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Abstract

We present a procedure for simulating particle cascades with applications to dark
matter searches and neutrino astronomy. We are motivated by the steady de-
velopments at the IceCube neutrino observatory, which have made available un-
precedented data on the diffuse cosmic neutrino flux. The case is made for using
neutrino data to look for signals of superheavy dark matter decays. We emphasize
that superheavy dark matter decays can generally be expected to cause cascad-
ing of high-energy particles, involving both strong and electroweak interactions.
We build on a cascading formalism from quantum chromodynamics to model the
cascading of almost all standard model particles, distinguishing also between left-
and right-handed fermions. Monte Carlo algorithms are described and applied to
simulate neutrino spectra that result from dark matter decays. We present first
results from our simulations, and highlight some areas that may be of interest for
future studies.
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Sammendrag

Vi fremfører en prosedyre for å simulere partikkelkaskader med anvendelser innen
søk etter mørk materie og neutrinoastronomi. Vi motiveres av de fortløpende
utviklingene ved neutrino-observatoriet IceCube, som har gjort tilgjengelig en-
est̊aende data om den diffuse kosmiske neutrinostr̊alingen. Vi gjør rede for hvorfor
neutrinodata kan bære tegn etter forfall av mørk materie. Vi understreker at
forfall av supertung mørk materie generelt kan forventes å utløse høyenergiske par-
tikkelkaskader, som invovlerer b̊ade sterke og elektrosvake interaksjoner. Vi bygger
p̊a en kaskadeformalisme fra Kvantekromodynamikken for å modelere kaskader av
nesten alle partikkler i Standardmodellen. Vi tar ogs̊a hensyn til forskjellene mel-
lom venstre- og høyrehendte partikler. Det beskrives og anvendes Monte Carlo
algoritmer for å simulere neutrinospekterene som resulterer av forfall av mørk ma-
terie. Vi presenterer de første resultatene til simulasjonen v̊ar, og understreker
noen potensielt interessante retninger for fremtidige undersøkelser.
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Chapter 1

Introduction

For most of history, astronomers had to rely on electromagnetic radiation (visible
light, radio waves, gamma rays, etc.), to provide any information on the outer
universe. However, recent years are frequently hailed as the beginning of the era
of multimessenger astronomy, featuring breakthroughs in the observations of as-
trophysical phenomena that are independent of electromagnetic interactions. The
most notable of these breakthroughs was the discovery of gravitational waves at
LIGO in 2016 [, gwaves] allowing the observation of collisions of supermassive ob-
jects (black holes and neutron stars) a billion light years away from earth. At the
same time, however, the detection of cosmic neutrinos is progressing fast. Follow-
ing the commissioning of the IceCube detector at the south pole in 2010, a diffuse
flux of cosmic neutrinos has been measured for the first time, including detections
of the highest-energy neutrinos to date [1].

There are several reasons why the ability to observe cosmic neutrinos is a sig-
nificant development. In contrast to photons, neutrinos interact rarely with other
matter or radiation, allowing them to travel through the universe with little ob-
struction or attenuation. Despite making the neutrino very hard to detect, this
important property is expected to allow physicists (and has to some extent already)
to gather information from the most energetic processes of the universe. Much of
this information is otherwise obscured by obstacles such as background-light, dust
and magnetic fields. One area that has received renewed attention due to the mea-
surements of the IceCube diffuse neutrino flux, is the search for superheavy dark
matter (SHDM) [2–5]. Dark matter has been established to contribute to about
25% of the energy in the universe, compared to the 5% that ordinary matter makes
up1 [6]. Yet, the identity of this mysterious form of energy remains unknown.
Hopes are that decays of dark matter particles in galactic and extragalactic space
produce an overall signal of neutrinos that can be discerned in the IceCube data.
Gathering neutrino data is a slow process, as only some tens of cosmic neutrinos
can be identified by the IceCube detector every year [1]. As such the IceCube data

1For completeness we mention that 70% is thought to be constituted by dark energy, which
identity, like dark matter, is unknown, but at least does not behave like matter.

1



2 CHAPTER 1. INTRODUCTION

is still rather coarse, even after several years of observations. Nevertheless, the
data is already useful in deriving boundaries on viable dark matter models [4].

Very little is known about dark matter, save its strong gravitational effects on
the present day universe, as well as its history [6]. However, in the paradigm of
quantum field theory (QFT), it makes sense to assume that dark matter consists of
massive particles which interact very weakly with ordinary matter. This paradigm
suggests a number of natural alterations to the Standard Model (the most accurate
description of particle physics to date), in which particles could exist in abundance
in the universe [5, 7], despite having evaded experimental detection so far (except
by their gravitational effects). The incorporation of dark matter in a quantum
field theory normally also implies that the dark matter particles do interact non-
gravitationally with standard model particles, albeit very weakly.

We refer to one particular class of dark matter models as heavy, or superheavy
dark matter (SHDM). This implies that the dark matter particles are several orders
of magnitude heavier than the heaviest Standard Model particles. An implication
of QFT is that heavy particles that interact with lighter particles will decay into
the lighter particles at some rate (that is, with some lifetime). The large mass
of the particles itself could provide the high energies that are observed in cosmic
neutrinos at the IceCube detector.

Another feature of QFT is the cascading of high-energy particles. Simply speak-
ing, this implies that one very energetic particle is likely to split into a large number
of less energetic particles of different types. This is a well-known phenomenon for
quarks and gluons, but has been shown to be plausible for other particles as well
[8]. This means that the particle spectra produced in SHDM decays could be
predictable with basic quantum field theory, without much dependence on the par-
ticular dark matter model. In this work, we exploit this fact, and assume only
that dark matter is unstable, and interacts with a pair of standard model particles.
We then adapt a well-known cascading formalism from quantum chromodynamics
(QCD) (that is, the study of the strong interaction) to incorporate electroweak
interactions. The probabilistic nature of this QFT formalism invites the applica-
tion of Monte Carlo techniques to simulate the cascading process. While studies of
similar simulations have been conducted in the past, we complement these studies
by explicitly modelling the behaviour of all particles of the Standard Model, except
for the Higgs particle. We aim to present a simulation scheme that can be applied
to and provide insight into the origins of cosmic neutrino flux observed by IceCube.

This thesis is structured as follows; In chapters 2 and 3 we review the status
of the research that forms the background for our work. Chapter 2 gives a more
thorough account of neutrino astronomy and the IceCube detector, which is the
reason for the renewed interest in this area of research. We focus in particular on
how the search for dark matter fits into the larger field of neutrino astronomy, as
well as the motivations for our work. The capabilities of the IceCube detector are
also described here. Chapter 3 contains and overview over the relevant information
that is known about dark matter, focusing in particular on SHDM.

In chapter 4 we explain in detail the theoretical framework of our simulation.
We start by reviewing the cascading formalism that is known from QCD. This
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review forms the basis for the subsequent derivations that we perform in order
to extend this formalism. This will culminate in a model of particle cascades
that accommodates electroweak interactions, and thus most of the standard model
particles. It is also describe how the decay of unstable particles and hadronization
of partons can be taken into account in our model.

Chapter 5 describes all practical aspects of simulating particle cascades. We
start by explaining the necessary mathematics behind Monte Carlo algorithms. A
detailed explanation of how these algorithms are applied in our computer program
is provided, using the theory from chapter 4. In chapter 6, we present the first
results from our simulations and discuss the insights that may be derived from
them. We summarize our findings in chapter 7.
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Chapter 2

Neutrino Astronomy

In this chapter, we review the current status of neutrino astronomy. While this is a
vast and fast growing discipline, we do not make an exhaustive summary or go into
all of the technical details, but aim instead to provide the context of our present
investigation. In short, our investigation’s objective is to link recent observations by
the IceCube neutrino observatory to decays of superheavy dark matter (SHDM), in
so far as the latter exists. For completeness, we also summarize the most important
alternative explanations for these observations. We will similarly review the status
of dark matter research in the next chapter.

2.1 Motivations for Cosmic Neutrino Observation

A crucial property that distinguishes neutrino radiation from more traditional mes-
sengers (electromagnetic radiation and cosmic rays) is the weakness of its interac-
tions with other matter. This means that neutrinos can travel distances on the
scale of the observable universe essentially unobstructed, despite the matter that
is found on its way [9, 10]. In contrast, electromagnetic radiation and cosmic rays
are attenuated or blocked completely by matter such as that of the intergalactic
medium, gas clouds, and bulk matter (stars, galaxies, etc). Gamma rays (highly
energetic electromagnetic radiation or photons) are subject to strong attenuation
through interactions with the CMB and extragalactic background light (EBL) over
intergalactic distances, especially at energies above 102 GeV−103 GeV [1, 11]. The
charged nature of cosmic rays means that their trajectories are curved by galactic
and extragalactic magnetic fields. In fact, galactic magnetic fields confine cosmic
rays with sufficiently low energy to the galaxies in which they are produced (due to
the small curvature radii in their trajectories) [12–14]. At the same time, the flux
of cosmic rays that are energetic enough to escape their parent galaxies is subject
to attenuation by the cosmic microwave background (CMB) on its way to earth.
This attenuation becomes significant at extremely high energy (and intergalactic
distances), and the cosmic ray flux is generally considered to be strongly suppressed
at energies above 5× 1019 eV, which is referred to as the Greisen-Zatsepin-Kuzmin

5



6 CHAPTER 2. NEUTRINO ASTRONOMY

(GZK) limit [1, 12, 15]. Neutrino radiation is not affected by these obstacles, and
thus has the potential to provide insight into high-energy astrophysical processes
where other messengers do not. This was demonstrated recently when the Blazar
TXS 0506+056 was found to be a likely extragalactic source of high-energy neu-
trino emission. This is providing unprecedented insights into blazar physics, in
particular its potential for cosmic ray acceleration [16–19]. In the context of our
investigation, it is anticipated that SHDM decays could produce secondary parti-
cles in the the range of up to1016 GeV (and possibly higher). It thus seems natural
that neutrinos may form the least obscured signal of these decays.

Although we will consider SHDM decays in this work, it is more often assumed
that the main contribution to the high-energy cosmic neutrino spectrum is made
by processes involving the decay of charged pions, which are produced in high-
energy collisions of cosmic rays with matter1 [1, 9, 10, 23] . Charged pions decay
to produce neutrinos and muons, the latter of which decay in turn to produce more
neutrinos2 (or anti-neutrinos; we do not distinguish between particles and their
antiparticles here, as in most of this work):

π± → νµ µ µ → νµ νe e (2.1)

The production of charged pions is accompanied by the production of neutral pions,
which decay into a pair of photons [1, 10]

π0 → γ γ. (2.2)

Thus, cosmic neutrino spectra are expected to have a predictable gamma ray spec-
trum as a counterpart [1, 9, 10, 23].

A number of astrophysical objects exist which could plausibly produce an abun-
dance of cosmic rays (highly energetic charged particles such as protons, alpha
particles, a few heavier nuclei and electrons) while at the same time providing
the necessary interaction sites for pion production, for example starburst galaxies,
active galactic nuclei (AGNs), and blazars, to name just a few [17, 18, 23]. Inter-
actions between cosmic rays and the photons of the ELB and CMB in intergalactic
space are also expected to result in a measurable flux of high-energy neutrinos
(since this is the same effect that causes the GZK limit energy, see above, these
neutrinos could provide insight into the existence of cosmic rays beyond that en-
ergy). Yet, the origins of both cosmic rays and cosmic neutrinos have in general not
been confirmed [1, 9, 23, 24]. Profound insights could therefore be provided into
the highest-energy processes of the universe if correlations between observations
of neutrinos and those of cosmic rays could be established. This has traditionally
been the primary motivation for cosmic neutrino observation [1, 9, 24].

In recent years though, there has been a revived interest in superheavy dark
matter, i.e. the notion that dark matter may exist as particles with masses that are

1Nuclear reactions in stars and supernovae also come to mind as production mechanisms of
neutrinos, however these typically don’t produce neutrinos with energies of order higher than
some tens of MeV [20–22], while we are interested in neutrinos of at least 104 GeV in our work.

2The presented decay channels are implicitly the predominant ones, though not technically
the only ones.
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several orders of magnitude above the weak scale (∼ 102 GeV). Dark matter masses
of up to 1016 GeV are considered [4, 5]. This idea is particularly enticing because it
could provide an alternative source of cosmic rays other than the class of scenarios
described above, for which purpose it was orignially conceived [2, 3, 5, 25]. While
SHDM particles should have low kinetic energy, their large masses could provide
the energy that is ultimately attained by standard model particles such as cosmic
rays and neutrinos, which are received as signals on Earth. How this transfer of
energy would occur is subject to a wide variety of different models. However, it is
reasonable to assume that most scenarios will ultimately involve the production of
high-energy neutrinos. One reason for this is that for particles with masses above
106 GeV, any decay or annihilation is likely to produce a particle cascade [8], which
we will discuss in detail in chapter 4. Loosely speaking, this means that any primary
decay into standard model particles will set off a chain reaction of standard model
interactions, thus producing particles of all types, whereof a large share may be
neutrinos. While in some scenarios, cascade products may be dominated by gluons
and quarks (partons), these will ultimately also produce a neutrino spectrum, as
partons hadronize into pions which decay into neutrinos as discussed above.

In addition to the cascading argument, many SHDM models consider decay of
dark matter directly into neutrinos (collectively referred to as the neutrino portal
paradigm) [26–28]. In a very roundabout sense, a prevalent motivation behind this
is the fact that a full description of neutrino physics is all but guaranteed to require
theories that reach beyond the standard model. One important indication of this
is that the standard model strongly suggests that neutrinos either have no mass, or
a mass similar to that of other standard model particles; nevertheless experimental
evidence shows conclusively that neutrinos are indeed massive3, but these masses
are too small to measure (so far). [29]. It is thus natural to anticipate models that
explain both the identity of dark matter as well as the neutrino’s tension with the
standard model at the same time. Particularly common are models which couple
dark matter to a hypothetical right-handed (or sterile) neutrino, which in turn
mixes with the ordinary left-handed neutrino (that is, the two can transform into
each other at some rate). In addition to some relative mathematical simplicity,
this model is convenient because the existence of the right-handed neutrino would
simultaneously explain the smallness of the ordinary neutrinos’ masses [26–28, 30].

In summary, cosmic neutrino observations lay crucial groundwork for viability
tests of many dark matter models. In the present work, we aim to study in par-
ticular the aforementioned cascading process that is implied in most scenarios of
SHDM decay. We will focus in particular on a scenario where dark matter particles
decay at tree level into two neutrinos:

X → ν ν, (2.3)

where X denotes the dark matter particle. The implications of this are in principle
only that the decay of SHDM is bound to produce an (intermediate) pair of neutri-
nos with energies equal to half the mass of X, and is as such quite non-restrictive.

3It is worth pointing out that this discovery is also a result of neutrino astronomy, although
with a focus on solar and supernova neutrinos
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We note that there is no immediate reason why dark matter particles should not
be able to decay equally well into other SM particles, and so we will consider other
decay channels in our work as well.

2.2 The IceCube Neutrino Detector

The IceCube telescope at the south pole is the largest and most sensitive detector of
astrophysical neutrinos, being the first kilometer-scale neutrino detector of its kind
[10]. It is also the detector that has measured the highest-energy neutrinos to date,
having reported the first observations of neutrinos with energies at the PeV-level
[31, 32]. In principle, IceCube should be able to detect neutrinos with energies over
103 PeV [33]. Several years of IceCube observations have made available the first
experimental values of a diffuse cosmic neutrino flux between 10 TeV and 10 PeV.
This has sparked renewed interest in the search for super heavy dark matter in
our galaxy and beyond. We summarize here the most important features of the
IceCube detector as well as the status of its observations.

2.2.1 Purpose and Function

Since neutrinos interact so rarely with other matter, neutrino telescopes are made
as large as possible to increase the probability of interaction. In addition, larger
sizes improve the chance that the signals produced by such interactions are com-
pletely contained in the detector, making more precise measurements of energy and
incident direction possible. The IceCube telescope achieves an effective volume of
a cubic kilometer by exploiting naturally occurring glacier ice at the south pole as
the detecting medium. An array of 5160 optical modules containing photomulti-
pliers have been lowered into the ice via drilled holes (see figure 2.1) in order to
record the signals produced by neutrino-ice interactions [1, 10, 33].

When neutrinos pass through the Antarctic ice, they may (with some small
probability) interact with the ice’s nuclei in one of two ways, referred to as charged
current interactions and neutral current interactions [1, 10, 34]. Charged cur-
rent interactions produce electrons, tau leptons or muons, the latter of which
continue to travel through the ice in roughly the same direction as the incident
neutrino. Charged particles which travel through a dielectric medium (such as ice)
at speeds higher than the speed of light in that medium produce light signals via
the Cherenkov effekt, which is collected by the photomultipliers. The total energy
delivered to the photomultipliers determines the lower bound on the incident en-
ergy, and the incident neutrino’s energy is estimated by taking the median of a
theoretical distribution that takes into account energy transfer to the nuclei in the
ice [1, 34]. The shapes of these signals allow for a determination of the neutrinos’
incident directions and flavour (see figure 2.2). Muon-neutrinos are the easiest to
identify and trace, because the muons that they produce mostly travel through the
detector unimpeded. This produces a Cherenkov signal that spreads out evenly
from the particle’s trajectory (forming an expanding cone of light) that is rela-
tively easy to identify. Electron- and tau-neutrinos on the other hand produce
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Figure 2.1: Visualisation of the IceCube detector, reproduced from [1].

electrons and tau leptons, which scatter on the ice molecules, creating a roughly
spherical signal [1, 34]. Neutral current interactions on the other hand produce
hadronic cascades for all three neutrino flavours, which also produce spherical sig-
nals due to scattering. These are difficult to distinguish from the charged current
interactions of electron- and tau-neutrinos. Hence, charged current interactions of
muons deliver the only signals for which the neutrino flavour can be easily identi-
fied. Determination of the incident direction for cascading events is possible within
an uncertainty of up to 15◦ for all cases, although developing reconstruction tech-
niques are expected to improve this uncertainty to a few degrees in the future. The
incident direction of track-like events from muon neutrinos can on the other hand
be determined to within less than 0.4◦ [1].

