setPIDOutputVector(double X, double Y, double N) {
 outputX = X;
 outputY = Y;
 outputN = N;
 }

 public int testHeading() {
 double testHeading = bearing();
 System.out.print("GPS heading | ");
 System.out.println(testHeading);
 double diff = headingAngleWaypoint - testHeading;
 int led = 0;
 if (diff < 10 && diff > -10) {
 led = 1;
 } else if (diff > 10) {
 led = 2;
 } else if (diff < -10) {
 led = 3;

Side 5

AutoPilot
 }
 return led;
 }

 /**
 * Method for å hente heading
 *
 * @return jsonobjekt med vinkel og lengde til ønsket waypoint
 */
 public double calculateHeading() {
 double GPSHeading = 0;
 try {

 double currentLatBody = xyPosDataJson.getDouble("lat"); //Rådata fra
GPS
 double currentLonBody = xyPosDataJson.getDouble("lon"); //Rådata fra
GPS
 System.out.println(currentLatBody);
 System.out.println(refLatBody);
 System.out.println(currentLonBody);
 System.out.println(refLonBody);

 double headingRadians = Math.atan2(currentLatBody - refLatBody,
currentLonBody - refLonBody);
 //double headingRadians = Math.atan2(refLatBody-currentLatBody,
refLonBody-currentLonBody);
 GPSHeading = Math.toDegrees(headingRadians);
 GPSHeading = GPSHeading - 90;
 if (GPSHeading < 0) {
 GPSHeading = 360 + GPSHeading;
 }
 double vectorLength = Math.abs((refLatBody - (currentLatBody)) +
(refLonBody - (currentLonBody)));
 //Putter til jsonObjekt for senere håntering

 refLatBody = xyPosDataJson.getDouble("lat"); //Rådata fra GPS
 refLonBody = xyPosDataJson.getDouble("lon"); //Rådata fra GPS

 } catch (JSONException ex) {
 Logger.getLogger(AutoPilot.class.getName()).log(Level.SEVERE, null,
ex);
 }
 return GPSHeading;
 }

 protected double bearing() {
 try {
 double currentLatBody = xyPosDataJson.getDouble("lat"); //Rådata fra
GPS
 double currentLonBody = xyPosDataJson.getDouble("lon"); //Rådata fra
GPS

Side 6

AutoPilot
 double latitude1 = Math.toRadians(refLatBody);
 double latitude2 = Math.toRadians(currentLatBody);
 double longDiff = Math.toRadians(currentLonBody - refLonBody);
 double y = Math.sin(longDiff) * Math.cos(latitude2);
 double x = Math.cos(latitude1) * Math.sin(latitude2) -
Math.sin(latitude1) * Math.cos(latitude2) * Math.cos(longDiff);
 System.out.println("Y: " +y); System.out.println("X: " + x);
 refLatBody = xyPosDataJson.getDouble("lat"); //Rådata fra GPS
 refLonBody = xyPosDataJson.getDouble("lon"); //Rådata fra GPS

 return (Math.toDegrees(Math.atan2(y, x)) + 360) % 360;
 } catch (JSONException ex) {
 Logger.getLogger(AutoPilot.class.getName()).log(Level.SEVERE, null,
ex);
 return 1;
 }
 }

 /**
 * Calculates the current position from the Platform to the destination
 * waypoint
 *
 * @param lat1 Platform position: latitude
 * @param lon1 Platform position: longitude
 * @param lat2 Waypoint from client: latitude
 * @param lon2 Waypoint from client: longitude
 * @return
 */
 public static double haversine(double lat1, double lon1, double lat2, double
lon2) {
 double dLat = Math.toRadians(lat2 - lat1);
 double dLon = Math.toRadians(lon2 - lon1);
 lat1 = Math.toRadians(lat1);
 lat2 = Math.toRadians(lat2);

 double a = Math.pow(Math.sin(dLat / 2), 2) + Math.pow(Math.sin(dLon /
2), 2) * Math.cos(lat1) * Math.cos(lat2);
 double c = 2 * Math.asin(Math.sqrt(a));
 distanceToWaypoint = RADIUS * c;
 return distanceToWaypoint;
 }

 public void close() {
 isRunning = false;
 }
}

Side 7

Conductor
/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package serialgpsserver;

import java.util.Collection;
import java.util.concurrent.Semaphore;
import java.util.concurrent.TimeUnit;
import java.util.logging.Level;
import java.util.logging.Logger;
import org.json.JSONException;
import org.json.JSONObject;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import no.ntnu.videostream.ImageStorageBox;
import org.json.JSONArray;

/**
 *
 * @author Matias
 */
public class Conductor extends Thread {

 private StorageBoxGPS storageBoxGPS;
 private StorageBoxNorthEastGPS storageBoxNorthEastGPS;
 private StorageBoxSocketSend storageBoxSocketSend;
 private StorageBoxSocketReceive storageBoxSocketReceive;
 private StorageBoxPlatformMode storageBoxPlatformMode;
 private StorageBoxRunningMode storageBoxRunningMode;

 private Semaphore semaphoreStorageBoxGPS;
 private Semaphore semaphoreStorageBoxNorthEastGPS;
 private Semaphore semaphoreStorageBoxSocketSend;
 private Semaphore semaphoreStorageBoxRunningMode;
 private Semaphore semaphoreStorageBoxSocketReceive;
 private Semaphore semaphoreStorageBoxPlatformMode;

 private boolean coordAvailable;
 private boolean northEastAvailable;
 private boolean hasDataFromClient;

 private JSONObject jsonToClient;
 private JSONObject gpsJsonData;
 private JSONObject jsonDataFromClient;
 private List<Double> latCoordList;
 private List<Double> lonCoordList;
 private int lastCoordPos;

 private SerialHandler serialHandler;

Side 1

Conductor
 private double xyLatWaypoint;
 private double xyLonWaypoint;
 private double latRef;
 private double lonRef;
 private double spd;

 private NEDTransform gpsProc;
 private boolean hasWaypoint;
 private int waypointNumber;
 private boolean hasArrived;
 private JSONArray latList;
 private JSONArray lonList;

//Hold tunga beint i munnen
 Conductor(StorageBoxGPS storageBoxGPS, StorageBoxNorthEastGPS
storageBoxNorthEastGPS, StorageBoxSocketSend storageBoxSocketSend,
StorageBoxSocketReceive storageBoxSocketReceive,
 StorageBoxPlatformMode storageBoxPlatformMode, StorageBoxRunningMode
storageBoxRunningMode, Semaphore semaphoreStorageBoxGPS, Semaphore
semaphoreStorageBoxNorthEastGPS, Semaphore semaphoreStorageBoxSocketSend,
 Semaphore semaphoreStorageBoxSocketReceive, Semaphore
semaphoreStorageBoxPlatformMode, Semaphore semaphoreStorageBoxRunningMode) {
 this.storageBoxGPS = storageBoxGPS;
 this.storageBoxNorthEastGPS = storageBoxNorthEastGPS;
 this.storageBoxSocketSend = storageBoxSocketSend;
 this.storageBoxSocketReceive = storageBoxSocketReceive;
 this.storageBoxPlatformMode = storageBoxPlatformMode;
 this.storageBoxRunningMode = storageBoxRunningMode;
 this.semaphoreStorageBoxSocketSend = semaphoreStorageBoxSocketSend;
 this.semaphoreStorageBoxGPS = semaphoreStorageBoxGPS;
 this.semaphoreStorageBoxNorthEastGPS = semaphoreStorageBoxNorthEastGPS;
 this.semaphoreStorageBoxSocketReceive =
semaphoreStorageBoxSocketReceive;
 this.semaphoreStorageBoxPlatformMode = semaphoreStorageBoxPlatformMode;
 this.semaphoreStorageBoxRunningMode = semaphoreStorageBoxRunningMode;

 coordAvailable = false;
 northEastAvailable = false;
 jsonToClient = new JSONObject();
 gpsJsonData = new JSONObject();
 jsonDataFromClient = new JSONObject();

 gpsProc = new NEDTransform();
 latCoordList = new ArrayList<>();
 lonCoordList = new ArrayList<>();
 hasWaypoint = false;
 waypointNumber = 0;
 hasArrived = false;

/*
 //UDP STREAM
 int numberOfPermits = 1;

Side 2

Conductor
 boolean fairness = true;

 Semaphore semaphore = new Semaphore(numberOfPermits, fairness);
 ImageStorageBox imgStorageBox = new ImageStorageBox();

 VideostreamUDP imageCapture = new VideostreamUDP(semaphore,
imgStorageBox);
 imageCapture.setName("Camera Frame Capture Thread");
 imageCapture.start();
*/
 }

 /**
 * Override run() medtode i Thread klassen
 */
 @Override
 public void run() {

 boolean finished = false;

 try {
 while (!finished) {

 // Get GPS coordinate from GPS
 semaphoreStorageBoxGPS.tryAcquire(); // Get flag from GPS
storage box
 semaphoreStorageBoxNorthEastGPS.tryAcquire();

 northEastAvailable = storageBoxNorthEastGPS.getAvailable();
 coordAvailable = storageBoxGPS.getAvailable();

 if (coordAvailable && northEastAvailable) {
 //System.out.println("Has new GPS data");
 storageBoxGPS.getGPSCoord(jsonToClient);
 System.out.println("New gps:" + jsonToClient);
 //System.out.println("At get statement: " + jsonToClient);
 gpsJsonData = storageBoxNorthEastGPS.getNorthEastJson();
 }

 // Release flag to GPS storage boxes
 semaphoreStorageBoxNorthEastGPS.release();
 semaphoreStorageBoxGPS.release();

 //Innhenter semaphorer for videre håndtering av data
 semaphoreStorageBoxSocketReceive.tryAcquire();
 //System.out.println("Con rec aqu");

 hasDataFromClient = storageBoxSocketReceive.getAvailable();
 if (hasDataFromClient) {
 // System.out.println("Get data from rec in con");
 jsonDataFromClient =

Side 3

Conductor
storageBoxSocketReceive.getWaypointData();
 System.out.println("Has data from client" +
jsonDataFromClient);
 }
 semaphoreStorageBoxSocketReceive.release();
 // System.out.println("Con rec rel");

//////Må lage funksjon som bare putter dersom mode er endret!!!!!
 if (jsonDataFromClient.length() > 0 &&
jsonDataFromClient.has("Mode")) { //////Må lage funksjon som bare putter dersom
mode er endret!!!!!
 semaphoreStorageBoxPlatformMode.tryAcquire();
 if (!storageBoxPlatformMode.getAvailable()) {
 int temp = jsonDataFromClient.getInt("Mode");
 storageBoxPlatformMode.putDataInt("Mode", temp);
 // gpsJsonData.put("Mode",);
 }
 semaphoreStorageBoxPlatformMode.release();

 }

 if (jsonDataFromClient.length() > 0 &&
jsonDataFromClient.has("Mode") && jsonDataFromClient.getInt("Mode") == 2 &&
jsonDataFromClient.has("NewWaypointList")) {
 // System.out.println("has waypointlist");
 if (jsonDataFromClient.getBoolean("NewWaypointList")) {
 getWaypointLists();
 //System.out.println("test");
 } // sends information to autopilot storage box
 else if (!jsonDataFromClient.getBoolean("NewWaypointList"))
{
 posInfo();
 }
 if (hasWaypoint &&
storageBoxRunningMode.hasArrivedToWaypoint()) {
 setReferenceCoord();
 posInfo();
 }
 } else if (jsonDataFromClient.length() > 0 &&
jsonDataFromClient.has("Mode") && jsonDataFromClient.getInt("Mode") == 1) {
 semaphoreStorageBoxRunningMode.tryAcquire();
 if (!storageBoxRunningMode.getAvailable()) {
 storageBoxRunningMode.putGPSWp(jsonDataFromClient);
 }
 semaphoreStorageBoxRunningMode.release();
 }

 //Sjekker om jsonToClient har elementer for så å aquire semafor
til storage box,
 //putte json objektet der etter release semaforen
 // System.out.println("CONDUCTORDATA TO CLIENT");
 if (jsonToClient.length() > 0) {

