

CHAPTER 5. IMPLEMENTATION

The software produced for this test was run on a PC, while the rest
of the bus arbitrator functionality resided on a PIC microcontroller!.
The profile layer (on the PC) communicated with the lower layer bus
arbitrator functionality (on the dsPIC33) through a UART link, using
the provided API. The reason the profile layer was implemented on a
separate device was that, due to licensing, the particular implementation
of the bus arbitrator lower levels used was closed source, and was provided
as a pre-compiled hez file.

The test system consisted of four identical nodes. These nodes were
created at UNB for a PDCP workshop at the MEC’11? conference and
consist of a Microstick® connected to a circuit board created at UNB.
The UNB board contained a CAN tranceiver, connector for CAN bus, a
joystick and an array of LEDs. The microstick contained a single freely
controllable LED.

The CAN bus was a four-wire ribbon cable carrying Vcec and GND in
addition to the two CAN signals CANL and CANH. CANL and CANH
were terminated in both ends by 1202 resistors.

The UART link consisted of 3 wires carrying RX, TX, and GND,
connected to a brandless USB to UART dongle.

The nodes were powered by the same USB link used to program them.
When the tests called for adding and removing devices from the bus, the
USB power was plugged or unplugged, and each device, starting with the
bus arbitrator were reset (push button reset).

5.2 The Software

The lower layer functionality was been implemented by Yves Losier and
Adam Wilson at UNB, and they have also implemented an API accessible
through a UART link.

The bulk of the test software was developed for a PC running Linux?.
It was written in C, and modularized, to ease later porting to a micro-
controller alongside low level functionality, if this is desired.

The complete test setup contains both code produced by the author,
and code produced by Yves Losier and Adam Wilson.

Figure 5.2 shows some of the software modules involved in the test

'Model no. dsPIC33FJ64MC802

2“MyoElectric Controls Symposium 20117 in Fredericton, New Brunswick, Canada.
3Development board for the dsPIC33 by Microchip

“Lubuntu 12.10

44

5.2. THE SOFTWARE

PC

Configuration

Profile layer storage

Emulation of Device
low level functionality

HOST API driver """~---..._ED_CP
functio'r'iality____‘

Drivers

Bus Arbitrator (CAN, ADC, I2C,
EEPROM, Timer)

Host Low level
API functionality

Figure 5.2: An outline of the software modules. Modules highlighted blue have
been developed by the author.

setup. Here follows a more detailed explanation of each device and mod-
ule.

5.2.1 The Bus Arbitrator

The bus arbitrator software was provided precompiled, a “black box”.
Interaction with it happened through a UART API called the Bus Arbi-
trator API. The API is documented in [9]. The API defines a message
format including a message ID field, a length field, and a variable length
payload field. The host (in this case the PC) sends a request and receives
a reply from the bus arbitrator. Communication is always initiated by
the host. The message ID specifies the request type. Message IDs come in
threes: request (n), success response (n + 1), and failure response(n + 2).
With these messages, the host can inquire about the devices, channels,
and channel links of the system, read and write parameters manually, and
configure channel links. There are also options for resetting devices and
for sending a raw CAN packet onto the bus (“passthrough”), but these
were not used in the course of this work.

45

CHAPTER 5. IMPLEMENTATION

Details of Functionality

From interaction through the Bus Arbitrator API, the following could be
inferred about the inner details of the bus arbitrator:

It will always accept bind requests while running.

It will not set up a link without being asked to by a device sending
an Update Data Channel Request, or by the host using the API.

It will not let devices bind unless they send regular beacons.

If a device disconnects from the bus, the bus arbitrator will still
report it as present through the API.®

Hot-Swappability

Hot-swappability was not implemented because of idiosyncracies in the
low level bus arbitrator implementation, as described above.

5.2.2 The Other Devices

The software for the non-bus arbitrator nodes was adapted from the code
used at the workshop the nodes were originally developed for.

The changes involved adding support for new parameters, and input
and output functionality for use in tests. In addition some refactoring
was done to facilitate the implementation of the different test cases.

The software consists of these components:

ADC15- Driver for the analog to digital converter. Used to read
joystick input.

CAN1% - Driver for CAN.

DEE Emulation 16-bit® - Driver for EEPROM (non-volatile mem-
ory).