IceCube observations are subject to a huge number of background particles.
Atmospheric neutrinos and muons are produced when cosmic rays interact with
nuclei in the atmosphere and the relevant cosmic neutrino detections must be
isolated from these4. One way to eliminate the muonic background is to record
exclusively those signals that are incident from the northern hemisphere; neutri-
nos can pass through the Earth unobstructed (although with some absorption),
while muons are absorbed fully by the Earth. Thus, muons that pass through the
detector from the direction of the northern hemisphere can be assumed to have
been produced by neutrinos reacting inside the earth, close to the detector. This

4The rate of muon interactions with the detector is about 3000 a second, while neutrino
interactions happen at a rate of 100,000 a year. Thereof, some tens are of cosmic origin, while
the rest are atmospheric [1].
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(a) (b)

Figure 2.2: Visualizations of the two common kinds of signals in IceCube, repro-
duced from ref. [35]. Tracks (a) occur when muons pass through the ice, emitting
Cherenkov light from its trajectory. Spherical cascades (b) occur when electrons
or tau leptons (or their decay products) scatter on the ice molecules.

effectively increases the detector size, and improves determination of the neutrino’s
incident direction, as more of the tracks extend over the full length of the detector
[1]. On the other hand, detections are in these cases restricted to muon-neutrinos,
and the incident energy cannot be determined as accurately, due to an unknown
amount of energy being deposited outside the detector [1]. Cosmic ray muons can
be excluded from both northern- and southern sky observations by designating
the outer rim of the detector as a veto area, and including only those signals that
start somewhere within the rest of the detector (muons arriving from outside the
detector will naturally produce tracks starting at the outer rim). This improves
energy measurements (possible to within 10 %-15 %), but makes determination of
the incident direction less accurate [1].

In order to determine which neutrinos are of cosmic origin (as opposed to at-
mospheric), the degree to which neutrino events coincide with muon detections
are considered. Since atmospheric neutrinos are produced together with muons in
the atmosphere, missing muon signatures during a neutrino event imply that it is
unlikely that the neutrino is of cosmic origin [1, 33]. In addition, a shower array
(IceTop) is installed above the neutrino detector, which is able to detect the atmo-
spheric showers in which an atmospheric neutrino is produced [36]. Furthermore,
the flux of atmospheric neutrinos are easier to model theoretically than cosmic
neutrinos, and it is found that a vanishing number of atmospheric neutrinos are
expected above an energy of 105 GeV, leaving only a cosmic origin for detections
above this threshold [1, 10, 33].

2.2.2 Current Status of Observations

Several years of IceCube observations have accumulated to a first look at the diffuse
neutrino spectrum between 103 GeV and 107 GeV. This has motivated many stud-
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Figure 2.3: Visualization of IceCube cosmic neutrino data (green crosses) from 4
years of observation, reproduced from ref. [1]. Solid lines depict various models
of neutrinos and gamma ray fluxes. In particular, the green line and shaded area
represent a power-law fit for the neutrino spectrum. The blue line represents a
model for the gamma ray flux related to decaying cosmic ray pions and cascading
on background light; the black line represents the model for the corresponding
neutrino production.

ies into the plausible origins of this flux, amongst which is the decay of superheavy
dark matter.

A central question in determining the source of the high-energy neutrino flux is
to which extent the latter originates in or outside the Milky Way; the dark matter
decay model implies that the dominating component of the flux must be of galactic
origin. One main indicator of this is whether the neutrino flux is accompanied by
a compatible gamma-ray flux. As explained section 2.1, gamma rays are produced
whenever high-energy neutrinos are (and with a similar spectrum) if the latter
are produced via pion decay. A dark matter-induced cascade would naturally also
produce a spectrum of gamma rays, along with the neutrinos. However, gamma
rays are strongly attenuated when travelling extragalactic distances. Hence, the
lack of a compatible gamma ray signature would suggest that the neutrino signature
is predominantly produced in far-off galaxies. While no gamma ray flux data is
available in the 103 GeV to 107 GeV range, a gamma ray flux in the range 1 GeV to
103 GeV has been observed that could be the result of higher-energy gamma rays
being attenuated by interactions with the CMB and ELB. It has been shown [1, 37]
that this flux is in part compatible with the scenario where extragalactic gamma
rays are produced together with the observed neutrinos in hadronic processes (for
example cosmic ray interactions with atomic matter, see section 2.1).

Yet, there is evidence for a galactic contribution to the neutrino and gamma
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ray spectra. Roughly speaking, the neutrino spectrum observed for energies above
103 GeV plausibly represents a continuation of the gamma ray spectrum observed
below the same energy [38, 39]. The second indication of Galactic contributions is
an apparent anisotropy in the flux above 105 GeV, that is, a somewhat harder flux
[40] from the direction of the Galactic plane than at higher galactic latitudes. This
would be expected in the SHDM scenario, seeing as the dark matter halo, as seen
from Earth, appears thickest in the direction of the galactic plane.

The neutrino spectrum also gives some reason to consider the existence of a
source other than the conventional hadronic processes followed by pion decay. The
authors of [39] find that the high-latitude galactic gamma ray flux is only com-
patible with the neutrino flux if the former shows significant spectral hardening
around 300 GeV. As the conventional sources do not exhibit this behaviour, a so
far unknown production mechanism is required. Similarly, the authors of [1] report
that the spectrum in the range 3× 104 GeV to 105 GeV cannot be explained by a
single power-law fit, and suggest therefore a second significant source of neutrinos
in this range.



Chapter 3

Dark Matter

In this chapter we go through some of the important features of dark matter re-
search. As in the last chapter, we do not intend to review the whole topic in great
detail. Instead we aim to give the reader some background that will put the premise
of our investigation into context of current research. That premise is that the uni-
verse is filled with super heavy dark matter particles, which in decaying produce a
neutrino signal that can be detected by neutrino telescopes such as IceCube.

3.1 Distribution at the Galactic Level

The notion of dark matter was first conceived of because the velocities of galaxies in
galaxy clusters – and later those of stars in in galaxies – were larger than expected
[41]. The masses of stars are related to their luminosities, and so the masses of
galaxies can be estimated by measuring their brightness. However, the galaxy
and cluster masses that are estimated in this way are too low to gravitationally
bind the stars and galaxies in them (at least at their particular orbital distances),
given their measured velocities (which can be measured by spectral Doppler shifts).
In particular, galactic rotation curves (plots of stars’ orbital velocity around the
galaxy as a function of distance r from the center) are expected to decrease as
1√
r

at large distances, but instead remain quite flat [42]. Observations of stellar

dynamics, in the particular fitting of dark matter models to rotation curves, are
still used to investigate the dark matter distributions of the Milky Way.

We note that there exists a wealth of other evidence for the existence of dark
matter, including gravitational lensing effects, considerations of galaxy formation
and the universe’s evolution, as well as observations of the “Bullet cluster”. It
has been proposed that gravitational dynamics could be modified on astronomical
scales, in order to eliminate the need for dark matter. Such models have however
been experimentally unsuccessful, and observations of the Bullet cluster make a
compelling case for dark matter independent of the gravitational force law [43].
See for example [41] for a review on the history and evidence for dark matter.

Computer simulations of galaxy formation predict how the dark matter density

13
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varies with distance from the galactic center. It is found that galaxies are sur-
rounded by a halo of dark matter with a radius that can be significantly larger
than that of the galactic disc. The halo is not flat like the galactic disc, because
the weakness of dark matter interactions implies that transverse velocity compo-
nents are not cancelled by friction forces during halo-formation, as they do for
ordinary matter during galaxy formation. One of the most commonly applied pro-
files of the dark matter density ρ(r) with distance r from the galactic center, is the
Navarro-Frenk-White (NFW) profile [44]:

ρ(r)

ρcrit
=

δc

r
rs

(
1 + r

rs

)2 (3.1)

Here, ρcrit ∼ 10−5 GeV cm−3 is for all practical purposes the large-scale energy
density of the universe. The parameters δc and rs are specific to the galaxy. The
scale length rs gives a notion of the radius of the dark matter halo, as the dark
matter density becomes of the order of the critical density at this radius. In the case
of the Milky Way, the scale radius is found to be 10− 40 kpc [45]. For comparison,
the Earth’s position is at a radius of around 8 kpc, where the dark matter density
is about 0.4 GeV cm−3.

While the density profile diverges at low r, indicating limitations in the model, it
predicts that the dark matter density increases sharply close to the Galactic center,
which observations support [46]. This implies, that if dark matter does emit an
observable signal, this should be stronger towards the Galactic center. While dark
matter is not expected to have significant overdensities in the Galactic disc (that
is, it is approximately spherically symmetric), the signal strength is still expected
to be stronger from the direction of low galactic latitudes as opposed to high ones.
This is because of Earth’s off-center position in the galactic disc, which causes us to
see more of the dark matter halo in those directions. While IceCube observations
are not yet substantial enough to test these simple predictions, some indications
have been found that the observed neutrino flux is indeed more pronounced from
the disc (see section 2.2.2).

3.2 Super Heavy Dark Matter, and Other Candi-
dates

In our following investigation, we will consider the possibility that dark matter
exists in the form of particles with masses above 1 PeV = 106 GeV. However, it is
worth noting that other dark matter candidates are more commonly studied. Some
favoured candidates include:

• The WIMP (Weakly Interacting Massive Particles) model. This
paints a rather natural picture, in which dark matter does interact with stan-
dard model particles via the known weak interaction (or some novel weaker
interaction) [7, 47, 48]. This implies that in the early and hot universe, ran-
dom annihilation and creation of dark matter via interactions with standard
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model particles was commonplace, i.e. dark matter was in chemical equi-
librium with the rest of the universe. Since the probability of interactions
decreases with decreasing temperature, and the dark matter is diluted due to
the expansion of the universe, interactions rates have become negligible over
time. Since the interaction cross-section typically goes like 1/m2

X (with mX

being the dark matter mass), this is more so the case for dark matter parti-
cles than ordinary ones if mX is significantly larger than the largest masses
of standard model particles (which are of order 102 GeV). A commonly con-
sidered candidate for WIMP-type particles is the neutralino, which arises
naturally in the theory of supersymmetry, which simultaneously serves to
explain a range of other mysteries of particle physics [49].

• The axion model. The axion model suggests that dark matter consist of
very light particles called axions. These have the advantage of also solving
the strong CP problem (the fact that strong interactions seem to obey CP
symmetry, even though conventional QCD suggests that they should not),
for which they were originally hypothesized [50].

• Sterile neutrinos. Also referred to as right-handed neutrinos, these are a
natural extensions to the standard model’s theory of neutrinos, which only
includes a left-handed neutrino (in practice meaning that the neutrino’s spin
is always measured to be parallel with its momentum, never anti-parallel).
The existence of the sterile neutrino could simultaneously explain the iden-
tity of dark matter and why experiments find the neutrino to have a very
small mass, despite the standard model’s prediction that neutrinos should be
massless [29, 30, 51].

While the above constitute favoured versions of dark matter, we must consider
a different kind of candidate in this work. This is because we are interested in dark
matter particles with masses above 106 GeV, so that they can provide the high
energies of the neutrinos which are observed by the IceCube telescope (see section
2.1). Neither of the candidates listed above are compatible with masses of these
magnitudes. Axions and sterile neutrinos are expected to have masses of the orders
of eV [50] and keV [51] respectively. The WIMP paradigm is less restrictive, but
strongly disfavors masses beyond the order of 105 GeV. Masses above this scale
would render WIMP annihilation cross sections too small, in the sense that too
few WIMPS would annihilate until the present day, leaving more dark matter than
what is compatible with observations [7, 47].

The existence of superheavy dark matter is however considered to be a natural
consequence of many models of the universe’s evolution [5, 47]. In particular,
production of superheavy particles seems likely in the end stages of inflation [7]
– the period of extremely rapid expansion straight after the big bang [6]. From
a QFT perspective, inflation is generally assumed to be driven by a particle field
(referred to as the inflaton), in which resides the energy density that causes space
to expand. Conversely, the expansion of space causes the inflaton field to evolve.
At the end of inflation, the inflaton field is able to interact with other particle
fields, thus passing on its energy to these, leading to the creation of particles (this
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process is referred to as reheating) [5, 7, 52, 53]. If the inflaton can interact directly
with the dark matter field1, then the presence of dark matter does not first require
that dark matter be in equilibrium with the rest of the universe at some point after
reheating. Hence, the dark matter mass can be much larger than in WIMP models,
presumably up to 1015 GeV [5].

In a similar type of model, dark matter is created as a more direct consequence
of the expansion of space during and at the end of inflation. This is based on
the knowledge that certain particles can be produced by variations in the rate
of expansion of space [54, 55]. Alternatively, this gravitational production can
be viewed as an interaction between dark matter and the inflaton (which is still
considered to be the original reservoir of energy) via an intermediate graviton
[55–57]. This paradigm is non-restrictive, and thus attractive, in the sense that
it requires few assumptions. Dark matter interacts with gravity by definition,
and inflation is well-supported by observations [6]. This all but guarantees the
gravitational production of dark matter particles in the early universe, that is,
given that the dark matter field exists in the first place. However, for this to be
the dominant production mechanism, and for observational data to hold, the dark
matter mass has to be of the order of the inflaton mass (which has been constrained
to about 1013 GeV ) [5, 7, 47, 57]. In addition, this model opens the possibility
that dark matter does not interact at all, which would make it very problematic to
gain further insights into its nature.

Another paradigm of dark matter production provided by quantum field theory
is the decay of topological defects. Loosely speaking2, a particle field tends to
behave in a way that minimizes some potential energy. That potential energy may
have several minima, and space could be divided into regions which correspond
to different minima, because of phase transitions in the early universe (during
inflation [5]). The way this happens is that, as the universe cools, the number of
minima changes from one to two (or several), and the particle field thus “falls”
into either of these new minima randomly and at arbitrary points in space. From
those points, the field at neighbouring points fall into the same minima, creating
expanding regions where the field corresponds to the same minima. However,
where these regions corresponding to different minima meet, the field is forced to
take on a large amount of energy. This is because the field must be continuous,
and values between two minima of the potential energy naturally corresponds to
a large potential energy. This energy can be released though, as one minimum
gradually takes over all of space, causing the defect to decay. The released energy
can give rise to energetic particles, such as superheavy dark matter. The takeaway
is that energy could be stored in topological defects from the time of inflation until
potentially the present day, producing superheavy particles that need never have
been in equilibrium with anything else. This paradigm thus allows for an easing

1By directly we mean that the production of a dark matter particle doesn’t first require an
intermediate interaction with another particle of the standard model; intermediate interactions
with other exotic bosons are however common in reheating models.

2Indeed, we only attempt to give an intuitive notion of topological defects here, which is in
reality a particularly profound topic, in order to distinguish it from the other mechanisms of dark
matter production. For a more detailed review, we refer to [58].
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of the constraints that are typically put on the masses and lifetimes of superheavy
dark matter. Evidence for cosmic topological defects has yet to be observed though.

We will not go deeper into the origins and properties of dark matter in this work.
For the following investigation, it suffices to know that it is theoretically sound to
consider the existence of dark matter particles with masses between 106 GeV and
1016 GeV, and which decay into pairs of standard model particles (as discussed in
section 2.1).
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Chapter 4

Modeling particle cascades

In this chapter, we describe a model of particle cascades which can be used to
predict the spectrum of particles that are produced by the decays of superheavy
dark matter (SHDM). From an observational perspective, a cascade only entails
the appearance of a large number of particles following the decay of some heavy
particle (or by the collision of two energetic particles). In other words, only the
final particles that are ultimately produced in the cascade can be observed, not the
“process” by which this occurs. However, from a theoretical standpoint, a cascade
can be described as a sequence of sub-processes: the original particle splits into
two new (virtual) particles, which in turn split into four, and so on. Given that
each splitting happens with a certain probability, the cascade can be modelled as a
random process, and hence simulated using Monte Carlo methods. This chapter is
devoted to determining suitable expressions for these splitting probabilities, which
form the groundwork of our simulation of particle cascades – how we apply the
theory in practice is explained in chapter 5.

We begin by looking at the special case of parton cascades, that is, cascades
involving only quarks and gluons, the formalism of which is known from quantum
chromodynamics (QCD). We will then adapt this formalism to the electroweak
sector of particle-interactions, so that we may apply it to the other particles of the
standard model (except the Higgs particle). We also describe simple models of how
the final particles from the cascades decay and hadronize.

4.1 Parton Cascades

By a parton cascade, we mean one where particles interact only via the strong inter-
action; whenever a particle splits, at least one of the incoming or outgoing particles
is a gluon (commonly referred to as the force carrier of the strong interaction); one
or two of the other particles may be quarks. We discuss under which conditions
these cascades occur, and illustrate how to break them down into a sequence of
comprehensible steps that are suitable for simulation.

