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ABSTRACT

We consider proximity-effects in two superconducting hybrid structures. The
first system consists of a single homogeneous ferromagnet proximity-coupled
to a superconducting layer, where an intermediate thin-film heavy normal-metal
enhances the interfacial Rashba spin-orbit interaction. We demonstrate a reori-
entation of the favored magnetization direction driven by the superconducting
phase transition. Depending on the intrinsic anisotropy of the ferromagnet, either
a reorientation from in-plane to out-of-plane or a π/4 in-plane rotation is possi-
ble. Computation of the superconducting critical temperature in the ballistic limit
shows a dependence on the in-plane magnetization direction, in contrast to previ-
ous diffusive limit results. The second system consists of a single heavy normal-
metal with Rashba spin-orbit coupling, proximity-coupled to a superconducting
layer. We predict a suppression of the superconducting critical temperature for
in-plane spin-orbit fields, that depends on the in-plane orientation. The main the-
oretical framework for our numerical treatment is the ballistic-limit tight-binding
lattice Bogoliubov-de Gennes framework. We also use a Bogoliubov-de Gennes
continuum model for obtaining analytical expressions for the singlet and triplet
retarded anomalous Green’s functions of our second system.

i

[May 14, 2019 at 13:55 – classicthesis ]



[May 14, 2019 at 13:55 – classicthesis ]



SAMMENDRAG

Vi undersøker to superledende hybridstrukturer og ser på virkningen av å kom-
binere ulike materialer. Det første systemet består av en enkelt homogen ferro-
magnet koblet til en superleder, hvor et tynt lag av tungt normalmetall forsterker
Rashba spin-bane-koblingen i grenseskiktet. Vi finner en retningsendring i mag-
netiseringen drevet av den superledende faseovergangen.Avhengig av den iboende
anisotropien til ferromagneten vil vi få en endring i den foretrukne magnetiser-
ingsretningen enten fra i planet til ut av planet eller en π/4 rotasjon i planet.
Beregninger i den ballistiske grensen viser at den kritiske temperaturen varierer
under rotasjon av magnetiseringsretingen i planet, i motsetning til invariansen
funnet i den diffusive grensen. Det andre systemet består av en superleder og et
enkelt tungt normalmetall med Rashba spinn-bane-kobling. Den kritiske temper-
aturen til den superledende hybridstrukturen er lavere for spinn-bane-felt i planet
enn ut av planet, og den er også avhengig av retningen i planet. Hovedrammever-
ket brukt i våre numeriske beregninger er en Bogoliubov-de Gennes gittermodell
for ballistiske materialer hvor det antas at elektronene er tett knyttet til gitter-
punktene. Vi introduserer også en Bogoliubov-de Gennes kontinuumsmodell for
å kunne utlede analytiske uttrykk for de retarderte, anomale Greensfunksjonene
som beskriver singlett- og triplettamplitudene i systemet bestående av en su-
perleder og et tungt normalmetall.

iii
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USEFUL IDENT IT I ES AND NOTAT ION

In this thesis, the mathematical notation will mostly follow the usual conventions
in physics. We write unit vectors with a hat as v̂. Other vectors are written in a
bold font as v. Scalars and matrices are written in a normal font. We will also
use a hat for the momentum operator in the n direction, p̂n = −i∂n, while the
momentum introduced by the spatial Fourier transform is written without a hat
as pn. The partial derivative with respect to n is sometimes written ∂n ≡ ∂/∂n
for brevity of notation. We use † for the hermitian conjugate, ∗ for the complex
conjugate and T for the transpose of a matrix or vector. Commutators are written
with square brackets as [A, B] ≡ AB − BA. Anticommutators are written with
curly brackets as {A, B} ≡ AB + BA. We will also use the Kroenecker-δ

δi, j ≡


1, if i = j

0, if i , j,
(0.1)

as well as the Dirac δ-function δ(x − x0) defined by∫ ∞

−∞
dx f (x)δ(x − x0) = f (x0). (0.2)

The Heaviside step function is defined as

θ(x − x0) ≡


1, if x > x0

1
2 , if x = x0

0, if x < x0,

(0.3)

or in the integral representation as

θ(t − t0) ≡ −
1

2πi

∫ ∞

−∞
dω

1
ω + iδ+

e−iω(t−t0), (0.4)

where δ+ → 0+.

The Pauli matrices spanning spin space are defined as

σx ≡
(
0 1
1 0

)
, σy ≡

(
0 −i

i 0

)
, σz ≡

(
1 0
0 −1

)
. (0.5)

ix
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x abbreviations

The vector of Pauli matrices is written as σ ≡ σx x̂ + σy ŷ + σz ẑ, where x̂, ŷ
and ẑ are the unit vectors along the Cartesian axes. The Pauli matrices spanning
Nambu (particle-hole) space are defined as

τ1 ≡
(
0 1
1 0

)
, τ2 ≡

(
0 −i

i 0

)
, τ3 ≡

(
1 0
0 −1

)
. (0.6)

The identity matrices in spin and Nambu space respectively are defined as

σ0 ≡
(
1 0
0 1

)
, τ0 ≡

(
1 0
0 1

)
. (0.7)

From the identity matrix and the Pauli matrices in Nambu and spin space, we
construct 4 × 4 matrices given by the Kronecker product τi ⊗ σj ≡ τ̂iσ̂j , where
i = {0, 1, 2, 3} and j = {0, x, y, z}. Note that we write the Kronecker product
τ̂iσ̂j with hats to avoid using identical notation to the matrix multiplication τiσj

resulting in a 2 × 2 matrix. We also define τ± = (τ1 ± iτ2)/2 in order to simplify
the notation.
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ABBREV IAT IONS

BCS Bardeen-Cooper-Schrieffer

BdG Bogoliubov-de Gennes

F ferromagnet

HM heavy normal-metal with Rashba spin-orbit coupling

IP in-plane with respect to the interface

N normal-metal (without spin-orbit coupling)

OOP out-of-plane with respect to the interface

S superconductor
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1
I NTRODUCT ION

1.1 background and motivation

In the last years, research within the field of superconducting spintronics has
focused on combining superconducting and magnetic materials into hybrid struc-
tures. When combining magnetic materials with conventional superconductors,
novel phases arise from proximity effects not found in individual materials [1].
Conventional superconductivity is in itself an old field of research, as it was first
discovered in 1911 [2, 3] and thoroughly described by the microscopic theories
of superconductivity by Bardeen, Cooper and Schrieffer in 1957 [4], Bogoli-
ubov in 1958 [5] and Gor’kov in 1958-59 [6, 7]. In the conventional Bardeen-
Cooper-Schrieffer (BCS) description of superconductivity, the electrons inside
the superconductor (S) form Cooper pairs bound together by an attractive poten-
tial. In conventional superconductors, Cooper pairs exists as spin-singlet pairs,
(↑↓ − ↓↑). Due to the opposite spin of the two electrons, the pair is destroyed
when it enters a ferromagnet (F) as the electrons quickly lose their coherence
due to the magnetic exchange field [8, 9]. It is therefore clear that a spin-singlet
Cooper pair makes for a poor candidate for long-range Cooper pair penetration
into ferromagnetic materials.

The early research on proximity effects in superconducting hybrid structures,
done by de Gennes [10, 11] and byWerthamer [12, 13] in the 1960’s, investigated
the coherence of electrons and holes in thin normal-metal (N) films due to the
penetration of Cooper pairs. A phenomenon closely related to the proximity
effect, Andreev reflection, was discovered by Andreev in 1964 [14] and by de
Gennes and Saint-Jaimes in 1963-64 [15]. An electron with an energy ε relative
to the Fermi energy, but below the superconducting gap, cannot be transmitted
from a normal-metal into a superconductor in the form of a single electron.
Instead, a quasi-particle state is transmitted. This demands the transmission
of two opposite-spin electrons, and therefore an electron with opposite-spin at
energy −ε relative to the Fermi energy must disappear at the normal-metal side

1
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2 introduction

of the interface. This is equivalent to the Andreev reflection of a hole with the
opposite spin, approximately opposite momentum and energy ε relative to the
Fermi energy [9, 16]. The coherence length of the electron and hole inside the
normal-metal region describes the penetration depth of the singlet Cooper pairs
into the normal-metal.

Due to the pair-breaking inside ferromagnetic materials, it may be seen as
counter-intuitive that replacing the normal-metal with ferromagnetic (F) films
can increase the Cooper pair penetration depth. Interestingly, the spin-splitting
of the energy bands of a ferromagnet leads to a transformation of spin-singlet
Cooper pairs into spin-zero triplet Cooper pairs (↑↓ + ↓↑) at the interface between
a superconductor and a ferromagnet. These have a short penetration depth into
the ferromagnetic region. However, two misoriented ferromagnets breaking spin-
rotational symmetry can transform opposite-spin triplets into equal-spin triplets,
(↑↑) and (↓↓) [9]. Due to their equally directed spins along the magnetization
direction, these Cooper pairs maintain coherence longer and are instead able to
survive for a longer distance inside the ferromagnet. The density of equal-spin
triplets in the system depends on the relative orientation of the ferromagnets [8,
9]. This has been demonstrated experimentally (see for instance Refs. [17–21]) by
showing a variation of the superconducting critical temperature Tc in a F1/S/F2
or F1/F2/S system when changing the relative magnetization of the F1 and F2
layers. This variation is attributed to the generation of triplet Cooper pairs with
increasing misalignment of the magnetizations of the F1 and F2 layer moments.
Recent research [22–25] has reported a similar modulation of the critical temper-
ature by changing the orientation of a single homogeneous ferromagnet coupled
to a superconductor through a thin heavy normal-metal (HM) film with strong
Rashba spin-orbit coupling, which having the property of being odd in both spin
and momentum may in itself induce both opposite-spin and equal-spin triplets.

The generation of spin-triplet amplitudes close to the interface between conven-
tional s-wave superconductors and non-superconducting materials is of great
importance for the physical properties of superconducting hybrid structures. In-
vestigating various superconducting heterostructures is of interest from a funda-
mental physics point of view, as novel phenomena may occur when artificially
combining layers of different superconducting and non-superconducting materi-
als. When it comes to possible applications, one example is the superconducting
spin-valve, where a modulation of the superconducting critical temperature upon
reorienting the magnetization of a ferromagnet in an S/F1/F2 or F1/S/F2 struc-
ture can be used in order to switch superconductivity on and off [1]. A more
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1.2 scope and structure 3

thorough understanding of the field of superconducting spintronics is desired as
it may lead to the discovery of yet unknown applications.

1.2 scope and structure

In this thesis, we focus on S/HM/F and S/HM thin-film structures, that will mainly
be described using the ballistic-limit tight-binding Bogoliubov-de Gennes (BdG)
lattice framework. We will first investigate magnetization reorientation driven
by the superconducting phase transition in S/HM/F trilayers. This work is mo-
tivated by earlier theoretical [22–25] and experimental [25] works showing a
Tc-modulation explained by changes in the spin-triplet amplitudes upon reori-
enting the magnetization. What we consider is a reciprocal effect to the earlier
mentioned spin-valve effect. We also consider Tc-modulation using our ballistic-
limit theoretical framework, and get results complementing the earlier theoretical
works done in the diffusive-limit Usadel framework [22, 25]. In the S/HM bilayer,
we consider Tc-modulation upon reorienting the Rashba spin-orbit field, which
to our knowledge never before has been investigated. In order to describe the
singlet and triplet amplitudes present in the S/HM structure, we introduce an
additional theoretical framework where we consider scattering at the interface
for a continuum BdG model.

The main theoretical framework used in this thesis, the tight-binding BdG lattice
framework, is introduced in Ch. 2. In this chapter, we explain the numerical
calculation of the physical quantities of interest, such as the critical temperature,
the free energy, singlet and triplet amplitudes, and the superconducting coherence
length.We also discuss aspects such as the dimensionality of themodel, the choice
of parameters and the relevance of the chosen theoretical framework. In Ch. 3 we
introduce the additional theoretical framework, the BdG continuum framework.
This will, in addition to the theoretical framework presented in Ch. 2, be used in
Ch. 5 in order to explain the existence of the various triplet amplitudes present in
the system. In this framework, the triplet amplitudes can in the simplest cases be
computed analytically, however also in this framework some of our calculations
require numerical treatment. The novel results are presented in Chs. 4 and 5. In
Ch. 4, we consider magnetization reorientation andTc-modulation in the S/HM/F
system. TheTc-modulation of the S/HM system is considered in Ch. 5. The thesis
is concluded by a short summary and outlook in Ch. 6. After the content presented
above, we have included the paper presenting the results of Ch. 4.
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2
THE LATT ICE BOGOL IUBOV-DE GENNES FRAMEWORK

In this chapter, we introduce the tight-binding lattice Bogoliubov-de Gennes
(BdG) framework, which will be the main framework used in this thesis for
determining the physical properties of the considered systems.We here introduce
our Hamiltonian, diagonalize it numerically according to the BdG framework
and derive expressions for the physical quantities of interest. We use conventions
similar to those in Refs. [26, 27]. The lattice BdG framework considers materials
in the ballistic limit of transport, can describe atomically thin layers of a material
and fully accounts for the crystal symmetry of the electronic environment. It is
therefore well suited for describing thin-film heterostructures.

2.1 diagonalization of the hamiltonian

In this thesis, we consider heterostructures consisting of thin layers of conven-
tional s-wave superconductors, normal-metals, heavy-metals with Rashba spin-
orbit coupling and homogeneous ferromagnets. We first consider systems where
the Rashba spin-orbit field is perpendicular to the layer interfaces. In this case,
the system can be described by the Hamiltonian [27]

H = − t
∑
〈i, j〉,σ

c†i,σc j,σ −
∑
i,σ

µic
†
i,σci,σ −

∑
i

Uini,↑ni,↓

+
∑
i,α,β

c†i,α(h i · σ)α,βci,β −
i
2

∑
〈i, j〉,α,β

λic
†
i,αn̂ · (σ × d i, j)α,βc j,β.

(2.1)

The Rashba spin-orbit coupling contribution to the Hamiltonian in the case of
a general direction of the spin-orbit field will be considered in the next section.
In the above Hamiltonian, t is the hopping integral, µi is the chemical potential
at lattice site i, Ui > 0 is the attractive on-site interaction that gives rise to
superconductivity, hi is the local magnetic exchange field, σ is the vector of
Pauli matrices, λi is the Rashba spin-orbit coupling magnitude at site i, n̂ is a
unit vector defining the direction of the spin-orbit field, and d i, j ≡ x̂(δi+x̂, j −

5
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6 the lattice bogoliubov-de gennes framework

φ

θ

x

z

y

M1
M2

Nx Ny

Nz

Nx,M1 Nx,M2

Figure 2.1: We model our system as a 3D Nx × Ny × Nz lattice with interface normal
along the x axis. The number of lattice sites in the x direction of material M1 and M2
are Nx,M1 and Nx,M2 respectively. A general direction can be described by the polar angle
θ and the azimuthal angle φ. Any number of layers with interface normal along x̂ can
be modeled. In this thesis we consider superconducting, normal-metal, heavy-metal and
homogeneously ferromagnetic layers.

δi−x̂, j)+ ŷ(δi+ŷ, j − δi−ŷ, j)+ ẑ(δi+ẑ, j − δi−ẑ. j) is the vector from site i to site j. c†i,σ
and ci,σ are the second quantization electron creation and annihilation operators
at site i with spin σ, and ni,σ ≡ c†i,σci,σ is the number operator. The first two
terms in Eq. 2.1 are nonzero in all of the materials that will be considered in this
thesis. The third term describes the superconducting on-site attraction, the fourth
term describes ferromagnetism, and the last term describes the Rashba spin-
orbit coupling in a heavy-metal. These terms are only nonzero in their respective
regions.

In the following, we will consider a 3D cubic lattice of size Nx × Ny × Nz as
shown in Fig. 2.1. The interface normal of the layered system is parallel to the x
axis. It follows that n̂ = x̂, since the spin-orbit field is directed along the interface
normal. We assume periodic boundary conditions in the y and z directions, so
that all quantities depend on the the x component of the site index only. In the
presentation of the results, we will scale all energies to the hopping element t and
all lengths to the lattice constant a. For simplicity, we also set the reduced Planck
constant ~ and the Boltzmann constant kB equal to 1. Therefore, all temperatures
are scaled by t/kB in the presentation of the results.

We now turn to the diagonalization of the Hamiltonian described in Eq. 2.1. The
superconducting term (HU) in Eq. 2.1 is treated by a mean-field approach where

[May 14, 2019 at 13:55 – classicthesis ]



2.1 diagonalization of the hamiltonian 7

we insert ci,↑ci,↓ =
〈
ci,↑ci,↓

〉
+ δ and c†

i,↑c
†
i,↓ =

〈
c†
i,↑c
†
i,↓

〉
− δ† into Eq. 2.1 and

neglect terms of second order in the fluctuations δ and δ†. We get

HU =
∑
i

|∆i |2
Ui
+

∑
i

(∆ic†i,↑c
†
i,↓ + ∆

∗
ixci,↓ci,↑). (2.2)

Above, ∆i is the superconducting gap at site i, and it is given by [27]

∆i ≡ Ui

〈
ci,↑ci,↓

〉
. (2.3)

This is the superconducting order parameter, which we solve for self-consistently.
Because of our assumption of periodic boundary conditions along the y and z
axes, the Fourier transform [27]

ci,σ =
1√

NyNz

∑
ky ,kz

cix ,ky ,kz ,σei(kyiy+kziz). (2.4)

can be used to diagonalize the Hamiltonian. The sum is over the allowed ky and
kz inside the first Brillouin zone, i.e. km ∈ (−π, π] where m = {y, z}. The km

values allowed by the periodic boundary conditions are km =
2π
Nm

n, where n is an
integer and Nm is the number of lattice sites in the m-direction. Also note that
[26]

1√
Ny

∑
iy

ei(ky−k ′y)iy = δky ,k ′y ,

1
√

Nz

∑
iz

ei(kz−k ′z)iz = δkz ,k ′z .
(2.5)

By using Eqs. 2.4 and 2.5 to rewrite the Hamiltonian in Eq. 2.1, we can show
that

H =NyNz

∑
ix

|∆ix |2
Uix

+
∑

ix , jx ,ky ,kz ,σ
εix , jx ,ky ,kzc

†
ix ,ky ,kz ,σc jx ,ky ,kz ,σ

+
∑

ix ,kykz

[
∆ixc†ix ,ky ,kz ,↑c

†
ix ,−ky ,−kz ,↓ + ∆

∗
ixcix ,−ky ,−kz ,↓cix ,ky ,kz ,↑

]
+

∑
ix ,ky ,kz ,α,β

(hix · σ)α,βc†ix ,ky ,kz ,αcix ,ky ,kz ,β

+
∑

ix ,ky ,kz ,α,β
λix

[
(σy)α,β sin(kz) − (σz)α,β sin(ky)

]
c†ix ,ky ,kz ,αcix ,ky ,kz ,β,

(2.6)
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8 the lattice bogoliubov-de gennes framework

where

εix , jx ,ky ,kz ≡ −2t
[
cos(ky) + cos(kz)

]
δix , jx − t(δix , jx+1+ δix , jx−1) − µixδix , jx . (2.7)

We choose a basis

B†ix ,ky ,kz = [c
†
ix ,ky ,kz ,↑ c†ix ,ky ,kz ,↓ cix ,−ky ,−kz ,↑ cix ,−ky ,−kz ,↓] (2.8)

and rewrite the Hamiltonian in Eq. 2.6 as

H = H0 +
1
2

∑
ix , jx ,ky ,kz

B†ix ,ky ,kzHix , jx ,ky ,kz B jx ,ky ,kz , (2.9)

where

Hix , jx ,ky ,kz = εix , jx ,ky ,kz τ̂3σ̂0

+ δix , jx

[
∆ixiτ̂

+σ̂y − ∆∗ixiτ̂
−σ̂y

+ hx
ix τ̂3σ̂x + hy

ix
τ̂0σ̂y + hz

ix
τ̂3σ̂z

− λix sin(ky)τ̂0σ̂z + λix sin(kz)τ̂3σ̂y

]
,

(2.10)

and τ̂± = (τ̂1 ± iτ̂2)/2. Above, τ̂iσ̂j ≡ τi ⊗σj is the Kronecker product of the Pauli
matrices spanning Nambu and spin space. hx

ix
, hy

ix
and hz

ix
are the components of

hix . The constant term is

H0 = NyNz

∑
ix

|∆ix |2
Uix

−
∑

ix ,ky ,kz

{
2t

[
cos(ky) + cos(kz)

]
+ µix

}
. (2.11)

By defining another basis,

W†ky ,kz = [B
†
1,ky ,kz , ..., B†ix ,ky ,kz , ..., B†Nx ,ky ,kz ], (2.12)

Eq. 2.9 can be rewritten as

H = H0 +
1
2

∑
ky ,kz

W†ky ,kzHky ,kzWky ,kz , (2.13)

where

Hky ,kz =


H1,1,ky ,kz · · · H1,Nx ,ky ,kz

... . . . ...
HNx ,1,ky ,kz · · · HNx ,Nx ,ky ,kz

 . (2.14)
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2.1 diagonalization of the hamiltonian 9

Hky ,kz is Hermitian and can be diagonalized numerically with eigenvalues En,ky ,kz
and eigenvectors Φn,ky ,kz given by

Φ
†
n,ky ,kz = [φ

†
1,n,ky ,kz · · · φ†Nx ,n,ky ,kz ],

φ†ix ,n,ky ,kz = [u
∗
ix ,n,ky ,kz v

∗
ix ,n,ky ,kz w

∗
ix ,n,ky ,kz x∗ix ,n,ky ,kz ].

(2.15)

The diagonalization is done numerically and gives a Hamiltonian of the form

H = H0 +
1
2

∑
n,ky ,kz

En,ky ,kzγ
†
n,ky ,kzγn,ky ,kz , (2.16)

where the new quasiparticle operators are related to the old operators by [26]

cix ,ky ,kz ,↑ =
∑

n

uix ,n,ky ,kzγn,ky ,kz ,

cix ,ky ,kz ,↓ =
∑

n

vix ,n,ky ,kzγn,ky ,kz ,

c†ix ,−ky ,−kz ,↑ =
∑

n

wix ,n,ky ,kzγn,ky ,kz ,

c†ix ,−ky ,−kz ,↓ =
∑

n

xix ,n,ky ,kzγn,ky ,kz .

(2.17)

To find the eigenvectors and eigenvalues, the initial guess for the order parameter
must be improved by iterative treatment. Eq. 2.3 can be rewritten by inserting the
operators given in Eq. 2.17 and by using that 〈γ†n,ky ,kzγm,ky ,kz〉 = f

(
En,ky ,kz/2

)
δn,m

[27]. We get

∆ix = −
Uix

NyNz

∑
n,ky ,kz

vix ,n,ky ,kzw
∗
ix ,n,ky ,kz

[
1 − f

(
En,ky ,kz/2

)]
. (2.18)

Above, f (En,ky ,kz/2) = 1/[exp(βEn,ky ,kz/2) + 1] is the Fermi-Dirac distribution.
β ≡ 1/kBT , where kB is the Boltzmann constant andT is the temperature. Having
found En,ky ,kz and {u, v,w, x}, we can compute the physical quantities of interest.

Before we consider Hamiltonians with a general direction of the spin-orbit field,
and then turn to the calculation of physical quantities, we will consider a simpli-
fied model for our multilayer structures. The method described above demands
numerical treatment. To understand the behavior of our materials better, it may
be instructive to consider a simpler system that can be treated analytically. We
approximate the multilayers considered above as a single layer including all the
relevant terms of Eq. 2.1. To justify this assumption the layers in our system
must be very thin. We use periodic boundary conditions along all three axes. The
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10 the lattice bogoliubov-de gennes framework

simplest system to consider is a non-superconducting layer containing Rashba
spin-orbit coupling and ferromagnetism. By using the Fourier transform

ci,σ =
1√

Nx NyNz

∑
k

ck,σeik ·i (2.19)

and the relation
1√

Nx NyNz

∑
i

ei(k−k ′)·i = δkk ′ (2.20)

corresponding to Eqs. 2.4 and 2.5 in our earlier treatment, we rewrite the Hamil-
tonian given in Eq. 2.1 as

H = H0 +
1
2

∑
k

B†
k
HkBk . (2.21)

The above basis is given by

B†
k
= [c†

k,↑ c†
k ,↓ c−k,↑ c−k ,↓], (2.22)

and the constant term is

H0 =
∑
k

εk , (2.23)

where

εk ≡ −2t[cos(kx) + cos(ky) + cos(kz)] − µ. (2.24)

The Hamiltonian matrix is a 4×4 block diagonal matrix given by

Hk =


εk + hz −Λky hx − ihy − iΛkz 0 0

hx + ihy + iΛkz εk − hz +Λky 0 0
0 0 −εk − hz −Λky −hx − ihy + iΛkz

0 0 −hx + ihy − iΛkz −εk + hz +Λky


,

(2.25)

where Λky ≡ λ sin(ky) and Λkz ≡ λ sin(kz). The four eigenvalues of the system
can be obtained analytically by diagonalizing Hk . We get

E1,k = εk + |h +Λz ŷ −Λy ẑ |,
E2,k = εk − |h +Λz ŷ −Λy ẑ |,
E3,k = −εk + |h −Λz ŷ +Λy ẑ |,
E4,k = −εk − |h −Λz ŷ +Λy ẑ |,

(2.26)

where |h±Λz ŷ∓Λy ẑ | = [h2+ |Λy |2+ |Λz |2∓ hΛy cos(θ) ± hΛz sin(θ) sin(φ)]1/2.
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2.2 the symmetrized rashba spin-orbit coupling operator 11

2.2 the symmetrized rashba spin-orbit coupling operator

We now want to find the Rashba spin-orbit coupling contribution to the Hamil-
tonian when the spin-orbit field instead of being oriented along the interface
normal can be oriented in any direction. If we have a Rashba spin-orbit field
not directed along the interface normal, the Rashba term in Eq. 2.1 is in general
non-Hermitian. This term is the second quantized form of [28]

ĥ = (n̂ ×σ) · λ(x) p̂, (2.27)

where n̂ = (cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)) is a unit vector directed along the
spin-orbit field, σ is the vector of Pauli matrices, λ(x) is the x dependent Rashba
spin-orbit coupling strength and p̂ = (p̂x, p̂y, p̂z) = −i~∇ is the momentum
operator. A Hermitian operator satisfies ĥ = ĥ†. The non-symmetrized spin-orbit
coupling operator is not Hermitian, because

ĥ† = (n̂ ×σ) · p̂λ(x) = (n̂ ×σ) ·
{
λ(x) p̂ + [ p̂λ(x)]

}
, ĥ. (2.28)

More generally, the symmetrized version of the Rashba spin-orbit coupling op-
erator can be written

ĥ =
1
2
(n̂ ×σ) · {λ(x), p̂}. (2.29)

This operator is Hermitian because

ĥ† =
{1
2
(n̂ ×σ) · [λ(x) p̂ + p̂λ(x)]

}†
=

1
2
(n̂ ×σ) · [ p̂λ(x) + λ(x) p̂]

=
1
2
(n̂ ×σ) · {λ(x), p̂} = ĥ.

(2.30)

In Eqs. 2.28 and 2.30 we have used that p̂† = p̂ and that [λ(x)]† = [λ(x)]∗ = λ(x).
Notice that if λ(x) is independent of x and therefore commutes with p̂, the anti-
commutator in Eq. 2.29 gives 2λ p̂, and we get the same expression as for the
non-symmetrized Rashba spin-orbit coupling operator given in Eq. 2.27.We also
obtain the non-symmetrized spin-orbit coupling operator by inserting n̂ = x̂ into
Eq. 2.29. By performing the differentiation in Eq. 2.29 according to the product
rule, Eq. 2.29 can be written

ĥ =(n̂ ×σ) · {λ(x)p̂x +
1
2
[p̂xλ(x)]} x̂

+ λ(x)(n̂ ×σ) · p̂y ŷ

+ λ(x)(n̂ ×σ) · p̂z ẑ.

(2.31)
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12 the lattice bogoliubov-de gennes framework

We see that compared to the non-symmetrized operator, the symmetrized ver-
sion of ĥ has an additional term that depends on ∂xλ(x). In order to find the
symmetrized second quantized Rashba spin-orbit coupling operator, we need to
compute the overlap integral of Eq. 2.31. Disregarding spin for now, the overlap
integral of the first of the three terms in Eq. 2.31 is〈

i
��(n̂ ×σ) · {λ(x)p̂x +

1
2
[p̂xλ(x)]} x̂

�� j〉
= (n̂ ×σ) · x̂

∫
drφ∗i (r){λ(x)p̂x +

1
2
[p̂xλ(x)]}φ∗j(r)

=
1
2
(n̂ ×σ) · x̂

[〈
i
��λ(x)p̂x

�� j〉 + 〈
j
��λ(x)p̂x

��i〉∗] .
(2.32)

The result on the third line in the above equation is obtained by partially inte-
grating half of the first term on the second line. By doing this, the second term
cancels. The overlap integral we want to calculate is thus〈

i
��ĥ�� j〉 = 1

2
(n̂ ×σ) · x̂

[〈
i
��λ(x)p̂x

�� j〉 + 〈
j
��λ(x)p̂x

��i〉∗]
+ (n̂ ×σ) · ŷ

〈
i
��λ(x)p̂y

�� j〉
+ (n̂ ×σ) · ẑ

〈
i
��λ(x)p̂z

�� j〉. (2.33)

In order to calculate this overlap integral, we need to evaluate the integral∫
drφ∗i (r)λ(x)p̂mφ j(r) = −i

∫
drφ∗i (r)λ(x)∂mφ j(r), (2.34)

where m = {x, y, z}. We discretize the derivative as

∂mφ j(r) =
1
2
[φ j−m̂(r) − φ j+m̂(r)], (2.35)

where φ j∓m̂(r) = φ(r − R j ± m̂) and R j describes the position of lattice site
j. We justify this approximation by the fact that φ j(r) = φ(r − R j) and its
derivative should only be large very close to r = R j and small otherwise, as long
as we assume φ j(r) to be highly localized. The approximation is therefore poor
close to r = R j where φ j(r) changes quickly, however when we insert Eq. 2.35
into Eq. 2.34 the contribution from this region will be small due to φi(r) being
negligible this far away from r = R i , R j . The main contribution to the integral
in Eq. 2.34 will instead come from positions close to site i. Site i cannot equal
site j due to symmetry considerations in Eq. 2.34. Note however that although
Eq. 2.35 as required gives a small value and the appropriate sign for the derivative
far away from r = R j , the maximum of the absolute value of ∂φ j(r) is exactly at
r = R j±m̂. If φ j(r) is highly localized, we should rather expect the maximum of
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2.2 the symmetrized rashba spin-orbit coupling operator 13

the absolute value of ∂mφ j(r) to be located close to r = R j . This leads to ∂φ j(r)
being overestimated at r = R j±m̂, however this should only introduce an extra
numerical factor that can be absorbed into λ. By inserting Eq. 2.35, the integral
in Eq. 2.34 can be written∫

drφ∗i (r)λ(x)p̂mφ j(r) = −
i
2

∫
drφ∗i (r)λ(x)[φ j−m̂(r) − φ j+m̂(r)]. (2.36)

If we assume each φi to be highly localized, the overlap between the probability
distributions of atoms at neighboring lattice sites is small. In this case,∫

drφ∗i (r)φ j(r) = δi, j . (2.37)

In Eq. 2.37 we have assumed that the overlap between the probability distribution
corresponding to lattice site i with itself is

∫
drφ∗i (r)φi(r) = 1, while the overlap

with all other probability distributions corresponding to neighboring lattice sites
is zero. This means that the magnitude of φi outside the Wigner-Seitz cell of
lattice site i is negligible. It is therefore also reasonable to approximate λ(x)
to its value inside the Wigner-Seitz cell, provided that λ is constant inside the
Wigner-Seitz cell.

For concreteness, we now consider a bilayer consisting of a heavy-metal and
another material X, where X can be e.g. a superconductor. We assume that
λ(x) = λ is constant inside the heavy-metal, that λ(x) = 0 inside the other
material and that λ(x) acts as a step function at the interface. This system is
shown in Fig. 2.2. From Eqs. 2.36 and 2.37, we see that as long as both j + m̂
and j − m̂ are inside the heavy-metal, λ(x) = λ can be considered to be constant.
If we for now only consider this case, applying Eq. 2.37 to Eq. 2.36 gives∫

drφ∗i (r)λ(x)p̂mφ j(r) =
i
2
λ(δi, j+m̂ − δi, j−m̂). (2.38)

This holds for all m = {y, z}. It also holds for all m = x except if j is the lattice
site closest to the interface on either side of the interface, i.e. as long as j is
among the green lattice sites in Fig. 2.2. Since the integral in Eq. 2.38 must equal
zero if i = j and also negligible if site i and j are not nearest neighbors, the
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14 the lattice bogoliubov-de gennes framework

x

y

z

HM X

λ(x)=λ λ(x)=0

Figure 2.2: We consider a 3D cubic lattice where λ(x) = λ inside the heavy-metal, and
λ(x) = 0 inside X. If i = j ± ŷ or i = j ± ẑ, lattice sites i and j are inside the same
material, and we get a bulk contribution to the Hamiltonian if i and j are inside the
heavy-metal. For i = j ± x̂, we will consider three cases: i) Lattice sites i and j are both
inside the heavy-metal and not nearest neighbors to the interface (green lattice sites).
ii) Lattice site i is inside the heavy-metal and nearest neighbor to the interface (red
lattice sites), while j is inside the heavy-metal and not nearest neighbor to the interface
(green lattice sites), or vice versa. iii) Lattice site i is inside the heavy-metal (red lattice
sites) and lattice site j is inside X (blue lattice sites), or vice versa.

result in Eq. 2.38 is reasonable. It is therefore clear that our previous assumption
given in Eq. 2.35 indeed gives no qualitative loss. Note also that( ∫

drφ∗j(r)λ(x)p̂xφi(r)
)∗
= i

∫
dr[∂xφi(r)]∗λ(x)φ j(r)

= i
∫

dr[φ∗i−x̂(r) − φ
∗
i+x̂(r)]λ(x)φ j(r)

=
i
2
λ(δi−x̂, j − δi+x̂, j)

=
i
2
λ(δi, j+x̂ − δi, j−x̂)

(2.39)

gives the same result as in Eq. 2.38 if both of the sites i ± x̂ are inside the heavy-
metal region, i.e. if i is among the green lattice sites in Fig. 2.2. For the case
when site i and j are both inside the heavy-metal, and neither is nearest neighbor
to the interface, i.e. when both are among the green lattice sites in Fig. 2.2, we
therefore get 1

2
[〈
i
��λ(x)p̂x

�� j〉 + 〈
j
��λ(x)p̂x

��i〉∗] = 〈
i
��λ(x)p̂x

�� j〉. This is reasonable,
since we in the beginning of this section stated that for a constant λ we can use
the non-symmetrized spin-orbit coupling operator. By inserting Eq. 2.38 into the
expression for the overlap integral in Eq. 2.33, we get〈

i
��ĥ�� j〉 = i

2
λ(n̂ ×σ) · [x̂(δi, j+x̂ − δi, j−x̂)

+ ŷ(δi, j+ŷ − δi, j−ŷ)
+ ẑ(δi, j+ẑ − δi, j−ẑ)].

(2.40)
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2.2 the symmetrized rashba spin-orbit coupling operator 15

By defining the vector from lattice site i to site j as

d i, j ≡ x̂(δi, j−x̂ − δi, j+x̂) + ŷ(δi, j−ŷ − δi, j+ŷ) + ẑ(δi, j−ẑ − δi, j+ẑ), (2.41)

we can rewrite Eq. 2.40 as〈
i
��ĥ�� j〉 = − i

2
λn̂ ·

(
σ × d i, j

)
, (2.42)

where we have used that
(
n̂ × σ

)
· d i, j = n̂ ·

(
σ × d i, j

)
. We can now write down

the second quantized Hamiltonian that applies if both site i and j are inside the
heavy-metal and neither is the lattice site closest to the interface,

Hλ = −
i
2

∑
〈i, j〉,α,β

λc†i,αn̂ · (σ × d i, j)α,βc j,β. (2.43)

Notice that this is exactly the same expression as the non-symmetrized Hamilto-
nian in Eq. 2.1, although in Eq. 2.43 n̂ is allowed to point in any direction. By
using the Fourier transform in Eq. 2.4 and the relations in Eq. 2.5, we get

Hλ =
∑

ix jx ,ky ,kz ,α,β
λn̂ ·

[ i
2
(σz ŷ − σy ẑ)α,β(δix , jx+1 − δix , jx−1)

+ (σx ẑ − σz x̂)α,β sin(ky)δix , jx

+ (σy x̂ − σx ŷ)α,β sin(kz)δix , jx

]
c†ix ,ky ,kz ,αc jx ,ky ,kz ,β.

(2.44)

Notice that as expected, the spin-orbit coupling term in Eq. 2.6 equals Eq. 2.44
if we let n̂ = x̂. If we proceed by the same method as in Sec. 2.1, we get

Hλ
ix , jx ,ky ,kz = −

[
sin(ky) cos(φ) sin(θ)τ̂0σ̂z

−
(
sin(ky) cos(θ) − sin(kz) sin(φ) sin(θ)

)
τ̂0σ̂x

− sin(kz) cos(φ) sin(θ)τ̂3σ̂y

]
λδix , jx

+
[ i
2

sin(φ) sin(θ)τ̂0σ̂z −
i
2

cos(θ)τ̂3σ̂y

]
λδix , jx+1

−
[ i
2

sin(φ) sin(θ)τ̂0σ̂z −
i
2

cos(θ)τ̂3σ̂y

]
λδix , jx−1,

(2.45)

as a replacement for the the elements of the spin-orbit coupling term in Eq. 2.10
where neither i nor j is the closest lattice site to the interface.

We now consider the p̂x-term in Eq. 2.33 when site i or j is the lattice site closest
to the interface, i.e.when one is among the green lattice sites and the other among
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16 the lattice bogoliubov-de gennes framework

the red lattice sites in Fig. 2.2. By the use of Eq. 2.35, we can write the integrals
in this term as

1
2

[〈
i
��λ(x)p̂x

�� j〉 + 〈
j
��λ(x)p̂x

��i〉∗] = − i
4

[ ∫
drφ∗i (r)λ(x)φ j+x̂(r)

−
∫

drφ∗i (r)λ(x)φ j−x̂(r)

−
( ∫

drφ∗j(r)λ(x)φi+x̂(r)
)∗

+
( ∫

drφ∗j(r)λ(x)φi−x̂(r)
)∗]

.

(2.46)

We have to consider two cases: we can either have a HM/X system, as shown in
Fig. 2.2, or an X/HM system. First consider a HM/X system, with site j closest to
the interface and i = j − x̂. The first and fourth term is zero due to δ j−x̂, j+x̂ = 0
and δ j, j−2x̂ = 0. The second and third term consider the lattice sites j − x̂ and j

that are inside the heavy-metal region. We can therefore set λ(x) = λ in all four
terms without adding any extra contribution. We get exactly the same result as in
the bulk case, as would be expected when both lattice sites are inside the heavy-
metal. If we consider the same system with site i closest to the interface and
j = i − x̂, the second and third terms are zero due to δi,i−2x̂ = 0 and δi−x̂,i+x̂ = 0,
while the first and fourth terms consider lattice points inside the heavy-metal. As
in the previous case, we can set λ(x) = λ and obtain the same result as for the
bulk case. By the same line of reasoning we also get the same result as for the
bulk case if we consider the X/HM system with site j closest to the interface and
i = j + x̂, or with site i closest to the interface and j = i + x̂.

