Marianne Laukvik og Tonje Laukvik

Kvantitering av nitrogenholdige degraderingsprodukter i aminløsninger

Quantitative determination of nitrogen containing degradation compounds in amine solutions

Bacheloroppgave i Bioingeniørfag Veileder: Vanja Buvik, Hanna Knuutila og Wenche Slettahjell Prestvik Mai 2019

Bacheloroppgave

NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for naturvitenskap Institutt for bioingeniørfag

Forord

Oppgaven ble utført ved Institutt for Kjemisk Prosessteknologi (IKP) ved Norges teknisknaturvitenskapelige universitet (NTNU).

Vi ønsker å rette en stor takk til oppdragsgiver og veiledere, professor Hanna Knuutila og stipendiat Vanja Buvik, som har gitt oss god veiledning og rådgivning underveis i prosessen. Både Hanna Knuutila og Vanja Buvik har velvillig delt sin kompetanse og stilt sin tid til disposisjon i en ellers travel hverdag. En spesiell takk rettes til Vanja Buvik, som har fulgt oss tett i både det eksperimentelle og det faglige arbeidet. Videre vil vi takke prosessveileder Førsteamanuensis Wenche Slettahjell Prestvik for god støtte og veiledning i skriveprosessen. Takker også øvrige ansatte ved avdelingen som har bidratt til nødvendig opplæring av helse-, miljø- og sikkerhetsrutiner (HMS) ved IKP.

Abstract

In view of rising amounts of greenhouse gases in the atmosphere, carbon capture is an increasingly important focus area. Large amounts of carbon dioxide (CO₂) are emitted into the atmosphere as a result of intensified combustion of fossil fuels. The need for technology that can reduce CO_2 emissions leading to global climate change, is therefore necessary. Carbon capture and storage with amine-based solutions (CCS) is a technology that helps reduce the amount of CO_2 released during the combustion of fossil energy or industrial production of materials like cement and steel.

An issue with the amine-based carbon capture method, is that the amines are prone to degrade over time. In this task, a method was established and validated to detect total nitrogen (TN) concentration in various degraded amine solutions. Precision and accuracy were assessed, and limit of detection (LOD) and limit of quantification (LOQ) were determined. Results from the analysis of amine solutions on Shimadzu TOC-L were compared to existing data from a titration method which quantifies loss of amines, in degraded amine solutions, over a period of 21 days of oxidative degradation.

The total nitrogen detection method on Shimadzu TOC-L was performed by calibration with the same amine to be analyzed, to quantify degradation products, including heat-stable salts. When comparing the analysis results of Shimadzu TOC-L and loss of amines measured by titration, it appears that most of the analyzed amines degrade in greater or lesser extent. Degradation products for MEA, TEA, MMEA, DMMEA, DGA, AP and DEEA samples were quantitated with TN detection method on Shimadzu TOC-L.

The analysis method turns out to work for its intended purpose. For MEA, the increase in concentration of nitrogen found in non-alkaline compounds (degradation products) was 32% after 21 days of oxidative degradation. In the concentration range 100 ppm N, the analysis results for MEA samples can be stated with an uncertainty of 4%. For TEA, 6% degradation products were quantified, with an uncertainty of 4% in the same concentration range. DEEA degradation products were quantified to 4% with a 10% uncertainty. The concentration of degradation product for MMEA was 28%, with an uncertainty of 4%. For DMMEA, 5% degradation product was quantified with 1% uncertainty. For DGA and AP, degradation product of 14% and 9%, respectively, was quantified. The results for DGA and AP can be stated with an uncertainty of 5% and 4%.

Sammendrag

I lys av økt mengde klimagasser i atmosfæren, har CO₂-fangst blitt et stadig viktigere satsningsområde. Store mengder CO₂ emitteres ut i atmosfæren som følge av intensivert forbrenning av fossilt brennstoff. Behovet for teknologi som kan redusere CO₂-utstlipp, som fører til globale klimaforandringer, er derfor nødvendig. CO₂-fangst og -lagring med aminbaserte løsninger (CCS) er en teknologi som bidrar til å redusere mengden CO₂ som blir frigjort ved forbrenning av fossil energi eller industriell produksjon av sement og stål.

En utfordring med karbonfangst med aminer, er at aminene har en tendens til å degradere over tid. I denne oppgaven ble det opprettet og validert en metode for å detektere total nitrogen (TN)-konsentrasjon i ulike degraderte aminløsninger. Presisjon og riktighet ble vurdert, og deteksjons- og kvantiteringsgrense ble fastsatt. Resultat fra analysering av aminløsninger på Shimadzu TOC-L ble sammenlignet med eksisterende data fra titreringsmetode som kvantiterer amintap, i oksidativt degraderte aminløsninger, over en periode på 21 dager med oksidativ degradering.

TN-deteksjonsmetode på Shimadzu TOC-L ble kalibrert med samme amin som skulle analyseres, for å kunne kvantitere degraderingsprodukter, deriblant varmestabile salter. Ved sammenligning av analyseresultater fra Shimadzu TOC-L og amintap målt ved titrering, fremgår det at de fleste av de analyserte aminer degraderer i større eller mindre grad. Degraderingsprodukter for MEA-, TEA-, MMEA-, DMMEA-, DGA-, AP- og DEEA-prøver ble kvantitert med TN-deteksjonsmetode på Shimadzu TOC-L.

Analysemetoden viser seg å fungere til dens tiltenkte formål. For MEA, ble det kvantitert en økning på 32 % i konsentrasjon av ikke-basiske, nitrogenholdige komponenter (degraderingsprodukter), etter 21 dager. I konsentrasjonsområdet 100 ppm N, som aminprøvene ble fortynnet til, kan analyseresultatene for MEA-prøver angis med en usikkerhet på 4%. For TEA ble det kvantitert 6% degraderingsprodukter, med en usikkerhet på 4% i samme konsentrasjonsområde. Degraderingsprodukter for DEEA ble kvantitert til 4% med en usikkerhet på 10%. Konsentrasjonen av degraderingsprodukter for MMEA ble kvantitert til 28%, med en usikkerhet på er 4%. For DMMEA ble det kvantitert 5% degraderingsprodukter med en usikkerhet på 1%. For DGA og AP ble det kvantitert degraderingsprodukt på henholdsvis 14% og 9%. Resultatene for DGA og AP kan angis med en usikkerhet på 5% og 4%.

Inn	hal	dat	6	+	n al	~ ~
11111	1101	usi	UI	ιeg	ner	96

F	orord	I
A	bstract	
1	Innl	edning1
	1.1	Karbonfangst, -transport og -lagring1
	1.1.1	Aminer og degradering av aminløsninger2
	1.2	Shimadzu TOC- L _{CHP}
	1.2.1	Total nitrogen-deteksjon4
	1.3	Hensikt med oppgaven
2	Mat	erial og Metode7
	2.1	Kalibrator, kontroll og prøvemateriale7
	2.2	Utstyr og kjemikalier7
	2.3	Beregningsformler, statistiske ord og uttrykk
	2.4	Metodevalidering
	2.4.1	Tillaging av stamløsninger11
	2.4.2	Tillaging av kalibreringsstandarder og kalibrering
	2.4.3	Presisjon og riktighet
	2.4.4	Deteksjonsgrense og kvantifikasjonsgrense
	2.5	Eksperimentell behandling av degraderte aminløsninger
	2.6	Analyse av oksidativt degraderte aminprøver13
	2.6.1	Tillaging av stamløsninger
	2.6.2	Tillaging av kalibreringsstandarder
	2.6.3	Tillaging av aminprøver
3	Resu	lltater
	3.1	Metodevalidering
	3.1.1	KNO ₃ -kalibrering
	3.1.2	Reproduserbarhet
	3.1.3	LOD og LOQ19
	3.1.4	Analysering av glycin
	3.1.5	MEA-kalibrering og evaluering21

	3.2	Forsøk med oksidativt degraderte aminprøver	3
	3.2.1	Kalibrering	3
	3.2.2	2 Analyse av oksidativt degraderte aminprøver26	5
	3.2.3	3 Kvantitering av degraderingsprodukter fra aminprøver	3
4	Disł	xusjon29)
	4.1	Metodevalidering)
	4.2	Forsøk med degraderte aminprøver	l
5	Kon	klusjon34	1
6	Refe	eranser	5
7	Innl	noldsfortegnelse vedlegg	7
	7.1	Vedlegg 1: Beregningseksempler	3
	7.2	Vedlegg 2: Stamløsninger, kalibreringsstandarder og prøver41	l
	7.3	Vedlegg 3: Stamløsninger og kalibreringsstandarder for ulike aminer43	3
	7.4	Vedlegg 4: Aminprøver	5
	7.5	Vedlegg 5: Kalibrering, reproduserbarhet, LOD og LOQ	3
	7.6	Vedlegg 6: Kalibrering med aminer	l
	7.7	Vedlegg 7: Titreringsresultat, analyseresultat fra Shimadzu TOC-L og	
	degrad	eringsprodukt	5
	7.8	Vedlegg 8: Analyseresultat av kontroller, med angitt % avvik	5

Forkortelser og nomenklatur

AP	3-Amino-1-propanol
CCS	Carbon Capture and Storage
CO ₂	Karbondioksid
CV	Variasjonskoeffisient
DA	Degradert aminløsning
DEEA	2-(Dietylamino)etanol
DGA	2-(2-Aminoetoksy)etanol
DMMEA	2-Dimetylaminoetanol
Fe	Jern
HC1	Saltsyre
H_2SO_4	Svovelsyre
IUPAC	The International Union of Pure and Applied Chemistry
k	Konfidensnivå
LOD	Deteksjonsgrense
LOQ	Kvantifiseringsgrense
m/m	Vekt/vekt
MEA	Monoetanolamin
MMEA	N-Metyletanolamin
Mol/kg	Mol per kilogram
MQ	Millipore-vann (Milli-Q)
Ν	Nitrogen
NH ₃	Ammoniakk
NO	Nitrogenoksid
NO ₂ -	Nitritt
NO ₃ -	Nitrat
O ₃	Ozon
ppm	Parts per million
R	Korrelasjonskoeffisient
R ²	Regresjonskoeffisient
rpm	Omdreining per minutt
SD	Standardavvik
TEA	Triethanolamine
TN	Total Nitrogen

TNM-L	Tilleggsmodul for måling av TN
TOC	Total karbon
xbi	Gjennomsnittlig målt konsentrasjon av blanke prøver

1 Innledning

1.1 Karbonfangst, -transport og -lagring

Forbrenning av fossil energi skaper økt konsentrasjon av karbondioksidgass (CO₂) i atmosfæren. Ulike industriprosesser fører til økt utslipp av CO₂, som er kjent for å være en drivhusgass. Menneskeskapte klimaendringer er et globalt, økende samfunnsproblem. For å møte et økende energibehov som følge av økt befolkning og økonomisk vekst, intensiveres forbrenningen av fossil energi [1]. Kyotoprotokollen er en juridisk bindende, internasjonal klimaavtale som ble vedtatt i 1997. Gjennom denne protokollen er Norge forpliktet til å redusere utslipp av flere drivhusgasser [2] og behovet for teknologi som reduserer utslipp av CO₂ er derfor et viktig satsingsområde [3]. I tillegg til å redusere utslipp ved å gå fra fossile til fornybare energikilder, effektivisere prosesser og skogplanting [4], er en av metodene som benyttes for å redusere store utslipp i atmosfæren, karbonfangst og -lagring (CCS) [5]. Prosessen omfatter fangst, transport, og lagring av CO₂ (figur 1).

Figur 1: Skjematisk illustrasjon av karbonfangst, -transport og -lagring. CO₂ absorberes ved hjelp av aminbaserte løsninger, og transporteres via rørledninger til geologiske formasjoner for trygg lagring [6].

Det benyttes en rekke teknologier til CCS. Absorpsjon av CO₂ etter forbrenning ved hjelp av aminbaserte løsemidler, er per dags dato en teknologi som er godt utviklet og mest effektiv til dette formålet [7][8]. I denne prosessen blir CO₂ utskilt fra andre gasser og absorbert med egnet løsemiddel i en absorpsjonskolonne. Løsemiddelet regenereres i en desorpsjonskolonne ved oppvarming, og ledes tilbake til absorpsjonskolonnen. Etter fangsten, komprimeres CO₂ til en væskelignende tilstand, samt at den dehydreres. Dette gjør væsken mer egnet for transport og lagring. Væsken transporteres til geologiske formasjoner i undergrunnen, som er egnet for permanent lagring. Transport av gassen skjer via rørledninger, tankbiler eller skip [9][10].

1.1.1 Aminer og degradering av aminløsninger

Aminer er organiske derivater av ammoniakk, med en funksjonell gruppe som inneholder nitrogen [11]. Avhengig av hvor mange funksjonelle grupper som er bundet til nitrogenet, kan aminer kategoriseres i primære-, sekundære-, eller tertiære aminer. Aminer virker som svake baser og er en gruppe kjemikalier som kan benyttes til å rense CO₂ fra avgasser [12][8]. På grunn av nitrogenets ledige elektronpar, er aminet nukleofilt og basisk. Denne egenskapen gjør at aminer danner sure salter i reaksjon med syrer [11]. Flere ulike aminer kan benyttes til absorpsjon av CO₂. Etanolamin (MEA) er det vanligste aminet som brukes i CO₂-fangst, på bakgrunn av dets gode evne til å absorbere CO₂, kjemikalies flyktighet, lav giftighet, brukervennlighet og av økonomiske hensyn. Etanolamin benyttes derfor som «benchmark solvent», en standardløsning, i CO₂-fangst med aminer [13].

Utfordringen med fangst av CO₂ med aminer, er at aminene har en tendens til å degradere til andre stoffer. Under prosessene hvor CO₂ absorberes og frigis, utsettes aminløsningene for tøffe betingelser som gjør at de degraderer, inkludert høye temperaturer, korrosive gasser og de omgis av metaller som katalyserer degraderingsprosesser. Degradering er en irreversibel prosess som gir tap av amin og redusert kapasitet til å fange CO₂ [7], det kan også føre til korrosjon og medføre store vedlikeholdskostnader [14]. Amindegradering kan foregå gjennom ulike mekanismer, der oksidativ degradering viser seg å være den dominerende reaksjonen [7]. Oksidativ degradering er et resultat av at oksygengass (O₂) reagerer med aminløsningene som brukes til absorpsjon av CO₂, slik at de degraderer. Alle aminer lider under problematikken med degradering [15], og det er viktig å vite noe om hvilke degraderingsprodukter som dannes. Flyktige degraderingsprodukter kan slippes ut i atmosfæren og kan forårsake skade på miljøet [16]. Andre aminer som er studert i forbindelse med degradering, er blant annet N-metyletanolamin (MMEA), 2-dimetylaminoetanol (DMMEA) og 3-amino-1-propanol (AP) [15].

Hovedutfordringene ved CO₂-fangst med MEA er nettopp degradering av aminene og materiell korrosjon. MEA kan degradere til mange ulike forbindelser, hvor de primære produktene er ammoniakk, aldehyder og karboksylsyrer [7]. Figur 2 viser noen av de vanligste degraderingsproduktene fra MEA.

Figur 2: MEA degraderer til mange forskjellige produkter som ammoniakk, oksalat, glykolat, acetat og format [17].

Ammoniakk (NH₃) er flyktig og fordamper, mens de andre forbindelsene forblir i løsningen og reagerer videre til andre stoffer, deriblant varmestabile salter (figur 3). Disse saltene reduserer kapasiteten for CO₂-fangst og kan forårsake korrosjon på utstyr [7]. Det er derfor avgjørende med økt kunnskap rundt degraderingsprosessene for å optimalisere og effektivisere metodene som benyttes til CCS, i industrien. Dette kan blant annet innebære å finne et ideelt amin, eller en ideell blanding av aminer. Samlet vil det kunne bidra til bedre økonomisk og miljømessig gevinst på sikt [8].

Figur 3: MEA degraderingsprodukter i form av varmestabile salter [18].

1.2 Shimadzu TOC- L_{CHP}

Shimadzu TOC- L_{CHP} (heretter kalt Shimadzu TOC-L) er i utgangspunktet et instrument som kan kvantitere mengden organisk karbon (TOC), uorganisk karbon og den totale mengde karbon i en løsning. Dette skjer ved katalytisk forbrenning og deteksjon med infrarød spektroskopi (NDIR). Ved bruk av en tilleggsmodul, TNM-L, kan også total mengde nitrogen (TN) i eksperimentelle prøver, bestemmes.

1.2.1 Total nitrogen-deteksjon

TN refererer til det totale innholdet av nitrogen i en prøve. Dette kan være i form av uorganisk nitrogen som ammoniakk (NH₃), nitrat (NO₃⁻), nitritt (NO₂⁻) og nitrogen (N₂), samt organiske nitrogenforbindelser. Ved bruk av TNM-L kan dermed all bundet og løst nitrogen, fra alle organiske og uorganiske forbindelser, detekteres. Metoden differensierer ikke uorganiske og

organiske nitrogenforbindelser, alt detekteres på samme måte. Nitrogenkonsentrasjonen kvantiteres ved hjelp av en kjemiluminescensdetektor [19]. Kjemiluminescens er en type luminescens som skapes når en kjemisk reaksjon forårsaker eksitasjon av elektroner [20].