12C% - Driver for 12C. Used to control LED array.
TimerS - Interface for timers.

PWM - Driver for PWM module. Used to fade the LED.
PDCP - PDCP specific functionality.

5This fact disallowed implementation of hot-swappability.
5Unmodified by the author.

46

5.2. THE SOFTWARE

e Main - Main program flow.

Most PDCP functionality is provided by the ProcessMessage () func-
tion in PDCP.c. This function interprets an incoming CAN message and
responds accordingly by sending a parameter value, updating a parameter
value, or storing a value received on a channel link.

The main() function has three parts:

1. A setup part which includes retrieving values from EEPROM,
2. A bind sequence part, and

3. An infinite loop performing three main functions:

(a) Sends a beacon every beacon interval.
(b) Reads and processes CAN messages.

(¢) Performs channel-specific behavior (e.g. sending joystick val-
ues on a channel).

The code needs to be compiled with a “test number” macro (TEST_NUM)
and a “device number” macro (DEVICE_NUM); these are set in PDCP.h.
These macros dictate parameter values and channel behavior, and are
used to quickly switch between compiling the different test devices. The
list of possible parameters are found in PDCP.c and the list of channel
functions are found in Main.c.

The software was compiled and loaded using MPLAB X v1.80, the
standard IDE provided by Microchip.

5.2.3 The PC (Host) software

The PC software is the most substantial part of the software authored in
the course of this thesis work.

The software consists of a number of modules (also illustrated in
fig. 5.3):

e Primary modules:

— pdcp_driver

pdcp_low_level

pdcp_configurations

pdcp_profiles

47

CHAPTER 5. IMPLEMENTATION

e Helper modules:

— pdcp_error
— pdcp_malloc

— pdcp_names.h

e Runtime modules:

— pdcp_run

— main.c

main.c

[] Runtime modules
[] Main modules

pdcp

run

Helper modules
— "Depends on"

y

y

pdcp _profiles

pdcp error

pdcp _configurations

pdcp malloc

-
-
-

V'd

pdcp names.h

pdcp low level

\ 4

pdcp_driver

Figure 5.3: The software modules of the host program run on the PC. The con-
figuration module’s dependency on the low level module is dotted.
This is because it only uses the struct definitions, not function calls.

Procject Structure

Each of the software modules includes a source file (.c) and a header
file(.h) (except main.c and pdcp_names.h). In addition, many modules

48

5.2. THE SOFTWARE

have unit test files meant to be used with the Unity test framework [10].
The code can be found in the attachment, in the “hostkode” folder.

Header files are in “include”, source files in “src”, and test files in “test”.

The “obj” folder holds intermediate object files during compilation.

The “test” folder also contains a “test_runners” folder, containing files
autogenerated by Unity.

The “hostkode” folder contains four test files(test_conf.file, test_read.file
and test_write.file) used by the unit tests. It also contains a makefile,
the file containing stored configurations (configurations.file), and a
script (color_output.sh) used to color console output. Usage:

make all |& ./color_output.sh or

make test |& ./color_output.sh

Makefile

The makefile can be used both to compile and run tests, and to compile
and run the main program. Run tests with make test, and main with
make all. The makefile will automatically compile (if needed) and run
the program (with test: multiple programs). make clean will remove
object files.

Module pdcp_driver

This module provides an interface to the UART link by providing data
structures (uart_msg_struct, uart_msg_array and uart_conn), and a
send/read interface:

driver_send_msg(uart_conn* conn, const uart_msg_struct* in)
driver_blocking_read(uart_conn* conn, uart_msg_struct* out)

driver_blocking_read will not return before it has received a mes-
sage, unless a timeout occurs.

The fields of uart_msg_struct struct correspond to the message struc-
ture of the bus arbitrator API. The uart_conn struct contains file descrip-
tors and other meta information.

driver_init must be called before the driver module can be used.

Module pdcp_low_level

The low level module performs the emulation of low level funtionality by
use of the bus arbitrator API. It provides the data structures for storing

49

CHAPTER 5. IMPLEMENTATION

system data, provides function for all the API features, and auxilliary
functions pertaining to the system info, such as printing to stdout, and
comparing variables.