It now only remains to consider the case when i and j are the lattice sites closest
to the interface on opposite sides of the interface, i.e. when one is among the red
lattice sites and the other among the blue lattice sites in Fig. 2.2. Consider the
case when site j is inside the heavy-metal and site i is inside X. Since the the
first two terms in Eq. 2.46 consider the overlap at site i, these two terms are zero
since λ(x) = 0 inside X. For the two last terms, λ(x) = λ. We thus only get a
contribution from Eq. 2.39, not from Eq. 2.38, and we get exactly half of what
we got when both site i and j were inside the heavy-metal. If instead site i is
inside the heavy-metal and site j is inside X, the last two terms in Eq. 2.46 are
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2.2 the symmetrized rashba spin-orbit coupling operator 17

zero due to λ(x) = 0, and we similarly get only half of the contribution in the
bulk. We get〈

i
��ĥ�� j〉 = i

2
λ(n̂ ×σ) ·

[1
2

x̂(δi, j+x̂ − δi, j−x̂)

+ ŷ(δi, j+ŷ − δi, j−ŷ) + ẑ(δi, j+ẑ − δi, j−ẑ)
]

= − i
2
λ(n̂ ×σ) ·

[1
2
(d i, j)x + (d i, j)| |

]
= − i

2
λn̂ ·

[
σ × 1

2
(d i, j)x +σ × (d i, j)| |

]
,

(2.47)

so that the spin-orbit coupling contribution to the Hamiltonian is

Hλ = −
i
2

∑
〈i, j〉,α,β

λc†i,αn̂ ·
[
σ × 1

2
(d i, j)x +σ × (d i, j)| |

]
α,β

c j,β (2.48)

if lattice site i and j are the lattice sites closest to the interface on opposite
sides of the interface. Above, d i, j is decomposed into a part perpendicular to the
interface (d i, j)x and a part parallel to the interface (d i, j)| |.

By comparing Eq. 2.48 to Eq. 2.43, we can generalize the bulk expression for the
Rashba term of the second quantized Hamiltonian in Eq. 2.45. The symmetrized
expression for the Hamiltonian of a hybrid structure with superconductivity and
Rashba spin-orbit coupling is

Hix , jx ,ky ,kz =εix , jx ,ky ,kz τ̂3σ̂0 +
[
∆ixiτ̂

+σ̂y − ∆∗ixiτ̂
−σ̂y

]
δix , jx

−
[
sin(ky) cos(φ) sin(θ)τ̂0σ̂z

−
(
sin(ky) cos(θ) − sin(kz) sin(φ) sin(θ)

)
τ̂0σ̂x

− sin(kz) cos(φ) sin(θ)τ̂3σ̂y

]
λδix , jx

+
[ i
4

sin(φ) sin(θ)τ̂0σ̂z −
i
4

cos(θ)τ̂3σ̂y

]
λ(1 + ζ)δix , jx+1

−
[ i
4

sin(φ) sin(θ)τ̂0σ̂z −
i
4

cos(θ)τ̂3σ̂y

]
λ(1 + ζ)δix , jx−1,

(2.49)

where ζ = 1 if site i and j are both inside the heavy-metal and ζ = 0 if site i

and j are on opposite sides of the interface. The terms are only nonzero in their
respective regions.
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18 the lattice bogoliubov-de gennes framework

2.3 the free energy

The free energy (F) is minimized in the ground state of the system. In Ch. 4,
where we consider magnetization reorientation in a S/HM/F heterostructure, we
will consider the free energy in order to determine the preferred magnetization
direction of the ferromagnetic layer at a given temperature. The free energy is
related to the partition function by Z = e−βF , where Z ≡Tr(e−βH) [29]. By
inserting the diagonalized Hamiltonian given in Eq. 2.16, we obtain

F = H0 −
1
β

∑
n,ky ,kz

ln(1 + e−βEn,ky ,kz /2), (2.50)

where β = (kBT)−1. Note that if T → 0,

F = H0 +
1
2

∑
n,ky ,kz

′

En,ky ,kz , (2.51)

where
∑′

means that the sum is taken over negative eigenenergies only.

Additional magnetic anisotropy terms may be added to the free energy to take the
thickness of a thin ferromagnetic film into account more properly. We here take
into account perpendicular interfacial anisotropy and shape anisotropy, which
are of great importance in thin ferromagnetic films. Materials may also have
a magnetocrystalline anisotropy where some magnetization direction is favored
due to the bulk crystal structure of the material, but this will not be considered
here. Interfacial anisotropy arises due to the electronic structure being different
along in-plane directions compared to the out-of-plane direction. We therefore
have a difference in the electronic wave function overlap for the in-plane and
out-of-plane direction, which favors out-of-plane magnetization. This structural
anisotropy only dominates for very thin ferromagnetic layers. Shape anisotropy
is caused by the fact that it is energetically favorable to minimize the number of
free surface poles. In a thin film, the number of free surface poles is minimized
when the magnetization is parallel to the interface, as shown in Fig. 2.3. In this
case, the free surface poles only exist on the edge [30]. We model the interfacial
and shape anisotropy terms in a simple way and write the additional contribution
to the free energy as [31]

Fa = −Keff cos2(θp). (2.52)

where θp is the polar angle relative to the interface normal. When the interface
normal is parallel to the x axis, θp = arccos(cos(φ) sin(θ)), where θ is the polar
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Figure 2.3: (a) If the magnetization (black arrow) is out-of-plane, the number of free
surface poles (+ and −) is large. (b) If the magnetization is in-plane, the number of
free surface poles is small, since they only exist on the edge. The case shown in (b) is
energetically favourable.

angle relative to the z axis and φ is the azimuthal angle. Keff is the effective
anisotropy constant. We assume a thin ferromagnetic film with one interface to
another material and one free surface, and approximate Keff by [31]

Keff = Kv +
Ks + Ki

tF
. (2.53)

Above, Kv < 0 is the bulk anisotropy of the ferromagnet, Ks is the surface
anisotropy and Ki > 0 is the anisotropy of the interface between the ferromagnet
and the othermaterial.Keffmay be positive or negative depending on the thickness
of the ferromagnetic layer tF . If Keff < 0, the magnetic anisotropy contribution Fa

to the free energy favors IP magnetization and shape anisotropy dominates. For
Keff > 0, OOP magnetization is favored and perpendicular anisotropy dominates.
To model a non cubic ferromagnet such as Co, we use the average lattice constant,
a = (ax + ay + az)/3. By doing this we obtain a rather rough estimate of Fa, but
since we in Ch. 4 will be comparing Fa to the superconducting contribution to the
free energy, the order of magnitude of the change in Fa is more interesting than
the details. The SI unit of Kv is J/m3, while for Ks and Ki the SI unit is J/m2. Since
we set Boltzmann’s constant kB and the lattice constant a equal to 1, the free
energy is effectively given in [F] = [1/β]=K. Therefore, the anisotropy constants
are adapted from SI by Kv(K)= Kv(J/m3)a3/kB and Ks,i(K)= Ks,i(J/m2)a2/kB.
It follows that in our numerical calculations, the thickness of the ferromagnetic
layer is given by the number of lattice points along x̂ in the ferromagnetic region,
i.e. tF(1) = tF(m)/a = Nx,F .
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20 the lattice bogoliubov-de gennes framework

For the simplified model with eigenenergies given by Eq. 2.26, the free energy
at T → 0 is given by an expression similar to that in Eq. 2.51,

F = H0 +
1
2

∑
n,k

′

En,k , (2.54)

where
∑′

means that we sum over negative eigenenergies only. To determine F,
we simply insert those of the eigenenergies in Eq. 2.26 that are negative into
Eq. 2.54.

2.4 the superconducting critical temperature

The superconducting critical temperature (Tc) is the temperature at which the
superconducting phase transition takes place. In its normal state where T > Tc,
the superconductor behaves as a normal-metal. For temperatures below Tc, the
superconductor shows a superconducting behavior. We find Tc numerically by a
binomial search [32] within temperatures below the bulk critical temperature of
the superconductor. The critical temperature of the superconducting heterostruc-
ture must be within this temperature interval, since the addition of heavy-metal
and ferromagnetic layers cannot increase Tc. In each of the n iterations in our
binomial search, we test whether the average temperature T = (Tc,max −Tc,min)/2
in the current temperature interval [Tc,min,Tc,max] is above or below Tc. This is
done by choosing an initial guess for ∆ix at ∆0/1000 and checking whether the
value of ∆(T) in the middle of the superconducting region increases or decreases
from the initial guess after recalculating the gap m times by Eq. 2.18. The gap
decreases in the normal state (T > Tc) and increases in the superconducting state
(T < Tc). ∆0 is the superconducting gap in the middle of the superconductor at
T = 0. If the current T is below Tc we restrict the temperature range of our search
to the temperatures within the previous temperature interval that are above T .
Otherwise we restrict our temperature range to the temperatures below T . This is
illustrated in Fig. 4.6. After having calculated a new temperature range n times
we conclude that the average temperature in this range is the critical temperature.
If we assume m to be sufficiently large, this binomial search calculates Tc to
an uncertainty of ±2−(n+1)T i

c,max, where T i
c,max is the upper bound on the initial

temperature interval. We test whether m is large enough by calculating Tc for
increasing values of m. Our choice of m should be the m for which the calcu-
lated value of Tc no longer changes when increasing m. For superconducting
layers that are much thicker than the coherence length, a low m is sufficient.
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Figure 2.4: The blue curve shows ∆(T), and the red line is our initial guess for ∆ in the
middle of the superconducting region. As indicated by the black arrows, recalculating ∆
m times results in an increase in ∆ if the temperature is below Tc, and a decrease in ∆
if the temperature is above Tc. We start our binomial search at T = (Tmax − Tmin)/2. At
every iteration, we keep the half of the temperature interval that contains Tc, and T is set
to the value in the middle of our temperature interval, as indicated by the green arrows.
After n iterations, we arrive at Tc.

However, for systems where the length of the superconductor is comparable to
its coherence length, bulk superconductivity is not obtained in the middle of the
superconducting region, and we must use a large m to get an accurate result.

The number of iterations m can be decreased by improving the initial guess. This
was done for the calculations in Ch. 5 in order to make the Tc-calculations man-
ageable. The initial guess can be improved by calculating the superconducting
gap as close as possible to the superconducting critical temperature, normalizing
it so that the gap is equal to one at the lattice site where the superconducting
gap is measured in the Tc-calculation, and multiplying by ∆0/1000. In this way,
the initial guess has approximately the same shape as the superconducting gap
for temperatures close to Tc. The gap will therefore increase or decrease over the
entire superconducting region.
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2.5 the singlet and triplet amplitudes

The physical mechanism leading to a variation in the superconducting conden-
sation energy when the magnetization direction or the direction of the spin-orbit
field is changed is the conversion of singlet Cooper pairs to triplet ones. The
singlet to triplet generation can lead to variations in F and Tc, that will be con-
sidered in Chs. 4 and 5 for the S/HM/F and S/HM systems. The parity of a
Cooper pair is described by spin permutation (S), spatial inversion (P), orbital
index permutation (O) and time permutation (T), where SPOT= −1 is required
in order to satisfy the Pauli principle, and S2 =P2 =O2 =T2 = 1 [33]. A singlet
Cooper pair (↑↓ − ↓↑) changes sign if the spin indices are interchanged. The
triplet Cooper pairs (↑↓ + ↓↑), (↑↑) and (↓↓) are invariant under interchange of
spin indices. Therefore S= −1 for singlets, while S= 1 for triplets. P= (−1)l ,
where l is the orbital angular momentum quantum number. l = 0 for s-wave
Cooper pairs, l = 1 for p-wave Cooper pairs and l = 2 for d-wave Cooper pairs.
In this thesis, we will not consider the possibility of orbital index permutation.
This implies that T= 1 for s- and d-wave singlets, and p-wave triplets, while
T=−1 for p-wave singlets, and s- and d-wave triplets. The S, P, and T parities
of the different singlets and triplets are summarized in Table 2.1. A state where
T= −1 is called an odd-frequency state, while a state where T= 1 is called an
even-frequency state.

S P T SPT
s-wave singlet −1 1 1 −1
p-wave singlet −1 −1 −1 −1
d-wave singlet −1 1 1 −1
s-wave triplet 1 1 −1 −1
p-wave triplet 1 −1 1 −1
d-wave triplet 1 1 −1 −1

Table 2.1: The above table summarizes the parities of the s-, p-, and d-wave singlets
and triplets under spin permutation (S), spatial inversion (P) and time permutation (T).
According to the Pauli principle, all of the singlets and triplets must satisfy SPT= −1 if
we disregard orbital index permutation.

To reveal the types of triplet Cooper pairs present in our system, we compute
the triplet anomalous Green’s function amplitudes. In this chapter, we will only
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consider s- and p-wave triplets. We will consider s-, p-, and d-wave singlets and
triplets in Ch. 3. The on-site odd-frequency s-wave anomalous triplet amplitudes
are defined as [27]

S0,i(τ) =
〈
ci,↑(τ)ci,↓(0)

〉
+

〈
ci,↓(τ)ci,↑(0)

〉
,

Sσ,i(τ) =
〈
ci,σ(τ)ci,σ(0)

〉
,

(2.55)

wherewehave defined the time-dependent electron annihilation operator ci,σ(τ) ≡
eiHτci,σe−iHτ [34]. Since the s-wave triplet amplitudes defined in the above equa-
tion are odd under time permuation, they are only nonzero if τ , 0. By dif-
ferentiating ci,σ(τ) with respect to τ we obtain the Heisenberg equation [34],

dci,σ(τ)
dτ

= i[H, ci,σ(τ)], (2.56)

fromwhich we can obtain expressions for ci,↑(τ) and ci,↓(τ) by inserting Eqs. 2.16
and 2.17. Here, τ is the relative time coordinate between the electron operators.
τ is scaled by ~/t in the following. The even-frequency p-wave anomalous triplet
amplitudes are defined [27]

Pn
0,i =

∑
±
±(

〈
ci,↑ci±n̂,↓

〉
+

〈
ci,↓ci±n̂,↑

〉
),

Pn
σ,i =

∑
±
±

〈
ci,σci±n̂,σ

〉
,

(2.57)

where n = {x, y, z}. Since, the pn-wave triplet amplitude is odd under spatial
inversion along n̂, ± is added in order to get nonzero triplet amplitudes when
summing over all ky and kz. The spins in the above triplet amplitudes are defined
with respect to the z axis. We obtain expressions for the triplet amplitudes by
inserting the expressions for the electron annihilation operators in Eq. 2.17 into
Eqs. 2.55 and 2.57. The s-wave triplet amplitudes are

S0,ix (τ) =
1

NyNz

∑
n,ky ,kz

[uix ,n,ky ,kz x∗ix ,n,ky ,kz + vix ,n,ky ,kzw
∗
ix ,n,ky ,kz ]e

−iEn,ky ,kz τ/2

· [1 − f (En,ky ,kz/2)],

S↑,ix (τ) =
1

NyNz

∑
n,ky ,kz

uix ,n,ky ,kzw
∗
ix ,n,ky ,kze

−iEn,ky ,kz τ/2[1 − f (En,ky ,kz/2)],

S↓,ix (τ) =
1

NyNz

∑
n,ky ,kz

vix ,n,ky ,kz x∗ix ,n,ky ,kze
−iEn,ky ,kz τ/2[1 − f (En,ky ,kz/2)],

(2.58)
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the px-wave triplet amplitudes are

Px
0,ix =

1
NyNz

∑
n,ky ,kz

[uix ,n,ky ,kz x∗ix+1,n,ky ,kz − uix ,n,ky ,kz x∗ix−1,n,ky ,kz

+ vix ,n,ky ,kzw
∗
ix+1,n,ky ,kz − vix ,n,ky ,kzw

∗
ix−1,n,ky ,kz ]

· [1 − f (En,ky ,kz/2)],

Px
↑,ix =

1
NyNz

∑
n,ky ,kz

[uix ,n,ky ,kzw
∗
ix+1,n,ky ,kz − uix ,n,ky ,kzw

∗
ix−1,n,ky ,kz ]

· [1 − f (En,ky ,kz/2)],

Px
↓,ix =

1
NyNz

∑
n,ky ,kz

[vix ,n,ky ,kz x∗ix+1,n,ky ,kz − vix ,n,ky ,kz x∗ix−1,n,ky ,kz ]

· [1 − f (En,ky ,kz/2)],

(2.59)

the py-wave triplet amplitudes are

Py
0,ix = −

2i
NyNz

∑
n,ky ,kz

[uix ,n,ky ,kz x∗ix ,n,ky ,kz + vix ,n,ky ,kzw
∗
ix ,n,ky ,kz ]

· sin
(
ky

)
[1 − f (En,ky ,kz/2)],

Py

↑,ix = −
2i

NyNz

∑
n,ky ,kz

uix ,n,ky ,kzw
∗
ix ,n,ky ,kz sin

(
ky

)
[1 − f (En,ky ,kz/2)],

Py

↓,ix = −
2i

NyNz

∑
n,ky ,kz

vix ,n,ky ,kz x∗ix ,n,ky ,kz sin
(
ky

)
[1 − f (En,ky ,kz/2)],

(2.60)

and the pz-wave triplet amplitudes are

Pz
0,ix = −

2i
NyNz

∑
n,ky ,kz

[uix ,n,ky ,kz x∗ix ,n,ky ,kz + vix ,n,ky ,kzw
∗
ix ,n,ky ,kz ]

· sin (kz) [1 − f (En,ky ,kz/2)],

Pz
↑,ix = −

2i
NyNz

∑
n,ky ,kz

uix ,n,ky ,kzw
∗
ix ,n,ky ,kz sin (kz) [1 − f (En,ky ,kz/2)],

Pz
↓,ix = −

2i
NyNz

∑
n,ky ,kz

vix ,n,ky ,kz x∗ix ,n,ky ,kz sin (kz) [1 − f (En,ky ,kz/2)].

(2.61)

If we want to compute the triplet amplitudes for a specific direction of the
homogeneous ferromagnetic exchange field h such that (↑↑)h and (↓↓)h represent
the long-range triplets, the triplet amplitudes must be transformed so that the
spins are defined with respect to the vector h. The vector h is described by
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the polar coordinates (θ, φ) with respect to the z axis. We transform the triplet
amplitudes by inserting (ci,↑)θ,φ = cos(θ/2)e−iφ/2(ci,↑)z + sin(θ/2)eiφ/2(ci,↓)z and
(ci,↓)θ,φ = − sin(θ/2)e−iφ/2(ci,↑)z + cos(θ/2)eiφ/2(ci,↓)z [9] into Eqs. 2.55 and
2.57. For the s-wave triplet amplitudes, we get

[S0,ix (τ)]θ,φ = − sin(θ){e−iφ[S↑,ix (τ)]z − eiφ[S↓,ix (τ)]z} + cos(θ)[S0,ix (τ)]z,
[S↑,ix (τ)]θ,φ = cos2(θ/2)e−iφ[S↑,ix (τ)]z + sin2(θ/2)eiφ[S↓,ix (τ)]z

+ sin(θ/2) cos(θ/2)[S0,ix (τ)]z,
[S↓,ix (τ)]θ,φ = sin2(θ/2)e−iφ[S↑,ix (τ)]z + cos2(θ/2)eiφ[S↓,ix (τ)]z

− sin(θ/2) cos(θ/2)[S0,ix (τ)]z,
(2.62)

and for the p-wave triplet amplitudes, we get

[Pn
0,ix ]θ,φ = − sin(θ){e−iφ[Pn

↑,ix ]z − eiφ[Pn
↓,ix ]z} + cos(θ)[Pn

0,ix ]z,
[Pn
↑,ix ]θ,φ = cos2(θ/2)e−iφ[Pn

↑,ix ]z + sin2(θ/2)eiφ[Pn
↓,ix ]z

+ sin(θ/2) cos(θ/2)[Pn
0,ix ]z,

[Pn
↓,ix ]θ,φ = sin2(θ/2)e−iφ[Pn

↑,ix ]z + cos2(θ/2)eiφ[Pn
↓,ix ]z

− sin(θ/2) cos(θ/2)[Pn
0,ix ]z.

(2.63)

The even-frequency s-wave singlet amplitude is given by

Ss,i =
〈
ci,↑ci,↓

〉
−

〈
ci,↓ci,↑

〉
. (2.64)

By inserting the expressions for the annihilation operators given in Eq. 2.17, we
find that the s-wave singlet amplitude is proportional to the superconducting gap,

Ss,i = 2∆i/Ui. (2.65)

By rotating the singlet amplitude similarly to the triplet amplitudes, we find
that the singlet amplitude is rotationally invariant with respect to the choice of
quantization axis. The quantity

S̃s =
1

Nx,S

∑
ix

|Ss,ix | (2.66)

can therefore be used as a measure of the s-wave singlet amplitude of the system
for given directions of the magnetization and spin-orbit field. The sum is taken
over the superconducting region only, as we are primarily interested in describing
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how the superconducting condensation energy depends on the magnetization
direction or the direction of the spin-orbit field. Eq. 2.66 is useful for predicting
variations in F andTc, as the total change in the singlet amplitude indirectly shows
the total triplet generation. It is harder to calculate the total triplet amplitude, as
it is difficult to determine how the different triplets should be weighted in order
to account for the total singlet to triplet generation. Also, the total amplitude
of the above calculated s-wave and p-wave triplets may not be a good measure
of the total s-wave singlet amplitude as there may be d-wave triplets, and p-
and d-wave singlets in the system contributing to the suppression of the s-wave
singlet amplitude. To find the total triplet density we would also need some way
to account for all choices of τ. It is therefore simpler to examine the singlet to
triplet generation by using Eq. 2.66. Note however that Eq. 2.66 is defined at a
given temperature. One must therefore be careful when comparing the angular
dependence of S̃s and Tc, since S̃s must be computed for some T < Tc.

2.6 the superconducting coherence length

The superconducting coherence length (ξ) of a superconducting hybrid structure
is a measure of the distance over which the superconducting gap is affected by the
non-superconducting layers, and it is therefore an important length scale when
adding ferromagnetic and heavy-metal layers to a superconductor. The effects of
the additional layers can be expected to be strongest when ξ is the same length
or slightly longer than the thickness of the superconductor. In the ballistic limit
the superconducting coherence length is given by [4]

ξ = ~vF/π∆0. (2.67)

The normal state Fermi velocity, vF , is obtained by the dispersion relation vF =
1
~

dEk
dk

��
k=kF

[4]. Ek = −2t[cos(kx) + cos(ky) + cos(kz)] − µN is the normal-state
eigenenergies obtained from Eq. 2.1 if we use periodic boundary conditions in
all three directions. The Fermi momentum kF corresponds to the Fermi energy
EF , which is the highest occupied energy level at T = 0. In our theoretical
framework, EF is located at Ek = 0. Since our Fermi surface is not spherical,
we need to average over all possible vF . In our algorithm for finding vF , we
choose Nx, Ny and Nz to be sufficiently large (we choose Nx = Ny = Nz = 100),
so that we have a large number of discrete kx, ky and kz values. In order to
find all k located at the Fermi surface, we calculate Ek for all combinations of
{kx, ky, kz} and determine whether Ek ∈ [min(Ek)/100, 0], i.e. whether Ek is
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sufficiently close to the Fermi energy. We estimate vF by averaging over all of
the Fermi velocities calculated from the possible Fermi momenta. ∆0 is the zero
temperature superconducting gap of the superconducting heterostructure. Note
that∆0 is dependent upon the magnetization direction of the ferromagnetic layers
and the direction of the Rashba spin-orbit field in the heavy-metal layers. The
change in ξ when rotating the magnetization and the spin-orbit field is however
typically much smaller than the distance between two lattice points. In our lattice
model we round ξ down to the closest integer number of lattice points.

2.7 the 2d and 3d lattice models

In our calculations, we have used a 3D cubic latticemodel with periodic boundary
conditions in both the y direction and z direction. It is worth noting that this
gives qualitatively different results than if we use a 2D square lattice model
with periodic boundary conditions only in the y direction. Since the 2D model
does not have periodic boundary conditions in the z direction, we do not get the
sin(kz)-terms in Eqs. 2.10 and 2.49 when considering a 2D square lattice. For the
S/HM/F system, this implies that the system is invariant under φ-rotations of h.
Physical quantities such as Tc and F therefore have the same angular dependence
in the xz and yz planes, so that the system is not invariant under π/2-rotations
in the yz plane as is expected for a 3D cubic lattice. Similarly, we need to model
our S/HM system as a 3D cubic lattice structure in order to have π/2-rotational
invariance of the spin-orbit field in the yz plane. It should therefore be cautioned
against simplifying the numerical simulations of a 3D cubic lattice by using a 2D
square lattice model when spin-orbit coupling is present due to its k-dependence.
For k-independent interactions, such as a magnetic exchange field, the distinction
between 2D and 3D becomes less important. In our calculations we use Ny = Nz

so that we get an equal number of ky and kz values, thereby obtaining a π/2-
rotational invariance in the yz plane even when Ny and Nz are not much larger
than the film thicknesses. It should also be noted that the thickness of the sample
parallel to the interfaces is important for the physical results obtained in an
experiment. In this thesis, we model thin-film structures in which the width of
the sample in the y and z directions is much larger than the thickness of the
sample in the x direction.
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2.8 the choice of parameters

When modelling heterostructures where thin heavy-metal and ferromagnetic
films are added to a superconducting layer, we want to find a set of parameters
that results in considerable changes in the physical properties of the system,
such as Tc and F. When choosing our system parameters, we must take into
account the superconducting coherence length, and the strength and size of the
non-superconducting layers compared to the superconducting layer. Our choices
of parameters are also restricted to lattice sizes that are not too computationally
expensive. Also, we must make sure to choose Ny and Nz large enough to avoid
numerical artifacts due to the discreteness of our model.

As mentioned in Sec. 2.6, the superconducting layer is most strongly affected by
interface effects when the superconducting coherence length is comparable to
the thickness of the superconducting layer. If ξ and Nx,S are comparable, bulk su-
perconductivity cannot be obtained in the middle of the superconducting region.
Due to its dependence on the superconducting gap and the Fermi velocity, the su-
perconducting coherence length depends on all of the system parameters. Adding
a ferromagnetic or heavy-metal layer to a superconductor lowers the supercon-
ducting gap and the critical temperature. Adding a heavy-metal layer between the
superconductor and a ferromagnetic layer increases ∆ andTc compared to the S/F
bilayer, as the heavy-metal partly shields the superconductor from the ferromag-
net. The strength and size of an additional layer must be chosen so that it gives as
strong an effect as possible without suppressing superconductivity completely or
shielding the effect of other non-superconducting layers. In Ref. [25], it is shown
that for a diffusive S/HM/F system, the Rashba spin-orbit coupling must neither
be too strong nor too weak in order to get a variation in Tc when rotating the
magnetization of a diffusive S/HM/F structure from IP to OOP. For such systems
the energy penalty that suppresses triplet amplitudes depends on the Rashba
spin-orbit coupling parameter λ to the second order. A large λ therefore leads to
a strong suppression of triplet amplitudes for all magnetization directions, and Tc

is always high. A small λ leads to a negligible triplet suppression, and Tc remains
low for all magnetization directions.

In this thesis, we will consider some physical quantities that have a dependence
on the magnetization direction or the direction of the spin-orbit field that changes
qualitatively if we, by choosing a different set of parameters, change the energy
band structure of the system. This is caused by the dependence of the singlet to
triplet generation on the eigenenergies. Since the energy band structure depends
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on all of the system parameters, all parameters must be taken into consideration
if we want to demonstrate a particular behavior of a physical quantity under
rotations of the magnetization or spin-orbit field. The importance of the band
structure will be further discussed in Chs. 4 and 5.

2.9 the relevance of the bogoliubov-de gennes framework

Before applying the tight-binding lattice BdG framework to the systems consid-
ered in this thesis, we consider its relevance with respect to making predictions
for systems that are experimentally realizable. Asmentioned, the BdG framework
is well suited for describing thin-film heterostructures. We can model atomically
thin layers, and capture the crystal symmetry of the sample and its influence
on physical quantities. Another advantage is that we can vary the parameters
describing our system across a large range. The main weakness of the theoretical
framework presented above, is that we are restricted to considering relatively
small sample sizes in order to keep the system computationally manageable,
especially when considering a 3D lattice.

When considering a thin superconducting layer, the superconducting coherence
length must be short in order to be comparable to the thickness of the super-
conducting layer. ξ is proportional to the inverse of the zero temperature super-
conducting gap. Considering a thin superconducting layer therefore results in
a large value for the superconducting order parameter, and also a large critical
temperature. However, if the spatial dimensions of all layers are scaled by the su-
perconducting coherence length, the theoretical framework presented above can
still be used to make qualitative and quantitative predictions for experimentally
realistic systems. An example that illustrates that the method presented above
gives good agreement with experimental results when scaled in this way is Ref.
[35], where the authors use the same theoretical formalism that we use in this
thesis. The predictions made in Ref. [35] were later found to correspond very
well to experimental measurements done in Ref. [36]. We therefore have good
reasons to expect that the results obtained in Chs. 4 and 5 should agree well
with experimental measurements as long as the system parameters correspond
to the same ratio between the layer thickness and the superconducting coherence
length, Nx/ξ.
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3
BOGOL IUBOV-DE GENNES SCATTER ING THEORY

In this chapter, we introduce an additional theoretical framework, where we treat
the BdG Hamiltonian for HM/S and F/S systems by continuum scattering theory
in order to compute the singlet and triplet even- and odd-frequency retarded
anomalous Green’s functions of these systems. The original description of this
theoretical framework by McMillan is given in Ref. [37]. We will mainly use
conventions similar to those in Refs. [38, 39], but Refs. [40–44] are also relevant.
These describe amore generalized version of the theoretical framework described
by McMillan. The theoretical framework presented in this chapter allows us to
obtain analytical expressions for the singlet and triplet amplitudes of the 2D
HM/S system with n̂ = x̂, and thus complements the theoretical framework
presented in Ch. 2. We will treat the 2D F/S system with h = hẑ for comparison.
We will also treat the case of a 2D HM/S system with n̂ = ẑ, which require
numerical treatment. The three systems we consider in this chapter are shown in
Fig. 3.1.

x

y

0

HM S

n

x

y

0

HM S

n

x

y

0

F S

h^ ^

(a) (b) (c)

Figure 3.1: Panel (a) shows the 2D HM/S system with n̂ = x̂, panel (b) shows the HM/S
system with n̂ = ẑ, and panel (c) shows the F/S system with h = hẑ.
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3.1 green’s functions

3.1.1 The retarded and advanced Green’s functions

In order to compute the singlet and triplet even- and odd-frequency ampli-
tudes present in the superconducting heterostructure, we define the ordinary
and anomalous Green’s functions gα,β(r1, r2; t1, t2) and fα,β(r1, r2; t1, t2) of the
system. These can be written in terms of single-particle field operators ψσ(r , t)
as [45, 46]

gα,β(r1, r2; t1, t2) = − i
〈
T
{
ψα(r1, t1),ψ†β(r2, t2)

}〉
= − iθ(t1 − t2)

〈{
ψα(r1, t1),ψ†β(r2, t2)

}〉
+ iθ(t2 − t1)

〈{
ψα(r1, t1),ψ†β(r2, t2)

}〉
,

fα,β(r1, r2; t1, t2) = − i
〈
T
{
ψα(r1, t1),ψβ(r2, t2)

}〉
= − iθ(t1 − t2)

〈{
ψα(r1, t1),ψβ(r2, t2)

}〉
+ iθ(t2 − t1)

〈{
ψα(r1, t1),ψβ(r2, t2)

}〉
,

(3.1)

where T is the Wick time ordering operator and θ(t1 − t2) is the Heaviside step
function. Above, r1 and r2 are the positions of the two correlated particles in the
2D system, t1 and t2 are the time coordinates of the two correlated particles, and
α and β represent spin degrees of freedom. As shown in Fig. 3.2(a), the ordinary
Green’s function gα,β(r1, r2; t1, t2) can be interpreted as the overlap between
creating an electron with spin β at (r2, t2) and finding an electron with spin α
at position r1 at a later time t1. As shown in Fig. 3.2(b), the anomalous Green’s
function fα,β(r1, r2; t1, t2) can be interpreted as the overlap between annihilating
an electron with spin β at (r2, t2) and finding an electron with spin α at position r1
at a later time t1. The two electrons described by the anomalous Green’s function
are the two correlated electrons forming a Cooper pair [47].

The ordinary and anomalous Green’s functions can be separated into a retarded
and an advanced part. The retarded Green’s function is nonzero for t1 > t2, so
that we have a causality between the creation or annihilation of an electron with
spin β at (r2, t2) and the possible detection of an electron with spin α at (r1, t1).
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The advanced Green’s function is not causal as it is instead nonzero for t2 > t1.
The retarded and advanced Green’s functions are given by [45]

gr
α,β(r1, r2; t1, t2) = −iθ(t1 − t2)

〈{
ψα(r1, t1),ψ†β(r2, t2)

}〉
,

ga
α,β(r1, r2; t1, t2) = iθ(t2 − t1)

〈{
ψα(r1, t1),ψ†β(r2, t2)

}〉
,

f r
α,β(r1, r2; t1, t2) = −iθ(t1 − t2)

〈{
ψα(r1, t1),ψβ(r2, t2)

}〉
,

f a
α,β(r1, r2; t1, t2) = iθ(t2 − t1)

〈{
ψα(r1, t1),ψβ(r2, t2)

}〉
,

(3.2)

such that g(r1, r2; t1, t2) = gr(r1, r2; t1, t2)+ga(r1, r2; t1, t2) and f (r1, r2; t1, t2) =
f r(r1, r2; t1, t2) + f a(r1, r2; t1, t2).

We now construct retarded (advanced) Green’s functions in Nambu ⊗ spin space
in a similar way as is done in Ref. [45]. The ordinary and anomalous retarded
(advanced) Green’s functions in spin space are given by

gr(a)(r1, r2; t1, t2) =
©­«
g

r(a)
↑,↑ (r1, r2; t1, t2) g

r(a)
↑,↓ (r1, r2; t1, t2)

g
r(a)
↓,↑ (r1, r2; t1, t2) g

r(a)
↓,↓ (r1, r2; t1, t2)

ª®¬
f r(a)(r1, r2; t1, t2) =

©­«
f r(a)
↑,↑ (r1, r2; t1, t2) f r(a)

↑,↓ (r1, r2; t1, t2)
f r(a)
↓,↑ (r1, r2; t1, t2) f r(a)

↓,↓ (r1, r2; t1, t2)
ª®¬ .

(3.3)

In Nambu ⊗ spin space, we can construct the retarded (advanced) Green’s func-
tion as a 4 × 4-matrix given by

Gr(a)(r1, r2; t1, t2) =
(

gr(a)(r1, r2; t1, t2) f r(a)(r1, r2; t1, t2)
−[ f r(a)(r1, r2; t1, t2)]∗ −[gr(a)(r1, r2; t1, t2)]∗

)
. (3.4)

The elements of the two lower blocks of the above matrix are given by

−[gr
α,β(r1, r2; t1, t2)]∗ = −iθ(t1 − t2)

〈{
ψ†α(r1, t1),ψβ(r2, t2)

}〉
,

−[ga
α,β(r1, r2; t1, t2)]∗ = iθ(t2 − t1)

〈{
ψ†α(r1, t1),ψβ(r2, t2)

}〉
,

−[ f r
α,β(r1, r2; t1, t2)]∗ = −iθ(t1 − t2)

〈{
ψ†α(r1, t1),ψ†β(r2, t2)

}〉
,

−[ f a
α,β(r1, r2; t1, t2)]∗ = iθ(t2 − t1)

〈{
ψ†α(r1, t1),ψ†β(r2, t2)

}〉
.

(3.5)

The ordinary Green’s function formed by the first retarded Green’s function and
the first anomalous Green’s function above can be interpreted as the overlap
between annihilating an electron with spin β at (r2, t2) and finding a hole with
spin α at position r1 at a later time t1. The ordinary Green’s function formed by
the second retarded Green’s function and the second anomalous Green’s function
above can be interpreted as the overlap between creating an electron with spin β
at (r2, t2) and finding a hole with spin α at position r1 at a later time t1 [47].
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t

(r1,t1,α)(r2,t2,β)

t

(r2,t2,β)
(r1,t1,α)

(a)

(b)

Figure 3.2: (a) The ordinary Green’s function, gα,β(r1, r2; t1, t2), can be interpreted as
the overlap between creating an electron with spin β at (r2, t2), and finding that electron
at (r1, t1) with a spin α. (b) The anomalous Green’s function, fα,β(r1, r2; t1, t2), can be
interpreted as the overlap between removing an electron with spin β, which is one of the
two electrons in a Cooper pair, from position r2 at time t2, and finding the remaining
electron of the Cooper pair at (r1, t1) with spin α. The t axes mark the time evolution if
the processes are causal, t1 > t2.

In 4-vector notation, the retarded and advanced Green’s functions in Eq. 3.4 can
be written [45]

[Gr(r1, r2; t1, t2)]i j = −iθ(t1 − t2)
〈
{[ψ(r1, t1)]i, [ψ†(r2, t2)] j}

〉
,

[Ga(r1, r2; t1, t2)]i j = iθ(t2 − t1)
〈
{[ψ(r1, t1)]i, [ψ†(r2, t2)] j}

〉
,

(3.6)

where ψ(r , t) = [ψ↑(r , t) ψ↓(r , t) ψ†↑ (r , t) ψ†↓ (r , t)]T .