Side 4

Conductor
 semaphoreStorageBoxSocketSend.tryAcquire();
 if (!storageBoxSocketSend.getAvailable()) {
 storageBoxSocketSend.putGPSCoord(jsonToClient);
 // System.out.println("New data sendt to client");
 // System.out.println("I send to client: " +
jsonToClient);
 }
 semaphoreStorageBoxSocketSend.release();
 }
 //Slipper semaforer
 semaphoreStorageBoxRunningMode.release();
 semaphoreStorageBoxSocketReceive.release();
 }
 }
// catch (InterruptedException ex) {
// Logger.getLogger(Conductor.class.getName()).log(Level.SEVERE,
null, ex);
// }
 catch (JSONException ex) {
 Logger.getLogger(Conductor.class.getName()).log(Level.SEVERE, null,
ex);
 }
 }

 /**
 * Setter referansekoordinater ved å multiplisere mottate waypoint
 * koordinater med PI/180
 */
 public void setReferenceCoord() {
 if (waypointNumber < lastCoordPos) {
 try {
 latRef = latList.getDouble(waypointNumber);
 lonRef = lonList.getDouble(waypointNumber);
 xyLatWaypoint = (latRef * Math.PI / 180.0);
 xyLonWaypoint = (lonRef * Math.PI / 180.0);
 System.out.println("Moving to waypoint " + (waypointNumber + 1)
+ " Latitude: " + latRef + " Longitude: " + lonRef);
 waypointNumber++;

 } catch (JSONException ex) {
 Logger.getLogger(Conductor.class.getName()).log(Level.SEVERE,
null, ex);
 }
 } else {
 System.out.println("Arrived");

 hasWaypoint = false;
 }
 }

 public void getWaypointLists() {
 hasWaypoint = true;

Side 5

Conductor
 waypointNumber = 0;
 try {
 latList = jsonDataFromClient.getJSONArray("LatitudeList");
 lonList = jsonDataFromClient.getJSONArray("LongitudeList");
 lastCoordPos = latList.length();
 System.out.println("Lengden på array: " + lastCoordPos);
 if (jsonDataFromClient.getBoolean("NewWaypointList")) {
 setReferenceCoord();
 posInfo();
 }
 jsonDataFromClient.put("NewWaypointList", false);
 } catch (JSONException ex) {
 Logger.getLogger(Conductor.class.getName()).log(Level.SEVERE, null,
ex);
 }
 }

 private void posInfo() {
 // sends information to autopilot storage box
 try {
 //System.out.println("aqu posinfo");
 semaphoreStorageBoxRunningMode.acquire();
 if (jsonDataFromClient.length() > 0 &&
!storageBoxRunningMode.getAvailable()) {
 gpsJsonData.put("xyLatWaypoint", xyLatWaypoint);
 gpsJsonData.put("xyLonWaypoint", xyLonWaypoint);
 gpsJsonData.put("waypointLat", latRef);
 gpsJsonData.put("waypointLon", lonRef);

 if (gpsJsonData.length() > 3) {
 gpsJsonData = gpsProc.getFlatEarthCoordinates(gpsJsonData);
 //System.out.println("NorthEast coords and speed: " +
gpsJsonData);
 storageBoxRunningMode.putGPSWp(gpsJsonData);
 System.out.println("Sends info to autopilot");
 }
 }
 semaphoreStorageBoxRunningMode.release();
 } catch (JSONException ex) {
 Logger.getLogger(Conductor.class.getName()).log(Level.SEVERE, null,
ex);
 } catch (InterruptedException ex) {
 Logger.getLogger(Conductor.class.getName()).log(Level.SEVERE, null,
ex);
 }
 }

 /**
 * Setter feltene som representerer nåværende posisjon til oppdatert versjon
 * fra gpsStoragebox
 */
// public void setCurrentCoords(){

Side 6

Conductor
// try {
// xyLatBody = jsonToClient.getDouble("lat");
// xyLonBody = jsonToClient.getDouble("lon");
// } catch (JSONException ex) {
// Logger.getLogger(Conductor.class.getName()).log(Level.SEVERE,
null, ex);
// }
// }
}

Side 7

GPSData
package serialgpsserver;

import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Calendar;
import java.util.Date;

public class GPSData {
 private final int maxAvgBase = 10;
 private static SimpleDateFormat dateFormat;

 static {
 dateFormat = new SimpleDateFormat("HHmmssddMMyy");
 }

 private Date time;

 private void setTime(Date time) {
 this.time = time;
 }

 /**
 * true if the gps has a connection
 */
 private boolean connection = false;

 private String horizontal;

 private String vertical;

 /**
 * Speed in km/h
 */
 private Double speed;

 private Double latitude;
 private Double longitude;
 private String gpgga;
 private String gprmc;
 private String gpgsa;
 private Date gpsDate;

 public Date getGpsDate() {
 return gpsDate;
 }

 public void setGpsDate(Date gpsDate) {
 this.gpsDate = gpsDate;
 }

 public void setGpsDate(String hourPart, String dayPart) {
 try {

Side 1

GPSData
 String tmpHours = hourPart.split("\\.")[0];
 String timeStamp = tmpHours + dayPart;
 setGpsDate(dateFormat.parse(timeStamp));
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 /**
 * Constructor
 */
 public GPSData() {
 this.time = new Date();
 }

 public boolean isConnection() {
 return connection;
 }

 private void setConnection(boolean connection) {
 this.connection = connection;
 }

 /**
 * E=East or W=West
 *
 * @return
 */
 public String getHorizontal() {
 return horizontal;
 }

 private void setHorizontal(String horizontal) {
 this.horizontal = horizontal;
 }

 /**
 * N=North or S=South
 *
 * @return
 */
 public String getVertical() {
 return vertical;
 }

 private void setVertical(String vertical) {
 this.vertical = vertical;
 }

 public Double getSpeed() {
 return speed;
 }

Side 2

GPSData

 private void setSpeed(Double speed) {
 this.speed = speed;
 }

 public Double getLongitude() {
 return longitude;
 }

 private void setLongitude(Double longitude) {
 this.longitude = longitude;
 }

 public Double getLatitude() {
 return latitude;
 }

 private void setLatitude(Double latitude) {
 this.latitude = latitude;
 }

 public String getGpgga() {
 return gpgga;
 }

 public void setGpgga(String gpgga) {
 this.gpgga = gpgga;
 }

 public String getGprmc() {
 return gprmc;
 }

 public void setGprmc(String gprmc) {
 this.gprmc = gprmc;
 String[] data = gprmc.split(",");
 //if data[2] is A then we have a connection. If it is V then we dont.
 setConnection(data[2].equals("A"));
 //setTime(convertStringToDate(data[1], data[9]));
 //XXX: no using gps time anymore cause it was not correct when there was
no signal
 setTime(new Date());
 if (isConnection()) {
 setGpsDate(data[1], data[9]);
 setLongitude(convertGPSdata(Double.valueOf(data[5])));
 setHorizontal(data[6]);
 setLatitude(convertGPSdata(Double.valueOf(data[3])));
 setVertical(data[4]);
 setSpeed(knotsToKmh(data[7]));
 }
 }

Side 3

GPSData
 public String getGpgsa() {
 return gpgsa;
 }

 public void setGpgsa(String gpgsa) {
 this.gpgsa = gpgsa;
 }

 public Date getTime() {
 return time;
 }

 /**
 * Convert data from DDMM.MMMM system to DD.DDDD system
 *
 * @param dat
 * @return
 */
 private static Double convertGPSdata(double dat) {
 double deg = Math.floor(dat / 100);
 double min = dat * 100 % 10000 / 6000;
 double result = (double) Math.round((deg + min) * 1000000) / 1000000;
 return result;
 }

 /**
 *
 * @param time format hhmmss e.g. 225446 - Time of fix 22:54:46 UTC
 * @param date format ddMMyy e.g. 191194 - UTC Date of fix, 19 November 1994
 * @return
 */
 private static Date convertStringToDate(String time, String date) {
 Calendar cal = Calendar.getInstance();
 try {
 return dateFormat.parse(time.substring(0, time.indexOf(".")) +
date);
 } catch (ParseException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 return null;
 }

 private static double knotsToKmh(String knots) {
 if (knots != null && !knots.isEmpty()) {
 return Double.parseDouble(knots) * 1.852;
 } else {
 return 0d;
 }
 }

 @Override

Side 4

GPSData
 public String toString() {
 return "Time: " + getTime() + "; Connected: " + isConnection() + ";
Longitude: " + getLongitude() + "; Latitude: " + getLatitude() + "; Speed: " +
getSpeed() + ";";
 }
/**
 * Dummy metode for Gjennomsnittlig longditude, Bruker samme verdien pga
refreshrate til GPS
 * @return avgLongditude
 */
 public double getAvgLongitude() throws InterruptedException {
 double sum = 0;
 int total = 0;
 for (total = 0; total < maxAvgBase; total++) {
 sum = sum + getLongitude();
 Thread.sleep(100);
 }
 double avgLongditude = sum / total;
 return avgLongditude;

 }
/**
 * Dummy metode for Gjennomsnittlig Latitude, Bruker samme verdien pga
refreshrate til GPS
 * @return avgLatitude
 */
 public double getAvgLatitude() {
 double sum = 0;
 int total = 0;
 for (total = 0; total < maxAvgBase; total++) {
 sum = sum + getLatitude();
 }
 double avgLatitude = sum / total;
 // avgLatitude = Math.floor(avgLatitude * 100) / 100;
 return avgLatitude;

 }
/**
 * Dummy metode for Gjennomsnittlig fart, Bruker samme verdien pga refreshrate
til GPS
 * @return avgSpeed
 */
 public double getAvgSpeed() {
 double sum = 0;
 int total = 0;
 for (total = 0; total < maxAvgBase; total++) {
 sum = sum + getSpeed();
 }
 double avgSpeed = sum / total;
 return avgSpeed;

 }

Side 5

GPSData

}

Side 6

GPSDataEventListener
package serialgpsserver;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;

import gnu.io.SerialPortEvent;
import gnu.io.SerialPortEventListener;

public class GPSDataEventListener implements SerialPortEventListener {

 private SimpleDateFormat dateFormat = new SimpleDateFormat("HHmmssddMMyy");
 private InputStream inputStream;
 private GPSData locationData;
 private boolean connection = true;

 public GPSDataEventListener(InputStream inputStream) {
 super();

 this.setInputStream(inputStream);
 }

 @Override
 public void serialEvent(SerialPortEvent event) {
 try {
 if (event.getEventType() == SerialPortEvent.DATA_AVAILABLE) {
 BufferedReader reader = new BufferedReader(new
InputStreamReader(getInputStream()));
 try {
 boolean GPRMC_next_round = false;
 GPSData location = new GPSData();
 //System.out.println("Reader ready = " + reader.ready());
 if (!reader.ready()) {
 setConnection(false);
 }
 while (reader.ready()) {
 String currLine = reader.readLine();
 //System.out.println(locationData.getTime());
 //System.out.println("Curr line = " + currLine);
 String[] st = currLine.split(",");
 String type = st.length != 0 ? st[0] : null;
 if (type.equals("$GPGGA")) {
 location.setGpgga(currLine);
 } else if (type.equals("$GPRMC")) {
 location.setGprmc(currLine);
 GPRMC_next_round = true;
 } else if (type.equals("$GPGSA")) {
 location.setGpgsa(currLine);

Side 1

GPSDataEventListener
 }
 if (GPRMC_next_round) {
 break;
 }
 }
 if (GPRMC_next_round) {
 setLocationData(location);
 }
 } catch (IOException e) {
 setConnection(false);
 e.printStackTrace();
 } finally {
 try {
 reader.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 } catch (Throwable e) {
 setConnection(false);
 e.printStackTrace();
 }
 }

 private void setInputStream(InputStream inputStream) {
 this.inputStream = inputStream;
 }

 public InputStream getInputStream() {
 return inputStream;
 }

 private void setLocationData(GPSData locationData) {
 this.locationData = locationData;
 }

 public synchronized GPSData getLocationData() {
 return locationData;
 }

 /**
 * Convert data from DDMM.MMMM system to DD.DDDD system
 *
 * @param dat
 * @return
 */
 public String convertGPSdata(double dat) {
 double deg = Math.floor(dat / 100);
 double min = dat * 100 % 10000 / 6000;
 double result = (double) Math.round((deg + min) * 1000000) / 1000000;
 return Double.toString(result);

