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ABSTRACT

The advent of spintronics has opened up a new field of physics, interesting from
both a technological and theoretical viewpoint. Motivated by the possibility of
novel forms of information transfer, processing and storage, along with recent ex-
perimental realizations of these spin-based systems, we study the excitation spec-
trum of spin waves in a antiferromagnetic bipartite lattice with spatially mod-
ulated interfacial Dzyaloshinskii-Moriya interaction. These kinds of modulated
systems are called magnonic crystals.

Collinear easy-axis antiferromagnets can support two degenerate excitation
modes associated with the two sublattices of the antiferromagnetic bipartite lat-
tice, a novel degree of freedom not present in conventional charge-based elec-
tronic systems. The combined time- and inversion-symmetry breaking in the
form of a external magnetic field and the antisymmetric Dzyaloshinskii-Moriya-
interaction completely lifts the degeneracy of the modes, which presents a pos-
sibility of controlling the propagation of the individual modes. This degree of
control has several applications in the emerging field of wave based computing,
including spin wave-filters for the creation of spin-polarized currents, one-way
magnonic waveguides, phase shifters and much more.

To obtain the low-frequency spin wave spectrum, we study a continuum
model formulated in terms of two convenient antiferromagnetic order parame-
ter fields. The coupled differential equations describing their semi-classical dy-
namics will be decoupled and reduced to a single equation, which will be used to
obtain an effective spin wave equation for the two antiferromagnetic modes. This
equation will be used to model 1- and 2D magnonic crystals with periodic mod-
ulation of the Dzyaloshinskii-Moriya interaction strength. The 2D case in partic-
ular has not been previously studied with the theoretical framework presented in
this thesis.

The spin wave dispersion of the magnonic crystals will be obtained and
discussed, with special attention directed towards the features of the dispersion
which make the systems interesting for novel applications.
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SAMMENDRAG

Framveksten av fagområdet spinntronikk har åpnet et nytt, interessant felt i
fysikken fra både teoretisk og teknologisk ståsted. Motivert av muligheten for
nye måter å sende, prosessere og lagre informasjon, samt nylige eksperimentelle
realiseringer av denne typen systemer, velger vi å studere eksitasjonsspekteret til
spinn-bølger i et vekselvirkende antiferromagnetisk gitter med en romlig mod-
ulert Dzyaloshinskii-Moriya-vekselvirkning mellom nærmeste gitterpunkter.
Denne typen modulerte systemer kalles for magnoniske krystaller.

To degenererte spinn-bølge-moder, assosiert med dekomposisjonen av det
antiferromagnetiske gitteret i to separate under-gitter, kan propagere i antifer-
romagneter med kollineære, akse-rettede spinn. Disse to modene representerer
en ny frihetsgrad som ikke finnes i konvensjonelle ladnings-baserte elektroniske
systemer. Brytningen av den kombinerte tids- og inversjonssymmetrien med
et eksternt magnetisk felt og den antisymmetriske Dzyaloshinskii-Moriya-
interaksjonen opphever degenerasjonen i modene, og presenterer en mulighet
for å kontrollere propageringen deres individuelt. Denne graden av kontroll
har flere applikasjoner i det voksende feltet omkring bølge-baserte beregninger,
som inkluderer blant annet spinn-bølge-filtre, danningen av spinn-polariserte
strømmer, en-veis magnoniske bølgeledere og faseskiftere.

For å finne det lavfrekvente spinn-bølge-spekteret studerer vi en kon-
tinuerlig modell, formulert ved hjelp av to passende antiferromagnetiske
ordensparameter-felt. De koblede differensialligningene som beskriver den
semi-klassiske dynamikken til feltene vil bli dekoblet og redusert til en enkelt
ligning. Denne vil bli brukt til å utarbeide en effektiv spinn-bølge-ligning
for de to antiferromagnetiske modene, som vi deretter bruker til å modellere
en- og todimensjonale krystaller gjennom periodisk variasjon av styrken til
Dzyaloshinskii-Moriya-vekselvirkingen. Det todimensjonale tilfellet har ikke
blitt studert tidligere i det teoretiske rammeverket som presenteres her.

Spinn-bølge-dispersjonen til de magnoniske krystallene vil bli utarbeidet og
diskutert, med fokus på egenskapene som gjør systemet interessant for mulige
applikasjoner.
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NOMENCLATURE

Abbreviations
AFM Antiferromagnet
FM Ferromagnet
SW Spin wave
RH/LH Right-handed / Left-handed
(I)DMI (Interfacial) Dzyaloshinskii-Moriya Interaction
SOC Spin-orbit coupling
MC Magnonic crystal
EM Electromagnetic (field)
MBZ (Magnetic) Brillouin zone

Notation
D Inhomogeneous DMI strength
dh Homogeneous DMI strength
γ Gyromagnetic ratio
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L, F , K Lagrangian-, free energy- and kinetic density
S Classical action

Conventions

Vectors in the text will be noted in bold , and a overhead arrow→ in figures
The constant background DMI dh will be referred to as homogeneous DMI
The Einstein summation convention is invoked for repeated indices
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CHAPTER1

INTRODUCTION

In this chapter, we will motivate the work done in this thesis with historical
context, a general introduction to the main constituents of this thesis, namely
magnonic crystals, spin waves and antiferromagnets, and a overview of current
research on the topic. We will then present the structure of the thesis itself.

1.1 Antiferromagnetic spintronics and context

The demand for better computational efficiency, lower power consumption, in-
creased reliability and streamlined production of components necessitates insight
into what physics allows us to realistically achieve in technology. This naturally
leads us to the fundamentals of how we physically transfer and store informa-
tion today. Until recently, the fundamental particles of choice, or perhaps more
accurately necessity, in technological applications has been the electron and the
photon. The former is arguably the most well known and ”accessible” fermion for
technological applications, while the bosonic photon is the fundamental quantum
of the electromagnetic field, meaning it is the mediator, or gauge boson, carrying
the electromagnetic force.

Historically, only the the electron mass and charge has been applied techno-
logically, even before the discovery of the fundamental particle itself by Thomson
in late 19th century through his experiments with cathode rays [78]. The photon
has had a similar fundamental importance in practically all of modern technol-
ogy. A suitable description of the interactions between these particles depend
on the energy scales and distances involved: the theory of electromagnetism [39],
classical electrodynamics [37], and later quantum electrodynamics [36] (QED) are
all theories which describe the interplay between currents, charges and fields, but
at different field intensities and length scales.

Modern technological applications do not necessarily need the fundamental
insight into the interactions of the electron and the photon obtained in e.g. QED.
However, one can argue that the theoretical framework of quantum mechanics
(QM) is almost essential in driving modern technology. In the context of this
thesis, QM is a necessity to obtain a understanding of magnetic materials, another
fundamental part of modern technology. Being inherently quantum-mechanical
and requiring QM-properties to explain their microscopic ordering and resulting
macroscopic effects, magnetic systems are a natural arena to study the dynamics
and physical effects of spin, its consequences and possible applications.

In the mid-1920s, Heisenberg proposed an exchange interaction between
neighbouring magnetic moments, or spins, as an explanation for the observed
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spontaneous magnetization in certain materials below the Curie temperature TC ,
a critical temperature which separates a ordered magnetic state where spins
point predominantly in the same direction, from a state dominated by thermal
fluctuations, resulting in randomly disordered spins [45]. The state characterized
by collinear spins for T < TC is called ferromagnetic, with the material as a whole
naturally called a ferromagnet (FM). The two states are separated by a phase
transition, a reordering which the system undergoes to minimize its free energy
subject to external conditions such as temperature, field and pressure. These
transitions are, loosely speaking, classified as 1st or 2nd order based on if they
involve latent heat (1st) or not (2nd). To quantify the amount of order in the
system, one introduces a order parameter which typically ranges from zero in
a disordered phase (e.g. a T > TC-phase) to a finite value in a ordered phase,
often with a divergent susceptibility at a critical point denoted by some critical
parameter C. In the case of ferromagnetism, the order parameter is the net
magnetization M of the system. The language of phase transitions are of course
completely general and constitutes a vast field of study on its own [17, 23], and
does not apply to magnetism alone.

In the 1930s, Néel discovered that certain magnetic materials such as Fe did
not exhibit ferromagnetic order below a certain critical temperature, as one might
expect. The net magnetization of the system vanished below some critical Néel
temperature TN [27], which Néel proposed was due to an exchange interaction
between neighbouring magnetic moments which favoured antiparallel alignment,
and not parallel as in typical FMs, thus introducing the antiferromagnet (AFM)
to the types of known magnetic order. Above TN , the moments are disalligned
due to thermal fluctuations, and the material undergoes a phase transition into
a disordered state. For AFMs, this state is typically paramagnetic [45], exhibiting
weak ferromagnetism which can couple to magnetic fields.

As the theory of magnetic materials evolved, one took interest in smaller
scale properties of the magnetic arrangements of coupled spin systems, such as
the formation of magnetic structures. This physical domain needed a new, prac-
tical framework. In the 40s, Brown provided the starting point for the field of
micromagnetics [18], which considers the physical regime between the small scale
atomic structures and magnetic structures such as domain walls and magnetic tex-
tures, about which more later. In the length scales relevant in magnetic material
textures and structures, ∼ 10−(6∼12) m, one can ignore the complicated internal
structure and quantized nature of the atom itself in favour of resolving interesting
magnetic structures and configurations in the system.

The physical regime of micromagnetics lends itself very well to a descrip-
tion in terms of continuum mechanics [26]. This approach to modelling physi-
cal systems assumes that quantities like mass and fields take on a continuum of
values. In other words, notions of point-particles are discarded. In this limit,
where all quantities are defined at every point in space, one ignores the fact that
physics at the smallest energy- and length-scales is discrete. However, from the
sub-micrometer range of micromagnetics and up, the continuum description of
matter proves to be very accurate, and has significant overlap with well-known
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1.1. Antiferromagnetic spintronics and context

Figure 1.1: Sketch illustrating the idealized microscopic ordering of the magnetic moments
in a FM and AFM for T < TC and T < TN respectively. Red arrows indicate a ”up”-spin and
blue indicate ”down”-spin. In reality, the spins can be canted at some angle with respect to
each other, as opposed to being perfectly collinear.

theories of classical fields and solid- and fluid-mechanics [16].
One of the successors to micromagnetics is the field of spintronics [112], which
seek to exploit the spin degree of freedom of electrons in addition to its charge
and mass. The emergence of spintronics has had a profound impact on the field
of solid state physics in the last 20 years, with many regarding the discovery of
giant magnetoresistance [25, 29] in the late 80s as the starting point of the field.
An example of a important technological application made possible by the ad-
vent of spintronics and giant magnetoresistance is spin-valves. The device is made
possible by an understanding of spin-transfer torque (STT) in thin films [34], as
a spin-valve involves stacks of thin magnetic layers which can support electric
current, and allows for switching between a high- and low-resistance state de-
pending on the relative orientations of the magnetization in the layers. One of
the most promising technological applications of spin-valves is magnetic random
access memory (MRAM) [120], which stores data in magnetic domains, in contrast
to transistor-based flash memory or dynamic random-access memory (DRAM).

Today, FMs constitute virtually all technological applications of magnets in
modern devices. One of the reasons is that AFMs are generally harder to ma-
nipulate. Change and detection of the magnetic state is challenging due to the
lack of macroscopic magnetization in AFMs. However, AFMs in spintronics has
in recent years attracted considerable interest due to a renewed understanding of
their interactions with currents, in addition to several other favourable properties
making them attractive for applications.

In contrast to FMs, AFMs do not produce stray fields due to the lack of net
magnetization at macroscopic scales. This renders the interactions in the mag-
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netic moments (for the most part) local, eliminating the phenomena of domain
splitting in larger systems, as is seen in FMs due to the demagnetization effect [45]
which reduces the magnetic dipole energy by splitting the system into areas of
different magnetization-directions, so called domains. AFMs are associated with
considerably faster dynamics than FMs, exhibiting characteristic frequencies in
the THz-range [65] compared to the GHz-ranges in ferromagnets. AFMs are very
resistant to external EM-fields, which serves as both a challenge when manipu-
lating their dynamics, and favourable when one does not want outside agents to
perturb the AFM system.

A serious challenge in AFM spintronics is being able to detect and ma-
nipulate the AFM-order. It is proposed that the detection can be done through
anisotropic magnetoresistive tunneling [82], and current-induced torques in AFMs
has been hinted at in experiments [53], opening up for altering the order
parameter with external currents. In addition, spin-pumping in AFMs has been
theoretically proposed [93], which indicates that the generation of spin-polarized
currents can be viable for detecting the AFM-state and manipulating the system
despite its lack of net magnetization.

Another challenge in adapting AFMs in modern technology is controlling the
spin degree of freedom at practical temperatures. This has been demonstrated in
NiO at room temperature (∼ 300 K), where optical methods was used to mea-
sure AFM spin excitations of the order ∼ 1 THz, induced by a EM-field [72]. In
general, AFM order occurs under less extreme conditions than FM order, making
them easier to study. Another important property of collinear AFMs is that they
can support two degenerate excitation-modes which can be separated by the sym-
metry of the material and external fields, allowing for a novel degree of freedom
in encoding information. We will treat this property more closely in sec. 1.2.

1.2 Spin waves

Spin waves (SWs) are collective excitations of the coupled spin systems in mag-
netic solid materials [68, 133]. Their properties are sensitive to many different
parameters, and can be altered by the type of magnet, EM-fields of different in-
tensities and orientations, and the geometry and size of the system or sample in
which they propagate. One can associate a quasiparticle corresponding to this
excitation, called a magnon. Being bosons, these quasiparticles obey Bose-Einstein
statistics, and can carry spin current, making their properties as information carri-
ers fundamentally different from the conventional electron transport used in to-
day’s computing technologies. We will use the terms ”spin waves” and ”magnons”
interchangably.

SWs offers the possibility of encoding more information than what is possi-
ble for data processing with conventional electron charge carriers due to its spin
degree of freedom. This paradigm of wave based computing represents a entirely
new era of information processing if one can find reliable ways of encoding, prop-
agating and extracting information with SWs.
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1.2. Spin waves

Figure 1.2: A chain of vectors precessing clockwise, which can be imagined as local mag-
netic moments. The 2nd row is the same as the 1st, but seen from above. The ”spin wave”
is the deviation in the precessional motion w.r.t. the equilibrium direction, shown with
perforated lines in the top row, and transfers spin wave momentum to the left. The wave-
length of the spin wave λSW is defined by the length of one period of rotation of the spin.
The figure is adapted from [45].

In the 30s, Bloch proposed magnon excitations as an explanation for the ob-
served reduced spontaneous magnetization in FMs when approaching TC from
below [1]. In a semi-classical picture, spin waves can be visualized as a small
disturbance in the local magnetization in a material: a precessing magnetic mo-
ment about some equilibrium orientation, where the amplitude is the deviation
from this ground state orientation, and the propagation is in the direction which
the angle of precession varies, see fig. 1.2. Another leap in SW-theory came in
the 40s, with Holstein and Primakoffs quantization-approach in terms of bosonic
creation- and annihilation-operators [3]. Uniformly precessing SW-modes were
first observed in the 40s using ferromagnetic resonance [4].

Spin waves are able to propagate through both conductors and insulators
because they are collective excitations of the precessing magnetic moments them-
selves, and not point-particles and charge carriers like electrons. Thus, there is
no Joule-heating associated with their propagation, meaning a higher computa-
tional energy efficiency can theoretically be achieved. Excitation of the SWs can
be performed with e.g. a oscillating magnetic field [113], optical excitation [38],
or thermal excitation through the spin Seebeck effect [107]. The measurement and
detection of SWs is possible with magnetic probing/optical spectroscopy [73, 94],
the detection of currents by the inverse spin Hall effect by virtue of spin-pumping
[91, 93], or by inelastic neutron scattering [121], although the latter is not the
most practical.
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The physics and comprising literature on SWs are rich and varied due to a
multitude of interesting and experimentally realizable phenomena, as they ex-
hibit the same type of properties as sound or light waves, such as reflection and
refraction, interference and the Doppler effect [59], among others. The waves
exhibit non-linearity, allowing for suppression or amplification of magnon cur-
rents by means of other magnon-currents [68]. The waves also exhibit nonre-
ciprocivity in certain systems [89]. Such non-reciprocal-magnons were first mea-
sured experimentally [121] by inelastic neutron scattering (BT7/SPINS) in the
non-centrosymmetric AFM α-Cu2V2O7. SWs exhibit different propagation modes
in different geometries subject to external fields, e.g. thin film/slab arrangements
(Damon-Eshbach-geometry) [12] or at the boundaries of samples [92]. SWs also
have properties which make them very different from sound and light waves, e.g.
a high degree of dispersion, appearance of frequency gaps in zero-response and
anisotropic dispersion even in isotropic media.

Magnons have attracted considerable interest due to their interplay with
magnetic solitons and textures. A prominent example of such structures is the
skyrmion [66, 122], a excitation of collective magnetic moments where the result-
ing configuration is said to be topologically protected. The skyrmion spin struc-
ture acquires a conserved quantum number of topological origin, a topological
charge, whose conservation makes the excitation metastable and manipulable e.g.
by external currents [128]. The structures represent a minimum of the free en-
ergy of the system, and with the conserved ”exotic” topological quantum number
and the possibility of manipulating its state, the skyrmion is attractive for future
technological applications. The quantum number, or winding number, charac-
terizing the structure can take on positive and negative integer values, making
it a possible qubit-candidate [102]. Another example of interesting topological
excitations are band-gap solitons in periodic magnetic structures [55]. Other inter-
esting SW phenomena and realizations include the creation of caustic beams [88]
and Bose-Einstein-condensation of room-temperature magnons achieved through
spin-pumping in a magnon gas [48].

The recent theoretical interest in AFMs also extends to SWs. Anderson stud-
ied AFM-SWs in a semi-classical approach as early as in the 50s [7]. AFM-SWs
was first experimentally observed by neutron diffraction around the same time
[6]. As mentioned in the last section, one of the features of collinear, easy-axis
AFMs in spintronics is that they exhibit two degenerate SW-modes with opposite
polarization, see fig. 1.3. This reflects the description of AFMs as two coupled
FM-sublattices, which we will return to in chap. 2. The polarization of the modes
is analogous to EM-polarization, and implies that it can be used to encode infor-
mation.

As an alternative to the basis in fig. 1.3, one can also describe the polarization
in terms of oscillations of the some AFM order parameter Θ, e.g. Θ ∝ m1 −m2.
Suitable order parameters will be discussed further in chap. 2. The up/down-
spins in each AFM unit cell can individually travel clockwise or counterclockwise,
but the order parameter can still exhibit linear oscillations in a single direction,
e.g. along the x- or y-axes. Analogous to EM-waves, this polarization can be ro-

6



1.3. Magnonics and magnonic crystals

Figure 1.3: RH/LH circularly polarized precessional modes of the order parameters n and
m. m1 and m2 can be any magnetic moment, most commonly a classical spin S confined
to a lattice. The figure is adapted from [93].

tated if we alter the two modes by opposite phase shifts, allowing for a magnonic
analogue of Faraday-rotation [14]. This mechanism is proposed for a possible re-
alization of a SW field effect transistor [113], where the polarization direction is
used to encode a bit of information. However, to achieve this, one needs to lift the
degeneracy of the SW-modes. We will return to this issue in sec. 1.4.

1.3 Magnonics and magnonic crystals

Magnonics considers itself with how the wave-like magnons behave in magnetic
materials, which includes excitation, detection and dynamics [73]. The field is
motivated by the possibility of harnessing the wave-like characteristics of SWs
introduced in section 1.2. Devices based on magnonics has many possible ad-
vantages over traditional electronics, e.g. easier manipulation by EM-fields and
faster dynamics, resulting in higher read/write-speeds. SWs also have character-
istic frequencies several orders of magnitude higher than in EM-waves, making
them more suited for miniaturization [133].
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An integral part of magnonics is the study of artificial magnetic systems,
where some parameter of the system is periodic in space or time. These systems
are often dubbed magnonic crystals (MCs) due to this periodicity-property, and
serves as a magnetic analogue to photonic [49] and phononic [67] crystals. Research
on these magnetic superlattices started with Elachi in the mid 70s [15], and has
since then become the primary magnonic system of study which exhibits a band
gap. These gaps occur due to Bragg-scattering at the potential barriers represented
by a change in the modulated parameter, analogous to the Bragg-scattering on
families of crystal planes in ordinary crystals [24, 45]. The most common type
of magnonic crystal is a slab or thin film-system, where the periodicity is grown
by layering alternating magnetic materials in one direction, and the width and
thickness of the material is very small compared to its length. This waveguide is a
1D MC, since the SWs can essentially only propagate in a single direction.

The creation of MCs can be realized by several different procedures. As men-
tioned, a common procedure is to layer varying stripes or regions of alternating
width or magnetic material [69]. A proposal which has been realized experimen-
tally is modulation of a magnetic field [61] by the layering of current-carrying
wires on top of a magnetic thin film, where the current is reversed in consecutive
wires. Chiral magnonic crystals, where one modulates a property which induces
antisymmetric interactions which breaks the symmetry of SWs propagating in dif-
ferent directions, has been proposed by consecutive layering of heavy-metal wires
on a FM thin film [132], which may be possible by etching [136]. Other methods
of creation includes laser-induced heating [110] or a material sputtering approach
[81, 96]. Among many proposals and realizations of MCs, one can imagine a more
exotic form of modulation made possible by the technological advancement in the
creation of nanomaterials: the possibility of making the geometry of the system
itself periodic, or indeed any shape [101]. SWs in such deformed nanostructures
has not yet been studied, and is currently a open problem.

On the topic of low energy SW-excitations in AFM materials, the procedure
and creation of reliable magnonic crystals necessitates the use of AFM insulators.
There are many materials of this type, with some examples of such materials being
NiO [44], FeF2 and MnF2.

1.4 The Dzyaloshinskii-Moriya interaction

The Dzyaloshinskii-Moriya-interaction (DMI) is a antisymmetric contribution to
the exchange energy made possible by the lack of inversion symmetry in spin sys-
tems [10, 11]. The interaction is an example of a superexchange mechanism. This
mechanism, first proposed by Kramers [2] was generalized by Anderson [5], who
in his work used the example of the fcc-structured manganese oxide (MnO). In
MnO, the strongly coupled Mn++-ions are separated by non-magnetic O−−-ions.
However, the (then) reported Néel-temperature of MnO, TN = 122K, implied that
the exchange between the Mn++-ions was still present, and with a magnitude of
about a tenth of ordinary exchange magnitudes. This relatively strong interaction
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1.4. The Dzyaloshinskii-Moriya interaction

Figure 1.4: Visualization of the superexchange mechanism in the interfacial
Dzyaloshinskii-Moriya interaction. The top layer is a thin FM/AFM-layer, and the bottom
layer is a material with strong SOC, typically a heavy metal like Pt or Bi. The interaction
favours relative canting of the spins.

prompted Anderson to suggest superexchange through a ligand ion as the cause.
Dzyaloshinskii posed superexchange when he proposed magnetic dipole inter-
actions and relativistic interactions between electron spins and the crystal lat-
tice as an explanation for the weak ferromagnetic behaviour in α-Fe2O3-crystals
[10]. Moriya later showed [11] that the microscopic origin of the effect was spin-
orbit coupling (SOC), which he derived in 2nd-order perturbation theory in the
superexchange formalism developed by Anderson. The theory was later extended
to noncentrosymmetric magnetic materials [20], and to magnetic multilayers, i.e.
DMI-interaction due to inversion symmetry breaking at interfaces [31].