19
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4.1.1 Conditions for Parton Cascades

As indicated above, a parton cascade can be modelled in terms of a sequence of
splittings, each of which happens with a certain probability. This probability is
proportional to the strong coupling αs, which is dependent on the energy scales
involved in the splitting (for an in-depth review on the strong coupling, and explicit
expressions, see for example [59]). To be more precise, we say that the coupling
is a function of the momentum flow k2 in the interaction (where kµ denotes the
four-momentum of the particle that splits). In particular, the coupling decreases
with increasing k2. Since the coupling in general determines the strength of strong
interactions, below a certain value of k2, αs is greater than the order of unity, and
interactions between partons become so strong that they coalesce to form hadrons
(e.g. nucleons and pions). This value of k2 is denoted by Λ2

QCD, where ΛQCD ≈
0.250 GeV is referred to as the QCD scale (or strong scale). When particles are
bound in hadrons, they cannot start cascades, and we thus have the first condition
for cascades to occur:

t = k2
!
> Λ2

QCD = 0.250 GeV. (4.1)

On the left-hand side, we have indicated for completeness that the momentum flow
k2 is for our purposes equal to the virtuality t (which we will introduce later), by
which we will refer to it throughout most of the rest of this text.

While large momentum flows prevent partons from being bound in hadrons,
they also imply that the strong coupling, and thus the probability of splitting is
relatively low. Intuitively, this would mean that cascades, which imply the occur-
rence of a large number of consecutive splittings, are rather unlikely. However,
quantum field theory (QFT) dictates that the probability of a splitting which con-
sists of a gluon being emitted by a quark or another gluon is proportional to a
factor

1

[(p+ q)−m2]
2 →

1

[2p · q]2
∼ 1

E2ω2 (1− cos θ)
2 , (4.2)

The arrow indicates the relativistic limit, which we will also assume throughout this
work, seeing that we are interested in highly-energetic particles. The pronumerals
p and q denote the four-momenta of the outgoing particles, m and E the mass
and energy of the emitting particle (in the final state), ω the energy of the emitted
particle, and θ the emission angle. This means that despite the relative weakness of
the coupling, the emission probability becomes large for soft and collinear emission
(referring to gluons that are emitted with low energy or at low angles respectively).
This implies the next limit that we will consider consistently, namely small emission
angles (the softness condition does not immediately imply any simplifications to
later calculations):

θ
!
� 1. (4.3)

The factor (4.2) diverges in the limits ω → 0 and θ → 0, collectively referred to
as infrared (IR) divergences. These make the splitting probability seem unphysical
at a first glance. However, in reality, this factor only represents a first approxi-
mation to the physical splitting probability, and the divergences disappear when
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taking into account corrections due to the exchange of virtual gluons between the
two outgoing particles [60]. In the calculations that follow later, we avoid the di-
vergences because the model implies natural cut-offs on the valid range of ω and θ
(which we we will incidentally express in terms of other variables).

Lastly, analytical calculations show that in the soft and collinear limits, factors
of the form ln2(k2/m2

q) dominate the splitting probabilities [60], where mq denotes
the mass of the quark that is involved in the spliting (if any). These imply a
separate cascading condition for quarks with mq > ΛQCD, namely1

t = k2
!
� m2

q, (4.4)

which incidentally confirms that we can assume the relativistic limit in our calcu-
lations.

With the knowledge of these conditions in hand, we proceed to the explicit
calculations of splitting probabilities.

4.1.2 General Strategy

Our overarching goal is to predict the spectrum of particles, that is, the types
and energies of particles that are produced in a cascade following the decay of
some heavy (dark matter) particle. This essentially means that we have to find
the probability that a certain type of particle with a certain energy is produced
in any given cascade. Basic QFT allows us to find a related quantity, namely
the probability of a specific realisation of a cascade (for example the one in figure
4.1a or the one in 4.1b) to occur. In other words, the probability that the exact
sequence of splittings indicated by either figure occurs after a decay can be found
using the Feynman rules (which we go into later in section 4.1.3). If we could find
the probabilities of every thinkable sequence of splittings to occur, these would
directly imply the probabilities for specific particles (with specific energies) to be
produced, and hence the cascade spectrum.

Clearly, this approach of finding the decay spectrum is impossible, not only
because a cascade in principle could consist of an infinite number of splittings, but
in particular because every splitting can divide the parent particle’s momentum in
an infinite number of ways. Nevertheless, it is this approach that we will in essence
try to simulate. To be specific, we will express the probability of a specific sequence
of splittings (for example the one in figure 4.1b) to occur given that an identical
sequence, except with one less splitting (figure 4.1a) has already occurred. We will
find that this probability does not depend on the previous history of the cascade,
but only on the parent particle and it’s momentum. Hence it is in principle simple
to simulate the cascades in a computer program, by splitting particles successively
and randomly, according to the probability distributions that we find. We should
obtain as spectrum similar to the theoretical cascade spectrum by adding the final
particles of a large number of thus simulated cascades.

1Throughout this chapter and this work, we impose the natural units, ~ = c = 1, implying
equivalence between mass, energy and momentum.
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a

(a)

a

b

c

(b)

Figure 4.1: Visualization of the Feynman diagrams of two parton cascades.
Straight lines represent quarks and curly lines represent gluons. The first quark is
implied to be one of a pair that is produced in a heavy-particle decay. The cascades
in a and b are identical, except that the quark denoted by a undergoes a splitting
in b. Given that all the involved momenta are otherwise identical between the two
cascades, the probability for the cascade in b to happen is the same as for the one
in a except for one factor that is contributed by the extra vertex between particles
a, b and c, and a’s promotion to an internal line. This extra factor may be viewed
as the probability of splitting of particle a.

It is worth pointing out again, that the successive splittings that we are talking
about are not physically observable, and are arguably only a common mathematical
trick from QFT that has been established to yield physical final results. The notion
that certain splittings happen before or after others only serves the flow of our
explanations, but does not imply that the cascade actually represents a sequence
of splittings that is ordered in time. The entire cascade is for all practical purposes
immediate. We thus also refer (as usual) to the intermediate particles as virtual
(or off-shell), as they do not represent physical particles.

As a simplifying approximation, we restrict ourselves to those Feynman dia-
grams in which particles only split, rather than recombining from time to time.
In other words, the process consists of a combination of tree-level splittings such
as the one in figure 4.2. In such a splitting, an initial particle a splits into two
particles b and c. The defining parameters of the splitting are the angles θb and
θc at which b and c are respectively emitted, and the virtuality ta of particle a.
Virtuality is for a general particle i defined as ti ≡ k2i −m2

i , where kµi and mi are
the particle’s four-momentum and mass respectively. It is thus a measure of how
off-shell the particle is (as for a physical particle, k2 is necessarily equal to m2).
In the relativistic approximation k2 � m2

i , and virtuality becomes equal to the
momentum flow,

ti ' k2i .

In addition to these parameters, the fraction of a’s energy Ea that is passed on
to b is important, an naturally the fraction that is passed on to c is as well. We
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θb

θc

c

b

a

ǫinµ

Figure 4.2: Visualization of a splitting starting from a quark a and producing
another quark b and a gluon c. Particles a and b are emitted at angles θb and
θc with respect to particle a’s momentum, which in general are not equal. The
direction of the gluon’s polarization vector parallel to the plane of the momenta,
εinµ , is indicated. It is implied that there is also a component εoutµ transverse to the
plane of the paper. It is assumed that this process happens as part of a cascade,
such as the one visualized in figure 4.1b.

denote these by z and 1− z respectively:

z =
Eb
Ea

1− z =
Ec
Ea

(4.5)

The parameters ta, θb, θc, and z are not independent, and each splitting is for our
purposes sufficiently parametrized by two of them.

Consider now the Feynman diagram of some (incomplete) cascade, and denote
the corresponding probability amplitude2 by An, where the index n denotes the
total number of splittings that have occurred so far. Assume then that one of the
particles at the end of that cascade splits; then the new Feynman diagram will be
the same as the old one, but with one extra vertex and internal line, as well as two
new external lines (this is illustrated, for example, by the transition from figure
4.1a to 4.1b). According to the Feynman rules, the new probability amplitude
will be An+1 = (V/t)An, where t is the virtuality of the particle that has split.
The factor 1/t corresponds to the extra internal line (commonly referred to as a
propagator), and V corresponds to the extra vertex (in the case of figure 4.2 this
is a fermion-gluon-fermion vertex). Hence,

|An+1|2 =
|V |2

t2
|An|2 (4.6)

2As opposed to the probability, which is by definition given by |An|2
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We can thus show (as we will do below) that that the probability for the last
splitting to happen, given the first n splittings, can be expressed as 3

dσn+1

dσn
=

dt

t
dz
αs
2π
P (z), (4.7)

where αs ≡ g2s/(4π), and gs is the QCD coupling constant4. The function P (z) is
referred to as a splitting function, and depends only on z, but has a different form
depending on the splitting vertex V . It is worth mentioning that the factor 1

t at
first sight implies that the splitting probability is suppressed at large virtualities,
thus making cascading less likely. However, this suppression is compensated for at
small values of z, as the splitting functions typically contain factors of 1

z and 1
1−z ,

which correspond to soft divergences.
In what follows, we will show that equation (4.7) is indeed true, referring to the

case in which a quark emits a gluon as in figure 4.2 to keep the discussion concrete.
The most important take-away will be that we will find the explicit form of the
splitting function P (z) in the process. Afterwards, we will also find the splitting
functions for the remaining cases, though only providing the details that set their
derivation apart from that of the first case. These derivations are crucial to this
work, as they will help us determine a similar formalism for electroweak cascading
in section 4.3.

4.1.3 Derivation of Splitting Probabilities

The Feynman amplitude corresponding to the quark-quark-gluon vertex is [61]

i gs T
a
ij γ

µ,

where γµ denotes the well-known gamma-matrices (or Dirac matrices). The scalar
T aij is the element (i, j) of the ath generator of the SU(3)-algebra (see for example
ref. [61]). Physically, a indicates the type of gluon that is emitted (thus spanning
the values 1,2,...,8), while the indices i and j indicate the colors of the two quarks
(thus spanning the values 1,2 and 3). These distinctions are however undetectable,
so the indices will simply be summed over later on (equation (4.19)).

According to conventional perturbation theory, the probability amplitude of the
splitting now becomes5

Vqqg = i gs T
a
ij ū

out
H ε∗µ γ

µ uinh (4.8)

Here, ε∗µ is the complex-conjugated polarization vector of the outgoing gluon. The

column-vector uinh is the Dirac spinor corresponding to the incoming fermion. The

3We express the probability as a ratio of cross sections, which is the same as the ratio between
the probability of the cascade to happen with only the first n splittings and for it to happen with
the extra splitting. It is useful to express the splitting probability in terms of cross sections, as
this allows a direct connection to Feynman amplitudes.

4The term coupling constant is used interchangeably for αs and gs. The latter is used more
commonly when talking about Feynman amplitudes, rather than physical probabilities or cross-
sections

5We use the Einstein summation convention.
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row-vector6 ūoutH ≡ uout,†H γ0 is the Dirac conjugate of the outgoing Dirac spinor.
The indices h and H denote the chiralities (left or right) of the respective fermions.
In the relativistic limit, right- and left-handed Fermions don’t mix, and we will
essentially treat them as separate particles throughout this chapter.

The explicit forms of the dirac spinors, in terms of a particle’s emission angle θ
and energy E are given as follows7:

uL =
√
E +m


− sin θ

2

eiφ cos θ2
|−→p |
E+m sin θ

2

− |
−→p |

E+me
iφ cos θ2

 −→
√
E


−θ/2

1
θ/2
−1


⇒ ūL =

√
E
(
− θ2 , 1, − θ2 , 1

)
(4.9)

uR =
√
E +m


cos θ2

eiφ sin θ
2

|−→p |
E+me

iφ cos θ2
|−→p |
E+m sin θ

2

 −→
√
E


1
θ/2
1
θ/2


⇒ ūR =

√
E
(
1, θ

2 , −1, − θ2
)

(4.10)

where we have indicated the limit of relativistic energies and small emission angles
(as discussed in section 4.1.1) by the thin right arrow. The subscripts L and R
indicate that the particle is left- or right-handed respectively. The parameters
m, |−→p | and φ stand respectively for the particle’s mass, three-momentum and
azimuthal direction of emission. The former two are cancelled out in the relativistic
limit (as then |−→p | ≈ E � m), while the θ-dependent part is simplified using
sin θ → θ and cos θ → 1.

In order to simplify calculations, we assume that the gluons have small vir-
tualities (compared to their squared energies), implying that their polarization
directions are perpendicular to their momenta. This lets us decompose any po-
larization state into two independent components: one that is in the plane of the
particle momenta, and one perpendicular to it. Referring back to figure 4.2, we
identify the gluon as particle c. The explicit forms of the respective (conjugated)
polarization vectors then become (using straight-forward geometry):

εin∗ =
[
0, 1, 0, −θc

]
⇒ εin∗µ γµ = − γ1 + θcγ

3
(4.11)

6The dagger symbol † denotes a Hermitian conjugate, that is, taking the transpose, followed
by the complex conjugate.

7We do not go through the derivation of these, but they are a well-known result from QFT
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εout∗ =
[
0, 0, 1, 0

]
⇒ εout∗µ γµ = − γ2

(4.12)

where the superscripts in and out indicate polarization respectively in and perpen-
dicular to the plane of particle momenta. We have chosen the z-axis to be parallel
with the parent particle’s momentum, and the x-axis to be in the plane of all the
particles’ momenta. We have also again used the small-angle approximation.

We now have the explicit forms of every factor in equation (4.8), so that the
calculation of the splitting amplitude comes down to straight-forward matrix mul-
tiplication. Doing this for the case where both the incoming and outgoing fermion
are right-handed, while the gluon is polarized in the plain of particle momenta,
yields (using the notation in figure 4.2):

Vqqg(R,R, in) = i gs T
a
ij ūR(Eb, θb) ε

in∗
µ γµ uR(Ea, 0) (4.13)

= gs T
a
ij

√
EaEb (θb + 2θc) (4.14)

where Ea and Eb refer to the energies of particles a (incoming fermion) and b
(outgoing fermion) respectively.

Equation (4.14) is so far written in terms of Ea, Eb, θb and θc, but we want
to write it instead in terms of t and z (as indicated by equation (4.7), which we
are aiming to derive). We therefore take a short detour to find the relationships
between these variables. The first of these is of course, by definition, z = Eb/Ea.

Next, we use the fact that then momentum of the two particles in the x-direction
must cancel. With the small-angle approximation, we have:

Ebθb = Ecθc ⇒ θb
1− z

=
θc
z

We then define the total angle θ,

θ ≡ θb + θc = θb

(
1 +

z

1− z

)
=

θb
1− z

,

which gives us the next important relationship:

θ =
θb

1− z
=
θc
z
. (4.15)

Lastly, we demonstrate these variables’ relationship to the virtuality t = k2a, start-
ing with the fact that the four-momentum ka of the parent particle a must be equal
to the sum of the four momenta kb and kc of the produced particles:

t = (kb + kc)
2

= k2b + k2c + 2kb · kc
' 2kb · kc
= 2(EbEc −

−→
kb ·
−→
kc)

= 2

(
EbEc − EbEc

(
1− θ2

2

))
,



4.1. PARTON CASCADES 27

and thus,

t = z(1− z)E2
aθ

2 (4.16)

In the third line we used the relativistic approximation and assumed that that the
virtualities of the new particles are much lower than that of the parent particle
(see section 4.2), i.e.

k2b = tb � ta, k2c = tc � ta.

In the fifth line we used the small-angle approximation cos θ ≈ 1− θ2

2 .
We are now able to rewrite equation (4.14) in terms of z and t. We first use

the definition z = Ea/Eb and equation (4.15) to get

Vqqg(R,R, in) = igsT
a
ij

√
z[1 + z]Eaθ.

We then take the modulus of Vqgq, and use equation (4.16) to get

|Vqqg|2

t2
=
g2s
t
· 4

3

(1 + z)2

1− z
(4.17)

≡ g2s
t
· F (z). (4.18)

As previously indicated, we have summed over i, j and a in the coefficient |T aij |2:∑
{a,i,j}

|T aij |2 = 4 (4.19)

Since the index i represents one of three possible colors of the parent quark a, this
sum triple-counts three practically identical splittings that we can’t distinguish,
hence the factor 1

3 in equation (4.18).
In equation (4.18), we implicitly defined the function F (z) as the z-dependent

part of the right-hand side in (4.17). This was however done for the specific case
where both quarks are right-handed, and the gluon polarized in the plane of the
paper. When calculating |Vqqg|2 for any other combination of the particle states
(left- or right handed, in- or out-polarized), the result is exactly the same as for
equation (4.18), except with a different form of F (z). The form of F (z) for each
combination of states is summarized in table 4.1.

In practice we are not interested in the polarizations of the particles that are
produced in a cascade. At the same time, we treat left- and right-handed fermions
as though they were different types of particles (which table 4.1 confirms that we
can do, since the splitting probability is zero if the in- and outgoing quarks don’t
have matching chiralities). Hence, we take the average of equation (4.18) over
the two polarization states, but keeping configurations with different chiralities
separate. We hence get:

|Vqqg|2

t
=

1

2
· 1

2
· 4 · g2sP (z). (4.20)
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Table 4.1: Explicit forms of the function F (z) in equation (4.18), corresponding
to a given combination of the states of particles a, b and c (see figure 4.2). These
forms correspond to the emission of a gluon by a quark (q → qg)

.
a b c F (z)
R R in (4/3)(1 + z)2/(1− z)
R R out (4/3)(1− z)2/(1− z)
L L in (4/3)(1 + z)2/(1− z)
L L out (4/3)(1− z)2/(1− z)
R L in 0
R L out 0
L R in 0
L R out 0

Here, the first factor of 1
2 comes from taking the average of polarization states.