Prøven med ukjent nitrogenkonsentrasjon undergår en katalytisk forbrenning over en platina-basert katalysator ved 720°C. Under forbrenningen omdannes alle nitrogenatomer til nitrogenoksid (NO). Prøven, som inneholder NO, ledes så inn til en kjemiluminescensdetektor ved hjelp av en bærergass. Gassblandingen avkjøles og dehydreres av en elektronisk avfukter, før NO blir detektert av detektoren [19]. NO inngår videre i en oksidasjonsreaksjon med ozon (O₃), som dannes fra trykkluft, i en ozongenerator i instrumentet [21][19]. Når NO reagerer med O₃ dannes aktiverte nitrogendioksidmolekyler (NO₂*) og O₂ (likning 1). Aktiverte NO₂-molekyler foreligger i en høyere energitilstand enn grunntilstanden. I denne tilstanden er nitrogendioksid ustabilt og vil søke tilbake til sin grunntilstand for å gjenoppta stabilitet. Når molekylene returnerer fra eksitert tilstand, tilbake til grunntilstand og et lavere energinivå, emitteres energi (*hv*) i form av kjemiluminescens (likning 2) [22][21]. Figur 4 viser en enkel skjematisk illustrasjon med TN-deteksjon med Shimadzu TOC-L.

Figur 4: Enkel skjematisk illustrasjon over samtidig måling av total organisk karbon (TOC) og total nitrogen (TN) med Shimadzu TOC-L [18].

$NO(g) + O_3(g) \rightarrow NO_2^*(g) + O_2(g)$	(1)
$NO_2^*(g) \rightarrow NO_2(g) + hv$	(2)

Luminescensen som dannes av de emitterte fotonene gir et signal som genererer en topp, som brukes til å kalkulere TN-verdien i prøven [21]. Instrumentets programvare, TOC-Control L, detekterer automatisk starten og slutten på hver topp som dannes, og beregner arealet under toppen. Arealet under toppen er proporsjonal med mengden nitrogen i prøven. Hver prøve analyseres tre ganger, slik at instrumentet beregner et gjennomsnittlig areal, og dermed en gjennomsnittlig konsentrasjon av TN i prøven. TOC-Control L velger automatisk den optimale kalibreringskurven for å kalkulere måleresultatene, dersom mer enn én kalibreringskurve er definert.

Sensitivitet og reproduserbarhet av analysen kan bedres ved regenerering av instrumentets katalysator. Uorganiske forbindelser kan akkumuleres som salter og oksidere, i katalysatoren. Dette kan føre til redusert ytelse av katalysator, og dermed redusert sensitivitet og reproduserbarhet [19].

1.3 Hensikt med oppgaven

Ved CO₂-fangst benyttes ofte aminer til å absorbere CO₂. Aminer vil imidlertid degradere over tid til andre stoffer grunnet tøffe betingelser under prosessen. Institutt for Kjemisk Prosessteknologi ønsker å ta i bruk TN-deteksjonsmetode på Shimadzu TOC-L for å kunne kvantitere degraderingsprodukter i aminløsninger, da dette er en rask og enkel metode til dette formålet. En måte å kvantitere degradering på, er å avgjøre hvor mye amin som har gått tapt i løpet av en gitt prosess. Tilnærmingen vil da være å finne mengde nitrogen gjenværende i løsningen.

Arbeidet innebærer å opprette og validere en metode på Shimadzu TOC-L, som kan kvantitere den totale mengden nitrogen i ulike degraderte aminløsninger. Resultater fra analysering av aminprøver på Shimadzu TOC-L sammenlignes med eksisterende data fra titreringsmetode som kvantiterer tap av aminer over tid, i degraderte aminløsninger. Titreringsresultatene vil bare gi et mål på basisiteten av løsningen, det vil si nitrogen som er bundet i aminer. Analyseresultater fra Shimadzu TOC-L måler total nitrogenkonsentrasjon og basert på dette, vil degraderingsprodukter, i form av nitrogen i ikke-basiske forbindelser, kunne kvantiteres ved å subtrahere mengde basisk nitrogen (målt ved titrering) fra total mengde nitrogen (målt med denne metoden).

2 Material og Metode

2.1 Kalibrator, kontroll og prøvemateriale

I denne oppgaven ble samme løsning benyttet til flere formål. Samme løsning benyttes som kalibrator og kontroll, samt som «ukjente prøver». Alle kalibreringsstandarder som ble tillagd, har en beregnet, kjent konsentrasjon.

Det ble laget kalibreringsstandarder som ble brukt til å kalibrere instrumentet. De samme løsningene ble analysert som prøver med ukjent konsentrasjon av ppm N, for å evaluere kalibreringer, reproduserbarhet og riktighet, og defineres da som «ukjente prøver».

Oksidativt degraderte aminløsninger fra tre uker lange degraderingsforsøk, som på forhånd ble preparert av Vanja Buvik, refereres til som «degraderte aminløsninger». Fortynninger som ble tillaget fra degraderte aminløsninger, ble benyttet som prøvemateriale og defineres som «aminprøver».

Ved analysering av aminprøver, ble kalibreringsstandarder analysert parallelt, som en kontroll på analyseprosessen. Kalibreringsstandarder defineres i denne sammenheng som «kontroll».

2.2 Utstyr og kjemikalier

Alle analyser ble utført på Shimadzu TOC-L. Kjemikalier benyttet i oppgaven (tabell 1), ble kjøpt fra Sigma-Aldrich og har alle en renhet på > 98%. Alle løsningene ble tillaget med Millipore-vann (8,2 M Ω ·cm), fra vannrensesystemet ICW-3000 TM fra Merck Millipore. Millipore-vann er vann som har undergått en filtreringsprosess, som innebærer deionisering for å oppnå en renhet uttrykt ved resistivitet (typisk 8,2 M Ω ·cm).

Kjemikalie	Forkortelse	CAS- nummer	Kjemisk formel	Molar masse (g/mol)
Kaliumnitrat		7757-79-1	KNO ₃	101,103
Glycin		56-40-6	$C_2H_5NO_2$	75,07
Ethanolamine	MEA	141-43-5	C ₂ H ₇ NO	61,08
Triethanolamine	TEA	121-44-8	C ₆ H ₁₅ NO ₃	149,188
N-Methylethanolamine	MMEA	109-83-1	C ₃ H ₉ NO	75,111
2-Dimethylaminoethanol	DMMEA	108-01-0	$C_4H_{11}NO$	89,14
2-(2-Aminoethoxy) ethanol	DGA	929-06-6	$C_4H_{11}NO_2$	105,136
3-Amino-1-propanol	AP	156-87-6	C ₃ H ₉ NO	75,11
Diethylaminoethanol	DEEA	100-37-8	C ₆ H ₁₅ NO	117,189

Tabell 1: Oversikt over kjemikalier, med navn, forkortelse, CAS-nummer, kjemisk formel og molar masse (g/mol).

2.3 Beregningsformler, statistiske ord og uttrykk

Stamløsninger

For å tillage stamløsninger av aminer med konsentrasjoner på omtrent 1000 ppm N, beregnes masse (g) amin som må fortynnes i 1000 ml millipore-vann (MQ), med beregningsformel 3.

$$m \operatorname{Amin} = \frac{\operatorname{Mm} \operatorname{amin}}{\operatorname{Mm} N}$$
(3)

For å beregne eksakt konsentrasjon (ppm N) av stamløsning, benyttes reell vekt av innveid masse (g) amin og masse (g) MQ, i sammenheng med beregningsformel 4.

$$[Stamløsning] = \frac{m MQ \times m Amin \times Mm N}{Mm Amin}$$
(4)

Kalibreringsstandarder

For tillaging av kalibreringsstandarder fra stamløsning, i benyttes fortynningsformelen (5).

$$C_1 \times V_1 = C_2 \times V_2 \tag{5}$$

For å beregne eksakt konsentrasjon (ppm N) av kalibreringsstandarder, benyttes reell vekt av innveid masse (g) stamløsning og masse (g) MQ, i sammenheng med beregningsformel 6.

$$[Kalibreringsstandard] = \frac{m \text{ Stamløsning} \times [\text{Stamløsning}]}{m \text{ MQ} + m \text{ Stamløsning}}$$
(6)

<u>Statistikk</u>

Fra determinasjonskoeffisienten, R², kan korrelasjonskoeffisienten, R, for kalibreringskurver, beregnes med beregningsformel 7. R² benyttes som et mål for regresjonslinjens forklaringskraft og skal ideelt sett være så nær 1 som mulig. Korrelasjonskoeffisienten uttrykker retningen og styrken av den lineære sammenhengen mellom målepunktene.

$$R = \sqrt{R^2}$$
(7)

Prosentvise (relative) avvik fra en kjent, sann verdi, sier noe om en metodes riktighet og kan beregnes ved hjelp av beregningsformel 8. Riktighet er den grad av overensstemmelse mellom gjennomsnittet av en stor serie måleresultater og en sann verdi.

% avvik fra sann verdi =
$$\frac{\text{Sann verdi} - \text{Gjennomsnittlig målt verdi}}{\text{Sann verdi}} \times 100\%$$
(8)

Absolutte avvik fra en kjent, sann verdi, sier noe om hvor mye et bestemt tall i et datasett varierer fra den sanne verdi, og beregnes med beregningsformel 9.

$$Absolutt avvik = Beregnet konsentrasjon - Målt konsentrasjon$$
(9)

Ved beregning av variasjonen i et datasett, beregnes variasjonskoeffisienten (CV) med beregningsformel 10. Instrumentets evne til å gjengi samme måleresultat under endrede analysebetingelser (reproduserbarhet), gjenspeiler instrumentets presisjon. CV er et relativt standardavvik (SD) og beregnes fra gjennomsnittet og SD av datasettet.

$$CV = \frac{SD}{Gjennomsnitt} \times 100\%$$
(10)

Deteksjonsgrense (LOD) og kvantiteringsgrense (LOQ)

LOD er den laveste konsentrasjonen av en analytt i en prøve som metoden kan detektere. LOQ er nederste grense for kvantitering av en analytt. Kvantiteringsgrensen angir et område der målingene har en usikkerhet mindre enn en angitt verdi. LOD beregnes med beregningsformel 11 med utgangspunkt i et ønsket konfidensnivå (k), SD og gjennomsnittlig konsentrasjon av flere paralleller blankprøver (xbi). LOQ beregnes med beregningsformel 12.

$$LOD = xbi \times kSD$$
(11)
$$LOQ = xbi + 10SD$$
(12)

For å beregne en omtrentlig konsentrasjon på 100 ppm N i aminprøver, benyttes beregningsformel 13 og 5. Målt aminkonsentrasjon (mol amin/kg) i degradert aminløsning (DA), omregnes til konsentrasjon av nitrogen (ppm N) i degradert aminløsning. Deretter benyttes fortynningsformelen (5).

$$[DA] = mol amin/kg \times Mm N \times 10^3$$
(13)

For å beregne eksakt konsentrasjon (ppm N) av tillagde aminprøver, benyttes reell vekt av innveid masse (g) degradert aminløsning og masse (g) MQ, i sammenheng med beregningsformel 14.

$$[Aminprøve] = \frac{m DA \times [aminløsning]}{m MQ + m DA}$$
(14)

For å gi et sammenligningsgrunnlag ved bruk av forskjellige måleenheter kan ppm N omregnes til mol N/kg med beregningsformel 15.

$$Mol N/kg = \frac{(([gj. snitt Shimadzu TOC - L] \times (m DA + m MQ)/m DA)/10^3)}{Mm N}$$
(15)

For å beregne mengde nitrogen som har blitt til ikke-basiske degraderingsprodukter fra dag 0 til dag 21, kan beregningsformel 16 benyttes.

% N degraderingsprodukt =
$$\frac{\text{Differanse mol N/kg dag 21}}{\text{Shimadzu TOC} - \text{L mol N/kg dag 0}} \times 100\%$$
(16)

Alle data fra analysesekvenser ble behandlet i dataprogrammet Microsoft Office Excel.

2.4 Metodevalidering

2.4.1 Tillaging av stamløsninger

Det ble laget stamløsninger med kaliumnitrat (KNO₃), glycin (C₂H₅NO₂), MEA (C₂H₇NO) og TEA (C₆H₁₅NO₃) med konsentrasjoner på omtrent 1000 ppm N (tabell 12, vedlegg 2) (beregningsformel 3, beregningseksempel i vedlegg 1). Tillagingen ble basert på vekt/vekt-fortynning. Stamløsningene ble laget ved å veie inn respektive kjemikalier på analysevekt. MEA og TEA ble veid inn i avtrekksskap. Innveid kjemikalie ble deretter fortynnet med millipore-vann i en målekolbe (1000 ml). Millipore-vann ble innveid på grovvekt under lokalt avtrekk. Eksakte konsentrasjoner av stamløsningene ble beregnet på bakgrunn av innveide verdier (beregningsformel 4, beregningseksempel i vedlegg 1). Stamløsningene ble blandet til en homogen løsning ved hjelp av magnetrører. Stamløsningene ble videre benyttet ved tillaging av kalibreringsstandarder.

2.4.2 Tillaging av kalibreringsstandarder og kalibrering

KNO₃-kalibreringsstandarder i konsentrasjonsområde 10-500 ppm N ble laget i målekolber (100 ml) (tabell 13, vedlegg 2) (beregningsformel 5, beregningseksempel i vedlegg 1). Det ble veid inn stamløsning (1000,3 ppm N) som ble fortynnet med millipore-vann. Målingene ble utført på analysevekt under lokalt avtrekk. Tillagingen ble basert på vekt/vekt-fortynning. Eksakte konsentrasjoner av fortynningene ble beregnet på bakgrunn av innveide verdier (beregningsformel 6, beregningseksempel i vedlegg 1). Før analysering ble kalibreringsstandardene overført til egnede beholdere (40 ml) kompatible med Shimadzu TOC-L. Overskudd av kalibreringsstandardene ble overført til luft- og lystette beholdere for oppbevaring.

Det ble utført kalibrering av TN-deteksjonsmetode på Shimadzu TOC-L med tillagde kalibreringsstandarder. Kalibreringsstandardene ble analysert som ukjente prøver på KNO₃kalibrering, for å evaluere kalibreringen. Det ble videre laget kalibreringsstandarder av MEA (C₂H₇NO) (tabell 14, vedlegg 2) og TEA (C₆H₁₅NO₃) (tabell 15, vedlegg 2). Kalibreringsstandardene ble laget fra tilhørende stamløsning, på samme måte som KNO₃kalibreringsstandardene. MEA- og TEA-kalibreringsstandarder ble analysert som ukjente prøver, som et ytterligere ledd i evaluering av KNO₃-kalibrering.

2.4.3 Presisjon og riktighet

Parallelt med evaluering av kalibrering, ble reproduserbarhet undersøkt, for å få kunnskap om metodens presisjon. Det ble utført gjentatte analyser av MEA-, TEA- og KNO₃-kalibreringsstandarder, som ukjente prøver på KNO₃-kalibrering. Analysen ble utført over flere dager, med endrede analysebetingelser, for å utelukke tilfeldige feil. For å evaluere metodens riktighet, ble MEA, TEA og KNO₃ analysert som ukjente prøver for å vurdere relative og absolutte avvik fra kjent konsentrasjon.

For å undersøke om analysemetoden gir samme resultat uavhengig av type forbindelse som analyseres, ble det laget prøver av glycin ($C_2H_5NO_2$) (tabell 16, vedlegg 2) på samme måte som KNO₃-kalibreringsstandarder. Prøvene ble analysert på KNO₃-kalibrering.

Basert på data fra analyse av MEA, TEA og glycin, ble TN-deteksjonsmetode på Shimadzu TOC-L, kalibrert med MEA- kalibreringsstandardene. I tillegg ble instrumentets katalysator regenerert med saltsyre (HCl). Følgelig ble MEA-kalibreringsstandarder analysert som ukjente prøver for å evaluere kalibreringen. TEA-kalibreringsstandarder ble analysert som ukjente prøver, som et ytterligere ledd i evaluering av MEA-kalibrering.

Det ble videre utført separate kalibreringer for hvert amin, før analysering av aminprøve fra samme amin.

2.4.4 Deteksjonsgrense og kvantifikasjonsgrense

Deteksjonsgrense (LOD) og kvantiteringsgrense (LOQ) for TN-deteksjonsmetode på Shimadzu TOC-L, ble bestemt. LOD og LOQ ble fastsatt ved å analysere flere paralleller med blankprøver (millipore-vann). Konfidensnivå (k) ble valgt i henhold til anbefaling fra «The International Union of Pure and Applied Chemistry» (IUPAC). Verdier for blankprøver og SD er estimater basert på begrensede målinger, og 3 SD korresponderer med et konfidensnivå på omtrent 90%. Shimadzu TOC-L brukermanual oppgir en LOD på 5 µg/L.