DMI favours canting of neighbouring magnetic moments, see fig. 1.4 , and
makes a deviation from the uniform collinearity of FMs/AFMs energetically
favourable. The interaction is thus a source of weak ferromagnetism in antiferro-
magnetic materials. DMI occurs in one of two forms: bulk or interfacial (IDMI).
Bulk DMI appears as the name suggests in the bulk of a magnetic material lacking
inversion symmetry. Interfacial DMI, which we will consider in this thesis, occurs
at the interface of noncentrosymmetric systems; magnons are scattered due to the
lack of inversion symmetry in the material [87]. Coupled spin systems that lack
inversion symmetry can host IDMI in the presence of strong SOC, often supplied
by a layer of a heavy metal like Pt or Ir. Large interfacial DMI of the order of
the exchange interaction, and resulting spin textures, were first observed in such
thin-film IDMI systems: spin spirals in Mn on W [50] and skyrmions in Fe on Pd
[80].

DMI in AFMs has interesting consequences for the two degenerate SW-modes
present in the system [113]. The degeneracy of the modes is protected by time-
reversal symmetry T and sublattice exchange (inversion symmetry or parity sym-
metry) I of the FM-lattices that make up the AFM. Thus, to separate and control
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the modes, we need to break either or both of these symmetries. A in plane mag-
netic field can be applied to break the former symmetry, while the DMI can be uti-
lized to break the latter, since DMI reverses sign under exchange of the two mag-
netic sublattices, leading to phase shifts of different signs for the two modes. This
gives us control mechanisms that allow us to separate and manipulate the modes,
and even rotate the polarization direction of the order parameter oscillations as
noted in the last section [113]. As a remark, SWs subject to DMI is very similar
to electrons subject to the Rashba interaction in bulk crystals and low-dimensional
systems [99]: spin bands are subject to a momentum dependent splitting by the
combination of crystal/potential inversion symmetry breaking and SOC resulting
from the interaction between the spin and a magnetic field, which is present in
the frame of reference of the electron due to its motion in the electric potential of
the crystal. Similarly, in AFMs subject to DMI, the degenerate SW-modes, anal-
ogous to the spin-degree of freedom of the electron, are split due to the chiral
DMI interaction, which plays the role as a effective magnetic field acting on the
precessional motion of the magnetic moments.

The analogue between encoding information in electron spins and AFM spin
wave modes can be made explicit by mapping the SW state to the Bloch sphere
[113]. In summary, AFM-SWs constitute a system of two states which can store
information as a superposition of precessional modes of magnetic moments. In
many regards, it can be seen as a classical analogue of the quantum bit. One
might speculate that polarization of the AFM precessional modes might even be
easier to manipulate than a electron-based quantum bit, but until this type of
setup has been verified experimentally one cannot draw conclusions regarding its
practicality.

The theoretical interest in DMI is due to a multitude of possible technolog-
ical applications. The interaction is perhaps most notably able to stabilize non-
collinear magnetic structures and spin textures in magnetic materials, such as
skyrmions in FMs [66] and AFMs [119], and magnetic vortices [30], where the for-
mer has attracted considerable interest in recent years due to its potential usage
in data storage, e.g. in the form of ”racetrack”-memory [98]. DMI can give rise to
and control FM [111] and AFM [130] domain walls, a proponent in controlling
and moving magentic textures. The role of DMI in the separation of degener-
ate AFM-SW-modes have already been commented on. The magnon Hall effect,
a magnonic analogue to the Hall effect [39], involves propagating magnons being
deflected by a vector potential, which can take the form of e.g. IDMI. This is a
possible method of controlling the direction of magnonic currents, and has been
observed experimentally [75].

DMI-based magnonic crystals have been proposed as a fundamental building
block in one-way SW-filters and circulators by utilizing the strong nonreciprociv-
ity, see fig. 1.5, of SWs [97]. An example of a FM-type of bi-component MC
waveguide can be realized by the alternate layering of materials, e.g. Co and
permalloy (Py) [97]. Spatially modulated DMI can be achieved by means of pat-
terning heavy metal-wires on top of thin magnetic films [132]. In addition to giv-
ing rise to magnonic bandgaps due to spatial modulation of a system parameter,
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1.5. Proposal and structure of thesis

Figure 1.5: A sketch illustrating dispersion nonreciprocity. Particles of the same energy
travelling in opposite directions have different energies. One of the defining features of
SWs are their strong nonreciprocity. Nonreciprocity can be induced e.g. by antisymmetric
interactions such as DMI or a external electric field.

the nonreciprocity effect of the DMI breaks the symmetry between SWs travelling
in different directions. As a result, the bandgaps do not occur at the the edges of
the Brillouin zone (BZ), but is shifted in k-space. Other peculiar effects include
the relative shifting of frequency bands of different Bragg-planes, and direction-
dependent band gaps for the low-frequency excitations.

1.5 Proposal and structure of thesis

In this thesis, we present spatially modulated IDMI in collinear easy-axis AFMs
as a possible means of creating a spin wave polarizer, a bandpass filter for the two
degenerate SW-modes present in the system for T << TN . This might be a possible
component in future technological magnon-based applications; the mechanism
can be used to create spin polarized-currents by propagating AFM-SWs through
a DMI-modulated waveguide, with the frequency bandwidth being adjustable by
the excitation direction, the lattice parameter of the effective DMI-potential and
the strength of the modulation. We will also show features of the filter which
allow us to make a one-way waveguide, which confines SW-propagation to a sin-
gle direction. To achieve this, the T I -protected degeneracy of the modes will
be lifted by the combination of a in-plane magnetic field and IDMI. Due to the
periodic modulation of the DMI strength, bandgaps occur in the spectrum, with
additional effects characteristic to periodic IDMI mentioned in this chapter. The
magnetic field will lift the degeneracy of the gapped precessional modes, allow-
ing for selective propagation of SW-modes in the system. We will show this by
means of a effective model for the low-frequency precessional modes, valid for
long SW-wavelength and at sufficiently low temperatures.

Chapter 2 introduces the theoretical framework in the thesis, with focus
on the intermediate important results and explanations. A general introduc-
tion to the AFM lattice and the continuum model will be given, with a subse-
quent presentation of the interactions in the micromagnetic model of the system:
symmetric exchange, easy-axis anisotropy, the Zeeman-effect and the interfacial
Dzyaloshinskii-Moriya-interaction. Their form in the continuum limit will also
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be stated. We will outline the procedure of obtaining the classical dynamics of
the system, and state the most important steps. At the end of the chapter, we will
present the effective continuum model for the AFM-SWs.

In chapter 3, we start by showcasing the general features of SWs. We will
then model a 1D MC as a Krönig-Penney-type potential, and a analytical solution
for the SW-dispersion will be obtained. In chapter 4, a 2D MC will be modelled as
a continuous cosine-potential. We will introduce and discuss the method of cal-
culation, before presenting the SW dispersion-relation through magnonic band-
structure diagrams and highlighting their features. Lastly, the results of chapter
3 and 4 will be summarized in chapter 5. We will discuss the findings, how to
iterate and improve upon them, and make an attempt at connecting them to the
larger context of magnonics.
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CHAPTER2

AFM SPIN SYSTEMS AND SEMI-CLASSICAL SPIN
WAVE THEORY

In this chapter, we will present the basic components of describing SWs in a AFM
insulator in the continuum limit by means of an effective SW-equation. Our start-
ing point will be to introduce the AFM system, including the micromagnetic de-
scription of interacting spins confined to a lattice. The thermodynamic free en-
ergy of the antiferromagnet FAFM , as derived in appendix A, will be introduced,
and the semi-classical equations of motion will be presented. After introducing
the appropriate order parameters, we obtain the dynamics of the SWs by the prin-
ciple of least action [41].

In appendix A, the free energy density FAFM is obtained from the micromag-
netic Hamiltonian. Taking the continuum limit of the discrete lattice allows for
the identification of the physical parameters of the theory. In the derivation, two
anisotropic contributions to FAFM will appear. These will be commented on, but
discarded for the rest of the thesis due to them dropping out of the semi-classical
equations of motion.

We are interested in the low-frequency, T << TN -regime, implying slowly
precessing and ordered spins. This is the regime of validity of the many-body
spin-wave theory. In the end, we present the effective SW-equation, where the
”exact” Hamiltonian H is replaced by an effective one, Hef f . The renormalization
procedure results in a Hamiltonian which act on a lower energy subspace [32, 35].

As mentioned in the last chapter, a continuum description of the magneti-
zation dynamics is well suited in the sub-micrometer regime in which excitations
in the form of spin waves are relevant. In describing the dynamics of the AFM in
terms of a set of appropriate order parameters, one takes the collective excitations
of the system to be the precessional modes of a semi-classical description, very
similar to e.g. Larmor precession of electrons in homogeneous magnetic fields [68].
This ”spinning top”-model, where the order parameters are described as classical
vectors in 3D-space subject to a torque induced by a effective field (analogous to
the magnetic field in Larmor precession), can be fairly accurate in systems with
large number of particles and long-wavelength excitations [33].

2.1 The torque equation

The time evolution of some general field M, which could be any classical
field, which we without loss of generality take to be magnetization, in the absence
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of dissipation or external currents can be written down as a torque-equation [21]

dM(r, t)
dt

= M(r, t)×Hef f [M(r, t)]

=−γM(r, t)× δEmm[M]
δM

(2.1)

where γ is some proportionality constant which relates the precessional fre-
quency to the field strength, often called the gyromagnetic ratio. This equation
preserves |M|, is invariant under a global rotation of all magnetic moments in the
system, with higher order time derivatives assumed to be negligible. These are
necessary conditions in our approximation, which will be shown throughout the
chapter. Hef f [M] is an effective field, which in general can contain a multitude
of effects like crystal anisotropy, external magnetic field, SOC, demagnetization
effects etc. Hef f [M] is determined by the minimalization of the antiferromagnetic
free energy of the system [21]. We seek a energy minimum w.r.t. constant volume,
magnetic field and temperature, which explains the choice of free energy as
thermodynamic potential. At low T and long wavelengths, the dissipation of
energy as M precesses is taken to be negligible, and is set to zero. In this thesis,
the cases of dissipation and damping will not be considered. In general, Hef f [M]
is defined as the functional derivative of some micromagnetic energy functional
Emm. As mentioned, we take this functional to be the AFM free energy density:
Hef f ≡ δEmm[M]/δM = δFAFM [M]/δM
Equation 2.1 can be derived in the context of quantum mechanics as the time
evolution of the expectation value of the spin operator Ŝi .

d
dt
〈Ŝi〉 =

1
i~
〈[Ŝi , Ĥ]〉+

〈
∂Ŝi
∂t

〉
(2.2)

where Ĥ is a Hamiltonian operator. The macroscopic magnetization is defined
as the expectation value of the spins. We set i = z to find the expectation value
of the time-independent (dissipationless) spin operator in the z-direction, and
insert the Zeeman interaction Ĥ = −SiHi , with H in units of energy, to investigate
the dynamics of the spin in a magnetic field.

d
dt
〈Ŝz〉 = − 1

i~
〈[Sz,SiHi]〉 (2.3)

=
1
~
〈(SxHy − SyHx)〉 (2.4)

=
1
~

(〈S〉 ×H)z (2.5)

where we in the 2nd line used the angular momentum commutation relation
[Si ,Sj ] = i~εijkSk , with εijk being the Levi-Civita-tensor. We define the mag-
netization M as the expectation value of the spins 〈S〉. The magnetic field H
corresponds to Hef f in eq. 2.1.
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2.1. The torque equation

In sec. 2.3, we will introduce the continuum description of the AFM lattice.
Two continuous fields l and m will be introduced in the process. FAFM is a func-
tional of these two fields: FAFM = [l(r, t),m(r, t)].

We note that the total energy is the integral over the energy density

FAFM [l(r, t),n(r, t)] =
∫
dr F [l(r, t),m(r, t)] (2.6)

We will often refer to the free energy density as just ”free energy”. The energy
dissipation of the fields is given by the derivative of F with respect to time, with a
additional minus sign implying dissipation. A infinitesimal variation of the free
energy with respect to the fields l and m is expressed as

δF[l(r, t),m(r, t)] = −
∫
dr {fl · δl + fm · δm} (2.7)

The quantities f are the effective fields introduced in the torque equation 2.1.
They represent the combined effects of the physical interactions on the precession
of the magnetic moments l and m. Without dissipation, the fields are constant
w.r.t. time, and is zero in equilibrium. The condition of no dissipation takes the
form

−∂F
∂t

=
∫
dr

{
fl ·

∂l
∂t

+ fm ·
∂m
∂t

}
= 0 (2.8)

The effects of dissipation in FMs and AFMs are normally included by adding a
phenomenological Gilbert damping-term [56] to eq. 2.1. Formally, the energy of
the AFM is conserved in eq. 2.1 for some minimal configuration of the field (i.e.
magnetization m or staggered magnetization l), but this means that for a given
initial configuration, the low-energy equilibrium state can not be reached dynam-
ically by the system on its own. However, the Gilbert damping allows for this by
including a term which reduces the precessional amplitude with time w.r.t. the
equilibrium direction of the field. Adding the damping term to eq. 2.1, we have

dM(r, t)
dt

= = −γM(r, t)× δEmm[M]
δM

−αGM(r, t)× ∂M(r, t)
∂t

(2.9)

where the damping is expressed through the term ∝ αG. The term makes the
magnetization amplitude decay exponentially, resulting in a spiralling motion to-
wards the equilibrium configuration of the field M. The constant αG > 0 deter-
mines the damping, and is typically in the range αG ∼ .01 − .1. Equation 2.9 is
called the Landau-Lifshitz-Gilbert-equation (LLG). It describes the low-frequency
precessional motion of the magnetic moments subject to external interactions
expressed through the effective field Hef f = −δEmm[M]/δM. As mentioned, the
Gilbert-damping will not be treated, and is subsequently neglected. We note that
this is consistent with assuming no dissipation in the system, which implies exci-
tations with infinite lifetime if we neglect relativistic interactions. At the quantum
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level, adding dissipation means adding interactions between magnons and other
quasi-particles such as phonons, resulting in a finite lifetime for the quasiparticles
[21].

2.2 The AFM lattice and ground states

Consider a 2D lattice of localized spins Sij , represented by vectors in 3D space
of equal mangitude. The lattice can be divided into two sublattices α,β, where
neighbouring spins are of the opposite type, as in fig. 1.1 or 2.1. A general spin
Sij of either type α,β is labeled by indices i, j, denoting its position on the lattice.
We note that for a 3D structure, the formalism is similar, with i, j → i, j,k. The
total lattice will be referred to as the bipartite lattice [35]. A set of lattice vectors
{aq} generates the entire lattice by translation of the antiferromagnetic unit cell,
shown in red in fig. 2.1.

Figure 2.1: Sketch of the microscopic bipartite lattice, where sites A ∈ α and B ∈ β belong
to different sublattices. The AFM unit cell is marked in red, with our choice of lattice
vectors. The spacing between the sites is d, and the unit cell width ∆ =

√
2d.

The magnetization of the two sublattices are denoted {Mα ,Mβ}. An important
point is that below TN , the magnitude of the magnetization is assumed to be con-
served, as we noted was a necessary condition in sec. 2.1. We can then write
Mα,β =MS

α,βm(r, t)α,β , where {MS
α ,M

S
β } denotes the saturation magnetization of the

sublattices, the magnetization when the spins are maximally ordered. m can thus
be viewed as the direction of the magnetization. In sec. 2.3, we will define the
order parameter fields {l,m} in terms of the spins {Sαij ,S

β
ij }.
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2.2. The AFM lattice and ground states

The uniform Néel state [35] is the state where spins on neighbouring lattice
sites are aligned oppositely w.r.t. its neighbours, see fig. 1.1 or 2.1.

|Ψ Néel〉 =
∏
i∈α
|Si〉

∏
j∈β
|−Sj〉 (2.10)

If the equilibrium direction of magnetization is taken to be e.g. ẑ, then all spins
are aligned along ±ẑ. This configuration corresponds to Ising spins on a 2D lattice,
and can also be called the Ising configuration [35].

However, the Néel state is not the ground state, nor even a eigenstate, of the
Heisenberg Hamiltonian, which we will come back to in sec. 2.4. Restrictions on
the ground state can be set, and it turns out that the true ground state |Ψ 0〉 of the
QM AFM is the state that has the minimal possible total spin Stot [13], which for
equal size sublattices {α,β} is at Stot = 0. It can thus thus be shown that |Ψ 0〉 is a
singlet state of total spin 0. The true ground state is then

|Ψ 0〉 =
|Ψ Néel〉 − |−Ψ Néel〉

√
2

=

∏
i∈α |Si〉

∏
j∈β |−Sj〉 −

∏
i∈α |−Si〉

∏
j∈β |Sj〉√

2
(2.11)

which can be shown to have Stot = 0. However, the Néel state is the classical ground
state of the AFM system. We will take the continuum limit of the micromagnetic
Heisenberg Hamiltonian, which will result in a classical theory. Thus, we can take
the ground state equilibrium configuration to be the Néel-state.

Motivated by the advantages of research into IDMI over bulk DMI, being
much easier to study and manufacture and able to host strong antisymmetric in-
teraction, we will consider a thin-film geometry for the insulating AFM in this
thesis. As a comment on low-dimensional-systems, an apparent problem with the
assumption of ordered spins for T << TN , and not T = 0, for a 2D lattice comes
from Mermin and Wagner’s theorem [35]. It states that there cannot be sponta-
neously broken symmetry at T > 0 in one and two dimensions. Thus, the spin
wave approach we seek to apply would not be valid, since we must have ordered
spins and O(3)-symmetry breaking for SW-theory to be applicable. Thermal fluc-
tuations ruin the ordered ground state for infinitessimally small temperatures in
1- and 2D. The problem is resolved in the (semi-)classical limit of the Heisenberg
antiferromagnet: if the classical Hamiltonian is short ranged, then so are the cor-
relations. Thus, in the classical limit we can expect at least short range order of the
classical spins [35]. However, we will bypass this problem by assuming that our
system is three-dimensional, but that the SW-propagation is restricted to a single
plane. For this approximation to be feasible, we must assume that in this limit,
the in-plane SW-momenta k‖ parallel to the thin film plane satisfies the condition
k‖c� 1 [58], where c is the thickness of the film.

The validity and correlations of the continuum limit of the Heisenberg
Hamiltonian is a whole nother topic in itself, which we will not explore further
in this thesis.
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2.3 The continuum description of a AFM lattice

We now introduce the necessary machinery for constructing a continuum model
of the AFM-system, starting by defining the classical fields n and m. Consider the
two identical 2D lattices α and β from the previous section, with magnetization
of the same magnitudes Mα , Mβ pointing in opposite directions on neighbouring
lattice sites as described by the Néel-ground state. The magnetization of the two
sublattices is taken to be due to the aforementioned localized spins {Sαij ,S

β
ij } on

the bipartite lattice, where i, j denotes position on the lattice. We now define two
order parameter fields

mij =
(Sαij + Sβij )

2S
(2.12)

lij =
(Sαij −Sβij )

2S
(2.13)

{m, l} are called the magnetization and staggered magnetization respectively. The
interpretation of mij is that it is the direction of the total magnetization of the
spins in one unit cell of the bipartite lattice, or in other words, the relative canting
of the magnetic sublattices in the AFM, see fig. 1.3. Since the magnetization from
the two sublattices {α,β} compensate each other perfectly in a equilibrium AFM,
we expect m to be very small, which we will make use of in later approximations.
lij is the difference in the magnetization direction of the two spins in the unit cell.
Since these contributions are equal in equilibrium, but with different signs, we
expect lij to be much larger than mij . Note that we have m2

ij + l2
ij = 1. These order

parameters are more convenient to work with than individual spins.
Typically, the exchange interaction between spins J , treated in sec. 2.4, rep-

resents the dominating energy scale in the magnetic system, EJ � EK ,EDMI ,EH .
This condition is in a sense already included in the last section, in which the phe-
nomenological torque equation 2.1 for a field M was written down with the as-
sumption of slowly varying dynamics. We call this simplification the exchange
approximation [21]. In addition, we will invoke the adiabatic condition that the
fields are varying slowly in time. With these conditions in place, we have that

|l|2� |m|2 (2.14)

Thus, we can safely drop terms of higher order than |m|2.
In the regime described by the above conditions, it is convenient to define

the normalized staggered magnetization

n(r, t) =
l(r, t)
|l(r, t)|

(2.15)

We call this field the Néel field, even if it strictly speaking is a small abuse of
terminology, see sec. 2.3.1. In the exchange approximation, we impose constraints
on the n- and m-fields, setting |n| = 1 and n ·m. These constraints enforce the

18



2.3. The continuum description of a AFM lattice

conditions that m is so much smaller than n that we take n to be a unit vector,
or unimodular, and that n and m are perpendicular. Formally, these requirements
need to be enforced at the level of the classical Lagrangian for the model to be
valid. We will do this by the method of Lagrange multipliers [41] in app. B.

With the above constraints, we have effectively ”suppressed” longitudinal
degrees of freedom in the system, since m points in the ”longitudinal” direction
(in the SW-propagation plane) and is assumed very small compared to n, and n
is pointing (approximately) perpendicular to the propagation direction of SWs.
We assume that n and m are able to describe the low-frequency dynamics of the
system for T << TN .

In the exchange approximation, |n|2� |m|2, all expressions in the fields n and
m must be invariant under a global rotation of the magnetic moments in the lat-
tice. This is a reflection of the equivalence of the two magnetic moments constitut-
ing each unit cell of the bipartite AFM lattice. In other words, we should be able to
exchange the two magnetic sublattices {α,β} and obtain the same physics. This re-
quires invariance under the transformations n(r, t)→−n(r, t) and m(r, t)→m(r, t)
under sublattice exchange [21].

Before introducing the contributions to the free energy in the upcoming sec-
tions, we note that the above symmetry requirements for the order parameters
can be used to obtain FAFM in a more direct manner. One can construct a energy
density up to some power in the fields which satisfies the condition of invariance
under global rotation of the magnetic moments of the lattice, and invariance un-
der sublattice exchange. Mote details can be found in Landau & Lifshitz treatment
of the subject in [21]. We note that in the reference, the field n is the transverse
oscillations n ≡ n⊥ from some equilibrium configuration n0. As noted in [118],
this difference will yield a anisotropic dispersion relation, with additional mag-
netization buildup on the edges of the AFM.

2.3.1 Alternative formulation: Haldane’s mapping

There is another way of defining the continuum fields used to describe the AFM.
However, this approach carries with it some subtleties. We mention briefly this
other formalism, called Haldane’s mapping [35]. In this framework, each spin
{Sαij ,S

β
ij } is mapped onto two fields reflecting the ”slow” and ”fast” fluctuations

of the spin-dynamics. Each spin of either type at site i is parametrized as

Ωi = ηin
′
i(r)

√
1−

∣∣∣∣∣Li(r)
S

∣∣∣∣∣2 +
Li(r)
S

where n′i is the unimodular Néel field fulfilling |n′i | = 1, and Li is the canting field,
which satisfies the orthogonality condition Li · n′i = 0. Each site previously had
two degrees of freedom for describing a spin, the angles (θ,φ), which we now
have replaced by four degrees of freedom, since the fields n′ and L has three each,
minus the two constraints. The last two degrees of freedom are eliminated by
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reducing the number of Fourier components in the classical path integral measure
[35].