Side 2

GPSDataEventListener
 }

 /**
 *
 * @param time format hhmmss e.g. 225446 - Time of fix 22:54:46 UTC
 * @param date format ddMMyy e.g. 191194 - UTC Date of fix, 19 November 1994
 * @return
 */
 public Date convertStringToDate(String time, String date) {
 try {
 return dateFormat.parse(time + date);
 } catch (ParseException e) {
 }
 return null;
 }

 public void setConnection(boolean connection) {
 this.connection = connection;
 }

 public boolean isConnection() {
 return connection;
 }

}

Side 3

GPSReader
package serialgpsserver;

import gnu.io.CommPortIdentifier;
import gnu.io.PortInUseException;
import gnu.io.SerialPort;
import gnu.io.SerialPortEvent;
import gnu.io.SerialPortEventListener;
import gnu.io.UnsupportedCommOperationException;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.Enumeration;
import java.util.Timer;
import java.util.TooManyListenersException;
import java.util.concurrent.Semaphore;
import java.util.concurrent.TimeUnit;
import java.util.logging.Level;
import java.util.logging.Logger;
import org.json.JSONObject;

/**
 *
 * @Edits of several functions: Matias
 */
public class GPSReader extends Thread implements SerialPortEventListener {

 //"DEVICE","path":"/dev/ttyACM0" GPS tilkobling fra terminal
 private GPSData currentPosition;

 private long portScanTime = 2000;
 private long updateTime = 500;
 private boolean found = false;
 private InputStream inputStream;
 private GPSDataEventListener dataListener;
 private SerialPort gpsPort = null;
 private boolean running = true;
//Kode lagt til:
 private StorageBoxGPS storageBoxGPS;
 private StorageBoxNorthEastGPS storageBoxNorthEast;
 private Semaphore semaphoreGPS;
 private Semaphore semaphoreNorthEast;
 private boolean available;
 private double xyLatBody;
 private double xyLonBody;
 private double latRef;
 private double lonRef;
 private boolean northEastAvailable;

 private long gpsUpdateTime = 600;

Side 1

GPSReader
 public GPSReader(StorageBoxGPS storageBoxGPS, StorageBoxNorthEastGPS
storageBoxNorthEastGPS, Semaphore semaphoreGPS, Semaphore semaphoreNorthEast) {
 this.storageBoxGPS = storageBoxGPS;
 this.storageBoxNorthEast = storageBoxNorthEastGPS;
 this.semaphoreGPS = semaphoreGPS;
 this.semaphoreNorthEast = semaphoreNorthEast;
 this.available = true;
 this.northEastAvailable = true;

 }

 private static final String regExp =
"((\\$GPGGA)|(\\$GPRMC)|(\\$GPGSA)|(\\$GPGLL)|(\\$GPGSV)|(\\$GPVTG)).*";

 //Må gå gjennom metoden under: findPort()
 /**
 *
 * @return
 */
 public boolean findPort() {
 // For linux(ubuntu)
 System.setProperty("gnu.io.rxtx.SerialPorts", "/dev/gpsDongle");
System.out.println("GPS starts");
 Enumeration<CommPortIdentifier> enumer =
CommPortIdentifier.getPortIdentifiers();

 while (enumer.hasMoreElements()) {
 CommPortIdentifier port = enumer.nextElement();

 if (port.getPortType() == CommPortIdentifier.PORT_SERIAL &&
!port.isCurrentlyOwned()) {
 SerialPort serialPort = null;
 try {
 serialPort = (SerialPort) port.open("MY_PORT_NAME", 2000);
 System.out.println("GPS at " + serialPort);
 inputStream = null;
 inputStream = serialPort.getInputStream();
 if (inputStream == null) {
 System.out.println("no input stream");
 return false;

 }
 serialPort.addEventListener(this);

 serialPort.notifyOnDataAvailable(true);

 serialPort.setSerialPortParams(4800, SerialPort.DATABITS_8,
 SerialPort.STOPBITS_1, SerialPort.PARITY_NONE);

 Thread.sleep(getPortScanTime());
 } catch (PortInUseException e) {

Side 2

GPSReader
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 } catch (TooManyListenersException e) {
 e.printStackTrace();
 } catch (UnsupportedCommOperationException e) {
 e.printStackTrace();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

 if (this.isFound()) {
 System.out.println("Found Stream on com port " +
serialPort.getName());
 System.out.println("Waiting for client connection...");
 serialPort.removeEventListener();
 setDataListener(new GPSDataEventListener(inputStream));
 this.gpsPort = serialPort;
 try {
 serialPort.addEventListener(getDataListener());
 serialPort.notifyOnDataAvailable(true);
 } catch (TooManyListenersException e) {
 e.printStackTrace();
 }
 return true;
 } else {
 try {
 if (inputStream != null) {
 inputStream.close();
 }
 if (serialPort != null) {
 serialPort.close();
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 }
 // System.out.println("No Stream found!");
 return false;
 }

 @Override
 public void run() {
 try {
 findPort();
 if(getDataListener() != null && getDataListener().isConnection()){
 setRunning(true);
 }
 while (isRunning()) {
 if (isFound() && getDataListener() != null &&

Side 3

GPSReader
getDataListener().isConnection()) {
 GPSData data = getDataListener().getLocationData();
 setCurrentPosition(data);

//Prøver å aquire semaphore
 semaphoreGPS.acquire();
 semaphoreNorthEast.acquire();
// Tenker å putte GPS koordinater som string i StorageBoxGPS objektets variabel
 available = storageBoxGPS.getAvailable();
 northEastAvailable = storageBoxNorthEast.getAvailable();
 if (!available && !northEastAvailable && data != null &&
data.isConnection()) {
 double lat = data.getLatitude();
 double lon = data.getLongitude();
 double spd = data.getSpeed();
 storageBoxGPS.putGPSCoord(lat, lon, spd);
 xyLatBody = (lat * (Math.PI) / 180.0);
 xyLonBody = (lon * (Math.PI) / 180.0);
 //System.out.println("Latitude: "+ lat + " Longditude: "
+ lon);
 JSONObject xyNorthEast = new JSONObject();
 xyNorthEast.put("xyLatBody", xyLatBody);
 xyNorthEast.put("xyLonBody", xyLonBody);
 xyNorthEast.put("speed", spd);
 xyNorthEast.put("lat", lat);
 xyNorthEast.put("lon", lon);
 storageBoxNorthEast.putGPSCoord(xyNorthEast);

 } else if (data != null && !data.isConnection()) {
 System.out.println("No connection with GPS Satellites");
 }

// Slipper semaphore
 semaphoreGPS.release(); //Bruke finally block for å sikre
release selv om exception?
 semaphoreNorthEast.release();
//Print til terminal
 //
 } else {
 if (getDataListener() != null) {
 setDataListener(null);
 gpsPort.close();
 gpsPort.removeEventListener();
 gpsPort = null;
 setFound(false);
 System.out.println("Not found");
 }

 }

Side 4

GPSReader
 Thread.sleep(getUpdateTime());
 }

 } catch (InterruptedException e) {
 e.printStackTrace();
 } catch (Throwable t) {
 t.printStackTrace();
 }
 }

 @Override
 public void serialEvent(SerialPortEvent event
) {

 if (event.getEventType() == SerialPortEvent.DATA_AVAILABLE && !found) {
 BufferedReader reader = new BufferedReader(new
InputStreamReader(getInputStream()));
 String line = null;
 try {
 if (reader.ready()) {
 line = reader.readLine();
 if (line != null && line.matches(regExp)) {
 this.setFound(true);
 }
 }
 } catch (IOException e) {
 e.printStackTrace();
 } finally {
 try {
 reader.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 }

 public long getGPSshortUpdateTime(){
 return gpsUpdateTime;
 }

 public long getUpdateTime() {
 return updateTime;
 }

 private void setInputStream(InputStream inputStream) {
 this.inputStream = inputStream;
 }

 public InputStream getInputStream() {
 return inputStream;
 }

Side 5

GPSReader

 private void setFound(boolean found) {
 this.found = found;
 }

 public boolean isFound() {
 return found;
 }

 synchronized private void setCurrentPosition(GPSData currentPosition) {
 this.currentPosition = currentPosition;
 }

 synchronized public GPSData getCurrentPosition() {
 return currentPosition;
 }

 public void setPortScanTime(long portScanTime) {
 this.portScanTime = portScanTime;
 }

 public long getPortScanTime() {
 return portScanTime;
 }

 private void setDataListener(GPSDataEventListener dataListener) {
 this.dataListener = dataListener;
 }

 private GPSDataEventListener getDataListener() {
 return dataListener;
 }

 public void setRunning(boolean run) {
 this.running = run;
 }

 public boolean isRunning() {
 return running;
 }

 public boolean isConnection() {
 return isFound() && getCurrentPosition() != null &&
getCurrentPosition().isConnection();
 }

}

Side 6

LidarHandler
/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package serialgpsserver;

/**
 *
 * @author pmlei
 */
public class LidarHandler {

 public LidarHandler(SerialHandler lidarArduino){

 }

}

Side 1

ManualMode
/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package serialgpsserver;

import java.util.concurrent.Semaphore;
import java.util.logging.Level;
import java.util.logging.Logger;
import no.ntnu.videostream.ImageStorageBox;
import no.ntnu.videostream.UDPCameraStream;
import org.json.JSONObject;

/**
 * This class provide manual control of the craft from a tablet
 * @author pmlei
 */
public class ManualMode extends Thread{

 ArduinoHandler ardHandler;
 private boolean isRunning;
 private StorageBoxRunningMode storageBoxRunningMode;
 private Semaphore semaphoreStorageBoxRunningMode;
 private JSONObject manualModeJson;

 /**
 * Manual mode construc
 * @param storageBoxRunningMode
 * @param semaphoreStorageBoxRunningMode

 * @param ardHandler
 */
 public ManualMode(StorageBoxRunningMode storageBoxRunningMode, Semaphore
semaphoreStorageBoxRunningMode, ArduinoHandler ardHandler){

 this.ardHandler = ardHandler;
 this.storageBoxRunningMode = storageBoxRunningMode;
 this.semaphoreStorageBoxRunningMode = semaphoreStorageBoxRunningMode;
 }

@Override
 public void run() {

 //Boolean for å bryte while
 isRunning = true;

 while (isRunning) {
 try {
 //Tar semaforen for storageBoxAutoPilot
 semaphoreStorageBoxRunningMode.acquire();
 //Sjekker at storageBoxAutoPilot har fått koordinater fra

Side 1

ManualMode
gps/gui
 boolean isAvailable = storageBoxRunningMode.getAvailable();

 if (isAvailable) {
 //Lagrer jsonobjektene i egne json objekter

 manualModeJson = new JSONObject();
 manualModeJson = storageBoxRunningMode.getGPSdata();
 }
 semaphoreStorageBoxRunningMode.release();

 if(ardHandler.isRemoteArdConnected()){

ardHandler.getArduino("remoteOperation").send(manualModeJson);
 System.out.println("Data in manual mode: " +manualModeJson);

 }
 else System.out.println("Platform contril arduino not
connected");
 if(ardHandler.isStabilityArdConnected()){
 double dataFromStabilityArduino =
ardHandler.getArduino("StabilityArduino").getArduinoData();
 semaphoreStorageBoxRunningMode.tryAcquire();
 //Sjekker at storageBoxAutoPilot har fått koordinater fra
gps/gui
 isAvailable = storageBoxRunningMode.getAvailable();
 if (isAvailable) {
 storageBoxRunningMode.putData("ArduinoHeading",
dataFromStabilityArduino);
 }
 semaphoreStorageBoxRunningMode.release();
 }
 } catch (InterruptedException ex) {
 Logger.getLogger(ManualMode.class.getName()).log(Level.SEVERE,
null, ex);
 }
 }
 }

 public void close() {
 isRunning = false;
 }
}

Side 2

NEDTransform
package serialgpsserver;

import static java.nio.file.Files.delete;
import java.util.logging.Level;
import java.util.logging.Logger;
import org.json.JSONException;
import org.json.JSONObject;

/**
 * Transformerer geodetiske koordinater for nå- og referanseverdi til
 * koordinater i NED koordinatsystemet
 *
 * @author Albert
 */
public class NEDTransform {