At its core is the pdcp_system_info struct. This contains arrays of
all the devices, channels and channel links on the system. It has an array
called missing_devices. These are devices that are referenced by input
channels as source output channels, but are not present on the bus. Some
links in the channel_links array may also involve a missing device. In
that case, the link_status field of the channel link struct will be set to
LINK_STATUS_INACTIVE Cz 1)

low_level_init must be called before the module can be used, and
will fetch all system info. To wupdate the system info later,
explore_system_info can be used.

See pdcp_low_level.h for additional documentation.

Module pdcp_configurations

The configurations module allows for storing and loading a single config-
uration”. The module provides its own data structures tailored for storing
configuration (pdcp_configuration, pdcp_channel_link_configuration
and pdcp_channel_configuration), and the following interface:
pdcp_configuration* load_configuration()
void save_configuration(const pdcp_system_info* system_info)
and some functions for comparing this module’s structs to the low
level module’s structs.

Module pdcp_profiles

This module contains the profile logic. The algorithms described in sec-
tion 4.3.1 are implemented here.

Listing 4.1 is performed by profiles_first_setup. Listing 5.1 shows
pseudo code for this procedure, as it is implemented.

Listing 5.1: Profile layer startup procedure as implemented.

T W N =

Wait until no bind requests for x ms.

if (there is a configuration in memory)
Retrieve configuration from memory.
Remove all channel links requested by devices

"The parser supports multiple configurations, but full support for this was not
prioritized.

50

© 0 N O

11
12
13
14

5.2. THE SOFTWARE

Connect according to retrieved configuration.
else
Allow all channel links requested by devices.

if (configuration involves missing devices/channels)

Try to find alternate channels using type/profile.

if (there are unconnected terminal channels)
Try to connect them according to type/profile.

Most of the algorithms in section 4.3.1 are implemented under the
same name, except

e retrieve_configuration(): This happens naturally through the
low level actions of the bus arbitrator and devices. The devices will
send update data channel requests and the bus arbitrator will set
up the channel links automatically. From there, the profile layer
can decide whether to keep them or not. If there is a configuration
stored centrally, this will be implemented, and the automatic links
will be removed.

e connect(link): The sole access checks mostly happen inline, and a
low level function named make_channel_link is used afterwards.®

e intelligently_connect(link): The implementation is named
intelligently_connect_links. Another function,
intelligently_connect_link, finds an appropriate output chan-
nel for an input channel, then calls intelligently_connect_links
on the two channels.

e find_replacements(): This functionality is covered by
find_replacements, which finds replacements for channels reported
as missing by the bus arbitrator, and find_ochan_replacement
and find_ichan_replacement which are used when channels in
the configuration saved to file are missing.”

e find_channel(): This is performed inline.

The module is used as shown in listing 5.2

Listing 5.2: Adapted code from pdcp_run.c which demostrates the correct use
of the profile module

8make_channel_link_raw is the same, only with different arguments.
9The functionality is split because of idiosyncrasies in the bus arbitrator implemen-
tation.

o1

W N =

CHAPTER 5. IMPLEMENTATION

profiles_init ();
while (!profiles_ready_to_run_first_setup ()){}
profiles_first_setup(autoconfig);

profiles_first_setup takes a boolean value specifying whether to run
autoconfiguration.

Module pdcp_error

This module provides the following functions:

void check_ret_value(int ret_value, int line_num);
void check_return_code(return_code ret, int line_num);

in addition to the global variable pdcp_errno, which works in the same
way as the standard errno. pdcp_errno is meant to report error codes
pertaining to the bus arbitrator API. However, these error codes are not
yet implemented, so pdcp_errno is unused at the moment.

The functions, however, are in use.

check_ret_value is used with values returned by standard Linux
library calls, such as read and write, where a negative value indicates an
error. The line number argument is for debugging purposes. The function
prints an error message to stdout.

check_return_code is used with the return_code type defined in
pdcp_names.h. The function prints an error message to stdout, in case
of atypical values (i.e. not OUT_VAR_FILLED).

Module pdcp-malloc

This module provides wrappers for the standard functions malloc, realloc,
and free. The wrappers mainly count the number of allocated memory
areas, so the unit tests can verify that there is no memory leakage.

Module pdcp_names.h

This header file contains a number of #defined values used by multiple
modules.