The goal of the mapping is to separate the fluctuations at short wavelengths
and keep the modes corresponding to long wavelengths. Even if the formalism
seems equivalent to the continuum fields defined in sec. 2.3, there is a crucial
difference [118]: L is not the total magnetization, but a dynamic magnetization
arising from the time-variation of the field n′ . AFMs can have a intrinsic mag-
netization density which varies as the gradient of the order parameter, which can
happen in e.g. magnetic textures. This intrinsic magnetization arises in a parity-
breaking term in the energy functional which does not appear with Haldane’s
mapping, but does appear in the definitions of the fields applied in this thesis. We
will not treat this intrinsic magnetization further since magnetic textures are not
the focus of this thesis, but it is noted that the above (seemingly minor) detail in
formalism can have substantial consequences for the system.

2.4 Antiferromagnetic exchange

Consider a simple system of spins S close to the ground state, as we have done
in previous sections. The spins can point in any direction in 3D space, and is en-
dowed with some non-zero spin angular momentum S , 0. The spins are confined
to a bipartite lattice as discussed earlier, where neighbouring spins are of opposite
type. A spin of type Sα only has neighbours of spin Sβ and vice versa.

The Heisenberg model [21, 70] describes the spins confined to lattice sites as
3D vectors, and can be seen as a limit of the Hubbard model at half-filling when
tunneling between sites is suppressed [35, 70]. The exchange interaction between
two spins on a lattice take the form

Ĥexch. =
1
2

∑
ij

JijSiSj (2.16)

where the summation extends over all lattice sites, where a single index i or j de-
notes the lattice site. The exchange parameter Jij determines the strength and type
of interaction, and is given by the overlap of the wave-functions of the electrons
[68]. In the ferromagnetic case, Jij < 0, while Jij > 0 for antiferromagnets. The ex-
change coupling is a function of the distance between the sites, Jij = J(ri − rj ). The
factor 1/2 accounts for double counting of lattice sites in the sum. The exchange
interaction is symmetric w.r.t. the lattice indices: Jij = Jji .

Due to its definition in terms of overlapping wavefunctions, the exchange
interaction falls of as ∼ e−x [68]. If we take the individual spins of the lattice to be
far apart, effectively describing an insulating system, we can model the exchange
interaction as a coupling between nearest neighbour-pairs,

∑
ij =

∑
<ij>, where

〈· · · 〉 denotes nearest neighbour summation. A further simplification comes from
assuming the system to be isotropic, reducing the tensor Jij to a constant J char-
acterizing the pairwise interaction. For more complicated lattices, this tensorial
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2.4. Antiferromagnetic exchange

character must be included. For example, in α-Cu2V2O7, the isotropic exchange
interaction can be modeled by three AFM coupling parameters J1, J2, J3 < 0 for
different directions in the unit cell.

We can now explain why the Néel state is not the ground state (nor an eigen-
state) of the QM Heisenberg Hamiltonian [134]. Writing the spin operators in
eq. 2.16 in terms of ladder operators S±j = Sxj ± iS

y
j [35, 115], and denoting the

neighbouring sites as i = j + rD , where rD is a 1/2/3D vector pointing to the near-
est neighbour lattice site (we will take rD to run over only half the sites to avoid
double counting), we have

Ĥexch. =
1
2

∑
<ij>

JijSiSj = J
∑
i,rD

(1
2

(S+
i S
−
i+rD

+ S−i S
+
i+rD

) + Szi S
z
i+rD

)
(2.17)

Acting with the above operator on the Néel state defined in eq. 2.10, the spin-flip
terms, e.g. S+S−, connect |Ψ Néel〉 to other ground states, returning a new state.
Thus, |Ψ Néel〉 cannot be a eigenstate nor a ground state of the QM AFM. Again,
we bypass this problem in our classical model. We now choose to specialize to
square lattices to keep the calculations and expressions simple. In the continuum
limit, the free energy contribution of the exchange interaction on a square lattice
in the exchange approximation takes the form (see app. A)

F AFMexch =
a
2

m2 +
A
2

∑
i

(∂in)2 +
1
2

∑
i,j

∂in∂jn

+B
∑
i

m∂in (2.18)

withNn being the number of nearest neighbours, ∆ =
√

2d is the width of the AFM
unit cell, the exchange energy a = 4NnJS2, and exchange stiffness A = Nn∆

2JS2/2
and B =Nn∆JS2.

The parity-breaking terms ∝ {∂in∂jn, m∂in} will be discussed in sec. 2.5.1.
Neglecting these terms, as we will do, implies zero intrinsic magnetization in the
AFM at equilibrium. This is the case even if the ground state is in the form of a
magnetic texture [118].

2.4.1 Magnetic anisotropy

Generally, anisotropy introduces some directional preference of the order pa-
rameter. The parameters characterizing these preferred directions are thus ten-
sorial. More specifically, for magnetic materials, we consider crystalline mag-
netic anisotropy: the alignment of the magnetization along some energetically
favourable direction in the crystal, determined by the crystal symmetry. In a
macroscopic theory, the effect is captured as a magnetic anisotropy energy den-
sity K . The magnetocrystalline anisotropy determines the equilibrium direction
of the spontaneous magnetization [21]. At the microscopic level, the magnetic
anisotropy arise due to relativistic interactions between the magnetization and the
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magnetic field, i.e. SOC. The electrons experience a magnetic field in their frame
of reference due to the electric field of the lattice. This electric field (experienced
as a magnetic field for the electrons) constitutes the magnetic anisotropy, which
the electrons align their spins along to reduce their energy. As a consequence, the
magnetization gains a preferred equilibrium direction.

Due to the weakness of these interactions relative to the exchange coupling,
it is often treated through perturbation theory. In general, the strength of the
SOC increases with atomic number due to stronger nuclear fields [24], and as
a result, so too does the anisotropy. One therefore can expect relatively large
anisotropies for sufficiently large atomic numbers, i.e. TM/Fe/MgO(001) [126],
which is favourable in many technological applications

The anisotropy-part of the spin Hamiltonian along a specified direction in
the crystal r̂, which we assume can be expressed as the temperature-independent
(which in general is not the case) energy density K , takes the form

Ĥanis. = −K
∑
i

(Si · r̂)2 (2.19)

where the sum goes over all lattice-sites of the bipartite lattice. If K > 0, alignment
along r̂ is energetically favourable, and the axis is a so-called easy axis. If K < 0,
the axis is a hard axis, and the equilibrium magnetization will lie in a plane ⊥ r̂.

With the z-axis as a easy axis, the free energy contribution from magnetocrys-
talline anisotropy takes the form

F AFManis. = −Kz
[
(m · ẑ)2 + (n · ẑ)2

]
(2.20)

with Kz = 2KS2.

2.4.2 Zeeman coupling

The Zeeman interaction describes the interaction between magnetic moments and
magnetic fields. The magnetic moment can arise from both orbital- and spin-
angular momentum, where we will neglect the former. One can consider the effect
of a external magnetic field by addition of the operator

Ĥext = −ργ
∑
i

Si ·H

to the Hamiltonian, where the sum goes over all lattice sites. We will eventually
take the magnetic field to be constant, and point along ẑ. The Zeeman coupling
will then take the form

Ĥext = −ρHγ
∑
i

Si,z

where Si,z is the spin projection of the ith spin along the ẑ-axis. γ is the gyromag-
netic ratio, and the factor ρ is a angular momentum magnitude with units [ρ] = J ·s.
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2.4. Antiferromagnetic exchange

We will take it to be the magnitude of the angular momentum in each AFM unit
cell, ρ = 2~S.

The Zeeman-interaction aligns the magnetic moments along the magnetic
field, as is evident from the dot product between the magnetic field and the spin.
In the continuum limit, the free energy density contribution amounts to a sub-
stitution of the spin sum with the magnetization. In general, neglecting for a
moment that we take H ∝ ẑ later in the thesis, we thus have

F AFMext = −ργ(m ·H)

2.4.3 The Dzyaloshinskii-Moriya interaction

The Dzyaloshinskii-Moriya-interaction induces canting of the collinear spins in the
equilibrium FM/AFM. It is a chiral interaction, increasing the spin energy de-
pending on whether the spins rotate clockwise or anticlockwise relative to the
direction of the DMI, dictated by the symmetry of the material. It is a source of
weak ferromagnetism in AFMs, as it causes a deviation in the sponataneous mag-
netization due to the spin canting, emerging from the antisymmetric exchange
interaction between neighbouring spins. The nearest neighbour DMI-interaction
takes the form

ĤDMI =
∑
<ij>

Dij · (Si ×Sj ) (2.21)

where the indices {i, j} dente the lattice sites. The interaction is characterized by
the vector Dij , whose strength and direction is determined by the symmetries
of the magnetic material. The chiral nature of the interaction is seen from the
cross-product, which yields a minus-sign under interchange of spins. The DMI,
typically at least a order of magnitude smaller than the exchange interaction, with
some exceptions [75], can in the presence of out-of-plane anisotropy give rise to
magnetic domains separated by Néel-type domain walls, where the spins rotate
in-plane with the domain wall determined by the D-vector. For completeness, we
mention the Bloch-type domain wall, where the magnetization rotates out-of-plane
with the domain wall.

Néel-type domain walls is the most common in thin film arrangements. The
DMI can also give rise to non-collinear ground states like magnetic skyrmions
and vortices [30, 119], as noted in chap. 1. Skyrmions in particular have been
stabilized by IDMI in magnetic multilayers at room temperature [116].

In app. A, we derive the form of the free energy contribution of the IDMI
F AFMDMI in terms of Lifshitz-invariants [30, 43, 86], combinations of linear deriva-
tives of the order parameter which is determined by the crystal symmetry of the
material. In this section, we will apply the more direct approach, see sup. mat. of
[113].

We consider IDMI in a thin film with broken inversion/mirror symmetry
along the y-axis, ignoring any DMI-contribution from the bulk. In such thin-film
systems, the DMI-vector is taken to be completely in-plane with the xz-plane.
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Figure 2.2: The direction of the in-plane IDMI-vector between neighbouring sites of the
square lattice. The mirror symmetry is broken along ŷ, and the DMI Dij is completely
confined to the xz-plane.

With the expressions for the magnetization m and the staggered magnetization l
given by eqs. 2.12 and 2.13, we take l→ n as explained in sec. 2.3, and assume
that the spins at site i belong to the α-sublattice, while the spins at j belong to the
β-sublattice. We express the spins on site i and j in terms of the fields as

Si = S(mi + ni)
Sj = S(mj −nj )

We then perform an expansion in the gradients of the fields at the lattice sites j,
writing them in terms of the directional derivatives of the fields at lattice sites i.

nj ≈ ni +∆(r̂ij · ∇)ni +Θ((∇2n))

mj ≈mi +∆(r̂ij · ∇)mi +Θ((∇2m))

where we neglect terms of higher than linear order in the derivatives. The vectors
r̂ij denote the direction of the nearest neighbour-site, and ∆ =

√
2d is the centered

square lattice unit cell width.
We can now rewrite the Hamiltonian for in-plane interfacial DMI as

∑
<ij>

Dij · (Si ×Sj ) = −D
∑
i

Si ·


∑
<j>

(ŷ× r̂ij )×Sj

 (2.22)

where the brackets 〈· · · 〉 represents summation over nearest-neighbour lattice
sites. Inserting the expansions of the fields into eq. 2.22 and keeping terms up to
linear order in the gradients, we obtain the continuum limit of the chiral part of
the Hamiltonian density as

F AFMDMI = D
[
n · (∇̃ ×n) + ∇̃ · (n×m)−m · (∇̃ ×m)

]
(2.23)
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2.5. Complete form of free energy

where D ≡ ∆S2D. As in [113], we have defined the in-plane ∇-operator: ∇̃ ≡ ŷ×∇.
The 2nd term of F AFMDMI amounts to a total derivative, which can be shown to have
no effect on the dynamics of the fields, and is subsequently dropped. We remind
that we are working with the energy density i.e. we are leaving out a integral over
space from the notation.

The expression for the continuum limit contribution of the DMI to the AFM
free energy density thus has the form

F AFMDMI = D
[
n · (∇̃ ×n)−m · (∇̃ ×m)

]
(2.24)

where we have chosen to keep the contribution from the magnetization m for
now. As mentioned in the discussion about Lifshitz- invariants in app. A, a mag-
netic material with T-symmetry has the same structure as the terms in 2.24, with
the ∼ on the ∇-operators dropped. In this case, the operator ∇̃ is responsible for
restricting the DMI to lie in the xz-plane.

Letting ŷ be the direction perpendicular to the basal plane of the thin film
(xz-plane), the term n · (∇̃ ×n) can be written as

[
n · (∇̃ ×n)

]
=n · ((ŷ ×∇)×n)

=
[
(ŷ ·n)(∇ ·n)− (n · ∇)(ŷ ·n)

]
(2.25)

In this thesis, we will consider spatially modulated IDMI. This IDMI will be taken
as a function of r: D ≡ D(r). However, we include in the definition of the DMI
a constant interfacial background-DMI in addition to the spatially modulated in-
homogeneous DMI. This situation can be imagined as e.g. periodic layering of
a material (modulated DMI) on top of a single-component layer with non-zero
interfacial DMI (homogeneous DMI). We will often denote the constant IDMI as
homogeneous, and the modulated IDMI inhomogeneous. We thus include a constant
term in the definition of D(r)

D(r) = dh +D(r) ≡ D(r)

The homogeneous DMI is denoted by dh, and will taken to be zero until we say
otherwise. We continue to use the notation D(r) (and its redefinitions) for the sum
of the homogeneous and modulated contributions to avoid cluttering the notation.
When D(r) is redefined for ease of notation, dh is redefined in the same manner.

In this thesis, we will consider two types of spatial modulation D(r): a
Krönig-Penney model for the 1D magnonic crystal in chapter 3, and a continuous
cosine potential for the 2D magnonic crystal in chapter 4.

2.5 Complete form of free energy

We are now ready to present the complete form of FAFM . We started out with
a micromagnetic model in terms of isolated lattice spins {Si ,Sj } including sym-
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metric exchange, magnetocrystalline anisotropy, magnetic field and IDMI. The
complete Hamiltonian for this chiral AFM-model where all the terms discussed
in the previous sections has been included reads

H = J
∑
<ij>

Si ·Sj +
∑
<ij>

Dij · (Si ×Sj )−
∑
i

H ·Si −K
∑
i

(Si · ẑ)2 (2.26)

where < ij > denotes summation over all pairs of n.n. spins on the two sublat-
tices. At site i, each spin has N nearest neighbours of type Sj and vice versa. J is
the exchange coupling, where J > 0 denotes antiferromagnetic exchange, H is an
external magnetic field in units of energy, and K denotes the anisotropy energy in
the ẑ-direction.

To lowest order in the fields and gradients satisfying all symmetry require-
ments and conditions from the previous sections, the free energy functional FAFM
of the collinear easy-axis chiral AFM with magnetic-field on a centered square lat-
tice is expressed as the integral over the free energy density functional FAFM . It is
obtained in app. A as

FAFM [m(r, t),n(r, t)]

=
1
V

∫
dr

am2

2
+
A
2

 ∑
i=x,y,z

|∂in|2 +
1
2

∑
i,j

(∂in ·∂jn)


+B

∑
i

(m ·∂in−n ·∂im)−H ·m− Kz
2

(nz)
2

−D(r)
[
n · (∇̃ ×n)−m · (∇×m)

]
+λ(n ·m) +

β

2
(n2 − 1)



(2.27)

As mentioned, we have neglected Gilbert damping and torques due to spin trans-
fer and external currents. Note the ∼ on the ∇s in the DMI-term ∝ D(r), ensuring
the direction of the IDMI-interaction is in the xz-plane. We have absorbed the fac-
tors ργ into the definition of the magnetic field H, giving it dimensions of energy.
Lastly, remember that D(r) includes a homogeneous part dh including the same
parameters in its definition as D.

To formally enforce the constraints we imposed on the continuum-fields
{m,n} in the exchange approximation, see sec. 2.3, FAFM contains two Lagrange
multipliers {λ,β} for the dynamical restrictions m · n = 0 and n · n = 1. We will
show that {λ,β} are functions of n and m in a manner that fulfills the constraints
on the fields, see app. B.

2.5.1 Discarding anisotropic and parity-breaking terms

This section recapitulate the discussion of the anisotropic terms in [118], which
we refer to for more info and relevant references.
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2.6. Semi-classical equations of motion for the Neél AFM

The 3d ∝ (∂in · ∂jn) and 4th term ∝ (m · ∂in − n · ∂im) in the free energy, eq.
2.27, are anisotropic. We can rewrite the 2nd part of the latter term ∝ −n·∂im with
integration by parts and combine it with m · ∂in, resulting in the more compact
combined form

B
∑
i

(m ·∂in−n ·∂im) ' 2B
∑
i

(m ·∂in) (2.28)

where the non-equivalence arises because we have dropped a term ∝ ∂n∂m due
to the smallness of the field m, which makes its gradient negligible. The term in
eq. 2.28 is not invariant under sublattice exchange, which sends n→−n, and thus
breaks parity. This can seem like an oversight, since one might assume from the
relatively simple symmetry of the centered square lattice AFM that the system
cannot contain such a term. As argued in [118], the term reflects the intrinsic
magnetization of the AFM. Exchanging the spins of the sublattices {α,β} has a
non-zero energy cost if the order parameter is spatially inhomogeneous. This
finite energy is the parity-breaking term in the free energy functional.

When deriving the semi-classical EOM’s of the Néel AFM in the exchange
approximation, we will find that the magnetization m is expressible in terms of
the field n and its derivatives, allowing us to express the AFM dynamics in terms
n alone. One can then, as will be done in appendix B, express FAFM in terms of
{n, ṅ,∂in}. The only resulting effect of the anisotropic terms in the Lagrangian
density L will be a renormalization of the exchange stiffness A,

A→ A∗ = A− B
2

2
=
A
2

and the inclusion of a topological term ∝ ∂in(n × ṅ)i . This term can be shown
to correspond to a total derivative [28], which drops out of the semi-classical dy-
namics of the n-field.

The topological term only has consequences when considering quantum ef-
fects, and can fundamentally change the ground state and low energy-spectrum
of the AFM. These effects can be meaningful even in the thermodynamic limit,
with one prominent example being the Haldane gap [35] in integer spin chains.
This is a whole nother topic outside the scope of this thesis, and the topological
term is subsequently dropped.

2.6 Semi-classical equations of motion for the Neél
AFM

We will now outline the procedure of obtaining the semi-classical equations of
motion in the exchange approximation for the Néel AFM in terms of the order
parameters {m,n}. As mentioned earlier, we will be able to eliminate the mag-
netization m by expressing it in terms of n, making m a so-called slave variable
completely determined by the dynamics of n. The derivation itself is detailed in
app. B, with the main steps and intermediate results given in this section.
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The principle of least action [16, 41] states that for a classical system there
exists a quantity S , called the action, which has a minimum for the systems actual,
real-life motion. This minimum is found by setting the 1st-order variation of S to
zero, meaning that the action is stationary for this motion. The paths of the system
are paths in a abstract configuration space, or phase space, where the coordinates
can be given by any set of generalized coordinates {qi , q̇i}, which in our case is the
fields {m,n}, with S a functional of these fields. The action is defined as

S[m(r, t),n(r, t)] =
∫

drdt L[m(r, t),n(r, t)]

=
∫

drdt [K−F ]

L is the Lagrangian density, K is a kinetic energy (density) contribution of the
system, and F is the free energy density, which we have derived already for the
AFM.

K is acquired from the Berry phase of a antiferromagnetic spin dimer [35, 118],
a interacting pair of spins with antiferromagnetic exchange. Its origin will be
explained in a brief manner [35], glossing over many of the details, but included
to give a glimpse of the connection to between QM and semi-classical SW-theory.

The path intergral formulation in terms of coherent states [70], in contrast to
Fock states, can often lead to expressions which lends themselves well to approx-
imations and a more ”intuitive” understanding of the system than the exact so-
lutions. For spin-path integrals, the spin coherent states depends on the time-
history of the spins. Following [35], the generating functional [70, 106] in the
imaginary time formulation including sources ji , with the division of the time
interval into discrete time steps ε is given by

Z[ji] = T rTτ

[
e−

∫ β
0 dτ H(τ)

]
= lim
Nε→∞

T rTτ

Nε−1∏
n=0

[1− εH(τn)] (2.29)

where the sources ji are included in the Hamiltonian H, Tτ is the time ordering
operator which orders the operators in H such that they act in order of increas-
ing imaginary time, β is the inverse temperature, and τn = nε. Note that in the
imaginary time-formalism, ε = β/Nε. The reason for splitting the time integral
into discrete chunks is that we wish to formulate the dynamics of the system in
terms of smooth, continuous paths, which neglects the quantum behaviour of the
system. To rule out these discontinuous paths, we wish to in some way impose
well-behaved analytical behaviour on the path integral, which we try to achieve
by expressing the integral in terms of the spin states parametrized in terms of
angles and, crucially, derivatives, which we know how to manipulate.

This is done by inserting the resolution of the identity in terms of the (non-
orthogonal) coherent spin states [35]
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2.6. Semi-classical equations of motion for the Neél AFM

∫ ∏
i

(2S + 1
4π

dΩ̂i

)
|Ω̂〉〈Ω̂| = 1 (2.30)

between every time-step ε in the discretized path integral of eq. 2.29. The coher-
ent spin states |Ω̂〉 can be parametrized in terms of three Euler angles {φ,θ,χ} in
some abstract vector space [46], which we will not go further into. It is evident
from the identity-resolution that the states are not orthogonal if one compares
them to the resolution of the identity in e.g. Fock states in QM [115].

A essential but technically illegal step is performed when the time differences
in the coherent states are approximated as time-derivatives in the limit Nε → ∞.
This assumption implies that the path integral is dominated by smooth, classical
paths, which turns out to be wrong [46], but can still give reasonable approxi-
mations. The spin-path integral is reobtained if we go ahead and take the limit
Nε →∞. However, the overcompleteness of the spin coherent states in eq. 2.30
has given us a overlap-term between states separated by the infinitesimally small
time step ε. This overlap takes the form

〈Ω̂(τ + ε)| |Ω̂(τ)〉 = e−iSε
∑
i φ̇i cosθi (τ)+χi (2.31)

where two of the three Euler angles φ and θ are the only degrees of freedom
needed to describe the spins, while χ can be set by fixing a arbitrary gauge and is
disregarded. The above term becomes an extra term in the classical action Sc in
the path integral, which we won’t state. However, the contribution from eq. 2.31
to the path integral can be written as

S[Ω̂]ω = −iS
∑
i

ω[Ω̂i]

= iS
∑
i

∫ β

0
dτφ̇i cosθi

= iS
∫ φ1

φ0

dφ cosθφ

This shows that ω is dependent on the path taken by the unit spin Ωi on the unit
sphere [35]. This part of the functional is the Berry phase of the spin, acquired
by the spin as it aligns with a slowly varying external field parallel to Ω. We can
introduce a vector potential A(Ω) to avoid specifying the coordinates on the unit
sphere {φ,θ}, meaning we have a gauge invariant form of the Berry phase. We can
achieve this if we introduce a vector potential which satisfies

ω =
∫ β

0
dτ A(Ω̂) · ˙̂

Ω
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There are several possible choices for A, which is the vector potential of a magnetic
monopole. A conventional one is A = −cosθ/ sinθφ̂. We now essentially have

a dot product between the vector potential and the classical spin, A · ˙̂
Ωi , where

the spin Ωi corresponds to a spin S belonging to one of the magnetic sublattices
{α,β}. We now connect this to the kinetic term K and straightforwardly state the
result, since the rigorous derivation is outside the scope of this thesis: we define
a vector potential for each of the two spins in each AFM unit cell {Aα ,Aβ}, where
the above choice of vector potential is convenient, and expand the Berry phase in
small deviations in the angles {φ,θ} around their equilibrium Néel configuration
[118]. In the basis of the order parameters n and m, which is readily expressible
by the angular dependence of the spins, the kinetic term K can be identified as

K = ρ (ṅ×n) ·m (2.32)

where ρ = 2S~ is the magnitude of the angular momentum in the AFM unit cell.
The above part constitutes a brief recollection of how to obtain the kinetic term,
and we refer to relevant sources for details [35, 46, 70].