 //World Geodetic System 1984 konstanter
 //Lengste radius av jordens ellipsoide
 private final double semimajorAxis = 6378137.0;
 //korteste radius av jorden ellipsoide
 private final double semiminorAxis = 6356752.0;
 private final double flattening
 = (semimajorAxis - semiminorAxis) / semimajorAxis;
 private final double f;
 private final double R;

 public NEDTransform() {
 f = flattening;
 R = semimajorAxis;
 }

// /**
// * Flat Earth Coordinates, optimal for small changes in lat/lon used.
// *
// * @param latBody
// * @param lonBody
// * @param latRef
// * @param lonRef
// * @return
// */
// public double[] getFlatEarthCoordinates(double latBody, double lonBody,
// double latRef, double lonRef) {
// double dMy = latBody - latRef;
// double dL = lonBody - lonRef;
//
// double rN = (R / (Math.sqrt(1 - (2 * f - f * f)
// * Math.pow(Math.sin(latRef), 2))));
// double rM = rN * ((1 - (2 * f - f * f)) / (1 - (2 * f - f * f)
// * Math.pow(Math.sin(latRef), 2)));
// double dN = (dMy / Math.atan(1 / rM));
// double dE = (dL / Math.atan(1 / (rN * Math.cos(latRef))));
// return new double[]{dN, dE};

Side 1

NEDTransform
// }

 public JSONObject getFlatEarthCoordinates(JSONObject jsonFlatEarth) {
 // Tar ut enkelte variabler av JSONObjektet
 try {
 double latBody = jsonFlatEarth.getDouble("xyLatBody");
 double lonBody = jsonFlatEarth.getDouble("xyLonBody");
 double latRef = jsonFlatEarth.getDouble("xyLatWaypoint");
 double lonRef = jsonFlatEarth.getDouble("xyLonWaypoint");
 //**
 double dMy = latBody - latRef;
 double dL = lonBody - lonRef;

 double rN = (R / (Math.sqrt(1 - (2 * f - f * f)
 * Math.pow(Math.sin(latRef), 2))));
 double rM = rN * ((1 - (2 * f - f * f)) / (1 - (2 * f - f * f)
 * Math.pow(Math.sin(latRef), 2)));
 double dN = (dMy / Math.atan(1 / rM));
 double dE = (dL / Math.atan(1 / (rN * Math.cos(latRef))));

 jsonFlatEarth.remove("latBody");
 jsonFlatEarth.remove("lonBody");
 jsonFlatEarth.remove("latRef");
 jsonFlatEarth.remove("lonRef");

 // jsonFlatEarth.getJSONObject("latBody").remove("latBody");
 // jsonFlatEarth.getJSONObject("lonBody").remove("lonBody");
 // jsonFlatEarth.getJSONObject("latRef").remove("latRef");
 // jsonFlatEarth.getJSONObject("lonRef").remove("lonRef");

 jsonFlatEarth.put("dNorth", dN);
 jsonFlatEarth.put("dEast",dE);
 } catch (JSONException ex) {
 Logger.getLogger(NEDTransform.class.getName()).log(Level.SEVERE,
null, ex);
 }

 return jsonFlatEarth;
 }

 //Denne gjelder for jord som IKKE er "flat" ikke brukt pga mer kompleks
 //flat jord er godt for DP
 /**
 * Works for all distances.
 *
 * @param latitudeBody
 * @param longitudeBody
 * @param latitudeReference
 * @param longitudeReference
 * @return
 */
// public double[] getBodyCInNEDByGeodeticBodyPosAndRef(double latitudeBody,

Side 2

NEDTransform
// double longitudeBody, double latitudeReference,
// double longitudeReference) {
// double NRef = getN(latitudeReference, longitudeReference);
// double[] xyzRef = llh2ECEF(latitudeReference, longitudeReference,
// 0, NRef);
// double NBody = getN(latitudeReference, longitudeReference);
// double[] xyzBody = llh2ECEF(latitudeBody, longitudeBody, 0, NBody);
// double dx = xyzBody[0] - xyzRef[0];
// double dy = xyzBody[1] - xyzRef[1];
// double dz = xyzBody[2] - xyzRef[2];
//
// double cosPhi = Math.cos(latitudeReference);
// double sinPhi = Math.sin(latitudeReference);
// double cosLambda = Math.cos(longitudeReference);
// double sinLambda = Math.sin(longitudeReference);
//
// double t = cosLambda * dx + sinLambda * dy;
//
// double dxEast = -sinLambda * dx + cosLambda * dy;
// double dzUp = cosPhi * t + sinPhi * dz;
// double dyNorth = -sinPhi * t + cosPhi * dz;
//
// double xNorth = dyNorth;
// double yEast = dxEast;
// double zDown = -dzUp;
// return new double[]{xNorth, yEast, zDown};
// }
//
// private double getN(double lat, double lon) {
// double a = semimajorAxis;
// double b = semiminorAxis;
// double acos = a * Math.cos(lat);
// double bsin = b * Math.cos(lon);
// double aa = a * a;
// return aa / Math.sqrt(acos * acos + bsin * bsin);
// }
 /**
 * Converts latitude, longitude and height to ECEF coordinate system
 *
 * @param latitude
 * @param longitude
 * @param height
 * @return var-index: x-0, y-1, z-2
 */
// private double[] llh2ECEF(double lat,
// double lon, double height, double N) {
// double x = (N + height) * Math.cos(lat) * Math.cos(lon);
// double y = (N + height) * Math.cos(lat) * Math.sin(lon);
// double bOvera = semiminorAxis / semimajorAxis;
// double z = (N * bOvera * bOvera + height) * Math.sin(lat);
// double[] xyz = new double[]{x, y, z};
// return xyz;

Side 3

NEDTransform
// }
}

Side 4

PIDController
package serialgpsserver;

/**
 * Pid kontroller for Autopilot og Dynamic Positioning
 * @author Albert
 */
public class PIDController {
//
 //IO Variables

 private double outputVariable;

 //Gains
 private double Kp;
 private double Ki;
 private double Kd;

 //Class variables
 private double integralTerm;
 private double lastError;
 private final double cycleTimeInSeconds;

 private double maxOutput;
 private double minOutput;

 public PIDController() {
 outputVariable = 0.0;
 integralTerm = 0.0;
 lastError = 0.0;

 maxOutput = 2 * 110.0;//Maks output jaging og tverrskipss
 minOutput = 2 * -110.0;//Minimum output jaging og tverrskips

 Kp = 1.0;
 Ki = 0.0;
 Kd = 0.0;
 cycleTimeInSeconds = 0.2;
 }

 /**
 * Beregner output for regulatoren
 *
 * @param newInput
 * @param referenceVariable
 * @param continuous
 * @return
 */
 public double computeOutput(double newInput, double referenceVariable,
 boolean continuous) {

 double error = referenceVariable - newInput;

Side 1

PIDController
 // Dersom kontinuerlig kan wrap around
 if (continuous) {
 maxOutput = 121.0; //torque(yaw)
 minOutput = -121.0; //torque(yaw)
 if (Math.abs(error) > 180) {
 if (error > 0) {
 error = error - 360.0;
 } else {
 error = error + 360.0;
 }
 }
 }
 // Integrator anti-windup og integrator ledd
 if ((integralTerm + error * cycleTimeInSeconds * Ki) < maxOutput
 && (integralTerm + error * cycleTimeInSeconds * Ki)
 > minOutput) {
 integralTerm += Ki * error * cycleTimeInSeconds;
 }
 double dError = (error - lastError) / cycleTimeInSeconds;
 //Beregn PID Output
 outputVariable = Kp * error + integralTerm + Kd * dError;
 limitOutputVariable();
 lastError = error;
 return outputVariable;

 }

 /**
 * resetter feil
 */
 public void resetErrors() {
 integralTerm = 0;
 lastError = 0;
 }

 /**
 * setter forsterkningskonstant for denne regulatoren
 *
 * @param Kp
 * @param Ki
 * @param Kd
 */
 public void setTunings(float Kp, float Ki, float Kd) {
 this.Kp = Kp;
 this.Ki = Ki;
 this.Kd = Kd;
 }

 /**
 * returener forsterkningskonstantene for denne regulatoren
 *
 * @return

Side 2

PIDController
 */
 public double[] getTunings() {
 return new double[]{Kp, Ki, Kd};
 }

 /**
 * setter forsterkningskonstantene for vdenne regulatoren
 *
 * @param gainChanged
 * @param newControllerGain
 */
 void setGain(int gainChanged, double newControllerGain) {
 switch (gainChanged) {
 case 1:
 case 4:
 case 7:
 Kp = newControllerGain;
 break;
 case 2:
 case 5:
 case 8:
 Ki = newControllerGain;
 break;
 case 3:
 case 6:
 case 9:
 Kd = newControllerGain;
 break;
 }
 }

 /**
 * begrenser output variablene
 */
 private void limitOutputVariable() {
 if (outputVariable > maxOutput) {
 outputVariable = maxOutput;
 } else if (outputVariable < minOutput) {
 outputVariable = minOutput;
 }
 }

}

Side 3

PlatformMode
/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package serialgpsserver;

import java.util.concurrent.Semaphore;
import java.util.logging.Level;
import java.util.logging.Logger;

/**
 *
 * @author pmlei
 */
public class PlatformMode extends Thread {

 private ArduinoHandler ardHandler;
 private StorageBoxPlatformMode storageBoxPlatformMode;
 private final StorageBoxRunningMode storageBoxRunningMode;
 private Semaphore semaphoreStorageBoxPlatformMode;
 private final Semaphore semaphoreStorageBoxRunningMode;
 private int currentMode = 2;

 private AutoPilot autoPilot;
 private ManualMode manualMode;

 public PlatformMode(ArduinoHandler ardHandler, StorageBoxPlatformMode
storageBoxPlatformMode, StorageBoxRunningMode storageBoxRunningMode, Semaphore
semaphoreStorageBoxPlatformMode, Semaphore semaphoreStorageBoxRunningMode){

 this.ardHandler = ardHandler;
 this.storageBoxPlatformMode = storageBoxPlatformMode;
 this.storageBoxRunningMode = storageBoxRunningMode;
 this.semaphoreStorageBoxPlatformMode = semaphoreStorageBoxPlatformMode;
 this.semaphoreStorageBoxRunningMode = semaphoreStorageBoxRunningMode;

 }

 /**
 *
 */
 @Override
 public void run(){
 System.out.println("Ready to choose mode");
 boolean isRunning = true;
 startMode(currentMode);

 while(isRunning){
 try {
 // System.out.println("aqu platform mode");
 semaphoreStorageBoxPlatformMode.acquire();

Side 1

PlatformMode
 // System.out.println("Got aqu platform mode");
 boolean isAvailable = storageBoxPlatformMode.getAvailable();
 if(isAvailable){
 // System.out.println("has mode");
 int mode = storageBoxPlatformMode.getMode();
 if(currentMode != mode){
 startMode(mode);
 currentMode = mode;
 }
 }
 semaphoreStorageBoxPlatformMode.release();
 } catch (InterruptedException ex) {
 Logger.getLogger(PlatformMode.class.getName()).log(Level.SEVERE,
null, ex);
 }
 }
 }

 private void startMode(int mode){
 switch(mode){

 case 1:
 if(autoPilot != null && autoPilot.isAlive()) autoPilot.close();
 manualMode = new ManualMode(storageBoxRunningMode,
semaphoreStorageBoxRunningMode, ardHandler);
 manualMode.setName("Manual mode");
 manualMode.start();
 System.out.println("Starting Manual mode");
 break;
 case 2:
 if(manualMode != null && manualMode.isAlive())
manualMode.close();
 autoPilot = new AutoPilot(storageBoxRunningMode,
semaphoreStorageBoxRunningMode, ardHandler);
 autoPilot.setName("Autopilot thread");
 autoPilot.start();
 System.out.println("Starting Autopilot");
 break;
 default:
 break;
 }
 }
}

Side 2

RotationMatrix

package serialgpsserver;

import org.apache.commons.math3.linear.ArrayRealVector;
import org.apache.commons.math3.linear.BlockRealMatrix;
import org.apache.commons.math3.linear.RealVector;

/**
 * Klasse for å opprette rotasjonsmatrise mellom BODY og NED
 *
 * @author Albert
 */
public class RotationMatrix {

 private BlockRealMatrix Rz;
 private double[][] raw;
 ArrayRealVector vector;

 public RotationMatrix(double headingDegrees) {
 double headingRadians = headingDegrees * (double) Math.PI / 180.0f;
 raw = new double[][]{
 {c(headingRadians), -s(headingRadians), 0},
 {s(headingRadians), c(headingRadians), 0},
 {0, 0, 1}};
 Rz = new BlockRealMatrix(raw);
 }