2.5 Eksperimentell behandling av degraderte aminløsninger

Degraderte aminløsninger som ble analysert i dette eksperimentet, ble i forkant preparert av Vanja Buvik, for å fremme degradering. 200 ml vandig aminløsning 30 % (m/m), tilsatt 0,5 mM jernsulfat (FeSO₄×7H₂O) og forhåndsladet med 0,4 mol CO₂ per mol amin, ble tilsatt i en glassreaktor med dobbel vegg og tilkobling til vannbad. Reaktoren har tre åpninger som henholdsvis er utstyrt med en Graham-kondenser, ett gassfordelingsrør tilkoblet en *Alicat* Mass Flow Controller og ett septum for prøvetaking. Over forsøksperioden på 21 dager, ble gass boblet gjennom gassfordelingsrøret inn i løsningen (60 ml/min, 98% O₂ og 2% CO₂) under magnetisk omrøring på 150 rpm og oppvarming til 60 °C. Kondenseren ble nedkjølt til 5 °C. Gjennom forsøksperioden ble det tatt prøver på 2-4 ml to ganger i uken og hvert forsøk ble gjennomført i minst to paralleller. Aminkonsentrasjonen ble målt ved titrering med svovelsyre (H₂SO₄) i mol/kg løsning.

2.6 Analyse av oksidativt degraderte aminprøver

2.6.1 Tillaging av stamløsninger

Det ble laget stamløsninger med MEA (C₂H₇NO), TEA (C₆H₁₅NO₃), MMEA (C₃H₉NO), DMMEA (C₄H₁₁NO), DGA (C₄H₁₁NO₂), AP (C₃H₉NO) og DEEA (C₆H₁₅NO) med konsentrasjoner på omtrent 1000 ppm N (tabell 17, vedlegg 3). Alle kjemikalier ble innveid i avtrekksskap. Ellers ble tillaging gjort på samme måte som beskrevet i punkt 2.4.1 «Tillaging av stamløsninger».

2.6.2 Tillaging av kalibreringsstandarder

Kalibreringsstandarder for alle aminer i konsentrasjonsområde 10-500 ppm N ble laget i målekolber (100 ml) (tabell 18-24, vedlegg 3). Tillaging av kalibreringsstandardene ble gjort på samme måte som beskrevet i punkt 2.4.2 «Tillaging av kalibreringsstandarder og kalibrering». Det ble laget separate kalibreringer for hvert amin, i konsentrasjonsområde 0-500 ppm N.

2.6.3 Tillaging av aminprøver

Alle degraderte aminløsninger ble fortynnet til en konsentrasjon på omtrent 100 ppm N. Det ble tatt utgangspunkt i 100 ppm N, beregnet fra degradert aminløsning dag 0. Aminprøvene ble tillaget med samme vekt/vekt-forhold som degradert aminløsning fra dag 0. (beregningsformel 13 og 5, beregningseksempel i vedlegg 1). Det ble laget totalt 118 aminprøver fra degraderte aminløsninger, hvorav 21 var MEA (tabell 25-29, vedlegg 4) 13 TEA (tabell 30-31, vedlegg 4), 20 MMEA (tabell 32-34, vedlegg 4), 13 DEEA (tabell 35-36, vedlegg 4), 13 AP (tabell 37-38, vedlegg 4), 19 DGA (tabell 39-41, vedlegg 4) og 19 DMMEA (tabell 42-44, vedlegg 4). Tillaging av aminprøvene ble utført på analysevekt under lokalt avtrekk. Tillagingen ble basert på vekt/vekt-fortynning. Det ble veid inn degradert aminløsning fra respektive aminer, som ble fortynnet med milliporevann, i beholdere (40 ml) kompatible med Shimadzu TOC-L. Eksakte konsentrasjoner av aminprøvene ble beregnet på bakgrunn av innveide verdier. (Beregningsformel 14, beregningseksempel i vedlegg 1)

Videre ble aminprøvene analysert med TN-deteksjonsmetode på Shimadzu TOC-L. Hver aminprøve ble analysert på kalibrering laget med kalibreringsstandarder av samme amin. I samme analysesekvens ble et utvalg av kalibreringsstandarder med kjent konsentrasjon, analysert parallelt med en funksjon som kontroll på analyseprosessen. Det ble benyttet kontroller på henholdsvis 50, 75, 100 og 200 ppm N, for å kontrollere kalibreringen i konsentrasjonsområdet rundt 100 ppm N.

3 Resultater

3.1 Metodevalidering

3.1.1 KNO₃-kalibrering

Shimadzu TOC-L ble kalibrert med KNO₃- standarder med formål om å kunne kvantitere nitrogen i konsentrasjonsområdet 0-500 ppm N i aminprøver. Det ble laget to kalibreringskurver (figur 5) med utgangspunkt i målt, gjennomsnittlig areal og kalibreringsstandardenes kjente konsentrasjon (tabell 45, vedlegg 5).

Kalibreringskurvene viser korrelasjon mellom målt, gjennomsnittlig areal og kjent konsentrasjon. Kalibreringskurven i konsentrasjonsområde fra 0-150 ppm N har en korrelasjonskoeffisient på 1. Kalibreringskurven i konsentrasjonsområde fra 150-500 ppm N har en korrelasjonskoeffisient på 0,9999 (beregningsformel 7, beregningseksempel i vedlegg 1).

Figur 5: Kalibrering av TN-deteksjonsmetode på Shimadzu TOC-L med KNO₃kalibreringsstandarder i konsentrasjonsområde 0-150 ppm N (A) og 150-500 ppm N (B). Kalibreringskurvene viser korrelasjon mellom målt, gjennomsnittlig areal og kjent konsentrasjon.

Ved evaluering av kalibreringen, ble alle KNO₃-kalibreringsstandarder analysert som ukjente prøver. Det ble analysert 6 paralleller av hver ukjent-prøve. Middelverdi av parallellene ble beregnet, samt prosentvise og absolutt avvik fra kjent konsentrasjon (beregnet konsentrasjon) (beregningsformel 8-9, beregningseksempel i vedlegg 1) for hver kalibreringskurve. Oppgitt krav til riktighet for metoden er 3 %. Resultatene viser at prosentvise avvik fra kjent konsentrasjon er \leq 3% for 10-500 ppm N. Absolutte avvik er \leq 6,1 ppm N for 10-500 ppm N (tabell 2).

Tabell 2: Beregnet konsentrasjon av nitrogen i KNO₃-kalibreringsstandarder i konsentrasjonsområdet 10-500 ppm N, samt gjennomsnittlig, målt konsentrasjon analysert på Shimadzu TOC-L. Beregnet relativt og absolutt avvik for 6 paralleller (n). Tallene er hentet fra tabell 46-47, vedlegg 5.

Beregnet	Gjennomsnitt	Relativt	Absolutt
konsentrasjon	n=6	Avvik	avvik
(ppm N)	(ppm N)	(%)	(ppm N)
10,23	9,916	3 %	0,31
25,02	24,79	1 %	0,23
50,02	49,52	1 %	0,50
75,18	74,39	1 %	0,79
100,2	99,67	1 %	0,5
150,1	151,5	1 %	1,4
200,2	199,8	0 %	0,4
250,1	250,4	0 %	0,2
300,1	301,0	0 %	0,9
400,1	399,1	0 %	1,0
500,1	494,0	1 %	6,1

3.1.2 Reproduserbarhet

For å bestemme reproduserbarhet i målte konsentrasjoner, ble prøver av KNO₃-, MEA- og TEA med kjent konsentrasjon, analysert på KNO₃-kalibrering. Analyseringen ble utført over flere dager, med ulik operatør av instrumentet, endret rekkefølge på prøver, samt at det ble analysert andre prøver parallelt. Middelverdi av parallellene, CV og SD ble beregnet (beregningsformel 10, beregningseksempel i vedlegg 1). Oppgitt presisjonskrav for metoden er 3%.

Det ble analysert 21 paralleller av KNO₃-prøver i et tidsrom på 12 dager. Reproduserbarhet for 12 paralleller (6 dager) av KNO₃-prøver i konsentrasjonsområdet 50-500 ppm N er \leq 3%, og opptil 6% for 10-25 ppm N (tabell 3). Ny kalibrering bør vurderes innen 6 dager da presisjonen ble betraktelig lavere på dag 7.

Tabell 3: Beregnet konsentrasjon, samt gjennomsnittlig, målt konsentrasjon av nitrogen i KNO₃-kalibreringsstandarder, analysert på Shimadzu TOC-L. Beregnet SD og CV for 12 paralleller (n). Tallene er hentet fra tabell 48, vedlegg 5.

Beregnet	Gjennomsnitt	SD	CV
Konsentrasjon	n=12		
(ppm N)	(ppm N)	(ppm N)	(%)
10,23	9,732	0,5355	6 %
25,02	23,93	0,9798	4 %
50,02	48,39	1,260	3 %
75,18	72,96	1,622	2 %
100,2	97,67	2,331	2 %
150,1	147,3	4,769	3 %
200,2	194,6	5,758	3 %
250,1	243,8	7,226	3 %
300,1	293,4	9,192	3 %
400,1	390,1	10,08	3 %
500,1	486,2	8,529	2 %

Etter 18 paralleller ble instrumentets katalysator regenerert. Reproduserbarhet for 21 paralleller av KNO₃-prøver i konsentrasjonsområdet 50-200 ppm N er \leq 3%, og > 3% for 10-25 ppm N og 250-500 ppm N (Tabell 4).

Tabell 4: Beregnet konsentrasjon, samt gjennomsnittlig, målt konsentrasjon av nitrogen i KNO₃-kalibreringsstandarder, analysert på Shimadzu TOC-L. Beregnet SD og CV for 21 paralleller (n). Tallene er hentet fra tabell 48, vedlegg 5.

Beregnet	Gjennomsnitt	SD	CV
Konsentrasjon	n=21		
(ppm N)	(ppm N)	(ppm N)	(%)
10,23	9,639	0,4575	5 %
25,02	23,62	0,8633	4 %
50,02	47,83	1,227	3 %
75,18	72,30	1,519	2 %
100,2	96,70	2,175	2 %
150,1	144,8	4,731	3 %
200,2	192,4	5,544	3 %
250,1	238,4	9,505	4 %
300,1	285,4	13,20	5 %
400,1	380,0	17,08	4 %
500,1	475,0	17,63	4 %

For å fastslå om analysemetoden fungerte like godt med andre aminer, som for KNO₃kalibreringsstandarder, ble ukjente prøver av MEA og TEA analysert. Det ble analysert 9 paralleller av MEA-prøver. Resultatene viser at reproduserbarhet i målte konsentrasjoner er \leq 3% for 25-500 ppm N og > 3% ved 10 ppm N (tabell 5).

Tabell 5: Beregnet konsentrasjon, samt gjennomsnittlig, målt konsentrasjon av nitrogen i MEA-kalibreringsstandarder, analysert på Shimadzu TOC-L. Beregnet SD og CV for 9 paralleller (n). Tallene er hentet fra tabell 49, vedlegg 5.

Beregnet	Gjennomsnitt	SD	CV
konsentrasjon	n=9		
(ppm N)	(ppm N)	(ppm N)	(%)
10,66	12,48	0,5728	5 %
26,39	29,63	0,7928	3 %
52,54	57,60	1,673	3 %
78,78	85,44	2,454	3 %
104,9	114,3	2,705	2 %
209,4	217,3	4,939	2 %
314,0	317,6	7,063	2 %
418,5	414,7	8,480	2 %
521,8	495,7	4,293	1 %

Det ble analysert 9 paralleller av TEA-prøver. Resultatene viser at reproduserbarhet i målte konsentrasjoner er $\leq 3\%$ for 10-25 ppm N og 200-500 ppm N og > 3% for 50-100 ppm N (tabell 6).

Tabell 6: Beregnet konsentrasjon, samt gjennomsnittlig, målt konsentrasjon av nitrogen i TEA-kalibreringsstandarder, analysert på Shimadzu TOC-L. Beregnet SD og CV for 9 paralleller (n). Tallene er hentet fra tabell 50, vedlegg 5.

Beregnet	Gjennomsnitt	SD	CV
Konsentrasjon	n=9		(0/)
(ppm N)	(ppm N)	(ppm N)	(%)
10,16	10,63	0,1403	1 %
25,00	24,79	0,2429	1 %
49,84	49,50	2,080	4 %
74,88	73,41	2,685	4 %
99,73	96,16	3,890	4 %
199,6	180,6	1,413	1 %
299,1	264,3	4,355	2 %
399,9	357,4	10,94	3 %
498,5	426,1	7,555	2 %

3.1.3 LOD og LOQ

For å få et mål på hvor lav konsentrasjon av nitrogen TN-deteksjonsmetode kan detektere og kvantitere, ble LOD og LOQ bestemt. For å finne LOD og LOQ, ble det analysert 8 paralleller av blankprøver på KNO₃-kalibrering. Blankprøvene ble analysert i 2 separate analysesekvenser, med henholdsvis 2 og 3 vaskesekvenser mellom hver parallell av blankprøvene. Resultatet for LOD og LOQ med 2 og 3 vaskesekvenser fremgår av tabell 7. Dette viser at antall vask mellom prøvene har en påvirkning på analyseresultatet og 3 vaskesteg mellom hver parallell ble standard innstilling for fremtidige analyser. Flere vaskesteg ble også testet, men en lavere LOD og LOQ ble ikke oppnådd.

Parallell	Konsentrasjon blankprøver 2 vask	Konsentrasjon blankprøver 3 vask
(n)	(ppm N)	(ppm N)
1	1,635	1,061
2	1,435	0,9660
3	2,488	0,9421
4	2,149	0,9268
5	1,484	0,7867
6	3,136	0,6860
7	1,945	1,615
8	2,186	1,614
xbi: middelverdi	2,057	1,075
k: konfidensnivå	3	3
SD: standardavvik	0,5708	0,3522
LOD (ppm N)	4	2
LOQ (ppm N)	8	5

Tabell 7: Beregnet LOD og LOQ med henholdsvis 2 og 3 vaskesekvenser mellom hver parallell, for KNO₃-blankprøver.

I sammenheng med analysering av ukjente MEA- og TEA-prøver, ble LOD og LOQ beregnet med utgangspunkt i blankprøver fra disse analysesekvensene (tabell 51-52, vedlegg 5). Analysen ble utført med 3 vaskesekvenser mellom hver parallell. LOD og LOQ for TNdeteksjonsmetode på Shimadzu TOC-L, fastsettes med 90% sikkerhet, til henholdsvis 2 og 5 ppm N (beregningsformel 11-12, beregningseksempel i vedlegg 1).

3.1.4 Analysering av glycin

For å undersøke om analysemetoden var egnet til å kvantitere nitrogen uavhengig av hva slags type forbindelse nitrogenatomene befinner seg i, ble det analysert glycinprøver med kjent nitrogenkonsentrasjon på KNO₃-kalibrering. Det ble analysert 6 paralleller av hver prøve, i konsentrasjonsområde 10-500 ppm N. Middelverdi av parallellene ble beregnet, samt prosentvise og absolutte avvik fra kjent konsentrasjon. Resultatene viser at prosentvise avvik fra kjent konsentrasjon stiger jevnt og er høyest i det øvre konsentrasjonsområdet. Prosentvise avvik i konsentrasjonsområdet 10-25 ppm N er $\leq 3\%$ og > 3% fra 50-500 ppm N (tabell 8). Riktighetskravet er oppgitt til 3%.

Beregnet konsentrasjon	Gjennomsnitt n=6	Relativt Avvik	Absolutt avvik
(ppm N)	(ppm N)	(%)	(ppm N)
10,14	10,06	1 %	0,08
25,12	24,27	3 %	0,85
49,97	47,00	6 %	2,97
74,78	69,62	7 %	5,17
99,55	92,67	7 %	6,89
149,3	136,2	9 %	13,1
199,0	179,2	10 %	19,8
248,9	221,2	11 %	27,7
298,6	266,1	11 %	32,6
399,2	348,9	13 %	50,3
497,5	430,4	13 %	67,1

Tabell 8: Beregnet konsentrasjon, samt gjennomsnittlig, målt konsentrasjon av nitrogen i glycinprøver, analysert på Shimadzu TOC-L. Beregnet relativt og absolutt avvik for 6 paralleller (n).

3.1.5 MEA-kalibrering og evaluering

På bakgrunn av resultat fra analysering av glycin, ble instrumentet kalibrert med MEA, med formål om å kunne kvantitere nitrogen i ulike aminer, med samme kalibrering, i konsentrasjonsområde 0-500 ppm N. Med utgangspunkt i målt, gjennomsnittlig areal og kalibreringsstandardenes kjente konsentrasjon (tabell 53, vedlegg 5), ble det laget to kalibreringskurver (figur 6).

Kalibreringskurven i konsentrasjonsområdet 0-200 ppm N viser korrelasjon mellom målt, gjennomsnittlig areal og kjent konsentrasjon, og har en korrelasjonskoeffisient på 1. Kalibreringskurven i konsentrasjonsområdet 200-500 ppm N har en korrelasjonskoeffisient på 0,9996.

Figur 6: Kalibrering av TN-deteksjonsmetode på Shimadzu TOC-L med MEAkalibreringsstandarder i konsentrasjonsområde 0-200 ppm N (A) og 200-500 ppm N (B). Kalibreringskurvene viser korrelasjon mellom målt, gjennomsnittlig areal og kjent konsentrasjon.