We can now obtain the EOMs for the fields {n,m}. Per our previous discussion
in this section, we demand that the action of the continuum AFM is stationary
through the condition δS = 0, which we can write as the functional derivative of
the Lagrangian density w.r.t. n and m.

δL
δn

=
δK
δn
− δF
δn

= 0

δL
δm

=
δK
δm
− δF
δm

= 0 (2.33)

The resulting coupled equations of motion for the fields, derived in app. B, take
the form of torque equations as we remarked at the start of chap. 2

ṅ = fm ×n
ṁ = fm ×m + fn ×n (2.34)

These are the coupled Landau-Lifshitz-equations of motion for the fields in the
absence of Gilbert damping, in the same form as the torque equation 2.1 stated
at the start of this chapter. These equations can also be acquired by other proce-
dures, e.g. the Poisson bracket algebra [22]. The effective fields fn and fm are given
by the functional derivative of the magnetic free energy density F . w.r.t. to the
denoted field: fn = − δFδn and fm = − δFδm .

In the exchange approximation, the equations of motion in eq. 2.34 can be
used to reduce the coupled equations to a single 2nd-order equation in time for the
field n. A step towards this is to realize that the magnetization, without intrinsic
magnetization, can be expressed in terms of n as

m =
ρ

a
ṅ×n +

1
a

n× (H×n)
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2.6. Semi-classical equations of motion for the Neél AFM

We note that including the intrinsic magnetization, the above equation should
have an extra term proportional to the gradient of n [118]. The term ṅ×n implies
that the dynamic motion of n give rise to a finite magnetization. In equilibrium,
ṅ = 0, and the only magnetization comes from the magnetic field H.

The above expression also implies that one can excite and measure SWs by
coupling to magnetic fields, which allows for the use of EM-fields in manipula-
tions of AFM-SWs, e.g. Brillouin light scattering. This has been one of the primary
methods of studying AFM-SWs for many years, as commented in [109].

With m expressed in terms of n, we can expressL in terms of n and its deriva-
tives. L then takes the form, with details referred to app. B

L[n, ṅ,∂in] =
ρ2

2a
(ṅ−γHext ×n)2 − A

2
|∂in|2 +

Kz
2

(n · ẑ)2

−D(r) [(n · ŷ)(∇ ·n)− (n · ∇)(n · ŷ)]

(2.35)

with Hext a external magnetic field with units of a field. Neglecting the DMI and
magnetic field, this effective Lagrangian density corresponds to the well known
non-linear σ -model (NLSM) with anisotropy [22, 28, 70], connecting the quan-
tum Heisenberg antiferromagnet inD dimensions to aD+1-dimensional classical
model. The non-linearity of the NLSM is due to the previously defined unimodu-
larity constraint on the Néel field |n| = 1. In the absence of anisotropy, the NLSM
is O(3)-rotationally symmetric.

In the absence of topological Berry phases, the NLSM represents the ground
state of the quantum Heisenberg AFM. However, if one considers additional topo-
logical Berry phases, the ground state of the AFM might differ drastically from the
classical case [35]. The NLSM has many interesting topological properties such as
soliton solutions in the form of movable domain walls separating different ground
states. These properties of the NLSM is outside the scope of this thesis, and will
not be commented on further.

One can infer some basic properties of the spectrum by just the fact that
we have obtained the NLSM: the spin waves are the Goldstone-modes [70] of the
collinear AFM. When the ground state breaks the continuous O(3)-rotational sym-
metry of the NLSM, or the Heisenberg Hamiltonian for that matter, Goldstone’s
theorem [70, 71] states that there should be gapless excitations of zero mass in
the SW-spectrum. However, introducing anisotropies into the system (e.g. the
easy-axis anisotropy in our model), Goldstone’s theorem is no longer applicable
as it is only valid for spontaneous symmetry breaking, while we explicitly break
the symmetry of the system with the introduction of anisotropies.

Introducing anisotropy, the spectrum becomes gapped, requiring a mini-
mum resonance frequency to excite modes in the AFM. This frequency defines the
antiferromagnetic resonance frequency of the system, the lowest frequency needed
to make the spins oscillate. The gap in the SW-spectrum are due to localized
standing SW-modes interfering destructively, and has been studied in both FM-
and AFM-magnonic crystals [74, 90].
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2.7 Klein-Gordon-equation of in-plane SW-fluctuations

We have adapted a semi-classical model in the T << TN -regime with the assump-
tion that we will be able to obtain qualitative information about the low-frequency
SW-spectrum of the thin-film insulating AFM-system subject to IDMI. In the last
section, we showed that the continuum description of the order parameter n cor-
responded to the anisotropic NLSM [22].

Before proceeding, we comment on the effects of magnon-magnon-
interactions. In this thesis, we take the SWs to be non-interacting. The
first calculations done on SW/magnon-interactions was performed by Dyson [8,
9]. A arguably more intuitive treatment can be performed with the Holstein-
Primakoff-formalism [68, 70]: to 2nd order in the bosonic magnon creation and
annihilation operators a and a†, the Holstein-Primakoff-approach results in a
theory of non-interacting Bloch-waves, which is the assumption used in this thesis.
However, including higher order terms in the a, a†-operators corresponds to in-
cluding magnon-magnon-interactions. However, Dyson showed that many of the
complicated interactions between the magnons cancel each other. The conclusion
is that for low temperatures T << TN , the simple model of non-interacting SWs
is well justified. Approximately non-interacting SWs means that we can safely
apply a Bloch-wave-treatment. We also take the two SW precessional modes of
the easy-axis collinear AFM to be independent of each other. They can thus be
treated separately, and the effective wave equations for the SWs decouple.

We now turn to the study of low-frequency SW-oscillations around some
equilibrium direction in the AFM, which we take to be the ẑ-direction. We in-
troduce a easy-axis anisotropy along this direction, such that the spins in each
AFM-unit cell thus points along ±ẑ. We separate the Néel field into a static equi-
librium part n0 and a dynamical part δn. The SWs δn are fluctuations of n in a
plane transverse to n0, in this case the xy-plane.

n(r, t) = n0Ẑ + δn(r, t) (2.36)

δn(r, t) = δnX(x,z; t)X̂ + δnY (x,z; t)Ŷ (2.37)

The coordinates {x,y,z} are the usual cartesian coordinates, {X̂, Ŷ , Ẑ} are arbitrary
mutual orthogonal axes. The need for defining a new coordinate system comes
from the fact that we often wish to describe the dynamics of the system in rela-
tion to some arbitrary direction of e.g. applied field H or magnetization (or Néel
order). These are often not parallel to one of the cartesian axes. Defining new axes
is also convenient in the studies of optical excitations of magnons, such as with
Brillouin light scattering, where the photon can come in from a direction ofset by
some angle from one of the axes. Thus, it is convenient to relate these directions to
the propagation direction of spin waves in the system. In this thesis, we will take
n0||ẑ, and apply H ‖ ẑ. Thus, the dynamics in relation to the separate coordinate
system {X̂, Ŷ , Ẑ} can be dropped, and we continue to use cartesian axes. We then
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2.7. Klein-Gordon-equation of in-plane SW-fluctuations

Figure 2.3: SW-fluctuations in a plane perpendicular to the equilibrium n0. One can de-
fine a set of axes X̂, Ŷ , Ẑ for convenience (not shown) if one works with fields and optical
excitation from arbitrary directions.

have

δn(r, t) = δnx(x,z; t)x̂+ δny(x,z; t)ŷ (2.38)

Note that the label y on δny does not imply that it is a function of the y-coordinate:
it is still a function of the cartesian coordinates in the plane of the thin film, {x,z}.
Due to the thin film geometry, we assume that the y-direction has no impact on the
dynamics of the system, meaning that the SWs cannot depend on this coordinate.
We remember that for this to hold, we have to be in the regime k‖c� 1 [58], with
c the film thickness. Regarding thin films and DMI, the strength of the IDMI in
FM-thin films has been found to vary as ∼ 1/c [105, 108], which is expected due
to IDMI being an interface-effect.

Assuming |δnx |2, |δny |2 � 1, we will only consider dynamics up to 1st order
in these small parameters, effectively ignoring scattering effects. Here, δnx, δny
are taken to be complex, allowing for the notion of a phase shift between different
SW-modes. This will be a central part of the application of interfacial DMI as a
spin wave filter. Expanding on this, we can define the spin wave as a complex
field [130] via the spin wave function ψ(r, t).

ψ(r, t) = δnx ± iδny (2.39)

where we have included the ± to denote the helicity or handedness of the SW. We
will make use of the notation ψ+ = δnx + iδny and ψ− = ψ̄ = δnx − iδny , which
denotes right-handed (RH) and left-handed (LH) SWs respectively.
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Using polar coordinates {x,z} → {r,φ}, we can write ψ(r, t) = |ψ|eiφ. The phase
shift between the modes is then eiφ, where φ is the phase angle between the pre-
cessional modes of the spins in a unit cell. The phase shift is analogous to the
polarization angle of EM-waves, and represents a new degree of freedom for the
magnonic system. This degree of freedom is unique to the AFM, with all spin
waves in FMs being right-handed [35, 68].

The angle φ = 0 corresponds to linear polarization. The cone angles of the
spins Sα and Sβ at each lattice site is equal, with the spins pointing in opposite di-
rections of one another with no relative canting, see fig 1.3. Thus, the oscillations
of the Néel field at a given lattice site n = (Sα −Sβ)/2S is purely linear.

From the polar-notation, we see that the two SW-modes are related by φ→
φ − π, and that the components δnx and δny are related as δnx = e∓iπ/2δny , i.e.
φ = ±π/2. This corresponds to circular polarization. Circularly polarized RH/LH-
modes preccess around some equilibrium direction, i.e. ẑ, with different ampli-
tudes, with the spins tracing out different cone angles. In this case, the compo-
nents of the spin wave lead or lag behind each other by an angle of ±π/2 depend-
ing on the SW-chirality. As a consequence of this perpendicularity of the compo-
nents, the cone angles of the spins in each unit cell, see fig. 1.3, have opposite
ratios.

Interestingly, the magnon chirality is connected to the polarization of pho-
tons, which admits the possibility of exciting the degenerate modes through op-
tical methods [76]. The degeneracy of the modes can be lifted by applying a
magnetic field along the equilibrium direction, which will consequently increase
and decrease the frequency of the RH/LH-modes depending on if the field points
along ±z.

To solve the equations of motion, we will take δn to be in the form of
monochromatic plane waves [68, 113, 130]

δn(r, t) =(δnxx̂+ δny ŷ)eik·r−iωt (2.40)

with spin wave vector k, frequency ω, and r = (x,0, z). {δnx,δny} are taken to be
complex coefficients. Thus, the SW-function ψ± take the same form

ψ± = ψ̃±e
ik·r−iωt (2.41)

where ψ̃± are SW-amplitudes which can be used when boundary conditions on
the SWs are considered. We will not use this, and the notation is dropped.

Before presenting the effective SW-equation for the AFM spin waves acquired
in app. B, we list the parameters acquired in the continuum limit of the complete
micromagnetic Hamiltonian of eq. 2.26, which is found in app. A.
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2.7. Klein-Gordon-equation of in-plane SW-fluctuations

1D 2D
a Homogeneous exchange energy 8JS2 4NnJS2

A Exchange stiffness J∆2S2 Nn∆
2JS2/2

B Anisotropic exchange stiffness 2∆JS2 Nn∆
2JS2

Kz Easy-axis anisotropy 2KS2 2KS2

ρ Angular momentum per unit cell 2S~ 2S~
c Spin wave phase velocity SJ∆/~ NnSJ∆/2~
D DMI strength ∆DS2 ∆DS2

Nn is the number of nearest neighbours, which for the square lattice is Nn = 4.
∆ is the width of the AFM unit cell, which in the centered square lattice is ∆ =
2d/
√

2 =
√

2d, with d being the nearest neighbour distance, see fig. 2.1. In general,
∆ = 2d/

√
ND , where ND is the number of dimensions.

This thesis is primarily concerned with the phenomenology of the AFM sys-
tem, and thus a thorough investigation of any explicit materials with experimen-
tal parameters is not performed. Instead, parameters in sensible ranges of AFM
materials will be chosen. We will also denote the energies of the fields in terms of
frequencies, i.e. ωJ = J/~ etc.

In app. B, we obtain the EOMs for the coupled {n,m}-fields, and reduce the
AFM-SW-dynamics to a single differential equation in n, which is the Lagrangian
density L in eq. B.17. The effective K.G.-equation is obtained as δS/δψ±. Apply-
ing Euler-Lagrange’s equations B.5 [41] to L to linear order in the fields {ψ,ψ̄}, and
expressing the result as a matrix equation acting on a vector consisting of the two
decoupled SW-modes ψ±, we can now write the effective K.G.-equation for both
SW-modes.

ρ2∂
2Ψ

∂t2
= a

[
A∇2 −Kz + (γρHext)

2 1
a

+ σ3
2iγρ2Hext

a
∂t − σ3

i
2

(D(r)∂x −∂xD(r))
]
Ψ

(2.42)

We note that the DMI-operator has the form of a commutator, which is necessary
to ensure hermicity [41]. Also, remember that D(r) = dh+D(r). We have expressed
the two SW-modes as

Ψ = Ψk(r, t) =
[
ψ+
ψ−

]
=

[
ψ̃+
ψ̃−

]
ei(ωt−k·r) (2.43)

We will use redefined parameters instead of the ones in eq. 2.42. The effective
K.G.-equation can be stated as

∂2ψ

∂t2
= c2

[
∇2 − K̄z + H̄2 + 2iσ3

H̄
c
∂t −

iσ3

2

(
D̄(r)∂x −∂xD̄(r)

)][ψ̃+
ψ̃−

]
(2.44)

where we have defined the spin wave phase velocity c2 = A/ρ2 ≡ Nn∆JS/2~, with
A = aA, K̄ ≡ Kz/A with Kz = aKz = 2aKS2, H̄ ≡ H ∗/

√
A with H ∗ = γρHext , and
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the DMI parameter D̄ ≡ D∗/A. D∗ is redefined according to the value found in
the continuum limit, app. A: D∗(r) = a∆D(r)S2. We have scaled A→ aA∗ = aA/2
according to the discussion in section 2.5.1. In this notation, terms without σ3 is
multiplied by the 2D identity matrix I2. The quantity inside the square bracket
now have units [m−2].

We will call the SW equation 2.44 a effective Klein-Gordon-equation (KGE).
The name is chosen because of a parallel between the modes of the AFM-SWs
and the KGE equation in special relativity. KGE (in special relativity) is a rela-
tivistic spin-zero wave equation [77]. It is the relativistic generalization of the
Schrödinger-equation [115], and in the same manner as non-interacting AFM-SWs,
it can be treated and solved as two separate components, which yields positive-
and negative-energy solutions. This is reflected in the eigenvalues obtained in the
KGE, as they are quadratic, admitting two solutions for the energies.

However, in special relativity, several peculiar phenomena arise when the
solutions of positive and negative frequencies ω is used for calculating e.g. the
probability current or time evolution of the expectation value of the position op-
erator r̂. These effects include the oscillatory zitterbewegung phenomenon, where
the interference of positive- and negative-energy energy states of a propagating
particle in the form of a wave packet causes large fluctuations around the expected
position, and the Klein paradox [77], in which the transmission and reflection co-
efficients of relativistic particles at a potential barrier goes to infinity. This urges
caution about thinking of the solutions to the KGE-equation as ”particles” in the
traditional sense. In addition, the KG-equation has several problems which make
it impractical to work with, which includes nonlocality, violation of causality, and
no obvious way of incorporating EM-fields in the theory [47]. Instead, one often
reformulates the KGE in the form of the Dirac equation [106]. This fomalism has
been used to demonstrate a magnonic analogue of zitterbewegung and the Klein-
paradox in AFM spin chains [127]
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CHAPTER3

1D MAGNONIC CRYSTAL

Having arrived at a effective KGE, eq. 2.44, for the SWs in the previous chapter,
before investigating the case of modulated DMI, we highlight characteristic fea-
tures of the SW-spectrum in the presence of homogeneous DMI dh in a thin film
system, with the xz-plane as the basal plane. We choose to use the notation dh =D
for the homogeneous DMI until stated otherwise.

Assuming plane wave solutions as in eq. 2.41, ψ ∼ eik·r−iωt , we can obtain the
dispersion relationω(k) of the RH/LH SWs. We will see that the degeneracy of the
modes will be completely lifted for D , 0 and H , 0, with a resulting decoupling
of the SW-modes.

The DMI can be shown to only depend on the spatial derivative with re-
spect to x, see app. B, so we must first specify directions in the film. We de-
fine the angles as in figure 3.4. A general radial unit vector ρ̂ can be given by
ρ̂ = (cosθ sinφ,sinθ sinφ,cosφ). If we take the direction of propagation of k to lie
in the xz-plane, we have θ = 0, such that the in-plane-wavevector can be written
as (kx,0, kz) ≡ k⊥ = k(sinφ,0,cosφ), where k = |k|.

Since the SW modes ωR and ωL are connected by a phase shift of π and the
symmetry H → −H , we can choose to work with just one of them; the results
for the other mode can be acquired identically with a sign change in front of the
linear magnetic field term ∝ ∂t and the DMI-term. For now, we keep both modes
in mind with a unified sign notation, e.g. (±)R/L.

Assuming SWs in the form of monochromatic plane waves ψ ∼ ei(ωt−k·r) of
frequency ω, we obtain the spin wave dispersion of the from eq. 2.44 as

−ω2 = c2
{
−k2 − K̄z + H̄2(∓)R/L2

H̄
c
ω(±)R/LD̄kx

}
=⇒ 0 =

ω2

c2 (∓)R/L2
H̄
c
ω − k2 − K̄z + H̄2(±)R/LD̄kx (3.1)

where kx is the projection of k onto the x-axis in the xz-plane, given by k sinφ,
where φ is the polar angle w.r.t. the z-axis and k ≡ |k|. Note that for φ = 0,
the effect of the DMI disappears. In the 1D magnonic crystal, the spin waves
propagating perpendicular to the direction of the DMI modulation will not sense
the presence of the DMI at all, and will be ungapped except for the lowest energy
gap from the easy-axis anisotropy and the magnetic field. Solving eq. 3.1 for ω,
we obtain

ω±,R/L = (±)R/LcH̄ ± c
√
k2 + K̄z(∓)R/LD̄k sinφ (3.2)

The solution in eq. 3.2 admits RH/LH precessional modes, connected to our two
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solutions ψ and ψ̄. As discussed earlier, the modes are circularly polarized, and
can be thought of as if the in-plane fluctuations δn and the magnetization m pre-
cess anti-clockwise (RH) or clockwise (LH) around the equilibrium ground state
configuration n0. This can also be seen from substitutingω back into the equation
of motion in eq. 2.44 and look at each of the two components of the wavefunction
ψ± = δnx ± iδny and compare with the real and imaginary part of eq. 2.41. One
finds that the components are connected by a phase shift of π/2: δnx = e∓iπ/2δny ,
revealing the right-circularly polarized wave with phase shift −π/2 to gain energy
from a applied magnetic field, thus being the mode of highest energy. The lowest
energy mode is thus the left-handed mode with phase shift π/2.

The ± from the solution of the polynomial in ω implies two SW-branches,
representing the excitations of the two sublattices {α,β}. The lowest-energy bands
in the two branches, neglecting homogeneous/inhomogeneous DMI and magnetic
field, are separated by a frequency gap of width 2c

√
K̄z. At zero wavevector k =

0 and in the absence of external magnetic field, this is the threshold value of
the homogeneous DMI for the ground state to twist into a spiral, destroying the
uniform Néel order. We will keep to the regime D < c

√
K̄z, such that the bottom

of the lowest positive SW-branch do not drop below 0.

3.0.1 Effects of DMI on spin wave spectrum

In this section, we will restrict ourselves to the positive frequency branch of eq.
3.2

ω+,R/L ≡ ωR/L = (±)R/LcH̄ ± c
√
k2 + K̄z(∓)R/LD̄k sinφ (3.3)

To keep the notation simple when showing the effects of the magnetic field,
anisotropy and homogeneous DMI on the SW-dispersion, we rewrite eq. 3.3 in
dimensionless form

ω′R/L = (±)R/L1 +
√
k′2(∓)R/LD′k′ sinφ+K′z

withω′ =ω/ωH , k′ = k/H̄ ,K′z = K̄z/H̄2,D′ = D̄/H̄ and the characteristic frequency
ωH = cH̄ . The dispersion solved for the dimensionless wave vector k′ , which we
will need in our discussion on the 1D MC, reads

k′± = (±)R/L
D′ sinφ

2
±

√(
D′ sinφ

2

)2

+ (ω′ (∓)R/L 1)2 −K′z (3.4)

As noted earlier, the interfacial DMI lifts the k-degeneracy of the precessional
modes, as is evident from fig. 3.2 and 3.3. In the absence of magnetic field (nec-
essarily with other definitions of the parameters than we have applied since we
divide by the magnetic field), for frequencies ω above the antiferromagnetic reso-
nance frequencyωR =

√
K′z, the k-splitting is independent ofω [113]: ∆k = kR − kL,
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Figure 3.1: Spin wave dispersion relation for the lowest band with applied magnetic field
H/J = 1/100 and easy axis anisotropy K/J = 1/10. The magnetic field lifts the degeneracy
of the two degenerate right-handed +-mode and left handed −-mode. The anisotropy gaps
the lowest band.
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Figure 3.2: RH/LH-dispersion with anisotropy K/J = 1/10 and homogeneous DMI D/J =
1/10. The DMI reduces the frequency of the SW-modes equally.
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Figure 3.3: RH/LH-dispersion in the presence of magnetic field H/J = 1/100, anisotropy
K/J = 1/10 and homogeneous DMI D/J = 1/10. As remarked earlier, the RH-mode is in-
creased in frequency, while the LH-mode is decreases for application of a H-field along
+ẑ.

where kR and kL are the wavevectors of the LH/RH-modes at the same frequency
ω. The DMI reduces the frequency of both modes, which can be thought of as a
energy cost of splitting the modes.

We briefly mention the analogy of the DMI as a ”effective magnetic field”
directed perpendicular to the xz-plane of the thin film [75, 103]. In a effective
theory, the in-plane IDMI can be represented as a vector potential which can alter
the propagation of magnons. The vector potential ADMI is defined such that the
resulting effective field acts in the plane of the film, according to Hef f = ∇×ADMI .
The behaviour of the SWs in this effective field is thus analogous to the motion of
a charged particle in a magnetic field perpendicular to the film. The subsequent
bending of the charged particles trajectory in the plane of the film is the Hall
effect. In the same manner as the conventional Hall effect, the SWs in the film are
deflected due to the DMI-induced effective ”magnetic” field. This is dubbed the
magnon hall effect, one of many types of similar Hall-type phenomena, and has
been expreimentally observed [75].