3.1.2 The equation of motion of the field operator

Wewill now derive an expression for the equation of motion of the field operator,
that will be used in order to derive an equation of motion for the retarded Green’s
function. These equations of motion will be needed whenwe later on construct an
expression for the retarded Green’s function in terms of scattering wave functions.
We will also derive boundary conditions for the retarded Green’s function from
the equation of motion. In this section and in Sec. 3.1.3, we will use a similar
approach to that in Ref. [45].
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Our starting point is the Heisenberg equation of motion for the single-particle
field operators [45],

i∂tψσ(r , t) = [ψσ(r , t), H]. (3.7)

By taking the Hermitian conjugate of the above expression, we obtain the Heisen-
berg equation of motion for the adjoint field operator,

i∂tψ
†
σ(r , t) = [ψ†σ(r , t), H], (3.8)

where we have used that the Hamiltonian is hermitan, i.e. H = H†. We now want
to find the equation of motion for the field operator ψ(r , t) in 4-vector notation.
The Hamiltonian can be written in terms of field operators as [27, 45]

H =
∑
σ

∫
dr ψ†σ(r , t)(−∇2/η − µ)ψσ(r , t)

−
∫

dr
∫

dr′U(r , r′)ψ†↑ (r , t)ψ↑(r , t)ψ†↓ (r
′, t′)ψ↓(r′, t′)

+
∑
σ,σ′

∫
dr ψ†σ(r , t)(n̂ ×σ)σ,σ′ · λ p̂ψσ′(r , t),

+
∑
σ,σ′

∫
dr ψ†σ(r , t)(h · σ)σ,σ′ψσ′(r , t),

(3.9)

where η ≡ 2m/~2. The terms are only nonzero in their respective regions.We have
used the non-symmetrized Rashba spin-orbit coupling operator from Eq. 2.27, as
we in our further treatment will find wave functions inside each material by con-
sidering the superconductor and the heavy-metal separately, and later introduce
the effects of the interface through reflection and transmission amplitudes. When
the heavy-metal is considered separately as a bulk material, the symmetrized
Hamiltonian reduces to the expression for the non-symmetrized Hamiltonian.
For the superconducting term in Eq. 3.9, we use a mean-field approximation [45]

ψ↑(r , t)ψ↓(r , t) =
〈
ψ↑(r , t)ψ↓(r , t)

〉
+ δ,

ψ†↑ (r , t)ψ†↓ (r , t) =
〈
ψ†↑ (r , t)ψ†↓ (r , t)

〉
− δ†,

(3.10)

similar to the mean-field approximation in Sec. 2.1. We also assume that the
attractive potential is short ranged and constant within the superconducting
material so that U(r , r′) = Uδ(r − r′). The superconducting gap is defined
∆ ≡ U

〈
ψ↑(r , t)ψ↓(r , t)

〉
. By inserting Eq. 3.10 into the second term of Eq. 3.9

and neglecting terms of second order in δ and δ†, we find that the second term
in Eq. 3.9 can be written

HU = HU,0 +

∫
dr[∆∗(r , t)ψ↓(r , t)ψ↑(r , t)+∆(r , t)ψ†↑ (r , t)ψ†↓ (r , t)], (3.11)
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where HU,0 is a constant term which will not be of importance in our further
calculations.

We will now calculate the commutators [ψσ(r , t), H] and [ψ†σ(r , t), H]. In doing
this, we will use the field operator commutator relation

[A, BC] = ABC − BCA

= ABC + BAC − BAC − BCA

= (AB + BA)C − B(AC +CA)
= {A, B}C − B{A, C},

(3.12)

where A, B and C are field operators. We will also use the equal-time anticom-
mutation relations [45]

{ψσ(r , t),ψ†σ′(r
′, t)} = δσ,σ′δ(r − r′),

{ψσ(r , t),ψσ′(r′, t)} = {ψ†σ(r , t),ψ†σ′(r
′, t)} = 0.

(3.13)

We now consider the four terms in Eq. 3.9 separately. We will denote the four
terms Hε , HU , Hλ and HF , respectively. First, consider the commutator of the
field operator with the first term. We get

[ψσ(r , t), Hε ] =
∑
σ

∫
dr′ [ψσ(r , t),ψ†σ′(r

′, t)(−∇2
r ′/η − µ)ψσ′(r′, t)]

=
∑
σ′

∫
dr′ [{ψσ(r , t),ψ†σ′(r

′, t)}(−∇2
r ′/η − µ)ψσ′(r′, t)

− ψ†σ′(r
′, t)(−∇2

r ′/η − µ){ψσ(r , t),ψσ′(r′, t)}]

=
∑
σ′

∫
dr′ δσ,σ′δ(r − r′)(−∇2

r ′/η − µ)ψσ′(r′, t)

=(−∇2
r/η − µ)ψσ(r , t).

(3.14)

The commutator of the adjoint field operator with the first term is

[ψ†σ(r , t), Hε ] =
∑
σ′

∫
dr′ [ψ†σ(r , t),ψ†σ′(r

′, t)(−∇2
r ′/η − µ)ψσ′(r′, t)]

=
∑
σ′

∫
dr′ [{ψ†σ(r , t),ψ†σ′(r

′, t)}(−∇2
r ′/η − µ)ψσ′(r′, t)

− ψ†σ′(r
′, t)(−∇2

r ′/η − µ){ψ†σ(r , t),ψσ′(r′, t)}]

= −
∑
σ′

∫
dr′ ψ†σ′(r

′, t)(−∇2
r ′/η − µ)δσ,σ′δ(r − r′).

(3.15)
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By partial integration∫
dr′ ψ†σ′(r

′, t)∇r ′δ(r − r′) = −
∫

dr′ δ(r − r′)∇r ′ψ†σ′(r
′, t)∫

dr′ ψ†σ′(r
′, t)∇2

r ′δ(r − r′) = −
∫

dr′ [∇r ′ψ†σ′(r
′, t)][∇r ′δ(r − r′)]

=

∫
dr′ δ(r − r′)∇2

r ′ψ
†
σ′(r

′, t).

(3.16)

We therefore get

[ψ†σ(r , t), Hε ] = −
∑
σ′

∫
dr′ δσ,σ′δ(r − r′)(−∇2

r ′/η − µ)ψ
†
σ′(r

′, t)

= (∇2
r/η + µ)ψ†σ(r , t).

(3.17)

The commutator of the field operator with the second term in Eq. 3.9 is

[ψσ(r , t), HU] =
∫

dr′ [ψσ(r , t),∆∗(r′, t)ψ↓(r′, t)ψ↑(r′, t)

+ ∆(r′, t)ψ†↑ (r
′, t)ψ†↓ (r

′, t)]

=

∫
dr′ [{ψσ(r , t),ψ↓(r′, t)}∆∗(r′, t)ψ↑(r′, t)

− ∆∗(r′, t)ψ↓(r′, t){ψσ(r , t),ψ↑(r′, t)}
+ {ψσ(r , t),ψ†↑ (r

′, t)}∆(r′, t)ψ†↓ (r
′, t)

− ∆(r′, t)ψ†↑ (r
′, t){ψσ(r , t),ψ†↓ (r

′, t)}]

=

∫
dr′ [δσ,↑δ(r − r′)∆(r′, t)ψ†↓ (r

′, t)

− δσ,↓δ(r − r′)∆(r′, t)ψ†↑ (r
′, t)]

=δσ,↑∆(r , t)ψ†↓ (r , t) − δσ,↓∆(r , t)ψ†↑ (r , t).

(3.18)

The commutator of the adjoint field operator with the second term in Eq. 3.9 is

[ψ†σ(r , t), HU] =
∫

dr′ [ψ†σ(r , t),∆∗(r′, t)ψ↓(r′, t)ψ↑(r′, t)

+ ∆(r′, t)ψ†↑ (r
′, t)ψ†↓ (r

′, t)]

=

∫
dr′ [{ψ†σ(r , t),ψ↓(r′, t)}∆∗(r′, t)ψ↑(r′, t)

− ∆∗(r′, t)ψ↓(r′, t){ψ†σ(r , t),ψ↑(r′, t)}
+ {ψ†σ(r , t),ψ†↑ (r

′, t)}∆(r′, t)ψ†↓ (r
′, t)

− ∆(r′, t)ψ†↑ (r
′, t){ψ†σ(r , t),ψ†↓ (r

′, t)}]
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=

∫
dr′ [δσ,↓δ(r − r′)∆∗(r′, t)ψ↑(r′, t)

− δσ,↑δ(r − r′)∆∗(r′, t)ψ↓(r′, t)]
=δσ,↓∆

∗(r , t)ψ↑(r , t) − δσ,↑∆
∗(r , t)ψ↓(r , t).

(3.19)

The commutator of the field operator with the third term in Eq. 3.9 is

[ψσ(r , t), Hλ] =
∑
σ′,σ′′

∫
dr′ [ψσ(r , t),ψ†σ′(r

′, t)(n̂ ×σ)σ′,σ′′ · λ p̂r ′ψσ′′(r′, t)]

=
∑
σ′,σ′′

∫
dr′ [{ψσ(r , t),ψ†σ′(r

′, t)}(n̂ ×σ)σ′,σ′′ · λ p̂r ′ψσ′′(r′, t)

− ψ†σ′(r
′, t)(n̂ ×σ)σ′,σ′′ · λ p̂r ′{ψσ(r , t),ψσ′′(r′, t)}]

=
∑
σ′,σ′′

∫
dr′ δσ,σ′δ(r − r′)(n̂ ×σ)σ′,σ′′ · λ p̂r ′ψσ′′(r′, t)

=
∑
σ′′
(n̂ ×σ)σ,σ′′ · λ p̂rψσ′′(r , t).

(3.20)

Because p̂ = −i~∇, we need to use Eq. 3.16 in order to find the commutator of
the adjoint field operator with the third term in Eq. 3.9. We get

[ψ†σ(r , t), Hλ] =
∑
σ′,σ′′

∫
dr′ [ψ†σ(r , t),ψ†σ′(r

′, t)(n̂ ×σ)σ′,σ′′ · λ p̂r ′ψσ′′(r′, t)]

=
∑
σ′,σ′′

∫
dr′ [{ψ†σ(r , t),ψ†σ′(r

′, t)}(n̂ ×σ)σ′,σ′′ · λ p̂r ′ψσ′′(r′, t)

− ψ†σ′(r
′, t)(n̂ ×σ)σ′,σ′′ · λ p̂r ′{ψ†σ(r , t),ψσ′′(r′, t)}]

= −
∑
σ′,σ′′

∫
dr′ ψ†σ′(r

′, t)(n̂ ×σ)σ′,σ′′ · λ p̂r ′δσ,σ′′δ(r − r′)

=
∑
σ′,σ′′

∫
dr′ δσ,σ′′δ(r − r′)(n̂ ×σ)σ′,σ′′ · λ p̂r ′ψ†σ′(r

′, t)

=
∑
σ′
(n̂ ×σ)σ′,σ · λ p̂rψ†σ′(r , t).

(3.21)

The commutator of the field operator with the fourth term in Eq. 3.9 is

[ψσ(r , t), HF] =
∑
σ′,σ′′

∫
dr′ [ψσ(r , t),ψ†σ′(r

′, t)(h · σ)σ′,σ′′ψσ′′(r′, t)]

[May 14, 2019 at 13:55 – classicthesis ]



3.1 green’s functions 39

=
∑
σ′,σ′′

∫
dr′ [{ψσ(r , t),ψ†σ′(r

′, t)}(h · σ)σ′,σ′′ψσ′′(r′, t)

− ψ†σ′(r
′, t)(h · σ)σ′,σ′′{ψσ(r , t),ψσ′′(r′, t)}]

=
∑
σ′,σ′′

∫
dr′ δσ,σ′δ(r − r′)(h · σ)σ′,σ′′ψσ′′(r′, t)

=
∑
σ′′
(h · σ)σ,σ′′ψσ′′(r , t).

(3.22)

Finally, the commutator of the adjoint field operator with the fourth term in
Eq. 3.9 is

[ψ†σ(r , t), HF] =
∑
σ′,σ′′

∫
dr′ [ψ†σ(r , t),ψ†σ′(r

′, t)(h · σ)σ′,σ′′ψσ′′(r′, t)]

=
∑
σ′,σ′′

∫
dr′ [{ψ†σ(r , t),ψ†σ′(r

′, t)}(h · σ)σ′,σ′′ψσ′′(r′, t)

− ψ†σ′(r
′, t)(h · σ)σ′,σ′′{ψ†σ(r , t),ψσ′′(r′, t)}]

= −
∑
σ′,σ′′

∫
dr′ δσ,σ′′δ(r − r′)(h · σ)σ′,σ′′ψ†σ′(r

′, t)

= −
∑
σ′
(h · σ)σ′,σψ†σ′(r , t).

(3.23)

Inserting Eqs. 3.14 and 3.17 - 3.23 into Eqs. 3.7 and 3.8 and writing the resulting
equation in 4-vector notation, we get

i∂tψ(r , t) = H(r)ψ(r , t),
−i∂tψ

†(r , t) = ψ†(r , t)H†(r),
(3.24)

where

H(r) =(−∇2/η − µ)τ̂3σ̂0 + ∆iτ̂+σ̂y − ∆∗iτ̂−σ̂y

+ iλ(nx∂y − ny∂x)τ̂0σ̂z + iλnz∂x τ̂3σ̂y − iλnz∂y τ̂0σ̂x

+ hx τ̂3σ̂x + hy τ̂0σ̂y + hz τ̂3σ̂z.
(3.25)

nx, ny and nz are the components of n̂. hx, hy and hz are the components of h.
Eq. 3.24 is the equation of motion for the 4-vector field operator.

Note that in our 4-vector notation, † means transposing the matrix or vector, and
complex conjugating all of its elements. We do not take the hermitian conjugate
of operators containedwithin thematrix, but rather the complex conjugate. There-
fore, the operators contained within the elements of H(r) are not invariant under
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the † operator, and H†(−i∂x,−i∂y) = H(i∂x, i∂y). This means that we must be
particularly careful when taking the hermitian conjugate of a Hamiltonian matrix
that has been subjected to a spatial Fourier transform, or where we have already
applied the Hamiltonian to a wave vector, letting −i∂x → kx and −i∂y → ky. In
this case, H†(kx, ky) = H(−kx,−ky).

3.1.3 The equation of motion of the retarded Green’s function

We next want to find the equation of motion of the retarded Green’s function
Gr(r1, r2; t1, t2). By writing the retarded Green’s function in 4-vector notation
using Eq. 3.6, we find that

[i∂t1G
r(r1, r2; t1, t2)]i, j =∂t1θ(t1 − t2)

〈
{[ψ(r1, t1)]i, [ψ†(r2, t2)] j}

〉
=δ(t1 − t2)

〈
{[ψ(r1, t1)]i, [ψ†(r2, t2)] j}

〉
+ θ(t1 − t2)

〈
{[∂t1ψ(r1, t1)]i, [ψ†(r2, t2)] j}

〉 (3.26)

and that

[i∂t2G
r(r1, r2; t1, t2)]i, j =∂t2θ(t1 − t2)

〈
{[ψ(r1, t1)]i, [ψ†(r2, t2)] j}

〉
= − δ(t1 − t2)

〈
{[ψ(r1, t1)]i, [ψ†(r2, t2)] j}

〉
+ θ(t1 − t2)

〈
{[ψ(r1, t1)]i, [∂t2ψ

†(r2, t2)] j}
〉
.
(3.27)

By applying the equal-time field operator anticommutation relations in Eq. 3.13,
we find that the first term in Eqs. 3.26 and 3.27 is given by

±δ(t1− t2)
〈
{[ψ(r1, t1)]i, [ψ†(r2, t2)] j}

〉
= ±δ(t1− t2)δ(r1− r2)(τ̂0σ̂0)i, j , (3.28)

respectively. By applying the equation of motion of the 4-vector field operator
given in Eq. 3.24 to the second term in Eqs. 3.26 and 3.27, we get

θ(t1 − t2)
〈
{[∂t1ψ(r1, t1)]i, [ψ†(r2, t2)] j}

〉
= −iθ(t1 − t2)

〈
{[H(r1)ψ(r1, t1)]i, [ψ†(r2, t2)] j}

〉
= −iθ(t1 − t2)

∑
k

〈
{[H(r1)]i,k[ψ(r1, t1)]k , [ψ†(r2, t2)] j}

〉
=

∑
k

[H(r1)]i,k[−iθ(t1 − t2)
〈
{[ψ(r1, t1)]k , [ψ†(r2, t2)] j}

〉
]

=
∑

k

[H(r1)]i,k[Gr(r1, r2; t1, t2)]k, j

= [H(r1)Gr(r1, r2; t1, t2)]i, j

(3.29)
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and

θ(t1 − t2)
〈
{[ψ(r1, t1)]i, [∂t2ψ

†(r2, t2)] j}
〉

= iθ(t1 − t2)
〈
{[ψ(r1, t1)]i, [ψ†(r2, t2)H†(r2)] j}

〉
= iθ(t1 − t2)

∑
k

〈
{[ψ(r1, t1)]i, [ψ†(r2, t2)]k[H†(r2)]k, j}

〉
= −

∑
k

[−iθ(t1 − t2)
〈
{[ψ(r1, t1)]i, [ψ†(r2, t2)]k}

〉
][H†(r2)]k, j

= −
∑

k

[Gr(r1, r2; t1, t2)]i,k[H†(r2)]k, j

= −[Gr(r1, r2; t1, t2)H†(r2)]i, j .

(3.30)

The resulting equations of motion of the retarded Green’s function are

[i∂t1 − H(r1)]Gr(r1, r2; t1, t2) = δ(t1 − t2)δ(r1 − r2)τ̂0σ̂0,
Gr(r1, r2; t1, t2)[−i∂t2 − H†(r2)] = δ(t1 − t2)δ(r1 − r2)τ̂0σ̂0,

(3.31)

where [i∂t1 − H(r1)] acts to the right and [−i∂t2 − H†(r2)] acts to the left.

We now introduce the average time coordinate T ≡ (t1 + t2)/2 and the relative
time coordinate t ≡ t1 − t2. The Fourier transform in the relative time coordinate
is [45]

Gr(r1, r2;T ,ω) =
∫ ∞

−∞
dt eiωtGr(r1, r2;T , t). (3.32)

The derivatives ∂t1 and ∂t2 in the equations of motion for the retarded Green’s
function in Eq. 3.31 can, according to the chain rule, be written

∂

∂t1
=
∂t
∂t1

∂

∂t
+
∂T
∂t1

∂

∂T
=
∂

∂t
+

1
2
∂

∂T
,

∂

∂t2
=
∂t
∂t2

∂

∂t
+
∂T
∂t2

∂

∂T
= − ∂

∂t
+

1
2
∂

∂T
.

(3.33)

In this thesis, we will only consider systems where the retarded Green’s func-
tion is independent of T . Therefore, ∂t1G

r(r1, r2;T , t) = ∂tGr(r1, r2;T , t) and
∂t2G

r(r1, r2;T , t) = −∂tGr(r1, r2;T , t). For brevity of notation, we will omit T
in the following. Using partial integration, we find that∫ ∞

−∞
dt eiωt[∂tGr(r1, r2; t)] = −iω

∫ ∞

−∞
dt eiωtGr(r1, r2; t)

= −iωGr(r1, r2;ω).
(3.34)
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If we apply the Fourier transform given in Eq. 3.32 to the equation of motion
given in Eq. 3.31 and also use Eq. 3.34, the equations of motion of the retarded
Green’s function can be written

[ω − H(r1)]Gr(r1, r2;ω) = δ(r1 − r2)τ̂0σ̂0,
Gr(r1, r2;ω)[ω − H†(r2)] = δ(r1 − r2)τ̂0σ̂0.

(3.35)

The former of these two equations of motion describes propagation from r2
affecting the field at r1. In order to find a physical interpretation of the latter
equation of motion, we write it on a similar form as the former,

[ω − H(r2)][Gr(r1, r2;ω)]† = δ(r1 − r2)τ̂0σ̂0. (3.36)

From Eq. 3.2, we can easily see that ga
α,β(r1, r2; t1, t2) = [gr

β,α(r2, r1; t2, t1)]∗,
and that f a

α,β(r1, r2; t1, t2) = − f r
β,α(r2, r1; t2, t1). By rewriting the elements of

the Green’s functions to the relative time coordinate and applying the Fourier
transform in relative time given by Eq. 3.32, we find that ga

α,β(r1, r2;ω) =
[gr
β,α(r2, r1;ω)]∗, and that f a

α,β(r1, r2;ω) = − f r
β,α(r2, r1;ω). It follows that

Ga(r1, r2;ω) = [Gr(r2, r1;ω)]†, and that Eq. 3.36 can be written

[ω − H(r2)]Ga(r2, r1;ω) = δ(r1 − r2)τ̂0σ̂0. (3.37)

This equation of motion describes a propagation from r1 affecting the field at r2.

We now introduce the center of mass coordinate Y ≡ (y1 + y2)/2 and the relative
coordinate y ≡ y1 − y2 along the y axis. The Fourier transform along the relative
y coordinate is [45]

Gr(x1, x2,Y , py;ω) =
∫ ∞

−∞
dy e−ipy yGr(x1, x2,Y , y;ω). (3.38)

H(r1) is dependent upon ∂y1 and ∂2
y1
, and H(r2) is dependent upon ∂y2 and ∂2

y2
.

The partial derivatives ∂y1 and ∂y2 can be written

∂

∂y1
=
∂y

∂y1

∂

∂y
+
∂Y
∂y1

∂

∂Y
=

∂

∂y
+

1
2
∂

∂Y
,

∂

∂y2
=
∂y

∂y2

∂

∂y
+
∂Y
∂y2

∂

∂Y
= − ∂

∂y
+

1
2
∂

∂Y
.

(3.39)

So far, we have not done any assumptions with regard to the position of the inter-
face between the superconductor and the non-superconducting material. We now
choose to consider a bilayer with the interface normal along the x axis and assume
translational invariance in the y direction. The retarded Green’s function must
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then be independent of Y , so that ∂y1G
r(x1, x2, y,Y ;ω) = ∂yGr(x1, x2, y,Y ;ω)

and ∂y2G
r(x1, x2, y,Y ;ω) = −∂yGr(x1, x2, y,Y ;ω). For brevity of notation, we

will omit Y in the following. By partial integration, we find that∫ ∞

−∞
dy e−ipy y[∂yGr(x1, x2, y;ω)]

= ipy

∫ ∞

−∞
dy e−ipy yGr(x1, x2, y;ω)

= ipyGr(x1, x2, py;ω)

(3.40)

and that∫ ∞

−∞
dy e−ipy y[∂2

yGr(x1, x2, y;ω)]

= ipy

∫ ∞

−∞
dy e−ipy y[∂yGr(x1, x2, y;ω)]

= −p2
y

∫ ∞

−∞
dy e−ipy yGr(x1, x2, y;ω)

= −p2
yG

r(x1, x2, py;ω).

(3.41)

By applying the Fourier transform in the relative y coordinate given in Eq. 3.38
to the equation of motion given in Eq. 3.35 and also using Eqs. 3.40 and 3.41,
we can write the equations of motion of the retarded Green’s function as

[ω − Hpy(x1)]Gr(x1, x2, py;ω) = δ(x1 − x2)τ̂0σ̂0,
Gr(x1, x2, py;ω)[ω − H−py(x2)] = δ(x1 − x2)τ̂0σ̂0,

(3.42)

where

Hpy(x1) = (−∂2
x1
/η + p2

y/η − µ)τ̂3σ̂0 + ∆iτ̂+σ̂y − ∆∗iτ̂−σ̂y

+ iλ(inx py − ny∂x)τ̂0σ̂z + iλnz∂x τ̂3σ̂y + λnzpy τ̂0σ̂x

+ hx τ̂3σ̂x + hy τ̂0σ̂y + hz τ̂3σ̂z.
(3.43)

3.1.4 The scattering retarded Green’s function

We now want to write the retarded Green’s function in terms of scattering wave
functions. We first follow a similar approach to that in Refs. [29, 46] in order to
justify that the retardedGreen’s function can bewritten in terms ofwave functions.
To avoid confusing notation, we will use the capital Ψ for wave functions, while
the lowercase ψ is reserved for field operators. The wave function Ψ(r , t) is a
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column 4-vector in Nambu ⊗ spin space, where the first element correspond to
spin-up electrons, the second element correspond to spin-down electrons, the
third element correspond to spin-up holes, and the fourth element correspond to
spin-down holes. Since the Green’s function describes a propagation from one
state at (r2, t2) to another state at (r1, t1), Ψ(r1, t1) can be expressed [29]

Ψ(r1, t1) =
∫

dr2 G(r1, r2; t1, t2)Ψ(r2, t2), (3.44)

where we integrate over all of space. By using the bra-ket notation and the
completeness relation

∫
dr2 |r2 〉〈 r2 | = 1, this wave function can also be written

Ψ(r1, t1) =
〈
r1

��Ψ(t1)〉
=

〈
r1

��e−iH(r1)(t1−t2)Ψ(t2)
〉

=

∫
dr2

〈
r1

��e−iH(r1)(t1−t2)
��r2

〉〈
r2

��Ψ(t2)〉
=

∫
dr2

〈
r1

��e−iH(r1)(t1−t2)
��r2

〉
Ψ(r2, t2),

(3.45)

where e−iH(r1)(t1−t2) is the time evolution operator. By comparing the above equa-
tion to Eq. 3.44, we find that the Green’s function can be written

G(r1, r2; t1, t2) =
〈
r1

��e−iH(r1)(t1−t2)
��r2

〉
=

∑
l

〈
r1

��l〉〈l
��e−iH(r1)(t1−t2)

��r2
〉

=
∑

l

〈
r1

��l〉〈l
��r2

〉
e−iEl(t1−t2)

=
∑

l

Ψl(r1, t1)Ψ†l (r2, t2),

(3.46)

where Ψl(r1, t1) = Ψl(r1)e−iElt1 and Ψl(r2, t2) = Ψl(r2)e−iElt2. Above, we have
used the completeness relation

∑
l |l 〉〈 l | = 1 to introduce the sum over energy

eigenstates. By defining Ψ̃T
l (r2, t2) ≡ Ψ†l (r2, t2), this can be rewritten as

G(r1, r2; t1, t2) =
∑

l

Ψl(r1, t1)Ψ̃T
l (r2, t2), (3.47)

where Ψ̃l(r2, t2) = Ψ̃l(r2)eiElt2. Note that although Ψ̃l(r2, t2) = Ψ∗l (r2, t2), ac-
cording to the above definition of Ψ̃T

l (r2, t2), the wave functions that we will
derive in Sec. 3.2 need not in general be each others complex conjugates, as this
is only one of the possible solutions.We only require the wave functions to satisfy
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their effective time-dependent and time-independent Schrödinger equations, that
we derive below.

Since the retarded Green’s function describes causal processes, it is given by

Gr(r1, r2; t1, t2) =
∑

l

Ψl(r1, t1)Ψ̃T
l (r2, t2)θ(t1 − t2). (3.48)

In this thesis, we will consider scattering processes at a fixed energy E . We can
therefore write the Green’s function as

Gr(r1, r2; t1, t2) = Ψ(r1, t1)Ψ̃T (r2, t2)θ(t1 − t2), (3.49)

where Ψ(r1, t1) = Ψ(r1)e−iEt1 and Ψ̃(r2, t2) = Ψ̃(r2)eiEt2. Ψ(r1, t1) and Ψ̃(r2, t2)
can be written as a sum over the wave functions Ψn(r1, t1) and Ψ̃m(r2, t2) describ-
ing the different scattering processes,

Ψ(r1, t1) =
∑

n

enΨn(r1, t1),

Ψ̃(r2, t2) =
∑

m

fmΨ̃m(r2, t2).
(3.50)

en and fm are yet unknown coefficients. The wave functions Ψn(r1, t1) and
Ψ̃m(r2, t2) can be written as a sum over wave functions describing individual
particles present in the system,

Ψn(r1, t1) =
∑

r

gn,rΨn,r(r1, t1),

Ψ̃m(r2, t2) =
∑

s

hm,sΨ̃m,s(r2, t2).
(3.51)

The coefficients gn,r and hm,s are equal to one for the incoming particle. For re-
flected particles, gn,r and hm,s are reflection amplitudes. For transmitted particles,
gn,r and hm,s are are transmission amplitudes.

In order for the retardedGreen’s function given in Eq. 3.49 to satisfy the equations
of motion given in Eq. 3.31, the wave functions of the individual particles and
quasi-particles must satisfy

[i∂t1 − H(r1)]Ψn,r(r1, t1) = 0,
Ψ̃

T
m,s(r2, t2)[−i∂t2 − H†(r2)] = 0.

(3.52)

The operator in the first equation operates to the right, and the operator in the
second equation operates to the left. If we use that [H†(r2)]T = H∗(r2), these
equations may be rewritten as

i∂t1Ψn,r(r1, t1) = H(r1)Ψn,r(r1, t1),
−i∂t2Ψ̃m,s(r2, t2) = H∗(r2)Ψ̃m,s(r2, t2).

(3.53)
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The above equations are the effective time-dependent Schrödinger equations
describing the wave functions. The Green’s function given in Eq. 3.49 must also
satisfy the equations of motion given in Eq. 3.35. This implies that the wave
functions of the individual particles and quasi-particles must satisfy

[ω − H(r1)]Ψn,r(r1, t1) = 0,
Ψ̃

T
m,s(r2, t2)[ω − H†(r2)] = 0.

(3.54)

The above equations can be rewritten as

H(r1)Ψn,r(r1, t1) = ωΨn,r(r1, t1)
H∗(r2)Ψ̃m,s(r2, t2) = ωΨ̃m,s(r2, t2).

(3.55)

These are the effective time-independent Shrödinger equations describing the
wave functions, and ω is the eigenenergy. We now assume that Ψn,r(r1, t1) and
Ψ̃m,s(r2, t2) are separable, so that they can be written

Ψn,r(r1, t1) = Rn,r(r1)Tn,r(t1),
Ψ̃m,s(r2, t2) = R̃m,s(r2)T̃m,s(t2).

(3.56)

We first consider the time dependent part. By combining Eqs. 3.53 and 3.55 and
inserting the above expressions for Ψn,r(r1, t1) and Ψ̃m,s(r2, t2), we find that

i∂t1Tn,r(t1) = ωTn,r(t1),
−i∂t2T̃m,s(t2) = ωT̃m,s(t2).

(3.57)

The solution to the above differential equations is

Tn,r(t1) = Cn,re−iωt1,
T̃m,s(t2) = C̃m,seiωt2.

(3.58)

By comparison to the time dependence found earlier, we find that ω = E . We
refer to the energy as E in the following, to distinguish between this parameter
and the ω introduced by Fourier transforming the Green’s function with respect
to the relative time coordinate later on.

We determine the spatial parts of the wave functions from Eq. 3.55 using a
similar approach to that in Ref. [44]. We assume the wave functions to be
plane waves, so that Ψn,r(r1, t1) ∝ eikx x1+iky y1 and Ψ̃m,s(r2, t2) ∝ eikx x2+iky y2.
Since (−i∂x1)eikx x1 = kxeikx x1 and (−i∂y1)eiky y1 = kyeiky y1, we can replace all
(−i∂x1) and (−i∂y1) in H(r1) by kx and ky. Since (−i∂x2)∗eikx x2 = −kxeikx x2 and
(−i∂y2)∗eiky y2 = −kyeiky y2, we can replace all (−i∂x2) and (−i∂y2) in H∗(r2) with
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−kx and −ky. Expressions for the wave functions are therefore found by solving
[38, 39]

H(k)Ψn,r(r1, t1) = EΨn,r(r1, t1)
H∗(−k)Ψ̃m,s(r2, t2) = EΨ̃m,s(r2, t2),

(3.59)

where

H(k) =(k2/η − µ)τ̂3σ̂0 + ∆iτ̂+σ̂y − ∆∗iτ̂−σ̂y

− λ(nx ky − nykx)τ̂0σ̂z − λnzkx τ̂3σ̂y + λnzky τ̂0σ̂x

+ hx τ̂3σ̂x + hy τ̂0σ̂y + hz τ̂3σ̂z,
(3.60)

Ψn,r(r1, t1) ∝ Φn,reikx x1+iky y1−iEt1, and Ψ̃m,s(r2, t2) ∝ Φn,reikx x2+iky y2+iEt2.Φn,r(m,s)
is a 4× 1 vector in Nambu ⊗ spin space. The value of kx for each Ψn,r(r1, t1) and
Ψ̃m,s(r2, t2) is determined by solving Eq. 3.59 for the material of interest. Due to
the translational invariance in the y direction, ky is the same for all particles and
quasi-particles present in the system. ky can take any value. We will return to
finding explicit expressions for the wave functions Ψn(r1, t1) and Ψ̃m(r2, t2) de-
scribing the possible scattering processes in the HM/S structures with n̂ = { x̂, ẑ}
and the F/S structure with h = hẑ in Sec. 3.2.

We now need to find which types of particles or quasi-particles may exist in each
region of our bilayer structures. We let the interface be positioned at x = 0. The
material is non-superconducting for x < 0 and superconducting for x > 0, as ear-
lier described in Fig. 3.1. A N/S junction without spin-orbit coupling has no spin-
splitting of the energy bands, and there are therefore only four different incoming
particles/quasi-particles: A right-moving electron, a right-moving hole, a left-
moving electron-like quasi-particle and a left-moving hole-like quasi-particle.
In HM/S and F/S junctions the particles exist in spin-split energy bands, that
depending on the direction of the spin-orbit field and magnetization may or may
not have spin-mixing. We therefore have eight different incoming particle/quasi-
particle wave functions: Two different electron wave functions (spin up and spin
down electrons in the case of no spin-mixing of the energy bands), two different
hole wave functions (spin up and spin down holes in the case of no spin-mixing
of the energy bands), two different electron-like quasi-particle wave functions
and two different hole-like quasi-particle wave functions. For the four scattering
processes where the incoming (quasi-)particle is incoming from the left, we let
{1, 2, 3, 4} be the possible n and m indices. For the four scattering processes
where the incoming quasi-particle is incoming from the right, we let {5, 6, 7, 8}
be the possible n and m indices.
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In order to construct the retarded Green’s function, we must find which of the
eight possible n and m indices are contributing to Ψ(r1, t1) and Ψ̃(r2, t2) in
Eq. 3.49. Of the two equations of motion of the retarded Green’s function given
by Eq. 3.35, the first describes propagation from r2 affecting the field at r1. The
second is equivalent to Eq. 3.37 and describes propagation from r1 affecting the
field at r2 [44]. Since Ψ(r1, t1) is derived from the first of the two equations of
motion, and Ψ̃(r2, t2) is derived from the second of the two equations of motion,
Ψ̃(r2, t2) must be interpreted as having the opposite direction of propagation
compared to Ψ(r1, t1) [40]. The Green’s function describes the propagation from
r2 to r1. This is satisfied if Ψ(r1, t1) describes propagation from r2 to r1, while
Ψ̃(r2, t2) describes propagation from r1 to r2.

x

y

0x2x1 x2x1

x

y

0x1x2 x1x2

SX

SX

(b)

(a)

Figure 3.3: Panel (a) shows the possible ways for a (quasi-)particle to propagate from
x2 to x1 > x2 inside X and S, if the incoming particle comes from the left. X is a
non-superconducting material such as a heavy-metal or ferromagnet. Panel (b) shows
the possible ways for a (quasi-)particle to propagate from x2 to x1 < x2 inside X and S,
if the incoming particle comes from the right. Note that each arrow may represent the
propagation of several different types of (quasi-)particles, and that a (quasi-)particle can
be reflected as a different (quasi-)particle.

We now have to consider the two cases shown in Fig. 3.3. If x1 > x2, the retarded
Green’s function describes an overall propagation from the left to the right.
From Fig. 3.3(a), we see that in the non-superconducting region, this means
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that Ψ(r1, t1) needs to describe all scattering processes where the incoming
particle comes from the left. This corresponds to the indices n = {1, 2, 3, 4}. In
the superconducting region we can imagine the particle to either represent the
transmission of quasi-particles due to particles incoming from the left (as shown
in Fig. 3.3(a)), or the reflection of quasi-particles due to quasi-particles incoming
from the right. However, consider the case when x1 is on the superconducting
side, and x2 is close to the interface. If moving x2 infinitesimally to the left
means that x2 crosses the interface and moves into the non-superconducting
region, then the propagating (quasi-)particles can no longer originate from quasi-
particles incoming from the right. Including indices corresponding to scattering
processes caused by quasi-particles incoming from the right would therefore
cause an incontinuity of the Green’s function. If, on the other hand, x1 is inside
the non-superconducting region and x2 moves from the non-superconducting
region to the superconducting region, this does not disqualify particles from
the left side as the source. Therefore, Ψ(r1, t1) must only include scattering
processes where the incoming particle comes from the left. For x1 > x2, the
indices giving a contribution to Ψ(r1, t1) are therefore n = {1, 2, 3, 4} both in the
non-superconducting and superconducting region.

If x1 < x2, the retardedGreen’s function describes an overall propagation from the
right to the left. From Fig. 3.3(b), we see that in the superconducting region, this
means thatΨ(r1, t1) needs to describe all scattering processeswhere the incoming
particle comes from the right. This corresponds to the indices n = {5, 6, 7, 8}. In
the non-superconducting region we can imagine the particle to either represent
the transmission of particles due to quasi-particles incoming from the right (as
shown in Fig. 3.3(b)), or the reflection of particles due to particles incoming
from the left. However, by the same argument as above, only scattering processes
caused by quasi-particles incoming from the right are allowed. For x1 < x2, the
indices giving a contribution to Ψ(r1, t1) are therefore n = {5, 6, 7, 8} both in the
non-superconducting and superconducting region.

In order for the retarded Green’s function to describe propagation from r2 to
r1, Ψ̃(r2, t2) must describe propagation from r1 to r2. For x1 > x2, we have
the same situation as for Ψ(r1, t1) when x1 < x2, and for x1 < x2, we have the
same situation as for Ψ(r1, t1) when x1 > x2. For x1 > x2, the indices giving
a contribution to Ψ̃(r2, t2) are therefore m = {5, 6, 7, 8}, while for x1 < x2, the
indices giving a contribution to Ψ̃m(r2, t2) are m = {1, 2, 3, 4}.
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Using that n = {1, 2, 3, 4} and m = {5, 6, 7, 8} for x1 > x2, and that n =
{5, 6, 7, 8} and m = {1, 2, 3, 4} for x1 < x2, the retarded Green’s function given
in Eq. 3.49 can be written [39]

[Gr(r1, r2; t1, t2)]x1>x2 =

Ψ1(r1, t1)[α11Ψ̃
T
5 (r2, t2) + α12Ψ̃

T
6 (r2, t2) + α13Ψ̃

T
7 (r2, t2) + α14Ψ̃

T
8 (r2, t2)]

+Ψ2(r1, t1)[α21Ψ̃
T
5 (r2, t2) + α22Ψ̃

T
6 (r2, t2) + α23Ψ̃

T
7 (r2, t2) + α24Ψ̃

T
8 (r2, t2)]

+Ψ3(r1, t1)[α31Ψ̃
T
5 (r2, t2) + α32Ψ̃

T
6 (r2, t2) + α33Ψ̃

T
7 (r2, t2) + α34Ψ̃

T
8 (r2, t2)]

+Ψ4(r1, t1)[α41Ψ̃
T
5 (r2, t2) + α42Ψ̃

T
6 (r2, t2) + α43Ψ̃

T
7 (r2, t2) + α44Ψ̃

T
8 (r2, t2)],

[Gr(r1, r2; t1, t2)]x1<x2 =

Ψ5(r1, t1)[β11Ψ̃
T
1 (r2, t2) + β12Ψ̃

T
2 (r2, t2) + β13Ψ̃

T
3 (r2, t2) + β14Ψ̃

T
4 (r2, t2)]

+Ψ6(r1, t1)[β21Ψ̃
T
1 (r2, t2) + β22Ψ̃

T
2 (r2, t2) + β23Ψ̃

T
3 (r2, t2) + β24Ψ̃

T
4 (r2, t2)]

+Ψ7(r1, t1)[β31Ψ̃
T
1 (r2, t2) + β32Ψ̃

T
2 (r2, t2) + β33Ψ̃

T
3 (r2, t2) + β34Ψ̃

T
4 (r2, t2)]

+Ψ8(r1, t1)[β41Ψ̃
T
1 (r2, t2) + β42Ψ̃

T
2 (r2, t2) + β43Ψ̃

T
3 (r2, t2) + β44Ψ̃

T
4 (r2, t2)].

(3.61)

The new coefficients αi j and βkl are found by solving the boundary conditions of
the retarded Green’s function at x1 = x2, which we will derive in the following
section.