The second factor 1
2 , and the following factor 4 is a matter of convention, and we

compensate them by including a factor 2 and a factor 1
4 in the definitino of the

splitting function P (z) (which we introduced in section 4.1.2):

P (z) ≡ 2 · 1

4
·
∑

F (z). (4.21)

The summation is over all the combinations of final particle states that may come
from a given state of a, and which we do not distinguish. In the present case i.e.
where a gluon is emitted by a parent quark, these are all of the configurations (two
in total) where the two quarks are left handed. We might as well have chosen the
chirality to be right-handed (R), which would have given us the same result. The
splitting function for this particular hence has the form

Pqqg(z) =
4

3

1 + z2

1− z
. (4.22)

This splitting function diverges in the limit 1− z → 0, which is as expected, since
this corresponds to the emission of very low-energy gluons (see section 4.1.1).

We can now determine the probability that a quark with virtuality t emits a
gluon that is characterized by the energy fraction z. By the definition of Feynman
amplitudes, this probability can be expressed as

dσn+1

dσn
=
|An+1|2

|An|2
dΦn+1

dΦn
. (4.23)

The factor |An+1|2/|An|2 is what we have anticipated to find from the discussion in
section 4.1.2, and can easily be determined from (4.6). The factors dΦn and dΦn+1

are the respective phase space volumes of the parent particle a and the system
of particles {b, c} (the second factor on the right thus expresses how many more
momentum-states the produced system can have, compared to the parent particle).
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Conventionally, their Lorentz-invariant expressions satisfy

dΦn ∝
d3ka

(2π)32Ea
(4.24)

(4.25)

dΦn+1 ∝
d3kb

(2π)32Eb

d3kc
(2π)32Ec

(4.26)

=
d3kb

(2π)32Eb

1

1− z
d3ka

(2π)32Ea
(4.27)

= dΦn
1

2(2π)3
1

1− z
Eb θb dθb dEb dφ (4.28)

= dΦn
1

4(2π)3
dt dz dφ, (4.29)

where φ is the azimuthal angle around the direction of the momentum of particle
a. We used the fact that

d3kc = d3(ka − kb) = d3ka

for constant kb. Also,

d3kb = |
−→
kb |2 sin θb dEb dθb dφ −→ E2

b θb dEb dθb dφ,

where we again invoked the relativistic and small-angle limits. Lastly, we made a
change of variables from Eb and θb to t and z. The easiest way to do this is by the
Jacobian method using equations (4.15) and (4.16), as well as z ≡ Eb/Ea.

Since there are no variations over the azimuthal angle φ, we can integrate it
out, getting a factor 2π. Per convention, we absorb the factor 2 into the splitting
function, hence the factor 2 in (4.21). With this, equation (4.23) can now easily be
rewritten to get exactly equation (4.7):

dσn+1

dσn
=

dt

t
dz
αs
2π
P (z),

where, again, αs ≡ g2s/(4π).
The other two types of splittings that can happen in the QCD cascade are pair

production (g → qq) and a triple-gluon splitting (g → gg). The splitting probabil-
ities can be expressed by equation (4.7) as before, only the splitting function P (z)
is different. We will go through the derivation of the other splitting functions here,
though focusing only on the details that set it apart from the derivation that we
just performed. We continue to refer to the particles as a, b and c and use figure
4.2 as reference, with the understanding that different particle types are involved.

For the triple gluon splitting (g → gg), we calculate the splitting function on
basis of the triple gluon vertex amplitude, which is 8 [61]

Vggg = gsf
abc
[
gσρ (ka − kb)µ + gρµ (kb − kc)σ + gµσ (kc − ka)ρ

]
εσaε

ρ∗
b ε

µ∗
c , (4.30)

8As always, the Einstein summation convention is implied.
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where gs is the strong coupling constant, gαβ is the Minkowski metric, and ki
is the four-momentum of particle i (which we define to be positive if pointing
inwards to the vertex, and negative if outwards). The factors of the form εαi
represent the polarization vectors of the particles i. The factor f lmn is a structure
constant of the SU(3) algebra (see for example ref. [61]), and the indices {l,m, n}
are determined by the types of the interacting gluons (they thus span the values
1, 2, ..., 8). Since the gluon types are inconsequential for our purposes, we will
simply sum the (squared) structure constant over these indices, yielding∑

{l,m,n}

|f lmn|2 ≡ CA (4.31)

Note that the summation assumes that the incoming gluon state (that is, one of
the indices (l,m, n)) is fixed, so as to not triple-count the splitting probability.
The factor CA is called the color factor, and it can be shown that it is, for a given
N -dimensional Lie group SU(N), equal to N 9 [60], in this case 3.

Using the small angle approximations cos θ ∼ 1 and sin θ ∼ θ, as well as the
relativistic approximation E2 = |~p|2, we have

εina =
[
0, 1, 0, 0

]
ka =

[
Ea, 0, 0, Ea

]
(4.32)

εinb =
[
0, 1, 0, θb

]
kb =

[
Eb, −Ebθb, 0, Eb

]
(4.33)

εinc =
[
0, 1, 0, −θc

]
kc =

[
Eb, Ecθc, 0, Ec

]
(4.34)

εouta = εoutb = εoutc =
[
0, 0, 1, 0

]
, (4.35)

and we use momentum conservation, i.e. ka = −kb − kc, to eliminate ka from the
equation.

Calculating explicitly, we again get a vertex amplitude in the form of equation
(4.18), though with other forms of the function F (z). We summarize the latter in
table 4.2. In this case, we do not distinguish between any of the state configurations,
and must therefore take the average over all four of them (we do not consider
configurations which don’t contribute to the overall probability, i.e. with F (z) = 0),
introducing a factor 1

4 in the splitting probability.
Hence, using again definition (4.21), we get the splitting function

Pggg(z) = CA

[
z(1− z) +

z

1− z
+

1− z
z

]
. (4.36)

This clearly diverges in the limits z → 0 and 1−z → 0, indicating as expected that
the splitting probability becomes large if either gluon is emitted with a low energy.

The third possible splitting channel is pair production, i.e. the production of
a quark and an anti-quark10 by a gluon (g → qq). The fundamental Feynman

9As always, the Einstein summation convention is implied.
10in general we don’t distinguish between particles and their anti-particles in this work, and

will (for example) refer to quarks and anti-quarks collectively as quarks.
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Table 4.2: Same as table 4.1, except that all of the particles involved are now
gluons (g → gg).

a b c F (z)

in in in 4CA

[
z(1− z) + z

1−z + 1−z
z

]
out in in 0
in out out 4CAz(1− z)

out out out 0
in in out 4CA

1−z
z

out in out 0
in out in 0

out out in 4CA
1

1−z

amplitude is that of a gluon-quark-quark vertex (i.e. igsT
a
ijγ

µ), just as in the first
splitting that we looked at (gluon emission by a quark). However, the present
splitting involves an outgoing anti-quark in place of an incoming quark. Hence, we
need to make use of the (conjugate) Dirac spinors for outgoing anti-fermions v̄outh

in place of those for incoming fermions ūinh . The former are given by

vL =
√
E +m


|−→p |
E+m sin θ

2

− |
−→p |

E+me
iφ cos θ2

− sin θ
2

eiφ cos θ2

 −→
√
E


θ/2
−1
−θ/2

1

 (4.37)

⇒ v̄L =
√
E
(
θ
2 , −1, θ

2 , −1
)

(4.38)

vR =
√
E +m


|−→p |
E+m cos θ2
|−→p |
E+me

iφ sin θ
2

eiφ cos θ2
sin θ

2

 −→
√
E


1
θ/2
1
θ/2

 (4.39)

⇒ v̄R =
√
E
(
1, θ

2 , −1, − θ2
)

(4.40)

where we have again taken the limit of small emission angles, and relativistic en-
ergies. To be clear, vL corresponds to the anti-particle of a left handed quark (and
correspondingly for vR). The vertex amplitude for pair production is then

Vgqq = i gs T
a
ij ū

out
H εµ γ

µ vouth (4.41)

where the notation is the same as in equation (4.8). The polarization vector is
no longer complex conjugated, since it corresponds to an incoming gluon, not an
outgoing one.
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We again assume that the involved gluon is polarized in a direction perpendic-
ular to its direction of motion, and we thus have:

εin =
[
0, 1, 0, 0

]
⇒ εinµ γ

µ = −γ1
εout =

[
0, 0, 1, 0

]
⇒ εoutµ γµ = −γ2

(4.42)

Doing the matrix multiplications in (4.41) explicitly and expressing the results
in terms of z and t as before, we again get the results in the same form as in (4.18).
The corresponding functions F (z) for this case are given in table 4.3.

Table 4.3: Same as tables 4.1 and 4.2, except now it concerns pair production
(g → qq).

a b c F (z)
in R R (1/2)(1− 2z)2

out R R (1/2)
in L L (1/2)(1− 2z)2

out L L (1/2)
in R L 0

out R L 0
in L R 0

out L R 0

In the same way as we had to include a factor 1
3 in the splitting probability of

gluon emission, we have included a factor 1
8 for pair production in F (z) here, as

the incoming gluon can have eight different colors (which we effectively sum over
when we again sum over the indices of T aij).

Now, by averaging over polarization states, but keeping chiralities separate, we
get the splitting function for pair production:

Pgqq(z) =
1

4
[z2 + (1− z)2]. (4.43)

It is important to note that this is the splitting function for the pair production of
either right- or left handed fermions, not both together (which is normally presented
in other literature, and has a coefficient 1

2 instead). We also point out that there
are no IR divergences like in the other splitting functions, which implies that pair
production does not play a significant role in QCD cascades (or otherwise).

We have thus derived all of the splitting functions involved in this model of a
QCD cascade. Equation (4.7) hence tells us the probability that a particle with
virtuality t splits into two new particles, where one receives a fraction z of the
energy. The same approach can be adapted for cascades involving electroweak
interactions, which we will discuss in section 4.3.2. Before that however, we must
discuss how the virtuality t evolves with each split.
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4.2 Evolution of the Virtuality

As we have indicated earlier, the overarching aim of this chapter is to find ex-
pressions for the probability that a particle splits as part of a cascade, which we
want to use in a computer simulation to emulate successive splittings and thus a
cascade. In the previous sections, we introduced and derived equation (4.7), which
we reproduce here for the reader’s convenience:

dσn+1

dσn
=

dt

t
dz
αs
2π
P (z),

This equation implies that for any given splitting, where the parent particle has
a given virtuality t, the probability that the energy fraction that is passed on to
one of the new particles is equal to z is proportional to P (z). This implies in turn
that if it is given that some particle does split, the relative probability that it splits
into a particular pair of new particles (that is, into a particular splitting channel)
is given by the integral of (4.7) (with the appropriate splitting function P (z)) over
all the possible values of z. What is not immediately apparent from equation
(4.7) is how the virtualities of new particles are distributed. This is because we
so far have implied that the variable t, which refers to the virtuality of the parent
particle, is determined before the splitting occurs. In truth, we determine it only
when the split occurs (which it does not always, since the cascade must stop at some
point). Naively then, equation (4.7) says that the splitting probability is completely
independent of the parent-particle’s state, or the previous history of the cascade.
We explain in this section why this is not true11, and how to realistically model the
probability distribution of the parent particle’s virtuality. In the process, we will
define a condition according to which a particle “choses” to split or not to split.

To begin with, we look at two conditions that are commonly assumed in similar
models of particle cascades. First is the assumption that the virtuality is strongly
ordered in the cascade [62], meaning that the virtuality of any produced particle
is much smaller than that of its parent particle, i.e.

told � tnew (4.44)

Technically speaking, we assume that cascades that obey this condition are much
more likely than otherwise. This can be most easily be understood by considering
that we already assumed t� E2 in section 4.1.3 (see the first discussion on gluon
polarizations), and the energy E is ordered due to energy conservation. In addition,
lower virtualites are in general more likely due to the 1

t -dependence of equation
(4.7).

Secondly, we impose angular ordering of the cascade, meaning that fore each
splitting, the angle between two produced particles is always smaller than what it
was for the previous splitting, i.e.

θold > θnew (4.45)

11We mentioned in section 4.1.2 that the splitting probability was independent of the previous
history of the cascade. This was however assuming that the virtuality of the parent particle had
already been determined
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This condition is actually a consequence of our invocation of the soft limit (see
section 4.1.1), and effectively suppresses the otherwise exaggerated emission of low-
energy gluons. It is related to the notion that low-energy gluons (i.e. with large
de Broglie wavelengths) can only resolve the colour charges of two other gluons if
the former is emitted at a smaller angle than the angle between the latter. The
exact reasoning and demonstration of these conditions is much more involved, and
we refer to the discussions in reference [62]. For the moment, we will only adopt
virtuality ordering, to simplify the discussion. We will however adopt angular
ordering by the end of the section, as this has been demonstrated to produce more
realistic results simulations of parton cascades [62].

Let us consider a particle b that is produced in some splitting, and whose
virtuality t we want to know. We know from virtuality ordering that t < ta, where
ta is the virtuality of its parent particle, and acts as a maximum value for t. Despite
not knowing the virtuality of b, let us consider the question of whether b will split
or not. We can find the probability12 that b does not split nor has a virtuality t
or above. If we denote this probability of not splitting as N(t), it must satisfy

dN

dt
= Nf(t), (4.46)

where f(t) is the probability of that b splits given that it has virtuality t. This is
analogous to the nuclear decay problem, in which we would be interested in the
probability that an unstable nucleous survives until some time t (although we would
then have a minus-sign in equation (4.46), as time is inherently increasing). From
section 4.1.1 we know that particle b cannot split if it’s virtuality is below some
minimal value tmin. Thus, N(tmin) represents the probability that the particle does
not split at all, meaning that it is physical (not virtual) and forms part of the final
spectrum of particles that we are trying to determine. The probability N(tmin),
which also depends on the value of ta, is often referred to as the Sudakov form
factor, and denoted by ∆(ta).

Keeping with the analogy of nuclear decay, we say that the probability Dsplit

that particle b does split with some virtuality t is given by N(t), times the proba-
bility f(t) that it does split given that it has virtuality t:

Dsplit(t) = N(t)f(t); f(t) =
1

t

∑
i

∫ zmax

zmin

dz
αi
2π
Pi(z), (4.47)

where the index i denotes the splitting channels that are possible for a given parent
particle. The expression for f(t) follows directly from equation (4.7), taking into
account all the possible z-values that parametrize any given splitting. The argu-
ment for equation 4.47 is somewhat more subtle than in the case of nuclear decay,
as virtuality is a property of a particle, not a continuously increasing variable like
time. It is maybe best understood by going back to the discussion in section 4.1.2.
There we explained that the notion that a particle has a certain probability of

12Strictly speaking, we mean the probability density, as we are talking about probabilities
that are functions of the continuous variable t. We drop this technicality in favour of a simpler
discussion.
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splitting, really means that we consider how the probability for an entire cascade
changes if we add one more branch to it (as for example in the transition from figure
4.1a to figure 4.1b). Equation (4.47) hence expresses how the cascade’s probability
changes if we add a new branch of particles (while assigning a previously unknown
virtuality to the parent particle) without first adding other branches in-between.
In other words, equation (4.7) expresses the probability that a given splitting hap-
pens at any point in the cascade, while equation (4.47) expresses the probability
that the splitting happens next. As we simulate the cascade by splitting particles
in sequence, we use the latter equation to determine the new virtualities at each
point in the cascade.

To find an explicit expression for N(t), we simply integrate equation (4.46) from
ta down to t:

N(t) = exp

{
−
∫ ta

t

dtf(t)

}
(4.48)

What remains is to apply the condition of angular ordering, which will conve-
niently provide us with suitable cut-off values for the variable z, so that we avoid
IR divergences. Motivated by angular ordering, we make a change of variables from
z and t, to z and t̃, the latter of which is defined by

t̃ ≡ E2
aθ

2
a, (4.49)

where Ea is the energy of the parent particle, and θa is the angle between the two
product particles. With this change of variables, equation (4.7) becomes (using
equation (4.16) and the fact that t and z are independent variables)

dσn+1

dσn
=

dt̃

t̃
dz
αs
2π
P (z), (4.50)

Thus, the variable t̃ plays mostly the same role as the variable t has done so far in
this discussion. However, the maximum value of t̃ changes significantly. If particle b
has energy Eb and its products are separated by an angle θb, then angular ordering
implies

θ2a > θ2b (4.51)

⇒ E2
aθ

2
a > E2

aθ
2
b (4.52)

⇒ z2E2
aθ

2
a > Ebθ

2
b (4.53)

⇒ z2t̃a > t̃b (4.54)

As for the minimum value of t̃, equation (4.16) becomes

t = z(1− z)t̃ ≤ 1

4
t̃. (4.55)

It is thus natural to set the minimum value of t̃ to

t̃min = 4tmin, (4.56)
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so that no value of t̃ will violate the lower bound on the virtuality t. Thus, from
equation (4.54), we have that the “choice” of z and ta for any splitting must satisfy

z2t̃a
!
> 4tmin,

which immediately implies the minimum possible value of z when particle a splits
(and by symmetry, the maximum value as well):

z
!
>

√
4tmin

4t̃
=

√
tmin

t̃
≡ zmin ⇒ zmax ≡ 1−

√
tmin

t̃
. (4.57)

The factor 4 in the denominator is necessary to ensure that zmin is always less than
0.5 (as dictated by the conditions zmin < zmax and zmin + zmax = 1).