3.0.2 1D modulation and the DMI Kronig-Penney model

To model a simple magnonic crystal, we consider a periodically varying DMI D(x)
in the x-direction of a thin film, and disregard the homogeneous DMI d. The
modulation has periodicity l, denoted the DMI lattice constant, and consists in one
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period of two regions of different DMI-strength, D1,D2, as shown in fig. 3.4.

Figure 3.4: Sketch of the magnonic crystal with alternating DMI strengths

We model these regions of varying DMI as square potential steps of finite length
l/2. This problem can be solved in the same way as a particle in a QM-potential
well-problem [115]. The model is a variant of the Kronig-Penney model [45],
which is exactly solvable for our simple case.

The periodic DMI is defined as

I : D(x) =D1, nl < x ≤ (n+ 1
2 )l

II : D(x) =D2, (n+ 1
2 )l < x ≤ (n+ 1)l

where n =...-2,-1,0,1,2,...

The form of the solution is given by the same procedure as outlined in [45]. We
choose to work with RH-modes only. We are thus looking for the solutions of the
wave equation

∂2ψ+

∂t2
= c2

[
∇2 − K̄z + H̄2 + 2i

H̄
c
∂t −

i
2

(
D̄(x)∂x −∂xD̄(x)

)]
ψ+ (3.5)

where, we have dropped a x-sign on ψ. In treating the DMI as a periodic step-
potential, we expect to be able to control the band gaps of the spin waves by
changing the properties of the modulation, i.e. the square potential profile and
amplitude.

To find the RH-dispersion ω+(k) for the SW in a periodic potential, we apply
Blochs theorem [24, 45]. The theorem states that the complete solution ψ of a par-
ticle in a periodic potential must consist of a envelope function with the periodicity
of the potential and a phase depending on the crystal wave vector k:

ψk(r) = uk(r)eik·r
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For this simple 1D potential, we can use Blochs theorem to match the wavefunc-
tions at specific points in the potential. We can then obtain a analytical solution
for the gaps in the frequency spectrum of the spin waves.

For simplicity, consider the 1st period of the inhomogeneous potential, n = 0.
The solution ansatz for the two regions of DMI is

ψ(x) = AeiKx +Be−iKx ; 0 < x < l/2, D(x) ≡D1

ψ(x) = CeiQx +De−iQx ; l/2 < x < l, D(x) ≡D2

(3.6)

The wave vectors {K,Q} are the momenta in region I and II respectively. They are
found from the RH-version of eq. 3.4, with K ≡ K(D1) and Q ≡Q(D2). We use the
definitions from eq. 3.5 in eq. 3.4, so that the expressions for {K,Q} reads

{K,Q} = {k1, k2} = ki ; i = 1,2

ki =
D̄i sinφ

2
+

√(
D̄i sinφ

2

)2

+ (ω/c − H̄)2 − K̄z

where the index i denotes the DMI in region I and II respectively. Thus, D(x) ≡D1
when 0 < x < l/2, we have k±,i ≡ K . Similarly, D(x) ≡ D2 when l/2 < x < l, we have
k±,i ≡Q.

By Blochs theorem, the solutions in the two regions of DMI (eqs. 3.6) has to
be related to each other by a phase shift.

ψ(l/2 < x < l) = ψ(−l/2 < x < 0)eikl (3.7)

At the DMI step, x = l/2, the wavefunctions in each region has to match. The
commutator [D(x),∂x] = D(x)∂x − ∂xD(x) in the EOM, eq. 3.5, results in a finite
difference in the derivatives of the wavefunctions in the regions

ψ1(l/2) = ψ2(l/2)
dψ1

dx

∣∣∣∣∣
x=l/2

−
dψ2

dx

∣∣∣∣∣
x=l/2

=
i
2
∆D̄ sin(φ)ψ(l/2) (3.8)

where the 2nd condition implies the existence of a accumulated phase due to the
effect of the DMI. We have defined ∆D̄ = D̄2 − D̄1. We note that our definition of
D̄ was D̄ = 2~a∆D/NnJ , where ∆ here is the nearest neighbour distance ∆ = d.

The constants A, B, C and D in eqs.3.6 is chosen such that the wave function
ψi and its derivative ∂ψi

∂x is continuous at x = 0 and x = l/2. We note that these
coefficients and their ratios give the transmission and reflection ratios of the spin
waves at the potential step,

ψI =Ieik1x; Incident waves

ψR =A0e
−ik2x; Reflected waves

ψT =B0e
ik3x; Transmitted waves
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with I,A0,B0 the wave amplitudes. We will not go further into detail on this. For
a simple treatment of reflection and transmission of AFM spin waves for a DMI
potential step, we refer to e.g. the supplementary material of [113].

At the point x = l/2, we use Bloch’s theorem to relate ψ(l/2) to the solution
at ψ(−l/2). Including the DMI phase required by the 2nd condition of eqs. 3.8,
we must account for the phase from the DMI in the regions. We thus have that
at x = l/2, ψ have acquired a phase ei(D̄1/2)l/2. Using Bloch’s theorem to relate
ψ(l/2) to ψ(−l/2) with eq. 3.7, we have that the accumulated DMI phase must be
ei(D̄2/2)(−l/2).

x = 0 :

A+B = C +D
iK(A−B) = iQ(C −D)

 (3.9)

x = l/2 :

(AeiKl/2 +Be−iKl/2)ei(D̄1/2)(l/2) = (Ce−iQl/2 +DeiQl/2)eiklei(
∆l
4 )ei(D̄2/2)(−l/2)

iK(AeiKl/2 −Be−iKl/2)ei(D̄1/2)l/2 = iQ(Ce−iQl/2 −DeiQl/2)eiklei(D̄2/2)(−l/2)


(3.10)

We see that we can collect the DMI phases on both sides of eqs. 3.10 in a
total phase e−i((D̄1+D̄2)/4)l at the left side, and define sinφ(D̄1 + D̄2)/4 ≡ D̄∗ for
convenience.

We solve the four simultaneous equations of eqs. 3.9 and 3.10 by setting the
matrix determinant of the set of equations to zero, which has the form

∣∣∣∣∣∣∣∣∣∣∣
1 1 −1 −1
iK −iK −iQ iQ
eiKl/2 e−iKl/2 −e−iQl/2ei(k−D̄∗)l −eiQl/2ei(k−D̄∗)l

iKeiKl/2 −iKe−iKl/2 −iQe−iQl/2ei(k−D̄∗)l iQeiQl/2ei(k−D̄
∗)l

∣∣∣∣∣∣∣∣∣∣∣ = 0 (3.11)

Computing the above determinant and simplifying the exponentials with
trigonometric functions, we acquire the result

−4
[
2K cos(kl + (l∆/4A))Q+ sin(Ql/2)sin(Kl/2)(Q2 +K2)

−2K cos(Ql/2)cos(Kl/2)Q
]
(cos(kl) + i sin(kl)) = 0

This is equivalent to

cos
(
kl − D̄1 + D̄2

4
l sin(φ)

)
= cos(Ql/2)cos(Kl/2) − K2 +Q2

2KQ
sin(Ql/2)sin(Kl/2)

(3.12)

where we have reinserted the definition of D̄∗. Eq. 3.12 is a analytical solution
for the band gaps due to the periodic modulation of DMI. The right side (RHS)
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is bounded |RHS| ≤ 1, while the left side (LHS) can take on any value if we allow
{K,Q} to be complex, which is what defines the SW bandgaps. All the spin wave
information is encoded in the wavevectors {K,Q}.

The band gaps occur in the regions where the absolute value of the LHS
is greater than 1, implying that the allowed energies of the spin wave must be
imaginary. These solutions are ”forbidden” for the SW, which is exponentially
suppressed in the corresponding regions. This is seen by inserting the complex
wavevectors into the solution ansatz in eq. 3.6, which yields exponentially
decaying solutions. The properties of the gaps can be modified through the
energy/frequency-parameters of the model, and as expected for particle in a
periodiv potential, we obtain several bands as we go to higher frequencies ω.
For φ = 0, the SWs do not feel the DMI, resulting in K = Q. Thus, the LHS
of eq. 3.12 reduces to cosQl/2, or equivalently cosKl/2. Both sides are now
bounded ∈ [−1,1], meaning that there can be no complex solutions corresponding
to forbidden frequencies via the relation k(ω), and we expect no band gap except
for the one caused by the magnetic field or easy-axis anisotropy.

We again note that we do not consider the transmission and reflection of spin
waves with different helicities at the boundary, which is necessary to consider if
one wants to examine how the SW polarization changes at e.g. electrical gate
[113].

3.1 1D magnonic crystal results

In order to obtain the SW-dispersion for the 1D MC, eq. 3.12 was solved implic-
itly for the wave vector k: the LHS of the equation was evaluated for a range of
frequencies ω ∈ [0,100], and if the frequency yielded a LHS-value ∈ [−1,1], the
k-value was accepted as a allowed momentum. In all the plots we set ωJ = 100
THz, ωD1

= 0 and d = 5 Å. The length of the 1D BZ is kb ≡ 2π/d. We will see that
the SW-behaviour predicted in sec. 3.0.1 is recreated by the analytical solutions,
in addition to the bands gaps due to modulated DMI.

To further investigate the properties of the bandgaps in 1D, we computed
gap diagrams in a similar manner as done for FMs [124], see fig. 3.9, 3.10 and
3.11. The band gaps are found by implicit solution of eq. 3.12. We can choose
a range of spin wave frequencies ω, insert into the LHS of eq. 3.12, and see if
the obtained value is contained in the interval [−1,1], corresponding to a allowed
propagation mode for the SW. If the value is not in the interval, spin wave propa-
gation is exponentially suppressed, and the combinations of parameters and mo-
menta {K,Q} constitutes a forbidden SW mode, signalling a gap in the spectrum,
which are the black areas of the plots. The gaps are calculated as functions of
the angle between k and the direction of DMI modulation (x̂) φ, the DMI lattice
constant l and DMI strength in one of the regions, D2. In all the calculations,
we take D1 = 0, since the gaps only depend on ∆D ≡ |D2 −D1|. We only plot the
gap-diagrams for the RH-mode, since the ones for the LH-mode are similar. In
the absence of magnetic field H , both modes are equal in terms of the size of the
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3.1. 1D magnonic crystal results

gaps, with the same gap width for the same values of ∆D, l and K . However,
when including a magnetic field, the RH-modes will increase in frequency, while
the LH-modes will decrease. Thus, the only difference in the gap-plots, figs. 3.9,
3.10 and 3.11, will be when H , 0. For example, when H > 0 the lowest gap in all
the gap-plots for the RH-mode will increase in bandwidth. Since all the bands are
increased an equal amount in frequency, the gaps between the higher gaps stay
the same, and only the lowest gap will become larger. For LH-modes, the lowest
gap will decrease, while all higher gaps will stay the same.

In the calculation, approximate parameters in sensible ranges for AFM ma-
terials have been chosen to make the gaps clear, with the definitions of the pa-
rameters according to the 1D-column in table 2.7. We will give the frequencies
and energies as a fraction of J , since the relevant parameters are the ratios of the
interaction strengths.

In fig. 3.5, we observe that the 1st gap has the largest bandwidth, with the
2nd one being narrower, and the 3d being wider than the 2nd one. The frequency
bandwidth of the bands are determined by the DMI lattice spacing l, which can be
seen by fig. 3.10. For a single value of l, we see that the bandwidth of the gap can
increase as we go to higher frequencies. The frequency gaps get asymptotically
vertical for higher and higher frequencies.

The analytical 1D result in fig. 3.6 clearly show the effect of the DMI on
the low frequency spectrum of the AFM. The spectrum is shifted in k for D2 , 0,
RH-SWs being shifted towards positive k and opposite for LH-SWs. A in-plane
magnetic field H , 0 in the equilibrium direction n0 ∼ ẑ lifts the degeneracy of
the circularly-polarized modes, increasing the frequency of ω+ and decreasing
the frequency for ω−. The bandgaps are shifted away from the edges of the BZ
due to the nonreciprociy-inducing DMI. We stated earlier that the reason for this
is that counterpropagating waves of the same frequency no longer have the same
quasimomenta k. As a result, the standing spin waves do not necessarily occur at
the BZ edge. We can see that the nonreciprocity increases and the frequency of
the SWs decreases as D gets larger, in addition to increasing the gap width, in fig.
3.7.

In fig. 3.8, the dispersion is plotted in the absence of easy-axis-anisotropy,
magnetic field and DMI. The lowest band is gapless, with the expected linear dis-
persion for AFM-SWs in the absence of anisotropy. The model for the SWs is built
on the assumption that we are working in the long-wavelength limit, meaning
small wavenumbers k. In this regime, the SW-dispersion is linear in k right up to
the BZ-edge.

Fig. 3.9 shows that the width of the bandgaps increases as the direction of
propagation is directed in x-direction, with the full effect of the modulation on the
SWs when θ = π/2, meaning k = (kx,0). The lowest gap comes from the easy-axis
anisotropy of the system. The result in fig. 3.10 is similar to the one obtained for
periodic variation of DMI in FMs [124]. As argued in the reference, as the lattice
spacing increases, the domain where spin waves are exposed to the DMI increases.
This amounts to a larger potential barrier for the spin waves, in turn making the
allowed bands narrower. The behaviour of the band gaps exhibited in fig. 3.11 is
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also as expected. As the DMI energy increases, we see that the lowest spin wave
band gap approaches 0, signalling the transition to a spiral state, in which our
assumption of harmonic, low energy excitations are invalid. This threshold value
in the absence of magnetic field is given by Dth =

√
JKz.

Figure 3.5: 1D dispersion relation for the RH-mode, with D2/J = 1/10, K/J = 1/10, H = 0
and l = 10 nm. The solid lines represent the edges of the BZ, kb/2, and the perforated lines
are the center of the neighbouring BZs. The gap between the 1. and 2. band is of the order
∼ 0.5 THz. As l is increased, the bands flatten and the bandgaps decreases. We will come
back to this in chap. 4.
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3.1. 1D magnonic crystal results

Figure 3.6: Right- (ω+) and left-handed (ω−) spin waves where the degeneracy in ω is split
by a magnetic field ωH = 1.5 THz (H/J = 0.015), and the k-degeneracy is lifted by the mod-
ulated DMI. We set K/J = 1/20 and D2/J = 1/10. The dispersion relation is nonreciprocal
in both modes, which is evident from the ”tilt” away from k = 0.
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Figure 3.7: ω+-mode plotted for different values of ωD2 . We set l = 8 nm and K/J = 1/20,
the rest of the parameters are as in fig. 3.5.
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3.1. 1D magnonic crystal results

Figure 3.8: The ω+-mode with K =D2 =H = 0, and the rest of the parameters as in fig. 3.5.
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Figure 3.9: AFM spin wave frequency gaps for a 1D magnonic crystal as a function of the
angle θ ∈ [0,π/2]. The parameters are l = 10 nm, K/J = 3/100 and D2/J = 1/10. As the
momentum-component in the direction of DMI-modulation increases, the effect of the pe-
riodic potential increases up to a maximum value at π/2. As is confirmed by fig. 3.9, when
θ = 0, the propagation direction is perpendicular to the periodic DMI, and the potential
felt by the spin waves is constant. This does not give rise to magnonic band gaps.
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3.1. 1D magnonic crystal results

Figure 3.10: Frequency gaps as a function of the DMI lattice parameter l ∈ [0,40] nm, with
each consecutive region of DMI D1, D2 having the length l/2. The parameters are θ = π/2,
and K/J = 3/100 and D2/J = 1/10. The lowest gap between ω0 ∼ 0 − 35 THz. We see that
there is a range of l ∼ 0−4 nm where there no bandgaps allowed. Increasing D2 makes the
”thin” band-gap-lines thicker, meaning larger bandgaps.
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Figure 3.11: Frequency gaps as a function of the DMI strength ωD2 ∈ [5,30] THz. The
parameters are θ = π/2, l = 10 nm and and K/J = 3/100. We have plotted the DMI in units
of energy averaged of a area d2.
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CHAPTER4

2D MAGNONIC CRYSTAL AND THE PLANE WAVE
EXPANSION

In this chapter, we will construct a 2D MC-model, and investigate the associated
dispersion of spin waves subject to spatially modulated inhomogeneous DMI. In
chap. 3, we considered a particularly simple potential, which allowed us to solve
the problem analytically. In general, there are several methods to obtain the dis-
persion of the spin waves in such a periodic system. A especially popular routine
for obtaining band structures for MCs which, we will utilize a version of, is the
so-called plane wave method (PWM) [57]. We will use the similar plane wave expan-
sion (PWE), or multiband envelope function method [40]. Simulation methods like
the Dormand-Prince method, which solves the differential equation by e.g. Runge-
Kutta-methods, can also be used to obtain the dynamics and frequency spectrum
of the system. However, we are interested in the dispersion of the spin waves
of a continuum model, with the assumption of dissipationless dynamics. In this
”free” spin wave regime, a suitable number of plane waves is expected to yield
good results.

PWM and PWE uses the same principle when obtaining the frequency-
momentum-relations of a system: the periodic parameters of the problem, e.g.
magnetization or exchange stiffness (in our case the IDMI), are described by a
plane wave expansion in reciprocal lattice vectors by virtue of Blochs theorem
[40]. One calculates the Fourier components, insert the expansions into the
EOMs, and formulate a eigenvalue problem which is readily solvable by nu-
merical methods. The advantage of the PWE is its ability to describe arbitrarily
shaped scattering-centers [57], and the effects of crystal strain and electric fields
can be included analytically through the Fourier coefficients [40]. PWE forgoes
the calculation full spatial distribution of the potential, which means lower
computational expense.

4.1 General formulation of PWM

We start out with a review of some concepts from solid state theory, and a bit more
thorough review of Bloch’s theorem than in chapter 3.

Bloch’s theorem states that the wavefunction of a particle Ψ(r) in a periodic
potential can be written as the product of a function with the periodicity of the
real space potential and a phase factor

Ψk(r) = uk(r)eik·r (4.1)

where the envelope function u(r) has the periodicity of the lattice, and eik·r is a
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momentum-dependent phase. These Bloch waves satisfy the condition

Ψk(r + R) = Ψk(r) (4.2)

which can readily be proven [45]. Here, R = ha1+ka2+la3 is a arbitrary lattice vec-
tor, {h,k, l} are integers and {ai} is a set of basis vectors or primitive lattice vectors. k
is a wave vector defined in 1st Brillouin zone (1BZ), where k is a quasi-momentum,
or crystal momentum. We label every function u(r) with a unique k-vector, since
all k can be translated back to the 1BZ by a suitable reciprocal lattice vector G.

The envelope functions uk with the periodicity of the real lattice can be ex-
panded in a (formally) infinite Fourier series in G.

Ψk(r) = uk(r)eik·r =
∑

G

ck(G)eiG·reik·r =
∑

G

ck(G)ei(G+k)·r (4.3)

where ak(G) are expansion coefficients and eiG·r a phase factor.
In practice, one imposes a cutoff on the number of lattice vectors G con-

sidered in the calculation, which we will return to later in this chapter. Blochs
theorem and the expansion of periodic functions in reciprocal space are essential
parts of the PWE. In our case, the expression will be simpler than for the treat-
ment of e.g. quantum dot-lattices or band structures of complicated compounds
like e.g. germanium or gallium arsenide [114], which the PWE can be very well
suited for. We will follow [40] in this section.

The PWE-method solves the eigenvalue problem ĤΨ = EΨ, where Ĥ is some
effective Hamiltonian depending on the bands N . We split the effective Hamilto-
nian into two parts

Ĥ = Ĥ0 + V̂

where Ĥ0 is the ”unperturbed” Hamiltonian without modulation. The diago-
nalization of the matrix representation of Ĥ0 with a suitable basis set yield the
eigenvalues of the non-modulated system when acting on the states ψ. V̂ is the
”perturbation” of the effective Hamiltonian. The matrix elements of V̂ describes
the effect of the periodic modulation of parameters on the particles. In PWE, the
eigenstates of Ĥ0 are chosen as the basis states of the expansion.

A general set of such eigenstates can be given in a general Bloch-form as

ψk,l,s(r) =
N∑
i=1

Asi (k, l)uk,i(r)ei(k+Gl)·r (4.4)

Asi (k, l) is a function which depends on the type of state s we treat (e.g. degenerate
electron, holes etc.). ui(r) are the envelope functions describing the periodicity of
the lattice potential, k is the crystal/quasi-momentum and Gl is some reciprocal
lattice vector labeled by the index l. The set {Gl} describes the superlattice of scat-
tering centers, with the label l denoting their locations in k-space in one, two or

54



4.2. PWE for AFM spin waves

three dimensions according to some arbitrary sorting scheme. The index i labels
the Bloch-functions, and thus also labels the energy bands.

A wavefunction Ψk for each value of the quasimomentum k allowed by the
Born-von-Karman boundary condition [24] satisfying the full eigenvalue problem
is given by a linear combination of the basis states ψk,l,s

Ψk(r) =
∑
S

∑
l

Ck,l,sψk,l,s(r) (4.5)

With the eigenstates of the above form and some operator Ĥ, one seeks a matrix
M which is subsequently diagonalized. The eigenvalues are the energies of the
system, and the obtained coefficients Ck,l,s are the eigenvectors of M. The matrix
M can be stated in general form as

Mk,l,l′ = 〈Ψl′ ,s′

k |Ĥ |Ψ
l,s
k 〉 = El(k−Gl)δS,S ′δl,l′ +

N∑
i,i′

(uk
i′ ,S ′ ,l′ )

∗uk
i,S,lV

′
S,S ′ ,i,i′

k(l, l′)

(4.6)

where the set of quantum numbers {k, l, l′} denote the quasimomentum k and the
plane wave states l and l′ , and N is the number of Bloch/envelope functions. In
the PW-basis, M is diagonal in the quantum numbers {k, l, l′} in the absence of pe-
riodic modulation, since the scattering centers located at {Gl} disappear from the
problem. El are the eigenvalues of the unmodulated operator Ĥ, with l denoting
the set of energy bands generated by translations of G in the reciprocal lattice of
the potential. The matrix elements of the potential V ′S,S ′ ,i,i′

k(l, l′) are given by

V ′S,S ′ ,i,i′
k(l, l′) =

1
VC

∫
Ω

dr ei(Gl′ ·r) V̂ e−i(Gl ·r) (4.7)

In summary, the method is very similar to solving the Schrödinger-equation for
a electron in a periodic potential [45]: the PWE-method can simply be seen as
representing an operator in a plane wave basis set, where the information about
the scattering centers of the potential are encoded in reciprocal lattice vectors. In
section 4.2, we will greatly simplify the general equations above. As mentioned, a
essential part of the PWE is to be expand the periodic crystal potential in a Fourier
series, which in our case will be an expansion of the modulated DMI D(r).

D(r) =
∑

G

DGe
iG·r (4.8)

We will return to this shortly.