 /**
 * transponerer rotasjonsmatrisen og multipliserer den med input vektor
 *
 * @param u
 * @param v
 * @param w
 * @return
 */
 public double[] multiplyRzwithV(double u, double v, double w) {
 vector = new ArrayRealVector(new double[]{u, v, w});
 //Rz'*returnVector 3x3 * 3x1 = 3x1
 RealVector returnVector = Rz.transpose().operate(vector);
 return returnVector.toArray();
 }

 /**
 * cosinus funskjon
 *
 * @param radians
 * @return
 */
 private double c(double radians) {
 return (double) Math.cos(radians);
 }

Side 1

RotationMatrix
 /**
 * sinusfunksjon
 *
 * @param radians
 * @return
 */
 private double s(double radians) {
 return (double) Math.sin(radians);
 }
}

Side 2

SerialGPSServer
/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package serialgpsserver;

import java.io.IOException;
import java.util.concurrent.Semaphore;

/**
 *
 * @author Matias
 */
public class SerialGPSServer {
static {

System.load("/home/odroid/NetbeansProjects/Plattform/libs/soFiles/librxtxSerial.
so");
System.load("/home/odroid/NetbeansProjects/Plattform/libs/soFiles/librxtxParalle
l.so");
System.load("/home/odroid/NetbeansProjects/Plattform/libs/soFiles/libopencv_2413
.so");
}
 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) throws IOException {

 int portNumber;
 portNumber = 7777;

 int numberOfPermits = 1;
 // int numberOfProducers = 1; Fra eksempel, brukes ikke her(enda)
 boolean fairness = true; //Java semaphore
 String comport = "";
 //Nødvendige Semaphorer
 Semaphore semaphoreStorageBoxGPS = new Semaphore(numberOfPermits,
fairness);
 Semaphore semaphoreStorageBoxSocketSend = new Semaphore(numberOfPermits,
fairness);
 Semaphore semaphoreStorageBoxSocketReceive = new
Semaphore(numberOfPermits, fairness);
 Semaphore semaphoreStorageBoxPlatformMode = new
Semaphore(numberOfPermits, fairness);
 Semaphore semaphoreStorageBoxNorthEastGPS = new
Semaphore(numberOfPermits, fairness);
 Semaphore semaphoreStorageBoxRunningMode = new
Semaphore(numberOfPermits, fairness);
 // Semaphore semaphoreArduinoComm = new Semaphore(numberOfPermits,
fairness); //"numberOfPermits" må kanskje endres for denne semaforen.
 // Semaphore semaphoreSocketSend = new Semaphore(numberOfPermits,

Side 1

SerialGPSServer
fairness);
//Nødvendige fellesobjekt(storagebox)
 StorageBoxGPS storageBoxGPS = new StorageBoxGPS();
 StorageBoxSocketSend storageBoxSocketSend = new StorageBoxSocketSend();
 StorageBoxSocketReceive storageBoxSocketReceive = new
StorageBoxSocketReceive();
 StorageBoxPlatformMode storageBoxPlatformMode = new
StorageBoxPlatformMode();
 StorageBoxNorthEastGPS storageBoxNorthEastGPS = new
StorageBoxNorthEastGPS();
 StorageBoxRunningMode storageBoxRunningMode = new
StorageBoxRunningMode();
 // StorageBoxArduinoComm storageBoxArduinoComm = new
StorageBoxArduinoComm();
 //Oppretter "TrådObjekter"
 ArduinoHandler arduinoHandler = new ArduinoHandler();
 ServerHandler serverHandler = new ServerHandler(storageBoxSocketSend,
storageBoxSocketReceive, semaphoreStorageBoxSocketSend,
semaphoreStorageBoxSocketReceive, portNumber);
 GPSReader reader = new GPSReader(storageBoxGPS, storageBoxNorthEastGPS,
semaphoreStorageBoxGPS, semaphoreStorageBoxNorthEastGPS);
 PlatformMode platformMode = new PlatformMode(arduinoHandler,
storageBoxPlatformMode, storageBoxRunningMode, semaphoreStorageBoxPlatformMode,
semaphoreStorageBoxRunningMode);
 LidarHandler lidarHandler = new
LidarHandler(arduinoHandler.getArduino("LidarHandler"));
 Conductor conductor = new Conductor(storageBoxGPS,
storageBoxNorthEastGPS, storageBoxSocketSend, storageBoxSocketReceive,
storageBoxPlatformMode, storageBoxRunningMode,
 semaphoreStorageBoxGPS, semaphoreStorageBoxNorthEastGPS,
semaphoreStorageBoxSocketSend, semaphoreStorageBoxSocketReceive,
semaphoreStorageBoxPlatformMode, semaphoreStorageBoxRunningMode);

// ServerSocketWorker serverSocketWorker = new ServerSocketWorker(storageBoxGPS,
semaphoreStorageBoxGPS, portNumber);//test
 //Setter navn og Starter Tråder
 conductor.setName("Conductor Thread");
 conductor.start();

 Thread serverHandlerThread = new Thread(serverHandler);
 serverHandlerThread.setName("Server Handler Thread");
 serverHandlerThread.start();

 reader.setName("GPS-Reader Thread");
 reader.start();//Flytt til ServerHandler i IF(), likt som
ServerSocketWorker
 platformMode.setName("Platform Mode Thread");
 platformMode.start();
 }
}

Side 2

SerialHandler
/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package serialgpsserver;

import gnu.io.CommPortIdentifier;
import gnu.io.SerialPort;
import gnu.io.SerialPortEvent;
import gnu.io.SerialPortEventListener;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.util.logging.Level;
import java.util.logging.Logger;
import org.json.JSONException;
import org.json.JSONObject;

/**
 *
 * @author RobinBergset
 */
public class SerialHandler implements SerialPortEventListener {

 //Felt
 //private Enumeration portList;
 //private CommPortIdentifier portId;
 // private HashMap<String, CommPortIdentifier> comList;
 private String portName;
 private SerialPort serialPort;
 private CommPortIdentifier portId;
 private BufferedReader input;
 private OutputStream output;
 private boolean serialReady = false;
 private static final int TIME_OUT = 2000;
 private int DATA_RATE = 9600;
 private boolean isConnected = false;

 private double dataFromArduino;
 private long time;
 private long testTime;

 /**
 * Initialiserer variabler
 */
 public SerialHandler(String serialPort, int baudRate, CommPortIdentifier
portId) {

 this.portName = serialPort;
 this.DATA_RATE = baudRate;

Side 1

SerialHandler
 this.portId = portId;

 connect(portName);

 System.out.println("Arduino up and running");

 }

 /**
 *
 * @param port
 */
 public void connect(String port) {
 try {
 serialPort = (SerialPort) portId.open(this.getClass().getName(),
TIME_OUT);
 serialPort.setSerialPortParams(DATA_RATE,
 SerialPort.DATABITS_8,
 SerialPort.STOPBITS_1,
 SerialPort.PARITY_NONE);
 input = new BufferedReader(new
InputStreamReader(serialPort.getInputStream()));
 output = serialPort.getOutputStream();
 serialReady = true;
 serialPort.addEventListener(this);
 serialPort.notifyOnDataAvailable(true);
 System.out.println("COM-port in use: " + serialPort.getName());
 isConnected = true;

 } catch (Exception e) {
 System.err.println(e.toString());
 System.out.println("Not connected");
 isConnected = false;
 }
 }

 @Override
 public void serialEvent(SerialPortEvent spe) {
 //System.out.println("SerialEVENT metode kjøres");
 if (spe.getEventType() == SerialPortEvent.DATA_AVAILABLE) {
 try {
 boolean inputTest = input.ready();
 // System.out.println("Is event ready: " +inputTest);
 if(inputTest){
 String tempDataFromArduino = input.readLine();
 double headingFromArduino =
Double.parseDouble(tempDataFromArduino);
 // System.out.println(headingFromArduino);

 dataFromArduino=headingFromArduino;

 // System.out.println("Raw data: " +tempDataFromArduino);

Side 2

SerialHandler
 //double value = Double.parseDouble(tempDataFromArduino);
 //double calheading = ((value -100));
 // System.out.println("Modulus hesding: " + calheading);
 }
 } catch (IOException ex) {

Logger.getLogger(SerialHandler.class.getName()).log(Level.SEVERE, null, ex);
 System.out.println("SerialPortEvent readLine error");
 }
 }
 }

 public boolean send(JSONObject tempJSON){

 boolean isSent = false;
 time = System.currentTimeMillis();
 if(time > testTime){
 testTime = time + 1000;
 try {
 if (serialReady) {
 String tempString = tempJSON.toString();
 byte[] valuesByte = tempString.getBytes();
 output.write(valuesByte);
 output.flush();
 isSent = true;
 }
 }
 catch (IOException ex) {

Logger.getLogger(SerialHandler.class.getName()).log(Level.SEVERE, null, ex);
 isSent = false;
 System.out.println("isSent = " + isSent);
 }
 }
 return isSent;
 }

 public BufferedReader getInputReader() {
 return input;
 }

 public void close(){
 serialPort.close();
 }

 public double getArduinoData(){
 return dataFromArduino;
 }

 public boolean isConnected(){
 return isConnected;
 }

Side 3

SerialHandler
}

Side 4

ServerHandler
/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package serialgpsserver;

import java.io.IOException;
import java.net.*;
import java.util.concurrent.Semaphore;
import java.util.logging.Level;
import java.util.logging.Logger;

/**
 *
 * @author Matias
 */
public class ServerHandler implements Runnable {
//Div felt. Husk å initialisere alle felter i konstruktor(god kodestil)

 private StorageBoxSocketSend storageBoxSocketSend;
 private StorageBoxSocketReceive storageBoxSocketReceive;
 private Semaphore semaphoreStorageBoxSocketReceive;
 private Semaphore semaphoreStorageBoxSocketSend;
 private int portNumber;

 public ServerHandler(StorageBoxSocketSend storageBoxSocketSend,
StorageBoxSocketReceive storageBoxSocketReceive, Semaphore
semaphoreStorageBoxSocketSend, Semaphore semaphoreStorageBoxSocketReceive, int
portNumber) {
 this.storageBoxSocketSend = storageBoxSocketSend;
 this.storageBoxSocketReceive = storageBoxSocketReceive;
 this.semaphoreStorageBoxSocketSend = semaphoreStorageBoxSocketSend;
 this.semaphoreStorageBoxSocketReceive =
semaphoreStorageBoxSocketReceive;

 this.portNumber = portNumber;

 }

 @Override
 public void run() {
 try {
 ServerSocket serverSock = new ServerSocket(7777); //Setter opp port
på server

 while (true) {
 Socket socket = serverSock.accept(); //Godtar
tilkopling til server
 System.out.println("Client connection established on port " +
socket.getLocalPort()

Side 1

ServerHandler
 + " from IP " +
socket.getInetAddress().getHostAddress());
 ServerSocketWorkerSend serverWorkerSend = new
ServerSocketWorkerSend(storageBoxSocketSend, semaphoreStorageBoxSocketSend,
portNumber, socket);
 ServerSocketWorkerReceive serverWorkerReceive = new
ServerSocketWorkerReceive(storageBoxSocketReceive,
semaphoreStorageBoxSocketReceive, portNumber, socket);

 Thread serverWorkerSendThread = new Thread(serverWorkerSend);
 serverWorkerSendThread.setName("Server Send Thread");
 serverWorkerSendThread.start();

 Thread serverWorkerReceiveThread = new
Thread(serverWorkerReceive);
 serverWorkerReceiveThread.setName("Server Receive Thread");
 serverWorkerReceiveThread.start();

 }
 } catch (IOException ex) {
 Logger.getLogger(ServerHandler.class.getName()).log(Level.SEVERE,
null, ex);
 }
 }
}

Side 2

uten navn
#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_LSM303_U.h>
#include <Adafruit_L3GD20_U.h>
#include <Adafruit_9DOF.h>
#include <PID_v1.h>
#include <Kalman.h>
#include <ArduinoJson.h>
#include <Filters.h>
#define TCAADDR 0x70
#define UNO 13

/* Assign a unique ID to this sensor at the same time */
Adafruit_9DOF dof = Adafruit_9DOF();
Adafruit_LSM303_Accel_Unified accel1 = Adafruit_LSM303_Accel_Unified(1);
Adafruit_LSM303_Mag_Unified mag1 = Adafruit_LSM303_Mag_Unified(2);
Adafruit_L3GD20_Unified gyro1 = Adafruit_L3GD20_Unified(9);
Adafruit_LSM303_Accel_Unified accel2 = Adafruit_LSM303_Accel_Unified(3);
Adafruit_LSM303_Mag_Unified mag2 = Adafruit_LSM303_Mag_Unified(4);
Adafruit_L3GD20_Unified gyro2 = Adafruit_L3GD20_Unified(10);
Adafruit_LSM303_Accel_Unified accel3 = Adafruit_LSM303_Accel_Unified(5);
Adafruit_LSM303_Mag_Unified mag3 = Adafruit_LSM303_Mag_Unified(6);
Adafruit_L3GD20_Unified gyro3 = Adafruit_L3GD20_Unified(11);
Adafruit_LSM303_Accel_Unified accel4 = Adafruit_LSM303_Accel_Unified(7);
Adafruit_LSM303_Mag_Unified mag4 = Adafruit_LSM303_Mag_Unified(8);
Adafruit_L3GD20_Unified gyro4 = Adafruit_L3GD20_Unified(12);

void tcaselect(uint8_t i) {
 if (i > 6) return;

 Wire.beginTransmission(TCAADDR);
 Wire.write(1 << i);
 Wire.endTransmission();
}

// ******************** PID init *****************************
// One PID for each task: Hight, Roll and Pitch.