To simplify discussion from here on, we refer to t̃ as the virtuality, and drop the
tilde accordingly. Thus, to summarize, every time a particle a splits, its virtuality
is subject to the distribution

Dsplit(t) = N(t)f(t); f(t) =
1

t

∑
i

∫ zmax

zmin

dz
αi
2π
Pi(z), (4.58)

as before. However, N(t) is now given by

N(t) = exp

{
−
∫ tpz

2
a

t

dtf(t)

}
, (4.59)

where tp denotes the virtuality of a’s parent particle, and za denotes the fraction of
energy that a received from its parent. In the case of the second particle that was
produced simultaneously with a, the value of za is naturally replaced by 1 − za.
The cascade stops if a sample from the distribution (4.58) yields a value that is
lower than 4tmin, where tmin is the minimum virtuality in the original meaning,
that is, as it was defined in section 4.1.1.

We point out in the end that angular ordering also implies that the argument of
the coupling α (we drop the subscript s, as this pertains to the couplings for both
the strong and electroweak interactions) becomes z2(1− z)2t for each splitting, i.e.

α = α
[
z2(1− z)2t

]
, (4.60)

where t is the virtuality in the modified sense (i.e. t̃). We do not go into the
reasoning behind this, and refer instead to reference [62].

4.3 Extension to Electroweak Cascading

In section 4 we described a model of parton cascades, i.e. cascades consisting
of splittings that happen exclusively via the strong interaction. We now discuss
how to take into account electroweak interactions as well, which will allow us to
model the cascading of the other particles of the Standard Model (rather than only
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quarks and gluons), except the Higgs particle. It turns out that the formalism
for electroweak cascades can be expressed in a way that is mostly the same as for
QCD cascades, because splitting probabilities can still be expressed in the form
of of equation (4.7). The only differences are in effect that the splitting functions
P (z) are slightly different (though only up to some constants), and in place of the
strong coupling αs we must naturally use the electroweak coupling αew (see for
example [63]).

We ignore the Higgs for simplification. We expect that the inclusion of the Higgs
particle would not play a significant role in the cascade, because it has been shown
[8] that IR singularities do not appear in its splitting functions, thus rendering the
probabilities of splittings that involve the Higgs particle insignificant compared to
others. This is especially the case because the strength of interactions involving
Higgs particles are determined by the interacting particles’ masses, while we are
interested in high-energy scenarios, in which particles effectively behave as though
they were massless.

In what follows below, we will discuss the conditions under which we expect
electroweak cascades to occur. We will then derive the splitting functions for
electroweak splittings, in which we rely heavily on the derivations in sections 4.1.3.

4.3.1 Conditions for Electroweak Cascades

In section 4.1.1 we explained that parton cascades are possible at large energies,
because the collinear and soft limits lead to diverging splitting probabilities which
compensate the relative smallness of the strong coupling. In the same way, it
has been found [8] that when carriers of the electroweak interaction (W bosons,
Z bosons, and photons) are emitted at small angles or low energies, this also
leads to diverging splitting probabilities. Similarly as in the QCD case, these
divergences lead to factors in the splitting interaction probabilities proportional

to ln2 k2

m2
i

where k2 is the squared four-momentum of the parent particle, and mi

denotes the dominating mass of the particles that are produced in a splitting.
This sets the lower bound on virtualities at which a particle may split (via the
electroweak interaction) to the order of m2

i , just like in the case of heavy quarks in
section 4.1.1.

As we have mentioned previously, in this work we are focusing on cascades
initiated by the decay of heavy (dark matter) particles. Denoting the mass of such
a particle by mX , the upper bound on the virtualities of the first two particles in
the cascade is given by (mX/2)2, as the virtuality t is related to energy E and
momentum k2 by

t ' E2 − k2 ≤ E2 =
m2
x

4
.

The mass-energy of the dark matter particle is divided equally among the initial
decay products because we assume the dark matter to be cold, or non-relativistic
(see section 3.2), thus having much lower kinetic energy than it has mass. Assuming
that the dark matter particle X initially splits into two neutrinos (X → νν), the
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cascading probability can be estimated by finding

R =
Γ(X → ννZ)

Γ(X → νν)
, (4.61)

that is, the ratio of the probability that the decay produces at least one Z boson to
that of it producing merely the two initial neutrinos. This ratio is hence dependent
on the logarithm ln2(m2

X/m
2
Z) (where mZ is the Z boson’s mass), and the authors

of reference [8] find that R becomes of the order of 0.5 for masses of order 106 GeV.
We use this criterion to determine the point at which significant cascading occurs,
and consider thus dark matter masses of 106 GeV and higher throughout this work.
For comparison, the Large Hadron Collider has achieved a maximum collision en-
ergy of the order 104 GeV, making it at present unrealistic to observe electroweak
cascading under laboratory conditions.

4.3.2 Splitting Functions for Electroweak Cascades

Having already derived the splitting functions for QCD cascades, it is rather
straight-forward to find the splitting functions for electroweak cascades by inspec-
tion of the electroweak Feynman amplitudes. This is because each electroweak
amplitude is the same as a corresponding amplitude in QCD, up to some constant.
Hence it is clear from the derivations of the splitting functions in section 4.1.3, that
the electroweak splitting functions will only differ from the ones in QCD by some
related constants. This will become clear in the discussion that follows.

We summarize the derivation of the electroweak splitting functions below. The
Feynman amplitudes are taken from [61]. We ignore any signs or i-factors, as these
would disappear in the rigorous derivation (see section 4.1.3) when the modulus of
the splitting amplitude is taken.

We derive first the splitting functions for pair production by Z-bosons (Z →
ff), where the produced pari can be any fermion. We use this derivation as
a detailed example, allowing us to simplify the remaining derivations thereafter.
The vertex amplitude for this splitting is

VZff =
g

cos θW
γµ

[(
1

2
τ3 −Q sin2 θW

)
1− γ5

2
−Q

(
sin2 θW

) 1− γ5

2

]
. (4.62)

Here, Q is the fermions’ charge (relative to the elementary charge); the sign is that
of the “ordinary” particle as opposed to the anti-particle. For example, Q = −1
for electrons and positrons, and Q = 2

3 for up and anti-up quarks. The parameter
g is the weak coupling constant, analogous to the strong coupling constant gs. The
parameter θW is the Weinberg mixing angle, and is defined by cos θW = mW /mZ ,
where mW and mZ are the masses of the W and Z bosons respectively. The 2 by
2 matrix τ3 is the Pauli matrix in the z-direction, which is explicitly given by

τ3 =

(
1 0
0 −1

)
,
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and acts on a doublet of the form (
νl
l

)
or (

qu
qd

)
.

Here, l is the spinor of a lepton (electron, muon or tau) and νl the spinor of its
corresponding neutrino. The spinors qu and qd represent pairs of up- and down-like
quarks (i.e. quarks with 2

3 or − 1
3 of an elementary charge). In practice, we may

pretend that the matrix τ3 in equation (4.62) takes a value 1 if the split produces
neutrinos or up-like quarks, and −1 otherwise.

Having written the vertex amplitude in the form of (4.62), we can identify the
chiral projection operators for left-handed fermions PL ≡ (1− γ5)/2 and for right-
handed fermions PR ≡ (1 + γ5)/2. This effectively means that the amplitude can
be separated into two terms: one proportional to PL, and one to PR. The former
term is the effective vertex amplitude for a splitting of type Z → LL, i.e. pair
production for left-handed fermions:

VZLL =
g

cos θW
γµ

(
1

2
τ3 −Q sin2 θW

)
. (4.63)

The other term is the effective vertex amplitude for a splitting of type Z → RR
where the fermions are right-handed:

VZRR =
g

cos θW
γµQ sin2 θW . (4.64)

In the relativistic limit, left- and right-handed fermions do not mix, and essentially
behave like separate kinds of particles. We see that the amplitudes (4.63) and (4.64)
have the same form as the amplitude for pair production by gluons (g → qq), which
was igsT

a
ijγ

µ, where gs is the strong coupling constant). To be clear, the expressions
have the same form in the sense that they are proportional to γµ.

The derivations of the splitting functions for the splittings Z → LL and Z →
RR now proceed in the exact same way as for g → qq. We short-circuit the
derivation for left-handed pair production as follows:

1. We multiply Pgqq(z) (equation (4.43)) by 2 in order to compensate for the
fact that the generator T aij contributed an overall factor of 4

8 = 1
2 to Pgqq(z).

2. We multiply the result by the square of the scalar coefficient in VZLL (without
the coupling constant g), i.e. 1

cos θW

(
1
2τ3 −Q sin2 θW

)
.

Hence, we get

P (z)ZLL =
1

2

1

cos2 θW

(
1

2
τ3 −Q sin2 θW

)2 [
z2 + (1− z)2

]
, (4.65)

The derivation of any other pair-producing splitting can be performed in the same
way: one multiplies Pgqq(z) by 2, and then by the squared scalar coefficient of
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the vertex amplitude. The coupling constant g gives rise to the factor αew in the
splitting probability (outside the splitting function) and is therefore left out from
this scalar factor. The splitting function for right-handed pair-production hence
becomes:

P (z)ZRR =
1

2

1

cos2 θW

(
Q sin2 θW

)2 [
z2 + (1− z)2

]
. (4.66)

In the same way, we find now the splitting functions for Z boson-emission
(f → fZ). Since the vertex amplitude for such a splitting is also given by (4.62),
the same arguments apply, only now we look to gluon emission (q → qg) as the
analogy from QCD. We find the splitting functions for emission by left-handed
fermions as follows:

1. We multiply Pqqg(z) (equation (4.22)) by 3/4 in order to compensate for the
fact that the generator T aij contributed an overall factor of 4

3 to Pqqg(z).

2. We multiply the result by the square of the scalar coefficient in VZLL (without
the coupling constant g), i.e. 1

cos θW

(
1
2τ3 −Q sin2 θW

)
.

Thus, we get

P (z)LLZ =
1

cos2 θW

(
1

2
τ3 −Q sin2 θW

)2 [
1 + z2

1− z

]
, (4.67)

for emission by left-handed fermions, and

P (z)RRZ =
1

cos2 θW

(
Q sin2 θW

)2 [1 + z2

1− z

]
. (4.68)

for right-handed fermions.
The same procedure applies to finding the splitting functions for interactions

with W -bosons. In contrast to Z bosons, the former must interact with a pair of
fermions belonging to the same doublet (see above). In addition, no interactions
between W bosons and right-handed fermions are possible. Nevertheless, the fa-
miliar form of the vertex amplitudes mean that we can apply the same procedure
as above. Starting with pair-production, the vertex amplitudes are

VWll =
g√
2
γµPL, (4.69)

for leptons, and

VWqq =
g√
2
Cijγ

µPL, (4.70)

for quarks. The chiral projector PL ≡ (1 − γ5)/2 implies that any multiplication
with right-handed spinors will render the amplitudes equal to 0. The factor Cij in
(4.70) represents an element of the Cabbibo-Kobayashi-Maskawa (CKM) matrix.
The factor arises because the quark mass eigenstates are a superposition of the



4.3. EXTENSION TO ELECTROWEAK CASCADING 41

quark eigenstates of the weak interaction. The index i refers to the flavour of
the up-like quark that is produced in the split, and the element Cij denotes the
probability amplitude that the down-like quark will be of flavour j. Apart from
these factors, the amplitudes clearly have the same form as before. Hence we find
the splitting functions following the same procedure as for the case Z → LL. For
lepton production (W → νl) we get

P (z)Wll =
1

2
· 1

2

[
z2 + (1− z)2

]
, (4.71)

while for quark production (W → quqd) we get

P (z)Wqq =
1

2
· 1

2
|Cij |2

[
z2 + (1− z)2

]
. (4.72)

The splitting functions for W boson emission f → fW follow straight-forwardly
from the procedure that we described for the splitting L → LZ. For emission by
leptons (ν → lW or l→ νW ) we get

P (z)llW =
1

2

[
1 + z2

1− z

]
, (4.73)

and for emission by quarks (qu → qdW or qd → quW ) we get

P (z)qqW =
1

2
|Cij |2

[
1 + z2

1− z

]
. (4.74)

The remaining splitting-types don’t distinguish between left- and right handed
particles, as they all constitute triple-boson interactions or photon emission (which
is chirality-independent). The tripple gluon splittings are W -production by a Z
boson (Z →WW ), Z-emission by W bosons (W →WZ), and photon emission by
W bosons (W →Wγ) (bremsstrahlung). The vertex amplitudes for these splittings
are

VZWW = g cos θW

[
gσρ (kW+ − kW−)µ + gρµ

(
kW− − kZ

)
σ

+ gµσ
(
kZ − kW+

)
ρ

]
,

(4.75)

for the first two, and

VWWγ = e
[
gσρ (kW+ − kW−)µ + gρµ

(
kW− − kZ

)
σ

+ gµσ
(
kZ − kW+

)
ρ

]
, (4.76)

for the latter. Here, gαβ is the Minkowski metric, and ki refers to the 4-momentum
of particle i (the positive direction is defined towards the vertex). The electric
coupling constant e is equal to g sin θW . These vertices clearly have the same form
as in the triple-gluon case g → gg (equation (4.30)) up to the couplings and some
constants, and their splitting functions can be derived in the exact same way as
Pggg(z) (equation (4.36)). We must only eliminate the factor of 3 that arises from
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the coefficient f lmn for the triple gluon vertex, and include the squared coefficient
of the vertex amplitudes above. We thus get the splitting functions

PZWW (z) = cos2 θW

[
z(1− z) +

z

1− z
+

1− z
z

]
, (4.77)

PWWZ(z) = cos2 θW

[
z(1− z) +

z

1− z
+

1− z
z

]
, (4.78)

and

PWWA(z) = sin2 θW

[
z(1− z) +

z

1− z
+

1− z
z

]
. (4.79)

Now the only remaining splitting that we consider is photon-emission (bremsstrahlung)
by charged fermions (f → fγ). We do not consider pair production by photons
(γ → ff) because this does not occur in vacuum. This is because it is impossible
to satisfy energy-momentum conservations without additional particle interactions.
The vertex amplitude of photon emission has the form

Vffγ = g(sin θW )Qγµ, (4.80)

where Q is the electric charge (in units of the elementary charge) as before. This
vertex has, again, the same form as the one for gluon emission (q → qg). Hence,
applying the short-circuit derivation from before, the splitting functions become

P (z)ffγ = sin2 θWQ
2

[
1 + z2

1− z

]
. (4.81)

We have thus determined all of the splitting functions that we need to describe
electroweak interactions between standard model particles.

4.4 Decay and Hadronization

So far, we have discussed how a cascade develops from the initial decay of a dark
matter particle, to producing a spectrum of on-shell (that is, physical) particles.
However, this spectrum does not correspond to what we expect to observe, because
a number of these on-shell particles are themselves unstable, and decay to produce
a secondary spectrum. In addition, quarks and gluons don not exist as free particles
at low energies (as mentioned in section 4.1.1), but hadronize to produce mesons
(mostly pions) and some nucleons. Mesons are also unstable, and decay to produce
further neutrinos, photons and electrons. We summarize here how to treat these
decays in the context of our model of particle cascades, so that they may be taken
into account in our simulations.
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4.4.1 Decay of W Bosons, Z Bosons and Top Quarks

The decay of W bosons, Z bosons and top quarks is straight-forward to model,
as these are particles with masses that are significantly higher than those of their
decay products. This means that we can essentially treat them the same way as
we do the initial dark matter particle, splitting them into a pair of initial decay
products, and practically starting a new (much smaller) cascade. Quarks other
than top quarks do not decay in the same way, despite that some of them have
relatively large masses, because they are bound in hadrons on time-scales shorter
than their lifetimes.

Since the decaying particles are not generally at rest, we cannot assume that
their energies are divided equally among their decay products. However, the dis-
tribution of energy fractions attained by either particle is uniform. In other words,
if z = Eb/Ea, where Ea and Eb are the energies of the decaying particle and one of
the product particles respectively, then z follows a uniform distribution. To make
this clear, consider a particle at rest that decays into only two particles. In order
to conserve momentum, the product particles must have equal and opposite mo-
menta, and thus (in the relativistic limit) equal energies. The only variable in such
a decay is the direction into which the product particles are emitted, the probabil-
ity for which is equal for all angles. Since for any decay, there is a reference frame
in which the particle is at rest, and the energy of the particles (in the laboratory
frame) can only be dependent on the direction of emission in the rest frame (which
is uniformly distributed), the distribution of energies between the two particles
must be uniform.

The top quark generally splits into a W boson and a bottom quark, though it
has a low probability of producing a down or strange quark instead, due to the
non-zero elements of the CKM matrix, as discussed in section 4.3.2. The W and Z
bosons have approximately equal probabilities of decaying into each of the possible
branching channels that we discussed in section 4.3.2. More precise ratios have
however been determined experimentally, and can be found in reference [63].