4.2 PWE for AFM spin waves

In the case of non-interacting AFM spin waves in the continuum, the represen-
tation of the system is reducible, and the R/L-handed SW precessional modes
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decouple. Since the states do not mix, we can diagonalize the matrix represen-
tations of the effective KG-operator, the bracket in eq. 2.44, acting on the two
helicities separately. Spin s is not part of our continuum approach, and is disre-
garded. Denoting the effective KG-operator for right- and left-handed spin waves
as Ĥ and Ĥ† respectively, we can express eq. 2.44 as a matrix equation with the
matrix operator Ĥ as

ĤΨk(r) =
[
Ĥ 0
0 Ĥ†

][
ψ+

k(r)
ψ−k(r)

]
= ω2Ψk(r) (4.9)

In applying the PWE-method as described in the previous section, the operators
Ĥ, Ĥ† are represented as part of the matrix in eq. 4.6.

We now formulate the general eigenvalue problem for spin waves in a 2D
AFM thin film. The equation of motion for the spin waves from chapter 2 is

∂2ψ

∂t2
= c2

[
∇2 − K̄z + H̄2 + 2iσ3

H̄
c
∂t −

iσ3

2

(
D̄(r)∂i −∂iD̄(r)

)][ψ+
ψ−

]
(4.10)

where as earlier, we take D̄(r) to consist of a homogeneous background and spa-
tially modulated part: D̄(r) = dh + D̄(r). We again remind that the homogeneous
DMI dh is redefined in the same manner as D(r)→ D̄(r), see the discussion after
eq. 2.44.

For simplicity, we drop the spin-wave phase velocity c2 from the notation,
and leave out the easy-axis anisotropy K̄, since it will only amount to a additive
constant on the diagonal of M. We also set the magnetic field parameter H̄ to zero
for now. We choose to work with the RH-mode ψ+ for now, since the expressions
for the LH-mode are similar. We change notation ψ+ → Ψ+ to separate the Bloch
eigenstates ψ+ and the complete solution Ψ+ in a periodic potential.

To keep the notation simple, we define the ”simplified” operator c2Ĥ ≡ Ĥ.
We choose to keep the +-label in Ψ . We thus work with the operator

ĤΨ+(r) =
[
∇2 − i

2
(D̄(r)∂x −∂xD̄(r))

]
Ψ+(r)

=
[
Ĥ0 + Ĥ1

]
Ψ+(r)

=ω2
+Ψ+(r) (4.11)

where we have split the operator Ĥ into a unmodulated part Ĥ0 and a part Ĥ1
containing the modulation of the DMI

Ĥ0 = ∇2 − i
2
dh∂x

Ĥ1 = − i
2

[
D̄(r)∂x −∂xD̄(r)

]
Note that now, D̄(r) includes only the spatially modulated DMI, since we included
dh in the operator Ĥ. We assume that all states are of the same type in all of
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4.2. PWE for AFM spin waves

the bands, so we ignore the state-specific function ASi (k, l) and only consider the
envelope function and the phase factor. This approximation would be a clear
point of improvement for the model, since the spin wave bands will in many cases
be degenerate or closely spaced. We will return to them later in the thesis, but not
for a especially rigorous treatment.

In the presence of a 2D magnonic superlattice described by the modulation
part Ĥ, the complete eigenstates is taken to be a linear superposition of Bloch
eigenstates

Ψ (r)+
knm

=
∑
nm

ψ+
nm(r) =

∑
nm

cnm(knm)eiknm·r (4.12)

We denote knm = k−Gnm = (kx−Gn, kz−Gm). {Gn,Gm} describes the periodic lattice,
giving the location of equivalent k-points in the magnonic superlattice potential
in k-space. For simplicity, we will refer to the x- and z-components of knm as kn
and km respectively.

We now introduce new labels and a sorting scheme, see e.g. [117], for the PW-
states labeled by different combinations of n and m to reduce notational clutter.
In 2D, each state is labeled by two integers {n,m}, where the indices represent the
number of translations by 2πn/lx = bn and 2πm/lz = bm in the potential. Here, lx
and lz are the lattice spacing in the two directions. We will take this spacing to be
equal in all directions, lx = lz = l.

We choose to sort the states using a single index l ∼ (n,m), not to be confused
with the lattice spacing l (which one we refer to will be clear by the context).
With n,m = 0,±1,±2, ..., we write a state as (n,m), referring to the bn,bm lattice-
vector translations in the modulation. To obtain the set of states, we let one of
the indices, say n, take a value, and let the index m run over all possible values
{−N,−N + 1, ...N − 1,N }. The number of values N is fixed by the number of re-
ciprocal lattice vectors needed for a adequate description of the periodic crystal
potential, since we need to impose a cutoff on the formally infinite Fourier expan-
sion of the periodic modulation D(r).

In 1D, sorting from the lowest energy states to the highest , it would suffice
to convert from the (0,1,2,3, ...,N ) to the sorted values (0,1,−1,2,−2, ...,N ) with
the formula

n =
1 + (−1)n(2n− 1)

4
(4.13)

In 2D, we choose the sorting integer l to sort after increasing magnitude of Gnm.
Thus, we choose l2 = n2 +m2 as single label for the states. {n,m} can take on 2N +1
values [−N,. . . ,N ], meaning that in 2D, we have (2N + 1)2 states denoted by the
index l. Sorting by the integer l2 in increasing magnitude, we obtain the sequence

(n,m) = (0,0), (0,1), (0,−1), (1,0), (−1,0), (1,1), ...

→ l = 1,2,3,4, ... (4.14)

For example, the state l = 3 represents (0,−1). This ordering scheme is convenient
for the numerical calculation. These l’s will serve as a label the different spin wave
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energy bands. We thus alter our notation (n,m)→ l, with the same substitution
for the primed labels. This means knm → kl = k −Gl , where each l labels some
pair (n,m), denoting the number of translations by the primitive reciprocal lattice
vectors {b1, b2} (which we will return to shortly), since every G is a combination
of a these two vectors.

To obtain a algebraic expression, commonly called the central equation, for
the coefficients cnm(knm)→ cl(kl) of the expansion in eq. 4.12, we multiply the op-
erator acting on the states Ĥ′Ψ +

kl
from the left by the adjoint wavefunction

(
Ψ +

kl′

)∗
and integrate over all space. The result is an algebraic equation for the coefficients
cl

∑
l

[
(E0
l (kl)−λ(k))δll′ + Ĥ1

ll′

]
cl(kl) = 0 (4.15)

where, as mentioned earlier, the spin has been dropped from the problem. E0
l are

the eigenvalues of the operator Ĥ0 with k→ kl , λ are the eigenvalues of the com-
plete system which we seek, and Ĥ1

ll′ is given by the matrix elements 〈ψ+
l′ | Ĥ

1 |ψ+
l 〉.

Computing the diagonal elements E0
l δll′ , we simply get

〈ψ+
l′ | Ĥ0 |ψ+

l 〉 =
∑
ll′

∫
Vc

dr e−ikl′ ·r[∇2 − i
2
dh∂x]eikl ·r

=
∑
ll′

[
−k2

l + dh(kl)x
]∫

dxdy ei(Gl−Gl′ )·r

=
[
−k2

l + dh(kl)x
]
δll′

The matrix elements of the periodic DMI modulation is given by

〈ψ+
l′ | Ĥ1 |ψ+

l 〉 =
∑
ll′

∫
dr e−ikl′ ·r

[
− i

2

(
D̄(r)∂x −∂xD̄(r)

)]
eikl ·r

=
1
2

{
D̄ll′ (kl)x + i(∂xD̄)ll′

}
(4.16)

where the matrix elements of the DMI D̄(r) and the derivative of the DMI ∂xD̄(r)
depends on the form of the modulation. Thus, with the sorting order described
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4.2. PWE for AFM spin waves

above, we can restate the algebraic equation 4.15 for the coefficients cl as

Mll′cl(kl) =



(k−G1)2 + σ1 D̄12 · · · D̄1N

D̄21 (k−G2)2 + σ2 · · · D̄2N

...
...

. . .
...

D̄N1 D̄22 · · · (k−GN )2 + σN





c1(k1)

c2(k2)

...

cN (kN )


(4.17)

=ω∗2



c1(k1)

c2(k2)

...

cN (kN )


(4.18)

where {l, l′} = 1,2,3 . . . ,N are the PW-state labels. Consequentially, N marks the
cutoff for the number of PW-states included in the calculation.

We follow [40] for a discussion on this cutoff: the maximal number of PWs
that can be included in the calculation is physically restricted by the number of
crystal layers in a given direction in the magnonic crystal. This is the case since we
cannot have scattering contributions from more points than there are lattice sites.
Thus, we have condition Nmax

i < li /di along the direction i, with l the DMI lattice
spacing and d the nearest neighbour distance. The PWE-method is in general only
valid when the envelope function of the Bloch-solution, the u in eq. 4.4 which is
periodic in the lattice potential, varies smoothly over distances comparable to the
nearest neighbour lattice constant di . A more rapidly varying crystal potential,
corresponding to a more rapid variation in u, needs more Fourier components to
adequately describe, meaning more plane waves are required.

As a result, wavevectors with magnitude ki > 2π/di should be neglected,
since they are deemed very large, and should only make a small contribution to
the effective SW-equation. We can thus formulate a condition of validity for the
PWE: if the number of PWs needed to calculate the wave function along a specific
direction in the crystal (with respect to some tolerance level) is less than Nmax

i ,
then the PWE-method is well suited for the problem. For the parameters used in
this thesis, l/d ∼ 40. We use ∼ 25 − 50 plane waves corresponding to the nearest
neighbouring reciprocal lattice points, meaning a cutoff |Gcutof f | ∼ 2 − 3kb, with
kb = 2π/l.

Convergence is not checked in this thesis. However, the potential we will
use to describe the lattice, a 2D cosine potential, only has one Fourier component.
Since the number of PWs needed is determined by the number of Fourier compo-
nents, we can safely assume that our relatively low-cutoff is sufficient for showing
the effects of the modulation on the lowest bands.

With eq. 4.17, we have obtained M, which was stated in general form in eq.
4.6, and the arbitrary state labels l has been defined and connected to the labels
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of our potential problem. We have also defined the matrix elements

σl ≡ K̄− dh(kl · x̂)

D̄ll′ ≡
1
2

[
D̄ll′ (kl · x̂) + i(∂xD̄)ll′

]
(4.19)

where we also reintroduced the anisotropy parameter K̄ along the diagonal. Re-
member that we left out a factor c2 which should be multiply all the matrix el-
ements. The set of coefficients cl are found by the diagonalization of the matrix
Mll′ , which yields the eigenvectors and energy spectrum of the system. We note
that one can use any sorting order of the states when diagonalizing the matrix
Mll′ , as long as the sorting along the diagonal is consistent with the off-diagonal
elements. The matrix elements of the potential D̄ll′ can be found by considering
eq. 4.7. We obtain the matrix elements for a specified potential in app. D by
directly taking the Fourier transform of the DMI-part of the KGE acting on the
SW-solution Ψ .

4.2.1 Inclusion of magnetic field

We now include the magnetic field H . In the presence of a magnetic field, the
effective SW equation 4.11 reads

ĤΨ+(r) =
[
∇2 + H̄2 + 2i

H̄
c
∂t −

i
2

(D̄(r)∂x −∂xD̄(r))
]
Ψ+(r)

=
[
ĤH̄0 + Ĥ1

]
Ψ+(r)

=ω∗+
2
Ψ+(r)

with the operators

ĤH̄0 =
[
∇2 + H̄2 + 2i

H̄
c
∂t −

i
2
d̄∂x

]

where we labeled the frequency ω∗+ to denote the inclusion of the magnetic field,
and the operator Ĥ1 is the same as before. Assuming the time dependence of
the SWs to be Ψ+(t) ∝ eiωt , we can restate the problem as a quadratic polynomial
eigenvalue problem for the eigenvalues ω∗+. [42]

{
ω∗2 − 2

H̄
c
ω∗ −

[
∇2 + H̄2 − i

2
(D̄(r)∂x −∂xD̄(r))

]}
Ψ+(r) = 0

The problem now has the form of a quadratic eigenvalue problem

(M2λ
2 +M1λ

1 +M0) = 0

λ = ω∗+
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4.3. 2D cosine-modulated periodic potential

with {M0,M1,M2} being matrices and the λ the eigenvalue. Taking the complete
eigenstates to be a linear combination of Bloch states as before, and expressing
the above equation in matrix form in the same way as in the last subsection, we
get that the matrix M1,ll′ multiplying the linear frequency term ∝ ω∗ is diagonal
in this representation. The matrix M0,ll′ is the same as before, the matrix Mll′ in
eq. 4.17, but with the constant term +H̄2 added to σl . Lastly, M2,ll′ is just the
identity matrix of dimension N: M2,ll′ = IN . Thus, the central equation 4.15 for
the coefficients cl takes the form

{
ω∗2IN − 2

H̄
c
ω∗IN − (Mll′ + H̄δll′ )

}


cl1(kl1 )

cl2(kl2 )

...

clN (klN )


= 0

The quadratic eigenvalue problem can be solved numerically in several different
ways. We apply MATLABs polyeig-function for obtaining the eigenvalues, which
utilizes QZ-factorization [42] to solve the problem. We note that this approach
is not suitable for large numerical accuracy, but it is sufficient for a qualitative
result.

4.3 2D cosine-modulated periodic potential

We now specialize the general modulation D(r) to a relatively simple spatial mod-
ulation in the form of 2D cosine functions in the xz-plane. This yields quantita-
tively the same effects as a step-modulation of the type [124]. However, the single
component cosine potential is simpler to work with due to the limited number of
Fourier coefficients needed to populate the matrix Mll′ , for which the condition
of zero determinant yields the coefficients of the eigenvalue-equation of the type
seen in eq. 4.15. The 2D modulation will be taken to be in the thin film xz-plane,
with the equilibrium Néel order directed along the z-axis, n0 ⊥ ẑ as before. The
modulation D(r) is defined as

D(r) = D
[
cos

(2π
l
x+

2π
l
z
)

+ cos
(2π
l
x − 2π

l
z
)]

=2D [cos(kbx)cos(kbz)] (4.20)

where we used the identity

cos(x+ z) + cos(x − z) = 2cosxcosz

in the 2nd line. l is the lattice constant of the potential in both the x- and z-
directions, and kb ≡ 2π/l. A plot of the potential and the 1BZ [45] is shown in
figure 4.1. We define the primitive lattice vectors {b1, b2} of the reciprocal lattice
of the potential as
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b1 = kb(x̂ + ẑ) = kb

10
1


b2 = kb(x̂− ẑ) = kb

 1
0
−1

 (4.21)

In app. D, the matrix elements of the modulation in eq. 4.16 are found by apply-
ing the Fourier transform to the DMI-part of the KGE ∝ [D(r)∂x − ∂xD(r)] acting
on the SW-function ψ±. We will assume that D(r) can be expanded in a Fourier se-
ries, which results in a simple expression for our matrix elements due to the low
number of Fourier-coefficients needed to describe the potential. This approach
gives the same result as evaluating eq. 4.7 directly, but it is arguably easier to fol-
low the method in app. D. The matrix elements of the IDMI-operator in eq. 4.19,
assuming a modulation of the form 4.20, takes the form

1
2

{
D̄ll′ (kl)x + i(∂xD̄)ll′

}
=
D̄
4

∑
i=1,2

{ (k−bi)xδ(Gl−Gl′ ),bi + (k + bi)xδ(Gl−Gl′ ),−bi

+(bi)xδ(Gl−Gl′ ),−bi − (bi)xδ(Gl−Gl′ ),+bi

}
=
D̄
4

∑
i=1,2

|k|cosθk − 2kbΘ(Gl −Gl′ )cosθG


×
[
δ(Gl−Gl′ ),bi + δ(Gl−Gl′ ),−bi

] (4.22)

In the above equation, we have defined the function

Θ(Gl −Gl′ ) =


(−1), Gl −Gl′ = {b1,b2}
1, Gl −Gl′ = {−b1,−b2}
0, else

and used that |b1| = |b2| = kb. We have defined the phase angle θk = arctan(kz/kx)
as the angle between k and the x̂-direction, and similarly for θG. Again, note that
the index l and the lattice constant of the modulation are unrelated.

The off-diagonal matrix elements in eq. 4.22 gives band gaps in the disper-
sion relation. However, we can now see a crucial difference between the case of
constant DMI dh and the inclusion of modulated DMI D̄(r). The kx-term ∝ cos(θk)
gives rise to the nonreciprocity of the SWs. As the angle θk goes from 0→ π/2, the
nonreciprocity of the SWs vanishes. However, a consequence of the modulation is
that even for vanishing kx, the SWs are still gapped, as can be seen from the 2nd

term in eq. 4.22. These terms do not disappear, as θG will always be nonzero for
our simple potential if the Θ-function is nonzero.

If the DMI-modulation D̄(r) had been a constant term, the modulated DMI
had been equivalent to the homogeneous DMI dh. In the absence of the cosine-
potential, the matrix elements in eq. 4.22 would only give a contribution when
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4.4. 2D results

Figure 4.1: A dimensionless density/contour plot of the 2D cosine potential in eq. 4.20 in
the xz-plane, with the corresponding 1BZ to the right. The AFM BZ has half the area and is
rotated 45◦ w.r.t. the ordinary crystal Brillouin zone (CBZ) of the square lattice. This is due
to the bipartite-lattice-composition of the AFM. The AFM Brillouin zone is often called the
magnetic Brillouin zone (MBZ) [134].

Gl −Gl′ = 0, i.e. along the diagonal. Thus, the periodic modulation is responsible
for making the DMI contribute only when the quasimomenta of the PWs scatter to
the shortest possible reciprocal lattice vectors ±b1 or ±b2. In general, one can in-
clude arbitrarily many such contributions. We will see that our single-frequency
modulation will affect the lowest energy band, Gl ,Gl′ = 0, and the four next en-
ergy bands where {Gl = 0,Gl′ = ±b1/2}. We will mainly focus on the lowest energy
gap, meaning we only care about the two or three lowest bands. If we go to much
higher energy bands, the validity of our low-frequency assumption will no longer
hold.

4.4 2D results

The band structure diagrams for the low frequency SW-spectrum of the AFM
is presented in this section. Remember that the motivation for studying AFM
magnonic crystals with IDMI of the type considered in this thesis was to create
polarization-dependent band gaps for the two SW modes only present in AFM-
systems. The 2D results confirms that such a mechanism is possible, in addition
to other phenomena discussed in the thesis: spin wave-nonerciprocity in differ-
ent k-space-directions, leading to adjustable band-gaps that become increasingly
flat for large DMI lattice-parameters, and indirect bandgaps at MBZ-zone edges.
In addition, we see apparent a apparent lifting of degenerate bands along certain
symmetry paths due to the modulation.

In all the plots that follow, ωJ = 100 THz, ωKz = 3 THz and d = 5 Å. The
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calculations were performed with 49 plane waves, corresponding to the 49 near-
est neighbouring reciprocal lattice points, which for our purposes is sufficient.
In many of the figures, we plot the three lowest energy bands according to our
sorting scheme l2 = n2 +m2. We list the five lowest bands , whch corresponds to
Gl −Gl′ = (0,0) and the four nearest neighbour lattice points in reciprocal space
±b1,±b2. However, note that the bands can be degenerate along certain symmetry
paths and symmetry points for D = 0.

The lowest band was given above. The next band corresponds to Gl−Gl′ = b1,
which in general will be the 2nd-lowest frequency-band. The bands corresponding
to Gl−Gl′ = ±b2 are degenerate for kx = ky . The last band corresponds to Gl−Gl′ =
−b1, and is the highest in frequency for {kx, ky} , 0 on the symmetry path shown
in the inset of e.g. fig 4.2.

Figures 4.2 and 4.3 show the ten lowest magnonic bands for the in-plane
RH-SWs in the absence of magnetic field and DMI. The degeneracy is quite large,
and there are no magnonic gaps present in the system. In fig. 4.3, we see that the
degeneracy is significantly reduced at the symmetry points as the gaps open up,
with the largest (and the only complete) bandgap between the 1st and 2nd lowest
bands. The gaps at higher frequencies are significantly smaller. We also see that
for kx , 0, e.g. along Γ → Σ, several branches split of into two bands. We can now
see that what looked like a single band, the 3d band in 4.2 on the path Γ → Σ, is
actually two bands.

Figures 4.4 and 4.5 gives a closer look at the three lowest energy bands, cor-
responding to the contributions (0,0), b1 and b2. We now see that the 2nd and
3d bands, which are degenerate for D = 0 along X → Γ , is apparently split by the
modulation. We will return to this shortly.

The plots 4.6, 4.7, 4.8 and 4.9 are the main results relevant for the applica-
tion of DMI-MCs as a spin-wave polarizer. The modulated DMI in combination
with a magnetic field yields tunable band gaps for the two SW-modes, allowing
for frequencies where both polarizations, one polarization or no modes at all can
propagate. The bandwidths and their locations in the spectrum are directionally
dependent due to the DMI. The separation of the ω+- and ω−- modes increases
linearly with the magnetic field H . The gaps where none of the bands are allowed
to propagate is determined by the balance between l and D, as shown in fig. 4.10
and 4.11. The gap width falls of as l increases. This is the case since |G| ∝ 1/l , so
a smaller l implies that the SWs need to Bragg-scatter to larger momenta. Such
events thus become less and less likely for smaller and smaller values of l, since
they require higher and higher energies. This implies a larger range of forbid-
den frequencies for the SWs, meaning a larger bandgap. The bandwidth increases
approximately linearly (fig. 4.11) with DMI-strength D up to the DMI threshold
value ∼

√
JK , with smaller gaps for larger l as expected. As l increases, the bands

become flatter. At the point where the bands are close to flat, the bandwidth be-
comes approximately constant with increasing D.

The nonreciprocity-effect ω(k) , ω(−k) of the SWs in the chiral MC are
shown in the plots 4.12, 4.13 and 4.14. The nonreciprocity is also seen in fig.
4.11, where the bandgaps are smaller in the Γ → −X-direction than in the
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4.4. 2D results

Γ → X-direction. Frequencies that are gapped in one direction are not necessarily
gapped in the opposite direction, a mechanism that can be used for the realization
of one-way magnonic waveguides. The direction is equal but mirrored along the
kz-axis for the LH-mode. Applying a magnetic field H , one can tune the overlap
of the gaps of the modes in both directions. This gives additional freedom in
tuning the mode-selecting, one-way SW-filter.

Fig. 4.14 shows the gaps along the kx and kz-axes. The nonreciprocity-effect
in each band only occurs for kx , 0, as dictated by the crystal symmetry, see the
discussion in app. A. The modes are still gapped for paths along the kz-axis due
to the periodic modulation, however, the gap width is the same in both directions.

The indirect bandgaps of the type shown in fig. 4.15 is a new phenomena
which arises due to the modulated DMI. The top of the bottom band and the bot-
tom of the highest band, which both are located at the BZ-edge in the absence of
DMI, are shifted relative to each other by a small amount ∆k. Different energy
bands can get k-shifted by different amounts depending on which reciprocal lat-
tice point the band corresponds to. In this case, the matrix elements in eq. 4.22
yields different contribution for Gl −Gl′ = (0,0) than for the 2nd band, which in
this case corresponds to Gl −Gl′ = b1. This happens even if kx = 0. Thus, the
bands are shifted in k by different amounts, which theoretically can allow for a
fine-tuning of the bandgaps.