3.1.5 The boundary conditions of the retarded Green’s function

We will now derive the boundary conditions of the retarded Green’s function at
x1 = x2 from the equation of motion given in Eq. 3.42. We first integrate Eq. 3.42
twice along x1 and consider the value of this double integral from x1 = x2 − δ
to x1 = x2 + δ in the limit δ → 0. For terms proportional to ∂2

x1
Gr(x1, x2, py;ω),

we get

lim
δ→0

∫ x2+δ

x2−δ
dx1

∫ x1

0
dx′1 ∂

2
x′1

Gr(x′1, x2, py;ω)

= lim
δ→0

∫ x2+δ

x2−δ
dx1 ∂x1G

r(x1, x2, py;ω)

= lim
δ→0
[Gr(x1, x2, py;ω)]x2+δ

x2−δ

= [Gr(x1 > x2, py;ω)]x1=x2 − [Gr(x1 < x2, py;ω)]x1=x2

(3.62)
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by partial integration. For terms proportional to ∂x1G
r(x1, x2, py;ω), we get

lim
δ→0

∫ x2+δ

x2−δ
dx1

∫ x1

0
dx′1 ∂x′1G

r(x′1, x2, py;ω)

= lim
δ→0

∫ x2+δ

x2−δ
dx1 Gr(x1, x2, py;ω).

(3.63)

For terms proportional to Gr(x1, x2, py;ω) we get

lim
δ→0

∫ x2+δ

x2−δ
dx1

∫ x1

0
dx′1 Gr(x′1, x2, py;ω). (3.64)

For the right-hand side of Eq. 3.42, we get

lim
δ→0

∫ x2+δ

x2−δ
dx1

∫ x1

0
dx′1 δ(x

′
1 − x2)τ̂0σ̂0

= lim
δ→0

∫ x2+δ

x2−δ
dx1 τ̂0σ̂0 = lim

δ→0
[x1]x2+δ

x2−δτ̂0σ̂0 = 0.
(3.65)

Therefore, the terms on the left-hand side must sum to zero. This is satisfied
if the retarded Green’s function is continuous at x1 = x2, i.e. if Eq 3.62 is
equal to zero. If the retarded Green’s function is continuous at x1 = x2, it
follows that the integral and double integral of the retarded Green’s function
over x1 = x2 must also be continuous, i.e. Eqs. 3.63 and 3.64 are also zero. Is it
possible for the retarded Green’s function to be discontinuous at x1 = x2? If so,
∂x1G

r(x1, x2, py;ω) ∝ δ(x1 − x2) and ∂2
x1

Gr(x1, x2, py;ω) ∝ δ(x1 − x2)/x1. Since
we have no such terms on the right-hand side of Eq. 3.42, the retarded Green’s
function cannot be discontinuous at x1 = x2. The first boundary condition is
therefore the continuity of the retarded Green’s function at x1 = x2 [39],

[Gr(x1 > x2, py;ω)]x1=x2 = [Gr(x1 < x2, py;ω)]x1=x2. (3.66)

To obtain the second boundary condition, we integrate Eq. 3.42 from x1 = x2 − δ
to x1 = x2 + δ in the limit δ → 0 and use the continuity of the Green’s function
at x1 = x2. For terms proportional to ∂2

x1
Gr(x1, x2, py;ω) we get

lim
δ→0

∫ x2+δ

x2−δ
dx1 ∂

2
x1

Gr(x1, x2, py;ω)

= lim
δ→0
[∂x1G

r(x1, x2, py;ω)]x2+δ
x2−δ

= [∂x1G
r(x1 > x2, py;ω)]x1=x2 − [∂x1G

r(x1 < x2, py;ω)]x1=x2.

(3.67)
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For terms proportional to ∂x1G
r(x1, x2, py;ω) we get

lim
δ→0

∫ x2+δ

x2−δ
dx1 ∂x1G

r(x1, x2, py;ω)

= lim
δ→0
[Gr(x1, x2, py;ω)]x2+δ

x2−δ

= [Gr(x1 > x2, py;ω)]x1=x2 − [Gr(x1 < x2, py;ω)]x1=x2 = 0

(3.68)

by using the continuity of the retarded Green’s function. For terms proportional
to Gr(x1, x2, py;ω) we get

lim
δ→0

∫ x2+δ

x2−δ
dx1 Gr(x1, x2, py;ω), (3.69)

whichmust also be equal to zerowhen the retardedGreen’s function is continuous.
After the integration, the only nonzero terms on the left-hand side of Eq. 3.42
are

{[∂x1G
r(x1 > x2, py;ω)]x1=x2 − [∂x1G

r(x1 < x2, py;ω)]x1=x2}τ̂3σ̂0/η. (3.70)

For the right-hand side of Eq. 3.42, we get

lim
δ→0

∫ x2+δ

x2−δ
dx1 δ(x1 − x2)τ̂0σ̂0 = τ̂0σ̂0. (3.71)

By equating Eqs. 3.70 and 3.71 and multiplying both sides of the resulting
equation by τ̂0σ̂3η, we get [39]

[∂x1G
r(x1 > x2, py;ω)]x1=x2 − [∂x1G

r(x1 < x2, py;ω)]x1=x2 = ητ̂3σ̂0. (3.72)

This is the second boundary condition of the retarded Green’s function.

3.1.6 The even- and odd-frequency retarded Green’s functions

We now turn to deriving the even- and odd-frequency singlet and triplet retarded
anomalous Green’s functions from the elements of the retarded Green’s func-
tion given in Eq. 3.61. The singlet and triplet retarded (advanced) anomalous
Green’s functions can be constructed from the elements of f r(r1, r2; t1, t2) and
f a(r1, r2; t1, t2) given in Eq. 3.3. We define [38, 39]

f r(a)
0 (r1, r2; t1, t2) ≡ [ f r(a)

↑,↓ (r1, r2; t1, t2) − f r(a)
↓,↑ (r1, r2; t1, t2)]/2

f r(a)
1 (r1, r2; t1, t2) ≡ f r(a)

↑,↑ (r1, r2; t1, t2)

f r(a)
2 (r1, r2; t1, t2) ≡ f r(a)

↓,↓ (r1, r2; t1, t2),

f r(a)
3 (r1, r2; t1, t2) ≡ [ f r(a)

↑,↓ (r1, r2; t1, t2) + f r(a)
↓,↑ (r1, r2; t1, t2)]/2.

(3.73)
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Above, f r(a)
0 (r1, r2; t1, t2) is the singlet retarded (advanced) anomalous Green’s

function, f r(a)
1 (r1, r2; t1, t2) and f r(a)

2 (r1, r2; t1, t2) are the equal-spin triplet re-
tarded (advanced) anomalous Green’s functions, while f r(a)

3 (r1, r2; t1, t2) is the
opposite-spin triplet retarded (advanced) anomalous Green’s function. We are
interested in decomposing the above singlet and triplet retarded Green’s func-
tions into even- and odd-frequency contributions. In order to do this, we consider
an anomalous Green’s function fα,β(r1, r2; t1, t2), and follow a similar approach
as in Ref. [33]. The Green’s function needs to satisfy the Pauli principle, i.e.
two identical half-integer spin fermions cannot simultaneously be in the same
quantum state. Therefore, the Green’s function must be odd under interchange of
the particles at equal times [33],

fα,β(r1, r2; t1, t1) = − fβ,α(r2, r1; t1, t1). (3.74)

In the following, we will write the above Green’s function in the center of
mass coordinate R ≡ (r1 + r2)/2, the relative spatial coordinate r ≡ r1 − r2, the
average time coordinateT ≡ (t1+ t2)/2, and the relative time coordinate t ≡ t1− t2.
We will use the Fourier transforms [33] in the relative spatial coordinate,

fα,β(R, p;T , t) =
∫

dr e−ip·r fα,β(R, r ;T , t), (3.75)

and in the relative time coordinate,

fα,β(R, p;T ,ω) =
∫ ∞

−∞
dt eiωt fα,β(R, p;T , t). (3.76)

The above spatial integral goes over all of space. By applying the spatial Fourier
transform in Eq. 3.75 to the definition of the Pauli principle in Eq. 3.74, we get

fα,β(R, p;T , 0) = −
∫

dr e−ip·r fβ,α(R,−r ;T , 0)

= −
∫

d(−r) e−i(−p)·(−r) fβ,α(R,−r ;T , 0)

= − fβ,α(R,−p;T , 0).

(3.77)

If we integrate fα,β(R, p;T ,ω) over all ω, apply the Fourier transform of the
relative time given in Eq. 3.76, and apply the reformulated definition of the Pauli
principle given in Eq. 3.77, we get∫ ∞

−∞
dω fα,β(R, p;T ,ω) =

∫ ∞

−∞
dω

∫ ∞

−∞
dt eiωt fα,β(R, p;T , t)
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=

∫ ∞

−∞
dt δ(t) fα,β(R, p;T , t)

= fα,β(R, p;T , 0)
= − fβ,α(R,−p;T , 0)

= −
∫ ∞

−∞
dt δ(t) fβ,α(R,−p;T , t)

= −
∫ ∞

−∞
dω

∫ ∞

−∞
dt eiωt fβ,α(R,−p;T , t)

= −
∫ ∞

−∞
dω fβ,α(R,−p;T ,ω).

(3.78)

The above equation is a reformulated definition of the Pauli principle. There are
two ways to satisfy the above equation,

fα,β(R, p;T ,ω) = − fβ,α(R,−p;T ,ω) (3.79)

or

fα,β(R, p;T ,ω) = − fβ,α(R,−p;T ,−ω). (3.80)

The latter allows for a Green’s function that is odd under inversion of ω. Odd-
frequency Green’s functions are odd under interchange of time coordinates [33],

f O
α,β(r1, r2; t1, t2) = − f O

α,β(r1, r2; t2, t1). (3.81)

If we apply the Fourier transforms in space and time given in Eqs. 3.75 and 3.76,
we find that Eq. 3.81 can be written

f O
α,β(R, p;T ,ω) = − f O

α,β(R, p;T ,−ω). (3.82)

The above equation is odd under inversion of ω, and Eq. 3.80 therefore allows
for odd-frequency pairing. Even-frequency Green’s functions are even under
interchange of the time coordinates [33],

f E
α,β(r1, r2; t1, t2) = f E

α,β(r1, r2; t2, t1). (3.83)

If we apply the Fourier transforms in space and time given in Eqs. 3.75 and 3.76,
we find that Eq. 3.83 can be written

f E
α,β(R, p;T ,ω) = f E

α,β(R, p;T ,−ω). (3.84)
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The above equation is even under inversion of ω. Therefore, both Eq. 3.79 and
Eq. 3.80 allow for even-frequency pairing, since the sign change in the former
equation must be caused by the sign change of other parameters thanω, and since
the sign change in the latter equation may be caused by the sign change of other
parameters than ω.

Next, wewant to decompose the Green’s function into a retarded and an advanced
contribution. Let the anomalous retarded and advanced Green’s functions be
defined as in Eq. 3.2. We can easily see that

f a
α,β(r1, r2; t1, t2) = − f r

β,α(r2, r1; t2, t1). (3.85)

By rewriting Eq. 3.85 to relative coordinates in space and time and applying the
Fourier transforms in Eqs. 3.75 and 3.76, we can instead write

f a
α,β(R, p;T ,ω) = − f r

β,α(R,−p;T ,−ω). (3.86)

We write the singlet and triplet retarded anomalous Green’s functions given in
Eq. 3.73 in the coordinates R, r , T and t, and apply the Fourier transforms in
Eqs. 3.75 and 3.76. By inserting Eq. 3.86, we find that

f a
0 (R, p;T ,ω) = f r

0 (R,−p;T ,−ω),
f a
i (R, p;T ,ω) = − f r

i (R,−p;T ,−ω),
(3.87)

where i = {1, 2, 3}. The reason for the difference in sign for singlets and triplets
in the above equation is that singlet Green’s functions are odd under interchange
of spins, while triplet Green’s functions are even under interchange of spins.

We now decompose the retarded Green’s functions into even- and odd-frequency
contributions,

f r
0 (R, p;T ,ω) = f r ,E

0 (R, p;T ,ω) + f r ,O
0 (R, p;T ,ω),

f r
i (R, p;T ,ω) = f r ,E

i (R, p;T ,ω) + f r ,O
i (R, p;T ,ω).

(3.88)

By using Eq. 3.86, we also find that

f a
0 (R, p;T ,−ω) = f r

0 (R,−p;T ,ω)
= f r ,E

0 (R,−p;T ,ω) + f r ,O
0 (R,−p;T ,ω),

f a
i (R, p;T ,−ω) = − f r

i (R,−p;T ,ω)
= − f r ,E

i (R,−p;T ,ω) − f r ,O
i (R,−p;T ,ω).

(3.89)

If we rewrite Eqs. 3.79 and 3.80 in terms of the singlet and triplet Green’s
functions, we get

f r
0 (R, p;T ,ω) = f r

0 (R,−p;T ,±ω),
f r
i (R, p;T ,ω) = − f r

i (R,−p;T ,±ω).
(3.90)
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In the above equation, ω must have a negative sign and f r
0(i) must be odd under

inversion of ω for the retarded Green’s function to be an odd-frequency Green’s
function. Eq. 3.90 can therefore be written

f r ,E
0 (R, p;T ,ω) = f r ,E

0 (R,−p;T ,ω),
f r ,O
0 (R, p;T ,ω) = − f r ,O

0 (R,−p;T ,ω),
f r ,E
i (R, p;T ,ω) = − f r ,E

i (R,−p;T ,ω),
f r ,O
i (R, p;T ,ω) = f r ,O

i (R,−p;T ,ω).

(3.91)

By inserting the above equation into Eq. 3.89, we find that

f a
0 (R, p;T ,−ω) = f r ,E

0 (R, p;T ,ω) − f r ,O
0 (R, p;T ,ω),

f a
i (R, p;T ,−ω) = f r ,E

i (R, p;T ,ω) − f r ,O
i (R, p;T ,ω).

(3.92)

By solving Eqs. 3.88 and 3.92 for f r ,E(O)
0 (R, p;T ,ω) and f r ,E(O)

i (R, p;T ,ω),
we find that the expressions for the even- and odd-frequency singlet and triplet
retarded anomalous Green’s functions are

f r ,E(O)
0 (R, p;T ,ω) = [ f r

0 (R, p;T ,ω) ± f a
0 (R, p;T ,−ω)]/2,

f r ,E(O)
i (R, p;T ,ω) = [ f r

i (R, p;T ,ω) ± f a
i (R, p;T ,−ω)]/2.

(3.93)

By the use of Eq. 3.87, we can rewrite the above equation as

f r ,E(O)
0 (R, p;T ,ω) = [ f r

0 (R, p;T ,ω) ± f r
0 (R,−p;T ,ω)]/2,

f r ,E(O)
i (R, p;T ,ω) = [ f r

i (R, p;T ,ω) ∓ f r
i (R,−p;T ,ω)]/2.

(3.94)

If we do the inverse Fourier transform of the spatial Fourier transform in Eq. 3.75,

fα,β(R, r ;T ,ω) = 1
(2π)2

∫
d p eir ·p fα,β(R, p;T ,ω), (3.95)

and use the coordinates r1 and r2 instead of the center of mass and relative
coordinate, we get

f r ,E(O)
0 (r1, r2;T ,ω) = [ f r

0 (r1, r2;T ,ω) ± f r
0 (r2, r1;T ,ω)]/2,

f r ,E(O)
i (r1, r2;T ,ω) = [ f r

i (r1, r2;T ,ω) ∓ f r
i (r2, r1;T ,ω)]/2.

(3.96)

Since we are considering a system that is translationally invariant in the y direc-
tion, we now use center of mass and relative coordinates in the y direction as
we did in Sec. 3.1.3 and apply the Fourier transform in y given in Eq. 3.38. As
in Sec. 3.1.3, we omit T and the center of mass coordinate Y , since the retarded
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Green’s functions is independent of these variables. The resulting expressions
for the even- and odd-frequency singlet and triplet anomalous retarded Green’s
functions are [38, 39]

f r ,E(O)
0 (x1, x2, py;ω) = [ f r

0 (x1, x2, py;ω) ± f r
0 (x2, x1,−py;ω)]/2,

f r ,E(O)
i (x1, x2, py;ω) = [ f r

i (x1, x2, py;ω) ∓ f r
i (x2, x1,−py;ω)]/2,

(3.97)

where

f r
0 (x1, x2, py;ω) = [ f r

↑,↓(x1, x2, py;ω) − f r
↓,↑(x1, x2, py;ω)]/2,

f r
1 (x1, x2, py;ω) = f r

↑,↑(x1, x2, py;ω),
f r
2 (x1, x2, py;ω) = f r

↓,↓(x1, x2, py;ω),
f r
3 (x1, x2, py;ω) = [ f r

↑,↓(x1, x2, py;ω) + f r
↓,↑(x1, x2, py;ω)]/2.

(3.98)

3.2 the scattering wave functions

In this section, we find expressions for the scattering wave functions needed to
construct the retarded Green’s function given in Eq. 3.61. Our approach will be to
first consider each material in the bilayer separately, and solve Eq. 3.59 using the
appropriate terms of the Hamiltonian given in Eq. 3.60. Recall that Ψn,r(r1, t1) ∝
Φn,reikn,r

x x1+iky y1−iEt1 and Ψ̃m,s(r2, t2) ∝ Φm,seikm,s
x x2+iky y2+iEt2. Solving Eq. 3.59

yields expressions for the allowed Φn,r(m,s), E , and kn,r(m,s)
x . ky can take any

value. From the expressions for the scattering wave functions Ψn,r(r1, t1) and
Ψ̃m,s(r2, t2) of the individual particles and quasi-particles, we construct the wave
functions of each possible scattering process using Eq. 3.51. Thereafter, we
compute the reflection and transmission coefficients of the particles and quasi-
particles scattering at the interface between the superconductor and the non-
superconducting material, thereby obtaining the wave functions describing the
scattering processes. We follow a similar approach as in Refs. [16, 48].

Before turning to the computation of the scattering wave functions, we will
discuss the possible scattering processes. As mentioned earlier, we will consider
systemswith the interface at x = 0, a superconductingmaterial at x > 0 and a non-
superconductingmaterial at x < 0. First, consider non-superconductingmaterials
without spin-mixing. For particles incoming from the left, we can have Andreev
reflections of spin-up electrons into spin-down holes (see Fig. 3.4) or vice versa,
or spin-down electrons into spin-up holes and vice versa. We can also have
normal reflections of electrons and holes. For non-superconducting materials
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EF

Ee

N S

2Δ

Eh

ε

ε

Figure 3.4: Due to the superconducting gap, a spin-up electron (dark blue) at energy
EF + ε , where ε < ∆, cannot be directly transmitted from the normal-metal into the
superconducting region. Instead, a spin-zero Cooper pair is transmitted at the Fermi
energy. For this to happen, the spin-up electron must couple to a spin-down electron
at energy EF − ε . The spin-down electron leaves behind a spin-down hole (white) with
energy EF + ε and the opposite momentum of the incoming spin-up electron. In the
figure, the axes of the electron energy Ee and the hole energy Eh are oppositely directed.

with spin-dependent interactions, such as spin-orbit coupling or inhomogeneous
magnetic textures, Andreev reflection is not restricted to holes with opposite spin
of the incoming electrons and electrons with the opposite spin of the incoming
holes. We can therefore have Andreev reflections from any spin-mixed electron
wave function to any spin-mixed hole wave function. The normal reflections are
also not restricted to particles of the same spin, and we can therefore have normal
reflections between any of the spin-mixed electron wave functions, and between
any of the spin-mixed hole wave functions. For quasi-particles incoming from the
right, we can have Andreev reflections of spin-up quasi-electrons into spin-down
quasi-holes and vice versa or of spin-down quasi-electrons into spin-up quasi-
holes and vice versa. We can also have normal reflections of the quasi-particles.
Andreev reflections lead to the propagation of a different particle or quasi-particle
into the material at the opposite side of the interface. Direct transmission of the
particles and quasi-particles is prohibited by the superconducting gap, that exists
only on one side of the interface.
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3.2.1 The superconducting scattering wave functions

We first consider the scattering wave function inside the superconductor. We as-
sume Φn,r(m,s) = [u∗ v∗ w∗ x∗]†. The first of the two equations given in Eq. 3.59
gives the set of equations

Eu = (q2/η − µ)u + ∆x,
Ev = (q2/η − µ)v − ∆w,
Ew = (−q2/η + µ)w − ∆∗v,
E x = (−q2/η + µ)x + ∆∗u.

(3.99)

By eliminating u and x from the first and fourth equation, or equivalently by
elimininating v and w from the second and third equation, we find that the
allowed kx values are

±′q±x = ±′
{
−k2

y + η
[
µ±

√
E2 − |∆|2

]}1/2
. (3.100)

Above, we have named the allowed kx values in the superconducting region
±′q±x , where q±x is defined to be positive, and the sign is given by ±′. Due
to translational invariance in the y direction, ky is the same inside the super-
conductor and the non-superconducting material, and we do not rename this
parameter. ky can take positive and negative values. The eigenenergy is given by
E = ±

√
(k2/η − µ)2 + |∆|2. In our treatment, we will assume E < |∆|, so that q±x

is a complex number.

For ∆ = 0, we find that q+x is the kx value of a free electron, while q−x is the the
kx value of a free hole. Particles characterized by q+x are therefore electron-like
quasiparticles, while particles characterized by q−x are hole-like quasiparticles.
At ∆ = 0, the eigenenergy is E = ±(k2/η − µ) for a free electron and a free
hole respectively. The group velocity perpendicular to the interface is, vg =
1
~
∂E
∂kx
= ±~kxm . A wavefunction ∝ eik±x x = e±imvgx/~ with a positive group velocity

is therefore right-moving for an electron and left-moving for a hole. Generalizing
this to the case of electron-like and hole-like quasiparticles, we find that a right-
moving quasi-electron has a wave function ∝ eiq+x x, while a right-moving quasi-
hole has a wave function ∝ e−iq−x x.

Since the first and fourth equation, and the second and third equation in Eq. 3.99
can be solved as two separate sets of equations, we expect solutions on the
form Φ = [u∗ 0 0 x∗]† and Φ = [0 v∗ w∗ 0]†. By inserting the normalization
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condition |u|2 + |x |2 = 1 and the allowed kx values given in Eq. 3.100 into the
first and fourth equation, we find that

|u|2 = 1
2

[
1 ±

√
E2 − |∆|2/E

]
,

|x |2 = 1
2

[
1 ∓

√
E2 − |∆|2/E

]
.

(3.101)

We define

u2
0 ≡

1
2

[
1 +

√
E2 − |∆|2/E

]
,

v2
0 ≡

1
2

[
1 −

√
E2 − |∆|2/E

]
.

(3.102)

We can therefore either have |u|2 = u2
0 and |x |

2 = v2
0 , or |u|

2 = v2
0 and |x |

2 = u2
0. It

can easily be seen that the second and third equation in Eq. 3.99 can be obtained
from the first and fourth equation by u→ v, x → −w or by u→ −v, x → w. We
thus choose the set of eigenvectors

Φn,r(m,s) =


©­­­­­«
u0

0
0
v0

ª®®®®®¬
,

©­­­­­«
0
−u0

v0

0

ª®®®®®¬
,

©­­­­­«
0
−v0

u0

0

ª®®®®®¬
,

©­­­­­«
v0

0
0
u0

ª®®®®®¬


. (3.103)

The first two eigenvectors in Eq. 3.103 correspond to ±q+x , while the last two
eigenvectors corresponds to ±q−x .

We plot the energy bands of the superconductor, E = ±
√
(k2/η − µ)2 + |∆|2, in

Fig. 3.5 in order to identify the allowed scattering processes. The scattering wave
functions on the superconducting side of the interface is

Ψn(r , t) = ΨR
in,n(r , t) + cn,1[u0 0 0 v0]T eiq+x x+iky y−iEt

+ cn,2[0 − u0 v0 0]T eiq+x x+iky y−iEt

+ dn,1[0 − v0 u0 0]T e−iq−x x+iky y−iEt

+ dn,2[v0 0 0 u0]T e−iq−x x+iky y−iEt , x > 0,

(3.104)

where the quasi-particles incoming from the right are described by the wave
functions

Ψ
R
in,5(r , t) = [u0 0 0 v0]T e−iq+x x+iky y−iEt

Ψ
R
in,6(r , t) = [0 − u0 v0 0]T e−iq+x x+iky y−iEt ,
Ψ

R
in,7(r , t) = [0 − v0 u0 0]T eiq−x x+iky y−iEt ,
Ψ

R
in,8(r , t) = [v0 0 0 u0]T eiq−x x+iky y−iEt .

(3.105)
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0
0

E

kx

qx
+qx

--qx
--qx

+

Figure 3.5: The superconducting order parameter ∆ opens a gap in the energy spectrum
leading to a quasi-particle energy band (dark blue). Quasi-particles residing in the part of
the energy band that has a similar shape as the electron energy band at ∆ = 0 (light blue
solid line) are called electron-like quasi-particles. The quasi-particles residing in the part
of the energy band that has a similar shape as the hole energy band at ∆ = 0 (light blue
dashed line) are called hole-like quasi-particles. The green arrow shows the possible
Andreev reflections, while the purple arrows show the possible normal reflections for
quasi-electrons and quasi-holes at the energy marked by the black dotted line.

i = {1, 2, 3, 4, 5, 6, 7, 8} and ΨR
in,1(r , t) = ΨR

in,2(r , t) = ΨR
in,3(r , t) = ΨR

in,4(r , t) = 0.
We reserve the indices {1, 2, 3, 4} for scattering processes with particles or quasi-
particles scattering at the interface from the left.

We also need to find the wave functions of the conjugated process, H∗(−k)Ψ̃ =
EΨ̃. From Eq. 3.60, we see that the only change in the Hamiltonian is ∆ → ∆∗.
Since u0, v0, q±x and E only depend on the superconducting gap through |∆|2, we
get exactly the same wave function as before,

Ψ̃m(r , t) = Ψ̃R
in,m(r , t) + c̃m,1[u0 0 0 v0]T eiq+x x+iky y+iEt

+ c̃m,2[0 − u0 v0 0]T eiq+x x+iky y+iEt

+ d̃m,1[0 − v0 u0 0]T e−iq−x x+iky y+iEt

+ d̃m,2[v0 0 0 u0]T e−iq−x x+iky y+iEt , x > 0,

(3.106)
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where the incoming quasiparticles are

Ψ̃
R
in,5(r , t) = [u0 0 0 v0]T e−iq+x x+iky y+iEt ,

Ψ̃
R
in,6(r , t) = [0 − u0 v0 0]T e−iq+x x+iky y+iEt ,
Ψ̃

R
in,7(r , t) = [0 − v0 u0 0]T eiq−x x+iky y+iEt ,
Ψ̃

R
in,8(r , t) = [v0 0 0 u0]T eiq−x x+iky y+iEt ,

(3.107)

and Ψ̃R
in,1(r , t) = Ψ̃R

in,2(r , t) = Ψ̃R
in,3(r , t) = Ψ̃R

in,4(r , t) = 0.

3.2.2 The heavy-metal scattering wave functions for n̂ = x̂

We now consider a 2D heavy-metal with a Rashba spin-orbit field along the x
axis. From Eq. 3.60, we find that the Hamiltonian matrix is

H(k) =

©­­­­­­«

k2

η − µ− λky 0 0 0

0 k2

η − µ+ λky 0 0

0 0 − k2

η + µ− λky 0

0 0 0 − k2

η + µ+ λky

ª®®®®®®¬
. (3.108)

We thus have a diagonal Hamiltonian without spin-mixing of the energy bands.
The eigenenergies are E = ±(k2/η − µ) ∓′ λky, where ± correspond to electrons
and holes respectively, while∓′ correspond to spin up and spin down respectively.
The eigenvectors are on the form

Φn,r(m,s) =


©­­­­­«
1
0
0
0

ª®®®®®¬
,

©­­­­­«
0
1
0
0

ª®®®®®¬
,

©­­­­­«
0
0
1
0

ª®®®®®¬
,

©­­­­­«
0
0
0
1

ª®®®®®¬


, (3.109)

corresponding to spin-up electrons, spin-down electrons, spin-up holes and spin-
down holes, respectively. The allowed kx values corresponding to these eigenvec-
tors are ±′′ke(h),↑(↓)

x = ±′′{−k2
y + η[µ± (E ±′ λky)]}1/2. ke(h),↑(↓)

x are per definition
positive, and ±′′ correspond to positive and negative kx.

In Fig. 3.6 we have plotted the energy bands and indicated the allowed scattering
processes. We rename the kx values ke1 = ke,↑

x , ke2 = ke,↓
x , kh1 = kh,↓

x and
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0
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ke1ke2 kh1kh2-ke1 -kh1 -ke2 -kh2
kx
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    +λ|ky|
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2/η+μ

     -λ|ky|

Figure 3.6: For a 2D heavy-metal with n̂ = x̂, the energy bands are spin split by the
Rashba spin-orbit coupling into a band for spin up electrons (blue solid line), spin down
electrons (red solid line), spin up holes (blue dashed line) and spin down holes (red
dashed line). The green arrows show the possible Andreev reflections, while the purple
arrows show the possible normal reflections for electrons and holes at the energy marked
by the black dotted line. We name the kx values of the spin up electron, spin down hole,
spin down electron and spin up hole ke1, kh1, ke2 and kh2, respectively.

kh2 = kh,↑
x . The wave functions describing the allowed scattering processes are

Ψn(r , t) = ΨL
in,n(r , t) + an,1[1 0 0 0]T e−ike1x+iky y−iEt

+ an,2[0 1 0 0]T e−ike2x+iky y−iEt

+ bn,1[0 0 1 0]T eikh2x+iky y−iEt

+ bn,2[0 0 0 1]T eikh1x+iky y−iEt , x < 0,

(3.110)

where the incoming spin-up electrons, spin-down electrons, spin-up holes and
spin-down holes are described by

Ψ
L
in,1(r , t) = [1 0 0 0]T eike1x+iky y−iEt ,
Ψ

L
in,2(r , t) = [0 1 0 0]T eike2x+iky y−iEt ,
Ψ

L
in,3(r , t) = [0 0 1 0]T e−ikh2x+iky y−iEt ,
Ψ

L
in,4(r , t) = [0 0 0 1]T e−ikh1x+iky y−iEt ,

(3.111)

respectively. ΨL
in,5(r , t) = ΨL

in,6(r , t) = ΨL
in,7(r , t) = ΨL

in,8(r , t) = 0. The indices
{5, 6, 7, 8} are reserved for particles incoming from the right.
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If we consider the Hamiltonian of the conjugated process H∗(−k)we see that the
only change in the Hamiltonian in Eq. 3.108 is λ → −λ. This corresponds
to ke1 ↔ ke2 and kh1 ↔ kh2, or equivalently [1 0 0 0]† ↔ [0 1 0 0]† and
[0 0 1 0]† ↔ [0 0 0 1]†. The resulting scattering wave functions are

Ψ̃m(r , t) = ΨL
in,m(r , t) + ãm,1[0 1 0 0]T e−ike1x+iky y+iEt

+ ãm,2[1 0 0 0]T e−ike2x+iky y+iEt

+ b̃m,1[0 0 0 1]T eikh2x+iky y+iEt

+ b̃m,2[0 0 1 0]T eikh1x+iky y+iEt , x < 0,

(3.112)

where

Ψ̃
L
in,1(r , t) = [0 1 0 0]T eike1x+iky y+iEt ,
Ψ̃

L
in,2(r , t) = [1 0 0 0]T eike2x+iky y+iEt ,
Ψ̃

L
in,3(r , t) = [0 0 0 1]T e−ikh2x+iky y+iEt ,
Ψ̃

L
in,4(r , t) = [0 0 1 0]T e−ikh1x+iky y+iEt ,

(3.113)

and Ψ̃L
in,5(r , t) = Ψ̃L

in,6(r , t) = Ψ̃L
in,7(r , t) = Ψ̃L

in,8(r , t) = 0.

3.2.3 The heavy-metal scattering wave functions for n̂ = ẑ

For a 2D heavy-metal with a Rashba spin-orbit field along the z axis, the Hamil-
tonian matrix is

H(k) =

©­­­­­­«

k2

η − µ λ(ky + ikx) 0 0

λ(ky − ikx) k2

η − µ 0 0

0 0 − k2

η + µ λ(ky − ikx)
0 0 λ(ky + ikx) − k2

η + µ

ª®®®®®®¬
(3.114)

according to Eq. 3.60. If we write k in polar coordinates, such that kx = k cos(φ)
and ky = k sin(φ), we can write λ(ky ± ikx) = ±iλke∓iφ. The above Hamiltonian
is block diagonal, and we can solve the two blocks separately. By setting the
determinant of each block equal to zero, we find expressions for the eigenenergies
and allowed k-values. The allowed k values are ke(h),+(−) = [(λη/2)2 + η(µ ±
E)]1/2 ± ±′λη/2, where ± correspond to electrons and holes respectively and
±′ correspond to the two different spin-mixed states that we denote + and −
respectively. The allowed kx values are given by±′′ke(h),+(−)

x = ±′′ke(h),+(−) cos(φ).
We define ke(h),+(−)

x to be positive by setting φ ∈ [−π/2, π/2]. ±′′ correspond
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to positive and negative momenta in the x direction. The eigenenergies are
E = ±(k2/η − µ) ∓′ λk. We can write the eigenvectors of the form

Φn,r(m,s) =


©­­­­­«

1
ieiφ

0
0

ª®®®®®¬
,

©­­­­­«
−1
ieiφ

0
0

ª®®®®®¬
,

©­­­­­«
0
0
1

ie−iφ

ª®®®®®¬
,

©­­­­­«
0
0
−1

ie−iφ

ª®®®®®¬


. (3.115)

By solving the first equation in Eq. 3.59, we find that the first eigenvector corre-
sponds to ke,+

x , the second eigenvector correspond to ke,−
x , the third eigenvector

corresponds to kh,−
x , and the forth eigenvector corresponds to kh,+

x .

In Fig. 3.7 we have plotted the energy bands and indicated the allowed scattering
processes. We rename the kx values ke1 = ke,+

x , ke2 = ke,−
x , kh1 = kh,−

x and
kh2 = kh,+

x . The scattering wave functions on the heavy-metal side of the interface
describing the allowed scattering processes are

Ψn(r , t) = ΨL
in,n(r , t) + an,1[1 ieiφ 0 0]T e−ike1x+iky y−iEt

+ an,2[−1 ieiφ 0 0]T e−ike2x+iky y−iEt

+ bn,1[0 0 1 ie−iφ]T eikh1x+iky y−iEt

+ bn,2[0 0 − 1 ie−iφ]T eikh2x+iky y−iEt , x < 0,

(3.116)

where
Ψ

L
in,1(r , t) = [1 ieiφ 0 0]T eike1x+iky y−iEt ,
Ψ

L
in,2(r , t) = [−1 ieiφ 0 0]T eike2x+iky y−iEt ,
Ψ

L
in,3(r , t) = [0 0 1 ie−iφ]T e−ikh1x+iky y−iEt ,
Ψ

L
in,4(r , t) = [0 0 − 1 ie−iφ]T e−ikh2x+iky y−iEt

(3.117)

are the four quasi-particle states scattering at the interface from the left.ΨL
in,5(r , t) =

ΨL
in,6(r , t) = ΨL

in,7(r , t) = ΨL
in,8(r , t) = 0. Again, the indices {5, 6, 7, 8} are re-

served for quasi-particles scattering at the interface from the right.

We now consider the second equation in Eq. 3.59, where the Hamiltonian is given
by H∗(−k). If we let k → −k, then φ→ φ+ π and e±iφ → −e±iφ. When we also
apply the complex conjugate, we see that the only change in the Hamiltonian in
Eq. 3.114 is φ → −φ. The scattering wave functions of the conjugated process
are therefore
Ψ̃m(r , t) = Ψ̃L

in,m(r , t) + ãm,1[1 ie−iφ 0 0]T e−ike1x+iky y+iEt

+ ãm,2[−1 ie−iφ 0 0]T e−ike2x+iky y+iEt

+ b̃m,1[0 0 1 ieiφ]T eikh1x+iky y+iEt

+ b̃m,2[0 0 − 1 ieiφ]T eikh2x+iky y+iEt , x < 0,

(3.118)

[May 14, 2019 at 13:55 – classicthesis ]



66 bogoliubov-de gennes scattering theory

0
0

E
-ky

2/η+μ
    +λ|ky|
-ky

2/η+μ
     -λ|ky|

kx

-ke1 -kh1 -ke2 -kh2 kh2 ke2 kh1 ke1

Figure 3.7: For a 2D heavy-metal with n̂ = ẑ, we have four spin degenerate energy
bands. Two are electron bands (solid lines) and two are hole bands (dashed lines). The
blue and red energy bands correspond to ± in ke(h),+(−) respectively. The green arrows
show the possible Andreev reflections, while the purple arrows show the possible normal
reflections for electrons and holes at the energymarked by the black dotted line.We name
the kx values of the + electron band, − hole band, − electron band and + hole band ke1,
kh1, ke2 and kh2 respectively. This plot shows the energy bands for a specific choice of
ky, however the allowed reflections will be the same regardless of the choice of ky.

where

Ψ̃
L
in,1(r , t) = [1 ie−iφ 0 0]T eike1x+iky y+iEt ,
Ψ̃

L
in,2(r , t) = [−1 ie−iφ 0 0]T eike2x+iky y+iEt ,
Ψ̃

L
in,3(r , t) = [0 0 1 ieiφ]T e−ikh1x+iky y+iEt ,
Ψ̃

L
in,4(r , t) = [0 0 − 1 ieiφ]T e−ikh2x+iky y+iEt ,

(3.119)

and Ψ̃L
in,5(r , t) = Ψ̃L

in,6(r , t) = Ψ̃L
in,7(r , t) = Ψ̃L

in,8(r , t) = 0.

3.2.4 The ferromagnetic scattering wave functions

The Hamiltonian of a 2D ferromagnet with h = hẑ is very similar to the Hamil-
tonian of the 2D heavy-metal with n̂ = x̂. We therefore consider the 2D F/S
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junction with magnetization along ẑ for comparison. The Hamiltonian matrix of
a 2D ferromagnet with h = hẑ is

H(k) =

©­­­­­­«

k2

η − µ+ h 0 0 0

0 k2

η − µ− h 0 0

0 0 − k2

η + µ− h 0

0 0 0 − k2

η + µ+ h

ª®®®®®®¬
. (3.120)

The eigenenergies are therefore E = ±(k2/η− µ±′ h), where± refers to electrons
and holes respectively and ±′ refers to spin up and spin down respectively. The
allowed kx values are ±′′ke(h),↑(↓)

x = ±′′[−k2
y + η(µ± (E ±′ ∓h))]1/2, which means

that we can obtain the allowed kx values of the ferromagnetic case from the
allowed kx values of the heavy-metal by letting λky → ∓h. The signs ±′′ refers
to positive and negative kx values.

We plot the energy bands and indicate the allowed reflection processes in Fig. 3.8.
We rename the kx values ke1 = ke,↓

x , ke2 = ke,↑
x , kh1 = kh,↓

x and kh2 = kh,↑
x .