4.4.2 Decay of Muons and Taus

Muons decay chiefly into a muon-neutrino, electron-neutrino and an electron (µ→
νµνee). Since the decay products consist of three particles (rather than two, as
above), the distribution of energies amongst the product particles is not uniform.
Analytical calculations yield however that the distribution of energies for the pro-
duced neutrinos is given by [64]

dNνe
dz

= 2− 2z2 + 4z3
dNνµ

dz
=

5

3
− 3z2 +

4

3
z3 (4.82)

for electron-neutrinos and muon-neutrinos respectively. The variable z is the frac-
tion of energy that is passed on to the corresponding product particle from the
decaying muon. We do not consider the spectrum of electrons produced in these
decays, as we are ultimately interested in the final neutrino spectra. Having said
this, electron production is not in principle expected to play an insignificant role in
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dark matter decays, as it may form a source of cosmic rays and emit secondary radi-
ation in interactions with cosmic magnetic fields and matter. These considerations
are however beyond the scope of this work.

In principle, we should also consider the decays of tau leptons in our model.
By virtue of their large mass, these particles produce rich decay-spectra, including
the production of pions and K-mesons, which decay further to produce neutrinos
and photons. However these spectra are not straight-forward to model, and we
therefore neglect them in this work. In chapter 6 we argue that the dominant
features of a dark matter decay signal of neutrinos is unlikely to be altered by
the presence of other particles in the cascades, making this a tolerable concession
within the scope of this study.

4.4.3 Hadronization and Decay of Hadrons

We summarize here a phenomenological model of hadronization and subsequent
decay that we adopt from [64]. The idea behind it is that when gluons and quarks
coalesce, the number of produced hadrons is proportional to the number of quarks
and gluons. It is also assumes that the energy spectrum of hadrons that is produced
from single partons has the same shape independent of the partons’ energies. To
make this precise, the spectrum Dh of hadrons (referred to as the fragmentation
function) is found from the convolution of the parton spectra Di with so-called
hadronization functions fi(z):

Dh(x,mX) =
∑
i

∫ 1

0

∫ 1

0

dx′dz Di(x
′,mX) fi(z) δ(zx

′ − x) (4.83)

=
∑
i

∫ 1

x

dz Di(x/z,mX) fi(z) (4.84)

As we have indicated, the parton spectra (where the index i goes over the parton
types. i.e. gluons and quark flavours) and thus the fragmentation functions are
dependent on the mass mX of the decaying particle, while the hadronization func-
tions are not. The latter makes sense if one assumes that the hadronization process
should mostly be dependent on the final states of partons, not on the cascade his-
tory. Intuitively then, the model implies that each parton with energy x′ (expressed
as a fraction of the total cascade energy) produces a spectrum of hadrons of the
form fi(z), where the variable z denotes a fraction of the energy from the parton.
We point out again that this is model works on a phenomenological basis, and is
not a reflection of the actual hadronization process, which is generally challenging
to model.

It is assumed that of the hadrons produced, a fraction εN ≈ 0.05 (based on
experimental data) is made up of nucleons, while the rest επ are mesons [64]. Of
the latter, all are taken to be pions. Two thirds of produced pions are expected
to be charged, and one third neutral (due to these three particles obeying an
approximate isospin symmetry). As we already discussed somewhat in section 2.1,
charged pions π± decay to form a neutrino and a muon, the latter of which decays
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to produce further neutrinos and electrons,

π± → νµµ; µ→ νµνee,

while neutral pions π0 decay to produce a pair of photons:

π0 → γγ. (4.85)

We summarize here the formulas by which the expected spectra for neutrinos and
photons are found from the fragmentation functions Dh(x,mX). We are not inter-
ested in the spectrum of electrons, as we discussed in section 4.4.2. We do not go
into the justifications of these formulae, which we also adopt from reference [64].
The photon spectrum, expressed in terms of the fraction x of the total cascade
energy mX/2 is given by

dNγ
dx

=
2

3
επ

∫ 1

x

dz

z
Dh(z,mX). (4.86)

The spectrum of muon-neutrinos, both from charged pion decay and the subsequent
muon decay is given by

dNνµ
dx

= R

∫ 1

Rx

dz

z
Dh(z,mx) +R

∫ 1

x

dz

z

∫ z/r

z

dz′

z′
[
5

3
− 3z2 +

4

3
z3]Dh(z′,mX).

(4.87)

The spectrum for electron neutrinos is given by

dNνe
dx

= R

∫ 1

x

dz

z

∫ z/r

z

dz′

z′
[2− 6z2 + 4z3]Dh(z′,mX). (4.88)

The parameters r and R are related to the ratio of the masses of muons and pions:

r =

(
mµ

mπ

)2

; R =
1

1− r
.

With this, we have almost all the information we need to predict the secondary
spectra starting from a parton spectra that is produced in a cascade. What remains
is the explicit form of the hadronization functions fi(z). The authors of [65] suggest
hadronization functions of the form

fi(z) = Niz
ai(z − zi)−bi(1− z)ci . (4.89)

The five constant parameters (which are different for gluons and quarks) are de-
termined by fitting the implied fragmentation functions to empirical pion spectra.
Such a fit is dependent on the distribution of partons that is assumed for a given
value of mX , and the hadronization functions may therefore be specific to the par-
ticular cascading model that generates the parton spectrum. This means that we
can apply the given hadronization functions only if our cascading model is suffi-
ciently similar to that which was used to determine the functions. In addition to
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this, it should be mentioned that the parameters of the hadronization functions
are fit to emipirical spectra with mx = mZ ≈ 91.2 GeV (the mass of the Z boson),
and their independence on mx does not hold exactly. Their application for values
of mx at orders from 106 GeV to 1016 GeV may therefore cause significant errors.
See reference for a discussion.

We mention briefly here that the provided hadronization functions do not lead
to satisfactory results, when applied to our cascading simulations. In particular,
the pion spectra that we produce do not match the experimental data to which the
hadronization functions originally were fit to. Therefore, it would be necessary to
fit new hadronization functions to our particular simulation, if we were to apply
this hadronization model. Since this is beyond the scope of this work, we do not
consider the hadronization of partons any further in this work.



Chapter 5

Simulating particle cascades

In this chapter, we discuss the methods and algorithms that we use to simulate
particle cascades based on the theory in chapter 4. We start by reviewing the math-
ematical background of the necessary Monte Carlo algorithms, including the veto
algorithm. We then describe how these methods are applied to our investigation
of particle cascades.

5.1 Principles of Monte Carlo algorithms

Due to the probabilistic nature of quantum field theory (QFT), the simulation of
a particle cascade must include some random aspects, or more precisely, sampling
from some random variable with a given probability distribution function (PDF).
For example, when a particle splits, the virtuality t of the parent particle is not
uniquely determined, but chosen randomly from the known PDF given in (4.58).
The question is therefore how to simulate the production of samples from such a
PDF. If a large number of samples is taken, the distribution of these samples should
converge to Dsplit(t) from equation (4.58) (or whichever PDF we are interested in
simulating). In answering this question, we follow closely the work of [66]. We
will assume that we have a means of producing samples from a uniform random
variable R with a range of 0 to 1. We will refer to the random variable that we
want to sample by X and to its PDF as fX(x). We point out that the random
variables that we are interested in sampling in our investigation are the virtualities
t and the energy fractions z of particles (see section 4.1.2); nevertheless we refer to
the more general variable x in this section, in order to emphasize the generality of
the mathematics that we present.

We can easily relate the general random variable X to the uniform random
variable R by ∫ X

xmin

fX(x)dx = R,

where we have assumed that fX(x) is normalized to 1. In other words,
∫ x
xmin

fX(x)dx =
r, where x and r are samples of the random variables X and R respectively. The

47
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minimal possible sample of X is given by xmin. This expression is equivalent to
the intuitive statement that the cumulative probability of a sample of X (or any
random variable) is uniformly distributed. If fX(x) is not normalized to 1 (i.e. it
is not strictly speaking a PDF, but proportional to one), we only have to multiply
the right-hand side with the normalization constant, that is∫ X

xmin

fX(x)dx = R

∫ xmax

xmin

fX(x)dx. (5.1)

If we define F (x) so that dF
dx = fX(x) (i.e. F (x) is the cumulative distribution of

fX(x)), then we get

X = F−1 (F (xmin) +R[F (xmax)− F (xmin) ]) .

This would make the production of samples from X straight-forward, given a sam-
ple from R. However it is required that we can find an anti-derivative of fX(x)
that also has a well-defined inverse, which is not the case for the distributions that
we will look at when simulating particle cascades (see Section 5.2).

There is a simple work-around to this problem. Instead of producing a sample
from the distribution fX(x), we find a distribution g(x) for which we can find an
anti-derivative, and for which g(x) ≥ fX(x) ∀ x. The algorithm for producing a
sample from fX(x) is then as follows (we refer to this as algorithm A for future
reference):

1. produce a sample from g(x) as described above, that is, set

x = G−1 (G(xmin) + r1[G(xmax)−G(xmin) ])

for dG
dx = g(x), where r1 is a sample from a uniform distribution.

2. Produce another sample r2 from R. If r2 > fX(x)/g(x), then ignore this value
of x and start again at step number 1. If on the other hand r2 < fX(x)/g(x),
use this value of x as the sample from fX(x).

The sample x that is produced from g(x) has, by the way that we defined it,
a probability g(x)dx of being chosen in step 1. In step 2, by the nature of the
uniform distribution, there is a probability fX(x)/g(x) of the value being kept,
rather than rejected. Hence the probability of x resulting from the algorithm is
(fX(x)/g(x))g(x)dx = fX(x)dx, which is the defining property of a sample fX(x).

It is worth mentioning that some choices for the function g(x), though techni-
cally viable, are not practical because they are “too different” from fX(x). More
concretely, g(x) may be much greater than fX(x) for significant ranges of x, mean-
ing that there is a large probability that the value of x chosen in step 1 will ulti-
mately be rejected in step 2. In this case, the simulation could effectively run for
an unreasonable amount of time.

The algorithm above is useful for drawing samples from some probability distri-
butions, including for the energy fraction z of a particle that is produced bye some
splitting in a cascade. However, for producing samples from Dsplit(t) in (4.58), we



5.1. PRINCIPLES OF MONTE CARLO ALGORITHMS 49

prefer another, more expedient scheme. This is because Dsplit(t) contains an expo-
nential over a double integral, multiplied by yet another integral. We use instead
the so-called veto algorithm [66], for which it suffices to work only with the func-
tion f(t) (not to be confused with the PDF fX(x)). The function f(t) is defined by
equation (4.58), and completely determines Dsplit(t) (given some maximum value
of t). Hence, the veto algorithm does not only make our work significantly less
cumbersome, but also decreases our dependency on robust numerical integration
methods as well as computing power. We summarize the algorithm first, and ex-
plain why it works thereafter. We continue to use x to denote our sample (rather
than t), in order to maintain continuity.

The veto algorithm assumes that the PDF from which a sample x is to be drawn
has the form

fX(x) = h(x) exp

{
−
∫ xmax

x

h(x′)dx′
}
,

where xmax is the maximal x-value that can be chosen. Notice that this is exactly
the expression for Dsplit, if we make the substitutions x → t, fX(x) → Dsplit and
h(x)→ f(t). A function g(x) has to be chosen so that g(x) ≥ h(x) ∀ x, and so that
an anti-derivative G(x) with a valid inverse G−1(x) can be found. The algorithm
is then as follows:

1. Set i = 0 and x0 = xmax

2. Chose a random number R = r1 from the uniform random distribution. Add
1 to i, and set xi = G−1 (G(xi−1 + ln r1)).

3. If xi ≥ xi−1 disregard this value, and chose a new one via step 2.

4. Chose a new sample from the uniform distribution, R = r2. If r2 ≥ h(xi)/g(xi),
then ignore xi and return to point 2. Otherwise, xi is the final sample from
fX(x).

This algorithm does not easily make intuitive sense, but it is not very compli-
cated to show that it works mathematically. Starting at step 2, a value xi is chosen
so that it can be regarded as sample from a distribution with the form

fg(xi) = g(xi) exp

{
−
∫ xmax

xi

g(x′i)dx
′
i

}
.

To see this, consider that for the same reason that (5.1) is true, we have that

1−R =

∫ xmax

Xi

fg(x
′
i)dx

′
i = 1− exp

{
−
∫ xmax

Xi

g(x′i)dx
′
i

}
,

where we for simplicity have assumed that g(xmax) = 1, and that fg(x) is nor-
malized to 1 (but the final result does not depend on these assumptions, as can
easily be checked). We have replaced R with 1− R for convenience, though these
effectively are the same random variable. Solving, it follows directly that Xi is
given by

Xi = G−1(G(xi−1 + lnR)).



50 CHAPTER 5. SIMULATING PARTICLE CASCADES

The proof that the algorithm works now follows from writing down the the
probability (technically the probability density) that a sample of fg(x) has a certain
value, given that it is found on the ith try, in other words, after i− 1 samples have
already been rejected by step 4. We denote this probability by fi(x). For example,
the probability that the sample x is produced, given that no intermediate samples
have to be rejected is

f1(x) = g(x) exp

{
−
∫ xmax

x

g(x′)dx′
}
h(x)

g(x)
, (5.2)

where the fraction follows from step 4, and the rest from step 2. The explicit form
of f2(x) becomes:

f2(x) =

∫ xmax

x

g(x1) exp

{
−
∫ xmax

x1

g(x′)dx′
}(

1− h(x1)

g(x1)

)
dx1

· g(x) exp

{
−
∫ x1

x

g(x′)dx′
}
h(x)

g(x)
, (5.3)

where the factor
(

1− h(x1)
g(x1)

)
arises because the first intermediate sample x1 must

be rejected by step 4, and everything to the left of it represents the probability
that the value x1 is chosen by step 2 in the first place. The integral is necessary
because all possible values of x1, which must be less thant x, must be considered.
The remaining factors are the probability that x is chosen at the second try, and
is analogous to (5.2); however notice that the integration starts at x1 by virtue of
step 3. Simplification yields

f2(x) = f1(x)

∫ xmax

x

[g(x1)− h(x1)] dx1. (5.4)

Following directly analogous steps, f3(x) becomes

f2(x) = f1(x)

∫ xmax

x

[g(x1)− h(x1)] dx1

∫ x1

x

[g(x2)− f(x2)] dx2 (5.5)

=
1

2
f1(x)

(∫ xmax

x

[g(x′)− h(x′)] dx′
)2

. (5.6)

The second step derives from the general result∫ xmax

x

dx′u(x′)

∫ x′

x

dx′′u(x′′) =
1

2

∫ xmax

x

dx′u(x′)

∫ x′

x

dx′′u(x′′)

+
1

2

∫ xmax

x

dx′′u(x′′)

∫ x′′

x

dx′u(x′)

(5.7)

=
1

2

(∫ xmax

x

dx′u(x′)

)2

. (5.8)
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We can generalize fi(x) to

fi(x) =
1

i!
f1(x)

(∫ xmax

x

[g(x′)− h(x′)] dx′
)i
. (5.9)

Hence, since by definition

fX(x) =

∞∑
i=0

fi(x),

we get

fX(x) = f1(x)

∞∑
i=0

1

i!
f1(x)

(∫ xmax

x

[g(x′)− h(x′)] dx′
)i

(5.10)

= g(x) exp

{
−
∫ xmax

x

g(x′)dx′
}
h(x)

g(x)
exp

(∫ xmax

x

[g(x′)− h(x′)] dx′
)

(5.11)

= h(x) exp

(
−
∫ xmax

x

h(x′)dx′
)
, (5.12)

which is the defining requirement for x to be a sample of fX(x).

5.2 Application of MC Algorithms

In this section, we describe the defining features of our particle cascade simulation,
i.e. we will summarize the details that should be sufficient to reproduce our results
(which we present in chapter 6). In short, the simulation takes as input a defining
set of parameters, which represent properties of a (dark matter) particle that de-
cays, and hence initiates a cascade. Specifically, these parameters are the particle’s
mass, as well as a specification of which particles it decays into. As output, the
simulation yields a list of data sets, which represent the final particles that are
produced by the cascade and their properties. These properties are specifically the
particle types and the values of their energies.

To keep track of the particles involved in the simulated cascade, our program
maintains a stack of virtual particles, represented by data sets. These particles
have been produced by preceding splits, but have not yet split themselves. The
data sets contain values of important particle parameters: their types, energies,
maximum virtualities, and chiralities (whether they are left- or right-handed). The
first data set that is put in the stack during the simulation represents the particle
which the dark matter particle is defined to decay into, for example a neutrino. It
is generally assumed that at least two new particles would be produced in a dark
matter decay, but since both set off statistically equivalent cascades, this doesn’t
affect the final spectra. The energy that is ascribed to this first particle is half
of the decaying particle’s mass, i.e. mX/2, as we assume that the dark matter is
immobile (compared to the speed of light, see section 3.2). The two first particles,
and thus the two produced jets, must therefore share their total energy equally. By
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the same virtue, the new particles’ maximum virtualities are set to (mX)
2
, as the

virtuality t = k2 = E2 − p2 cannot be larger than the squared energy, E2.
To simulate a cascade, our program repeatedly removes the top particle in the

stack, and decides whether this particle should split or not; if it does, two new
particle datasets, corresponding to the produced particles, are placed on top of the
stack. If the particle does not split, it’s energy and type are stored, and no new
particles are added to the stack. Whether or not a particle splits is determined by
producing a sample from the virtuality-dependent distribution given by equation
(4.58), which we write explicitly here for the reader’s convenience:

Dsplit(t) = N(t)f(t); f(t) =
1

t

∑
i

∫ zmax

zmin

dz
αi
2π
Pi(z),

with

N(t) = exp

{
−
∫ tpz

2

t

dtf(t)

}
.