This file also contains the definition of the enumerated type return_code:

52

5.2. THE SOFTWARE

typedef enum{
NO_ACTION,
OUT_VAR_FILLED,
BAD_POINTER,
TOO_SMALL,
ERROR_CONDITION
} return_code;

The return_code type is used throughout the host software to tell how
the execution of a function went.

All values except ERROR_CONDITION have to do with output argu-
ments. The function will take a pointer as argument, and attempt to set
the variable (usually a struct or array) it is pointing to.

e NO_ACTION means that there was nothing to fill the variable with.
E.g. if driver_blocking_read times out, it will return NO_ACTION.

OUT_VAR_FILLED is the standard “success” response.

BAD_POINTER means the output variable pointer is NULL.

TOO_SMALL means an array among the arguments is too small.

ERROR_CONDITION means some other error happened.

Module pdcp_run
This module executes the program based on command line arguments:

./main.out [argument]

e ‘“autoconfig” or no argument: Run profile layer normally (with au-
toconfiguration).

e ‘“noautoconfig’: Run profile layer without autoconfiguration.
e “save”: Save the current system configuration

e “print”: Print the long system info (using print_system_info from
pdcp_low_level)

e “info”: Print the short system info (using print_system_info_short
from pdcp_low_level)

e “clear”: Remove all channel links in the system.

e “enforce”: Remove channel links that break sole access rules.

53

N O Ut R W N

Module main.c

Contains only this:

CHAPTER 5. IMPLEMENTATION

Listing 5.3: Contents of main.c

#include <stdio.h>
#include "pdcp_run

int main(4nt argc,
pdcp_run(argc,
return 0;

'hll

char* argv [1){
&argv [0]);

o4

Chapter 6

Testing and Evaluation

6.1 Method

The implemented system was tested using 5 small tests involving 4 devices
each. For the purpose of the tests, a profile hierarchy was constructed,
shown in fig. 6.1. The testing was an attempt to verify different aspects
of the profile layer by observing what channel links were created under

different circumstances.

/O\

Figure 6.1: The profile hierarchy used in the tests.

6.1.1 Setup

The following explains how the testing environment was set up.
The hardware setup is displayed in fig. 5.1. The four devices were

55

Terminal
- Sensor
Device Ox2
0x1
LED Individual Joystick Button
Array LED ox 0x2

0x1 0x2
Bar On-Off Fader On-Off X-axis Y-axis
0x1 0x2 0x1 0x2 0x1 0x2

CHAPTER 6. TESTING AND EVALUATION

connected by a ribbon cable, the bus arbitrator was connected to the
Linux PC via UART, and all four devices were powered through USB. The
three non-BA devices were connected to a separate PC running Windows
and MPLAB X v1.80.

The tests utilized the 10-LED array on the MEC board and LED1 on
the Microstick for output. The LED array was used as a bar graph (the
On-Off profile was unused), while LED1 was used as an binary output
(the fader profile was implemented using PWM, but remained unused.).
The joystick’s two directions in addition to its push button were used as
inputs.

The non-BA device software included device specific functionality for
all tests (1-5)! and all devices (1-3) in functions called
dutyCycle[test] [device] () (e.g. dutyCycle32() for test 3, device 2).
The device specific parameters were set and chosen by preprocessor checks
on the value of the macros TEST_NUM and DEVICE_NUM. For each test, each
device was programmed individually with the appropriate TEST_NUM and
DEVICE_NUM.

The profile layer software was run on the Linux PC, using the com-
mand line arguments documented in section 5.2.3.

!'Note: There is also a Test 7, but it was used only for debugging.

56

6.2. TESTS AND RESULTS

6.2 Tests and Results

6.2.1 Test 1
Description
» 1 Device 2
Device 1 1
> 1 .
Device 3
> 2
Profiles
Device 1 Device 2 Device 3
Ch. 1: 0x2110 Ch. 1: 0x2110 Ch. 1: 0x2200
Ch. 2: 0x2120

Device 1’s and Device 2’s channels will be connected. Then Device 2
will be replaced by Device 3 to test the profile layer’s ability to find
replacements for missing input channels.

A video of this test can be found in the attachment.