Compared to the 2D heavy-metal, the spin of the electron energy bands are
interchanged, so that ke1 ↔ ke2. We thus obtain the scattering wave functions by
interchanging ke1 and ke2 for the scattering wave functions of the 2D HM given
in Eqs. 3.110 and 3.122. We get

Ψn(r , t) = ΨL
in,n(r , t) + an,1[1 0 0 0]T e−ike2x+iky y−iEt

+ an,2[0 1 0 0]T e−ike1x+iky y−iEt

+ bn,1[0 0 1 0]T eikh2x+iky y−iEt

+ bn,2[0 0 0 1]T eikh1x+iky y−iEt , x < 0,

(3.121)

where

Ψ
L
in,1(r , t) = [1 0 0 0]T eike2x+iky y−iEt ,
Ψ

L
in,2(r , t) = [0 1 0 0]T eike1x+iky y−iEt ,
Ψ

L
in,3(r , t) = [0 0 1 0]T e−ikh2x+iky y−iEt ,
Ψ

L
in,4(r , t) = [0 0 0 1]T e−ikh1x+iky y−iEt ,

(3.122)

and ΨL
in,5(r , t) = ΨL

in,6(r , t) = ΨL
in,7(r , t) = ΨL

in,8(r , t) = 0. Again, the indices
{5, 6, 7, 8} are reserved for quasi-particles scattering at the interface from the
right.

The conjugated wave functions are obtained from solving the second equation
given in Eq. 3.59. For the ferromagnetic case H∗(−k) = H(k). In contrast to
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Figure 3.8: For a 2D ferromagnet with h = hẑ, the energy bands are spin split into
bands for spin up electrons (blue solid line), spin down electrons (red solid line), spin
up holes (blue dashed line) and spin down holes (red dashed line). The green arrows
show the possible Andreev reflections, while the purple arrows show the possible normal
reflections for electrons and holes at the energymarked by the black dotted line.We name
the kx values of the spin down electron, spin down hole, spin up electron and spin up
hole ke1, kh1, ke2 and kh2, respectively.

the case of the 2D heavy-metal with n̂ = x̂, the spatial part of the scattering
wave functions of the conjugated process do not differ from the scattering wave
functions Ψn(r , t). Therefore,

Ψ̃m(r , t) = Ψ̃L
in,m(r , t) + ãm,1[1 0 0 0]T e−ike2x+iky y+iEt

+ ãm,2[0 1 0 0]T e−ike1x+iky y+iEt

+ b̃m,1[0 0 1 0]T eikh2x+iky y+iEt

+ b̃m,2[0 0 0 1]T eikh1x+iky y+iEt , x < 0,

(3.123)

where

Ψ̃
L
in,1(r , t) = [1 0 0 0]T eike2x+iky y+iEt ,
Ψ̃

L
in,2(r , t) = [0 1 0 0]T eike1x+iky y+iEt ,
Ψ̃

L
in,3(r , t) = [0 0 1 0]T e−ikh2x+iky y+iEt ,
Ψ̃

L
in,4(r , t) = [0 0 0 1]T e−ikh1x+iky y+iEt ,

(3.124)

and Ψ̃L
in,5(r , t) = Ψ̃L

in,6(r , t) = Ψ̃L
in,7(r , t) = Ψ̃L

in,8(r , t) = 0.
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3.2.5 The reflection and transmission coefficients

In order to find expressions for the reflection and transmission coefficients, we
must consider the boundary conditions of Ψn(r , t) and Ψ̃m(r , t) at x = 0. For
Ψn(r , t), the boundary conditions are [48]

[Ψn(r , t)]x=0+ = [Ψn(r , t)]x=0−,
[v̂Ψn(r , t)]x=0+ = [v̂Ψn(r , t)]x=0−.

(3.125)

v̂ ≡ ∂H(kx → −i∂x, ky)/∂(−i∂x) is the velocity operator. Ψ̃m(r , t) satisfies a
similar set of boundary conditions with v̂ ≡ ∂H∗(−kx → i∂x,−ky)/∂(−i∂x). The
first boundary condition simply states that the wave function must be continuous
at the interface.

We now want to justify the second boundary condition. The Hamiltonian given
in Eq. 3.60 can in general be written H(kx) = H0 + H1k2

x + H2kx, where H0, H1,
and H2 are kx independent 4 × 4 matrices. First, we let kx → (−i∂x) and λ∂x →
{λθ(−x), ∂x}/2 in theHamiltonian. The anti-commutation {λθ(−x), ∂x}/2 comes
from the symmetrization of the Hamiltonian of amaterial with a finite component
of the Rashba spin-orbit field parallel to the interface. The Hamiltonian becomes
H(x) = H0 + H1∂

2
x + H2{θ(−x), ∂x}/2. We then integrate the time-independent

Schrödinger equation H(x)Ψn(r , t) = EΨn(r , t) from x = 0− to x = 0+. For the
terms proportional to Ψn(r , t), we find that∫ 0+

0−
dx [H0 − E]Ψn(r , t) = 0, (3.126)

due to the continuity of thewave function. For the second term in theHamiltonian,
we find that∫ 0+

0−
dx H1∂

2
xΨn(r , t) = H1{[∂xΨn(r , t)]0+ − [∂xΨn(r , t)]0−} (3.127)

by partial integration. For the third term in the Hamiltonian, we find that∫ 0+

0−
dx

H2

2
{θ(−x), ∂x}Ψn(r , t) =H2

2

∫ 0+

0−
dx [θ(−x)∂x + ∂xθ(−x)]Ψn(r , t)

=
H2

2

∫ 0+

0−
dx [2θ(−x)∂x − δ(x)]Ψn(r , t)
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=H2{[θ(−x)Ψn(r , t)]0+ − [θ(−x)Ψn(r , t)]0−}

+
H2

2

∫ 0+

0−
dx δ(x)Ψn(r , t)

=H2{−[Ψn(r , t)]x=0− +
1
2
[Ψn(r , t)]x=0}

= − H2

2
[Ψn(r , t)]x=0−

(3.128)

by partial integration. After integration from x = 0− to x = 0+, the time-
independent Schrödinger equation becomes

H1[∂xΨn(r , t)]0+ = H1[∂xΨn(r , t)]0− +
H2

2
[Ψn(r , t)]x=0−. (3.129)

We nowwant to show that the above expression for the second boundary condition
is equivalent to the second boundary condition in Eq. 3.125. If so, we have
justified the second boundary condition. In order to show this, we apply the
second boundary condition in Eq. 3.125 to Ψn(r , t). The Hamiltonian in the
velocity operator can be written H(x) = H0 + H1∂

2
x + H2∂x. Note that we, in the

definition of the velocity operator, do not let ∂x → {θ(−x), ∂x}/2. The velocity
operator is then

v̂ = i
∂

∂(∂x)
[H0 + H1∂

2
x + H2∂x] = 2H1∂x + H2. (3.130)

H2 is equal to zero in the superconducting region. The second boundary condition
can therefore be written

2iH1[∂xΨn(r , t)]0+ = 2i{H1[∂xΨn(r , t)]0− +
H2

2
[Ψn(r , t)]x=0−}. (3.131)

This is equivalent to Eq. 3.129. From this, we see that the symmetrization of the
Rashba term enters the continuum BdG framework through the second boundary
condition in Eq. 3.125.

To further justify the second boundary condition, we will also derive an expres-
sion for the probability current density along the x axis. The probability current
density j can be found from the continuity equation [49, 50]

∂ρ

∂t
+ ∇ · j = 0. (3.132)
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For one-dimensional wave functions not defined as 4-vectors in Nambu ⊗ spin
space, ρ ≡ ψ∗(r , t)ψ(r , t). In Nambu ⊗ spin space, we define ρ ≡ ψ†(r , t)ψ(r , t).
As in the end of Sec. 3.1.2 and in Secs. 3.1.3 and 3.1.4, † is interpreted as a matrix
transpose that do not affect operators contained within the matrix elements, and
a complex conjugation of the matrix elements. By using the product rule and the
time-dependent Schrödinger equation given by the first equation in Eq. 3.53, we
find that

∂ρ

∂t
= [∂tΨ†(r , t)]Ψ(r , t) +Ψ†(r , t)[∂tΨ(r , t)]

= i{[Ψ†(r , t)H†(r)]Ψ(r , t) −Ψ†(r , t)[H(r)Ψ(r , t)]}.
(3.133)

Above, the Hamiltonian in the first term acts to the left. If we let kx → −i∂x and
ky → −i∂y in the Hamiltonian given in Eq. 3.60, the Hamiltonian can be written

H(r) = (∇2/η − µ)τ̂3σ̂0 − iλ(n̂× σ̃) · ∇+ hx τ̂3σ̂x + hy τ̂0σ̂y + hz τ̂3σ̂z, (3.134)

where

σ̃ ≡
(
σ 0
0 σ∗

)
. (3.135)

Since † is a matrix transpose and a complex conjugation of the matrix elements,
H†(−i∇) = H(i∇). The only change in the Hamiltonian under hermitian con-
jugation is a sign change in the spin-orbit coupling term. It is easily seen that
Eq. 3.133 is zero for terms in the above Hamiltonian that contains no spatial
derivatives. For the kinetic term, we get

i{[∇2
Ψ
†(r , t)]τ̂3σ̂0Ψ(r , t) −Ψ†(r , t)τ̂3σ̂0∇2

Ψ(r , t)}/η
= ∇ · {[i∇Ψ†(r , t)]τ̂3σ̂0Ψ(r , t) −Ψ†(r , t)τ̂3σ̂0i∇Ψ(r , t)}/η
= ∇ · {−[Ψ†(r , t)τ̂3σ̂0i∇Ψ(r , t)]† −Ψ†(r , t)τ̂3σ̂0i∇Ψ(r , t)}/η
= ∇ · Re{Ψ†(r , t)[−2i∇τ̂3σ̂0/η]Ψ(r , t)}.

(3.136)

Above, we have used that [ f †1 f2]† + f †1 f2 = 2Re{ f †1 f2} if the two complex vectors
f1 and f2 satisfy f T

1 f2 = f T
2 f1. The contribution to Eq. 3.133 from the spin-orbit

coupling term in the Hamiltonian is

i{iλ[∇Ψ†(r , t)] · (n̂ × σ̃)Ψ(r , t) +Ψ†(r , t)(n̂ × σ̃) · iλ∇Ψ(r , t)}
= −∇ ·Ψ†(r , t)λ(n̂ × σ̃)Ψ(r , t)
= −∇ · {[Ψ†(r , t)λ(n̂ × σ̃)Ψ(r , t)]† +Ψ†(r , t)λ(n̂ × σ̃)Ψ(r , t)}/2
= ∇ · Re{Ψ†(r , t)[−λ(n̂ × σ̃)]Ψ(r , t)}.

(3.137)

[May 14, 2019 at 13:55 – classicthesis ]



72 bogoliubov-de gennes scattering theory

By combining the kinetic term and the spin-orbit coupling term, we find from
Eq. 3.133 that

j = Re{Ψ†(r , t)[2i∇τ̂3σ̂0/η + λ(n̂ × σ̃)]Ψ(r , t)}. (3.138)

The probability current density along the x-axis is

jx = Re{Ψ†(r , t)[2i∂x τ̂3σ̂0/η + λ(n̂ × σ̃) · x̂]Ψ(r , t)}
= Re{Ψ†(r , t)v̂Ψ(r , t)}.

(3.139)

To have conservation of the probability current density at x = 0, v̂Ψ(r , t)must be
continuous at the interface, in accordance with the second boundary condition.
This also motivates naming v̂ the velocity operator, since v̂Ψ(r , t) determines the
current.

If the spin-orbit coupling part of the Hamiltonian is independent of kx, H2 is
equal to zero in Eq. 3.129. The second boundary condition in Eq. 3.125 then
simplifies to

[∂xΨn(r , t)]x=0+ = [∂xΨn(r , t)]x=0−. (3.140)

This is the case for the HM/S system with n̂ = x̂ and for the F/S system with
h = hẑ. The second boundary condition simplifies in the same way for Ψ̃m(r , t).

Expressions for the reflection and transmission coefficients can in some simple
cases be found analytically by solving the boundary conditions in Eq. 3.125 using
software such as Maple. This will be done for the 2D HM/S system with n̂ = x̂
and for the 2D F/S system with h = hẑ in the following sections. For the 2D
HM/S system with n̂ = ẑ, the expressions for the reflection and transmission
coefficients are more lengthy, and it is also more difficult to solve the boundary
conditions of the Green’s function in Eqs. 3.66 and 3.72 analytically due to the
spin-mixing of the energy bands. For this system, we will therefore solve the
boundary conditions in Eqs. 3.66, 3.72 and 3.125 numerically.

3.3 the singlet and triplet retarded green’s functions

We will now calculate the even- and odd-frequency singlet and triplet retarded
anomalous Green’s functions on both sides of the interface for a 2DHM/S system
with n̂ = x̂, a 2D HM/S system with n̂ = ẑ, and a 2D F/S system with h = hẑ. In
order to evaluate which of the s-, p- and d-wave singlet and triplet amplitudes are
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nonzero,wewill consider the symmetry of the singlet and triplet amplitudes under
inversion of x and py. We will use the wave functions presented in Secs. 3.2.1-
3.2.4 relevant to each system. The reflection and transmission coefficients of
the wave functions will be calculated by the method outlined in Sec. 3.2.5. The
retarded Green’s function will be constructed according to Eq. 3.61, and the even-
and odd-frequency singlet and triplet retarded anomalous Green’s functions will
be calculated using Eqs. 3.97, 3.98, 3.3 and 3.4.

3.3.1 The heavy-metal/superconductor system with n̂ = x̂

Consider the case of a 2D HM/S system with the spin-orbit field along the x
axis. Using the method outlined above, we find that on the heavy-metal side of
the interface, where x1, x2 < 0, the anomalous elements of the retarded Green’s
function are

f r
↑,↓(x1, x2, y1, y2; t1, t2) =

η

i
u0v0(q+x + q−x )

D1
θ(t1 − t2)

· e−ke1x1+ikh1x2eiky(y1−y2)−iE(t1−t2),

f r
↓,↑(x1, x2, y1, y2; t1, t2) = −

η

i
u0v0(q+x + q−x )

D2
θ(t1 − t2)

· e−ke2x1+ikh2x2eiky(y1−y2)−iE(t1−t2),
f r
↑,↑(x1, x2, y1, y2; t1, t2) =0,

f r
↓,↓(x1, x2, y1, y2; t1, t2) =0,

(3.141)

where

D1(2) ≡ u2
0(ke1(2) + q+x )(kh1(2) + q−x )+ v2

0(kh1(2) − q+x )(−ke1(2) + q−x ). (3.142)

There are no equal-spin triplet amplitudes inside the heavy-metal. We rewrite the
above expression to the relative y coordinate y ≡ y1 − y2 and the relative time
coordinate t ≡ t1 − t2. In the relative time coordinate,

fα,β(x1, x2, y; t) ∝ θ(t)e−iEt . (3.143)

If we insert the integral representation [46] of the Heaviside step function given
in Eq. 0.4, we get

fα,β(x1, x2, y; t) ∝ − 1
2πi

∫ ∞

−∞
dω̃

1
ω̃ + iδ+

e−i(ω̃+E)t

= − 1
2πi

∫ ∞

−∞
dω

1
ω − E + iδ+

e−iωt ,
(3.144)
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where δ+ → 0+. Using that the inverse Fourier transform in relative time is

fα,β(x1, x2, y; t) = 1
2π

∫ ∞

−∞
dω fα,β(x1, x2, y;ω)e−iωt , (3.145)

we find that Eq. 3.143 corresponds to

fα,β(x1, x2, y;ω) ∝ i
ω − E + iδ+

. (3.146)

We use the above relation and apply the Fourier transforms in y given in Eq. 3.38.
From Eq. 3.98, we find that the singlet and opposite-spin triplet retarded anoma-
lous Green’s functions in the heavy-metal region are given by

f r
0 (x1, x2, py;ω) =

η

2
u0v0(q+x + q−x )δ(py − ky)

1
ω − E + iδ+

·
[

1
D1

e−ike1x1+ikh1x2 +
1

D2
e−ike2x1+ikh2x2

]
,

f r
3 (x1, x2, py;ω) =

η

2
u0v0(q+x + q−x )δ(py − ky)

1
ω − E + iδ+

·
[

1
D1

e−ike1x1+ikh1x2 − 1
D2

e−ike2x1+ikh2x2

]
.

(3.147)

By inserting the above expression into Eq. 3.97,we find that the nonzero even- and
odd-frequency singlet and triplet retarded anomalous Green’s functions inside
the heavy-metal region are

f r ,E(O)
0 (x1, x2, py;ω) =

η

4
u0v0(q+x + q−x )

1
ω − E + iδ+

·
[(

1
D1

e−ike1x1+ikh1x2 +
1

D2
e−ike2x1+ikh2x2

)
δ(py − ky)

±
(

1
D1

e−ike1x2+ikh1x1 +
1

D2
e−ike2x2+ikh2x1

)
δ(−py − ky)

]
,

f r ,E(O)
3 (x1, x2, py;ω) =

η

4
u0v0(q+x + q−x )

1
ω − E + iδ+

·
[(

1
D1

e−ike1x1+ikh1x2 − 1
D2

e−ike2x1+ikh2x2

)
δ(py − ky)

∓
(

1
D1

e−ike1x2+ikh1x1 − 1
D2

e−ike2x2+ikh2x1

)
δ(−py − ky)

]
.

(3.148)

The only variables in Eq. 3.148 that are not invariant under ky → −ky are

ke,↑(↓)
x = {−k2

y + η[µ+ (E ± λky)]}1/2 → {−k2
y + η[µ+ (E ∓ λky)]}1/2,

kh,↑(↓)
x = {−k2

y + η[µ− (E ± λky)]}1/2 → {−k2
y + η[µ− (E ∓ λky)]}1/2.

(3.149)
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The effect of changing the sign of ky is therefore to interchange the kx values
of spin up and spin down particles. Therefore, if ky → −ky, then ke1 ↔ ke2,
kh1 ↔ kh2, and D1 ↔ D2. We can therefore rewrite Eq. 3.148 as

f r ,E(O)
0 (x1, x2, py;ω) =

η

4
u0v0(q+x + q−x )δ(py − ky)

1
ω − E + iδ+

·
[(

1
D1

e−ike1x1+ikh1x2 +
1

D2
e−ike2x1+ikh2x2

)
±

(
1

D2
e−ike2x2+ikh2x1 +

1
D1

e−ike1x2+ikh1x1

)]
,

f r ,E(O)
3 (x1, x2, py;ω) =

η

4
u0v0(q+x + q−x )δ(py − ky)

1
ω − E + iδ+

·
[(

1
D1

e−ike1x1+ikh1x2 − 1
D2

e−ike2x1+ikh2x2

)
∓

(
1

D2
e−ike2x2+ikh2x1 − 1

D1
e−ike1x2+ikh1x1

)]
.

(3.150)

If we rewrite this to a center of mass coordinate X ≡ (x1 + x2)/2 and a relative
coordinate x ≡ x1 − x2, we get

f r ,E(O)
0 (X , x, py;ω) =

η

4
u0v0(q+x + q−x )δ(py − ky)

1
ω − E + iδ+

·
[

1
D1

e−i(ke1−kh1)X
(
e−i(ke1+kh1)x/2 ± ei(ke1+kh1)x/2

)
+

1
D2

e−i(ke2−kh2)X
(
e−i(ke2+kh2)x/2 ± ei(ke2+kh2)x/2

)]
,

f r ,E(O)
3 (X , x, py;ω) =

η

4
u0v0(q+x + q−x )δ(py − ky)

1
ω − E + iδ+

·
[

1
D1

e−i(ke1−kh1)X
(
e−i(ke1+kh1)x/2 ± ei(ke1+kh1)x/2

)
− 1

D2
e−i(ke2−kh2)X

(
e−i(ke2+kh2)x/2 ± ei(ke2+kh2)x/2

)]
.

(3.151)
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The nonzero singlet and triplet odd- and even-frequency retarded anomalous
Green’s functions in the heavy-metal region can therefore be written

f r ,E
0 (X , x, py;ω) =

η

2
u0v0(q+x + q−x )δ(py − ky)

1
ω − E + iδ+

·
[

1
D1

e−i(ke1−kh1)X cos((ke1 + kh1)x/2)

+
1

D2
e−i(ke2−kh2)X cos((ke2 + kh2)x/2)

]
,

f r ,O
0 (X , x, py;ω) =

η

2i
u0v0(q+x + q−x )δ(py − ky)

1
ω − E + iδ+

·
[

1
D1

e−i(ke1−kh1)X sin((ke1 + kh1)x/2)

+
1

D2
e−i(ke2−kh2)X sin((ke2 + kh2)x/2)

]
,

f r ,E
3 (X , x, py;ω) =

η

2
u0v0(q+x + q−x )δ(py − ky)

1
ω − E + iδ+

·
[

1
D1

e−i(ke1−kh1)X cos((ke1 + kh1)x/2)

− 1
D2

e−i(ke2−kh2)X cos((ke2 + kh2)x/2)
]
,

f r ,O
3 (X , x, py;ω) =

η

2i
u0v0(q+x + q−x )δ(py − ky)

1
ω − E + iδ+

·
[

1
D1

e−i(ke1−kh1)X sin((ke1 + kh1)x/2)

− 1
D2

e−i(ke2−kh2)X sin((ke2 + kh2)x/2)
]
.

(3.152)

On the superconducting side of the interface, where x1, x2 > 0, we find that the
anomalous elements of the retarded Green’s function are

f r
↑,↓(x1, x2, y1, y2; t1, t2) = −

η

i
u0v0

u2
0 − v

2
0
θ(t1 − t2)eiky(y1−y2)e−iE(t1−t2)

·
{

1
D1

(
ke1 + kh1

) (
u2

0eiq+x x1−iq−x x2 + v2
0eiq+x x2−iq−x x1

)
− 1

2

[(
1

q+x
eiq+x (x1−x2) +

1
q−x

e−iq−x (x1−x2)
)
θ(x1 − x2)

+

(
1

q+x
e−iq+x (x1−x2) +

1
q−x

eiq−x (x1−x2)
)
θ(x2 − x1)

]
− E1

2D1

1
q+x

eiq+x (x1+x2) − F1

2D1

1
q−x

e−iq−x (x1+x2)
}
,
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f r
↓,↑(x1, x2, y1, y2; t1, t2) =

η

i
u0v0

u2
0 − v

2
0
θ(t1 − t2)eiky(y1−y2)e−iE(t1−t2)

·
{

1
D2

(
ke2 + kh2

) (
u2

0eiq+x x1−iq−x x2 + v2
0eiq+x x2−iq−x x1

)
− 1

2

[(
1

q+x
eiq+x (x1−x2) +

1
q−x

e−iq−x (x1−x2)
)
θ(x1 − x2)

+

(
1

q+x
e−iq+x (x1−x2) +

1
q−x

eiq−x (x1−x2)
)
θ(x2 − x1)

]
− E2

2D2

1
q+x

eiq+x (x1+x2) − F2

2D2

1
q−x

e−iq−x (x1+x2)
}
,

f r
↑,↑(x1, x2, y1, y2; t1, t2) =0,

f r
↓,↓(x1, x2, y1, y2; t1, t2) =0.

(3.153)

D1(2) are defined in the same way as inside the heavy-metal, while

E1(2) ≡ u2
0(−ke1(2) + q+x )( kh1(2) + q−x ) + v2

0(−kh1(2) − q+x )(−ke1(2) + q−x ),
F1(2) ≡ u2

0( ke1(2) + q+x )(−kh1(2) + q−x ) + v2
0( kh1(2) − q+x )( ke1(2) + q−x ).

(3.154)

From the above equation, we see that there are no equal-spin triplet amplitudes
inside the superconductor. There are thus no equal-spin triplets in the system.We
rewrite the above expression to the relative coordinates y and t, and apply the
Fourier transform in y given in Eq. 3.38. The dependence of the retarded Green’s
functions upon ω takes the same form as for the heavy-metal region. From
Eq. 3.98, we find that the singlet and opposite-spin triplet retarded anomalous
Green’s functions inside the superconducting region are given by

f r
0 (x1, x2, py;ω) = −

η

2
u0v0

u2
0 − v

2
0
δ(py − ky)

1
ω − E + iδ+

·
{[

1
D1
(ke1 + kh1) +

1
D2
(ke2 + kh2)

]
·
(
u2

0eiq+x x1−iq−x x2 + v2
0eiq+x x2−iq−x x1

)
−

(
1

q+x
eiq+x |x1−x2 | +

1
q−x

e−iq−x |x1−x2 |
)

− 1
2

(
E1

D1
+

E2

D2

)
1

q+x
eiq+x (x1+x2) − 1

2

(
F1

D1
+

F2

D2

)
1

q−x
e−iq−x (x1+x2)

}
,
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f r
3 (x1, x2, py;ω) = −

η

2
u0v0

u2
0 − v

2
0
δ(py − ky)

1
ω − E + iδ+

·
{[

1
D1
(ke1 + kh1) −

1
D2
(ke2 + kh2)

]
·
(
u2

0eiq+x x1−iq−x x2 + v2
0e+iq+x x2−iq−x x1

)
− 1

2

(
E1

D1
− E2

D2

)
1

q+x
eiq+x (x1+x2) − 1

2

(
F1

D1
− F2

D2

)
1

q−x
e−iq−x (x1+x2)

}
.

(3.155)

Just as for the heavy-metal region, we insert this into Eq. 3.97 and use that when
ky → −ky, then ke1 ↔ ke2, kh1 ↔ kh2, D1 ↔ D2, E1 ↔ E2, and F1 ↔ F2. We
get

f r ,E(O)
0 (x1, x2, py;ω) = −

η

4
u0v0

u2
0 − v

2
0
δ(py − ky)

1
ω − E + iδ+

·
{[

1
D1
(ke1 + kh1) +

1
D2
(ke2 + kh2)

]
·
[
u2

0
(
eiq+x x1−iq−x x2 ± eiq+x x2−iq−x x1

)
+ v2

0
(
eiq+x x2−iq−x x1 ± eiq+x x1−iq−x x2

) ]
− 1

2
(1 ± 1)

[
2
(

1
q+x

eiq+x |x1−x2 | +
1

q−x
e−iq−x |x1−x2 |

)
+

(
E1

D1
+

E2

D2

)
1

q+x
eiq+x (x1+x2) +

(
F1

D1
+

F2

D2

)
1

q−x
e−iq−x (x1+x2)

]}
,

f r ,E(O)
3 (x1, x2, py;ω) = −

η

4
u0v0

u2
0 − v

2
0
δ(py − ky)

1
ω − E + iδ+

·
{[

1
D1
(ke1 + kh1) −

1
D2
(ke2 + kh2)

]
·
[
u2

0
(
eiq+x x1−iq−x x2 ± eiq+x x2−iq−x x1

)
+ v2

0
(
eiq+x x2−iq−x x1 ± eiq+x x1−iq−x x2

) ]
− 1

2
(1 ± 1)

·
[(

E1

D1
− E2

D2

)
1

q+x
eiq+x (x1+x2) +

(
F1

D1
− F2

D2

)
1

q−x
e−iq−x (x1+x2)

]}
.

(3.156)
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In the center of mass and relative x coordinates, the above expressions can be
written

f r ,E(O)
0 (X , x, py;ω) = −

η

4
u0v0

u2
0 − v

2
0
δ(py − ky)

1
ω − E + iδ+

·
{[

1
D1
(ke1 + kh1) +

1
D2
(ke2 + kh2)

]
ei(q+x−q−x )X

·
[
u2

0
(
ei(q+x+q−x )x/2 ± e−i(q+x+q−x )x/2

)
+ v2

0
(
e−i(q+x+q−x )x/2 ± ei(q+x+q−x )x/2

) ]
− 1

2
(1 ± 1)

[
2
(

1
q+x

eiq+x |x | +
1

q−x
e−iq−x |x |

)
+

(
E1

D1
+

E2

D2

)
1

q+x
e2iq+x X +

(
F1

D1
+

F2

D2

)
1

q−x
e−2iq−x X

]}
,

f r ,E(O)
3 (X , x, py;ω) = −

η

4
u0v0

u2
0 − v

2
0
δ(py − ky)

1
ω − E + iδ+

·
{[

1
D1
(ke1 + kh1) −

1
D2
(ke2 + kh2)

]
ei(q+x−q−x )X

·
[
u2

0
(
ei(q+x+q−x )x/2 ± e−i(q+x+q−x )x/2

)
+ v2

0
(
e−i(q+x+q−x )x/2 ± ei(q+x+q−x )x/2

) ]
− 1

2
(1 ± 1)

·
[(

E1

D1
− E2

D2

)
1

q+x
e2iq+x X +

(
F1

D1
− F2

D2

)
1

q−x
e−2iq−x X

]}
.

(3.157)

The nonzero singlet and triplet retarded anomalous Green’s functions in the
superconducting region are thus

f r ,E
0 (X , x, py;ω) = −

η

2
u0v0

u2
0 − v

2
0
δ(py − ky)

1
ω − E + iδ+

·
{[

1
D1
(ke1 + kh1) +

1
D2
(ke2 + kh2)

]
· ei(q+x−q−x )X cos((q+x + q−x )x/2)

−
(

1
q+x

eiq+x |x | +
1

q−x
e−iq−x |x |

)
− 1

2

(
E1

D1
+

E2

D2

)
1

q+x
e2iq+x X − 1

2

(
F1

D1
+

F2

D2

)
1

q−x
e−2iq−x X

}
,
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f r ,O
0 (X , x, py;ω) =

η

2i
u0v0

u2
0 − v

2
0
δ(py − ky)

1
ω − E + iδ+

·
{[

1
D1
(ke1 + kh1) +

1
D2
(ke2 + kh2)

]
· ei(q+x−q−x )X(u2

0 − v
2
0) sin((q

+
x + q−x )x/2)

}
,

f r ,E
3 (X , x, py;ω) = −

η

2
u0v0

u2
0 − v

2
0
δ(py − ky)

1
ω − E + iδ+

·
{[

1
D1
(ke1 + kh1) −

1
D2
(ke2 + kh2)

]
· ei(q+x−q−x )X cos((q+x + q−x )x/2)

− 1
2

(
E1

D1
− E2

D2

)
1

q+x
e2iq+x X − 1

2

(
F1

D1
− F2

D2

)
1

q−x
e−2iq−x X

}
,

f r ,O
3 (X , x, py;ω) =

η

2i
u0v0

u2
0 − v

2
0
δ(py − ky)

1
ω − E + iδ+

·
{[

1
D1
(ke1 + kh1) −

1
D2
(ke2 + kh2)

]
· ei(q+x−q−x )X(u2

0 − v
2
0) sin((q

+
x + q−x )x/2)

}
.

(3.158)

It can easily be checked that the Green’s functions given in Eqs. 3.152 and
3.158 satisfy the Pauli principle by examining their parity under spatial inversion
(x, py) → (−x,−py). By examining spatial inversion (P), exchange of spin (S)
and time permutation (T), we find that SPT= −1 as required by the Pauli principle,
see Table 3.1.

The generation of triplets, and p- and d-wave singlets, from the s-wave singlet
Cooper pairs intrinsic to the superconducting material leads to a decrease in
the superconducting condensation energy. Determining the spatial symmetries
of the even- and odd-frequency singlet and triplet retarded anomalous Green’s
functions is therefore useful for explaining the behavior of quantities such as
the superconducting gap and the critical temperature. To determine whether the
singlet and triplet even- and odd-frequency retarded anomalousGreen’s functions
are s-wave, p-wave or d-wave Green’s functions, we investigate spatial inversion
in the x and y direction separately. Px is inversion of the relative x coordinate,
x → −x. Py is inversion of the momentum along the y axis, py → −py. The s,
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S P T SPT
f E
0 −1 1 1 −1

f O
0 −1 −1 −1 −1
f E
3 1 −1 1 −1

f O
3 1 1 −1 −1

Table 3.1: The total SPT parity must be negative for all of the Green’s functions in
order to obey the Pauli principle. The singlet Green’s functions f E(O)

0 are odd under spin
exchange (S), while the triplet Green’s functions f E(O)

0 are even under spin exchange.
The even-frequency Green’s functions f E

0(3) are even under time permutation (T), while
the odd-frequency Green’s functions f O

0(3) are odd under time permutation. This implies
that f E

0 and f O
3 must be even under spatial inversion (P), while f O

0 and f E
3 must be odd

under spatial inversion. This can be easily checked by letting (x, py) → (−x,−py) in
Eqs. 3.152 and 3.158.

p and d orbitals in a 2D system are shown in Fig. 3.9. For P = 1, we may have
Px = Py = 1, which describes an s- or a dx2−y2-wave amplitude, or Px = Py = −1,
which describes a dxy-wave amplitude. For P = −1, we may have Px = 1 and
Py = −1, which describes a py-wave amplitude, or Px = −1 and Py = 1, which
describes a px-wave amplitude.

Note that considering P, Px, and Py is not sufficient for determining whether a
Green’s function has an s-wave or a dx2−y2-wave symmetry. We can show that
s-wave singlets and triplets are present by integrating over all spatial coordinates.
As can be seen from Fig. 3.9, dx2−y2-wave amplitudes will then disappear, while
s-wave amplitudes yield a nonzero result. A simple way of integrating over all
spatial coordinates is to do a Fourier transform along x,

f r ,E(O)
0(3) (X , px, py;ω) =

∫ ∞

∞
dx f r ,E(O)

0(3) (X , x, py;ω)e−ipx x, (3.159)

and then setting px = py = 0. This is equivalent to integrating over all spatial
coordinates, because

f r ,E(O)
0(3) (X , px, py;ω) =

∫ ∞

−∞
dx

∫ ∞

−∞
dy f r ,E(O)

0(3) (X , x, y;ω)e−ipx x−ipy y (3.160)

implies that

f r ,E(O)
0(3) (X , px = 0, py = 0;ω) =

∫ ∞

−∞
dx

∫ ∞

−∞
dy f r ,E(O)

0(3) (X , x, y;ω). (3.161)
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x
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s px py
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Figure 3.9: The spatial symmetries of the s, px , py, dxy, and dx2−y2 orbitals in a 2D system
is sketched above. An orbital is odd under spatial inversion if the spatial coordinatemoves
to a region with a different color under the spatial inversion. If the spatial coordinate
moves to a region that has the same color, the orbital is even under spatial inversion.

If f r ,E(O)
0(3) (X , px = 0, py = 0;ω) is nonzero, there may be dx2−y2-wave singlets

(triplets) in the system in addition to the s-wave singlets (triplets). Although it is
hard to prove their presence, we can in some cases instead show that dx2−y2-wave
amplitudes are not present. If ky only enters the singlet (triplet) retarded anoma-
lous Green’s function through δ(py − ky), it cannot change sign when changing
py, regardless of our choice of px. f r ,E(O)

0(3) (X , x, py;ω) must therefore be an s-
wave, and not a dx2−y2-wave amplitude. This makes sense physically, since we for
a system with translational invariance in the y-direction, where the allowed kx

values are independent of ky, should have no symmetry breaking in the y direc-
tion that may cause a creation of dx2−y2-wave correlations. If f r ,E(O)

0(3) (X , x, py;ω)
is independent of x, px only enters f r ,E(O)

0(3) (X , px, py;ω) through δ(px), and there
can be no change in the sign of the singlet (triplet) amplitude when changing px.
This means that we also in this case cannot have dx2−y2-wave singlets (triplets).

The symmetries under Px, Py and P for the Green’s functions in Eqs. 3.152 and
3.158 are given in Table 3.2. We see from the table that f E

0 can be an s-wave
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Px Py P
f E
0 1 1 1

f O
0 −1 1 −1
f E
3 1 −1 −1

f O
3 −1 −1 1

Table 3.2: The above table shows the parities of the HM/S system with spin-orbit field
along the x axis under x → −x (Px) and py → −py (Py) for the nonzero singlet and triplet
even- and odd-frequency retarded anomalous Green’s functions given by Eqs. 3.152 and
3.158. Spatial inversion (P) must be 1 for f E

0 and f O
3 and −1 for f O

0 and f E
3 as shown in

Table 3.1.

or a dx2−y2-wave amplitude. By applying the Fourier transform along x given in
Eq. 3.159, we find that

f r ,E
0 (X , px, py;ω) =

η

2
u0v0(q+x + q−x )δ(py − ky)

1
ω − E + iδ+

·
{

1
2D1

e−i(ke1−kh1)X

· [δ(px − (ke1 + kh1)/2) + δ(px + (ke1 + kh1)/2)]

+
1

2D2
e−i(ke2−kh2)X

· [δ(px − ((ke2 + kh2)/2) + δ(px + ((ke2 + kh2)/2)]
}
,

(3.162)

inside the heavy-metal region. For px = py = 0, we get

f r ,E
0 (X , px, py;ω) =ηu0v0(q+x + q−x )δ(ky)

1
ω − E + iδ+

· 1
D1

e−2ike1Xδ(ke1 + kh1) , 0,
(3.163)

because ky = 0 implies that ke1 = ke2, kh1 = kh2, and D1 = D2. There must be
s-wave singlets present in the heavy-metal region. The even-frequency singlet
retarded anomalous Green’s function in the superconducting region contains
terms independent of x. As discussed above, this means that there must also
be s-wave singlets present in the superconducting region. f E

0 thus represents
conventional singlet s-wave superconducting correlations, but may in addition
represent dx2−y2-wave singlets, due to the ky dependence of the allowed ky values.
We can see from Table 3.2 that f O

0 must be a px-wave amplitude, f E
3 must be a
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py-wave amplitude, and that f O
3 must be a dxy-wave amplitude. The five other

retarded anomalous Green’s functions that satisfy the Pauli principle, i.e. the dxy-
wave even-frequency singlet, the py-wave odd-frequency singlet, the px-wave
even-frequency opposite-spin triplet, the dx2−y2-wave odd-frequency opposite-
spin triplet, and the s-wave odd-frequency opposite-spin triplet, are not present.
All equal-spin triplet amplitudes are also zero.

3.3.2 The heavy-metal/superconductor system with n̂ = ẑ

Consider the case of a 2DHM/S systemwith the spin-orbit field directed along the
z axis. In this case, solving the boundary conditions of the wave functions given in
Eq. 3.125 yieldsmore complicated expressions for the reflection and transmission
coefficients than in the the n̂ = x̂ case. Also, solving the boundary conditions
of the retarded Green’s function given in Eqs. 3.66 and 3.72 cannot be done
analytically due to the spin-mixing of the energy bands. We therefore solve the
boundary conditions of the wave functions and of the retarded Green’s function
numerically. Using the obtained expressions for the reflection and transmission
coefficients and for the coefficients αi and βi in Eq. 3.61, we calculate the even-
and odd-frequency singlet and triplet retarded anomalous Green’s functions. In
order to determine which of the even- and odd-frequency singlets and triplets
are even (odd) under x1 ↔ x2, we subtract (add) the retarded anomalous Green’s
functions with x1 and x2 interchanged. If the result is zero, then the retarded
anomalousGreen’s function under consideration is even (odd) in Px. To determine
whether the retarded anomalous Green’s function is even (odd) in Py, we subtract
(add) the retarded anomalous Green’s functions with opposite signs of py. The
retarded anomalous Green’s function under consideration is even (odd) in Px if
the result is zero. Note that some of the retarded anomalous Green’s functions
may be neither even nor odd in Px and Py. In this case we have a mixing
of terms with different spatial symmetries. We also check that the retarded
anomalous Green’s functions show the correct behavior under spatial inversion
by subtracting (adding) the retarded anomalous Green’s functions with x1 ↔ x2
and py → −py. If the result is zero, the retarded anomalous Green’s function is
even (odd) in P.