Ved evaluering av kalibreringen, ble alle MEA-kalibreringsstandarder analysert som ukjente prøver. Det ble analysert 6 paralleller av hver ukjent-prøve. Middelverdi av parallellene ble beregnet, samt prosentvise og absolutt avvik fra kjent konsentrasjon (beregnet konsentrasjon), for hver kalibreringskurve. Oppgitt krav til riktighet for metoden er 3 %. Prosentvise avvik fra kjent konsentrasjon er \leq 3% for 10-200 ppm N og 500 ppm N, og > 3 % for 300-400 ppm N (tabell 9).

Tabell 9: Beregnet konsentrasjon, samt gjennomsnittlig, målt konsentrasjon av nitrogen i MEA-kalibreringsstandarder, analysert på Shimadzu TOC-L. Beregnet relativt og absolutt avvik for 6 paralleller (n). Tallene er hentet fra tabell 54-55, vedlegg 5.

Beregnet	Gjennomsnitt	Relativt	Absolutt
(nnm N)	n–o (ppm N)		(nnm N)
10,66	10,70	0 %	0,04
26,39	26,90	2 %	0,51
52,54	53,91	3 %	1,37
78,78	80,73	2 %	1,95
104,9	106,2	1 %	1,2
209,4	205,1	2 %	4,3
314,0	336,2	7 %	22,2
418,5	435,1	4 %	16,5
521,8	530,0	2 %	8,2

For å undersøke om MEA-kalibreringen var egnet til å kvantitere nitrogen i ukjente prøver med TEA, ble det analysert 6 paralleller av TEA-prøver. Middelverdi av parallellene ble beregnet, samt prosentvise og absolutt avvik fra kjent konsentrasjon (beregnet konsentrasjon). Prosentvise avvik fra kjent konsentrasjon er $\leq 3\%$ under 25 ppm N, og > 3% for 50-500 ppm N (tabell 10).

Basert på evaluering av kalibreringer, ble aminprøver fortynnet til en konsentrasjon på omtrent 100 ppm N, og det ble bestemt at det skulle lages kalibreringskurver for hvert amin.

Tabell 10: Beregnet konsentrasjon, samt gjennomsnittlig, målt konsentrasjon av nitrogen i TEA-kalibreringsstandarder, analysert på Shimadzu TOC-L. Beregnet relativt og absolutt avvik for 6 paralleller (n).

Beregnet konsentrasjon (ppm N)	Gjennomsnitt n=6 (ppm N)	Relativt Avvik (%)	Absolutt avvik (ppm N)
10,16	10,06	1 %	0,10
25,00	24,15	3 %	0,85
49,84	47,65	4 %	2,20
74,88	70,59	6 %	4,29
99,73	92,40	7 %	7,33
199,6	179,4	10 %	20,2
299,1	261,7	12 %	37,4
399,9	366,8	8 %	33,1
498,5	447,4	10 %	51,1

3.2 Forsøk med oksidativt degraderte aminprøver

3.2.1 Kalibrering

Instrumentet ble kalibrert med MEA-, TEA-, MMEA-, DMMEA-, DGA-, AP- og DGAkalibreringsstandarder, med formål om å kunne kvantitere nitrogen i aminprøver. Med utgangspunkt i målt, gjennomsnittlig areal og kalibreringsstandardenes kjente konsentrasjon (tabell 56-62, vedlegg 6), ble det laget to kalibreringskurver (figur 7 og 8) for hvert amin. Alle kalibreringskurvene viser en korrelasjon \geq 0,9957 i konsentrasjonsområdet 0-500 ppm N.

Figur 7: Kalibrering av TN-deteksjonsmetode på Shimadzu TOC-L med MEA (A og B)-, TEA (C og D)-, MMEA (E og F)- og DMMEA (G og H)-kalibreringsstandarder i

konsentrasjonsområdet 0-200 ppm N og 200-500 ppm N. Kalibreringskurvene viser korrelasjon mellom målt, gjennomsnittlig areal og kjent konsentrasjon.

Figur 8: Kalibrering av TN-deteksjonsmetode på Shimadzu TOC-L med DGA (A og B)-, DEEA (C og D)- og AP (E og F)-kalibreringsstandarder i konsentrasjonsområdet 0-200 ppm N og 200-500 ppm N. Kalibreringskurvene viser korrelasjon mellom målt, gjennomsnittlig areal og kjent konsentrasjon.

3.2.2 Analyse av oksidativt degraderte aminprøver

Det ble analysert 6 paralleller av hver aminprøve på Shimadzu TOC-L. Det ble analysert aminprøver fra dag 0-21 fra reaktor 1-5. Det ble analysert aminprøver fra dag 0, 3, 7, 10, 14, 17 og 21 for alle aminer, med unntak av MEA. For MEA ble det analysert aminprøver fra henholdsvis dag 0,10, 17 og 21, fra reaktor R1 og R2. Fra R3 ble det analysert aminprøver fra dag 0 og 17 (tabell 63-82, vedlegg 7). Det ble beregnet gjennomsnitt av parallellene som ble sammenlignet med et gjennomsnitt av titreringsresultatene fra alle reaktorene, for hvert amin. Et omregningseksempel fra ppm N til mol N/kg er vist i vedlegg 1 (beregningsformel 15). Differansen mellom resultatene gjenspeiler degradering over tid (tabell 83-90, vedlegg 7).

Den grafiske fremstillingen (figur 9) antyder at mengden degraderingsprodukt øker med tiden, på grunn av økende konsentrasjon av ikke-basiske nitrogenforbindelser, med unntak av DEEA (H) som viser en tendens til redusert degraderingsprodukt. Resultater fra både titrering og analysering på Shimadzu TOC-L viser at total mengde nitrogen i aminprøvene synker med tiden, med unntak av for TEA (C) som viser en økt konsentrasjon av nitrogen, samt DEEA som viser en liten grad av økt konsentrasjon av nitrogen. For alle aminer fremgår det at konsentrasjonen av nitrogen målt med Shimadzu TOC-L alltid ligger høyere enn konsentrasjonen av nitrogen, målt med titrering.

Figur 9: Titreringsresultater sammenlignet med analyseresultater fra Shimadzu TOC-L (i denne figuren TOC). Figuren viser mol N/kg som funksjon av tid for MEA (A, B), TEA (C), MMEA (D), DMMEA (E), DGA (F), AP (G) og DEEA (H). Punktene representerer gjennomsnittsverdi av prøver fra reaktorene (R).
3.2.3 Kvantitering av degraderingsprodukter fra aminprøver

Degraderingsprodukter i MEA-, TEA-, MMEA-, DMMEA-, DGA-, AP- og DEEA-prøver ble kvantitert med en angitt usikkerhet i valgt konsentrasjonsområde (100 ppm N) (tabell 11). Totalt nitrogenholdig degraderingsprodukt er differansen mellom titreringsresultat og analyseresultat fra Shimadzu TOC-L, fra dag 21. Mengde nitrogen som har blitt til ikkebasiske degraderingsprodukter fra dag 0 til dag 21 ble beregnet (beregningsformel 16, beregningseksempel i vedlegg 1) og fremgår i tabell 11.

Som en kontroll på analyseprosessen ble kontroller med konsentrasjoner på henholdsvis 50, 75, 100 og 200 ppm N analysert parallelt, for å kontrollere kalibreringen og angi usikkerheten i konsentrasjonsområdet rundt 100 ppm N (tabell 91-97, vedlegg 8).

Tabell 11: Nitrogenholdig degraderingsprodukt i ikke-basisk form (mol N/kg og %) for aminprøver, analysert på Shimadzu TOC-L. Resultat er angitt med relativt avvik for kontroll, ved 100 ppm N. Tall hentet fra tabell 83-97, vedlegg 7-8.

Amin	Reaktor	Degraderingsprodukt	Mengde	Relativt avvik
		dag 21	degraderingsprodukt	ved 100 ppm N
	(R)	(mol N/kg)	(%)	(%)
MEA	R1, R2, R3	1,5950	34 %	4 %
MEA	R4, R5	1,3280	28 %	4 %
TEA	R2, R3	0,1301	6 %	4 %
MMEA	R1, R2, R3	1,0632	28 %	4 %
DMMEA	R1, R2, R3	0,1614	5 %	0 %
DGA	R1, R2, R3	0,3945	14 %	5 %
AP	R1, R2	0,3611	9 %	4 %
DEEA	R1, R2	0,0741	4 %	10 %

Tabellen viser at MEA kvantitativt og relativt sett, har størst mengde nitrogenholdig degraderingsprodukt, i ikke-basisk form. For MEA R1-R5, utgjør dette en gjennomsnittlig mengde på 32%. Alle aminprøver har et avvik \leq 5%, med unntak av DEEA som har et avvik på 10%.

4 Diskusjon

4.1 Metodevalidering

I den innledende fasen av metodevalideringen ble instrumentet kalibrert med KNO₃kalibreringsstandarder med formål om å kunne kvantitere nitrogen i degraderte aminprøver. Kalibreringskurvene i konsentrasjonsområde 0-500 ppm N, viser en god korrelasjon og tilfredsstiller oppgitt riktighetskrav på 3%. Kalibreringen anses som pålitelig for å kvantitere nitrogen i KNO₃-prøver.

Reproduserbarhet for KNO₃-prøver ble undersøkt. For prøven med konsentrasjon på 10 ppm N var det ikke tilstrekkelig med prøvevolum igjen etter 18 paralleller. Trenden av analysesvarene viste en gradvis synkende, målt konsentrasjon, og det antas derfor at beregnet CV ikke ville blitt bedre med 21 fullstendige paralleller for denne prøven. Presisjonen er varierende og ikke tilfredsstillende for å kunne kvantitere nitrogen over et større konsentrasjonsområde, med et godkjent presisjonskrav på 3%. Instrumentets katalysator ble regenerert for å undersøke om presisjonen ble forbedret. Det finnes ikke informasjon om når regenerering ble gjort sist. Det er oppgitt at regenerering av katalysator i utgangspunktet ikke skal påvirke TN-analyse i stor grad, noe som også fremgår av resultatene for reproduserbarhet. Det ble derimot observert en reduksjon i målt konsentrasjon av blankprøver, noe som indikerer at regelmessig regenerering kan gi en bedre nøyaktighet i det laveste konsentrasjonsområdet, da bakgrunnssignalet reduseres.

Det fremgår av resultatene at det etter 6 dager foreligger akseptabel variasjon og god reproduserbarhet. Dette kan indikere et nødvendig kalibreringsintervall på 6 dager for å imøtekomme presisjonskravet. For å få med flere variabler, kunne reproduserbarheten blitt undersøkt over et lengre tidsrom, med flere paralleller. I denne oppgaven ligger begrensningen i både tidsrom og mengde prøvemateriale, som ikke muliggjør en optimal undersøkelse av reproduserbarhet.

For å avgjøre om analysemetoden fungerte like godt med aminer som for KNO₃-prøver, ble reproduserbarhet for MEA- og TEA-prøver undersøkt på KNO₃-kalibrering. Det fremgår av resultatene at reproduserbarheten er god med MEA-prøver, men ikke optimal for TEA-prøver, da presisjonen er > 3 % midt i kalibreringen. Det ble derfor besluttet å ikke fullføre evaluering av reproduserbarhet for MEA- og TEA-prøver, da det ikke ble ansett som hensiktsmessig. Kalibreringen er ikke egnet til å kvantitere nitrogen i andre aminer.

Parallelt med undersøkelse av presisjon, ble LOD og LOQ for TN-deteksjonsmetode beregnet med både 2 og 3 vaskesekvenser mellom hver parallell, i analyseringen. Dette for å se om det kunne oppnås en lavere og bedre LOD og LOQ. Brukemanual for Shimadzu TOC-L oppgir en LOD på 5 µg/L (ca. 5 ppm). Resultatet viser at beregnet LOD og LOQ ble lavere og bedre med 3 vaskesekvenser. Dette kan indikere noe «carryover» mellom prøver. Dette ble ikke videre undersøkt. En regenerering av katalysator kan ved total karbon-analyse redusere størrelsen på arealet og dermed konsentrasjonen målt i blankprøver. Det kan tenkes at utelatt regenerering av katalysator er en medvirkende årsak til høyere, målt konsentrasjon av nitrogen i blankprøver, da det ble observert en reduksjon av arealet i blankprøver etter regenerering av katalysator. 3 vaskesekvenser mellom hver parallell ble derfor standard innstilling for fremtidige analyser.

For å undersøke om LOD og LOQ ble påvirket av analysering av ulike aminer, ble blankprøver i sammenheng med analyse av MEA- og TEA-prøver, analysert. Beregnet LOD og LOQ ble ikke signifikant endret. LOD og LOQ fastsettes med en sikkerhet på 90%, til henholdsvis 2 og 5 ppm N, for TN-deteksjonsmetode på Shimadzu TOC-L. For å verifisere LOD og LOQ burde det blitt tillaget og analysert nye løsninger med kjent konsentrasjon av nitrogen, i deteksjonsområdet. Dette ble ikke utført da det i praksis, ved Institutt for Kjemisk Prosessteknologi, er et formål om å kvantitere nitrogen i et høyere konsentrasjonsområde.

På bakgrunn av foreløpige resultater, ble det undersøkt om analysemetoden var egnet til å kvantitere nitrogen uavhengig av hva slags type forbindelse nitrogenatomene befinner seg i. Til dette formålet ble glycin, en analytisk standard, analysert på KNO₃-kalibrering. Hensikten med undersøkelsen var å verifisere at instrumentet ikke gjør forskjell på hva slags type forbindelse nitrogenatomene befinner seg i. Glycin er en organisk forbindelse og KNO₃ uorganisk. Undersøkelsen kan derfor si noe om analysemetoden, og om den gir samme resultat uavhengig av type molekyl. Resultatene viser at kravet til riktighet ikke er tilfredsstillende.

Det ble på bakgrunn av dette besluttet å kalibrere med MEA med formål om å kunne kvantitere nitrogen i ulike aminer, med samme kalibrering. Kalibreringskurvene i konsentrasjonsområde 0-500 ppm N, viser en god korrelasjon. Evaluering av kalibreringen viser at beregnede avvik er tilfredsstillende og kalibreringen ansees som pålitelig. Av resultatene for MEA-prøver analysert på MEA-kalibrering fremgår det at kalibreringen er optimal i konsentrasjonsområde ≤ 200 ppm N. Resultater fra analysering av TEA-prøver på MEA-kalibrering viser derimot at kalibreringen ikke er egnet til å kvantitere nitrogen i andre aminer. Med utgangspunkt i resultater fra analysering av MEA-prøver på MEA-kalibrering, fortynnes alle aminprøver til en konsentrasjon på 100 ppm N, da kalibreringen er akseptabel i dette konsentrasjonsområdet.

På bakgrunn av erfaringer gjort underveis, samt erfaring fra andre fagmiljø, ble det besluttet at det må utføres kalibrering med samme amin som skal analyseres for å kunne kvantitere nitrogen med bedre riktighet og presisjon.

4.2 Forsøk med degraderte aminprøver

Instrumentet ble kalibrert med MEA-, TEA-, MMEA-, DMMEA-, DGA-, AP- og DGAkalibreringsstandarder, med formål om å kunne kvantitere nitrogen i aminprøver. Alle kalibreringskurver viser god korrelasjon og uttrykker en god, lineær sammenheng mellom målepunktene, i konsentrasjonsområde 0-500 ppm N.

Ved sammenligning av analyseresultater fra Shimadzu TOC-L og titreringsresultater, fremgår det at de fleste av de analyserte aminer degraderer i større eller mindre grad. For de fleste aminene sees det også at mengden degraderingsprodukt (i form av ikke-basiske nitrogenholdige komponenter) øker, og at den totale konsentrasjonen av nitrogen reduseres med tiden. Høyst sannsynlig har den mengden nitrogen som forsvinner, blitt til ammoniakk som er flyktig, og dermed har fordampet. Tap av nitrogen i form av flyktige forbindelser, hovedsakelig ammoniakk, blir også observert både i industrien i laboratorieskala. Konsentrasjonen av nitrogen målt med Shimadzu TOC-L er konsekvent høyere enn kvantitert amintap ved titrering. Det foreligger forbindelser i løsningen som ikke er en del av basiske aminer, men andre ikke-basiske degraderingsprodukter. Differansen mellom basisk og ikkebasisk nitrogen, øker i løpet av degraderingsprosessen. Dette indikerer at metoden fungerer. Alt nitrogen, både bundet i aminer og eventuelt ubundet nitrogen i løsningen, detekteres og kvantiteres av TN-deteksjonsmetode. Det antas at degraderingsproduktene kun er i form av ikke-basiske forbindelser, deriblant varmestabile salter, som beskrevet av Velvestad et al. 2013 [18]. Eventuelle flyktige degraderingskomponenter vil ikke kunne detekteres. En mulig årsak til liten mengde kvantitert degraderingsprodukt, er dannelse av flyktige degraderingskomponenter, som fordamper fra løsningen og følgelig ikke detekteres av TNdeteksjonsmetode. Det kan derfor ikke med denne metoden, avgjøres om aminet har liten grad av degradering eller om dannelsen av flyktige komponenter har funnet sted. Ved valg av et ideelt amin for CO₂-fangst, vil dette være av stor betydning, da flyktige degraderingsprodukter kan forårsake skade på miljøet. En sammenligning av målt amintap ved titrering kan allikevel gi en indikasjon på at aminet degraderer lite (dersom lite amin har gått tapt fra dag 0 til 21).