// ****** Roll PID *******
//Define Variables we'll be connecting to
double RollSetpoint, RollInput, RollOutput; // Setpoint = The value you want. In
our case 0. Input = value from sensor. Output = the controll signal.

//Define the aggressive and conservative Tuning Parameters
double RaggKp = 4, RaggKi = 0.2, RaggKd = 1; // Kp = constant, Ki = integral,
Kd = derivative
double RconsKp = 10, RconsKi = 0.01, RconsKd = 0.001; // Kp = constant, Ki =
integral, Kd = derivative

//Specify the links and initial tuning parameters
PID rollPID(&RollInput, &RollOutput, &RollSetpoint, RconsKp, RconsKi, RconsKd,

Side 1

uten navn
DIRECT); // PID initiate

// ****** Pitch PID *******
//Define Variables we'll be connecting to
double PitchSetpoint, PitchInput, PitchOutput; // Setpoint = The value you want.
In our case 0. Input = value from sensor. Output = the controll signal.

//Define the aggressive and conservative Tuning Parameters
double PaggKp = 4, PaggKi = 0.2, PaggKd = 1; // Kp = constant, Ki = integral,
Kd = derivative
double PconsKp = 10, PconsKi = 0.01, PconsKd = 0.001; // Kp = constant, Ki =
integral, Kd = derivative

//Specify the links and initial tuning parameters
PID pitchPID(&PitchInput, &PitchOutput, &PitchSetpoint, PconsKp, PconsKi,
PconsKd, DIRECT); // PID initiate

double PIDtimer;
double PIDStopTime;

// ******************** IMU init *****************************

/* Update this with the correct SLP for accurate altitude measurements */
float seaLevelPressure = SENSORS_PRESSURE_SEALEVELHPA;

double avgRoll; // Holds the average roll
double avgPitch; // Holds the average pitch
double angularVRollRad; // Holds the angular roll velosity in rad/s
double angularVPitchRad; // Holds the angular pitch velosity in rad/s
double angularVRollDeg; // Holds the angular roll velosity in deg/s
double angularVPitchDeg; // Holds the angular pitch velosity in deg/s
double heading; // Holds the IMU heading in degrees.

// ********************** Pressure sensors *******************

int column1PressureSensor = A0; // Pin for reading the pressure sensor inside
the columns
int column2PressureSensor = A1; // Pin for reading the pressure sensor
outside column 2
int column3PressureSensor = A2; // Pin for reading the pressure sensor inside
the columns
int column4PressureSensor = A3; // Pin for reading the pressure sensor inside
the columns
int column5PressureSensor = A4; // Pin for reading the pressure sensor
outside column 5
int column6PressureSensor = A5; // Pin for reading the pressure sensor inside
the columns

double DraftSetpoint;
double DraftInputPort; // Pressure on port side
double DraftInputStarboard; // Pressure on starboard side
double draft; // Holds the average draft between port and starboard sides

Side 2

uten navn
int draftCM; // Draft in cm

double column1WaterLevel; // Hight of water level in column 1 in cm.
double column2WaterLevel; // Hight of water level outside column 2 in cm.
double column3WaterLevel; // Hight of water level in column 3 in cm.
double column4WaterLevel; // Hight of water level in column 4 in cm.
double column5WaterLevel; // Hight of water level outside column 5 in cm.
double column6WaterLevel; // Hight of water level in column 6 in cm.

// ************************ Relays ********************************

int column1Inn = 6;
int column1Out = 2;
int column3Inn = 7;
int column3Out = 3;
int column4Inn = 8;
int column4Out = 4;
int column6Inn = 9;
int column6Out = 5;

// ************************ Edge detect ***********************

boolean draftCorrDone;
boolean pitchCorrDone;
boolean rollCorrDone;

// *************************** Empty tanks ***************************

int EmptyTanks = 13;
int startEmptyingTanks;

// **************************** Timer ******************************

uint32_t timer;

// ***************************** Kalman filter ********************

Kalman kalmanX; // Create Kalman instances
Kalman kalmanY;

double kalAngleRoll, kalAnglePitch; // Holds the calculated angel using Kalman
filter

// ******************************** Filter ****************************

float filterFrequency = 0.02;
double rollFiltered;
double pitchFiltered;
double headingFiltered;
double draftFiltered;
FilterOnePole lowPassFilterRoll(LOWPASS, filterFrequency);
FilterOnePole lowPassFilterPitch(LOWPASS, filterFrequency);

Side 3

uten navn
FilterOnePole lowPassFilterHeading(LOWPASS, filterFrequency);
FilterOnePole lowPassFilterDraft(LOWPASS, filterFrequency);

// ************************** Timer ******************************

double timePassed;
double nowTime;
double waitTime;

void setup() {

 // ****************** Serial setup ******************
 Serial.begin(9600); // start the serial port

 // ****************** Start I2C *************************
 Wire.begin();

 // ****************** Initialise the sensors *****************
 initSensors();

 // ***************** Empty tanks ***************

 pinMode(EmptyTanks, INPUT);

 // ****************** Starts timer ****************

 timer = micros();

 // ******************* Kalman filter ***************

 kalmanX.setAngle(avgRoll);
 kalmanY.setAngle(avgPitch);

 // ********************** Setpoints ********************

 RollInput = kalAngleRoll; // The roll angle sendt to rollPID
 PitchInput = kalAnglePitch; // The pitch angle sendt to pitchPID

 DraftSetpoint = 30 ; // (30) Setpoint for platform draft in cm
 RollSetpoint = 0; // Setpoint for angle in degrees
 PitchSetpoint = 0; // Setpoint for angle in degrees

 //turn the roll PID on
 rollPID.SetMode(AUTOMATIC);
 rollPID.SetOutputLimits(0, 100);

 //turn the pitch PID on
 pitchPID.SetMode(AUTOMATIC);
 pitchPID.SetOutputLimits(0, 100);

 PIDtimer = millis();

Side 4

uten navn
 PIDStopTime = 0;

 // ******************* Configure digital pins *************************

 for (int i = 2; i <= 9; i++) {
 pinMode(i, OUTPUT);
 digitalWrite(i, HIGH);
 }
 // ************************* Timer ******************************

 nowTime = millis();
 waitTime = 1000;

}

void loop() {
 Serial.print("Pitch: "); Serial.print(pitchFiltered); Serial.print(" Roll: ");
Serial.print(rollFiltered); Serial.print(" Depth: "); Serial.print(draftCM);
Serial.print(" PIDtimer: "); Serial.println(PIDtimer);
 getGyroData();
 kalman();
 getPressureData();
 SendDataToServer();
 sendDataToGimbal();

 RollInput = abs(kalAngleRoll) * (-1); // The roll angle sendt to rollPID
 PitchInput = abs(kalAnglePitch) * (-1); // The pitch angle sendt to pitchPID
 rollPID.Compute();
 pitchPID.Compute();

 startEmptyingTanks = true-; //digitalRead(EmptyTanks);

 if (startEmptyingTanks) {
 while (true) {
 digitalWrite(column1Out, LOW);
 digitalWrite(column3Out, LOW);
 digitalWrite(column4Out, LOW);
 digitalWrite(column6Out, LOW);
 Serial.println("Emptying tanks");
 }
 }

 // Tests if platform is within limits (Roll, pitch and draft)
 if (draftFiltered > (DraftSetpoint + 5) || draftFiltered < (DraftSetpoint -
5))
 {
 draftCorrDone = false;

 while (!draftCorrDone) {
 getGyroData();
 getPressureData();

Side 5

uten navn
 SendDataToServer();
 sendDataToGimbal();
 kalman();
 // Serial.print(" draft corr ");
 //Serial.println(draft);
 correctDraft(); // Starts draft correction
 if (draft < (DraftSetpoint + 1) && draft > (DraftSetpoint - 1) ||
columnsEmpty())
 {
 draftCorrDone = true;
 // Serial.println("Stopping pumps");
 stopPumps();
 }
 }
 }

 if (rollFiltered > (RollSetpoint + 0.8) || rollFiltered < (RollSetpoint -
0.8))
 {
 rollCorrDone = false;

 while (!rollCorrDone) {
 getGyroData();
 // Serial.print("Roll corr. KalAngleRoll: ");
Serial.println(kalAngleRoll);
 getPressureData();
 SendDataToServer();
 sendDataToGimbal();
 kalman();
 correctRoll(); // Starts roll correction
 if (levelAlert()) {
 stopPumps();
 }
 if (kalAngleRoll > (RollSetpoint - 0.6) && kalAngleRoll < (RollSetpoint +
0.6))
 {
 rollCorrDone = true;
 //Serial.println("Stopping pumps");
 stopPumps();
 lowPassFilterRoll.setToNewValue(0);
 }
 }
 }

 else if (pitchFiltered > (PitchSetpoint + 0.8) || pitchFiltered <
(PitchSetpoint - 0.8))
 {
 pitchCorrDone = false;

 while (!pitchCorrDone) {
 getGyroData();
 //Serial.print(" Pitch corr, kalAnglePitch: ");

Side 6

uten navn
Serial.println(kalAnglePitch);
 getPressureData();
 SendDataToServer();
 sendDataToGimbal();
 kalman();
 correctPitch(); // Starts pitch correction
 //Serial.print(" PitchOutput: "); Serial.println(PitchOutput);
 if (levelAlert()) {
 stopPumps();
 }
 if (kalAnglePitch > (PitchSetpoint - 0.6) && kalAnglePitch <
(PitchSetpoint + 0.6))
 {
 pitchCorrDone = true;
 // Serial.println("Stopping pumps");
 stopPumps();
 lowPassFilterPitch.setToNewValue(0);
 }
 }
 }
}

String getGyroData() {
 /* Get a new sensor event */
 sensors_event_t accel_event;
 sensors_event_t mag_event;
 sensors_vec_t orientation;
 sensors_event_t gyro_event;

 double roll1; double pitch1; double head1;
 double roll2; double pitch2; double head2;
 double roll3; double pitch3; double head3;
 double roll4; double pitch4; double head4;
 double angularVRollRad1; double angularVRollRad2; double angularVRollRad3;
double angularVRollRad4;
 double angularVPitchRad1; double angularVPitchRad2; double angularVPitchRad3;
double angularVPitchRad4;
 double angularVRollDeg1; double angularVRollDeg2; double angularVRollDeg3;
double angularVRollDeg4;
 double angularVPitchDeg1; double angularVPitchDeg2; double angularVPitchDeg3;
double angularVPitchDeg4;

 tcaselect(2);
 accel1.getEvent(&accel_event);
 if (dof.accelGetOrientation(&accel_event, &orientation))
 {
 roll1 = orientation.roll;
 pitch1 = orientation.pitch;
 }
 mag1.getEvent(&mag_event);
 if (dof.magGetOrientation(SENSOR_AXIS_Z, &mag_event, &orientation))