Result

The test succeded. The final configuration was:

- 1 Device 2

Device1 1 p»

Device 3

o7

CHAPTER 6. TESTING AND EVALUATION

6.2.2 Test 2
Description

-»> S

Device1 1 p»> Device2 4 p» Device 3
> > 2
5P
Profiles
Device 1 Device 2 Device 3

Ch. 1: 0x2120 Ch. 1: 0x2200 Ch. 1: 0x1110

Ch. 2: 0x2110 Ch. 2: 0x1220
Ch. 3: 0x1100
Ch. 4: 0x1210
Ch. 5: 0x1220

The system will be turned on without any configuration, testing the au-
toconfiguration capabilities of the profile layer.
A video of this test can be found in the attachment.

Result

The test succeded. The final configuration was:

Device 1 1 1 Device 2 2 1 Device 3
evice 1, evice > evice
2 [, > 2
5

o8

6.2. TESTS AND RESULTS

6.2.3 Test 3
Description
D'11->1D'22 1D'3
evice evice > evice
Lp 5 o> 2
Profiles
Device 1 Device 2 Device 3
Ch. 1: 0x2120 Ch. 1: 0x2200 Ch. 1: 0x1110

Ch. 2: 0x2110 Ch. 2: 0x1220
Ch. 3: 0x1100
Ch. 4: 0x1210
Ch. 5: 0x1220

The system will be configured like above, and the configuration will be
saved. The system will then be reset, to test the profile layer’s ability to

recall the configuration, and reimplement it during power-up.

Result

The test succeded. The final configuration was:

Device 1

1

Device 2

3
4
5

->__> 1
>
»,—P 2

Device 3

59

CHAPTER 6. TESTING AND EVALUATION

6.2.4 Test 4
Description
Device1 1 p»
-> .
_ Device 3
1 P>
Device 2
2 >
Profiles
Device 1 Device 2 Device 3

Ch. 1: 0x2110 Ch. 1: 0x2200 Ch. 1: 0x2200
Ch. 2: 0x2120 Ch. 2: 0x2110

Device 1’s channel and Device 3’s channel no. 2 will be connected, Device
1 will be replaced by Device 2, to test the profile layer’s ability to find
replacements for missing output channels.

Result

The test succeded. The final configuration was:

Device1 1 p»>

Device 3

Device 2

60

6.2. TESTS AND RESULTS

6.2.5 Test 5
Description
Device 1 1 ->—-|_-: 1 Device 2 i:_‘_> 1 Device 3
2 5 f—"2
Profiles
Device 1 Device 2 Device 3

Ch. 1: 0x2120 Ch. 1: 0x2200 Ch. 1: 0x1110

Ch. 2: 0x2110 Ch. 2: 0x1220
Ch. 3: 0x1100
Ch. 4: 0x1210
Ch. 5: 0x1220

The system will be configured, and subsequently reset with no saved
configuration to emulate a replaced bus arbitrator. This is to test the
profile layer’s ability to recall the configuration from just the information
on the individual devices.

A video of this test can be found in the attachment.

Result

The test failed partially. Channel 1 of device 3 was reported as connected,
but it did not work (LED array did not update) after resetting. This re-
sult is discussed in section 7.3.1. A printout of the system as reported
to the host at the end of this test can be found in appendix D. The final
configuration was:

Device 1 ™" Device 2 e Device 3
evice 1 evice 4 > evice
NP 5Ly > 2

61

CHAPTER 6. TESTING AND EVALUATION

62

Chapter 7

Discussion

7.1 Specification

The tasks of a device profile layer for PDCP were determined to be:

Behavior

1. Storing the usual configuration of the system and setting this up
automatically each time the system powers on. This includes re-
dundant storage inside the bus arbitrator.

2. Automatic, intelligent reconfiguration when parts are removed and /or
exchanged.

3. Some amount of automatic configuration when the system is not
manually configured.

Information Framework

4. Context, or meta-information about the information transmitted on
the links.

5. Relational information that allows quantification of the similarity
between two channels. This is to pick suitable channels to connect
to.

6. Information to infer what links need to be set up to allow expedient
information flow.

Does the specification address all these tasks satisfactorily?

63

CHAPTER 7. DISCUSSION

Behavior

. The storage of configuration boils down to the markup language
described in section 4.5.2. The string of bytes can be stored in
any chosen, non-volatile way. The flexibility of the markup system
should be enough to store everything needed to recreate links.

. The reconfiguration functionality is provided by listing 4.6. With
this algoritm, some amount of reconfiguration will happen, which
is also shown by the tests. There are many ways to achieve this
functionality, and no “best solution” is presented.