Av tabell 11 fremgår det at en større mengde ikke-basiske, nitrogenholdige komponenter (degraderingsprodukter) er kvantitert for MEA, enn for de andre aminene som ble undersøkt i dette studiet. For reaktorene R1-R3 foreligger ikke en fullstendig analyseserie fra dag 0 til 21, da disse prøvene ikke var tilgjengelige. Fra reaktor R1 og R2 er det prøver fra dag 0, 10, 17 og 21 og det eksisterer dermed ikke data mellom disse punktene, og grafens helning (figur 8) kan ikke bekreftes mellom disse punktene. Prøver tilgjengelige fra reaktor R3 var henholdsvis dag 0 og 21. Grafen (figur 8) illustrerer et gjennomsnitt av alle prøvene som var tilgjengelige for reaktorene R1-R3 og er det er derfor en viss usikkerhet i dette resultatet.

For TEA fremgår det at konsentrasjonen av nitrogen øker fra dag 0 til dag 21, både fra titreringsresultater og analyse på Shimadzu TOC-L. Dette skyldes at aminprøven er oppkonsentrert på grunn av vanntap i form av kondens, eller tap av CO₂-gassen som den degraderte aminløsningen er forhåndsladet med. Beregning av vanntap og forhåndsladning med CO₂ inngår ikke i denne oppgaven.

Kvantiterte degraderingsprodukter for DEEA er lavest i forhold til de andre aminene analysert på Shimadzu TOC-L. En liten mengde kvantitert degraderingsprodukt, stemmer overens med oppnådde titreringsresultater, som antyder at DEEA degraderer lite. Det fremgår videre at nitrogenkonsentrasjonen også her øker noe fra dag 0 til 21. Tabell 90 viser at konsentrasjonen synker fra dag 0 til 7, for så å øke igjen ved dag 10. Dette skyldes trolig at det har vært noe NH₃ tilstede ved start, som har fordampet innen dag 3. En videre økning i konsentrasjonen av nitrogen, skyldes vanntap, som beskrevet for TEA.

Ingen av prosentavvikene på kontrollene oppfyller riktighetskravet på 3%, bortsett fra for DMMEA. Kontrollen for DMMEA har et relativt avvik på 0%. Dette er ikke reelt, da det

alltid foreligger en usikkerhet i analysemetoden. Evaluering av kalibrering med standard kalibreringsstandard (KNO₃) har en usikkerhet på 1% i konsentrasjonsområdet 100 ppm N (tabell 2). Usikkerheten for DMMEA-prøver angis derfor med 1%. Riktighetskravet som ble satt innledningsvis, er basert på tidligere erfaringer ved Institutt for Kjemisk Prosessteknologi, og er ikke nødvendigvis oppnåelig for denne metoden. Analysesvarene kan aksepteres, dog med en høyere usikkerhet, da dette var det mest optimale som kunne oppnås. Videre kan heller ikke renheten til kjemikalene benyttet i oppgaven verifiseres, da det ikke ble undersøkt. Det ble tatt utgangspunkt i at renheten på \geq 98% oppgitt fra Sigma-Aldrich, er korrekt. Dersom innveid kjemikalie ikke inneholder mengden amin oppgitt fra produsent, vil dette føre til en lavere nitrogenkonsentrasjon i stamløsning, enn den beregnede konsentrasjon. Dette vil følgelig påvirke beregnet konsentrasjon på kalibreringsstandarder. Alle innveiinger som ble gjort i avtrekksskap vil føre til noe drift i analysevekten, som også kan føre til at beregnet konsentrasjon av stamløsninger avviker noe.

LOD og LOQ ble ikke beregnet for hvert amin etter det ble besluttet å kalibrere med samme amin som skulle analyseres på Shimadzu TOC-L. Med tanke på nytteverdien for Institutt for Kjemisk Prosessteknologis bruk av instrumentet ble det heller ikke ansett som hensiktsmessig, da prøver i praksis fortynnes til ønsket konsentrasjon og det er ikke nødvendig å kvantitere nitrogen i prøver med svært lav konsentrasjon. Beregnet LOD er i tillegg tilsvarende det som er oppgitt i Shimadzu TOC-L brukermanual.

5 Konklusjon

TN-deteksjonsmetode på Shimadzu TOC-L bør kalibreres med samme amin som skal analyseres, for å kunne kvantitere både basiske og ikke-basiske nitrogenholdige komponenter. Degraderingsproduktene ble kvantitert som alt nitrogen som ikke befinner seg i basiske forbindelser i løsningene. Basert på kunnskap om degraderingsprosesser for aminer er det sannsynlig at det kvantiterte degraderingsproduktet, er varmestabile salter. Det fremgår at mengden nitrogenholdig degraderingsprodukt øker i løpet av forsøksperioden på 21 dager.

For MEA, ble det kvantitert en økning på 32 % i konsentrasjon av ikke-basiske nitrogenholdige komponenter (degraderingsprodukter), etter 21 dager. I konsentrasjonsområdet 100 ppm N, som aminprøvene ble fortynnet til, kan analyseresultatene for MEA-prøver angis med en usikkerhet på 4%, basert på kontrollens avvik fra dens beregnede konsentrasjon. For TEA ble det funnet 6 % nitrogenholdige degraderingsprodukter, hvor resultatet kan angis med en usikkerhet på 4% ved 100 ppm N. For DEEA og MMEA kvantiteres nitrogenholdige degraderingsprodukter til henholdsvis 4% og 28%. Prosentvise avvik for kontrollene er henholdsvis 10% og 4% i samme konsentrasjonsområde. For DMMEA ble nitrogenholdige degraderingsprodukter kvantitert til 5%, med et prosentavvik på 1%. For DGA og AP ble nitrogenholdig degraderingsprodukt kvantitert til henholdsvis 14% og 9%. Prosentvise avvik for kontrollene ble henholdsvis 5% og 4% i konsentrasjonsområdet 100 ppm N.

Analysemetoden viser seg å fungere til dens tiltenkte formål. En videreføring av arbeidet kan være å verifisere renhet av kjemikalier, samt vurdere å fastsette og verifisere LOD og LOQ for hvert amin, dersom det skal kvantiteres nitrogen i svært lav konsentrasjon.

6 Referanser

 E. L. Birch, «A Review of "Climate Change 2014: Impacts, Adaptation, and Vulnerability" and "Climate Change 2014: Mitigation of Climate Change"», *J. Am. Plann. Assoc.*, bd. 80, nr. 2, s. 184–185, apr. 2014.

[2] «Kyotoprotokollen». [Online]. Tilgjengelig på:

https://www.miljostatus.no/tema/klima/internasjonal-klimapolitikk/kyotoprotokollen/. [Åpnet: 14-mai-2019].

[3] B. G. Miller, *Clean coal engineering technology*. Burlington, MA: Butterworth-Heinemann, 2011.

[4] R. K. Pachauri, L. Mayer, og Intergovernmental Panel on Climate Change, Red., *Climate change 2014: synthesis report*. Geneva, Switzerland: Intergovernmental Panel on Climate Change, 2015.

[5] B. Metz og Intergovernmental Panel on Climate Change, Red., *IPCC special report on carbon dioxide capture and storage*. Cambridge: Cambridge University Press, for the Intergovernmental Panel on Climate Change, 2005.

[6] «fil_Bellona_report_September_2009_-_Amines_used_in_CO2_capture.pdf». .

[7] G. Fytianos, S. Ucar, A. Grimstvedt, A. Hyldbakk, H. F. Svendsen, og H. K. Knuutila, «Corrosion and degradation in MEA based post-combustion CO2 capture», *Int. J. Greenh. Gas Control*, bd. 46, s. 48–56, mar. 2016.

[8] B. Zhao *mfl.*, «Study on corrosion in CO2 chemical absorption process using amine solution», *Energy Procedia*, bd. 4, s. 93–100, 2011.

[9] A. B. Rao og E. S. Rubin, «A Technical, Economic, and Environmental Assessment of Amine-Based CO₂ Capture Technology for Power Plant Greenhouse Gas Control», *Environ. Sci. Technol.*, bd. 36, nr. 20, s. 4467–4475, okt. 2002.

[10] «Fakta om CCS». [Online]. Tilgjengelig på: https://www.gassnova.no/no/fakta-om-ccs. [Åpnet: 23-apr-2019].

[11] J. McMurry, *Fundamentals of organic chemistry*. Pacific Grove, Calif.: Brooks/Cole, 2011.

[12] D. C. Harris, *Exploring chemical analysis*, 5. ed., internat. ed. New York, NY: W.H. Freeman, 2013.

[13] E. F. da Silva *mfl.*, «Understanding 2-Ethanolamine Degradation in Postcombustion CO 2 Capture», *Ind. Eng. Chem. Res.*, bd. 51, nr. 41, s. 13329–13338, okt. 2012.

[14] P. Tontiwachwuthikul, R. Idem, og Future Science Ltd, Recent progress and new

developments in post-combustion carbon-capture technology with reactive solvents. 2013.

[15] S. J. Vevelstad, A. Grimstvedt, A. Einbu, H. Knuutila, E. F. da Silva, og H. F.
Svendsen, «Oxidative degradation of amines using a closed batch system», *Int. J. Greenh. Gas Control*, bd. 18, s. 1–14, okt. 2013.

[16] C. Gouedard, D. Picq, F. Launay, og P.-L. Carrette, «Amine degradation in CO2 capture. I. A review», *Int. J. Greenh. Gas Control*, bd. 10, s. 244–270, sep. 2012.

[17] G. S. Goff og G. T. Rochelle, «Monoethanolamine Degradation: O 2 Mass Transfer
 Effects under CO 2 Capture Conditions», *Ind. Eng. Chem. Res.*, bd. 43, nr. 20, s. 6400–6408, sep. 2004.

[18] S. J. Vevelstad, A. Grimstvedt, J. Elnan, E. F. da Silva, og H. F. Svendsen, «Oxidative degradation of 2-ethanolamine: The effect of oxygen concentration and temperature on product formation», *Int. J. Greenh. Gas Control*, bd. 18, s. 88–100, okt. 2013.

[19] Shimadzu Corporation, «Total Organic Carbon Analyzer, TOC-LCPH/CPN, users manual». 2014-2011.

[20] C. A. Burtis, D. E. Bruns, B. G. Sawyer, og N. W. Tietz, Red., *Tietz fundamentals of clinical chemistry and molecular diagnostics*, Seventh edition. St. Louis, Missouri: Elsevier/Saunders, 2015.

[21] «TOC Application Handbook», s. 79.

[22] N. O. Sjøberg, *Kort og godt kjemi med organisk kjemi og cellekjemi*. Høvik: Vett & Viten, 2013.

7 Innholdsfortegnelse vedlegg

7.1 Vedlegg 1:1	Beregningseksempler	38
7.2 Vedlegg 2: S	Stamløsninger, kalibreringsstandarder og prøver	41
7.3 Vedlegg 3: S	Stamløsninger og kalibreringsstandarder for ulike aminer	43
7.4 Vedlegg 4: A	Aminprøver	46
7.5 Vedlegg 5: 1	Kalibrering, reproduserbarhet, LOD og LOQ	53
7.6 Vedlegg 6: 1	Kalibrering med aminer	61
7.7 Vedlegg 7: 7	Titreringsresultat, analyseresultat fra	
S	himadzu TOC-L og degraderingsprodukt	65
7.8 Vedlegg 8: 1	Resultat; Analyseresultat av kontroller, med angitt % avvik	75

7.1 Vedlegg 1: Beregningseksempler

Stamløsninger

For å beregne masse (g) kjemikalie nødvendig for å lage stamløsninger (1000 ml) med konsentrasjon på omtrent 1000 ppm N, ble beregningsformel 3 benyttet.

$$\frac{101,103 \text{ g/mol}}{14,0067 \text{ g/mol}} = 7,218 \text{ g KNO}_3$$
(3)

For å beregne eksakt konsentrasjon (ppm N) av stamløsning, ble reell vekt av innveid masse (g) KNO₃ og masse (g) MQ (tabell 13, vedlegg 2), benyttet i beregningsformel 4.

$$\frac{1000,02 \text{ g} \times 7,220 \text{ g} \times 14,0067 \text{ g/mol}}{101,103 \text{ g/mol}} = 1000,27 \text{ ppm N} \approx 1000,3 \text{ ppm N}$$
(4)

Kalibreringsstandarder

Ved tillaging av kalibreringsstandarder, ble beregningsformel 5 benyttet. Eksempel på beregning av kalibreringsstandard med konsentrasjon på 100 ppm N:

$$\frac{100 \text{ ppm N} \times 100 \text{ ml}}{1000 \text{ ppm N}} = 10 \text{ ml}$$
(5)

For å beregne eksakt konsentrasjon (ppm N) av kalibreringsstandard, ble reell vekt (g) av innveid stamløsning KNO₃ (1000,3 ppm N) og masse (g) MQ, benyttet i beregningsformel 6. Eksempel på beregning av eksakt konsentrasjon med utgangspunkt i faktiske innveid masse:

$$\frac{10,023 \text{ g} \times 1000,27 \text{ ppm N}}{90,024 \text{ g} + 10,023 \text{ g}} = 100,22 \text{ ppm N}$$
(6)

<u>Statistikk</u>

Korrelasjonskoeffisienten ble beregnet med beregningsformel 7.

$$\sqrt{1} = 1 \tag{7}$$

For å beregne eksakt konsentrasjon av tillagde aminprøver, ble reell vekt av innveid masse (g) degradert aminløsning og masse (g) MQ benyttet i beregningsformel 14

Prosentvise avvik fra kjent konsentrasjon ble beregnet med beregningsformel 8. Eksempel på beregning av prosentvis avvik fra kjent konsentrasjon for kalibreringsstandard med en konsentrasjon på 100 ppm N:

$$\frac{100,22 \text{ ppm N} - 99,67 \text{ ppm N}}{100,22 \text{ ppm N}} \times 100\% = 0,5\% \approx 1\%$$
(8)

For å beregne absolutt avvik fra kjent konsentrasjon, ble beregningsformel 9 benyttet.

$$100,22 \text{ ppm N} - 99,67 \text{ ppm N} = 0,5 \text{ ppm N}$$
 (9)

Reproduserbarhet i målte konsentrasjoner ble beregnet med beregningsformel 10. Eksempel på beregning av reproduserbarhet for KNO₃-prøver i konsentrasjonssområdet 100 ppm.

$$\frac{2,1747 \text{ ppm N}}{96,70 \text{ ppm N}} \times 100\% = 2,2\% \approx 2\%$$
(10)

Deteksjonsgrense (LOD) og kvantiteringsgrense (LOQ)

Eksempel på beregning av LOD og LOQ med 3 vaskesekvenser for KNO3.

1,0747 ppm N +
$$(3 \times 0,3522 \text{ ppm N}) = 2,13 \text{ ppm N} \approx 2 \text{ ppm N}$$
 (11)
1,0747 ppm N + $(10 \times 0,3522 \text{ ppm N}) = 4,60 \text{ ppm N} \approx 5 \text{ ppm N}$ (12)

Aminprøver

For å beregne en omtrentlig konsentrasjon på 100 ppm N på aminprøver, ble målt aminkonsentrasjon (mol/kg) i degradert aminløsning (DA) omregnet til konsentrasjon av nitrogen (ppm N) (beregningsformel 13). Deretter ble fortynningsformel (5) benyttet.

Eksempel på beregning for MEA aminprøve fra reaktor 1 (R1), dag 0:

4,33895 mol amin/kg × 14,0067 g/mol × $10^3 = 60774,37$ ppm N ≈ 60774 ppm N (13)

$$\frac{100 \text{ ppm N} \times 40 \text{ ml}}{60774 \text{ ppm N}} = 0,0658 \text{ ml}$$
(5)

$$\frac{0,072 \text{ g} \times 60774 \text{ ppm}}{40,023 \text{ g} + 0,072 \text{ g}} = 109,13 \text{ ppm N}$$
(14)

Gjennomsnittlig, målt konsentrasjon av paralleller ble omregnet fra ppm N til mol N/kg med beregningsformel 15.

Eksempel på omregning for MEA R1, dag 0:

$$\frac{(([117,45 \text{ ppm N}] \times (0,072 \text{ g} + 40,023 \text{ g})/0,072 \text{ g})/10^3)}{14,0067 \text{ g/mol}} = 4,6695 \text{ mol N/kg}$$
(15)

Eksempel på beregning av mengde nitrogen (%) som har blitt til ikke-basiske degraderingsprodukter fra dag 0 til dag 21, for MEA R1-R3:

 $\frac{1,5950 \text{ mol N/kg}}{4,6695 \text{ mol N/kg}} \times 100\% = 34\%$

(16)

7.2 Vedlegg 2: Stamløsninger, kalibreringsstandarder og prøver

Kjemikalie	Innveid	MQ	Beregnet
	kjemikalie (g)	(g)	konsentrasjon (ppm N)
KNO ₃	7,220	1000,02	1000,3
Glycin	5,334	1000,07	995,2
MEA	4,562	999,82	1046,2
TEA	10,620	1000,02	997,1

Tabell 12: Spesifikasjoner for tillaging av stamløsninger til metodevalidering.