Side 7

uten navn
 {
 head1 = orientation.heading;
 }
 gyro1.getEvent(&gyro_event);
 angularVRollRad1 = gyro_event.gyro.x;
 angularVPitchRad1 = gyro_event.gyro.y;
 angularVRollDeg1 = (angularVRollRad * 4068) / 71;
 angularVPitchDeg1 = (angularVPitchRad * 4068) / 71;

 tcaselect(3);
 accel2.getEvent(&accel_event);
 if (dof.accelGetOrientation(&accel_event, &orientation))
 {
 roll2 = orientation.roll;
 pitch2 = orientation.pitch;
 }
 mag2.getEvent(&mag_event);
 if (dof.magGetOrientation(SENSOR_AXIS_Z, &mag_event, &orientation))
 {
 head2 = orientation.heading;
 }
 gyro2.getEvent(&gyro_event);
 angularVRollRad2 = gyro_event.gyro.x;
 angularVPitchRad2 = gyro_event.gyro.y;
 angularVRollDeg2 = (angularVRollRad * 4068) / 71;
 angularVPitchDeg2 = (angularVPitchRad * 4068) / 71;

 tcaselect(4);
 accel3.getEvent(&accel_event);
 if (dof.accelGetOrientation(&accel_event, &orientation))
 {
 roll3 = orientation.roll;
 pitch3 = orientation.pitch;
 }
 mag3.getEvent(&mag_event);
 if (dof.magGetOrientation(SENSOR_AXIS_Z, &mag_event, &orientation))
 {
 head3 = orientation.heading;
 }
 gyro1.getEvent(&gyro_event);
 angularVRollRad3 = gyro_event.gyro.x;
 angularVPitchRad3 = gyro_event.gyro.y;
 angularVRollDeg3 = (angularVRollRad * 4068) / 71;
 angularVPitchDeg3 = (angularVPitchRad * 4068) / 71;

 tcaselect(5);
 accel4.getEvent(&accel_event);
 if (dof.accelGetOrientation(&accel_event, &orientation))
 {
 roll4 = orientation.roll;
 pitch4 = orientation.pitch;
 }

Side 8

uten navn
 mag4.getEvent(&mag_event);
 if (dof.magGetOrientation(SENSOR_AXIS_Z, &mag_event, &orientation))
 {
 head4 = orientation.heading;
 }
 gyro1.getEvent(&gyro_event);
 angularVRollRad4 = gyro_event.gyro.x;
 angularVPitchRad4 = gyro_event.gyro.y;
 angularVRollDeg4 = (angularVRollRad * 4068) / 71;
 angularVPitchDeg4 = (angularVPitchRad * 4068) / 71;

 angularVRollDeg = ((angularVRollDeg1 + angularVRollDeg2 + angularVRollDeg3 +
angularVRollDeg4) / 4);
 angularVPitchDeg = ((angularVPitchDeg1 + angularVPitchDeg2 + angularVPitchDeg3
+ angularVPitchDeg4) / 4);

 // Average values from four IMU's
 avgRoll = ((roll1 + roll2 + roll3 + roll4) / 4);
 avgPitch = ((pitch1 + pitch2 + pitch3 + pitch4) / 4);
 heading = ((head1 + head2 + head3 + head4) / 4);

 lowPassFilterRoll.input(avgRoll);
 lowPassFilterPitch.input(avgPitch);
 lowPassFilterHeading.input(heading);

 rollFiltered = lowPassFilterRoll.output();
 pitchFiltered = lowPassFilterPitch.output();
 headingFiltered = lowPassFilterHeading.output();

// Serial.print(head1);
// Serial.print(" ");
// Serial.print(head2);
// Serial.print(" ");
// Serial.print(head3);
// Serial.print(" ");
 Serial.println(head4);
}

void initSensors()
{
 /* Initialise the 1st sensor */
 tcaselect(2);
 accel1.begin();
 mag1.begin();
 gyro1.begin();
 tcaselect(2);
 if (!accel1.begin())
 {
 Serial.println(F("Ooops, accel1..........."));
 while (1);
 }
 if (!mag1.begin())

Side 9

uten navn
 {
 Serial.println("Ooops, no LSM303 detected ... Check your wiring!");
 while (1);
 }
 if (!gyro1.begin())
 {
 Serial.print("Ooops, no L3GD20 detected ... Check your wiring or I2C
ADDR!");
 while (1);
 }

 /* Initialise the 2nd sensor */
 tcaselect(3);
 accel2.begin();
 mag2.begin();
 gyro2.begin();
 tcaselect(3);
 if (!accel2.begin())
 {
 Serial.println(F("Ooops, accel1..........."));
 while (1);
 }
 if (!mag2.begin())
 {
 Serial.println("Ooops, no LSM303 detected ... Check your wiring!");
 while (1);
 }
 if (!gyro2.begin())
 {
 Serial.print("Ooops, no L3GD20 detected ... Check your wiring or I2C
ADDR!");
 while (1);
 }

 /* Initialise the 3rd sensor */
 tcaselect(4);
 accel3.begin();
 mag3.begin();
 gyro3.begin();
 tcaselect(4);
 if (!accel3.begin())
 {
 Serial.println(F("Ooops, accel1..........."));
 while (1);
 }
 if (!mag3.begin())
 {
 Serial.println("Ooops, no LSM303 detected ... Check your wiring!");
 while (1);
 }
 if (!gyro3.begin())
 {

Side 10

uten navn
 Serial.print("Ooops, no L3GD20 detected ... Check your wiring or I2C
ADDR!");
 while (1);
 }

 /* Initialise the 4th sensor */
 tcaselect(5);
 accel4.begin();
 mag4.begin();
 gyro4.begin();
 tcaselect(5);
 if (!accel4.begin())
 {
 Serial.println(F("Ooops, accel1..........."));
 while (1);
 }
 if (!mag4.begin())
 {
 Serial.println("Ooops, no LSM303 detected ... Check your wiring!");
 while (1);
 }
 if (!gyro4.begin())
 {
 Serial.print("Ooops, no L3GD20 detected ... Check your wiring or I2C
ADDR!");
 while (1);
 }
}

void getPressureData()
{
 double sensorValue1 = 0; double mapedValue1; double constValue1; // variable
to store the value coming from the sensor
 double sensorValue3 = 0; double mapedValue3; double constValue3; // variable
to store the value coming from the sensor
 double sensorValue4 = 0; double mapedValue4; double constValue4; // variable
to store the value coming from the sensor
 double sensorValue6 = 0; double mapedValue6; double constValue6; // variable
to store the value coming from the sensor
 double sensorValuePortside = 0; double mapedValuePortside; double
constValuePortside; // variable to store the value coming from the sensor
 double sensorValueStarboardSide = 0; double mapedValueStarboardSide; double
constValueStarboardSide; // variable to store the value coming from the sensor

 // read the value from the sensor:
 sensorValue1 = analogRead(column1PressureSensor);
 sensorValuePortside = analogRead(column2PressureSensor);
 sensorValue3 = analogRead(column3PressureSensor);
 sensorValue4 = analogRead(column4PressureSensor);
 sensorValueStarboardSide = analogRead(column3PressureSensor);
 sensorValue6 = analogRead(column6PressureSensor);

Side 11

uten navn
 //Serial.print(sensorValue1); Serial.print(" ");
Serial.print(sensorValuePortside); Serial.print(" ");
Serial.print(sensorValue3); Serial.print(" "); Serial.print(sensorValue4);
Serial.print(" "); Serial.print(sensorValueStarboardSide); Serial.print(" ");
Serial.println(sensorValue6);

 // Mapes values to correct scale and constrain them between max and min
 mapedValue1 = map(sensorValue1, 270, 440, 0, 172); constValue1 =
constrain(mapedValue1, 0, 1000);
 mapedValuePortside = map(sensorValuePortside, 278, 419, 0, 141);
constValuePortside = constrain(mapedValuePortside, 0, 1000);
 mapedValue3 = map(sensorValue3, 271, 425, 0, 155); constValue3 =
constrain(mapedValue3, 0, 1000);
 mapedValue4 = map(sensorValue4, 313, 472, 0, 159); constValue4 =
constrain(mapedValue4, 0, 1000);
 mapedValueStarboardSide = map(sensorValueStarboardSide, 283, 425, 0, 142);
constValueStarboardSide = constrain(mapedValueStarboardSide, 0, 1000);
 mapedValue6 = map(sensorValue6, 272, 442, 0, 170); constValue6 =
constrain(mapedValue6, 0, 1000);

 // Calculates the water hight in cm
 column1WaterLevel = constValue1 * 0.349;
 column2WaterLevel = constValuePortside * 0.39;
 column3WaterLevel = constValue3 * 0.387;
 column4WaterLevel = constValue4 * 0.377;
 column5WaterLevel = constValueStarboardSide * 0.387;
 column6WaterLevel = constValue6 * 0.353;

 draft = (column2WaterLevel + column5WaterLevel) / 2;
 lowPassFilterDraft.input(draft);
 draftFiltered = lowPassFilterDraft.output();
 // Serial.print("Draft: "); Serial.println(draft);
 draftCM = (draft * 0.29167) - 22;

 //Serial.print(column1WaterLevel); Serial.print(" ");
Serial.print(column2WaterLevel); Serial.print(" ");
Serial.print(column3WaterLevel); Serial.print(" ");
Serial.print(column4WaterLevel); Serial.print(" ");
Serial.print(column5WaterLevel); Serial.print(" ");
Serial.println(column6WaterLevel);

}

void correctDraft() // Corrects the draft of the platform
{
 if (draft < DraftSetpoint) { // Tests if platform is to high in the water
 digitalWrite(column1Inn, LOW);
 digitalWrite(column3Inn, LOW);
 digitalWrite(column4Inn, LOW);
 digitalWrite(column6Inn, LOW);
 }

Side 12

uten navn
 if (draft > DraftSetpoint && !columnsEmpty()) { // Tests if platform is to low
in the water
 digitalWrite(column1Out, LOW);
 digitalWrite(column3Out, LOW);
 digitalWrite(column4Out, LOW);
 digitalWrite(column6Out, LOW);
 }
}

void correctRoll()
{
 RollInput = abs(kalAngleRoll) * (-1); // The roll angle sendt to rollPID
 rollPID.Compute();
 if (kalAngleRoll > (RollSetpoint)) {
 // Serial.print("ROLL OVER SET -> Output: ");
 // Serial.print(RollOutput);
 if (PIDtime(RollOutput)) {
 stopPumps();
 } else {
 digitalWrite(column1Inn, LOW);
 digitalWrite(column3Inn, LOW);
 }
 }

 if (kalAngleRoll < (RollSetpoint)) {
 // Serial.print("ROLL UNDER SET -> Output: ");
 // Serial.print(RollOutput);
 if (PIDtime(RollOutput)) {
 stopPumps();
 } else {
 digitalWrite(column4Inn, LOW);
 digitalWrite(column6Inn, LOW);
 }
 }
}

void correctPitch()
{
 PitchInput = abs(kalAnglePitch) * (-1); // The pitch angle sendt to pitchPID
 pitchPID.Compute();
 if (kalAnglePitch > (PitchSetpoint)) {
 // Serial.print("PITCH OVER SET -> Output: ");
 // Serial.print(PitchOutput);
 if (PIDtime(PitchOutput)) {
 stopPumps();
 } else {
 digitalWrite(column3Inn, LOW);
 digitalWrite(column4Inn, LOW);
 }
 }

 if (kalAnglePitch < (PitchSetpoint)) {

Side 13

uten navn
 // Serial.print("PITCH UNDER SET -> Output: ");
 // Serial.print(PitchOutput);
 if (PIDtime(PitchOutput)) {
 stopPumps();
 } else {
 digitalWrite(column1Inn, LOW);
 digitalWrite(column6Inn, LOW);
 }
 }
}

void stopPumps()
{
 // If platform has correct hight then:
 // Serial.println(" STOP PUMPS ");
 digitalWrite(column1Inn, HIGH);
 digitalWrite(column3Inn, HIGH);
 digitalWrite(column4Inn, HIGH);
 digitalWrite(column6Inn, HIGH);
 digitalWrite(column1Out, HIGH);
 digitalWrite(column3Out, HIGH);
 digitalWrite(column4Out, HIGH);
 digitalWrite(column6Out, HIGH);
}

// Sends data to server.
void SendDataToServer()
{
 // Data starts with a "S" to identify the subsystem. "S" for Stability system.
 StaticJsonBuffer<500> jsonBuffer;
 JsonObject& dataMessage = jsonBuffer.createObject();
 dataMessage["address"] = "S";
 dataMessage["heading"] = headingFiltered;
 //dataMessage.printTo(Serial);
 // Serial.println(head1);