As introduced in section 4.2, the index i refers to the possible splitting channels
of the particle, and tmax denotes the particle’s maximum virtuality. To produce
a sample from this distribution, we use the veto algorithm as described in section
5.1. The integral over z is evaluated numerically. We choose the function g(t) to
be proportional to 1/t. This makes it straight-forward to find the antiderivative
G(t) v ln(t) and its inverse G−1(x) v exp{x}. In addition, this choice of g(t) has
a similar shape to f(t) in (5.15), making simulations reasonably quick. In order
to fulfill the requirement that g(t) ≥ f(t) ∀ t, experience shows that it suffices
to normalize g(t) so that g(tmax) = 8f(tmax), which still maintains reasonable
simulation speeds.

As we discussed in section 4.2, if the chosen sample t is lower than the minimal
virtuality tmin, then the particle does not split (hence is real and has virtuality 0),
and it’s parameters are stored for later analysis. Conversely, if t > tmin, then the
particle does split, and t is it’s virtuality. The maximum possible virtualities of the
produced particles are set to tz2 and t(1 − z)2, where z and (1 − z) are the new
particles’ respective energies as fractions of the parent particle’s energy. How the
value of z is determined is discussed below.

However, before z is sampled for a given splitting, the splitting channel is de-
cided on. This can be done assuming that the value of t of the splitting parent par-
ticle has already been determined. Choosing the splitting channel is then achieved
in rather straight-forward, by computing the value of f(t) for each channel by nu-
merical integration. The ratios of the values of f(t) are equal to the ratios of the
channel probabilities (see section 4.2). Thus, a channel can be chosen by dividing
up the interval [0, 1] according to the relative values of f(t) and seeing in which of
the intervals a sample of a uniform random variable generator falls. As indicated
in section 4.3.2, left- and right-handed particles are treated as separate types of
particles, so that splittings that involve particles with different chiralities are also
treated as separate splitting channels.

After the virtuality t and the splitting channel i, the energy fraction z (and
1 − z) attained by the produced particles is the third and last random aspect of
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any given splitting in the simulation. Having determined the splitting channel,
the z-distribution is given by the corresponding splitting function Pi(z) times the
corresponding coupling constant α(z2(1− z)2t) (for strong or electroweak interac-
tions), though bounded from above and below by zmin and zmax. Samples from
this distribution can be generated using algorithm A from section 5.1. Here, the
combined function α(z2(1− z)2t)Pi(z) takes the place of the distribution function
fX(x). The function g(x) (or g(z), using the correct variable) is required to satisfy
g(z) ≥ α(z2(1− z)2t)P (z)∀z, and has to have an invertible antiderivative. In order
to make g(z) similar to Pi(z), we use a different function depending on the channel
type, that is, depending on what combination of bosons and fermions is interacting
(since splits of the same type have the same splitting functions, up to some con-
stant). We summarize the chosen functions g(z) and their anti-derivatives for each
case here:

boson→ boson boson

αi
2π
Pi(z) = Λ

αi
2π

[
z

1− z
+

1− z
z

+ z(1− z)
]

; g(z) = Λ
α∗i
2π

[
1

1− z
+

1

z

]
(5.13)

boson→ fermion fermion

αi
2π
Pi(z) = Λ

αi
2π

[
z2 + (1− z)2

]
; g(z) = Λ

α∗i
2π

(5.14)

fermion→ fermion boson

αi
2π
Pi(z) = Λ

αi
2π

[
1 + z2

1− z

]
; g(z) = Λ

α∗i
2π

[
2

1− z

]
(5.15)

For notational clarity, αi is implicitly a function of z, and we have introduced
α∗i ≡ αi(z

2
min(1− zmin)2t). Since z2min(1− zmin)2t ≤ z2(1− z)2t, and the coupling

constants increase with decreasing arguments, this ensures that g(z) is larger than
the distribution function, no matter the value of the coupling. By Λ we mean any
constant that occurs in the splitting function, for example cos2 θW for the case
Z → WW (see equation (4.77) and section 4.3.2). In practice, we don’t need to
worry about this constant, nor the factor 1/2π, since these are cancelled by the
algorithm in taking the fraction f(z)/g(z).

After z has been set, the two new particles’ absolute energies are determined
by multiplying the splitting particle’s energy by z and 1− z respectively. Thus the
entire datasets corresponding to the new particles have been determined and are
placed on top of the stack.
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Hence, the entire process is repeated with the particle that is now on the top of
the stack. Every time a particle does not split, and the particle is stable, it’s type
and energy is stored in the final output. If the particle is unstable however, the
simulation produces a new set of particles corresponding to its decay products.

When a particle is found not to split, our program starts a decay routine that
is specialized for each particle. In most cases, the particle’s energy and type are
simply stored for later analysis. However, in the cases where the particle is unstable
(see section 4.4), new particles are placed in the stack according to what is expected
of the decay products. In the cases of W bosons, Z bosons and top quarks, a decay
channel is chosen based on the empirical fragmentation ratios. The energy passed to
each particle is then determined by choosing a z-value from a uniform distribution.
The maximum virtuality is set to be the square of the particle’s energy. For muon
decay, we apply Algorithm A to determine the z-values of the neutrinos from the
distribution functions (4.82). We use g(z) = 2 cos

(
π
4 z
)
.

Since the involved virtualities decrease consistently with every splitting, at some
point no more particles will split, and the stack will become empty. At this point,
the cascade is finished. The final output is thus a list of particles along with their
types and energies, which are ready for analysis.



Chapter 6

First Results

In this work, we have focused on the theoretical and practical framework of how
particle cascades can be simulated that take into account both the strong and
electroweak interactions, thus allowing for most of the standard model particles
to be included. Before we summarize, we turn briefly to look at the results of
the simulating program that we have thus devised. We make some assessments as
to the soundness of the results, and analyse some of the main features of particle
cascades. We will thus be able to discuss the outlook of this research, and we
discuss its application to the search for superheavy dark matter.

We start with an analysis of the properties of parton cascades, before we look
at cascades that involve electroweak interactions and the full range of SM particles.
One important reason for this is that parton cascades have been simulated in other
works according to schemes that are essentially the same as the ones that we
employ. This allows us to compare our results for parton cascades to results from
the literature, which we expect to be very similar. We thus aim to confirm that
the computer program that we use indeed reflects the physical model that we have
described, and is not prone to serious error. Such an affirmation should largely
carry over to simulations of the electroweak sector as our program is identical for
both sectors, except for the input of concrete physical variables such as particle
types, couplings, coefficients in the splitting functions and cut-offs.

Another reason to look at parton cascades is that the probability for a quark
to emit a gluon is, for all relevant virtualities, much higher than that of emitting
a W or Z boson, as we will see. This means that once any cascade produces as
quark, that quark will essentially start a separate parton cascade, as there is no
probable way in which that quark or its products can give rise to particles that
are not partons. Hence, a cascade that starts with an electroweak interaction can
for all practical purposes be separated into an electroweak part and a strongly
interacting one. It is thus convenient to analyse QCD cascades and electroweak
ones separately.

We will analyse electroweak cascades in a similar fashion. In addition to corrob-
orating our results with other simulations (to the degree that these are available),
we discuss what degree of significance different aspects of the simulations (elec-

55
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Figure 6.1: Probabilities of an up-quark to decay into the indicated channels.
These analytic distributions are proportional to the values of f(t) given by equation
(4.58), as discussed in section 5.2. The d in the channel for W -emission includes
all down-like quarks. Each channel has a probability of zero below its respective
minimal virtuality (see section 4.2). While this figure concerns a left-handed up-
quark, the situation is similar for right-handed quarks.

troweak sector, QCD sector, hadronic decays, decays of other particles) carry in
terms of the final neutrino spectra. This is crucial in order to identify potential
weaknesses in our model and method, and to point out future amendments or
research prospects.

6.1 QCD sector

We start by confirming the claim that quarks have a low probability of emitting
a W-boson or Z-boson, compared to that of emitting a gluon. Figures INSERT
illustrate the probability for an up-quark to decay into each of it’s possible channels,
at a given virtuality. The channel probablilities for the other five quarks develop
in a similar fashion. It is clear that the probability of the channels where a W-
or Z-boson is emitted to occur are negligible over the whole range of virtualities.
Gluon emission thus remains the dominant channel of splitting for quarks down
to virtualities to the scale of the QCD cut-off 10 × Λ2

QCD. Given the similarity
of these processes’ splitting functions, this is a demonstration of the difference in
scale between the strong couplings and the electroweak coupling.

As a test of our program’s validity, we compare the results of pure gluon cascades
(i.e. cascades involving gluons only) from our simulations to those from reference
[62]. The resulting spectra are shown in figure 6.2. The simulation from the
literature largely follows the same principles as our own in the QCD cascading
sector. We indeed see that the spectra come out with the same normalization,
though with some minor differences in width and position of the peak. Small
differences are to be expected as we use a different value of the the QCD cut-off
Λ2
QCD as well as a more precise approximation of the strong coupling.
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(a) (b)

Figure 6.2: Comparison of the spectra of a pure gluon cascade, starting with a
particle of the indicated mass (denoted by Q in a). The spectrum in a was produced
from simulations by the authors of ref. [62], while the one in b was produced by
our simulation. The independent variable x denotes energy expressed as a fraction
of the total cascade energy.
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Figure 6.3: Variation of the multiplicity of a pure gluon cascade with the energy
of the first particle. Crosses represent simulated values, while the curve is given by
equation (6.1).

As another way to probe the consistency of the gluon sector of our simulation,
we compare the average multiplicities (numbers) N(Ejet) of gluons produced in a
cascade to the analytical expectation [62]:

N(Ejet ∝

(
ln

Ejet√
10× ΛQCD

)− 1
4

exp

[(
48

11
ln

Ejet
ΛQCD

) 1
2

]
(6.1)

To clarify, Ejet represents the energy of the first particle in the simulation, not the
implied on-shell (dark matter) particle, which has twice that energy. We have also
replaced the cut-off used in ref. [62] by the cut-off that we use in our simulation,
namely tmin = 10 × Λ2

QCD. Using these facts, we see that the simulated results
indeed match the analytical expectation very well, given a suitable proportionality
constant (figure 6.3).

The comparisons we have made above assume cascades that are made up of
gluons only, and no quarks. Results for the spectrum of a complete parton cascade
using the same Monte Carlo scheme as we do are not as readily available in the
literature as for only gluons. However, it is expected that the total multiplicity
(gluons and quarks) of a cascade that is started by a gluon is higher than if it
were started by a quark, and furthermore, that the ratio between these average
multiplicities is 9/4 = 2.25 in the limit of very large total energies. In addition,
the authors of reference [67] found for a Monte Carlo scheme similar to ours, that

the convergence is linear in the variable (ln(Ejet/Λ)
0.5

, where Λ represents the
cut-off scale, which we replace it by

√
10 × ΛQCD. Plotting the ratios obtained

by our simulation against this variable (figure 6.4) reveal that they do plausibly
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Figure 6.4

Figure 6.5: Variation with the total cascade energy of the ratio
Ng
Nq

, where Ng and

Nq are the average multiplicities of cascades that start with a gluon or a quark
respectively. Crosses indicate results from our simulation, and the error bars are
given by the standard error of the multiplicities between individual cascades. The
best-fit line with an intercept equal to 9/4 is indicated.

converge towards the value 9/4 in a linear fashion. It therefore seems as though
our simulations match expectations rather well. By the nature of our simulating
scheme, the QCD and electroweak sectors of cascades differ only by a concrete
set of parameters, not in any methodology. Hence, we take the good results from
the QCD sector as an indicator that our simulation as a whole is not prone to
significant technical errors.

6.2 Electroweak Sector

We now turn to review the results of cascades in which electroweak interactions
play a more significant role. We demonstrated in section 6.1 that any quark that
appears in a cascade will for all practical purposes produce a subcascade of only
gluons and more quarks if it splits. However, the other particles of the standard
model can play a larger role if the particle that starts the cascade is neither quark
nor gluon, meaning that it does not interact via the strong coupling. In such a
scenario, the carriers of the weak interaction – W and Z bosons – play a similar
role to that which the gluon plays in a parton cascade. In fact, if the first particle
of the cascade is a neutrino (a scenario that we singled out in particular in section
2.1), the only possible splittings that could happen next are the emission of either
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Table 6.1: Approximate proportions of the total cascading energy mX residing in
each type of particle in the final state, for different values of mX . The starting
particle is a neutrino. It is that all particles are stable, that is, they don’t decay
after they become on-shell.

mX/GeV W Z γ ν l q + g
106 0.04 0.02 0.01 0.7 0.2 0.003
1011 0.09 0.04 0.05 0.4 0.4 0.007
1016 0.1 0.04 0.07 0.3 0.4 0.02

boson, i.e.

ν → e W or ν → ν Z,

which happen with similar probabilities, by virtue of their similar splitting functions
(see equations (4.67) and (4.73)). The emitted bosons can in principle produce any
type of fermion via pair-production splits, but this is relatively unlikely due to the
lack of divergences in the splitting functions of these splitting channels (see section
4.3). Typically, the bosons will split to produce more W and Z bosons, as well as
photons:

W → W Z, W → W γ, Z → W W.

It is thus reasonable to picture the electroweak cascades as dominated by splittings
of W and Z bosons, which split to produce more of themselves, in addition to
photons. We can make a first assessment of this picture by looking at table 6.1,
which summarizes the approximate proportions of the total cascade energy that
would be carried by each type particle if we ignored the decay of unstable particles.
It is striking that the total share of energy actually seems dominated by neutrinos
and leptons. The reason for this is that the cascades that we have simulated have
electron-neutrinos as the staring particle. If we look at the energy-proportions of
muon- and tau-neutrinos separately, we find that these are on the order of gluons
and quarks. The large neutrino component thus comes from the fact that many
of the starting neutrinos do not split often enough to lose most of their energy.
Similarly, the large lepton component is dominated by the energy in electrons,
indicating that many energetic electrons are produced from W -emissions by the
starting neutrinos. Other than this, the dominant component of energy is made up
by W and Z bosons and photons for all cascading energies. We include for com-
pleteness the proportions after the decay of unstable particles (table 6.2), and see
that while this causes significant increases to energy of partons, but the abosolute
amounts are insignificant compared to the total neutrino and lepton energy. It is
thus clear, that the most natural way in which dark matter may produce detectable
neutrino signals is by coupling directly to them, as other channels would produce
less intense fluxes. The resulting spectrum (figure 6.6) is strictly increasing towards
higher energies, and most notably features a sharp peak towards the value of the
dark matter mass. A natural signal of dark matter decay to look for is thus some
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Table 6.2: Approximate proportions of the total cascading energy mX residing in
each type of particle in the final state, for different values of mX . The starting
particle is a neutrino. These values take into account the decay of unstable particles.

mX/GeV γ ν l q + g
106 0.01 0.7 0.2 0.03
1011 0.05 0.4 0.4 0.08
1016 0.09 0.3 0.5 0.1

Figure 6.6: Neutrino spectra produced by our simulations. From top to bot-
tom they correspond to dark matter masses of 1016 GeV, 1011 GeV and 106 GeV
respectively.

narrow, or abrupt feature (peak or knee) in the cosmic neutrino spectrum. Cur-
rently, IceCube data is not resolved enough to confirm or refute such features. The
flux measured by IceCube can nevertheless be used to place limits on dark matter
paramters, based on simulations such as ours. See for example reference [4].

Another thing to pay attention to is the seeming relative insignificance of the
Z boson compared to the W boson in the cascading process. This is indicated by
the compartively low proportions of energy that are carried away by the former
compared to the latter (see table 6.1. To emphasize this point, we compare the
preference of splitting channels of the right-handed electron to those of the left-
handed electron in figure 6.7. It is clear that a significant proportion of left-handed
electron’s splittings produce weak bosons. However, the right-handed electron has a
much higher probability of radiating away its energy in the form of photons, rather
than the Z boson. This suggests that chiral physics may be important to the
outcome of particle cascades. As an illustrative example, the direct coupling of a
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(a) (b)

Figure 6.7: Comparison between the splitting channels of a left-handed and right-
handed electron. The right handed electron emits weak radiation in much lower
proportions than the left-handed electron, due to not coupling to the W boson.
The channel probabilities are proportional to f(t) from equation (4.58).

dark matter to right handed electrons may not produce the abundance of cascading
weak bosons that we predicted earlier. This may be an interesting concept to
analyse further, in particular because earlier cascading models have ignored the
particle chiralities [4, 8].

Lastly, we note that the spectra that our simulations predict for weak bosons
and neutrinos are at odds with earlier results in ref.[8], see figure 6.8. We do not go
into a discussion on this, as it would require more detailed insight into the models
that have been used in those studies. However, we also note that our neutrino
spectra correspond satisfactorally to the ones found by the authors of [4].
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(a) (b)

(c) (d)

Figure 6.8: Neutrino and weak boson spectra found by other authors compared
to our simulations. a illustrates the weak boson spectra found by the authors of
ref. [8] for dark matter masses of 1016 GeV, 1013 GeV and 1010 GeV from top to
bottom. We try to reproduce this in c, but get normalizations that are significantly
larger. Similarly, we get much smaller normalizations for the neutrino spectra in
d. The neutrino spectra in b [4] correspond well to our spectra form figure 6.6 on
the high-energy end. For lower energies, the spectra differ due to our neglect of
hadronization.
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Chapter 7

Summary and Outlook

In this thesis, we have devised a scheme to simulate particle cascades with energies
in the range between 106 GeV to 1016 GeV. We have taken into account both
strong and electroweak interactions, and included every particle of the standard
model (except the Higgs particle), distinguishing between left-chiral and right-
chiral fermions. Given the generality of the cascading process, our simulation is
applicable to predicting particle spectra from SHDM decay, and assumes about
dark matter only that it decays into a pair of standard model particles, which is a
non-restrictive assumption.