Tabell 13: Tillaging av KNO₃-kalibreringsstandarder fra stamløsning (1000,3 ppm N)

Ønsket	KNO3-	MQ	Beregnet
konsentrasjon	stamløsning		konsentrasjon
(ppm N)	(g)	(g)	(ppm N)
10	1,022	98,889	10,23
25	2,501	97,504	25,02
50	5,000	94,999	50,02
75	7,516	92,496	75,18
100	10,023	90,024	100,22
150	15,004	85,016	150,06
200	20,009	79,996	200,15
250	25,014	75,017	250,14
300	30,000	70,004	300,09
400	40,011	60,018	400,13
500	49,993	50,013	500,06

The out I to I thank at 11111 harres of the standard and find stands (1010)1 ppint it	Tabell 14: Tillaging av	MEA-kalibreringsstanda	arder fra stam	løsning (1046,1	ppm N
---	-------------------------	------------------------	----------------	-----------------	-------

Ønsket	MEA-	MQ	Beregnet
konsentrasjon	stamløsning		konsentrasjon
(ppm N)	(g)	(g)	(ppm N)
10	1,019	99,019	10,66
25	2,523	97,489	26,39
50	5,023	94,990	52,54
75	7,536	92,538	78,78
100	10,033	89,987	104,94
200	20,022	79,997	209,42
300	30,032	70,013	314,04
400	39,998	59,993	418,47
500	50,023	50,264	521,82

Ønsket	TEA-	MQ	Beregnet
konsentrasjon	stamløsning		konsentrasjon
(ppm N)	(g)	(g)	(ppm N)
10	1,019	99,007	10,16
25	2,508	97,506	25,00
50	5,002	95,059	49,84
75	7,511	92,507	74,88
100	10,003	90,004	99,73
200	20,031	80,022	199,61
300	29,995	70,009	299,06
400	40,178	60,002	399,88
500	49,994	50,009	498,45

Tabell 15: Tillaging av TEA-kalibreringsstandarder fra stamløsning (997,1 ppm N)

Tabell 16: Tillaging av glycinprøver fra stamløsning (995,2 ppm N)

Ønsket	Glycin	MQ	Beregnet
konsentrasjon	stamløsning		konsentrasjon
(ppm N)	(g)	(g)	(ppm N)
10	1,019	99,007	10,14
25	2,252	97,504	25,12
50	5,022	95,008	49,97
75	7,517	92,525	74,78
100	10,007	90,037	99,55
150	15,007	85,004	149,34
200	19,996	80,013	198,99
250	25,019	75,018	248,90
300	30,016	70,014	298,64
400	40,189	60,013	399,17
500	50,013	50,031	497,52

7.3 Vedlegg 3: Stamløsninger og kalibreringsstandarder for ulike aminer

Kjemikalie	Innveid	MQ	Beregnet
	kjemikalie		konsentrasjon
	(g)	(g)	(ppm N)
MEA	4,562	999,82	1045,96
TEA	10,620	1000,02	997,06
MMEA	6,122	1000,16	1141,83
DMMEA	6,430	1000,03	1010,39
DGA	7,526	1000,06	1002,67
AP	5,386	1000,13	1004,53
DEEA	8,364	1000,88	1000,57

Tabell 17: Spesifikasjoner for tillaging av stamløsninger til forsøk.

Tabell 18: Tillaging av MEA-kalibreringsstandarder fra stamløsning (1046,1 ppm N)

MEA-	MQ	Beregnet
stamløsning		konsentrasjon
(g)	(g)	(ppm N)
1,014	99,016	10,60
2,529	97,512	26,44
5,001	95,024	52,30
7,512	92,526	78,54
10,032	90,027	104,87
20,024	80,003	209,39
30,030	70,017	313,95
40,028	60,037	418,40
50,009	50,016	522,94

Tabell 19: Tillaging av TEA kalibreringsstandarder fra stamløsning (997,1 ppm N)

TEA-	MQ	Beregnet
stamløsning		konsentrasjon
(g)	(g)	(ppm N)
1,019	99,007	10,16
2,508	97,506	25,00
5,002	95,059	49,84
7,511	92,507	74,88
10,003	90,004	99,73
20,031	80,022	199,61
29,995	70,009	299,06
40,178	60,002	399,88
49,994	50,009	498,45

MMEA-	MQ	Beregnet
stamløsning		konsentrasjon
(g)	(g)	(ppm N)
1,037	99,008	11,84
2,497	97,531	28,50
5,005	95,023	57,13
7,521	92,519	85,84
10,032	90,005	114,51
20,039	80,020	228,68
30,016	70,032	342,57
40,026	60,024	456,80
50,055	50,006	571,19

Tabell 20: Tillaging av MMEA kalibreringsstandarder fra stamløsning (1141,8 ppm N)

Tabell 21: Tillaging av DMMEA kalibreringsstandarder fra stamløsning (1010,4 ppm N)

DMMEA-	MQ	Beregnet
stamløsning		konsentrasjon
(g)	(g)	(ppm N)
1,023	99,031	10,33
2,535	97,533	25,60
5,015	95,006	50,66
7,511	92,527	75,86
10,011	90,020	101,12
20,018	80,008	202,21
30,000	70,028	303,03
40,011	60,003	404,21
50,005	50,012	505,16

DGA-	MQ	Beregnet
stamløsning		konsentrasjon
(g)	(g)	(ppm N)
1,006	99,670	10,02
2,499	97,524	25,05
5,017	95,027	50,28
7,537	92,499	75,54
10,023	90,030	100,44
20,028	80,020	200,72
30,105	70,006	301,52
40,019	60,021	401,10
50,020	50,008	501,40

Tabell 22: Tillaging av DGA kalibreringsstandarder fra stamløsning (1002,7 ppm N)

Tabell 23: Tillaging av AP kalibreringsstandarder fra stamløsning (1004,5 ppm N)

AP-	MQ	Beregnet
Stamløsning		konsentrasjon
(g)	(g)	(ppm N)
1,035	99,002	10,39
2,527	97,526	25,37
5,011	95,040	50,31
7,521	94,875	73,78
10,019	90,000	100,62
20,010	81,158	198,68
30,031	70,013	301,54
40,016	60,006	401,88
50,026	51,297	495,96

Tabell 24: Tillaging av DEEA kalibreringsstandarder fra stamløsning (1000,6 ppm N)

DEEA-	MQ	Beregnet
stamløsning		konsentrasjon
(g)	(g)	(ppm N)
1,058	99,003	10,58
2,524	97,541	25,24
5,012	95,007	50,14
7,521	92,504	75,23
10,059	90,032	100,55
20,155	80,176	201,00
30,032	70,001	300,39
40,042	60,007	400,45
50,026	50,009	500,36

7.4 Vedlegg 4: Aminprøver

Dag	Degradert	MQ	Beregnet
	MEA, R1		konsentrasjon
	(g)	(g)	(ppm N)
0	0,072	40,023	109,13
10	0,072	40,023	72,00
17	0,071	40,006	50,10
21	0,071	40,022	42,73

Tabell 25: Tillaging av MEA-aminprøver fra degraderte aminløsninger, reaktor 1 (R1).

Tabell 26: Tillaging av MEA-aminprøver fra degraderte aminløsninger, reaktor 2 (R2).

Dag	Degradert	MQ	Beregnet
	MEA, R2		konsentrasjon
	(g)	(g)	(ppm N)
0	0,072	40,023	109,13
10	0,072	40,023	78,93
17	0,075	40,042	60,21
21	0,071	40,013	49,91

Tabell 27: Tillaging av MEA-aminprøver fra degraderte aminløsninger, reaktor 3 (R3).

Dag	Degradert MEA, R3	MQ	Beregnet konsentrasjon
	(g)	(g)	(ppm N)
0	0,072	40,023	109,13
17	0,071	40,038	63,13

Tabell 28: Tillaging av MEA-aminprøver fra degraderte aminløsninger, reaktor 4 (R4).

Dag	Degradert MEA R4	MQ	Beregnet konsentrasion
	(g)	(g)	(ppm N)
0	0,071	40,040	111,37
3	0,072	40,030	108,09
7	0,069	40,020	98,20
10	0,070	40,006	94,02
14	0,069	40,019	85,91
17	0,070	40,030	82,04
21	0,069	40,034	74,00

Dag	Degradert	MQ	Beregnet
	MEA, R5		konsentrasjon
	(g)	(g)	(ppm N)
0	0,071	40,040	111,37
3	0,070	40,033	102,77
7	0,068	40,002	91,74
10	0,070	40,015	88,00
14	0,069	40,025	75,81
17	0,069	40,020	69,46
21	0,068	40,013	59,72

Tabell 29: Tillaging av MEA-aminprøver fra degraderte aminløsninger, reaktor 5 (R5).

Tabell 30: Tillaging av TEA-aminprøver fra degraderte aminløsninger, reaktor 2 (R2).

Dag	Degradert	MQ	Beregnet
	TEA, R2		konsentrasjon
	(g)	(g)	(ppm N)
0	0,160	40,017	109,26
3	0,156	40,029	110,48
7	0,155	40,033	110,07
10	0,154	40,023	109,75
14	0,153	40,013	110,23
17	0,157	40,021	112,51
21	0,155	40,009	113,06

Tabell 31: Tillaging av TEA-aminprøver fra degraderte aminløsninger, reaktor 3 (R3).

Dag	Degradert	MQ	Beregnet
	TEA, R3		konsentrasjon
	(g)	(g)	(ppm N)
0	0,160	40,017	109,26
3	0,157	40,022	111,71
7	0,155	40,027	110,93
10	0,154	40,014	110,13
14	0,155	40,007	113,07
17	0,156	40,011	114,13
21	0,154	40,033	112,67

Dag	Degradert	MQ	Beregnet
	MMEA, R1		konsentrasjon
	(g)	(g)	(ppm N)
0	0,082	40,012	106,45
3	0,084	40,121	98,92
7	0,083	40,030	88,59
10	0,084	40,031	82,93
14	0,084	40,162	74,64
17	0,083	40,031	68,86
21	0,083	40,021	62,91

Tabell 32: Tillaging av MMEA-aminprøver fra degraderte aminløsninger, reaktor 1 (R1).

Tabell 33: Tillaging av MMEA-aminprøver fra degraderte aminløsninger, reaktor 2 (R2).

Dag	Degradert	MQ	Beregnet
	MMEA, R2		konsentrasjon
	(g)	(g)	(ppm N)
0	0,083	40,026	107,43
3	0,082	40,001	98,19
7	0,083	40,035	88,96
10	0,085	40,034	83,87
14	0,083	40,033	73,99
17	0,084	40,041	69,38
21	0,083	40,039	63,06

Tabell 34: Tillaging av MMEA-aminprøver fra degraderte aminløsninger, reaktor 3 (R3).

Dag	Degradert	MQ	Beregnet
	MMEA, R3		konsentrasjon
	(g)	(g)	(ppm N)
0	0,083	40,026	107,40
3	0,085	40,012	99,88
7	0,083	40,004	87,70
10	0,083	40,031	80,25
14	0,083	40,047	71,34
17	0,084	40,016	66,92
21	0,083	40,005	60,27

Dag	Degradert	MQ	Beregnet
	DEEA, R1		konsentrasjon
	(g)	(g)	(ppm N)
0	0,158	40,009	105,44
3	0,148	40,104	99,33
7	0,148	40,594	97,78
10	0,151	40,036	101,98
14	0,151	40,041	101,89
17	0,150	40,006	102,80
21	0,151	40,367	101,98

Tabell 35: Tillaging av DEEA-aminprøver fra degraderte aminløsninger, reaktor 1 (R1).

Tabell 36: Tillaging av DEEA-aminprøver fra degraderte aminløsninger, reaktor 2 (R2).

Dag	Degradert	MQ	Beregnet
	DEEA, R2		konsentrasjon
	(g)	(g)	(ppm N)
0	0,158	40,009	105,44
3	0,154	40,055	102,81
7	0,154	40,022	103,55
10	0,156	40,036	105,19
14	0,153	40,030	103,43
17	0,154	40,002	104,31
21	0,153	40,045	103,57

Tabell 37: Tillaging av AP-aminprøver fra degraderte aminløsninger, reaktor 1 (R1).

Dag	Degradert	MQ	Beregnet
	AP, R1		konsentrasjon
	(g)	(g)	(ppm N)
0	0,081	40,017	106,23
3	0,082	40,018	105,48
7	0,082	40,019	103,67
10	0,081	40,026	101,87
14	0,084	40,012	103,14
17	0,083	40,024	100,47
21	0,082	40,236	97,25

Dag	Degradert	MQ	Beregnet
	AP, R2		konsentrasjon
	(g)	(g)	(ppm N)
0	0,081	40,017	106,23
3	0,082	40,861	103,78
7	0,083	40,016	104,37
10	0,081	40,034	101,16
14	0,082	40,028	101,65
17	0,083	40,025	101,48
21	0,081	40,028	97,63

Tabell 38: Tillaging av AP-aminprøver fra degraderte aminløsninger, reaktor 2 (R2).

Tabell 39: Tillaging av DGA-aminprøver fra degraderte aminløsninger, reaktor 1 (R1).

Dag	Degradert	MQ	Beregnet
	DGA, R1		konsentrasjon
	(g)	(g)	(ppm N)
0	0,115	40,033	108,26
3	0,114	40,022	104,25
7	0,113	40,005	98,04
10	0,114	40,010	93,73
14	0,114	40,068	86,88
17	0,114	40,066	82,95
21	0,114	40,033	79,65

Tabell 40: Tillaging av DGA-aminprøver fra degraderte aminløsninger, reaktor 2 (R2).

Dag	Degradert	MQ	Beregnet
	DGA, R2		konsentrasjon
	(g)	(g)	(ppm N)
0	0,115	40,033	108,26
3	0,115	40,022	106,57
7	0,115	40,038	100,89
10	0,114	40,001	96,61
14	0,114	40,026	90,49
17	0,112	40,046	85,03
21	0,115	40,026	83,94

Dag	Degradert	MQ	Beregnet
	DGA, R3		konsentrasjon
	(g)	(g)	(ppm N)
0	0,115	40,033	108,26
3	0,114	40,022	105,39
7	0,113	40,020	99,74
10	0,113	40,011	95,44
14	0,113	40,119	90,33
17	0,113	40,030	85,60
21	0,115	40,020	84,19

Tabell 41: Tillaging av DGA-aminprøver fra degraderte aminløsninger, reaktor 3 (R3).

Tabell 42: Tillaging av DMMEA-aminprøver fra degraderte aminløsninger, reaktor 1 (R1).

Dag	Degradert	MQ	Beregnet
	DMMEA, R1		konsentrasjon
	(g)	(g)	(ppm N)
0	0,095	40,047	104,79
3	0,093	40,015	104,18
7	0,092	40,015	100,21
10	0,090	40,020	96,56
14	0,092	40,018	96,37
17	0,094	40,042	96,53
21	0,093	40,031	92,86

Tabell 43: Tillaging av DMMEA-aminprøver fra degraderte aminløsninger, reaktor 2 (R2).

Dag	Degradert	MQ	Beregnet
	DMMEA R2		konsentrasjon
	(g)	(g)	(ppm N)
0	0,095	40,047	104,79
3	0,093	40,021	104,24
7	0,092	40,001	100,38
10	0,091	40,039	98,56
14	0,092	40,024	97,15
17	0,091	40,013	94,36
21	0,093	40,022	94,60

Dag	Degradert	MQ	Beregnet
	DMMEA, R3		konsentrasjon
	(g)	(g)	(ppm N)
0	0,095	40,047	104,79
3	0,091	40,016	101,67
7	0,089	40,026	96,62
10	0,091	40,011	97,21
14	0,090	40,032	94,54
17	0,090	40,015	92,12
21	0,091	40,002	90,64

Tabell 44: Tillaging av DMMEA-aminprøver fra degraderte aminløsninger, reaktor 3 (R3).

7.5 Vedlegg 5: Kalibrering, reproduserbarhet, LOD og LOQ

Tabell 45: Beregnet konsentrasjon (ppm N) og gjennomsnittlig, målt areal for KNO₃kalibreringsstandarder.

Beregnet	Gjennomsnittlig,
konsentrasjon	målt
(ppm N)	areal
0,00	0,00
10,23	70,70
25,02	180,20
50,02	369,60
75,18	561,00
100,22	748,80
150,06	1127,00
200,15	1496,00
250,14	1872,00
300,09	2229,00
400,13	2952,00
500,06	3670,00

Tabell 46: KNO₃-kalibreringsstandarder analysert som ukjente prøver på KNO₃-kalibrering, med TN-deteksjonsmetode på Shimadzu TOC-L. (10-150 ppm N).