}

void sendDataToGimbal() {
 int intKalAngleRoll = (int)kalAngleRoll;
 int intKalAnglePitch = (int)kalAnglePitch;

 Wire.beginTransmission(UNO);
 Wire.write(intKalAngleRoll);
 Wire.write((intKalAngleRoll >> 8));
 Wire.write(intKalAnglePitch);
 Wire.write((intKalAnglePitch >> 8));
 Wire.endTransmission(UNO);
}

void kalman() {
 double dt = (double)(micros() - timer) / 1000000; // Calculate delta time

Side 14

uten navn
 timer = micros();

 kalAngleRoll = kalmanX.getAngle(avgRoll, angularVRollDeg, dt);
 kalAnglePitch = kalmanY.getAngle(avgPitch, angularVPitchDeg, dt);
}

boolean levelAlert() {
 boolean levelAlert = false;
 if (column1WaterLevel > 40 || column3WaterLevel > 40 || column4WaterLevel > 40
|| column5WaterLevel > 40) {
 levelAlert = true;
 }
 else levelAlert = false;
 return levelAlert;
}

boolean PIDtime(double PIDOutput) {
 boolean StopPID = false;
 //Serial.print("PIDtimer: "); Serial.println(PIDtimer);
 PIDtimer = millis();

 // Serial.print(" PIDtimer: "); Serial.print(PIDtimer); Serial.print("
PIDStopTime: "); Serial.println(PIDStopTime);

 if (PIDtimer > PIDStopTime) {
 PIDStopTime = PIDtimer + (PIDOutput * 2.5);
 // Serial.print(" PIDStopTime: "); Serial.println(PIDStopTime);
 StopPID = true;
 }
 return StopPID;
}

boolean columnsEmpty() {
 boolean isEmpty = false;
 if (column1WaterLevel < 2 || column3WaterLevel < 2 || column4WaterLevel < 2 ||
column6WaterLevel < 2) {
 isEmpty = true;
 }
 return isEmpty;
}

Side 15

uten navn
#include <SoftwareSerial.h>
#include <ArduinoJson.h>

#define rxPin 3 // pin 3 connects to smcSerial TX (not used in this example)
#define txPin1 4 // pin 4 connects to smcSerial RX
#define txPin2 5 // pin 4 connects to smcSerial RX
#define txPin3 6 // pin 4 connects to smcSerial RX
#define txPin4 7 // pin 4 connects to smcSerial RX
SoftwareSerial smcSerial1 = SoftwareSerial(rxPin, txPin1);//rightThruster
SoftwareSerial smcSerial2 = SoftwareSerial(rxPin, txPin2);//frontThruster
SoftwareSerial smcSerial3 = SoftwareSerial(rxPin, txPin3);//leftThruster
SoftwareSerial smcSerial4 = SoftwareSerial(rxPin, txPin4);//backThruster

#define lightPin 8 // Lanterns
#define hornPin 9 // Horn

//Verdi for farten vi setter til thrusterne
int frontThrusterSpeedInt;
int backThrusterSpeedInt;
int rightThrusterSpeedInt;
int leftThrusterSpeedInt;
String readString;
char incomingBytes[8];
char c;

// required to allow motors to move
// must be called when controller restarts and after any error
void exitSafeStart()
{
 smcSerial1.write(0x83);
 smcSerial2.write(0x83);
 smcSerial3.write(0x83);
 smcSerial4.write(0x83);
}

// speed should be a number from -3200 to 3200
void frontThrusterSpeed(int speed)
{
 if (speed < 0)
 {
 smcSerial2.write(0x86);
 speed = -speed; // make speed positive
 }
 else
 {
 smcSerial2.write(0x85);// motor forward command
 }
 smcSerial2.write(speed & 0x1F);
 smcSerial2.write(speed >> 5);
}

void rightThrusterSpeed(int speed)

Side 1

uten navn
{
 if (speed < 0)
 {
 smcSerial1.write(0x86);
 speed = -speed; // make speed positive
 }
 else
 {
 smcSerial1.write(0x85);// motor forward command
 }
 smcSerial1.write(speed & 0x1F);
 smcSerial1.write(speed >> 5);
}

void leftThrusterSpeed(int speed) {
 if (speed < 0)
 {
 smcSerial3.write(0x86);
 speed = -speed; // make speed positive
 }
 else
 {
 smcSerial3.write(0x85);// motor forward command
 }
 smcSerial3.write(speed & 0x1F);
 smcSerial3.write(speed >> 5);
}

void backThrusterSpeed(int speed) {
 if (speed < 0)
 {
 smcSerial4.write(0x86);
 speed = -speed; // make speed positive
 }
 else
 {
 smcSerial4.write(0x85);// motor forward command
 }
 smcSerial4.write(speed & 0x1F);
 smcSerial4.write(speed >> 5);
}

void setup()
{
 // initialize software serial object with baud rate of 19.2 kbps
 smcSerial1.begin(19200);
 smcSerial2.begin(19200);
 smcSerial3.begin(19200);
 smcSerial4.begin(19200);
 Serial.begin(9600);

 // the Simple Motor Controller must be running for at least 1 ms

Side 2

uten navn
 // before we try to send serial data, so we delay here for 5 ms
 delay(5);
 // if the Simple Motor Controller has automatic baud detection
 // enabled, we first need to send it the byte 0xAA (170 in decimal)
 // so that it can learn the baud rate

 smcSerial1.write(0xAA);
 smcSerial2.write(0xAA);// send baud-indicator byte
 smcSerial3.write(0xAA);
 smcSerial4.write(0xAA);

 // next we need to send the Exit Safe Start command, which
 // clears the safe-start violation and lets the motor run
 exitSafeStart(); // clear the safe-start violation and let the motor run
 frontThrusterSpeed(0);
 backThrusterSpeed(0);
 leftThrusterSpeed(0);
 rightThrusterSpeed(0);

 pinMode(lightPin, OUTPUT);
 pinMode(hornPin, OUTPUT);
}

void loop() {

 DynamicJsonBuffer jsonBuffer;
 if (Serial.available() > 0) {
 c = Serial.read();
 if (c == '{') { // start of packet
 readString = c;
 while (c != '}') { // until end of packet
 if (Serial.available() > 0) {
 c = Serial.read();
 readString += c;
 }
 }
 }
 }

 JsonObject& root = jsonBuffer.parseObject(readString);

 String fremS = root["smcSerial2"];
 String bakS = root["smcSerial4"];
 String rightS = root["smcSerial1"];
 String venstreS = root["smcSerial3"];
 String lightsS = root["lights"];
 String hornS = root["horn"];

 int frem = fremS.toInt();
 int bak = bakS.toInt();
 int right = rightS.toInt();
 int venstre = venstreS.toInt();

Side 3

uten navn
 int lights = lightsS.toInt();
 int horn = hornS.toInt();

 frontThrusterSpeed(frem); // Green, second engine controller (Colour of wire
and engine controller from bottom)
 backThrusterSpeed(bak); // White, third engine controller
 rightThrusterSpeed(right); // Yellow, top engine controller
 leftThrusterSpeed(venstre); // Red, first engine controller

 if (lights == 1) {
 digitalWrite(lightPin, LOW);
 }
 else digitalWrite(lightPin, HIGH);

 if (horn == 1) {
 digitalWrite(hornPin, LOW);
 }
 else digitalWrite(hornPin, HIGH);
}

Side 4

	Preface
	Acknowledgement
	Summary and Conclusions
	Acronyms
	Introductions
	Background
	Problem Formulation
	Literature Survey
	Objectives
	Limitations
	Approach
	Structure of the Report

	Theoretical basis
	Buoyancy and stability
	Buoyancy
	Angle of list
	Stability
	Inertia

	Motion variables
	Reference Frames
	Earth-Centred Reference Frames
	Geographic Reference Frames
	Conversion from geodetic reference frame to NED reference frame

	Kinematics
	Principal rotations

	Mathematical optimisation
	Convex Optimisation
	Linear Optimisation

	Wireless Communication
	Dynamic Positioning
	Classification

	Euler angles
	Haversine formula
	PID Controller
	Ziegler-Nichols method

	Kalman filter
	Linux
	Android Application Programming
	Java Programming
	Thread
	Concurrent Programming in Java

	GPS
	Inertial Measurement Unit
	Communications Protocol
	OSI Model
	TCP
	UDP
	Internet Protocol
	Socket
	USB
	Wireless LAN
	I2C
	SPI

	Method
	Project Organisation
	Data
	NMEA 0183 Standard

	Control device
	GUI
	GUI design

	Platform design and modelling
	Materials
	CAD tools

	Stability and buoyancy calculation
	Stability system
	Stabilisation method
	Control system
	Sensors

	Autopilot
	Sensor
	Testing the autopilot
	Collision avoidance

	Communication
	Video stream
	Software
	NetBeans IDE 8.2
	Android Studio
	Arduino IDE
	inSSIDer Home

	Software development
	Overview
	Libraries

	Materials
	Lenovo Tab 2 A10
	Odroid XU4
	Linksys TL-WN722N V2
	Linksys Archer c5 v2
	Arduino Uno
	Arduino Mega
	Haswing 20
	Bilge pump
	Relay module
	Pololu motor controller
	CP1232 Battery
	Multiplexer
	9DoF IMU
	Pressure sensor
	Check valve
	GPS module

	Result
	Designing the platform
	Four legged version
	Hexagon model 1
	Hexagon model 2
	Hexagon model 3
	Hexagon model 4
	Octagon model
	Catamaran model
	Rectangular model 1
	Simulation-sketches

	Data collection and calculation
	Choosing design
	Final design
	Rectangular model 2
	Rectangular model 3
	Rectangular model 4
	Weighing of parts
	Buoyancy test in water

	Stabilisation system
	Water vs air as control medium

	Mounting the stability system
	Water pumps and hardware
	Water level sensors
	IMU
	Control system
	Stabilisation software
	Stabilising time

	Thruster allocation
	Thruster configuration
	Actuator Models
	Solution by quadratic programming and JOptimizer

	Software
	Flow chart of the complete system
	Server-Client
	Float chart software
	Class Diagram
	Graphical User Interface
	Server application
	Reading sensors on the platform
	Sensor data processing on the platform
	Autopilot and Dynamic positioning
	PID control for thrust
	Thruster control

	Results from tests at sea
	Autopilot mode
	Manual mode

	Results from wave test
	Results from one vs four IMUs
	Kalman filter
	Low-pass filter
	Platform movement from waves

	Wireless communication

	Discussion
	Test results
	Platform design and buoyancy
	Stability system
	Software solutions
	Autopilot and Dynamic Positioning
	Wireless Communication system
	Thruster feedback

	Stabilisation method
	Version control Git
	Necessary improvements
	Buoyancy
	Motor controllers
	Client - Server connection

	Experiences
	Size and complexity of the project
	Project planning
	Working as a team

	Possible operations for a semi-submersible USV

	Conclusions
	Further development

	Appendices
	Preproject report
	Gantt diagram
	Project A3
	Progress report 26.01.17
	Progress report 10.02.17
	Progress report 24.02.17
	Progress report 24.03.17
	Progress report 02.05.17
	Meeting report 13.01.17
	Meeting report 30.01.17
	Meeting report 10.02.17
	Meeting report 24.03.17
	Meeting report 02.05.17
	Platform mechanical drawings
	Electrical drawing stability system
	Electrical drawing thruster control
	Stability calculation Rectangular platform
	Stability calculation Hexagon platform
	Server source code
	Client source code
	Arduino source code

	Bibliography
	Sheets and Views
	Sheet1

	Sheets and Views
	Sheet1

	Sheets and Views
	Sheet1

	Sheets and Views
	Sheet1

	Sheets and Views
	Sheet1

	Sheets and Views
	Sheet1

	Sheets and Views
	Sheet1

	Sheets and Views
	Sheet1

	Sheets and Views
	Sheet1

	Sheets and Views
	Sheet1

	Sheets and Views
	Sheet1

	Sheets and Views
	Sheet1

	Sheets and Views
	Sheet1

	Sheets and Views
	Sheet1

	Sheets and Views
	Sheet1

	Sheets and Views
	Sheet1

	Sheets and Views
	Sheet1

	Sheets and Views
	Sheet1