The case for this investigation was made, based on the status of neutrino as-
tronomy and current understanding of dark matter. We reviewed a formalism of
particle cascades, that is well known from QCD, and showed that the formalism
can be defined in terms of splitting functions, which we derived in detail. These
derivations formed the basis from which we determined the splitting functions for
electroweak splittings. We found that all of the splitting functions (including those
for strong interactions) have one of three forms, corresponding to triple boson splits,
pair production or boson emission, because the Feynman rules for these types of
splittings have the same forms, up to some scalar factors. Hence, the functions cor-
responding to the same categories of splittings only differed by scalar coefficients,
which we determined. We also identified three random variables that define each
splitting: the virtuality of the parent particle, the splitting channel, and the share
of energy received by each produced particle. We determined the expressions for
the probability distributions of these random variables. We also described how the
decay of on-shell particles, hadronization and subsequent decay of partons could be
included in our model, but were not able to account for tau decays. We argued that
these were not expected to add discernible features to the final neutrino spectrum.

We continued by introducing the mathematics behind Monte Carlo algorithms
that were appropriate for our task. A concrete account was given of the way
in which these algorithms were applied to the background theory, so that our
simulations would be a sound reflection of the physical processes.

The simulation was applied to pure gluon and parton cascades, the results
compared to earlier work on similar simulations of parton jets. We found that
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our results for pure gluon cascades were very similar to those of the earlier work,
indicating the validity of our computer program. Gluon multiplicities and ratios
between multiplicities from quark- and gluon-induced cascades also corresponded
well to expectations. We demonstrated that the dominance of the strong coupling
over the electroweak coupling implies that in any cascade, the appearance of partons
starts purely partonic sub-cascades, thus effectively dividing the cascade into an
electroweak part and separate QCD parts.

Our simulation of hadronizing parton cascades did not correspond well to
the empirical pion spectrum. This is probably because the phenomenological
hadronization functions that the model depends on assume different quark spectra
than what our simulation predicts. As the determination of hadronization func-
tions is beyond the scope of our own work, this effectively prevented us from taking
hadronization into account in our simulations. We therefore didn’t investigate the
dark matter-to-partons decay channel, seeing as practically all of its products were
expected to hadronize. This problem may be worth looking at more closely, seeing
as hadronic decay channels may produce neutrino spectra that are qualitatively
very different to those of the leptonic decay channels.

The leptonic decay channels of dark matter were studied in some more detail.
We argued that the resulting cascades are dominated by W and Z boson produc-
tion, and that the final spectra are hence produced in large parts by the decays of
these. This should in principle make the cascade results relatively independent of
the starting particle. We found however, that a starting neutrino causes a sharp
peak at the high-end of its own energy spectrum, corresponding to the dark matter
decays for which a primary neutrino does not split (or emits too few bosons to
lose significant amounts of its own energy). This dominance of primary, highly-
energetic neutrinos is still prevalent for decays of the most massive dark matter
particles considered. Hence, the dark matter-to-neutrinos decay channel would be
likely to produce visible signals in neutrino data, corresponding to sharp features
such as narrow peaks. The identification of such features seems however unlikely,
given the low resolution in IceCube data so far. Simulations such as ours can
nevertheless be used to place limits on dark matter parameters.

We found that our simulated spectra of neutrinos and weak bosons correspond
well to the simulations of some authors, but are at odds with others.

We have focused mostly on the spectrum of neutrinos that our simulations pre-
dict for dark matter decay. The reason for this is partly because neutrino spectra
are most easily compared with observations, seeing as photon spectra would need
to take into account attenuation effects due to background media. In addition, pho-
ton spectra are expected to be dominated by pion decay, which we haven’t been
able to take into account in this work. However, in principle, our model makes
predictions for gamma ray spectra as well. In the near future, a larger wealth of
IceCube data will reveal more accurate spectra and distributions of cosmic neutri-
nos, and hopefully allow for a determination of the extent to which the neutrino
flux is galactic in origin. A galactic flux would have direct implications for the
gamma ray flux’ relationship to the neutrino flux, and the two can be compared in
both observations and simulations. This could truly unlock the potential of multi
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[26] V. G. Maćıas, J. Illana, and J. Wudka, “,” Journal of Physics: Conference
Series, vol. 761, p. 012082, oct 2016. 2.1

[27] V. Gonzalez Macias and J. Wudka, “Effective theories for Dark Matter inter-
actions and the neutrino portal paradigm,” JHEP, vol. 07, p. 161, 2015.

[28] M. Blennow, E. Fernandez-Martinez, A. O.-D. Campo, S. Pascoli, S. Rosauro-
Alcaraz, and A. V. Titov, “Neutrino Portals to Dark Matter,” 2019. 2.1

[29] S. Bilenky, “Neutrino oscillations: From a historical perspective to the present
status,” Nuclear Physics B, vol. 908, pp. 2 – 13, 2016. Neutrino Oscillations:
Celebrating the Nobel Prize in Physics 2015. 2.1, 3.2

[30] A. Falkowski, J. Juknevich, and J. Shelton, “Dark Matter Through the Neu-
trino Portal,” 2009. 2.1, 3.2

[31] M. G. e. a. Aartsen, “First Observation of PeV-Energy Neutrinos with Ice-
Cube,” Phys. Rev. Lett., vol. 111, p. 021103, Jul 2013. 2.2

[32] M. G. e. a. Aartsen, “Observation of High-Energy Astrophysical Neutrinos in
Three Years of IceCube Data,” Phys. Rev. Lett., vol. 113, p. 101101, Sep 2014.
2.2

[33] A. Karle, “IceCube,” 2010. 2.2, 2.2.1, 2.2.1

[34] M. G. Aartsen et al., “Energy Reconstruction Methods in the IceCube Neu-
trino Telescope,” JINST, vol. 9, p. P03009, 2014. 2.2.1

[35] M. G. Aartsen et al., “The IceCube Neutrino Observatory - Contributions to
ICRC 2017 Part II: Properties of the Atmospheric and Astrophysical Neutrino
Flux,” 2017. 2.2

[36] J. Auffenberg, “IceTop as a veto in astrophysical neutrino searches
for IceCube,” in Proceedings, 33rd International Cosmic Ray Conference
(ICRC2013): Rio de Janeiro, Brazil, July 2-9, 2013, p. 0373. 2.2.1

[37] K. Murase, M. Ahlers, and B. C. Lacki, “Testing the Hadronuclear Origin
of PeV Neutrinos Observed with IceCube,” Phys. Rev., vol. D88, no. 12,
p. 121301, 2013. 2.2.2

[38] A. Neronov and D. Semikoz, “Neutrinos from Extra-Large Hadron Collider in
the Milky Way,” Astropart. Phys., vol. 72, pp. 32–37, 2016. 2.2.2

[39] A. Neronov, M. Kachelrieß, and D. V. Semikoz, “Multimessenger gamma-
ray counterpart of the IceCube neutrino signal,” Phys. Rev., vol. D98, no. 2,
p. 023004, 2018. 2.2.2

[40] A. Neronov and D. V. Semikoz, “Evidence the Galactic contribution to the
IceCube astrophysical neutrino flux,” Astropart. Phys., vol. 75, pp. 60–63,
2016. 2.2.2

https://doi.org/10.1088and the neutrino portal paradigm
http://inspirehep.net/record/1376000/
http://inspirehep.net/record/1376000/
http://inspirehep.net/record/1722852/?ln=no
http://www.sciencedirect.com/science/article/pii/S0550321316000353
http://www.sciencedirect.com/science/article/pii/S0550321316000353
https://link.aps.org/doi/10.1103/PhysRevLett.111.021103
https://link.aps.org/doi/10.1103/PhysRevLett.111.021103
https://link.aps.org/doi/10.1103/PhysRevLett.113.101101
https://link.aps.org/doi/10.1103/PhysRevLett.113.101101
http://inspirehep.net/record/850457
http://inspirehep.net/record/1265051/
http://inspirehep.net/record/1265051/
http://inspirehep.net/record/1412996?ln=en
http://inspirehep.net/record/1412996?ln=en
http://inspirehep.net/record/1238579
http://inspirehep.net/record/1238579
http://inspirehep.net/record/1332728/?ln=no
http://inspirehep.net/record/1332728/?ln=no
http://inspirehep.net/record/1657805/?ln=no
http://inspirehep.net/record/1657805/?ln=no
http://inspirehep.net/record/1393042/
http://inspirehep.net/record/1393042/


72 BIBLIOGRAPHY

[41] G. Bertone and D. Hooper, “History of dark matter,” Rev. Mod. Phys., vol. 90,
no. 4, p. 045002, 2018. 3.1

[42] Y. Sofue and V. Rubin, “Rotation Curves of Spiral Galaxies,” Annual Review
of Astronomy and Astrophysics, vol. 39, no. 1, pp. 137–174, 2001. 3.1

[43] D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones,
and D. Zaritsky, “A direct empirical proof of the existence of dark matter,”
Astrophys. J., vol. 648, pp. L109–L113, 2006. 3.1

[44] J. F. Navarro, C. S. Frenk, and S. D. M. White, “A Universal density profile
from hierarchical clustering,” Astrophys. J., vol. 490, pp. 493–508, 1997. 3.1

[45] F. Iocco, M. Pato, G. Bertone, and P. Jetzer, “Dark Matter distribution in
the Milky Way: microlensing and dynamical constraints,” JCAP, vol. 1111,
p. 029, 2011. 3.1

[46] D. Hooper, “The Density of Dark Matter in the Galactic Bulge and Implica-
tions for Indirect Detection,” Physics of the Dark Universe, vol. 15, 07 2016.
3.1

[47] D. J. H. Chung, P. Crotty, E. Kolb, and A. Riotto, “Gravitational production
of superheavy dark matter,” Physical Review D, vol. 64, 05 2001. 3.2

[48] F. S. Queiroz, “WIMP Theory Review,” PoS, vol. EPS-HEP2017, p. 080, 2017.
3.2

[49] J. L. Feng, “Naturalness and the Status of Supersymmetry,” Ann. Rev. Nucl.
Part. Sci., vol. 63, pp. 351–382, 2013. 3.2

[50] R. D. Peccei, “The Strong CP problem and axions,” Lect. Notes Phys.,
vol. 741, pp. 3–17, 2008. [,3(2006)]. 3.2

[51] A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens, and O. Ruchayskiy, “Sterile
Neutrino Dark Matter,” Prog. Part. Nucl. Phys., vol. 104, pp. 1–45, 2019. 3.2

[52] L. Kofman, A. D. Linde, and A. A. Starobinsky, “Reheating after inflation,”
Phys. Rev. Lett., vol. 73, pp. 3195–3198, 1994. 3.2

[53] R. Allahverdi, R. Brandenberger, F.-Y. Cyr-Racine, and A. Mazumdar, “Re-
heating in Inflationary Cosmology: Theory and Applications,” Ann. Rev.
Nucl. Part. Sci., vol. 60, pp. 27–51, 2010. 3.2

[54] S. Hashiba and J. Yokoyama, “Gravitational particle creation for dark matter
and reheating,” Phys. Rev., vol. D99, no. 4, p. 043008, 2019. 3.2

[55] Y. Ema, R. Jinno, K. Mukaida, and K. Nakayama, “Gravitational particle pro-
duction in oscillating backgrounds and its cosmological implications,” Phys.
Rev. D, vol. 94, p. 063517, Sep 2016. 3.2

http://inspirehep.net/record/1459227/
https://doi.org/10.1146/annurev.astro.39.1.137
http://inspirehep.net/record/724189/export/hx
http://inspirehep.net/record/436917/
http://inspirehep.net/record/436917/
http://inspirehep.net/record/921484/
http://inspirehep.net/record/921484/
https://www.researchgate.net/publication/305787283_The_Density_of_Dark_Matter_in_the_Galactic_Bulge_and_Implications_for_Indirect_Detection
https://www.researchgate.net/publication/305787283_The_Density_of_Dark_Matter_in_the_Galactic_Bulge_and_Implications_for_Indirect_Detection
https://www.researchgate.net/publication/1999343_Gravitational_production_of_superheavy_dark_matter
https://www.researchgate.net/publication/1999343_Gravitational_production_of_superheavy_dark_matter
http://inspirehep.net/record/1634808/?ln=no
http://inspirehep.net/record/1221443/
http://inspirehep.net/record/722311?ln=en
http://inspirehep.net/record/1683323/
http://inspirehep.net/record/1683323/
http://inspirehep.net/record/373853/
http://inspirehep.net/record/842899/export/hx
http://inspirehep.net/record/842899/export/hx
http://inspirehep.net/record/1711279/?ln=no
http://inspirehep.net/record/1711279/?ln=no
https://link.aps.org/doi/10.1103/PhysRevD.94.063517
https://link.aps.org/doi/10.1103/PhysRevD.94.063517


BIBLIOGRAPHY 73

[56] Y. Tang and Y.-L. Wu, “On thermal gravitational contribution to particle
production and dark matter,” Physics Letters B, vol. 774, pp. 676 – 681,
2017.

[57] Y. Ema, K. Nakayama, and Y. Tang, “Production of Purely Gravitational
Dark Matter,” JHEP, vol. 09, p. 135, 2018. 3.2

[58] A. Gangui, “Topological defects in cosmology,” 2001. 2

[59] A. Deur, S. J. Brodsky, and G. F. de Teramond, “The QCD Running Cou-
pling,” Prog. Part. Nucl. Phys., vol. 90, pp. 1–74, 2016. 4.1.1

[60] M. Kachelriess, Quantum Fields. Oxford Graduate Texts, Oxford University
Press, 2017. 4.1.1, 4.1.3

[61] J. C. Romao and J. P. Silva, “A resource for signs and Feynman diagrams of
the Standard Model,” Int. J. Mod. Phys., vol. A27, p. 1230025, 2012. 4.1.3,
4.1.3, 4.1.3, 4.3.2

[62] G. Marchesini and B. Webber, “,” Nuclear Physics B, vol. 238, no. 1, pp. 1 –
29, 1984. 4.2, 4.2, 4.2, 6.1, 6.2, 6.1, 6.1

[63] M. Tanabashi et al., “Review of Particle Physics,” Phys. Rev., vol. D98, no. 3,
p. 030001, 2018. 4.3, 4.4.1

[64] V. Berezinsky and M. Kachelriess, “Monte Carlo simulation for jet fragmenta-
tion in SUSY QCD,” Phys. Rev., vol. D63, p. 034007, 2001. 4.4.2, 4.4.3, 4.4.3,
4.4.3

[65] R. Aloisio, V. Berezinsky, and M. Kachelriess, “Fragmentation functions in
SUSY QCD and UHECR spectra produced in top - down models,” Phys.
Rev., vol. D69, p. 094023, 2004. 4.4.3

[66] T. Sjostrand, “PYTHIA 5.7 and JETSET 7.4: Physics and manual,” 1994.
5.1, 5.1

[67] B. Webber, “A QCD model for jet fragmentation including soft gluon inter-
ference,” Nuclear Physics B, vol. 238, no. 3, pp. 492 – 528, 1984. 6.1

https://www.sciencedirect.com/science/article/pii/S0370269317308468
https://www.sciencedirect.com/science/article/pii/S0370269317308468
http://inspirehep.net/record/1669302/
http://inspirehep.net/record/1669302/
http://inspirehep.net/record/564266
https://arxiv.org/abs/1209.6213
https://arxiv.org/abs/1209.6213
https://www.sciencedirect.com/science/article/pii/0550321384904632?viaof QCD jets including soft gluon interference
https://www.sciencedirect.com/science/article/pii/055032138490333X
https://www.sciencedirect.com/science/article/pii/055032138490333X


N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y 
of

 N
at

ur
al

 S
ci

en
ce

s
D

ep
ar

tm
en

t o
f P

hy
si

cs

M
as

te
r’

s 
th

es
is

Gert Kluge

Simulating Particle Cascades in the
Search for Dark Matter using Cosmic
Neutrino Observations

Master’s thesis in MSPHYS
Supervisor: Michael Kachelriess

June 2019


	Abstract
	Sammendrag
	Acknowledgements
	Introduction
	Neutrino Astronomy
	Motivations for Cosmic Neutrino Observation
	The IceCube Neutrino Detector
	Purpose and Function
	Current Status of Observations


	Dark Matter
	Distribution at the Galactic Level
	Super Heavy Dark Matter, and Other Candidates

	Modeling particle cascades
	Parton Cascades
	Conditions for Parton Cascades
	General Strategy
	Derivation of Splitting Probabilities

	Evolution of the Virtuality
	Extension to Electroweak Cascading
	Conditions for Electroweak Cascades
	Splitting Functions for Electroweak Cascades

	Decay and Hadronization
	Decay of W Bosons, Z Bosons and Top Quarks
	Decay of Muons and Taus
	Hadronization and Decay of Hadrons


	Simulating particle cascades
	Principles of Monte Carlo algorithms
	Application of MC Algorithms

	First Results
	QCD sector
	Electroweak Sector

	Summary and Outlook