We consider some different sets of parameters and find that all of the chosen
parameter sets give the spatial parities described in Table 3.3. From the table,
we see that we have the same singlet and opposite-spin triplet amplitudes as
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Px Py P
f E
0 1 1 1

f O
0 −1 1 −1
f E
3 1 −1 −1

f O
3 −1 −1 1
f E
1 - - −1

f O
1 - - 1
f E
2 - - −1

f O
2 - - 1

Table 3.3: The above table shows the parities of the HM/S system with spin-orbit field
along the z axis under x1 ↔ −x2 (Px) and py → −py (Py) for the singlet and triplet
even- and odd-frequency retarded anomalous Green’s functions present in the system. In
addition to the parities shown in Table 3.2, we have nonzero equal-spin triplet amplitudes
with mixing (-) of the possible symmetries in Px and Py.

in the n̂ = x̂ case. In addition, we have nonzero equal-spin triplet amplitudes.
Since these are neither even nor odd in Px and Py, we must have a mix of triplet
amplitudes with different symmetries under Px and Py. f E

1 and f E
2 must therefore

be a mix of px- and py-wave even-frequency triplets. f O
1 and f O

2 may either be a
mix of and s- and dxy-wave triplets, a mix of dx2−y2- and dxy-wave triplets, or a
mix of s-, dx2−y2-, and dxy-wave triplets.
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3.3.3 The ferromagnet/superconductor system

By the same method as for the HM/S system with n̂ = x̂, we will now find
the singlet and triplet even- and odd-frequency retarded anomalous Green’s
functions of the F/S system with magnetization along the z axis. We find that on
the ferromagnetic side of the interface, where x1, x2 < 0, the anomalous elements
of the retarded Green’s function are

f r
↑,↓(x1, x2, y1, y2; t1, t2) =

η

i
u0v0(q+x + q−x )

C21
θ(t1 − t2)

· e−ike2x1+ikh1x2eiky(y1−y2)e−iE(t1−t2),

f r
↓,↑(x1, x2, y1, y2; t1, t2) = −

η

i
u0v0(q+x + q−x )

C12
θ(t1 − t2)

· e−ike1x1+ikh2x2eiky(y1−y2)e−iE(t1−t2),
f r
↑,↑(x1, x2, y1, y2; t1, t2) =0,

f r
↓,↓(x1, x2, y1, y2; t1, t2) =0,

(3.164)

where

C12(21) ≡ u2
0(ke1(2) + q+x )(kh2(1) + q−x )+ v2

0(kh2(1) − q+x )(−ke1(2) + q−x ). (3.165)

From the above equation, we see that there are no equal-spin triplet amplitudes
in the ferromagnetic region. We rewrite the above expression to the relative
coordinates y and t, and apply the Fourier transform in y given in Eq. 3.38. The
dependence of the retarded Green’s functions upon ω takes the same form as
for the HM/S system with n̂ = x̂. From Eq. 3.98, we find that the singlet and
opposite-spin triplet retarded anomalous Green’s functions in the ferromagnetic
region are given by

f r
0 (x1, x2, y1, y2; t1, t2) =

η

2
u0v0(q+x + q−x )δ(py − ky)

1
ω − E + iδ+

·
[

1
C21

e−ike2x1+ikh1x2 +
1

C12
e−ike1x1+ikh2x2

]
,

f r
3 (x1, x2, y1, y2; t1, t2) =

η

2
u0v0(q+x + q−x )δ(py − ky)

1
ω − E + iδ+

·
[

1
C21

e−ike2x1+ikh1x2 − 1
C12

e−ike1x1+ikh2x2

]
.

(3.166)

Notice that in contrast to the HM/S system, none of the parameters are dependent
upon ky. By inserting the above expression into Eq. 3.97 and using that all
parameters are invariant under ky → −ky, we find that the nonzero even- and
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odd-frequency singlet and triplet retarded anomalous Green’s functions in the
ferromagnetic region are

f r ,E(O)
0 (x1, x2, py;ω) =

η

4
u0v0(q+x + q−x )δ(py − ky)

1
ω − E + iδ+

·
[(

1
C21

e−ike2x1+ikh1x2 +
1

C12
e−ike1x1+ikh2x2

)
±

(
1

C21
e−ike2x2+ikh1x1 +

1
C12

e−ike1x2+ikh2x1

)]
,

f r ,E(O)
3 (x1, x2, py;ω) =

η

4
u0v0(q+x + q−x )δ(py − ky)

1
ω − E + iδ+

·
[(

1
C21

e−ike2x1+ikh1x2 − 1
C12

e−ike1x1+ikh2x2

)
∓

(
1

C21
e−ike2x2+ikh1x1 − 1

C12
e−ike1x2+ikh2x1

)]
.

(3.167)

By rewriting the above expression to the center of mass coordinate X ≡ (x1 +

x2)/2 and the relative coordinate x ≡ x1 − x2, we find that

f r ,E(O)
0 (X , x, py;ω) =

η

4
u0v0(q+x + q−x )δ(py − ky)

1
ω − E + iδ+

·
[

1
C21

e−i(ke2−kh1)X
(
e−i(ke2+kh1)x/2 ± ei(ke2+kh1)x/2

)
+

1
C12

e−i(ke1−kh2)X
(
e−i(ke1+kh2)x/2 ± ei(ke1+kh2)x/2

)]
,

f r ,E(O)
3 (X , x, py;ω) =

η

4
u0v0(q+x + q−x )δ(py − ky)

1
ω − E + iδ+

·
[

1
C21

e−i(ke2−kh1)X
(
e−i(ke2+kh1)x/2 ∓ ei(ke2+kh1)x/2

)
− 1

C12
e−i(ke1−kh2)X

(
e−i(ke1+kh2)x/2 ∓ ei(ke1+kh2)x/2

)]
,

(3.168)

The nonzero singlet and triplet even- and odd-frequency retarded anomalous
Green’s functions inside the ferromagnet are

f r ,E
0 (X , x, py;ω) =

η

2
u0v0(q+x + q−x )δ(py − ky)

1
ω − E + iδ+

·
[

1
C21

e−i(ke2−kh1)X cos((ke2 + kh1)x/2)

+
1

C12
e−i(ke1−kh2)X cos((ke1 + kh2)x/2)

]
,
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f r ,O
0 (X , x, py;ω) =

η

2i
u0v0(q+x + q−x )δ(py − ky)

1
ω − E + iδ+

·
[

1
C21

e−i(ke2−kh1)X sin((ke2 + kh1)x/2)

+
1

C12
e−i(ke1−kh2)X sin((ke1 + kh2)x/2)

]
,

f r ,E
3 (X , x, py;ω) =

η

2i
u0v0(q+x + q−x )δ(py − ky)

1
ω − E + iδ+

·
[

1
C21

e−i(ke2−kh1)X sin((ke2 + kh1)x/2)

− 1
C12

e−i(ke1−kh2)X sin((ke1 + kh2)x/2)
]
,

f r ,O
3 (X , x, py;ω) =

η

2
u0v0(q+x + q−x )δ(py − ky)

1
ω − E + iδ+

·
[

1
C21

e−i(ke2−kh1)X cos((ke2 + kh1)x/2)

− 1
C12

e−i(ke1−kh2)X cos((ke1 + kh2)x/2)
]
.

(3.169)

On the superconducting side of the interface, where x1, x2 > 0, we find that the
anomalous elements of the retarded Green’s function are

f r
↑,↓(x1, x2, y1y2; t1, t2) = −

η

i
u0v0

u2
0 − v

2
0
θ(t1 − t2)eiky(y1−y2)e−iE(t1−t2)

·
{

1
C21

(
ke2 + kh1

) (
u2

0eiq+x x1−iq−x x2 + v2
0eiq+x x2−iq−x x1

)
− 1

2

[(
1

q+x
eiq+x (x1−x2) +

1
q−x

e−iq−x (x1−x2)
)
θ(x1 − x2)

+

(
1

q+x
e−iq+x (x1−x2) +

1
q−x

eiq−x (x1−x2)
)
θ(x2 − x1)

]
+

A21

2C21

1
q+x

eiq+x (x1+x2) +
B21

2C21

1
q−x

e−iq−x (x1−x2)
}
,
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f r
↓,↑(x1, x2, y1y2; t1, t2) =

η

i
u0v0

u2
0 − v

2
0
θ(t1 − t2)eiky(y1−y2)e−iE(t1−t2)

·
{

1
C12

(
ke1 + kh2

) (
u2

0eiq+x x1−iq−x x2 + v2
0eiq+x x2−iq−x x1

)
− 1

2

[(
1

q+x
eiq+x (x1−x2) +

1
q−x

e−iq−x (x1−x2)
)
θ(x1 − x2)

+

(
1

q+x
e−iq+x (x1−x2) +

1
q−x

eiq−x (x1−x2)
)
θ(x2 − x1)

]
+

A12

2C12

1
q+x

eiq+x (x1+x2) +
B12

2C12

1
q−x

e−iq−x (x1−x2)
}
,

f r
↑,↑(x1, x2, y1, y2; t1, t2) =0,

f r
↓,↓(x1, x2, y1, y2; t1, t2) =0.

(3.170)

C12(21) are defined in the same way as inside the ferromagnet, while

A12(21) ≡ u2
0(ke1(2) − q+x )(kh2(1) + q−x ) + v2

0(kh2(1) + q+x )(−ke1(2) + q−x )
B12(21) ≡ u2

0(ke1(2) + q+x )(kh2(1) − q−x ) + v2
0(kh2(1) − q+x )(−ke1(2) − q−x ).

(3.171)

From the above equation, we see that there are no equal-spin triplets amplitudes
inside the superconductor. There are therefore no equal-spin triplets in the F/S
system. We rewrite the above expression to the relative coordinates y and t,
and apply the Fourier transform in y given in Eq. 3.38. The dependence of
the retarded Green’s functions upon ω takes the same form as for the HM/S
system with n̂ = x̂. From Eq. 3.98, we find that the singlet and opposite-spin
triplet retarded anomalous Green’s functions inside the superconducting region
are given by

f r
0 (x1, x2, py;ω) = −

η

2
u0v0

u2
0 − v

2
0
δ(py − ky)

1
ω − E + iδ+

·
{[

1
C21
(ke2 + kh1) +

1
C12
(ke1 + kh2)

]
·
(
u2

0eiq+x x1−iq−x x2 + v2
0eiq+x x2−iq−x x1

)
−

(
1

q+x
eiq+x |x1−x2 | +

1
q−x

e−iq−x |x1−x2 |
)

+
1
2

(
A21

C21
+

A12

C12

)
1

q+x
eiq+x (x1+x2)

+
1
2

(
B21

C21
+

B12

C12

)
1

q−x
e−iq−x (x1+x2)

}
,
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f r
3 (x1, x2, py;ω) = −

η

2
u0v0

u2
0 − v

2
0
δ(py − ky)

1
ω − E + iδ+

·
{[

1
C21
(ke2 + kh1) −

1
C12
(ke1 + kh2)

]
·
(
u2

0eiq+x x1−iq−x x2 + v2
0eiq+x x2−iq−x x1

)
+

1
2

(
A21

C21
− A12

C12

)
1

q+x
eiq+x (x1+x2)

+
1
2

(
B21

C21
− B12

C12

)
1

q−x
e−iq−x (x1+x2)

}
.

(3.172)

Just as for the ferromagnetic region, we insert this into Eq. 3.97 and use that all
parameters are invariant under ky → −ky. We get

f r ,E(O)
0 (x1, x2, py;ω) = −

η

4
u0v0

u2
0 − v

2
0
δ(py − ky)

1
ω − E + iδ+

·
{[

1
C21
(ke2 + kh1) +

1
C12
(ke1 + kh2)

]
·
[
u2

0
(
eiq+x x1−iq−x x2 ± eiq+x x2−iq−x x1

)
+ v2

0
(
eiq+x x2−iq−x x1 ± eiq+x x1−iq−x x2

) ]
+

1
2
(1 ± 1)

[
− 2

(
1

q+x
eiq+x |x1−x2 | +

1
q−x

e−iq−x |x1−x2 |
)

+

(
A21

C21
+

A12

C12

)
1

q+x
eiq+x (x1+x2)

+

(
B21

C21
+

B12

C12

)
1

q−x
e−iq−x (x1+x2)

]}
,

f r ,E(O)
3 (x1, x2, py;ω) = −

η

4
u0v0

u2
0 − v

2
0
δ(py − ky)

1
ω − E + iδ+

·
{[

1
C21
(ke2 + kh1) −

1
C12
(ke1 + kh2)

]
·
[
u2

0
(
eiq+x x1−iq−x x2 ∓ eiq+x x2−iq−x x1

)
+ v2

0
(
eiq+x x2−iq−x x1 ∓ eiq+x x1−iq−x x2

) ]
+

1
2
(1 ∓ 1)

·
[(

A21

C21
− A12

C12

)
1

q+x
eiq+x (x1+x2)

+

(
B21

C21
− B12

C12

)
1

q−x
e−iq−x (x1+x2)

]}
.

(3.173)
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In the center of mass and relative x coordinates, the above expressions can be
written

f r ,E(O)
0 (X , x, py;ω) = −

η

4
u0v0

u2
0 − v

2
0
δ(py − ky)

1
ω − E + iδ+

·
{[

1
C21
(ke2 + kh1) +

1
C12
(ke1 + kh2)

]
ei(q+x−q−x )X

·
[
u2

0
(
ei(q+x+q−x )x/2 ± e−i(q+x+q−x )x/2

)
+ v2

0
(
e−i(q+x+q−x )x/2 ± ei(q+x+q−x )x/2

) ]
+

1
2
(1 ± 1)

[
− 2

(
1

q+x
eiq+x |x | +

1
q−x

e−iq−x |x |
)

+

(
A21

C21
+

A12

C12

)
1

q+x
e2iq+x X

+

(
B21

C21
+

B12

C12

)
1

q−x
e−2iq−x X

]}
,

f r ,E(O)
3 (X , x, py;ω) = −

η

4
u0v0

u2
0 − v

2
0
δ(py − ky)

1
ω − E + iδ+

·
{[

1
C21
(ke2 + kh1) −

1
C12
(ke1 + kh2)

]
ei(q+x−q−x )X

·
[
u2

0
(
ei(q+x+q−x )x/2 ∓ e−i(q+x+q−x )x/2

)
+ v2

0
(
e−i(q+x+q−x )x/2 ∓ ei(q+x+q−x )x/2

) ]
+

1
2
(1 ∓ 1)

·
[(

A21

C21
− A12

C12

)
1

q+x
e2iq+x X

+

(
B21

C21
− B12

C12

)
1

q−x
e−2iq−x X

]}
.

(3.174)
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The nonzero singlet and triplet retarded anomalous Green’s functions inside the
superconducting region are

f r ,E
0 (X , x, py;ω) = −

η

2
u0v0

u2
0 − v

2
0
δ(py − ky)

1
ω − E + iδ+

·
{[

1
C21
(ke2 + kh1) +

1
C12
(ke1 + kh2)

]
· ei(q+x−q−x )X cos((q+x + q−x )x/2)

−
(

1
q+x

eiq+x |x | +
1

q−x
e−iq−x |x |

)
+

1
2

(
A21

C21
+

A12

C12

)
1

q+x
e2iq+x X

+
1
2

(
B21

C21
+

B12

C12

)
1

q−x
e−2iq−x X

}
,

f r ,O
0 (X , x, py;ω) =

η

2i
u0v0

u2
0 − v

2
0
δ(py − ky)

1
ω − E + iδ+

·
{[

1
C21
(ke2 + kh1) +

1
C12
(ke1 + kh2)

]
· ei(q+x−q−x )X(u2

0 − v
2
0) sin((q

+
x + q−x )x/2)

}
,

f r ,E
3 (X , x, py;ω) =

η

2i
u0v0

u2
0 − v

2
0
δ(py − ky)

1
ω − E + iδ+

·
{[

1
C21
(ke2 + kh1) −

1
C12
(ke1 + kh2)

]
· ei(q+x−q−x )X(u2

0 − v
2
0) sin((q

+
x + q−x )x/2)

}
f r ,O
3 (X , x, py;ω) = −

η

2
u0v0

u2
0 − v

2
0
δ(py − ky)

1
ω − E + iδ+

·
{[

1
C21
(ke2 + kh1) −

1
C12
(ke1 + kh2)

]
· ei(q+x−q−x )X cos((q+x + q−x )x/2)

+
1
2

(
A21

C21
− A12

C12

)
1

q+x
e2iq+x X

+
1
2

(
B21

C21
− B12

C12

)
1

q−x
e−2iq−x X

}
.

(3.175)

Table 3.4 shows the symmetries of Eqs. 3.169 and 3.175 under spatial inversion,
inversion of only x and inversion of only py. By comparison with Table 3.1,
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Px Py P
f E
0 1 1 1

f O
0 −1 1 −1
f E
3 −1 1 −1

f O
3 1 1 1

Table 3.4: The above table shows the parities Px and Py for the nonzero singlet and triplet
retarded anomalous Green’s functions. For spatial inversion (P), we must have P= 1 for
f E
0 and f O

3 and P= −1 for f O
0 and f E

3 according to the Pauli principle (see Table 3.1).

we see that the above Green’s functions satisfy the Pauli principle. The Green’s
functions in Eqs. 3.169 and 3.175 are even under inversion of py. This means
that the py- wave and dxy-wave amplitudes must be zero. We also know that
the Green’s functions in Eqs. 3.169 and 3.175 only depend upon ky through
δ(py − ky). As discussed in Sec. 3.3.1, this means that the dx2−y2-wave amplitude
must be zero.We can only have s-wave and px-wave amplitudes in the system. The
nonzero singlet and triplet retarded anomalousGreen’s functions are therefore the
s-wave even-frequency singlet, the px-wave odd-frequency singlet, the px-wave
even-frequency opposite-spin triplet and the s-wave odd-frequency opposite-spin
triplet. Although the Hamiltonianmatrices are quite similar, the 2DHM/S system
with n̂ = x̂ and the 2D F/S system with h = hẑ do not allow for generation of the
same types of triplets. The crucial difference between these two systems is that
the kx values are ky dependent for the HM/S system, while for the F/S system
the retarded anomalous Green’s function only depends on ky through δ(py − ky).

We have now establishedwhich of the superconducting correlations are present in
each of our three systems. This will allow us to understand the physical reason for
the dependence of the superconducting critical temperature upon the symmetry
breaking in each of these three systems. This will be further discussed in Ch. 5.
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4
MAGNET IZAT ION REOR IENTAT ION

4.1 introduction and motivation

Recent theoretical [22–25] and experimental [25] work has demonstrated how
the superconducting critical temperature can be modified by rotating the mag-
netization of a single homogeneous ferromagnet proximity-coupled to a super-
conducting layer. This occurs when the superconductor and the ferromagnet are
separated by a thin heavy normal-metal that provides an enhanced interfacial
Rashba spin-orbit interaction. Measurements [25] performed on a Nb/Pt/Co/Pt
system showed a suppression of the critical temperature for an in-plane mag-
netization, that was attributed to a reduced superconducting gap due to triplet
generation. A reduced gap also implies an increase in the free energy since part
of the superconducting condensation energy is lost. We may therefore suspect
the superconducting contribution to the free energy to favor an out-of-plane
magnetization direction.

Motivated by this, we explore the possibility of a magnetization reorientation
driven by the superconducting phase transition. We discover that by lowering the
temperature, in addition to reorientation of the favored magnetization direction
from IP to OOP, a π/4 IP rotation for thicker ferromagnetic layers is possible.
This opens the possibility for temperature-induced switching of themagnetization
both between the IP and OOP orientation and switching within a plane parallel
to the interface. Furthermore, computation of the critical temperature of the
structure in the ballistic limit shows a dependence on the IP orientation of the
magnetization, in contrast to what is previously found for the diffusive limit. This
finding is relevant with respect to thin-film heterostructures since these are likely
to be in the ballistic regime of transport rather than in the diffusive regime.

95
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Figure 4.1: Suggested experimental setup for demonstrating a magnetization reorienta-
tion due to a change in temperature. We have a stack of a normal-metal layer (T > Tc,
U = 0) or a superconducting layer (T < Tc, U > 0), a heavy-metal layer and a ferromag-
netic layer. We model our system as a 3D cubic lattice with interface normal along the
x direction. The exchange field h is described by the polar and azimuthal angles with
respect to the z axis, (θ, φ). Note that the above model is not to scale.

4.2 model

We consider a 3D cubic lattice of size Nx × Ny × Nz as shown in Fig. 4.1. The
lattice consists of three layers: a superconducting layer, a thin heavy-metal layer
with Rashba spin-orbit coupling and a thin ferromagnetic layer. For enabling
experimental observation of the effects considered in this chapter, the system
should have as good an interface quality as possible to maximize the proximity
effect, and heavy-metal interlayers should be used to boost the spin-orbit coupling
strength. For concrete material choices, we suggest a Nb superconductor with
Pt interlayers, which should give a strong proximity effect and strong spin-orbit
coupling (see for instance Ref. [51]). In addition, the ferromagnet should be soft
and have as weak an anisotropy as possible. We suggest using a 7% Mo-doped
permalloy, which has a very low switching energy [52]. We describe the trilayer
system shown in Fig. 4.1 by the Hamiltonian in Eqs. 2.1 and 2.6 and follow the
theoretical framework described in Sec. 2.1. The magnetic exchange field of the
ferromagnet is expressed by h = h(cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)), where θ
is the polar angle with respect to the z axis and φ is the azimuthal angle. Note
that as described in Sec. 2.1, the interface normals are parallel to the x axis and
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we assume periodic boundary conditions in the y and z directions. Recall that as
stated in Sec. 2.1, we scale all energies to the hopping element, t, and all lengths
to the lattice constant, a, and we also set the reduced Planck constant ~ and the
Boltzmann constant kB equal to 1. Therefore, all temperatures are scaled by t/kB

in the presentation of the results.

4.3 results and discussion

4.3.1 The non-superconducting contribution to the free energy
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Figure 4.2: Panels (a) and (b) show FN(θ) −max(FN ,hy=0) in the xz plane for T = 1 and
T = 0.1. The parameters used are specified in the main text. In (a) OOP magnetization
is favored. In (b) IP magnetization is favored.

We first look at a system as shown in Fig. 4.1, where we have a normal-metal
rather than a superconductor, i.e. U = 0. This is important in order to later distin-
guish the influence of the superconducting phase on the preferred magnetization
orientation compared to the normal-state phase. We diagonalize the Hamilto-
nian described in Eqs. 2.1 and 2.10 numerically using the parameters Nx,N = 9,
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Figure 4.3: Panels (a) and (b) show FN(θ) −max(FN ,hx=0) in the yz plane for h = 1.4,
λ = 0.6 and for h = 1.6, λ = 0.8. The other parameters used are given in the main text.
T = 0.01. We see a π/4-rotation of the minimum from (a) to (b).

Nx,HM = Nx,F = 3, Ny = Nz = 50, µN = 1.8, µHM = 1.7, µF = 1.6, h = 1.4
and λ = 0.6. We then plot the free energy for the N/HM/F-trilayer, FN(θ), to find
the preferred direction of h for a given T . In all free-energy plots we subtract
the maximal free energy within the plane of rotation we are considering, i.e.
max(FN ,hy=0) when considering the xz plane and max(FN ,hx=0) when consider-
ing the yz plane. We do this to make it easier to compare the change in free
energy for different parameter choices. Figure 4.2 shows FN(θ) in the xz plane
for T = 1 and T = 0.1. We see that the preferred magnetization direction may
change as the temperature is increased. The preferred direction may also change
when changing h, λ or the layer thicknesses. The angular dependence of F is the
same for the xy and xz planes. Figure 4.3 shows FN(θ) in the yz plane atT = 0.01
for different choices of h and λ. We see that the preferred direction of h is rotated
by π/4 when changing the parameters from h = 1.4, λ = 0.6 to h = 1.6, λ = 0.8.
A similar rotation may also happen when changing T or the layer thicknesses.
Note that the free energy is invariant under a π/2-rotation in the yz plane. This
is reasonable, because a π/2-rotation of the cubic system around the interface
normal should leave the system invariant independently of the magnetization di-
rection. For sufficiently high temperatures, FN becomes constant. We underline
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that the effective magnetization anisotropy that arises here is distinct from the
anisotropy terms described in Eqs. 2.52 and 2.53, the latter not being included in
the analysis yet. We will shortly come back to the physical origin of the magnetic
anisotropy in the present case. It is evident that the preferred direction of h is
highly dependent on the choice of parameters. To make a superconducting switch
we must therefore make sure that the non-superconducting contribution to the
free energy favors a different magnetization direction than the superconducting
contribution so that the superconducting and non-superconducting contributions
compete. We must also check whether a change in the preferred magnetization
direction is actually caused by the superconducting contribution to F and not by
the non-superconducting contribution.

To understand the angular dependence of the free energy better, we consider
the HM/F bilayer by using the simplified model described in the last part of
Sec. 2.1. By approximating the HM/F bilayer as one single ferromagnetic layer
with Rashba spin-orbit coupling and with periodic boundary conditions along
all three axes, we obtain the eigenenergies expressed in Eq. 2.26. If we assume
T to be small, we may calculate FN according to Eq. 2.54. We see that FN is
directly proportional to the sum over negative eigenenergies. By rewriting the
eigenenergies for the xy plane (θ = π/2) using the polar angle with respect to the
y axis, θ ′ = π/2− φ, we find that the eigenenergies are on exactly the same form
as for the xz plane (φ = 0). The free energy for the xy and xz plane is therefore
exactly the same, as expected. By substituting θ −→ θ + π/2 in Eq. 2.26 we can
also show that the eigenenergies and thus the free energy is invariant under any
π/2-rotation in the yz plane. It is also worth noting that for λ = 0 the angular
dependence in Eq. 2.26 vanishes. For a ferromagnetic layer without additional
symmetry breaking caused by spin-orbit coupling, the free energy is constant.
Since the sum is taken over negative eigenenergies only when computing the free
energy, the value of FN depends on which of the four eigenenergies are negative.
Each of the four eigenenergies in Eq. 2.26 have two competing terms. There are
several cases:

1. εk < 0 and the absolute value of the second term is smaller than |εk |:
E1,k and E2,k contribute. The second terms therefore cancel and there is
no angular dependence.

2. εk > 0 and the absolute value of the second term is smaller than |εk |:
E3,k and E4,k contribute. The second terms therefore cancel and there is
no angular dependence.
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3. The absolute value of the second term is larger than |εk |:
E2,k and E4,k contribute. The first terms cancel and the remaining terms
have angular dependence.

4. εk < 0, the absolute value of the second terms in E1,k and E2,k are larger
than |εk | and the absolute value of the second terms in E3,k and E4,k are
smaller than |εk |:
Only E2,k contributes. E2,k has an angular dependence.

5. εk > 0, the absolute value of the second terms in E1,k and E2,k are smaller
than |εk | and the absolute value of the second terms in E3,k and E4,k are
larger than |εk |:
Only E4,k contributes. E4,k has an angular dependence.

In case 3 the free energy is FN = H0 +
1
2
∑

k(E2,k + E4,k) and FN is minimized
if ±[hΛy cos(θ) + ihΛz sin(θ) sin(φ)] is zero. If we consider the xz plane, the
azimuthal angle φ is zero. The free energy in the xz plane is therefore minimized
when cos(θ) = 0, i.e. when the magnetization is oriented along the x axis. In
case 4 and 5 the free energy depends on only one of the eigenenergies. The free
energy is therefore minimized when the contributing eigenenergy is minimized.
We see from Eq. 2.26 that the (θ, φ) at which FN is minimized depends on the
values of h and λ. The five cases above consider the eigenenergies for a specific
choice of k. To obtain the free energy we must sum over all values of k. Since
the same case may not hold for all k, the angular dependence of FN may be even
more complicated than considered above. We may therefore conclude that the
free energy is highly dependent on h and λ even in this simple approximation. In
our numeric calculations of the free energy, we must also take into account finite
temperature and separate layers leading to the non-periodic boundary conditions
in the x direction. It is therefore reasonable that the angular dependence of FN

changes upon changing h, λ, T and the layer thicknesses. Motivated by this,
we may suspect the energy band structure to be responsible for the angular
dependence of FN also in our numerical calculations.

Before turning to the superconducting case, we return to our numerical results
for the non-superconducting case and examine the energy band structure of the
system in order to explain the change in free energy of the N/HM/F trilayer. If we
consider small temperatures so that FN can be approximated by Eq. 2.51, the free
energy is determined by the sum over negative eigenenergies. If eigenenergies
are shifted from above to below zero when some parameter is changed or if
the eigenenergies below zero shift closer or farther away from zero, FN(θ) will
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Figure 4.4: Panels (a)-(i) show the energy band structure, En,ky ,kz=0(ky), of the N/HM/S
system. The parameters used are given in the main text. In (a), (d), and (g) we have OOP
magnetization corresponding to the maximum of FN for low T . In (b), (e), and (h) we
have IP magnetization with θ = π/4 corresponding to the maximum IP value of FN for
low T . In (c), (f), and (i) we have IP magnetization with θ = 0 corresponding to the
minimum of FN for low T . Panels (d)-(f) show the band structure in the region marked
in yellow in panels (a)-(c). The crosses mark the discrete eigenenergies. The encircled
eigenenergies are shifted from above zero energy (green circle) to below zero energy
(blue circle) or vice versa when rotating h. At T = 0 only eigenenergies below zero
energy contribute to FN . Panels (g)-(i) show the band structure in the region marked in
purple in panels (a)-(c). Also for these higher energy bands that contribute to F at finite
temperatures, there is a shift in the energy bands when rotating h.

change. When increasing the temperature from zero, the smallest of the positive
eigenenergies will give a contribution to the free energy. The band structure
close to zero energy (relative the chemical potential) should therefore be of great
importance to the free energy at low temperatures. In Fig. 4.4 we have plotted
the energy bands, En,ky ,kz=0(ky), for three different magnetization directions. We
consider the out-of-plane case (θ, φ) = (π/2, 0) and two in-plane cases (θ, φ) =
(π/4, π/2) and (0, 0), respectively. We have used the same parameters as in
Fig. 4.2. In Fig. 4.4, panels (a)-(c) show the overall band structure of the three
magnetization directions. Panels (d)-(f) corresponds to the region marked in
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yellow in panels (a)-(c) and show some of the eigenenergies close to zero energy.
We see a variation in band structure between the different directions of h. As
a result some eigenenergies are shifted from above to below zero energy and
vice versa. For T → 0 it is therefore likely that the differences in band structure
cause the variation in FN for different magnetization directions. Note that this
effective anisotropy is not caused by the discreteness of ky and kz. In the limit
where we have continuous energy bands, Ny, Nz →∞, the shifting of the energy
bands should cause the same effect since finite sections of the continuous energy
bands are shifted from above to below zero energy and vice versa. Panels (g)-(i)
correspond to the purple region in panels (a)-(c) and show higher energy bands
that only contribute to the free energy at finite temperatures. We see that the band
structure has an angular dependence also at finite temperatures. It is therefore
reasonable that FN has an angular dependence also for low, finite temperatures.
For temperatures that are sufficiently high tomake all energy eigenvalues partially
occupied, FN(θ) becomes gradually more independently of the magnetization
direction. Since FN(θ) becomes constant for high temperatures, this indicates
that the relative shift between the energy bands is such that it leaves the sum over
all eigenenergies constant.

4.3.2 The superconducting contribution to the free energy

We now look at a system as shown in Fig. 4.1, where we have a superconductor,
i.e. U > 0. The basic question we seek to address is, is it possible to trigger
a reorientation of the preferred magnetization direction in the system via a
superconducting phase transition, i.e. by adjusting the temperature from above
to below Tc? We diagonalize the Hamiltonian described in Eqs. 2.1 and 2.10
numerically using the parameters Nx,S = 9, Nx,HM = Nx,F = 3, Ny = Nz = 50,
µS = 1.8, µHM = 1.7, µF = 1.6,U = 1.9, h = 1.4 and λ = 0.6. For this parameter
set the superconducting coherence length is ξ = 5. We expect that our results can
be generalized to systems with thicker layers as long as the relative thicknesses of
the layers compared to the coherence length stay constant, as explained previously
in Sec. 2.9.

We first look at the effects on ∆ and Tc by adding the heavy-metal and ferromag-
netic layer to the superconducting layer. ∆(T) is plotted in Fig. 4.5 for the S, S/F
and S/HM/F systems. ∆ and Tc decrease when adding a ferromagnetic layer to
the superconducting layer. Adding a heavy-metal layer between the superconduc-

[May 14, 2019 at 13:55 – classicthesis ]



4.3 results and discussion 103

0 0.2 0.4 0.6 0.8 1
T / Tc,S

0

0.2

0.4

0.6

0.8

1 S
S/F
S/HM/F

Δ
 / 
Δ
0

Figure 4.5: The three curves show the superconducting gap as a function of temperature
for a S, S/F and S/HM/F system. The parameters are given in the main text, and h = hẑ.
Tc,S is the critical temperature of the superconducting layer computed with n = 20
and m = 200. Note that the smoothness of the curves at Tc and the decrease in the
superconducting gap when decreasing T for the S/F system are numerical artifacts.

tor and the ferromagnet partly shields the superconductor from the effect of the
ferromagnet, leading to an effective increase in ∆ and Tc. We see that our set of
parameters leads to a strong suppression of ∆ and Tc, where the HM layer has a
visible effect without entirely suppressing the effect of the ferromagnetic layer.
Note that the curves in Fig. 4.5 should be at their steepest at Tc. The smoothness
of the curves when ∆/∆0 → 0 is a numerical artifact caused by the fact that it
takes more iterations to calculate ∆ accurately the closer we get to the critical
temperature. Note also that there should be no decrease in the S/F curve when
decreasing T at low temperatures. This is a numerical artifact caused by a too
low number of ky and kz values. A low number of ky and kz values is especially
problematic for eigenenergies within the superconducting gap, since most energy
bands crossing the gap are very steep and cannot be well described by a low num-
ber of discrete eigenenergies. For the purely superconducting system there are
no eigenstates within the gap, and for the S/HM/F system there are less energy
bands crossing the gap than for the S/F system. We therefore only get numerical
artifacts for the S/F system. Despite these numerical artifacts, Fig. 4.5 can give
us a rough picture of the effects of the additional layers on ∆ and Tc.
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Figure 4.6: Panel (a) shows Tc/Tc,S when rotating the magnetization from IP to OOP.
Panel (b) shows Tc/Tc,S for an IP rotation. The parameters used are specified in the main
text.

We now consider the dependence of the superconducting critical temperature
on the magnetization direction. Since we have chosen a size of the supercon-
ductor larger than the coherence length, the magnitude of the change in critical
temperature is rather small. Tc(θ)/Tc,S is plotted in Fig. 4.6. Tc,S is the critical
temperature of the superconducting layer without the heavy-metal layer and the
ferromagnetic layer. In (a) we see a suppression of Tc for IP magnetization as
found by experiments [25] on a similar system. Panel (b) shows an additional IP
variation in Tc where Tc is suppressed along the cubic axes. In our system, where
the thickness of the superconductor is less than twice the coherence length, we do
not obtain a substantial bulk region with a constant gap. When calculating Tc, we
measure the change in the gap in the middle of the superconducting region when
recalculating the gap m times. This means that for superconducting layers that
are not much longer than the coherence length, our method for calculating Tc is
not entirely accurate unless m is chosen to be very large. This is shown in figure
4.7, where we see that until m is chosen large enough, the calculated value of
Tc decreases when increasing m. We set m = 150, since the curve has stabilized
at this point. The change in Tc when increasing m by 10 is then 10−4Tc,S, which
is a small change compared to the total change in Tc when rotating h. We have
checked that we get a qualitatively similar behavior of Tc to that in Fig. 4.6 for
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Figure 4.7: The curve shows the calculated value of Tc for different choices of m. To
obtain an accurate value for Tc, m must be chosen as large as possible and at least around
m = 150 where the curve has stabilized. Tc,S is calculated with m = 200. The parameters
are given in the main text. h is directed along the z axis

thicker superconducting layers. Tc,S was calculated with m = 200. The number
of times we divided our temperature interval is n = 20, making m the parameter
that restricts the accuracy of our Tc calculation.

The reason why we chose a superconductor of only 9 lattice points is that a
long superconducting layer requires a low U to obtain a coherence length that is
comparable to the thickness of the superconducting layer. This results in a very
low critical temperature. At very low temperatures only the eigenenergies below
zero contribute to the free energy as shown in Eq. 2.51. If we have few ky and kz

values the shifting of eigenenergies from above to below zero energy will have
a great impact on the free energy. This is especially a problem when computing
the non-superconducting contribution to the free energy, where we have no gap
and many eigenenergies are close to E = 0. We therefore do not get a smooth
curve when plotting FN(θ). To avoid this problem we must either choose a short
superconductor such that we can look at higher temperatures, or let Ny and Nz

be very large. The latter option makes the free energy and critical temperature
calculations computationally expensive, which is why we chose the former. Note
that we would expect a stronger variation in Tc if we made our superconductor
comparable to the coherence length rather than almost two times larger. Figure
4.8 shows the dependence of Tc on the thickness of the superconducting layer
for our choice of parameters. We see that when increasing Nx,S the critical
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Figure 4.8: The critical temperature of the S/HM/F system decreases when decreasing the
thickness of the superconducting layer. Below a certain Nx,S, superconductivity vanishes
completely. For large Nx,S the critical temperature approaches the critical temperature
of a superconducting layer not coupled to the HM/F bilayer. The parameters are given in
the main text. h is directed along the z axis.

temperature approaches the critical temperature of a single superconducting
layer, because the HM/F layers becomes negligible. When decreasing Nx,S the
critical temperature decreases. For Nx,S = 4 the critical temperature is very small,
and for thinner superconducting layers Tc = 0, implying that the system is no
longer superconducting. Notice that the superconducting layer thickness used
to obtain our results, Nx,S = 9, is within the region where Tc has decreased
visibly from the critical temperature of a single superconducting layer, but where
superconductivity is still not entirely suppressed. Note that since the coherence
length depends on the size of the superconducting region, ξ is not necessarily
equal to 5 lattice points for all choices of Nx,S.
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Figure 4.9: Panels (a) and (b) show F(θ) −max(Fhy=0) in the xz plane for T = 0.1 >

Tc = 0.017 and T = 0.01 < Tc respectively. Panels (c) and (d) show the normal state
contribution to the free energy at the same temperatures. The parameters used are
specified in the main text. From (a) and (b) we see that by decreasing the temperature
below Tc the preferred magnetization direction of the ferromagnet changes from IP to
OOP. Since the normal state contribution shown in (c) and (d) favors IP magnetization,
the change in the preferred magnetization direction must be due to superconductivity.