As a extension on these indirect bandgaps, we comment on the apparent lift-
ing of degeneracy between the 2nd and 3d bands along the kz-axis, see fig. 4.17.
We note that the results on this are not assumed to be accurate due to the nu-
merical method used, and are not important for the main results related to the
mode-selective bandgaps. We have not applied special treatment to the degener-
ate bands in the model either (such a treatment could be e.g. degenerate perturba-
tion theory [21, 115]), but we still offer it as a possible explanation for the apparent
lifting of degeneracy between bands even when kx = 0. Along the kz-axis, the dis-
persion in each band should be nonreciprocal since kx = 0. The lifting of the
degeneracy between the 2nd and 3band is still present. When kx = 0, the lowest
contributing bands arise from the b1- and −b2-reciprocal lattice points. Per our
discussion on the indirect bandgaps in the paragraphs above, the two gives differ-
ent contributions to the matrix elements in eq. 4.22. The bands are thus able to
shift relative to each other in the same manner as in fig. 4.15. However, due to
the approximate nature of the calculation of the bands in this thesis, we will not
draw any conclusions on this or its relation to the main-results.

In the absence of spatially modulated IDMI D = 0, we know that there are
no gaps in the spectrum for any of the modes. The homogeneous DMI dh does
not give rise to any bandgaps either, as is evident from fig. 4.16. The homoge-
neous DMI-contribution is non-zero only for kx , 0, and goes to zero as the angle
between k and x-axis→ π/2, resulting in no contribution from the DMI whatso-
ever as we had in the 1D-case in chapter 3. This is in contrast to the modulated
DMI D(r), which gives bandgaps for all k ∈ 1BZ. In other words, the homoge-
neous DMI dh only contributes to the nonreciprocity of the SWs, but do not gap
the system on its own.
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Figure 4.2: The ten lowest AFM-SW frequency bands with easy-axis anisotropy calculated
from the PWE. The degree of degeneracy is large, which is expected from the square-lattice
symmetry. The symmetry path is shown in the inset.
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4.4. 2D results

Figure 4.3: The same plot as in fig. 4.2, but with D/J = 0.15 and l = 20 nm. We see that the
inclusion of periodic DMI reduces the degeneracy of the band structure. In particular, the
degeneracy of the 1st and 2nd bands on the symmetry path Γ → Σ is lifted.
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Figure 4.4: Band structure for the three lowest bands of the 2D magnonic crystal, in the
absence of modulated DMI and magnetic field. The RH/LH-modes are degenerate in this
case.
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4.4. 2D results

Figure 4.5: The effect of modulated DMI D/J = 1/10 and l = 20 nm on the three lowest
bands of the RH-SW with no magnetic field. The dashed line shows the free dispersion in
the absence of DMI.
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Figure 4.6: Band structure for RH/LH-modes in the presence of magnetic field and modu-
lated DMI. The parameters are D/J = 1/10, H/J = 1/100 (ωH = 1 THz) and l = 20 nm.
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4.4. 2D results

Figure 4.7: SW band gap in the Γ −X-direction. The parameters are the same as in fig. 4.6.

Figure 4.8: SW dispersion in the X′-direction. The parameters are the same as in fig. 4.6.
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Figure 4.9: SW dispersion in the Σ-direction. The gap is the lowest in energy of the three
directions plotted. The parameters are the same as in fig. 4.6.

Figure 4.10: The gap width at the BZ-edge at the points X, X′ and Σ as a function of the
DMI lattice parameter l, with D/J = 1/10. The falloff in bandwidth seems to be propor-
tional to ∼ 1/x2, similar to the electronic case [45].
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4.4. 2D results

Figure 4.11: Gap width in the X- and −X-directions for different values of the DMI lattice-
parameter l as a function of the inhomogeneous DMI-strength D.

Figure 4.12: RH-SW dispersion for the two lowest bands along −X → X, with l = 20 nm,
D/J = 1/5. The DMI-strength is exaggerated to show the effect more clearly. Note that the
gap is not centered on the BZ-edges.
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Figure 4.13: LH-SW mode along −X → X, with the same parameters as in fig. 4.12. Note
that the peak of the lowest LH-band at the −X-point is shifted slightly towards positive k,
the opposite as for the RH-mode.

Figure 4.14: Dispersion relation along the kx- and kz-axes in the 1BZ, with l = 20 nm and
D/J = 1/10. The modes are still gapped for kx = 0 due to the periodic modulation D(r).
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4.4. 2D results

Figure 4.15: Zoom-in on the bandgap at X, with l = 20 nm and D/J = 1/5. The splitting
is small, ∆k ≈ 0.04(2π/l) = 0.04kb. This mechanism allows for fine tuning of the gaps. We
note that the nonreciprocity is due to the modulated DMI alone, and not the homogeneous
background DMI dh.
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Figure 4.16: k-shift in the dispersion relation for d/J = 1/10 and D = 0. As expected, there
are no complete bandgaps in the 1BZ due to the lack of periodic potential D(r).

Figure 4.17: Splitting of the 2nd and 3d band for the RH-mode in the X′-direction. In the
absence of DMI, these bands are degenerate. The parameters are D/J = 1/10 and l = 20 nm.
The splitting is quite small, between 10− 100 times smaller than the 1st bandgap.
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CHAPTER5

SUMMARY, DISCUSSION AND OUTLOOK

In this thesis, we have calculated dispersion relations and band structure dia-
grams for the low-frequency spectrum of a 1D and 2D MC subject to modu-
lated IDMI. After a general introduction in chapter 1, we explained how to de-
scribe a insulating AFM coupled spin system on a bipartite lattice with easy-axis
anisotropy, modulated IDMI and in-plane external magnetic field in chapter 2.
This was done in a semi-classical, phenomenological formalism in terms of the
order parameters m and n, the magnetization and Néel-field respectively. The
coupled EOMs describing their dynamics was reduced to a single equation in n in
the exchange approximation. From this, we obtained a low-energy effective Klein-
Gordon-equation describing the SWs. Using a plane wave-ansatz for the form of
the SWs in a plane perpendicular to the Néel equilibrium-direction and the as-
sumption of a thin film-geometry, dispersion relations and band diagrams were
calculated for a 1D Krönig-Penney-DMI-MC by means of a analytical solution for
the standing SW band gaps in chapter 3, and for a 2D cosine-modulation of the
DMI strength with the PWE-method in chapter 4. These systems have not been
previously studied with the same framework used in this thesis.

The results showcased features of the spectrum which makes DMI-
modulated MCs potentially interesting for applications in wave-based com-
puting. The degeneracy of the two RH/LH AFM-SW modes was completely
lifted by means of an in-plane external magnetic field and the inversion
symmetry-breaking DMI-interaction, resulting in a large degree of control of the
SW-bandgaps. In particular, this allows for the creation of selective, directionally
dependent band gaps in the MC, which only allow SW excitations of the correct
polarization to propagate.

The spatial modulation of DMI introduced interesting effects. In addition to
the usual gaps between energy bands from the periodic modulation of a physical
parameter in the MC, we observe nonreciprocal SW bands and indirect bandgaps
due to relative shifts in frequency branches from different Bragg-reflections.
Other features that were commented on but not explored are the apparent lifting
of degenerate frequency bands along certain symmetry-paths in the 1BZ, possibly
due to the indirect-bandgap effect, and a tendency for the lowest energy bands to
become flat for large values of the DMI lattice spacing.

We conclude that the combination of modulated IDMI and external magnetic
field present a possible means of effectively selecting desired SW-polarizations in
a magnonic waveguide. This can be used for several different types of applica-
tions. The nonreciprocity can e.g. be used to manufacture one-way SW waveg-
uides. A SW-mode-filter can be realized by the inclusion of magnetic fields in
such a way that only modes of the correct polarization are allowed to propagate,
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which can be used in the creation of e.g. spin-polarized currents.
Regarding experimental realizations, the creation of a MC with modulated

DMI can be performed by the alternate layering of heavy-metal-wires on top of a
AFM thin film [132] by litography/etching [136]. The DMI lattice spacing can be
varied in the thickness of the wires. The creation of a MC with potential-”bumps”
as in the 2D cosine-case can be envisioned as a lattice of quantum dots [40]. Such
a system might be realizable by laser-induced heating [110] or a material sputter-
ing approach [81, 96], however, making this work with strong-SOC materials on
top of thin films can present a challenge. Excitation of the SWs in the waveguide
can be performed with e.g. a oscillating magnetic field perpendicular to the film
[113], optical excitation [38], or thermal excitations through the spin Seebeck ef-
fect [107]. The most practical detection methods of the SWs might be magnetic
probing/optical spectroscopy [73, 94], or the inverse spin Hall effect for the de-
tection of magnonic currents [91].

It is important to emphasize that the results obtained here are very approxi-
mate, and serves to showcase only the general features of SWs in AFM-magnonic
crystals, with a somewhat accurate result only expected for the lowest energy
branches of the magnonic crystal [81]. We have already discussed the validity
and PW-cutoff in sec. 4.2. However, a comparison with other numerical methods
could be performed, such as PWM [57], solution of the EOM differential equation
directly by e.g. a finite-difference method [95] or a micromagnetic simulation of
the lattice spins through e.g. the Dormand-Prince-method such as in [113]. A
interesting proposition is to investigate the iso-frequency contours of SWs, the
magnonic analogue to Fermi-surfaces for electrons [100]. The effect of Gilbert-
damping on the SWs would also be interesting to explore further.

Even if a plane wave ansatz can be justified for the non-interacting, low-
frequency regime, a more thorough treatment could treat a more interesting/real-
istic potential than the single-frequency cosine potential used in this thesis. The
PWE-calculation can be used for arbitrarily shaped scattering centers relatively
easily, since the method relies on the Fourier transform of the spatial distribution
of the potential, which can be readily calculated by numerical FT-routines. The
method is in general most effective when the envelope function is ”well behaved”,
and varies in a continuous fashion with the periodicity of the real-space lattice,
which one must keep in mind.

The method of QZ diagonalization also has an impact on accuracy, and
should not be used if one desires a high degree of accuracy for the quadratic
eigenvalue problem [42]. Strictly speaking, it is not numerically stable for the
quadratic eigenvalue problem in particular. The error has been attempted to
be made as small as possible by rescaling the matrix such that its norm is close
to one. In addition, conditioning numbers for the matrices have been checked
and found to be small, in the range ∼ 1 − 10 [60]. This number is determined
by the problem itself and not the method of solution, however, a problem with
high conditioning numbers can be impossible to solve due to the inaccuracy and
inconsistency of the outputs.
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APPENDIXA

DERIVATION OF AFM FREE ENERGY, LATTICE
APPROACH

We will here derive the free energy density FAFM of the antiferromagnet by taking
the continuum limit of the Heisenberg Hamiltonian on a 2D square lattice. In
deriving the free energy contributions, a number of parameters used in the thesis
will be defined. These are colleced in table 2.7. This section outlines the same
calculations as in the master thesis of Sørheim [131] and [118].

As noted in chapter 4, in the thesis, the magnetization m and staggered mag-
netization n at the cell defined by the indices {i, j}, which denotes perpendicular
directions on the lattice, are defined in terms of the spins as

mij =
(Sαij + Sβij )

2S

lij =
(Sαij −Sβij )

2S

We introduce the Néel field as nij ≡ lij / |lij |. Rewriting the spins in terms of the
fields, we get

Sαij = S(mij + nij ) (A.1a)

Sβij = S(mij −nij ) (A.1b)

Inserting the definitions of the spins into the exchange term of the Heisenberg
Hamiltonian

Ĥexch. = J
∑

<r1,r2>

Sr1
·Sr2

the sum over the vectors r1, r2 which denotes the position of all lattice points are
replaced by the sums over the lattice indices i, j ∈ 0,±1,±2, · · · ±N . We now denote
Ĥexch. → Ĥexch. to mark the difference between the spin- and discrete Hamiltoni-
ans. For interaction between nearest neighbours
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Hexch. = JS2
N−1,N−1∑

ij

(mij −nij )
[
(mij + ni,j ) + (mi+1,j + ni+1,j )

+(mi,j+1 + ni,j+1) + (mi+1,j+1 + ni+1,j+1)
]

Using the identities

2nijni+1,j = n2
ij + n2

i+1,j − (ni+1,j −nij )
2

nijmi+1,j −ni+1,jmij = nij (mi+1,j −mij )−mij (ni+1,j −nij )

we can rewrite the discrete Heisenberg Hamiltonian into terms reminiscent of
lattice differences or derivatives such as ∼ (ni+1,j−nij ). This is done in anticipation
of the transition to a continuum description.

Hexch. ' NnJS2
N,N∑
ij

(m2
ij −n2

ij )

+
JS2

2

N−1,N−1∑
ij

[
(ni+1,j −nij )

2 + (ni,j+1 −nij )
2 + (ni+1,j+1 −nij )

2

−(mi+1,j −mij )
2 − (mi,j+1 −mij )

2 − (mi+1,j+1 −mij )
2
]

+JS2
N−1,N−1∑

ij

[
mij (ni+1,j + ni,j+1 + ni+1,j+1 − 3nij )

]
− nij (mi+1,j + mi,j+1mi+1,j+1 − 3mij )

]
The '-sign is due to the neglection of a set of small boundary terms in the sum
in the 2nd line of the above equation, where the fields are evaluated in the unit
cells at the edges of the system. These contributions arise from terms like ∼∑N
j (nN,j − nN,j )2 for both fields. Similar terms, where the sums over the terms

where the index equals i, j + 1 when i = 1∨ j = 1, i =N ∨ j = 1 and the other index
is summed over, yields a vanishingly small contribution to free energy for large
systems. Thus, these terms are neglected whenN and S is taken to be large, which
is the case for macroscopic systems.

In the continuum limit, we can rewrite the lattice differences as derivatives
in the linear approximation

lim
|∆i |→0

∑
ij

(mi+1,j −mij ) →
1
VC

∫
C
drJm∆i (A.2a)

lim
|∆i |,|∆j |→0

∑
ij

(mi+1,j+1 −mij ) →
1
VC

∫
C
dr

[
Jm∆i +Jm∆j

]
(A.2b)
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where the expression for the linear approximation for the j-direction is identical
in form to the 1st line, and the expressions for the field n are identical. ∆i/j are vec-
tors between the unit cells in the i, j directions. VC is the volume of the unit cell,
which for a 2D square lattice is simply V = |∆i | · |∆j | = ∆2, with ∆ being the width
of the unit cell. Jm is the Jacobian matrix of the field m, defined componentwise
in terms of partial derivatives as

Jm
ij =

∂mi
∂rj

=


∂m1
∂r1

. . . ∂mn
∂rj

...
. . .

...
∂mi
∂rm

. . . ∂mn
∂rm


with ri being some set of spatial components, here taken to simply be {x,y,z}.
The definitions are equivalent for the n-field. With the introduction of the
above integrals ,we rewrite Hexch. as the integral of some energy density:
Hexch. = 1/VC

∫
dr Fexch.. We thus get have in the continuum limit

Fexch. = NnJS
2

2m2 +
1
2

∑
i={x,y}

∆2
i

{
(∂xn)2 − (∂xm)2

}

+
1
4

∑
i={x,y},i,j

∆i∆j

{
∂xn∂jn−∂xm∂jm

}
+

1
2

∑
i={x,y}

∆i {m∂xn−n∂xm}


where the n-term corresponding to the 1st term 2m disappears when summing
over lattice sites due to the equivalence of n and −n discussed in chapter 2 of the
thesis. Nn is the number of nearest neighbours, Nn = 4 for a 2D square lattice.
The extra factor of 1/2 in the 3d term compensates for the double counting in the
sum.

Specializing to the case of 2D centered square lattices and neglecting terms
of higher order in the derivative of the magnetization, ∼ {∂im∂jm, (∂im)2, n∂im},
we obtain

Fexch. =
a
2

m2 +
A
2

∑
i

(∂in)2 +
1
2

∑
i,j

∂in∂jn

+B
∑
i

m∂in (A.3)

Here, a = 4NnJS2, A =Nn∆2JS2/2 and B =Nn∆JS2.
The derivation of the magnetocrystalline anisotropy free energy contribu-

tion in the continuum limit follows the same procedure, but is much simpler in
comparison. The easy-axis anisotropy taken to be in the z-direction added to the
Heisenberg Hamiltonian has the form
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Ĥanis. = −K

∑
α

(Sα · ẑ)2 +
∑
β

(Sβ · ẑ)2

 (A.4)

Inserting the definitions of the spins in eq. A.1a and A.1b into the above expres-
sion and taking the 2D continuum limit as in equations A.2a and A.2b, we get

Ĥanis.→ Hanis.

=−KS2
N,N∑
ij

[
(mij + nij )

2
z + (mij −nij )

2
z

]
=− 2KS2

N,N∑
ij

[
(mij · ẑ)2 + (nij · ẑ)2

]
(Continuum limit)→ Fanis. =−KS2

[
(m · ẑ)2 + (n · ẑ)2

]
If we take the equilibrium Néel direction to be ẑ, and noting that n ·m = 0, we
take the magnetization to be negligible in the z-direction, and subsequently drop
this term. We will make use of the definition Kz = 2KS2.

The DMI-contribution to the free energy is obtained in the same way by in-
sertion of eqs. A.1a and A.1b into the micromagnetic DMI-Hamiltonian

ĤDMI =
∑

<r1,r2>

Dr1,r2
· (Sr1

×Sr2
) (A.5)

In this thesis, we consider interfacial DMI of the form

Dr,r+δrx =−D(r)ẑ

Dr,r+δrz = D(r)x̂

where δrx, δrz are vectors joining the the current and the closest neighbouring
site in the x- and z-directions respectively. We write D = D(r) to emphasize the
spatially inhomogeneous DMI.

Inserting the definitions A.1a and A.1b into ĤDMI and summing over {i, j}
for the four neighbouring sites, neglecting the boundary terms as done earlier, we
get
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ĤDMI → HDMI

= S2
N−1,N−1∑

ij

Dr,r′ ·
{(

mij + nij
)
×
[
(mij −nij ) + (mi+1,j −ni+1,j )

+(mi,j+1 −ni,j+1) + (mi+1,j+1 −ni+1,j+1)
]}

= S2D(r)
N−1,N−1∑

ij

{
−ẑ

(
(mij + nij )×

[
(mij −nij ) + (mi+1,j+1 −ni+1,j+1)

])}
+
{
x̂
(
(mij + nij )×

[
(mi+1,j −ni+1,j ) + (mi,j+1 −ni,j+1)

])}
The grouping of the terms in vector products of the two last lines in the x̂ and
ẑ-directions is arbitrary as long as both terms obtain contributions from the same
number of unit cells an equal number of lattice vectors away from the current site
{i, j}. We drop all terms containing the magnetization m, since it is small rela-
tive to n, and the DMI- strength is weak compared to the exchange parameters.
Writing out the remaining non-zero vector products, we have

HDMI ' S2D(r)
N−1,N−1∑

ij

ẑ(nij ×ni+1,j+1)− x̂
[
nij × (ni+1,j + ni,j+1)

]
We proceed to write out the terms in the cross products in the directions speci-
fied and replace the lattice differences in the fields with directional derivatives as
before.

HDMI = S2D(r)
N−1,N−1∑

ij

(nxijn
y
i+1,j+1 −n

y
ijn

x
i+1,j+1)

−
[
(nyijn

z
i+1,j −n

z
ijn

y
i+1,j ) + (nyijn

z
i,j+1 −n

z
ijn

y
i,j+1)

]
ni+1,j −nij ' ∆∂x etc... → S2D(r)

N−1,N−1∑
ij

nxij (∆∂x +∆∂z + 1)nyij −n
y
ij (∆∂x +∆∂z + 1)nxij

−
[
n
y
ij (∆∂x + 1)nzij −n

z
ij (∆∂x + 1)nyij

]
−
[
n
y
ij (∆∂z + 1)nzij −n

z
ij (∆∂z + 1)nyij

]
=∆S2D(r)

N−1,N−1∑
ij

−nyij (∂xn
x
ij +∂zn

x
ij +∂xn

z
ij +∂zn

x
ij )

+ (nxij +nzij )(∂xn
y
ij +∂zn

y
ij ) (A.6)

The energy contributions to the DMI is determined by the crystal symmetry of
the material. In the micromagnetic limit we consider, we can write the DMI-
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contribution as the integral over some energy density (as we have already done)
[86]

ĤDMI =
∫
V
dV FDMI = λDMI

∫
V
dVLinv

where λDMI is a material dependent constant. Linv are so called Lifshitz invariants
[30, 43, 86], linear combinations of spatial derivatives of the order parameter de-
termined by the symmetry group of the magnetic material. The linear derivatives
is a manifestation of the chiral nature of the DMI.

Linv = Lkij = mi
∂mj
∂xk
−mj

∂mi
∂xk

The most common type of symmetry is T-symmetry, which has the invariants

L = Lzyx +Lyxz +Lxzy = m · (∇×m)

However, we will consider IDMI in a thin film with broken inversion/mirror sym-
metry along the y-axis. Thus, for a centered square lattice AFM model, we are
prompted to consider a system with one mirror plane and with the axis of sym-
metry contained in the (xz) plane, see fig. 2.2. This corresponds to the cyclic
symmetry group Cnv with n = 1, with the subscript v denoting that we consider the
vertical symmetry planes. The Lifshitz-invariants of the Cnv-group take the form
[86]

L(k)Cnv
ij = Lzzy +Lxxy

=mz
∂my
∂z
−my

∂mx
∂z

+mx
∂my
∂x
−my

∂mx
∂x

Keeping only the terms corresponding to the Lifschitz-invariants consistent with
the Cnvcrystal symmetry for our system in eq. A.6, and replacing the sums with
intergrals in the continuum limit, we obtain the free energy contribution of the
interfacial DMI in the form

FDMI =
1
VC

∫
dr F 2D

DMI =
1
VC

∫
drD(r) [(n · ŷ)(∇ ·n)− (n · ∇)(n · ŷ)]

with D(r) = ∆S2D(r)
The complete form of the free energy density for the collinear easy-axis AFM

subject to interfacial DMI of the above type, including the magnetic field in a
general direction, thus has the form
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F 2D ≡FAFM = Fexch. +Fanis. +FDMI (A.7)

=
a
2
|m|2 +

A
2

∑
i

(∂in)2 +
1
2

∑
i,j

∂in∂jn

+B
∑
i

m∂in−
Kz
2

(n · ẑ)2 (A.8)

+D(r) [(n · ŷ)(∇ ·n)− (n · ∇)(n · ŷ)]− ργ(m ·H) (A.9)
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APPENDIXB

OBTAINING THE SEMI-CLASSICAL EQUATIONS OF
MOTION IN THE EXCHANGE APPROXIMATION

The Lagrangian density L is a functional of the fields n and m and their deriva-
tives up to 1st order, as noted in chap. 2 of the thesis.

L[n(r, t),m(r, t)] = K−F

= ρ(ṅ×n) ·m−
a |m|22

+
A
2
|∂in|2 −

Kz
2

(n · ẑ)2 −H ·m

+D(r) [(n · ŷ)(∇ ·n)−n · ∇(n · ŷ)] +λ(n ·m) +
β

2
(n2 − 1)


(B.1)

where we have omitted the term ∼m · (∇×m) because it is of higher order in the
magnetization. Note that the magnetic field is defined as H = gµBHext = γρHext .

Before proceeding, we state some important identities which will prove use-
ful in the derivation

a× (b× c) = (a · c)b− (a ·b)c (B.2)

a · (b× c) = c · (a×b) = b · (c× a) (B.3)

Invoking the principle of least action [16, 41], setting the variation of the action to
0, we obtain the equations of motion for the system.

δS
δψi

= 0 =
∫
drdt

 ∂L∂ψi −
n∑
j=1

∂
∂j

(
∂L

∂(∂jψi)

) (B.4)

where the Euler-Lagrange-equations for the i fields is given by

∂L
∂ψi
−

n∑
j=1

∂
∂j

(
∂L

∂(∂jψi)

)
= 0 (B.5)

where the ψ = ψ(r, t) is a funtion of space and time, and the sum goes over all
coordinates.
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We proceed to vary L w.r.t. n and m. The equations of motion are obtained
by setting this variation to zero.