Beregnet kons. (ppm N)	10,23	25,02	50,02	75,18	100,22	150,06
Parallell 1, målt kons.	10,78	25,04	48,41	74,37	99,29	155,20
Parallell 2, målt kons.	10,50	25,34	49,87	73,81	100,50	151,80
Parallell 3, målt kons.	10,05	24,71	49,95	74,63	99,63	151,70
Parallell 4, målt kons.	9,15	24,06	49,84	73,93	98,31	149,70
Parallell 5, målt kons.	9,42	24,65	49,40	75,57	100,00	151,00
Parallell 6, målt kons.	9,59	24,96	49,63	74,05	100,30	149,80
Gjennomsnitt	9,92	24,79	49,52	74,39	99,67	151,53
Avvik (%)	3 %	1 %	1 %	1 %	1%	1 %
Abs. avvik (ppm N)	0,3	0,2	0,5	0,8	0,5	1,5

Tabell 47: KNO₃-kalibreringsstandarder analysert som ukjente prøver på KNO₃-kalibrering, med TN-deteksjonsmetode på Shimadzu TOC-L. (150-500 ppm N).

Beregnet kons. (ppm N)	150,06	200,15	250,14	300,09	400,13	500,06
Parallell 1, målt kons.	155,20	200,50	251,10	300,40	396,80	492,50
Parallell 2, målt kons.	151,80	200,50	251,80	301,50	397,20	494,40
Parallell 3, målt kons.	151,70	197,70	249,70	303,20	398,60	493,70
Parallell 4, målt kons.	149,70	198,60	249,40	299,50	400,50	499,10
Parallell 5, målt kons.	151,00	201,20	249,70	302,20	397,20	493,40
Parallell 6, målt kons.	149,80	200,20	250,50	298,90	404,20	491,10
Gjennomsnitt	151,53	199,78	250,37	300,95	399,08	494,03
Avvik (%)	1 %	0 %	0 %	0 %	0 %	1 %
Abs. avvik (ppm N)	1,5	0,4	0,2	0,9	1,0	6,0

Kjent konsentrasjon	10,23	25,02	50,02	75,18	100,22	150,06	200,15	250,14	300,09	400,13	500,06
Parallell 1, målt kons.	10,78	25,04	48,41	74,37	99,29	155,20	200,50	251,10	300,40	396,80	492,50
Parallell 2, målt kons.	10,50	25,34	49,87	73,81	100,50	151,80	200,50	251,80	301,50	397,20	494,40
Parallell 3, målt kons.	10,05	24,71	49,95	74,63	99,63	151,70	197,70	249,70	303,20	398,60	493,70
Parallell 4, målt kons.	9,15	24,06	49,84	73,93	98,31	149,70	198,60	249,40	299,50	400,50	499,10
Parallell 5, målt kons.	9,42	24,65	49,40	75,57	100,00	151,00	201,20	249,70	302,20	397,20	493,40
Parallell 6, målt kons.	9,59	24,96	49,63	74,05	100,30	149,80	200,20	250,50	298,90	404,20	491,10
Parallell 7, målt kons.	9,46	22,49	46,80	71,42	96,27	144,60	190,00	239,90	290,50	383,90	480,80
Parallell 8, målt kons.	9,38	23,10	47,11	70,62	96,85	143,70	190,60	239,90	292,00	379,20	475,80
Parallell 9, målt kons.	9,39	23,17	47,58	71,59	97,19	144,40	193,60	240,80	292,90	384,40	479,90
Parallell 10, målt kons.	10,15	22,86	47,68	72,65	94,51	143,00	189,20	236,40	281,30	381,00	479,90
Parallell 11, målt kons.	9,82	23,48	46,97	71,22	94,47	139,60	185,60	234,00	282,40	385,90	476,00
Parallell 12, målt kons.	9,09	23,26	47,48	71,68	94,68	143,30	187,80	232,80	276,20	372,70	477,60
Parallell 13, målt kons.	9,33	22,70	47,72	71,76	96,17	142,20	188,00	230,20	270,20	356,40	457,30
Parallell 14, målt kons.	9,36	23,27	47,35	72,12	96,27	139,20	186,60	233,70	271,80	357,70	452,50
Parallell 15, målt kons.	9,38	23,29	47,36	70,89	95,09	142,40	184,70	228,00	270,00	355,50	448,20
Parallell 16, målt kons.	9,44	23,78	48,21	72,92	97,22	143,20	194,40	223,20	268,10	351,40	457,10
Parallell 17, målt kons.	9,68	23,30	47,09	70,91	94,31	141,20	190,00	220,80	264,80	360,20	442,10
Parallell 18, målt kons.	9,54	23,98	46,97	70,37	94,38	139,20	194,90	226,70	265,50	358,20	444,80
Parallell 19, målt kons.		22,83	46,65	70,86	95,09	142,80	189,10	237,90	287,20	385,60	479,90
Parallell 20, målt kons.		22,77	45,95	71,15	95,96	141,30	188,20	239,10	288,00	384,00	480,10
Parallell 21, målt kons.		22,89	46,40	71,83	94,14	141,00	189,10	239,90	286,70	389,80	478,20
Gjennomsnitt	9,64	23,62	47,83	72,30	96,70	144,78	192,40	238,36	285,40	380,02	474,97
SD (ppm N)	0,4575	0,8633	1,2274	1,5191	2,1747	4,7307	5,4398	9,5046	13,2006	17,0781	17,6264
CV (%)	5 %	4 %	3 %	2 %	2 %	3 %	3 %	4 %	5 %	4 %	4 %

Tabell 48: Evaluering av reproduserbarhet på KNO3-prøver fra 10-500 ppm N.

Kjent konsentrasjon	10,66	26,39	52,54	78,78	104,94	209,42	314,04	418,47	521,82
Parallell 1, målt kons.	13,38	29,82	59,96	88,87	116,30	215,30	326,10	420,00	498,50
Parallell 2, målt kons.	12,93	29,63	59,75	88,20	116,90	223,20	326,90	419,90	499,20
Parallell 3, målt kons.	12,84	29,51	59,68	88,91	115,70	222,70	326,90	425,00	501,00
Parallell 4, målt kons.	12,70	30,65	56,64	83,82	116,60	219,50	314,20	422,50	496,20
Parallell 5, målt kons.	12,51	30,52	56,47	83,90	115,10	220,60	315,40	421,10	493,60
Parallell 6, målt kons.	12,57	30,40	56,55	84,71	115,50	220,10	314,30	408,20	500,20
Parallell 7, målt kons.	11,92	28,69	57,05	83,57	111,50	211,20	309,10	404,60	489,40
Parallell 8, målt kons.	11,71	28,60	56,43	83,58	110,70	210,20	310,60	406,10	491,90
Parallell 9, målt kons.	11,76	28,85	55,90	83,37	110,10	213,30	315,30	405,00	491,20
Gjennomsnitt	12,48	29,63	57,60	85,44	114,27	217,34	317,64	414,71	495,69
Standardavvik	0,5728	0,7928	1,6726	2,4544	2,7046	4,9389	7,0626	8,4803	4,2934
CV (%)	5 %	3 %	3 %	3 %	2 %	2 %	2 %	2 %	1 %

Tabell 49: Evaluering av reproduserbarhet på MEA-prøver fra 10-500 ppm N.

Kjent konsentrasjon	10,16	25,00	49,84	74,88	99,73	199,61	299,06	399,88	498,45
Parallell 1, målt kons.	10,68	25,08	48,74	71,83	93,31	182,20	262,10	356,90	431,00
Parallell 2, målt kons.	10,62	24,81	47,72	71,52	93,34	181,10	268,10	354,90	433,50
Parallell 3, målt kons.	10,46	24,72	48,18	71,59	93,87	180,90	268,90	352,80	439,50
Parallell 4, målt kons.	10,80	25,06	48,51	72,15	93,77	182,30	266,70	347,80	425,80
Parallell 5, målt kons.	10,71	24,81	47,80	71,31	93,54	180,90	267,60	345,80	424,70
Parallell 6, målt kons.	10,84	24,93	47,96	71,63	93,70	180,10	267,80	346,60	423,20
Parallell 7, målt kons.	10,52	24,84	52,90	77,92	101,90	179,20	258,80	374,40	422,10
Parallell 8, målt kons.	10,52	24,47	51,57	75,67	100,20	180,80	258,10	364,80	414,20
Parallell 9, målt kons.	10,48	24,36	52,15	77,11	101,80	177,80	260,60	373,00	420,60
Gjennomsnitt	10,63	24,79	49,50	73,41	96,16	180,59	264,30	357,44	426,07
Standardavvik	0,1403	0,2429	2,0796	2,6852	3,8895	1,4128	4,3549	10,9437	7,5551
CV (%)	1 %	1 %	4 %	4 %	4 %	1 %	2 %	3 %	2 %

Tabell 50: Evaluering av reproduserbarhet på TEA-prøver fra 10-500 ppm N.

Parallell	Konsentrasjon
	blankprøver
(n)	(ppm N)
1	1,5620
2	1,6600
3	1,3110
4	2,1600
5	1,5860
6	1,4370
7	1,6490
8	1,3180
xbi: middelverdi	
blank	1,5854
k: konfidensnivå	3,0000
SD: standardavvik	0,2697
LOD (ppm N)	2
LOQ (ppm N)	4

Tabell 51: Beregning av LOD og LOQ med 3 vaskesekvenser for MEA.

Tabell 52: Beregning av LOD og LOQ med 3 vaskesekvenser for TEA.

Parallell	Konsentrasjon
	blankprøver
(n)	(ppm N)
1	1,5280
2	1,3960
3	1,2150
4	1,0170
5	1,1080
6	1,0030
7	1,3800
8	2,0130
xbi: middelverdi	
blank	1,3325
k: konfidensnivå	3,0000
SD: standardavvik	0,3338
LOD (ppm N)	2
LOQ (ppm N)	5

Tabell 53: Beregnet konsentrasjon (ppm N) og gjennomsnittlig, målt areal for MEA - kalibreringsstandarder.

Beregnet konsentrasjon	Gjennomsnittlig målt
(ppm N)	areal
0,00	0,00
10,66	40,99
26,39	102,30
52,54	206,50
78,78	305,80
104,94	408,80
209,42	815,00
209,42	1573,00
314,04	2336,00
418,47	3059,00

Tabell 54: MEA-kalibreringsstandarder analysert som ukjente prøver på MEA-kalibrering, med TN-deteksjonsmetode på Shimadzu TOC-L. (10-200 ppm N)

Beregnet konsentrasjon (ppm N)	10,66	26,39	52,54	78,78	104,94	209,42
Parallell 1, målt kons.	10,81	27,36	54,43	81,66	107,10	206,20
Parallell 2, målt kons.	10,70	26,67	54,13	80,49	105,60	204,90
Parallell 3, målt kons.	10,66	26,59	53,35	80,24	107,20	206,30
Parallell 4, målt kons.	10,69	27,02	53,84	81,38	106,50	203,20
Parallell 5, målt kons.	10,63	26,82	53,90	80,51	105,30	204,50
Parallell 6, målt kons.	10,73	26,91	53,81	80,08	105,20	205,50
Gjennomsnitt	10,70	26,90	53,91	80,73	106,15	205,10
Avvik (%)	0 %	2 %	3 %	2 %	1 %	2 %
Abs. avvik (ppm N)	0,0	0,5	1,4	1,9	1,2	4,3

Tabell 55: MEA-kalibreringsstandarder analysert som ukjente prøver på MEA-kalibrering,med TN-deteksjonsmetode på Shimadzu TOC-L. (200-500 ppm N)

Beregnet konsentrasjon (ppm N)	209,42	314,04	418,47	521,82
Parallell 1, målt kons.	206,20	338,20	440,20	528,20
Parallell 2, målt kons.	204,90	338,50	440,00	534,30
Parallell 3, målt kons.	206,30	337,90	437,30	529,60
Parallell 4, målt kons.	203,20	333,60	428,60	528,90
Parallell 5, målt kons.	204,50	334,20	429,40	530,50
Parallell 6, målt kons.	205,50	335,00	435,10	528,50
Gjennomsnitt	205,10	336,23	435,10	530,00
Avvik (%)	2 %	7 %	4 %	2 %
Abs. avvik (ppm N)	4,3	22,2	16,6	8,2

7.6 Vedlegg 6: Kalibrering med aminer

Tabell 56: Beregnet konsentrasjon (ppm N) og gjennomsnittlig, målt areal for MEA -

kalibreringsstandarder.

Beregnet	Gjennomsnittlig
konsentrasjon	målt
(ppm N)	areal
0,00	0,00
10,60	81,81
26,44	203,70
52,30	411,60
78,54	610,20
104,87	811,70
209,39	1569,00
209,39	1560,00
313,95	2271,00
418,40	2944,00
522,94	3608,00

Tabell 57: Beregnet konsentrasjon (ppm N) og gjennomsnittlig, målt areal for TEA -

kalibreringsstandarder.

Beregnet	Gjennomsnittlig		
konsentrasjon	målt		
(ppm N)	areal		
0,00	0,00		
10,16	75,82		
25,00	185,50		
49,84	367,40		
74,88	547,70		
99,73	721,30		
199,61	1393,00		
199,61	509,00		
299,06	762,90		
399,88	1004,00		
498,45	1233,00		

Tabell 58: Beregnet konsentrasjon (ppm N) og gjennomsnittlig, målt areal for MMEA - kalibreringsstandarder.

Beregnet	Gjennomsnittlig
konsentrasjon	målt
(ppm N)	areal
0,00	0,95
11,69	46,55
29,17	115,90
57,33	233,40
86,70	350,80
114,50	464,50
228,50	918,20
228,50	619,70
342,40	918,70
456,60	1232,00
571,00	1508,00

The end of the second as for (pp in 1) of good internet and an early of Diministra	Tabell 59:	Beregnet	konsentrasjon	(ppm N)) og	gjennomsnittlig,	målt area	l for	DMMEA -
--	------------	----------	---------------	---------	------	------------------	-----------	-------	---------

kalibreringsstandarder.

Beregnet	Gjennomsnittlig		
konsentrasjon	målt		
(ppm N)	areal		
0,00	0,00		
10,33	80,41		
25,60	205,00		
50,66	406,80		
75,86	607,40		
101,10	804,20		
202,20	1589,00		
202,20	543,30		
303,00	821,40		
404,20	1068,00		
505,20	1345,00		

Tabell 60: Beregnet konsentrasjon (ppm N) og gjennomsnittlig, målt areal for DGA - kalibreringsstandarder.

Beregnet	Gjennomsnittlig
konsentrasjon	målt
(ppm N)	areal
0	0
10,02	76,66
25,05	193,00
50,28	387,80
75,54	579,50
100,44	756,60
200,72	1452,00
200,72	1455,00
301,52	2096,00
401,10	2731,00
501,40	3351,00

Tabell 61: Beregnet konsentrasjon (ppm N) og gjennomsnittlig, målt areal for AP -

kalibreringsstandarder.

Kjent	Gjennomsnittlig		
konsentrasjon	målt		
(ppm N)	areal		
0,00	0		
10,39	80,62		
25,37	200,60		
50,31	397,30		
73,78	575,10		
100,62	781,90		
198,68	1480,00		
198,68	1481,00		
301,54	2162,00		
401,88	2766,00		
495,96	3355,00		
Tabell 62: Beregnet konsentrasjon (ppm N) og gjennomsnittlig, målt areal for DEEA - kalibreringsstandarder.

Beregnet	Gjennomsnittlig
konsentrasjon	målt
(ppm N)	areal
0,00	0,00
10,58	107,90
25,24	201,20
50,14	492,00
75,23	641,90
100,55	907,90
201,00	1569,00
201,00	1562,00
300,39	2272,00
400,45	2979,00
500,36	3651,00

7.7 Vedlegg 7: Titreringsresultat, analyseresultat fra Shimadzu TOC-L og degraderingsprodukt.

Dag	Titrering	TOC-L	Differanse
	mol N/kg	mol N/kg	mol N/kg
0	4,3390	4,6695	0,3306
10	2,8625	3,9376	1,0752
17	2,0190	3,5778	1,5589
21	1,7227	3,3998	1,6771

Tabell 63: Resultater fra titrering og Shimadzu TOC-L (mol N/kg), MEA, R1.

Tabell 64: Resultater fra titrering og Shimadzu TOC-L (mol N/kg), MEA, R2.

Dag	Titrering	TOC-L	Differanse
	mol N/kg	mol N/kg	mol N/kg
0	4,3390	4,6695	0,3306
10	3,1380	4,0740	0,9360
17	2,2994	3,4935	1,1941
21	2,0118	3,6014	1,5896

Tabell 65: Resultater fra titrering og Shimadzu TOC-L (mol N/kg), MEA, R3.

Dag	Titrering mol N/kg	TOC-L mol N/kg	Differanse mol N/kg
0	4,3390	4,6695	0,3306
21	2,2091	3,7275	1,5184

Tabell 66: R	esultater fra	titrering og	Shimadzu	TOC-L	(mol N/kg),	MEA, R4
--------------	---------------	--------------	----------	-------	-------------	---------

Dag	Titrering	TOC-L	Differanse
	mol N/kg	mol N/kg	mol N/kg
0	4,4919	4,7743	0,2824
3	4,2982	4,5073	0,2091
7	4,0734	4,6740	0,6006
10	3,8432	4,5563	0,7131
14	3,5634	4,4934	0,9300
17	3,3552	4,3680	1,0128
21	3,0704	4,3271	1,2567

Dag	Titrering	TOC-L	Differanse
	mol N/kg	mol N/kg	mol N/kg
0	4,4919	4,7743	0,2824
3	4,2036	4,6015	0,3979
7	3,8597	4,5676	0,7079
10	3,5977	4,3226	0,7249
14	3,1449	4,1643	1,0194
17	2,8813	4,0667	1,1854
21	2,513	3,9123	1,3993

Tabell 67: Resultater fra titrering og Shimadzu TOC-L (mol N/kg), MEA, R5.