From the angular dependence ofTc wemay expect a superconducting contribution
to the free energy in which F is increased for the IP orientation, especially along
the cubic axes. Figure 4.9 shows the free energy in the xz plane for T = 0.1 > Tc,
T = 0.01 < Tc andT = 0.005 < Tc. As expected, we see a change in the preferred
magnetization direction due to the fact that the superconducting contribution to
F favors OOP magnetization while the non superconducting contribution to F
favors IP magnetization. Figure 4.10 shows the free energy in the yz plane for the
same temperatures. For sufficiently lowT the superconducting contribution to the
free energy starts to dominate, and we have an IP π/4 rotation of the minimum
of the free energy. Notice however that the IP variation in the free energy is
weaker than the IP-OOP variation. Therefore OOP magnetization is favored as
the ground-state of the system despite the fact that the free energy also varies
when the magnetization is rotated IP. For both the xz and yz planes the change
in preferred magnetization direction will generally occur at lower temperatures
than Tc, meaning that the superconducting contribution does not necessarily start
to dominate exactly at the critical temperature. When increasing T , the preferred
magnetization direction at some point changes from IP to OOP without any
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Figure 4.10: Panels (a), (b) and (c) show F(θ) −max(Fhx=0) in the yz plane for T =
0.1 > Tc = 0.017, T = 0.01 < Tc and T = 0.005 < Tc respectively. Panels (d), (e) and
(f) show the normal state contribution to the free energy at the same temperatures. The
parameters used are specified in the main text. From (a), (b) and (c) we see that the IP
minimum of the free energy rotates by π/4 at some temperature between 0.01 and 0.005,
which are both below Tc. Since the normal state contribution shown in (d), (e) and (f)
favors magnetization along the crystal axes at all of these three temperatures, the change
in the preferred magnetization direction must be due to superconductivity.

involvement of superconductivity. This is exemplified by the behavior of FN(θ)
in Fig. 4.2 which was plotted for a temperature T > Tc. The superconducting
switch must therefore be operated over a limited temperature range around the
temperature at which the change in the preferred magnetization direction occurs.
However, we will later discuss how the superconducting contribution to the free
energy, causing an effective magnetic anistropy, can be experimentally detected
even in the cases in which the superconducting contribution is not sufficiently
strong to change the preferred magnetization orientation.

The angular dependence of Tc and of the superconducting contribution to F can
be explained by the generation of triplet Cooper pairs. At an S/F interface, the
spin splitting of the energy bands of the ferromagnet causes transformation of
singlet Cooper pairs into opposite-spin triplets. The Rashba spin-orbit coupling
terms in the Hamiltonian in Eq. 2.10 are proportional to sin(ky) and sin(kz).
Therefore, electrons experience different energies if the sign of (ky, kz) is changed.
This symmetry-breaking causes triplet generation at the S/HM interface, and
enables equal-spin triplet generation, depending on the relative orientation of
the magnetization and the spin-orbit field. In Fig. 4.12 we have plotted the
triplet amplitudes corresponding to OOPmagnetization and the IPmagnetization
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Figure 4.11: Panels (a) and (b) show the singlet amplitude S̃s/S̃s,S in the xz and yz planes.
The parameters are given in the main text. T = 0.01 < Tc = 0.017.

directions (θ, φ) = (π/2, π/4) and (0, 0), respectively. The relative time used in
the computation of the s-wave odd-ω triplet amplitudes is τ = 5. We see that
there is a generation of short-range and long-range triplet amplitudes depending
on the magnetization direction. The generation of triplet amplitudes lowers the
singlet amplitude in the superconductor, since singlet Cooper pairs are converted
into triplet Cooper pairs. In Fig. 4.11 we have plotted S̃s/S̃s,S, where S̃s is defined
in Eq. 2.55. S̃s,S is the singlet amplitude in the superconducting layer without the
heavy-metal layer and the ferromagnetic layer.We see that the singlet amplitude is
suppressed for IPmagnetization, especially along the cubic axes. Since the singlet
amplitude is proportional to the superconducting order parameter, a suppression
of the singlet amplitude should lead to a decrease in Tc and an increase in F.
This is exactly what we have seen from Figs. 4.6, 4.9 and 4.10. We may therefore
explain the variation inTc and F by the generation of triplet amplitudes depending
on the relative orientations of the spin-orbit field and the magnetization.

The diffusive limit calculations in Ref. [25] found an IP suppression ofTc as in our
calculations. However, in the diffusive limit Tc was found to be invariant under
IP rotations of the magnetization. In Ref. [25] the HM/F layer is modeled as a
single layer with the exchange field and the spin-orbit coupling as homogeneous
background fields, which similarly to what occurs in the ballistic limit results
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Figure 4.12: Panels (a)-(l) show the triplet amplitudes generated in the S/HM/F system
at T = 0.01 < Tc = 0.017. The parameters are given in the main text. Panels (a)-(c) show
the s-wave triplet amplitudes, panels (d)-(f) show the px-wave triplet amplitudes, panels
(g)-(i) show the py-wave triplet amplitudes and panels (j)-(l) show the pz-wave triplet
amplitudes. The first column corresponds to OOP magnetization, the second column
corresponds to IP magnetization with θ = π/4 and the third column corresponds to IP
magnetization with θ = 0. Note that all amplitudes that are not visible in the plots are
either zero or close to zero.

in a generation of both short-range and long-range triplets close to the interface.
The IP suppression of Tc compared to Tc at OOP magnetization is both for the
ballistic and the diffusive limit a result of differences in the triplet generation
when the exchange field is parallel and perpendicular to the interface between
the superconductor and the HM/F layer. The change in Tc under IP rotations of
the magnetization reported in this thesis is a result of differences in the triplet
generation at different IP magnetization directions due to the crystal structure of
the lattice in the HM region. This is the reason why these variations are not found
in the diffusive limit calculations in Ref. [25], which does not model the S/HM/F
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Figure 4.13: Panel (a) shows the perpendicular/shape anisotropy contribution to F. Panel
(b) shows the effective anisotropy constant, Ke f f , as a function of the ferromagnet
thickness.

system by a lattice model. For very thin films, like the ones considered experi-
mentally in Ref. [25], we expect the sample to approach the ballistic limit such
that a variation in Tc for IP rotations of the magnetization should be observable.

4.3.3 The shape anisotropy contribution to the free energy

Until now, we have disregarded the intrinsic magnetic anisotropy of the thin
ferromagnetic film, which does not depend on the coupling to itinerant electrons
c and c† in our model. For concreteness, we will now consider the case of a Pt
heavy-metal layer and a Co(111) ferromagnetic layer. In this case, the anisotropy
constants are [31] Kv = −0.77 MJ/m3, Ki = 1.15 mJ/m2 and Ks = −0.28 mJ/m2.
The lattice constants of Co are [53] ax = ay = 251pm and az = 407pm. The
anisotropy contribution to the free energy is plotted in Fig. 4.13(a) for this choice
of parameters. The effective anisotropy constant defined in Eq. 2.53 is plotted in
Fig. 4.13(b) as a function of Nx,F . By solving Keff = 0, we find that the anisotropy
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contribution to the free energy favors an OOP magnetization for Nx,F ≤ 3 and
an IP magnetization for Nx,F ≥ 4. Since we may generalize our results to any
system size as long as the layer thickness relative to ξ stays constant, we may
consider a systemwith any Nx,F . Bymaking the ferromagnetic layer thick enough
to give a contribution to F(θ) favoring an IP magnetization, but thin enough
that Keff is small, it is in principle possible to get an IP-OOP superconducting
switch despite the fact that the non-superconducting contribution to F has gained
an extra term. We may also make the ferromagnetic layer so thick that the non-
superconducting contribution to the free energy enforces IP magnetization. Since
the shape anisotropy contribution to the free energy is invariant under rotations in
the yz plane, wemay get a π/4 rotation in themagnetization as shown in Fig. 4.10.
This means that an IP superconducting switch in the magnetization direction is
in principle possible, even if the preferred magnetization direction is OOP when
disregarding shape anisotropy. The possibility of changing the preferred direction
in the yz plane is interesting as the magnetic field of the ferromagnet in such a
case is not perpendicular to the superconducting layer. We therefore disregard
demagnetising currents close to the interface in the superconducting region as
well as vortex formation inside the superconductor [54]. For magnetization with
an OOP component, demagnetization effects may be of greater importance.

It is worth noting that even if the ferromagnetic layer is so thick that the non-
superconducting contribution dominates, it may still be possible to measure the
superconducting contribution to the free energy. The superconducting contribu-
tion to the free energy in an F1/S/F2 system can be measured [55] by applying
an external magnetic field and measuring the critical field needed to flip the mag-
netization from an antiparallel to a parallel alignment. It should be possible to
do similar measurements on the S/HM/F-system. For instance, one could apply
an external field to flip the magnetization of the ferromagnet between the IP and
the OOP direction. The superconducting contribution favors OOP magnetization
and would therefore reduce the critical field needed to flip the magnetization
from IP to OOP orientation. Such a reduction of the critical field would thus be
an evidence of a superconductivity-induced anisotropy term for the ferromagnet.

4.4 concluding remarks

The work presented in this chapter predicts a possible reorientation of the magne-
tization direction of a thin-film ferromagnet upon lowering the temperature below
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the superconducting critical temperature Tc when the ferromagnet is separated
from a superconductor by a thin heavy-metal film. Especially for a thin ferro-
magnetic film with weak shape anisotropy, the superconducting phase transition
should induce an in-plane to out-of-plane rotation of the magnetization. We have
also found that if the shape anisotropy is strong enough to enforce an in-plane
magnetization direction, a π/4 in-plane rotation of the magnetization can occur
upon lowering the temperature below Tc. In addition, we have considered the
dependence of Tc on the magnetization direction. Here, we find that our lattice-
model calculations predict an additional in-plane variation in Tc compared to
previous diffusive-limit calculations, which only show an in-plane suppression
of Tc independently of the in-plane magnetization orientation. Both the Tc sup-
pression and the magnetization reorientation can be explained by the generation
of short-range and long-range triplet Cooper pairs close to the interfaces depend-
ing on the relative orientations of the exchange field of the ferromagnet and the
spin-orbit field of the heavy-metal. The results presented in this chapter should
be reproducible experimentally for systems with the same ratio between the layer
thickness and the superconducting coherence length.
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5
T c MODULAT ION IN S /HM B ILAYERS

5.1 introduction and motivation

Experiments have previously demonstrated how the critical temperature of F1/S/F2
and F1/F2/S systems can be modulated by changing the relative orientation of
the magnetization of the two homogeneous ferromagnets [17–21]. Diffusive limit
calculations [22–25], and the ballistic limit calculations presented in the previous
chapter, have also shown that a similar modulation of the critical temperature can
be expected when rotating the magnetization of a single homogeneous ferromag-
net in a S/HM/F or S/HM/F/HM heterostructure. For such a system, it has been
shown experimentally that the critical temperature is suppressed for an in-plane
magnetization compared to the out-of-plane magnetization [25]. Compared to
the S/F structure, the thin HM films boosts the Rashba spin-orbit coupling that
breaks the invariance under magnetization reorientations. The Rashba spin-orbit
coupling leads to a symmetry breaking that allows for a variation in the triplet
generation when rotating the magnetization of the S/HM/F system. In fact, while
ferromagnetism only leads to a spin-splitting of the energy bands of spin-up and
spin-down electrons [8], Rashba spin-orbit coupling is in addition odd under
inversion of the momentum component perpendicular to the spin-orbit field. We
may therefore suspect that while a S/F structure is invariant under rotations of the
magnetization, a S/HM structure is not invariant under rotations of the Rashba
spin-orbit field.

Motivated by this, we explore the possibility of a modulation of the supercon-
ducting critical temperature under reorientations of the Rashba spin-orbit field in
a bilayer consisting of a superconductor and a heavy normal-metal, without the
presence of ferromagnetism. We discover a suppression of the critical tempera-
ture for in-plane spin-orbit fields, and also a variation in the suppression of the
critical temperature depending on the orientation of the in-plane component of
the spin-orbit field. We further find that the difference in critical temperature for
IP and OOP spin-orbit fields can at least partly be accounted for by the absence
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of s-wave odd-frequency triplets for OOP spin-orbit fields. Since s-wave triplet
amplitudes are robust with respect to impurity scattering, we expect our predic-
tion of an IP suppression of the critical temperature to be observable in diffusive
systems, as well as in the ballistic systems covered by our theoretical framework.

5.2 model
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y
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T < Tc

φ
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n^

Figure 5.1: In order to demonstrate a Tc suppression depending on the direction of the
spin-orbit field, we consider a system consisting of a superconducting layer and a heavy-
metal layer with Rashba spin-orbit coupling. The direction of the spin-orbit field n̂ is
described by the polar and azimuthal angles (θ, φ) with respect to the z axis. We model
our system as a 3D cubic lattice with interface normal along the x direction. The figure
is not to scale.

For our main calculations, we consider a 3D cubic lattice of size Nx × Ny × Nz

as shown in Fig. 5.1. The lattice consists of two layers: a superconducting layer
and a heavy-metal layer with Rashba spin-orbit coupling. The spin-orbit field
is directed along n̂ = x̂ cos(φ) sin(θ) + ŷ sin(φ) sin(θ) + ẑ cos(θ), where θ is the
polar angle with respect to the z axis and φ is the azimuthal angle. Since n̂
can have a component parallel to the interface, we symmetrize the spin-orbit
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coupling term of the Hamiltonian as described in Sec. 2.2. For the remaining
terms we follow the theoretical framework presented in Sec. 2.1. The system is
thus described by the Hamiltonian given in Eq. 2.49, where the terms are only
nonzero in their respective regions. Recall that we choose our interface normal
to be directed along the x axis, and that we use periodic boundary conditions in
the y and z direction. As before, we scale all energies to the hopping element t
and all lengths to the lattice constant a, and we set the reduced Planck constant
~ and the Boltzmann constant kB equal to 1, as in the previous sections. All
temperatures are therefore scaled by t/kB in the presentation of the results.

In this chapter, we will also consider a 2D square lattice HM/S system by follow-
ing the theoretical framework presented in Ch. 3. We consider the simpler 2D
system in order to explain the changes in triplet generation when n̂ is reoriented
from an IP (n̂ = ẑ) to an OOP (n̂ = x̂) direction. In the n̂ = x̂ case, the nonzero
singlet and triplet retarded anomalous Green’s functions are given by the analyti-
cal expressions in Eqs. 3.152 and 3.158. In the n̂ = ẑ case, the singlet and triplet
retarded anomalous Green’s functions must be calculated numerically. In order
to compare the results obtained from the theoretical frameworks described in
Chs. 2 and 3, we also consider a 2D square lattice of size Nx × Ny using the same
approach as in Ch. 2. In order to treat a 2D system by the theoretical framework
presented in Ch. 2, we consider a system with one atomic layer in the z direction
and apply periodic boundary conditions only in the y direction. For comparison,
we also consider a 2D F/S system with magnetization along the z direction.

5.3 results and discussion

We diagonalize the Hamiltonian given in Eq. 2.49 numerically for the S/HM sys-
tem shown in Fig. 5.1. We first consider the superconducting critical temperature
using the parameters Nx,S = 7, Nx,HM = 3, Ny = Nz = 85, µS = 1.9, µHM = 1.7,
U = 2.1 and λ = 0.8. This choice of parameters gives a superconducting co-
herence length of ξ = 4. We compute the critical temperature by the improved
method described in Sec. 2.4. Tc/Tc,S is plotted in Fig. 5.2. Tc,S is the critical
temperature of the superconducting layer without proximity to a heavy-metal
layer. In Fig. 5.2(a) we see a suppression of the critical temperature for an IP
spin-orbit field compared to an OOP spin-orbit field. Figure 5.2(b) shows that
there is also an IP variation in Tc, which for this choice of parameters gives the
strongest in-plane suppression of Tc for spin-orbit fields oriented at a π/4 angle
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with respect to the z axis. In computing the critical temperature, we have used
n = 20 and m = 35. Tc(m) is plotted in Fig. 5.3, and we see that at m = 35 the
change in Tc by increasing m is small. By increasing m by 10, the change in Tc is
proportional to 1/100 of the change in Tc under IP rotations. Tc,S was calculated
with n = 20 and m = 100. If we consider another set of parameters, Nx,S = 5,
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Figure 5.2: Panels (a) and (b) show Tc/Tc,S for rotations of n̂ in the xz and yz planes
respectively. The parameters are specified in the main text. Notice that for the given
choice of parameters we have an IP suppression of the critical temperature at θ = π/4.

Nx,HM = 2, Ny = Nz = 100, µS = 1.9, µHM = 1.7, U = 1.9 and λ = 0.2 giving
a coherence length of ξ = 7, we instead find the IP suppression to be strongest
along the y axis and z axis. For this choice of parameters Tc/Tc,S is plotted in
Fig. 5.4. Notice that compared to what we find from Fig 5.2(a) and (b), the IP
variation in Fig. 5.4(b) is much smaller compared to the IP to OOP variation
in Fig. 5.4(a). Also, although the ratio between the coherence length and the
superconductor thickness is much larger for the second set of parameters, the
Tc modulation is weaker since the spin-orbit coupling is weaker. We have used
n = 25 and m = 40, which gives a change in Tc proportional to 1/1000 of the
IP change in Tc when increasing m by 10. Tc,S was calculated with n = 25 and
m = 100. We have found that the critical temperature is always suppressed for IP
spin-orbit fields compared to an OOP spin-orbit field, as shown in Figs. 5.2(a)
and 5.4(a). For IP rotations, Tc may be suppressed either for spin-orbit fields
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Figure 5.3: The curve shows the calculated value of Tc/Tc,S for different choices of m
with n̂ directed along the z axis for the same set of parameters as in Fig. 5.2. The critical
temperature in Fig. 5.2 was calculated using m = 35 where Tc(m) has flattened.

along ŷ + ẑ as in Fig. 5.2(b), or along the cubic axes as in Fig. 5.4(b). We will
return to addressing why different parameter choices result in different behaviors
of Tc under IP rotations shortly.

The change in the critical temperature when rotating the spin-orbit field can be
explained by generation of triplet Cooper pairs that lowers the s-wave singlet
amplitude in the superconducting region. The total s-wave singlet amplitude
in the superconducting region given by Eq. 2.66 is plotted in Figs. 5.5 and
5.6 for the first and second set of parameters, respectively. We see that the
variation in the total singlet amplitude shown in Fig. 5.5 is of the same form
as the variation in Tc shown in Fig. 5.2, and that the variation in the total
singlet amplitude shown in Fig. 5.6 is of the same form as the variation in Tc

shown in Fig. 5.4. The suppression of the critical temperature can therefore
be attributed to the suppression of the superconducting gap caused by singlet
to triplet generation. If we further investigate the triplet amplitudes present
for different orientations of the spin-orbit field, we find that the s-wave odd-
frequency anomalous triplet amplitude is absent for n̂ = x̂, i.e. if n̂ has no IP
component. For all other orientations of the spin-orbit field, the s-wave odd-
frequency anomalous triplet amplitude is nonzero. This suggests that the IP to
OOP change in the superconducting critical temperature is at least partly caused
by the increase in the s-wave triplet amplitude from zero at n̂ = x̂ to an increasing
finite value as the IP component of n̂ increases. For the p-wave even-frequency
triplet amplitudes, we find that the px-wave triplet amplitude is zero for n̂ = x̂, the
py-wave triplet amplitude is zero for n̂ = ŷ and that the pz-wave triplet amplitude
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Figure 5.4: Panels (a) and (b) show Tc/Tc,S for rotations of n̂ in the xz and yz planes
respectively. The parameters are specified in the main text. Notice that for the given
choice of parameters we have an IP suppression of the critical temperature for n̂ along
the y and z axes.

is zero for n̂ = ẑ. The remaining p-wave triplet amplitudes are nonzero. This
may be explained by the fact that the spin-orbit coupling is only odd in the
k-component perpendicular to the direction of the spin-orbit field. It is hard to
determine how strongly each of the p-wave triplet amplitudes contributes to the
variation inTc under rotations of n̂, and also whether the s-wave triplet amplitude
contributes to the IP variation in Tc. However, the variation in the s-wave triplet
amplitude under IP to OOP rotations is of special importance as the s-wave triplet
amplitude is the only triplet amplitude robust with respect to impurity scattering.
In diffusive materials, all physical quantities are effectively averaged over all
k [56], and the s-wave amplitude is the only amplitude that is even under all
inversions in k-space. We may therefore expect an IP suppression of the critical
temperature also in diffusive materials.

In order to explain the absence of the s-wave triplet amplitude for n̂ = x̂, we
consider a 2D square lattice and follow the theoretical framework presented in
Ch. 3. For n̂ = x̂, the singlet and opposite-spin triplet anomalous Green’s func-
tions are given by Eqs. 3.152 and 3.158, and their symmetries under inversion

[May 14, 2019 at 13:55 – classicthesis ]



5.3 results and discussion 121

0 /4 /2
0.43

0.44

0.45

0.46

0.47

0.48

0.49
(a)

0 /4 /2
0.422

0.424

0.426

0.428

0.43

0.432
(b)

S
s /

 S
s,

S~
~ S

s /
 S

s,
S~

~

T=0.03 T=0.03

θ

HM
S

z

y
θ

HM

x

z

S

n^ n^

Figure 5.5: Panels (a) and (b) show the singlet amplitude S̃s/S̃s,S for rotations of n̂ in the
xz and yz planes respectively. T = 0.03 is just below the minimum value of the critical
temperature, Tc,min = 0.033. The choice of parameters is the same as in Fig. 5.2. We see
that the singlet amplitude has a similar angular dependence as the critical temperature.

of the spatial x coordinate and the momentum in the y direction are shown in
Table 3.2. There are no equal-spin triplet anomalous Green’s functions present.
The spatial symmetries of the singlet and opposite-spin triplet retarded anoma-
lous Green’s functions allows for the s-wave singlet amplitude, the px-wave
singlet amplitude, the py-wave opposite-spin triplet amplitude and the dxy-wave
opposite-spin triplet amplitude to be nonzero. There may also be dx2−y2-wave
singlets in the system, but as discussed in Sec. 3.3 their presence is harder to
prove. There is no s-wave triplet amplitude present. At the first glance, it might
seem strange that the odd-frequency s-wave triplet amplitude is zero, when it is
nonzero for a 2D F/S structure with magnetization along the z axis. Although the
Hamiltonians of these systems are of a similar form (see Eqs. 3.108 and 3.120),
they allow for the existence of different triplet amplitudes. As can be seen from
Eqs. 3.169 and 3.175, and from Table 3.4, all singlet and triplet amplitudes in the
F/S system are invariant under the inversion of the momentum in the y direction,
py. In the HM/S system the ky dependence of the allowed kx values causes the
triplet amplitudes to be odd in py. The crucial difference leading to a generation
of py- and d-wave triplets in the HM/S system rather than s- and px-wave triplets
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Figure 5.6: Panels (a) and (b) show the singlet amplitude S̃s/S̃s,S for rotations of n̂ in the
xz and yz planes respectively. T = 0.018 is just below the minimum value of the critical
temperature, Tc,min = 0.019. The choice of parameters is the same as in Fig. 5.4. We see
that the singlet amplitude has a similar angular dependence as the critical temperature.

as in the F/S system, is therefore the ky dependence of the spin-orbit coupling
terms in the Hamiltonian. For a HM/S structure with n̂ = ẑ, we compute the
singlet and triplet retarded anomalous Green’s functions numerically following
the theoretical framework in Ch. 3. From Table 3.3, we see that in addition to the
singlet and triplet amplitudes present for n̂ = x̂, there exist nonzero equal-spin
triplet amplitudes. These must contain px-, py-, and dxy-wave triplets and they
must also include either s-wave or dx2−y2-wave triplets, or both. In our ballistic
limit calculations, the variations in the singlet amplitude under rotations of n̂ is
affected by variations in all of these different triplet amplitudes.

In order to connect the above results to those obtained from the theoretical
framework in Ch. 2, we follow the theoretical framework presented in Ch. 2
and plot the triplet amplitudes of the 2D S/HM and S/F systems. For our S/HM
system, we choose the parameters Nx,S = 7, Nx,HM = 3, Ny = 85, µS = 1.9,
µHM = 1.7, U = 2.1 and λ = 0.8. These are the same parameters that are
used in obtaining Figs. 5.2 and 5.5, except that we consider a 2D lattice instead
of a 3D lattice. We have considered zero temperature and used the z axis as
the projection axis for both n̂ = x̂ and n̂ = ẑ, so that the triplet amplitudes
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can be directly compared to the retarded anomalous Green’s functions obtained
by instead following the theoretical framework in Ch. 3. The s- and p-wave
triplet amplitudes are plotted in Fig. 5.7. From (a), (c) and (e), we see that in
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Figure 5.7: Panels (a), (c) and (e) show the triplet amplitudes for n̂ = x̂. Panels (b), (d) and
(f) show the triplet amplitudes for n̂ = ẑ. Panels (a) and (b) show odd-frequency s-wave
triplets, panels (c) and (d) show even-frequency px-wave triplets, and panels (e) and (f)
show even-frequency py-wave triplets. When reorienting n̂ from the x direction to the z
direction, equal-spin s-, px- and py-wave triplets appear in addition to the opposite-spin
py-wave triplet, that is the only nonzero triplet for n̂ = x̂. Note that curves with two
colors mark two different types of triplets with the same amplitude. Note also that triplet
amplitudes that are not visible in the plots are zero or close to zero. The parameters
are given in the main text. The temperature is T = 0 and the relative time coordinate is
τ = 10.

perfect correspondence with our previous results, the s-wave and px-wave triplet
amplitudes are absent when n̂ = x̂. There are also no equal-spin triplets in the
system. From (b), (d) and (f), we see that for n̂ = ẑ, we have gained additional
s-, px-, and py-wave equal-spin triplets. In Fig. 5.8, we plot the s- and p-wave
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triplet amplitudes of a S/F system with the same parameters as the S/HM system,
except that the HM layer is replaced by a ferromagnetic layer with Nx,F = 3 and
h = 0.8. For this system, the s-wave and px-wave opposite-spin triplet amplitudes

1 2 3 4 5 6 7 8 9 10

-0.01

0

0.01

(a)

2 3 4 5 6 7 8 9
-0.05

0

0.05
(b)

1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05
(c)

ix

P
y

P
x

S

Re(A
,ix
)

Im(A
,ix
)

Re(A
,ix
)

Im(A
,ix
)

Re(A
0,ix
)

Im(A
0,ix
)

{S,Px,Py}A=

x

y F

h

S

Figure 5.8: (a), (b) and (c) shows the triplet amplitudes for a 2D ferromagnet with h = hẑ.
(a) shows odd-frequency s-wave triplets, (b) shows even-frequency px-wave triplets, and
(c) shows even-frequency py-wave triplets. Triplet amplitudes that are not visible in the
plots are zero or close to zero. The parameters are specified in the main text. The relative
time coordinate is τ = 10.

are nonzero, while the py-wave triplet amplitude is absent. The triplet generation
found by the theoretical framework presented in Ch. 3 therefore correspond well
to, and explain, the triplet generation found from the theoretical framework in
Ch. 2. By comparing the results obtained from the two theoretical frameworks,
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we also find that the equal-spin triplets obtained from the theoretical framework
in Ch. 3 for the 2D HM/S system with n̂ = ẑ must contain s-wave triplets.

Although an analytical expression for the singlet and triplet amplitudes cannot
be obtained for a 3D system, it is plausible that the s-wave triplet amplitude is in
general zero for n̂ = x̂ also in 3D. Since the Hamiltonian is dependent on both ky
and kz for a 3D HM/S system with n̂ = x̂ (see Eq. 2.49), the allowed kx values
will depend on ky and kz. Similarly as in 2D, this may lead to the possibility of
triplet amplitudes that are odd under inversion of ky and kz, and therefore be the
cause of the absence of the s-wave triplet amplitudes.

The fact that we have a variation in the triplet generation under IP rotations,
i.e. when the IP component of n̂ is constant, means that the variations in the
triplet generation cannot be solely attributed to the change in the s-wave triplet
amplitude under changes in the IP component of n̂. The triplet generation, and
therefore alsoTc, depends on whether n̂ points towards the nearest or next-nearest
neighbours in the cubic lattice. Since the triplet amplitudes in Eqs. 2.58-2.61
depend on both the eigenvectors and eigenenergies of the system, the triplet
concentration must depend on the band structure of the system. From Eq. 2.50,
we see that the free energy of the system only depends on the superconducting
gap and the band structure. If we consider a N/HM system, a change in the free
energy under rotations of n̂ must therefore mean that the energy band structure
changes. Using the same parameters as in Figs. 5.2 and 5.5 and setting U to
zero, we plot the normal state free energy FN of a N/HM system in Fig. 5.9. We
have subtracted the maximum of the free energy within each plane of rotation
to make it easier to compare the magnitude of the change in the two rotation
planes. From the figure, we see that there is a change in the free energy, and
therefore also in the energy band structure, under both IP to OOP rotations and
for rotations within the plane of the interface. Note that the change in the normal
state free energy of the system under rotations of n̂ need not be of the same form
as the variation in the free energy of the superconducting system. The fact that
the reorientation of the spin-orbit field alone can induce a change in the energy
band structure in a N/HM system suggests that reorientations of the spin-orbit
field may cause similar changes in the band structure of a S/HM system. These
changes in band structure may explain the variation in the singlet amplitude and
the critical temperature for IP rotations. They may also contribute to the change
in the singlet amplitude and the critical temperature under IP to OOP rotations.
Band structure effects are also a likely candidate for explaining the differences
in the behavior of the critical temperature under the IP rotations in Figs. 5.2(b)
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Figure 5.9: (a) shows FN −max(FN ,ny=0) for rotations in the xz plane. (b) shows FN −
max(FN ,nx=0) for rotations in the yz plane. The calculation is done for a normal-metal with
the same choice of parameters and at the same temperature as for the singlet amplitude
in Fig. 5.5. In this case the free energy curves have the opposite shape of the singlet
amplitude in Fig. 5.5, however this need not be the case. The normal state variation in
the free energy suggests band structure effects to be present.

and 5.4(b) provided that the band structure favors an increased triplet generation
at different orientations of n̂ for different choices of parameters.

We finally comment on the possibilities of the experimental realization of the
above discussed Tc-modulation. We suggest cleaving a non-centrosymmetric ma-
terial in different directions and growing a superconductor on the surface. For
this, we suggest Bismuth (Bi), as it is the heaviest non-reactive element and has
shown a strong spin-orbit interaction [57]. Experiments [58, 59] have shown that
the Rashba-like spin-orbit interactions in Bi can favor a spin polarization with
a nonzero out-of-plane component, corresponding to a nonzero in-plane compo-
nent of the spin-orbit field. This can be explained by the layered structure of Bi,
where the spin-orbit field is directed perpendicular to the layers independently
of the angle at which the material is cut. This method demands different samples
for different orientations of the spin-orbit field. However, if the superconduct-
ing critical temperature is systematically lower for one case than the other, this
could be taken as evidence for a Tc suppression. Another possibility is to deposit
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superconductors on the surface of a curved non-centrosymmetric material. The
non-centrosymmetric material, e.g.Bi, can be mechanically polished into a cylin-
drical shape [60]. If the superconductors are deposited in regions with different
angles between the Bi layers and the surface, and the curvature is weak so that the
surface covered by a superconducting layer is approximately flat, this effectively
shows the effects of different orientations of the spin-orbit fields using just one
sample. For both of these approaches, the interface quality should be as good as
possible in order to maximize the proximity effect.

Another suggestion for the experimental realization of the Tc-modulation is
growing transition metal dichalcogenides on superconducting samples. Tran-
sition metal dichalcogenides have two competing contributions to the spin-orbit
field [61], an in-plane contribution, and an out-of plane contribution induced by
Rashba spin-splitting. The strength of the two contributions can be modulated by
adding strain [62]. The strain may be modified by growing the transition metal
dichalcogenide together with a polar substrate with an intrinsic dipole moment
[63]. A tensile strain increasing the in-plane lattice constant increases the out-of-
plane contribution to the spin-orbit field compared to the in-plane component.
A compressive strain decreasing the in-plane lattice constant on the other hand
increases the in-plane contribution to the spin-orbit field compared to the out-of-
plane component. Note that the applied strain is restricted to be weak enough to
not cause a breaking of inter-atomic bonds [62]. This method require multiple
samples.

5.4 concluding remarks

The work presented in this chapter predicts a suppression of the superconducting
critical temperature of a superconductor/heavy-metal heterostructure when the
Rashba spin-orbit field of the heavy-metal is oriented in the plane of the interface.
This suppression may be attributed to the fact that the odd-frequency s-wave
triplet amplitude increases from zerowhen the spin-orbit field gains an increasing
in-plane component, but may also be affected by variations in the generation of
even-frequency p-wave and odd-frequency d-wave triplets. For a 2D system with
the interface normal along the x axis, the absence of s-wave triplets for out-
of-plane spin-orbit fields is explained by the ky dependence of the allowed kx

values. This allows for triplets that are odd under inversion of ky, rather than the
s-wave amplitude, which is even under inversion along all spatial axes. Due to the
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robustness of s-wave triplets under impurity scattering, we expect the in-plane
suppression of the critical temperature to be observable also in diffusive systems.
We have also predicted a variation in Tc under in-plane rotations of the spin-orbit
field, that may be attributed to differences in the energy band structure when the
spin-orbit field is oriented in different directions in the cubic crystal structure.
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6
SUMMARY AND OUTLOOK

In this thesis, we have demonstrated the emergence of new physics upon combin-
ing superconducting and non-superconducting materials into hybrid structures,
due to the proximity-induced conversion of singlet into triplet Cooper pairs. We
have focused on hybrid structures consisting of a single conventional supercon-
ducting layer either proximity-coupled to a single homogeneous ferromagnet
with an intermediate heavy-metal layer boosting interfacial Rashba spin-orbit
coupling, or combined with a single heavy normal-metal layer with Rashba
spin-orbit coupling. In particular, we have demonstrated magnetization reorien-
tation driven by the superconducting phase transition and critical temperature
modulation under rotations of the magnetization and Rashba spin-orbit field.

For the superconductor/heavy-metal/ferromagnet trilayer, we have predicted a
magnetization reorientation upon lowering the temperature below the supercon-
ducting critical temperature. This system thus acts as a temperature-driven mag-
netic switch. For thin-film ferromagnets with a weak magnetic anisotropy, the
superconducting phase transition may trigger an in-plane to out-of-plane reori-
entation of the magnetization. For thicker ferromagnetic layers where shape
anisotropy enforces in-plane magnetization, a π/4 in-plane rotation of the mag-
netization should be possible upon lowering the temperature below the critical
temperature. We also predict an in-plane modulation of the critical temperature
present in ballistic systems. This result complements the earlier diffusive-limit
calculations that only predict a suppression of the critical temperature indepen-
dently of the in-plane orientation of the magnetization. Our predictions should
be experimentally observable in thin-film heterostructures with good interface
quality, strong interfacial Rashba-spin orbit coupling, andwith a soft ferromagnet
with low switching-energy.

For the superconductor/heavy-metal structure, we have predicted a suppression
of the superconducting critical temperature for in-plane Rashba spin-orbit fields
dependent upon the in-plane orientation. We have demonstrated that the out-of-
plane to in-plane variation in the critical temperature is at least partly caused by
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130 summary and outlook

the odd-frequency s-wave triplet concentration increasing from zero when the in-
plane component of the spin-orbit field increases from zero. Due to the robustness
of s-wave Cooper pairs under impurity scattering, an in-plane suppression of the
critical temperature should therefore be observable both in diffusive materials
and in the ballistic-limit materials considered in this thesis.

It is likely that future investigations of new combinations of superconducting and
non-superconducting materials will lead to the discovery of interesting physics.
The exploration of these systems is therefore important from a fundamental
physics point of view that focuses on increasing our understanding of these mate-
rials, but also with regard to possible future applications. In this, it is of particular
importance to urge the experimental realization of theoretical predictions such
as those done in this thesis.
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Recent theoretical and experimental work has demonstrated how the superconducting critical temperature
(Tc ) can be modified by rotating the magnetization of a single homogeneous ferromagnet proximity-coupled
to the superconducting layer. This occurs when the superconductor and ferromagnet are separated by a thin
heavy normal metal that provides an enhanced interfacial Rashba spin-orbit interaction. In the present work,
we consider the reciprocal effect: magnetization reorientation driven by the superconducting phase transition.
We solve the tight-binding Bogoliubov–de Gennes equations on a lattice self-consistently and compute the
free energy of the system. We find that the relative angle between the spin-orbit field and the magnetization
gives rise to a contribution in the free energy even in the normal state, T > Tc, due to band-structure effects.
For temperatures below Tc, superconductivity gives rise to a competing contribution. We demonstrate that by
lowering the temperature, in addition to reorientation of the favored magnetization direction from in-plane to
out-of-plane, a π/4 in-plane rotation for thicker ferromagnetic layers is possible. Furthermore, computation of
Tc of the structure in the ballistic limit shows a dependence on the in-plane orientation of the magnetization,
in contrast to our previous result on the diffusive limit. This finding is relevant with respect to thin-film
heterostructures since these are likely to be in the ballistic regime of transport rather than in the diffusive
regime. Finally, we discuss the experimental feasibility of observing the magnetic anisotropy induced by the
superconducting transition when other magnetic anisotropies, such as the shape anisotropy for a ferromagnetic
film, are taken into account. Our work suggests that the superconducting condensation energy in principle can
trigger a reorientation of the magnetization of a thin-film ferromagnet upon lowering the temperature below Tc,
in particular for ferromagnets with weak magnetic anisotropies.

DOI: 10.1103/PhysRevB.99.134516

I. INTRODUCTION

Recent research within the field of superconducting spin-
tronics has focused on combining superconducting and mag-
netic materials into hybrid structures to study novel phases
arising from proximity effects not found in individual mate-
rials [1]. In conventional superconductors (S), Cooper pairs
exists as spin-singlet pairs. The two electrons in a pair have
opposite spin and are destroyed when they enter a ferromagnet
(F) as they quickly lose their coherence due to the magnetic
exchange field. At the interface between a superconductor
and a ferromagnet, spin-singlet pairs are transformed into
spin-zero triplet Cooper pairs that have a short penetration
depth into the ferromagnetic region. However, two misori-
ented ferromagnets breaking spin-rotational symmetry can
transform opposite-spin triplets into equal-spin triplets [2].
Due to their equally directed spins along the magnetization
direction, these Cooper pairs maintain coherence longer and
are instead able to survive for a longer distance inside the
ferromagnet. The density of equal-spin triplets in the system

*Corresponding author: lina.g.johnsen@ntnu.no

depends on the relative orientation of the ferromagnets [2,3].
This has been demonstrated experimentally (see for instance
Refs. [4–8]) by showing a variation of Tc in a F1/S/F2 or
F1/F2/S system by changing the relative magnetization of the
F1 and F2 layers. This variation is attributed to the generation
of triplet Cooper pairs with increasing misalignment of the
magnetizations of F1 and F2 layer moments. Recent research
[9–12] has reported a similar modulation of the critical tem-
perature by changing the orientation of a single homoge-
neous ferromagnet coupled to a superconductor through a thin
heavy normal metal (HM) film with strong Rashba spin-orbit
coupling. Measurements [12] performed on a Nb/Pt/Co/Pt
system showed a suppression of the critical temperature for
an in-plane (IP) magnetization that was attributed to a reduced
superconducting gap due to triplet generation. A reduced gap
also implies an increase in the free energy since part of the su-
perconducting condensation energy is lost. We may therefore
suspect the superconducting contribution to the free energy to
favor an out-of-plane (OOP) magnetization direction.