δnL ≡
δL
δn

=
δK
δn
− δF
δn

= 0 (B.6)

δmL ≡
δL
δm

=
δK
δm
− δF
δm

= 0 (B.7)

The variation of the kinetic part is obtained as

δK
δn

=
δ
δn

[ρ(ṅ×n) ·m]

=
δ
δn

[ρ(m× ṅ) ·n]

= ρ(m× ṅ)− δ
δt

∂K
∂(ṅ)

= 2ρ(m× ṅ) + ρ(ṅ×n) (B.8)
δK
δm

= ρ(ṅ×n) (B.9)

where we have left out writing the integral for clarity.
The functional derivatives of F w.r.t. the fields gives us the effective fields fn

and fm.

−fn ≡
δF
δn

= −A∇2n−Kz(n · ẑ)ẑ +λm + βn +D [ŷ(∇ ·n)−∇(n · ŷ)] (B.10)

−fm ≡
δF
δm

= am−H +λn (B.11)

Combining all terms, we have an expression for the variation

δnL = 0 =⇒ 2ρ(m× ṅ) + ρ(ṁ×n) +A∇2n +Kznẑẑ

−D
[
ŷ(∇ ·n)−∇ny

]
−λm− βn = 0

(B.12)

δmL = 0 =⇒ ρ(ṅ×n)− am + H−λn = 0 (B.13)

The forms of the EOMs in LLG form, eq. 2.34, can be obtained by by consid-
ering the cross products of δmL and δnL with n.
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n× δnL = 2ρn× (m× ṅ) + ρn× (ṁ×n) +An× (∇2n)

+Kznẑn× ẑ−Dn×
[
ŷ(∇ ·n)−∇ny

]
−λn×m

= ρn× {m× ṅ +ṁ×n}+ n× {Kznẑẑ

+A∇2n−D
[
ŷ(∇ ·n)−∇ny

]
−λm− βn

}
= ρ(ṁ− (n · ṁ)n) + n× fn = 0

n× δmL = ρn× (ṅ×n) + n× fm

= ρṅ + n× fm = 0

We rewrite the term ∼ (n · ṁ)n in the equation for n× δnL as

n(n · ṁ) = n

 ddt ( n ·m︸︷︷︸
=0

)− ṅ ·m


= −n [(fm ×n) ·m]

= n [n · (fm ×m)]

= fm ×m

Thus, we have obtained the time evolution of the fields in the form of eq. 2.34.

ṅ = ρfm ×n
ṁ = ρ [fn ×n + fm ×m] (B.14)

To obtain the Lagrange multipliers {λ,β}, we consider the dot product of δmL and
δnL with n.

n · δmL = 0 =⇒ n · (ṅ×n) = n · (am−H +λn)

= −n ·H +λ

=⇒ λ = n ·H

n · δnL = 0 =⇒ 2n · (m× (fm ×n)) = −An · ∇2n−Kzn2
z + β +Dn · [ŷ(∇ ·n)−∇(n · ŷ)]

=⇒ β = An · ∇2n +Kzn
2
z −Dn · [ŷ(∇ ·n)−∇(n · ŷ)]− 2fm ·m

The expressions for λ and β are then substituted back into the equations for the
effective fields fn and fm, eqs. B.10 and B.11, to obtain
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fn = A∇2n +Kz(n · ẑ)ẑ−D [ŷ(∇ ·n)−∇(n · ŷ)]−λm− βn

= A∇2n +Kz(n · ẑ)ẑ−D [ŷ(∇ ·n)−∇(n · ŷ)]− (n ·H)m

−
(
An · ∇2n +Kzn

2
z −D [ŷ(∇ ·n)−∇(n · ŷ)]− 2fm ·m

)
n

= An× (∇2n×n) +Kznzn× (ẑ ×n)− (n ·H)m

−Dn×
( [

ŷ(∇ ·n)−∇(n · ŷ)
]
×n

)
+ 2(fm ·m)n

fm = −am + n× (H×n)

where we have used the identity B.2 in the 3d line. Upon insertion of the effective
fields into the EOMs, we obtain the coupled LLG equations

ρṅ = [−am + n× (H×n)]×n

ρṁ =
[
An× (∇2n×n) +Kznzn× (ẑ ×n)− (n ·H)m

−Dn× ([ŷ(∇ ·n)−∇(n · ŷ)]×n)
]
×n

− [am−n× (H×n)]×m

In the exchange approximation, the dynamics of the magnetization m is deter-
mined completely by the staggered magnetization n, and thus, we can write the
coupled EOMs as a single differential equation in n.

From the equation for ṅ, we are able to isolate an expression for the magne-
tization m

m =
ρ

a
ṅ×n +

1
a

n× (H×n)

We now substitute the expression for m into the Lagrangian in B.1 to obtain our
effective Lagrangian density. The terms including m becomes

ρ(ṅ×n) =
ρ2

a
|ṅ|2 +

ρ

a
(ṅ×n) ·H

a|m|2

2
=
ρ2

a
|ṅ|2 +

2ρ
a

(ṅ×n) ·H +
H2

2a
− 1

2a
(n ·H)2

H ·m =
ρ

a
(ṅ×n) ·H +

H2

a
− 1
a

(n ·H)2

L then becomes
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L[n, ṅ,∂in] =
ρ2

2a
|ṅ|2 − A

2
|∂in|2 +

Kz
2

(n · ẑ)2 (B.15)

+
ρ

a
(ṅ×n) ·H +

H2

2
− 1

2
(n ·H)2 −D(r) [(n · ŷ)(∇ ·n)−n · ∇(n · ŷ)]

(B.16)

=
ρ2

2a
(ṅ−γHext ×n)2 − A

2
|∂in|2 +

Kz
2

(n · ẑ)2 −D(r) [(n · ŷ)(∇ ·n)−n · ∇(n · ŷ)]

(B.17)

where we in the last line inserted the definition of H given at the start of the
appendix. We have now arrived at the classical non-linear σ -model discussed in
the thesis, with the action S given by

S =
∫
dtdr L (B.18)

=
∫
dtdr

{A
2

[ 1
c2 (ṅ−γHext ×n)2 − |∂in|2

]
+
Kz
2

(n · ẑ)2 −D(r) [(n · ŷ)(∇ ·n)−n · ∇(n · ŷ)]
} (B.19)

To describe the spin waves in terms of the Néel field fluctuations δn around the
equilibrium configuration n0 = ẑ, we introduce the complex field ψ = δn · (êx +
iêy) = δnx + iδny . The spin wave helicity is reflected in taking the complex con-
jugate of ψ: ψ̄ = ψ− = δx − iδny . We also define ψ+ = δnx + iδny , and have that
ψ̄ψ = δn2

x + δn2
y .

We now linearize the action S in the absence of DMI (added later in the ap-
pendix) in the fluctuation δn and for constant magnetic field H = Hẑ. We make
use of the definition of the spin wave function ψ to express the components of δn
as

δnx =
(ψ + ψ̄)

2

iδny =
(ψ − ψ̄)

2

Inserting the above expressions into eq. B.18, keeping terms up to 2nd order in
the fields ψ and ψ̄, and applying Euler-Lagrange’s equations B.5 to the resulting
expression, we obtain the equations of motion for the SW-fields. Writing the result
as a matrix equation, we obtain after some calculation

A
2

1
c2
∂2Ψ
∂t2

=
[A

2
∇2 − Kz

2
+
A
2

(γρH)2 +Aiσ3γρ
2H∂t

]
Ψ

→ 1
c2
∂2Ψ
∂t2

=
[
∇2 − Kz

A
+ (γρH)2 + 2iσ3γρ

2H∂t

]
Ψ
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where Ψ = [ψ+,ψ−]T and σ3 is the 3d Pauli matrix for ease of notation. We take
the other terms to be multiplied by the two-dimensional identity matrix I2.

We can rewrite the free energy contribution of the DMI FAFMDMI in terms of the
spin wave fields ψ,ψ̄ to acquire a Hermitian operator in a similar fashion as in
[124]. The DMI-term in eq. 2.25, including homogeneous dh and inhomogeneous
DMI D(r), is treated separately. In a effective bosonic field theory to lowest non-
interacting order (quadratic), the terms in the Lagrangian must be bilinears in the
fields [70, 106]. The DMI-operator must then have some bilinear form, ψ†Ĥψ in
the action S. Since S ∼ L = K−F , this bilinear form must be present in the free
energy.

In the thin film-regime, we only allow the fluctuations δn to vary in the basal
xz-plane. Thus, we establish that ∂yψ ∼ 0, as discussed in the thesis. The DMI-free
energy for a plane lattice with mirror symmetry breaking along the ŷ-direction
[124] can be written as

FDMI = −
∫
drD(r) n× [(ŷ ×∇)×n]

=
∫
dr D(r) [(n · ŷ)(∇ ·n)−n · ∇(n · ŷ)]

=
∫
dr D(r)

[
ny∂ini −ni∂iny

]
=

∫
dr D(r)

[
ny∂xnx +ny∂znz −nx∂xny −ny∂znz

]
where the subscripts on the fields denote the dot product (n · x̂) etc. Invoking
the decomposition of the Néel order into fluctuations δn(x,z; t) = δnx(x,z; t)x̂ +
δny(x,z; t)ŷ orthogonal to the stationary equilibrium order direction n0 = ẑ and
inserting this into the above expression, we obtain

FDMI =
∫
dr D(r)

[
δny∂xδnx − δnx∂xδny

]
(B.20)

We now want to obtain the bilinear form ∝ ψ̄∂xψ, with the spin wave func-
tion ψ = δnx + iδny . Expressed in terms of the fluctuation components δnx,δny ,
we have

ψ̄∂xψ = (δnx − iδny)∂x(δnx + iδny)

= δnx∂xδnx + δny∂xδny︸                      ︷︷                      ︸
= 0, since 1

2∂x
[
δn2

x + δn2
y +n0 ·n0

]
= 1

2∂x [1] = 0

+iδnx∂xδny − iδny∂xδnx

= −i
[
δny∂xδnx − δnx∂xδny

]
=⇒ δny∂xδnx − δnx∂xδny

= iψ̄∂xψ (B.21)
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We can then rewrite eq. B.20 as

FDMI = i
∫
drD(r)

[
ψ̄∂xψ

]
=
i
2

∫
drD(r)

[
ψ̄∂xψ + ψ̄∂xψ

]
=
i
2

∫
drD(r)

[
ψ̄∂xψ

]
+
i
2

{
D(r)ψ̄ψ

∣∣∣∣
Ω
−
∫

dr∂x(D(r)ψ̄)ψ
}

=
i
2

∫
dr

[
D(r)ψ̄∂xψ −∂x(D(r)ψ̄)ψ

]
(B.22)

where in the 3d line a integration by parts was performed. Summation over all
indices in the derivative is implied. In the fourth line, we have neglected the
boundary term since it is only expected to give rise to surface effects which we do
not consider. Writing out the derivative in the 2nd term, we get

FDMI =
i
2

∫
dr

[
D(r)ψ̄∂xψ −∂x(D(r)ψ̄)ψ

]
=
i
2

∫
dr

[
D(r)ψ̄∂xψ − ψ̄ψ∂xD(r)−D(r)ψ∂xψ̄

]
Taking the functional derivative w.r.t. ψ̄ with the definition of the Euler-Lagrange-
equations B.5, we get

δFDMI
δψ̄

=
i
2

∫
dr

δ

δψ̄

(
D(r)ψ̄∂xψ − ψ̄ψ∂xD(r)−D(r)ψ∂xψ̄

)
=
i
2

∫
dr (D(r)∂xψ −∂xD(r)ψ −∂x (ψD(r)))

=
i
2

∫
dr [D(r)∂xψ −∂xD(r)ψ] (B.23)

We neglect the last term in line two because it is the integral over a total derivative.
We have now obtained a Hermitian form of the effective DMI-operator analogous
to the ferromagnetic effective Schrödinger equation in [124]. Our corresponding
effective Klein-Gordon-equation for AFM spin waves, with definitions of the pa-
rameters given in table 2.7 and the surrounding discussion, reads

1
c2
∂2Ψ
∂t2

=
[
∇2 − Kz

A
+ (γρH)2 + 2iσ3γρ

2H∂t −
i
A
σ3 [D∗(r)∂x −∂xD∗(r)]

]
Ψ
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APPENDIXC

EQUATIONS OF MOTION FOR NÉEL ORDER
FLUCTUATIONS

As a sidenote, we here briefly obtain a equation for the fluctuations δn suitable as a
continuum model for magnetic excitations in the form of textures, e.g. skyrmions,
as done in [131].

We insert the form of the Néel field in the form of eq. 2.36, with the spin
wave fluctuations in eq. 2.37. Expanding the EOMs in n0 and δn, we only retain
terms to linear order in the fluctuations δn. We also disregard terms which are of
zeroth order in δn. The reason is that we are investigating the excitation spectrum
of the spin waves, and the zeroth order terms only amount to an energy shift of
the ground state, which for our purposes can be arbitrary. We also make use of
the fact that n0 ⊥ δn, and n0 × ẑ = 0. The equation for the magnetization in eq.
2.12 becomes

ρṅ = −am×n +
(
n× (H×n)

)
×n

' −am×n0 +
(
H×n0 + H× δn

)
=⇒ m =

1
a

[ρ(δṅ×n0)− (n0 ·H)δn]

=⇒ ρ(δn̈×n0) = aṁ− (n0 · Ḣ)δn− (n0 ·H)δṅ

The 3d line of the above equation establishes a connection between the magne-
tization and the spin wave excitations, as discussed in the thesis. Inserting the
expression for ṁ into the fourth equation and only keeping the terms of linear
order in the fluctuations as before, we get

ρ(δn̈×n0) =
a
ρ

{
A(∇2δn×n0 +∇2n0 × δn) +Kz((δn · ẑ)(ẑ×n0) + (n0 · ẑ)(ẑ× δn))

− (n0 ·H)m×n0 + [H− (n0 ·H)n0]×m

−D [(ŷ×n0)∇ · δn + (ŷ× δn)∇ ·n0 − (∇×n0)(δn · ŷ)− (∇× δn)(n0 · ŷ)]
}

− (n0 · Ḣ)δn− (n0 ·H)δṅ

=
a
ρ

{
A(∇2δn×n0 +∇2n0 × δn) +Kz((δn · ẑ)(ẑ×n0) + (n0 · ẑ)(ẑ× δn))

−D [(ŷ×n0)∇ · δn + (ŷ× δn)∇ ·n0 − (∇×n0)(δn · ŷ)− (∇× δn)(n0 · ŷ)]
}

H×
[
(δṅ×n0)− 1

ρ
(n0 ·H)δn

]
− (n0 · Ḣ)δn− (n0 ·H)δṅ
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where the term [n × (H × n)] ×m was rewritten with the identity B.2. In the last
equality, the terms ∼ (n0 ·H)m × n0 cancel, and the expression for m in the ex-
change approximation was inserted. Taking the vector product with n0 yields an
expression for δn̈

ρ2

a
δn̈ = A(∇2δn− (n0 · ∇2n0)δn) +Kz((δn · ẑ)ẑ− (n0 · ẑ)2δn)

−D [ŷ(∇ · δn)− (n0 · ŷ)(∇ ·n0)δn− (∇δn · ŷ) + (n0 · (∇n0 · ŷ))δn]
1
a

(H ·n0)2δn +
2ρ
a

(H ·n0)n0 × δṅ +
ρ

a
(Ḣ ·n0)n0 × δn
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APPENDIXD

FOURIER TRANSFORM OF THE EFFECTIVE
DZYALOSHINSKII-MORIYA TERM AND MATRIX

ELEMENTS

We here perform the Fourier transform of the Dzyaloshinskii-Moriya-operator in
the effective spin wave Hamiltonian acting on the spin wave function ψ(r). This
will yield the matrix-elements used to calculate the SW-band diagrams in chap. 4.
We will write D for the inhomogeneous DMI instead of the redefined parameter
D̄ to keep the notation simple.

The DMI-part of the effective KGE is given by

ĤDMI = − i
2

[D(r)∂x −∂xD(r)] (D.1)

where D(r), as introduced in chap. 4, takes the form

D(r) = D
[
cos

(2π
l
x+

2π
l
z
)

+ cos
(2π
l
x − 2π

l
z
)]

=2D [cos(kbx)cos(kbz)] (D.2)

with kb = 2π/l, where l is the DMI lattice spacing. The reciprocal lattice vectors
b1, b2 are defined as

b1 = kb(x̂ + ẑ) = kb

10
1


b2 = kb(x̂− ẑ) = kb

 1
0
−1

 (D.3)

The real space lattice periodicity of the modulation, D(r + R) = D(r), allows us to
expand the function in a set of reciprocal lattice vectors and weighting coefficients
DG.

D(r) =
∑

G

DGe
iG·r (D.4)
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The coefficients DG are calculated as [24]

DG =
1
VC

∫
C
dr D(r)e−iGr

=
D
VC

∫
C
dr

[
cos

(2π
l
x+

2π
l
z
)

+ cos
(2π
l
x − 2π

l
z
)]
e−iGr

=
D

2VC

∫
C
dr

[
eib1·r + eib2·r + e−ib1·r + e−ib2·r

]
e−iG·r

=
D
2

[δ(G−b1) + δ(G−b2) + δ(G + b1) + δ(G + b2)]

where D is the modulated DMI-strength. The spatial part of the spin wave func-
tion ψ(r) can be represented as

ψ(r) =
∫
dk ψ(k) e−ik·r (D.5)

We apply the transform to each term of the operator separately. We omit the
minus-sign in front of the operator for now. The 1st term of ĤDMI yields

F
[ i

2
D(r)∂xψ(r)

]
=
i
2

∫
C
dr [D(r)∂xψ(r)]eiq·r

=
i
2

∫
C
dr

∑
G

DG eiG·r ∂x

(∫
dkψ(k)e−ik·r

)eiq·r
=

1
2

∑
G

∫
C
dr

∫
dk DGkx ψ(k)ei(q−k+G)·r

=
D
4

∑
G

∫
dr

∫
dk [δ(G−b1) + δ(G−b2) + δ(G + b1) + δ(G + b2)]

× kx ei(q−k+G)·r ψ(k)

=
DVC

4

∫
dk [δ(q−k + b1) + δ(q−k + b2) + δ(q−k−b1) + δ(q−k−b2)]

× kx ψ(k)

=
D
4

∑
i=1,2

[(q + bi)xψ(q + bi) + (q−bi)xψ(q−bi)]

The 2nd term gives
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F
[
− i

2
∂xD(r)ψ(r)

]
= − i

2

∫
C
dr [∂xD(r)ψ(r)]eiq·r

= − i
2

∫
C
dr

∂x
∑

G

DGe
iG·r

(∫ dkψ(k)e−ik·r
)eiq·r

=
D
4

∑
G

∫
dr [δ(G−b1) + · · · ] GxeiG·r

(∫
dkψ(k)e−ik·r

)
eiqr

=
D
4

∑
G

∫
dr

∫
dk [δ(G−b1) + · · · ] Gxψ(k) ei(q−k+G)·r

=
DVC

4

∫
dk

[
b1,xδ(q−k + b1) + b2,xδ(q−k + b2)− b1,xδ(q−k−b1)

−b1,xδ(q−k−b2)
]
ψ(k)

=
D
4

[
b1,xψ(q + b1) + b2,xψ(q + b2)− b1,xψ(q−b1)− b2,xψ(q−b2)

]
=
D
4

∑
i=1,2

[
bi,xψ(q + bi)− bi,xψ(q−bi)

]
Combining the two terms, we get

F [ĤDMIψ(r)] =
D
4

∑
i=1,2

([(q + bi)x ψ(q + bi) + (q−bi)x ψ(q−bi)]

+
[
bi,xψ(q + bi)− bi,xψ(q−bi)

]
)

=
D
4

∑
i=1,2

[(q + bi + bi)xψ(q + bi) + (q−bi −bi)xψ(q−bi)]

=
Dkb

4

∑
i=1,2

[(qx + 2)ψ(q + bi) + (qx − 2)ψ(q−bi)]

where q′x = qx/kb ≡ qx, and used that b1,x = b2,x = kb to simplify the expression. We
have also put back the minus-sign in front of the operator ĤDMI . We have thus
obtained the matrix elements Dl,l′ discussed in the end of chap. 4, with the matrix
elements written out explicitly in eq. 4.22. In eq. 4.22, the evaluation of ψ at the
reciprocal lattice vectors bi is written out as the corresponding δ-functions, and
the vector components have been written out explicitly.
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Kostylev, M. Gabor, D. Lacour, C. Tiusan, and M. Hehn, “Experimental
study of spin-wave dispersion in py/pt film structures in the presence of
an interface dzyaloshinskii-moriya interaction”, Phys. Rev. B, vol. 91, 21
2015. doi: 10.1103/PhysRevB.91.214409.

[109] R. E. Troncoso, C. Ulloa, F. Pesce, and A. S. Nunez, “Antiferromagnetic
magnonic crystals”, Phys. Rev. B, vol. 92, 22 2015. doi: 10.1103/PhysRevB.
92.224424.

[110] M. Vogel, A. V. Chumak, E. H. Waller, T. Langner, V. I. Vasyuchka, B. Hille-
brands, and G. von Freymann, “Optically reconfigurable magnetic mate-
rials”, Nature Physics, vol. 11, 2015. doi: 10.1038/nphys3325.

[111] H. Yang, A. Thiaville, S. Rohart, A. Fert, and M. Chshiev, “Anatomy of
dzyaloshinskii-moriya interaction at Co/Pt interfaces”, Phys. Rev. Lett., vol.
115, 26 2015. doi: 10.1103/PhysRevLett.115.267210.

[112] X. Yongbing, D. Awschalom, and N Junsaki, Handbook of spintronics.
Springer, 2015.

[113] R. Cheng, M. W. Daniels, J.-G. Zhu, and D. Xiao, “Antiferromagnetic spin
wave field-effect transistor”, Scientific Reports, vol. 6, 2016. doi: 10.1038/
srep24223.

[114] M. L. Cohen and S. G. Louie, Fundamentals of condensed matter physics.
Cambridge University Press, 2016.

[115] D. J. Griffiths, Introduction to quantum mechanics. Cambridge University
Press, 2016.

105

http://dx.doi.org/10.1103/PhysRevX.5.041049
http://dx.doi.org/10.1103/PhysRevX.5.041049
http://dx.doi.org/10.1103/PhysRevB.93.174429
http://dx.doi.org/10.1038/nphys3418
http://dx.doi.org/10.1038/nphys3418
http://dx.doi.org/10.1103/PhysRevLett.115.266601
http://dx.doi.org/10.1103/PhysRevB.91.214409
http://dx.doi.org/10.1103/PhysRevB.92.224424
http://dx.doi.org/10.1103/PhysRevB.92.224424
http://dx.doi.org/10.1038/nphys3325
http://dx.doi.org/10.1103/PhysRevLett.115.267210
http://dx.doi.org/10.1038/srep24223
http://dx.doi.org/10.1038/srep24223


[116] C. Moreau-Luchaire, C. Moutafis, N. Reyren, J. Sampaio, C. A. F. Vaz,
N. Van Horne, K. Bouzehouane, K. Garcia, C. Deranlot, P. Warnicke, P.
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