Tabell 68: Resultater fra titrering og Shimadzu TOC-L (mol N/kg), TEA, R2.

Dag	Titrering	TOC-L	Differanse
	mol N/kg	mol N/kg	mol N/kg
0	1,9588	2,04434	0,0856
3	2,0318	2,11220	0,0804
7	2,0375	2,15838	0,1209
10	2,0443	2,16869	0,1244
14	2,0661	2,18384	0,1178
17	2,0557	2,17480	0,1191
21	2,0916	2,21845	0,1269

Tabell 69: Resultater fra titrering og Shimadzu TOC-L (mol N/kg), TEA, R3.

Dag	Titrering	TOC-L	Differanse
	mol N/kg	mol N/kg	mol N/kg
0	1,9588	2,0443	0,0855
3	2,0410	2,1463	0,1053
7	2,0531	2,1503	0,0972
10	2,0508	2,1769	0,1261
14	2,0916	2,1844	0,0928
17	2,0980	2,1940	0,0960
21	2,0991	2,2325	0,1334

Dag	Titrering	TOC-L	Differanse
	mol N/kg	mol N/kg	mol N/kg
0	3,7161	3,7945	0,0785
3	3,3803	3,6786	0,2983
7	3,0569	3,5808	0,5240
10	2,8276	3,4767	0,6491
14	2,5533	3,3492	0,7959
17	2,3760	3,2766	0,9006
21	2,1700	3,1854	1,0154

Tabell 70: Resultater fra titrering og Shimadzu TOC-L (mol N/kg), MMEA, R1.

Tabell 71: Resultater fra titrering og Shimadzu TOC-L (mol N/kg), MMEA, R2.

Dag	Titrering	TOC-L	Differanse
	mol N/kg	mol N/kg	mol N/kg
0	3,7064	3,7699	0,0635
3	3,4268	3,7457	0,3189
7	3,0697	3,5882	0,5185
10	2,8261	3,4287	0,6027
14	2,5531	3,3893	0,8362
17	2,3661	3,2804	0,9144
21	2,1763	3,2206	1,0443

Tabell 72: Resultater fra titrering og Shimadzu TOC-L (mol N/kg), MMEA, R3.

Dag	Titrering	TOC-L	Differanse
	mol N/kg	mol N/kg	mol N/kg
0	3,7053	3,7699	0,0646
3	3,3638	3,6592	0,2954
7	3,0240	3,5809	0,5570
10	2,7690	3,4960	0,7270
14	2,4625	3,3300	0,8676
17	2,2808	3,2044	0,9236
21	2,0783	3,2083	1,1300

Dag	Titrering	TOC-L	Differanse
	mol N/kg	mol N/kg	mol N/kg
0	3,1614	3,3064	0,1450
3	3,2077	3,2982	0,0905
7	3,1188	3,2182	0,0994
10	3,0723	3,2184	0,1461
14	2,9998	3,1276	0,1278
17	2,9425	3,0588	0,1163
21	2,8602	3,0226	0,1624

Tabell 73: Resultater fra titrering og Shimadzu TOC-L (mol N/kg), DMMEA, R1.

Tabell 74: Resultater fra titrering og Shimadzu TOC-L (mol N/kg), DMMEA, R2.

Dag	Titrering	TOC-L	Differanse
	mol N/kg	mol N/kg	mol N/kg
0	3,1614	3,3064	0,1450
3	3,2101	3,3172	0,1072
7	3,1230	3,2824	0,1594
10	3,1031	3,2813	0,1782
14	3,0244	3,1909	0,1665
17	2,9689	3,1631	0,1942
21	2,9133	3,0528	0,1395

Tabell 75: Resultater fra titrering og Shimadzu TOC-L (mol N/kg), DMMEA, R3.

Dag	Titrering	TOC-L	Differanse
	mol N/kg	mol N/kg	mol N/kg
0	3,1614	3,3064	0,1450
3	3,1992	3,3269	0,1277
7	3,1093	3,2511	0,1418
10	3,0585	3,1695	0,1111
14	3,0090	3,1328	0,1238
17	2,9309	3,1067	0,1758
21	2,8511	3,0332	0,1822

Dag	Titrering TOC-L		Differanse
	mol N/kg	mol N/kg	mol N/kg
0	2,6983	2,8818	0,1835
3	2,6205	2,8333	0,2129
7	2,4850	2,7709	0,2860
10	2,3554	2,7051	0,3497
14	2,1864	2,6040	0,4176
17	2,0873	2,5204	0,4331
21	2,0027	2,4698	0,4671

Tabell 76: Resultater fra titrering og Shimadzu TOC-L (mol N/kg), DGA, R1.

Tabell 77: Resultater fra titrering og Shimadzu TOC-L (mol N/kg), DGA, R2.

Dag	Titrering TOC-L		Differanse
	mol N/kg	mol N/kg	mol N/kg
0	2,6983	2,8798	0,1816
3	2,6555	2,8092	0,1537
7	2,5149	2,7141	0,1993
10	2,4271	2,7027	0,2756
14	2,2747	2,6149	0,3402
17	2,1766	2,5892	0,4126
21	2,0918	2,4780	0,3862

Tabell 78: Resultater fra titrering og Shimadzu TOC-L (mol N/kg), DGA, R3.

Dag	Titrering TOC-L		Differanse
	mol N/kg	mol N/kg	mol N/kg
0	2,6983	2,8798	0,1816
3	2,6491	2,8082	0,1591
7	2,5292	2,7527	0,2235
10	2,4195	2,6715	0,2520
14	2,2962	2,6065	0,3103
17	2,1710	2,5564	0,3854
21	2,0978	2,4280	0,3302

Dag	Titrering TOC-L		Differanse	
	mol N/kg	mol N/kg	mol N/kg	
0	3,7546	3,9927	0,1114	
3	3,6829	3,8660	0,1298	
7	3,6195	3,8127	0,2133	
10	3,6014	3,8327	0,0901	
14	3,5149	3,6914	0,2335	
17	3,4662	3,7483	0,2997	
21	3,4138	3,7659	3,4138	

Tabell 79: Resultater fra titrering og Shimadzu TOC-L (mol N/kg), AP, R1.

Tabell 80: Resultater fra titrering og Shimadzu TOC-L (mol N/kg), AP, R2.

Dag	Titrering TOC-L		Differanse
	mol N/kg	mol N/kg	mol N/kg
0	3,7546	3,9927	0,2381
3	3,6996	3,8524	0,1528
7	3,5999	3,8210	0,2211
10	3,5769	3,8194	0,2425
14	3,5497	3,7866	0,2369
17	3,5011	3,7588	0,2577
21	3,4516	3,8216	0,3700

Tabell 81: Resultater fra titrering og Shimadzu TOC-L (mol N/kg), DEEA, R1.

Dag	Titrering TOC-L		Differanse
	mol N/kg	mol N/kg	mol N/kg
0	1,9138	2,0188	0,1051
3	1,9288	1,9918	0,0631
7	1,9217	1,9789	0,0573
10	1,9378	1,9995	0,0617
14	1,9363	1,9988	0,0625
17	1,9648	2,0302	0,0654
21	1,9538	2,0265	0,0727

Dag	Titrering TOC-L		Differanse	
	mol N/kg	mol N/kg	mol N/kg	
0	1,9138	2,0188	0,1051	
3	1,9166	1,9923	0,0758	
7	1,9286	1,9957	0,0671	
10	1,9350	1,9925	0,0575	
14	1,9393	2,0223	0,0830	
17	1,9418	2,0180	0,0762	
21	1,9428	2,0183	0,0756	

Tabell 82: Resultater fra titrering og Shimadzu TOC-L (mol N/kg), DEEA, R2.

Tabell 83: Gjennomsnittsverdi av titreringsresultat og målte verdier fra Shimadzu TOC-L for MEA, fra R1, R2 og R3, differanse mellom disse og mengde nitrogen (%) som er blitt til degraderingsprodukt.

Dag	Titrering	TOC-L	Differanse	Mengde
				degraderings-
	mol N/kg	mol N/kg	mol N/kg	produkt (%)
0	4,3390	4,6695	0,3306	
10	3,1207	4,0058	0,8851	24.0/
17	2,2882	3,5356	1,2475	34 %
21	1,9812	3,5762	1,5950	

Tabell 84: Gjennomsnittsverdi av titreringsresultat og målte verdier fra Shimadzu TOC-L for MEA, fra R4 og R5, differanse mellom disse og mengde nitrogen (%) som er blitt til degraderingsprodukt.

Dag	Titrering	TOC-L	Differanse	Mengde
				degraderings-
	mol N/kg	mol N/kg	mol N/kg	produkt (%)
0	4,4919	4,7743	0,2824	
3	4,2509	4,5544	0,3035	
7	3,96655	4,6208	0,6542	
10	3,72045	4,4394	0,7190	28 %
14	3,35415	4,3289	0,9747	
17	3,11825	4,2174	1,0991	
21	2,7917	4,1197	1,3280	

Tabell 85: Gjennomsnittsverdi av titreringsresultat og målte verdier fra Shimadzu TOC-L for TEA, fra R2 og R3, differanse mellom disse og mengde nitrogen (%) som er blitt til degraderingsprodukt.

Dag	Titrering	TOC-L	Differanse	Mengde
				degraderings-
	mol N/kg	mol N/kg	mol N/kg	produkt (%)
0	1,9588	2,0443	0,0856	
3	2,0364	2,1292	0,0928	
7	2,0453	2,1543	0,1091	
10	2,0476	2,1728	0,1252	6 %
14	2,0788	2,1841	0,1053	
17	2,0768	2,1844	0,1076	
21	2,0954	2,2255	0,1301	

Tabell 86: Gjennomsnittsverdi av titreringsresultat og målte verdier fra Shimadzu TOC-L for MMEA, fra R1, R2 og R3, differanse mellom disse og mengde nitrogen (%) som er blitt til degraderingsprodukt.

Dag	Titrering	TOC-L	Differanse	Mengde
				degraderings-
	mol N/kg	mol N/kg	mol N/kg	produkt (%)
0	3,7092	3,7781	0,0689	
3	3,3903	3,6945	0,3042	
7	3,0502	3,5833	0,5332	
10	2,8076	3,4671	0,6596	28 %
14	2,5229	3,3561	0,8332	
17	2,3410	3,2538	0,9129	
21	2,1415	3,2048	1,0632	

Tabell 87: Gjennomsnittsverdi av titreringsresultat og målte verdier fra Shimadzu TOC-L for DMMEA, fra R1, R2 og R3, differanse mellom disse og mengde nitrogen (%) som er blitt til degraderingsprodukt.

Dag	Titrering	TOC-L	Differanse	Mengde
				degraderings-
	mol N/kg	mol N/kg	mol N/kg	produkt (%)
0	3,1614	3,3064	0,1450	
3	3,2057	3,3141	0,1085	
7	3,1170	3,2506	0,1336	
10	3,0779	3,2231	0,1451	5 %
14	3,0110	3,1504	0,1394	
17	2,9474	3,1095	0,1621	
21	2,8748	3,0362	0,1614	

Tabell 88: Gjennomsnittsverdi av titreringsresultat og målte verdier fra Shimadzu TOC-L for DGA, fra R1, R2 og R3, differanse mellom disse og mengde nitrogen (%) som er blitt til degraderingsprodukt.

Dag	Titrering	TOC-L	Differanse	Mengde
				degraderings-
	mol N/kg	mol N/kg	mol N/kg	produkt (%)
0	2,6983	2,8805	0,1822	
3	2,6417	2,8169	0,1752	
7	2,5097	2,7459	0,2363	
10	2,4007	2,6931	0,2924	14 %
14	2,2524	2,6085	0,3561	
17	2,1450	2,5553	0,4104	
21	2,0641	2,4586	0,3945	

Tabell 89: Gjennomsnittsverdi av titreringsresultat og målte verdier fra Shimadzu TOC-L for AP, fra R1 og R2, differanse mellom disse og mengde nitrogen (%) som er blitt til degraderingsprodukt.

Dag	Titrering	TOC-L	Differanse	Mengde
				degraderings-
	mol N/kg	mol N/kg	mol N/kg	produkt (%)
0	3,7546	3,9927	0,2381	
3	3,6912	3,8592	0,1680	
7	3,6097	3,8168	0,2072	
10	3,5891	3,8260	0,2369	9 %
14	3,5323	3,7390	0,2068	
17	3,4836	3,7535	0,2699	
21	3,4327	3,7938	0,3611	

Tabell 90: Gjennomsnittsverdi av titreringsresultat og målte verdier fra Shimadzu TOC-L for DEEA, fra R1 og R2, differanse mellom disse og mengde nitrogen (%) som er blitt til degraderingsprodukt.

Dag	Titrering	TOC-L	Differanse	Mengde
				degraderings-
	mol N/kg	mol N/kg	mol N/kg	produkt (%)
0	1,9138	2,0188	0,1051	
3	1,9227	1,9921	0,0694	
7	1,9251	1,9873	0,0622	
10	1,9364	1,9960	0,0596	4 %
14	1,9378	2,0105	0,0727	
17	1,9533	2,0241	0,0708	
21	1,9483	2,0224	0,0741	

7.8 Vedlegg 8: Analyseresultat av kontroller, med angitt % avvik

Beregnet konsentrasjon (ppm N) i tabell 91-97 er hentet fra tabell 56-62 i vedlegg 6.

Tabell 91: Avvik mellom beregnet og gjennomsnittlig målt konsentrasjon (3 paralleller) for MEA kalibreringsstandarder.

Beregnet konsentrasjon	Målt konsentrasjon	Avvik	Absolutt avvik
(ppm N)	(ppm N)	(%)	(ppm N)
52,30	54,68	5 %	2,38
78,54	81,28	3 %	2,74
104,87	108,60	4 %	3,73
209,39	208,20	1 %	1,19

Tabell 92: Avvik mellom beregnet og gjennomsnittlig målt konsentrasjon (3 paralleller) for TEA kalibreringsstandarder

Beregnet	Målt	Avvik	Absolutt
konsentrasjon	konsentrasjon		avvik
(ppm N)	(ppm N)	(%)	(ppm N)
49,84	52,42	5 %	2,58
74,88	77,84	4 %	2,96
99,73	104,10	4 %	4,37
199,60	199,10	0 %	0,50

Tabell 93: Avvik mellom beregnet og gjennomsnittlig målt konsentrasjon (3 paralleller) for MMEA kalibreringsstandarder.

Beregnet	Målt	Avvik	Absolutt
konsentrasjon	konsentrasjon		avvik
(ppm N)	(ppm N)	(%)	(ppm N)
57,33	58,90	3 %	1,57
86,70	88,89	3 %	2,19
114,50	118,70	4 %	4,20
228,50	232,70	2 %	4,20

Tabell 94: Avvik mellom beregnet og gjennomsnittlig målt konsentrasjon (3 paralleller) for DMMEA kalibreringsstandarder.

Beregnet konsentrasjon (ppm N)	Målt konsentrasjon (ppm N)	Avvik (%)	Absolutt avvik (ppm N)
50,66	51,11	1 %	0,45
75,86	76,42	1 %	0,56
101,10	100,80	0 %	0,30
202,20	197,20	2 %	5,00

Tabell 95: Avvik mellom beregnet og gjennomsnittlig målt konsentrasjon (3 paralleller) for

DGA kalibreringsstandarder.

Beregnet	Målt	Avvik	Absolutt
konsentrasjon	konsentrasjon		avvik
(ppm N)	(ppm N)	(%)	(ppm N)
50,28	53,67	7 %	3,39
75,54	80,13	6 %	4,59
100,44	105,10	5 %	4,66
200,72	202,50	1 %	1,78

Tabell 96: Avvik mellom beregnet og gjennomsnittlig målt konsentrasjon (3 paralleller) for

AD Letter i ser en letter i ser en

Beregnet konsentrasjon	Målt konsentrasjon	Avvik	Absolutt avvik
(ppm N)	(ppm N)	(%)	(ppm N)
50,31	52,93	5 %	2,62
73,78	77,26	5 %	3,48
100,62	104,40	4 %	3,78
198,68	198,80	0 %	0,12

AP kalibreringsstandarder.

Tabell 97: Avvik mellom beregnet og gjennomsnittlig målt konsentrasjon (3 paralleller) for

DEEA kalibreringsstandarder

Beregnet konsentrasjon	Målt konsentrasjon	Avvik	Absolutt avvik
(ppm N)	(ppm N)	(%)	(ppm N)
50,14	57,86	15 %	7,72
75,23	79,42	6 %	4,19
100,55	110,50	10 %	9,95