Motivated by this, here we explore the striking possibility
of reorienting the magnetization of the ferromagnetic layer in
an S/HM/F system by changing the temperature. We discover

2469-9950/2019/99(13)/134516(11) 134516-1 ©2019 American Physical Society
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that upon lowering the temperature below Tc, the dependence
of the free energy on the magnetization direction changes due
to the superconducting phase transition. In turn, this leads
to a change in the ground-state magnetization direction, or
effectively the magnetization angle that minimizes the free
energy. For sufficiently thin ferromagnetic layers, we get a
change from IP to OOP magnetization. We also find that
there is an IP variation in the free energy and show that
it is in principle possible to get an IP π/4 rotation of the
magnetization when lowering the temperature below Tc. This
opens the possibility for temperature-induced switching of the
magnetization both between the IP and OOP orientation and
switching within a plane parallel to the interface.

II. THEORY

To describe our S/HM/F system, we use the tight-binding
Bogoliubov–de Gennes (BdG) framework and use conven-
tions similar to those in Refs. [13,14]. The lattice BdG frame-
work is well suited for describing heterostructures, fully ac-
counts for the crystal symmetry of the electronic environment,
and can describe atomically thin layers of a material. The
Hamiltonian we use is

H = −t
∑

〈i, j〉,σ
c†

i,σ c j,σ −
∑
i,σ

μic
†
i,σ ci,σ −

∑
i

Uini,↑ni,↓

− i

2

∑
〈i, j〉,α,β

λic
†
i,α n̂ · (σ × di, j )α,βc j,β

+
∑
i,α,β

c†
i,α (hi · σ)α,βci,β . (1)

Above, t is the hopping integral, μi is the chemical potential
at lattice site i, U > 0 is the attractive on-site interaction that
gives rise to superconductivity, λi is the Rashba spin-orbit
coupling magnitude at site i, n̂ is a unit vector normal to the
interface, σ is the vector of Pauli matrices, di, j is the vector
from site i to site j, and hi is the local magnetic exchange field.
c†

i,σ and ci,σ are the second-quantization electron creation and

annihilation operators at site i with spin σ , and ni,σ ≡ c†
i,σ ci,σ .

The superconducting term in the Hamiltonian is treated by a
mean-field approach, where we insert ci,↑ci,↓ = 〈ci,↑ci,↓〉 + δ

and c†
i,↑c†

i,↓ = 〈c†
i,↑c†

i,↓〉 + δ† into Eq. (1) and neglect terms of
second order in the fluctuations δ and δ†. �i ≡ Ui〈ci,↑ci,↓〉
is the superconducting order parameter, which we solve for
self-consistently. We consider a 3D cubic lattice of size Nx ×
Ny × Nz, as shown in Fig. 1. The lattice consists of three
layers: a superconducting layer, a thin heavy-metal layer with
Rashba spin-orbit coupling, and a thin ferromagnetic layer.
For enabling experimental observation of the effects consid-
ered in this paper, the system should have as good an interface
quality as possible to maximize the proximity effect, and
heavy-metal interlayers should be used to boost the spin-orbit
coupling strength. For concrete material choices, we suggest
a Nb superconductor with Pt interlayers, which should give
a strong proximity effect and strong spin-orbit coupling (see
for instance Ref. [15]). In addition, the ferromagnet should
be soft and have as weak an anisotropy as possible. We
suggest using a 7% Mo-doped permalloy, which has a very

x

z

y

h

N
HM

F

x

z

y

h

S
HM

F

U = 0

 U > 0 

FIG. 1. Suggested experimental setup for demonstrating a mag-
netization reorientation due to a change in temperature. We have a
stack of a normal-metal layer (T > Tc, U = 0) or a superconducting
layer (T < Tc, U > 0), a heavy-metal layer, and a ferromagnetic
layer. We model our system as a 3D cubic lattice with interface
normal along the x direction. The exchange field h is described by
the polar and azimuthal angles with respect to the z axis, (θ, φ). Note
that the above model is not to scale.

low switching energy [16]. We describe the trilayer system
shown in Fig. 1 using the Hamiltonian in Eq. (1), where
the terms are only nonzero in their respective regions. The
interface normals are parallel to the x axis (n̂ = x̂). We assume
periodic boundary conditions in the y and z directions, so that
all quantities depend on the x component of the site index
only. In our presentation of the results, we scale all energies to
the hopping element, t , and all lengths to the lattice constant,
a. For simplicity, we also set the reduced Planck constant
h̄ and the Boltzmann constant kB equal to 1. Therefore,
all temperatures are scaled by t/kB in the presentation of
the results. The magnetic exchange field of the ferromagnet
is expressed by h = h( cos(φ) sin(θ ), sin(φ) sin(θ ), cos(θ )),
where θ is the polar angle with respect to the z axis and φ

is the azimuthal angle. Because of our assumption of periodic
boundary conditions along ŷ and ẑ, the Fourier transform

ci,σ = 1√
NyNz

∑
ky,kz

cix,ky,kz,σ ei(kyiy+kziz ) (2)

can be used to diagonalize the Hamiltonian. The sum is over
the allowed ky and kz inside the first Brillouin zone. Also
note that

1√
Ny

∑
iy

ei(ky−k′
y )iy = δky,k′

y
,

(3)
1√
Nz

∑
iz

ei(kz−k′
z )iz = δkz,k′

z
.
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We choose a basis

B†
ix,ky,kz

= [
c†

ix,ky,kz,↑ c†
ix,ky,kz,↓ cix,−ky,−kz,↑ cix,−ky,−kz,↓

]
(4)

and rewrite the Hamiltonian as

H = H0 + 1

2

∑
ix, jx,ky,kz

B†
ix,ky,kz

Hix, jx,ky,kz B jx,ky,kz . (5)

By using Eqs. (2) and (3) to rewrite the Hamiltonian in Eq. (1),
we can show that

Hix, jx,ky,kz = εix, jx,ky,kz τ̂3σ̂0

+ δix, jx

[
hx

ix τ̂3σ̂x + hy
ix
τ̂0σ̂y + hz

ix
τ̂3σ̂z

− λix sin(ky)τ̂0σ̂z + λix sin(kz )τ̂3σ̂y

+�ix iτ̂
+σ̂y − �


ix iτ̂
−σ̂y

]
, (6)

where

εix, jx,ky,kz ≡ −2t[cos(ky) + cos(kz )]δix, jx

− t
(
δix, jx+1 + δix, jx−1

) − μix δix, jx (7)

and τ̂± = (τ̂1 ± iτ̂2)/2. Above, τ̂iσ̂ j ≡ τ̂i ⊗ σ̂ j is the Kro-
necker product of the Pauli matrices spanning Nambu and spin
space. The constant term is

H0 = NyNz

∑
ix

∣∣�ix

∣∣2

Uix

−
∑

ix,ky,kz

{2t[cos(ky) + cos(kz )] + μix }. (8)

By defining another basis,

W †
ky,kz

= [
B†

1,ky,kz
, . . . , B†

ix,ky,kz
, . . . , B†

Nx,ky,kz

]
, (9)

Eq. (5) can be rewritten as

H = H0 + 1

2

∑
ky,kz

W †
ky,kz

Hky,kzWky,kz , (10)

where

Hky,kz =

⎡
⎢⎣

H1,1,ky,kz · · · H1,Nx,ky,kz

...
. . .

...
HNx,1,ky,kz · · · HNx,Nx,ky,kz

⎤
⎥⎦. (11)

Hky,kz is Hermitian and can be diagonalized numerically with
eigenvalues En,ky,kz and eigenvectors �n,ky,kz given by

�
†
n,ky,kz

= [
φ

†
1,n,ky,kz

· · · φ†
Nx,n,ky,kz

]
,

(12)
φ

†
ix,n,ky,kz

= [
u


ix,n,ky,kz
v


ix,n,ky,kz
w


ix,n,ky,kz
x


ix,n,ky,kz

]
.

The diagonalization is done numerically and gives a Hamilto-
nian of the form

H = H0 + 1

2

∑
n,ky,kz

En,ky,kzγ
†
n,ky,kz

γn,ky,kz , (13)

where the new quasiparticle operators are related to the old
operators by

cix,ky,kz,↑ =
∑

n

uix,n,ky,kzγn,ky,kz ,

cix,ky,kz,↓ =
∑

n

vix,n,ky,kzγn,ky,kz ,

(14)
cix,−ky,−kz,↑ =

∑
n

wix,n,ky,kzγn,ky,kz ,

cix,−ky,−kz,↓ =
∑

n

xix,n,ky,kzγn,ky,kz .

To find the eigenvectors and eigenvalues the initial guess of
the order parameter must be improved by iterative treatment.
The expression for the gap can be rewritten by inserting the
operators given in Eq. (14) and by using that 〈γ †

n,ky,kz
γm,ky,kz 〉 =

f (En,ky,kz/2)δn,m. We get

�ix = − Uix

NyNz

∑
n,ky,kz

vix,n,ky,kzw


ix,n,ky,kz

[1 − f (En,ky,kz/2)].

(15)

Here, f (En,ky,kz/2) is the Fermi-Dirac distribution.
Having found En,ky,kz and {u, v,w, x}, we can compute the

physical quantities of interest. The free energy is given by

F = H0 − 1

β

∑
n,ky,kz

ln(1 + e−βEn,ky ,kz /2), (16)

where β = (kBT )−1. Note that if T → 0,

F = H0 + 1

2

∑
n,ky,kz

′
En,ky,kz , (17)

where
∑′

means that the sum is taken over negative eigenen-
ergies only. The ground state of the system minimizes the free
energy. F is therefore used to find the preferred orientation
of the ferromagnet. Additional magnetic anisotropy terms
may be added to the free energy to take the thickness of
the thin ferromagnetic film into account more properly. We
model these terms in a simple way and write the additional
contribution to the free energy as [17]

Fa = −Keff cos2(θp), (18)

where θp is the polar angle relative to the interface normal.
Keff is the effective anisotropy constant. We assume a thin
ferromagnetic film with one interface to another material and
one free surface, and approximate Keff by [17]

Keff = Kv + Ks + Ki

tF
. (19)

Above, Kv < 0 is the bulk anisotropy of the ferromagnet, Ks

is the surface anisotropy, and Ki > 0 is the anisotropy of the
interface between the ferromagnet and the other material. Keff

may be positive or negative depending on the thickness of the
ferromagnetic layer, tF . If Keff < 0, the magnetic anisotropy
contribution Fa to the free energy favors IP magnetization and
shape anisotropy dominates. For Keff > 0, OOP magnetization
is favored and perpendicular anisotropy dominates. To model
a noncubic ferromagnet, we use the average lattice constant,
a = (ax + ay + az )/3. By doing this we obtain a rather rough
estimate of Fa, but since we are comparing Fa to the supercon-
ducting contribution to the free energy, the order of magnitude
of the change in Fa is more interesting than the details.
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The physical mechanism leading to a variation in the
superconducting condensation energy when the magnetization
direction changes is the conversion of singlet Cooper pairs to
triplet ones. To reveal the types of triplet Cooper pairs in our
system, we compute the triplet anomalous Green’s function
amplitudes. The on-site odd-frequency s-wave anomalous
triplet amplitudes are defined as

S0,i(τ ) = 〈ci,↑(τ )ci,↓(0)〉 + 〈ci,↓(τ )ci,↑(0)〉,
(20)

Sσ,i(τ ) = 〈ci,σ (τ )ci,σ (0)〉,
where we have defined the time-dependent electron anni-
hilation operator ci,σ (τ ) ≡ eiHτ ci,σ e−iHτ . By differentiating
ci,σ (τ ) with respect to τ we obtain the Heisenberg equation,

dci,σ (τ )

dτ
= i[H, ci,σ (τ )], (21)

from which we can obtain expressions for ci,↑(τ ) and ci,↓(τ )
by inserting Eq. (14). Here, τ is the relative time coordinate
between the electron operators. τ is scaled by h̄/t . The even-
frequency p-wave anomalous triplet amplitudes are defined

Pn
0,i =

∑
±

±(〈ci,↑ci±n̂,↓〉 + 〈ci,↓ci±n̂,↑〉),

(22)
Pn

σ,i =
∑
±

±〈ci,σ ci±n̂,σ 〉,

where n = {x, y, z}. The spins in these triplet amplitudes
are defined with respect to the z axis. If we want to
compute the triplet amplitudes for a specific direction of
h such that (↑↑)h and (↓↓)h represent the long-range
triplets, the triplet amplitudes must be transformed so
that the spins are defined with respect to the vector h.
This is done by inserting (ci,↑)θ,φ = cos(θ/2)e−iφ/2(ci,↑)z +
sin(θ/2)eiφ/2(ci,↓)z and (ci,↓)θ,φ = − sin(θ/2)e−iφ/2(ci,↑)z +
cos(θ/2)eiφ/2(ci,↓)z [2] into Eqs. (20) and (22). The even-
frequency s-wave singlet amplitude is proportional to the gap
and given by

Ss,i = 〈ci,↑ci,↓〉 − 〈ci,↓ci,↑〉. (23)

The singlet amplitude is rotationally invariant with respect to
the choice of quantization axis, and the quantity

S̃s = 1

Nx,S

∑
ix

∣∣Ss,ix

∣∣ (24)

is a measure of the singlet amplitude of the system for a
given magnetization direction. The sum is taken over the
superconducting region only, as we are primarily interested
in describing how the superconducting condensation energy
depends on the magnetization direction.

We find Tc numerically by a binomial search within tem-
peratures below the bulk critical temperature of the supercon-
ductor. In each of the n iterations, we determine whether Tc is
above or below the temperature in the middle of the current
temperature interval. This is done by choosing an initial guess
for �ix very close to zero and checking whether �ix (T ) close
to Nx,S/2 increases or decreases from the initial guess after
recalculating �ix m times by Eq. (15). The gap decreases in
the normal state and increases in the superconducting state.

The superconducting coherence length (ξ ) of the super-
conducting layer is an important length scale in our system.
The effects of the HM/F layer can be expected to be strongest
when ξ is the same length or slightly longer than the thickness
of the superconductor. In the ballistic limit the superconduct-
ing coherence length is given by ξ = h̄vF /π�0 [18]. The
normal-state Fermi velocity, vF , is obtained by the dispersion
relation vF = 1

h̄
dEk
dk |k=kF

[18]. Ek = −2t[cos(kx ) + cos(ky) +
cos(kz )] − μN is the normal-state eigenenergies obtained from
Eq. (1) if we use periodic boundary conditions in all three
directions. The Fermi momentum kF corresponds to the Fermi
energy, which is the highest occupied energy level at T = 0.
�0 is the zero-temperature superconducting gap. In our lattice
model we round ξ down to the closest integer number of
lattice points.

In our calculations, we have used a 3D cubic lattice
model with periodic boundary conditions in both the y and
z directions. It is worth noting that this gives qualitatively
different results than if we use a 2D square lattice model with
periodic boundary conditions only in the y direction. Since
the 2D model does not have periodic boundary conditions
in the z direction, we do not get the sin(kz ) terms in Eq. (6)
when considering a 2D square lattice. This makes the system
invariant under φ rotations of h. This implies that physical
quantities such as Tc and F have the same angular dependence
in the xz and yz plane, so that the system is not invariant under
π/2 rotations in the yz plane as is expected for a 3D cubic
lattice. It should therefore be cautioned against simplifying
the numerical simulations of a 3D cubic lattice by using a
2D square lattice model. In our calculations we use Ny = Nz

so that we get an equal number of ky and kz values, thereby
obtaining a π/2-rotational invariance in the yz plane even
when Ny and Nz are not much larger than the film thicknesses.
It should also be noted that the thickness of the sample parallel
to the interfaces is important for the physical results obtained
in an experiment. In our paper, we have modeled a thin-film
structure in which the width of the sample in the y and z
directions is much larger than the thickness of the sample.

Before presenting our results, we finally also comment
on the relevance of the BdG-lattice framework used here
with respect to making predictions for experimentally realistic
systems. The lattice framework has several advantages, such
as capturing the crystal symmetry and its influence on physical
quantities in addition to the fact that that the energy scales
in the system can be varied across a large range. The main
weakness with the present theoretical framework is that only
relatively small sample sizes are computationally manageable,
especially with periodic boundary conditions in two directions
used here. When considering a thin superconducting layer, the
superconducting coherence length must be short in order to be
comparable to the thickness of the superconducting layer. ξ is
proportional to the inverse of the zero-temperature gap of the
superconducting layer. Considering a thin superconducting
layer therefore results in a large value for the superconducting
order parameter, and also a large critical temperature. How-
ever, the present framework can still be used to make quali-
tative and quantitative predictions for experimentally realistic
systems, so long as the spatial dimensions are scaled by the
superconducting coherence length. An example that illustrates
that this method gives good agreement with experimental

134516-4

[May 14, 2019 at 13:55 – classicthesis ]



MAGNETIZATION REORIENTATION DUE TO THE … PHYSICAL REVIEW B 99, 134516 (2019)

0 /4 /2
-4

-3

-2

-1

0

F N
 - 

m
ax

(F
N

,h
=0

)

10-6 (a)

0 /4 /2
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

F N
 - 

m
ax

(F
N

,h
=0

)

10-3 (b)
T=0.1

T=1

x

z h

N HM
F

FIG. 2. Panels (a) and (b) show FN (θ ) − max(FN,hy=0) in the xz
plane for T = 1 and T = 0.1. The parameters used are specified
in the main text. In (a) OOP magnetization is favored. In (b) IP
magnetization is favored.

results when scaled in this way is Ref. [19]. This paper utilized
the same theoretical formalism as we do here and the predic-
tions made therein were later found to correspond very well to
experimental measurements done in Ref. [20]. Thus, there is
good reason to expect that the results obtained in the present
framework for system parameters corresponding to a certain
ratio between the system size Nx/ξ should correspond well
to experimental measurements on a system that has the same
ratio between its length and the superconducting coherence
length. This is the approach we will take below.

III. RESULTS AND DISCUSSION

A. The nonsuperconducting contribution to the free energy

We first look at a system as shown in Fig. 1, where we
have a normal metal (N ) rather than a superconductor, i.e.,
U = 0. This is important in order to later distinguish the
influence of the superconducting phase on the preferred mag-
netization orientation compared to the normal-state phase. We
diagonalize the Hamiltonian described in Eqs. (1) and (6)
numerically using the parameters Nx,N = 9, Nx,HM = Nx,F =
3, Ny = Nz = 50, μN = 1.8, μHM = 1.7, μF = 1.6, h = 1.4,
and λ = 0.6. We then plot the free energy for the N/HM/F
trilayer, FN (θ ), to find the preferred direction of h for a
given T . In all free-energy plots we subtract the maximal free
energy within the plane of rotation we are considering, i.e.,
max(FN,hy=0) when considering the xz plane and max(FN,hx=0)
when considering the yz plane. We do this to make it easier
to compare the change in free energy for different parameter
choices. Figure 2 shows FN (θ ) in the xz plane for T = 1 and
T = 0.1. We see that the preferred magnetization direction
may change as the temperature is increased. The preferred
direction may also change when changing h, λ, or the layer
thicknesses. The angular dependence of F is the same for the
xy and xz planes. Figure 3 shows FN (θ ) in the yz plane at
T = 0.01 for different choices of h and λ. We see that the
preferred direction of h is rotated by π/4 when changing
the parameters from h = 1.4, λ = 0.6 to h = 1.6, λ = 0.8.
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FIG. 3. Panels (a) and (b) show FN (θ ) − max(FN,hx=0 ) in the
yz plane for h = 1.4, λ = 0.6 and for h = 1.6, λ = 0.8. The other
parameters used are given in the main text. T = 0.01. We see a π/4
rotation of the minimum from (a) to (b).

A similar rotation may also happen when changing T or the
layer thicknesses. Note that the free energy is invariant under
a π/2 rotation in the yz plane. This is reasonable, because
a π/2 rotation of the cubic system around the interface
normal should leave the system invariant independently of
the magnetization direction. For sufficiently high tempera-
tures, FN becomes constant. We underline that the effective
magnetization anisotropy that arises here is distinct from the
anisotropy terms described in Eqs. (18) and (19), the latter
not being included in the analysis yet. We will shortly come
back to the physical origin of the magnetic anisotropy in the
present case. It is evident that the preferred direction of h
is highly dependent on the choice of parameters. To make
a superconducting switch, we must therefore make sure that
the nonsuperconducting contribution to the free energy favors
a different magnetization direction than the superconducting
contribution so that the superconducting and nonsupercon-
ducting contributions compete. We must also check whether
a change in the preferred magnetization direction is actually
caused by the superconducting contribution to F and not by
the nonsuperconducting contribution.

Before turning to the superconducting case, we examine
the energy band structure of the system in order to explain
the change in free energy of the N/HM/F trilayer. If we
consider small temperatures so that FN can be approximated
by Eq. (17), the free energy is determined by the sum
over negative eigenenergies. If eigenenergies are shifted from
above to below zero when some parameter is changed or if
the eigenenergies below zero shift closer or farther away from
zero, FN (θ ) will change. When increasing the temperature
from zero, the smallest of the positive eigenenergies will give
a contribution to the free energy. The band structure close to
zero energy (relative the chemical potential) should therefore
be of great importance to the free energy at low temperatures.
In Fig. 4 we have plotted the energy bands, En,ky,kz=0(ky),
for three different magnetization directions. We consider the
out-of-plane case (θ, φ) = (π/2, 0) and two in-plane cases
(θ, φ) = (π/4, π/2) and (0,0), respectively. We have used
the same parameters as in Fig. 2. In Fig. 4, panels (a)–(c)
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FIG. 4. Panels (a)–(i) show the energy band structure, En,ky,kz=0(ky ), of the N/HM/S system. The parameters used are given in the main text.
In (a), (d), and (g) we have OOP magnetization corresponding to the maximum of FN for low T . In (b), (e), and (h) we have IP magnetization
with θ = π/4 corresponding to the maximum IP value of FN for low T . In (c), (f), and (i) we have IP magnetization with θ = 0 corresponding
to the minimum of FN for low T . Panels (d)–(f) show the band structure in the region marked in yellow in (a)–(c). The crosses mark the discrete
eigenenergies. The encircled eigenenergies are shifted from above zero energy (green circle) to below zero energy (blue circle) or vice versa
when rotating h. At T = 0 only eigenenergies below zero energy contribute to FN . Panels (g)–(i) show the band structure in the region marked
in purple in (a)–(c). Also for these higher-energy bands that contribute to F at finite temperatures, there is a shift in the energy bands when
rotating h.

show the overall band structure of the three magnetization
directions. Panels (d)–(f) correspond to the region marked in
yellow in (a)–(c) and show some of the eigenenergies close
to zero energy. We see a variation in band structure between
the different directions of h. As a result some eigenenergies
are shifted from above to below zero energy and vice versa.
For T → 0 it is therefore likely that the differences in band
structure cause the variation in FN for different magnetization
directions. Note that this effective anisotropy is not caused
by the discreteness of ky and kz. In the limit where we have
continuous energy bands, Ny, Nz → ∞, the shifting of the
energy bands should cause the same effect since finite sections
of the continuous energy bands are shifted from above to
below zero energy and vice versa. Panels (g)–(i) correspond
to the purple region in (a)–(c) and show higher energy bands
that only contribute to the free energy at finite temperatures.
We see that the band structure has an angular dependence
also at finite temperatures. It is therefore reasonable that
FN has a temperature-dependent angular dependence also for
low, finite temperatures. For temperatures that are sufficiently
high to make all energy eigenvalues partially occupied, FN (θ )

becomes gradually more independent of the magnetization di-
rection. Since FN (θ ) becomes constant for high temperatures,
this indicates that the relative shift between the energy bands
is such that it leaves the sum over all eigenenergies constant.

B. The superconducting contribution to the free energy

We now look at a system as shown in Fig. 1, where we
have a superconductor, i.e., U > 0. The basic question we
seek to address is, is it possible to trigger a reorientation of the
preferred magnetization direction in the system via a super-
conducting phase transition, i.e., by adjusting the temperature
from above to below Tc? We diagonalize the Hamiltonian
described in Eqs. (1) and (6) numerically using the param-
eters Nx,S = 9, Nx,HM = Nx,F = 3, Ny = Nz = 50, μS = 1.8,
μHM = 1.7, μF = 1.6, U = 1.9, h = 1.4, and λ = 0.6. For
this parameter set the superconducting coherence length is
ξ = 5. We expect that our results can be generalized to
systems with thicker layers as long as the relative thicknesses
of the layers compared to the coherence length stay constant,
as explained previously in this paper.
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FIG. 5. Panel (a) shows Tc/Tc,S when rotating the magnetization
from IP to OOP. Panel (b) shows Tc/Tc,S for an IP rotation. The
parameters used are specified in the main text.

We begin by considering the dependence of the supercon-
ducting critical temperature on the magnetization direction.
Since we have chosen a size of the superconductor larger than
the coherence length, the magnitude of the change in critical
temperature is rather small. Tc(θ )/Tc,S is plotted in Fig. 5.
Tc,S is the critical temperature of the superconducting layer
without the heavy-metal layer and the ferromagnetic layer. In
(a) we see a suppression of Tc for IP magnetization as found
by experiments [12] on a similar system. Panel (b) shows an
additional IP variation in Tc, where Tc is suppressed along
the cubic axes. In our system, where the thickness of the
superconductor is less than twice the coherence length, we
do not obtain a substantial bulk region with a constant gap.

When calculating Tc we measure the change in the gap in the
middle of the superconducting region when recalculating the
gap m times. This means that for superconducting layers that
are not much longer than the coherence length, our method
for calculating Tc is not entirely accurate unless m is chosen
to be very large. Therefore, we set m = 150. The change in
Tc when increasing m by 10 is then 10−4Tc,S , which is a small
change compared to the total change in Tc when rotating h.
We have checked that we get a qualitatively similar behavior
of Tc to that in Fig. 5 for thicker superconducting layers.
Tc,S was calculated with m = 200. The number of times we
divided our temperature interval is n = 20, making m the
parameter that restricts the accuracy of our Tc calculation. The
reason we chose a superconductor of only 9 lattice points is
that a long superconducting layer requires a low U to obtain
a coherence length that is comparable to the thickness of
the superconducting layer. This results in a very low critical
temperature. At very low temperatures only the eigenenergies
below zero contribute to the free energy as shown in Eq. (17).
If we have few ky and kz values, the shifting of eigenenergies
from above to below zero energy will have a great impact on
the free energy. This is especially a problem when computing
the nonsuperconducting contribution to the free energy, where
we have no gap and many eigenenergies are close to E =
0. We therefore do not get a smooth curve when plotting
FN (θ ). To avoid this problem we must either choose a short
superconductor such that we can look at higher temperatures,
or let Ny and Nz be very large. The latter option makes the free-
energy calculations computationally expensive, which is why
we chose the former. Note that we would expect a stronger
variation in Tc if we made our superconductor comparable to
the coherence length rather than almost two times larger.
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FIG. 6. Panels (a) and (b) show F (θ ) − max(Fhy=0 ) in the xz plane for T = 0.1 > Tc = 0.017 and T = 0.01 < Tc, respectively. Panels
(c) and (d) show the normal-state contribution to the free energy at the same temperatures. The parameters used are specified in the main text.
From (a) and (b) we see that by decreasing the temperature below Tc the preferred magnetization direction of the ferromagnet changes from IP
to OOP. Since the normal-state contribution shown in (c) and (d) favors IP magnetization, the change in the preferred magnetization direction
must be due to superconductivity.

134516-7

[May 14, 2019 at 13:55 – classicthesis ]



JOHNSEN, BANERJEE, AND LINDER PHYSICAL REVIEW B 99, 134516 (2019)

0 /4 /2
-5

-4

-3

-2

-1

0 10-3 (c)

0 /4 /2
-0.04

-0.03

-0.02

-0.01

0

F N
 - 

m
ax

(F
N

,h
x=

0)

(f)

0 /4 /2

-6

-4

-2

0 10-3 (b)

0 /4 /2
-0.02

-0.015

-0.01

-0.005

0
(e)

0 /4 /2

-1

-0.5

0

F 
- m

ax
(F

h x
=0

)

10-6 (a)

T=0.1 > Tc T=0.01 < Tc

T=0.005T=0.01

T=0.005 < Tc

z

y

h

S
HM

F

z

y

h

N
HM

F

0 /4 /2

-1

-0.5

0 10-6 (d)
T=0.1

FIG. 7. Panels (a), (b), and (c) show F (θ ) − max(Fhx=0 ) in the yz plane for T = 0.1 > Tc = 0.017, T = 0.01 < Tc, and T = 0.005 < Tc,
respectively. Panels (d), (e), and (f) show the normal-state contribution to the free energy at the same temperatures. The parameters used are
specified in the main text. From (a), (b), and (c) we see that the IP minimum of the free energy rotates by π/4 at some temperature between
0.01 and 0.005, which are both below Tc. Since the normal-state contribution shown in (d), (e), and (f) favors magnetization along the crystal
axes at all of these three temperatures, the change in the preferred magnetization direction must be due to superconductivity.

From the angular dependence of Tc we may expect a
superconducting contribution to the free energy in which
F is increased for the IP orientation, especially along the
cubic axes. Figure 6 shows the free energy in the xz plane
for T = 0.1 > Tc, T = 0.01 < Tc, and T = 0.005 < Tc. As
expected, we see a change in the preferred magnetization
direction due to the fact that the superconducting contribution
to F favors OOP magnetization while the nonsuperconducting
contribution to F favors IP magnetization. Figure 7 shows
the free energy in the yz plane for the same temperatures.
For sufficiently low T , the superconducting contribution to
the free energy starts to dominate, and we have an IP π/4
rotation of the minimum of free energy. Notice however that
the IP variation in the free energy is weaker than the IP-OOP
variation. Therefore OOP magnetization is favored as the
ground state of the system despite the fact that the free energy
also varies when the magnetization is rotated IP. For both
the xz and yz planes the change in preferred magnetization
direction will generally occur at lower temperatures than Tc,
meaning that the superconducting contribution does not nec-
essarily start to dominate exactly at the critical temperature.
When increasing T the preferred magnetization direction at
some point changes from IP to OOP without any involvement
of superconductivity. This is exemplified by the behavior of
FN (θ ) in Fig. 2, which was plotted for a temperature T > Tc.
The superconducting switch must therefore be operated over
a limited temperature range around the temperature at which
the change in the preferred magnetization direction occurs.
However, we discuss toward the end of this paper how the
superconducting contribution to the free energy, causing an
effective magnetic anisotropy, can be experimentally detected
even in the cases in which the superconducting contribution is
not sufficiently strong to change the preferred magnetization
orientation.

The angular dependence of Tc and of the superconducting
contribution to F can be explained by the generation of triplet
Cooper pairs. At an S/F interface, the spin splitting of the
energy bands of the ferromagnet causes transformation of
singlet Cooper pairs into opposite-spin triplets. The Rashba
spin-orbit coupling terms in the Hamiltonian in Eqs. (1)
and (6) are proportional to sin(ky) and sin(kz ). Therefore,
electrons experience different energies if the sign of (ky, kz ) is
changed. This symmetry-breaking causes triplet generation at
the S/HM interface, and enables equal-spin triplet generation,
depending on the relative orientation of the magnetization
and the spin-orbit field. In Fig. 8 we have plotted the triplet
amplitudes corresponding to OOP magnetization and the IP
magnetization directions (θ, φ) = (π/2, π/4) and (0,0), re-
spectively. The relative time used in the computation of the
s-wave odd-frequency triplet amplitudes is τ = 5. We see that
there is a generation of short-range and long-range triplet
amplitudes depending on the magnetization direction. The
generation of triplet amplitudes lowers the singlet amplitude
in the superconductor, since singlet Cooper pairs are con-
verted into triplet Cooper pairs. In Fig. 9 we have plotted
S̃s/S̃s,S , where S̃s is defined in Eq. (20). S̃s,S is the singlet
amplitude in the superconducting layer without the heavy-
metal layer and the ferromagnetic layer. We see that the singlet
amplitude is suppressed for IP magnetization, especially along
the cubic axes. Since the singlet amplitude is proportional
to the superconducting order parameter, a suppression of the
singlet amplitude should lead to a decrease in Tc and an
increase in F . This is exactly what we have seen from Figs. 5,
6, and 7. We may therefore explain the variation in Tc and F by
the generation of triplet amplitudes depending on the relative
orientations of the spin-orbit field and the magnetization.

The diffusive limit calculations in Ref. [12] found an IP
suppression of Tc as in our calculations. However, in the

134516-8

[May 14, 2019 at 13:55 – classicthesis ]



MAGNETIZATION REORIENTATION DUE TO THE … PHYSICAL REVIEW B 99, 134516 (2019)

5 10 15
-2

0

2 10-3 (c)

5 10 15
-0.01

0

0.01
(f)

5 10 15
-4
-2
0
2
4 10-3 (i)

5 10 15ix
-4
-2
0
2
4 10-3 (l)

5 10 15
-2

0

2

S

10-3 (a)

5 10 15

ix

-0.01

0

0.01

Px

(d)
5 10 15

-1

0

1 10-3 (b)

5 10 15
-5

0

5 10-3 (e)

5 10 15
-4
-2
0
2
4 10-3 (h)

5 10 15ix
-4
-2
0
2
4 10-3 (k)

5 10 15

ix

-4
-2
0
2
4

Py

10-3 (g)

5 10 15ix
-4
-2
0
2
4

Pz

10-3 (j)

Re(A ,ix
)

Im(A ,ix
)

Re(A ,ix
)

Im(A ,ix
)

Re(A 0,ix
)

Im(A 0,ix
)

{S,Px,Py,Pz}

= /2

x

z

h

S HM
F

= /4
z

y

h

S HM
F

=0

x

z

y

h

S HM
F

A=

FIG. 8. Panels (a)–(l) show the triplet amplitudes generated in the S/HM/F system at T = 0.01 < Tc = 0.017. The parameters are given
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diffusive limit Tc was found to be invariant under IP
rotations of the magnetization. In Ref. [12] the HM/F
layer is modeled as a single layer with the exchange
field and the spin-orbit coupling as homogeneous
background fields, which similarly to what occurs in the
ballistic limit results in a generation of both short-range
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FIG. 9. Panels (a) and (b) show the singlet amplitude S̃s/S̃s,S in
the xz and yz plane. The parameters are given in the main text. T =
0.01 < Tc = 0.017.

and long-range triplets close to the interface. The IP
suppression of Tc compared to Tc at OOP magnetization
is both for the ballistic and the diffusive limit a result of
differences in the triplet generation when the exchange field
is parallel and perpendicular to the interface between the
superconductor and the HM/F layer. The change in Tc under
IP rotations of the magnetization found in the present paper
is a result of differences in the triplet generation at different
IP magnetization directions due to the crystal structure of
the lattice in the HM region. This is the reason why these
variations are not found in the diffusive limit calculations in
Ref. [12], which does not model the S/HM/F system by a
lattice model. For very thin films, like the ones considered
experimentally in Ref. [12], we expect the sample to approach
the ballistic limit such that a variation in Tc for IP rotations of
the magnetization should be observable.

C. The shape anisotropy contribution to the free energy

Until now, we have disregarded the intrinsic magnetic
anisotropy of the thin ferromagnetic film, which does not
depend on the coupling to itinerant electrons {c, c†} in our
model. For concreteness, we will now consider the case of a Pt
heavy-metal layer and a Co(111) ferromagnetic layer. In this
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case, the anisotropy constants are [17] Kv = −0.77 MJ/m3,
Ki = 1.15 mJ/m2, and Ks = −0.28 mJ/m2. The lattice
constants of Co are [21] ax = ay = 251 pm and az = 407 pm.
The anisotropy contribution to the free energy is plotted
in Fig. 10(a) for this choice of parameters. The effective
anisotropy constant defined in Eq. (19) is plotted in Fig. 10(b)
as a function of Nx,F . By solving Keff = 0, we find that the
anisotropy contribution to the free energy favors an OOP mag-
netization for Nx,F � 3 and an IP magnetization for Nx,F � 4.
Since we may generalize our results to any system size as
long as the layer thickness relative to ξ stays constant, we may
consider a system with any Nx,F . By making the ferromagnetic
layer thick enough to give a contribution to F (θ ) favoring an
IP magnetization, but thin enough that Keff is small, it is in
principle possible to get an IP-OOP superconducting switch
despite the fact that the nonsuperconducting contribution to F
has gained an extra term. We may also make the ferromagnetic
layer so thick that the nonsuperconducting contribution to
the free energy enforces IP magnetization. Since the shape
anisotropy contribution to the free energy is invariant under
rotations in the yz plane, we may get a π/4 rotation in
the magnetization as shown in Fig. 7. This means that an
IP superconducting switch in the magnetization direction is
in principle possible, even if the preferred magnetization
direction is OOP when disregarding shape anisotropy. The
possibility of changing the preferred direction in the yz plane
is interesting as the magnetic field of the ferromagnet in such
a case is not perpendicular to the superconducting layer. We
therefore avoid demagnetizing currents close to the interface
in the superconducting region as well as vortex formation
inside the superconductor [22]. For magnetization with an
OOP component, demagnetization effects may be of greater
importance.

It is worth noting that even if the ferromagnetic layer
is so thick that the nonsuperconducting contribution domi-
nates, it may still be possible to measure the superconducting
contribution to the free energy. The superconducting con-
tribution to the free energy in an F1/S/F2 system can be
measured [23] by applying an external magnetic field and
measuring the critical field needed to flip the magnetization
from an antiparallel to a parallel alignment. It should be
possible to do similar measurements on the S/HM/F-system.
For instance, one could apply an external field to flip the
magnetization of the ferromagnet between the IP and the
OOP direction. The superconducting contribution favors OOP
magnetization and would therefore reduce the critical field
needed to flip the magnetization from IP to OOP orientation.
Such a reduction of the critical field would thus be evi-
dence of a superconductivity-induced anisotropy term for the
ferromagnet.

IV. CONCLUDING REMARKS

This work predicts a possible reorientation of the magneti-
zation direction of a thin-film ferromagnet upon lowering the
temperature below the superconducting critical temperature Tc

when the ferromagnet is separated from a superconductor by
a thin heavy-metal film. Especially for a thin ferromagnetic
film with weak shape anisotropy, the superconducting phase
transition should induce an in-plane to out-of-plane rotation
of the magnetization. We have also found that if the shape
anisotropy is strong enough to enforce an in-plane magne-
tization direction, a π/4 in-plane rotation of the magnetiza-
tion can occur upon lowering the temperature below Tc. In
addition, we have considered the dependence of Tc on the
magnetization direction. Here, we find that our lattice-model
calculations predict an additional in-plane variation in Tc

compared to the previous diffusive-limit calculations, which
only show an in-plane suppression of Tc independently of the
in-plane magnetization orientation. Both the Tc suppression
and the magnetization reorientation can be explained by the
generation of short-range and long-range triplet Cooper pairs
close to the interfaces depending on the relative orientations
of the exchange field of the ferromagnet and the spin-orbit
field of the heavy metal. Our results should be reproducible
experimentally for systems with the same ratio between the
layer thicknesses and the superconducting coherence length.
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