. The autoconfiguration functionality is provided by listing 4.7. With
this algoritm, some amount of autoconfiguration will happen, which
is also shown by the tests. There are many ways to achieve this
functionality, and no “best solution” is presented.

Information Framework

. Context is provided by the type parameter, and this is probably
inadequate to cope with all the different values that could be sent on
the bus. Already, timing information has been identified as missing.
The final design of the context should be done very carefully.

. The primary relational information is contained in the profile and
terminal profile value. The tree structure paradigm gives a way
to compare not only identical agents but also more or less similar
agents. The use of the type value for additional filtering gives more
correct calculations of similarity. For the goals set for this work,
the profile value and tree structure perform satisfactorily.

. The “desired input channels” and “required input channels” pa-
rameters, in addition to the “terminal profile” parameter and the
“sole access” and “terminal channel” flags of the type parameter
provide information about how to set up webs of links. These val-
ues together address all of the issues identified in appendix B.4.4[1].
This task is fulfilled for the purpose of all scenarios the author has
conceived of during a sizeable amount of consideration. For ex-
ample, this setup will accomodate feedback loops. Nonetheless, the
tests did not include more complicated systems than two-level linear
links, so further testing might bring up issues.

64

7.2. IMPLEMENTATION

7.1.1 The Alternative

The alternative presented in section 4.6.3 is intriguing.

The advantage is more streamlined behavior by further abstracting
the channels away from devices. One disadvantage is how to handle more
roles (discussed in section 4.6.4).

The best way might be middle ground. When a terminal channel is
explicitly indicated by setting the flag in the type parameter, the algo-
rithms should be able to handle it even if the different channels have
different root profile components. The terminal profile parameter can
then likely be dispensed of.

The author’s opinion is that this avenue should be investigated in
future work.

7.2 Implementation

The implementation includes several parts, not all of them pertaining di-
rectly to the device profile layer. The actual profile layer (pdcp_profiles)
module is less than 700 code lines, and thus not overly complex. For pro-
duction, this size would likely increase, but given good design, a single
integrated bus arbitrator node can, in the author’s opinion, be acheived
without a prohibiting level of complexity. Establishing this was one of
the goals of the work, and has thus been accomplished.

Some of the complexity and idiomaticity of this implementation is
due to the design of the bus arbitrator API. Much of the development of
the host software was completed with only the API documentation as a
guide, without actual devices to test on. This meant that some design
choices were based on misunderstandings of the actual behavior of the
bus arbitrator.

As an example, the representation of missing devices and channels,
and the implementations of find_replacements became cumbersome be-
cause of specific implementation details in the bus arbitrator.!

"When devices request to be connected to a device that is not present, the bus
arbitrator will remember this and realize the connection if the device appears later.
The bus arbitrator will also report these unrealized links to the host, indicating their
inactive state with a “link status”. On the other hand, when the host requests a link be
made, and one or both devices is not present, the request will fail and no “inactive” link
will be set up. This detail was not discovered until testing the completed code on the
physical system, and missing channels needed to be handled differently depending on
whether they were specified in the central configuration or on the devices themselves.

65

CHAPTER 7. DISCUSSION

The specification also allows for flexibility regarding complexity. Specif-
ically, the algorithms, especially find_replacements and autoconfigure
can be made as intelligent or simple as desired to accomodate limitations
and requirements.

7.2.1 Possibilities for Further Use

The purpose of the implementation was to create a proof of concept of a
profile layer for PDCP. This has largely been accomplished. The software
was written in C. This was partly in the hopes that it could be reused
in a single-chip implementation. However, the profile implementation is
probably too much shaped by the API to be of use without it.

Perhaps the biggest use for this software is to use the pdcp_low_level
module as C bindings for the bus arbitrator API. The low level module is
the largest one (> 1500 lines of code) and developing it took considerable
time, so this implementation can be useful for others making host software
using the API.

The API, though not ideally suited for a device profile implementa-
tion, can be very useful for developing tools for manual configuration.

7.3 Testing and Results

The testing can be likened to interoperability testing as described in sec-
tion 3.1.1. The likeness comes from the fact that the tests tested the
ability of the devices to actually communicate meaningfully and achieve
the intended functionality (controlling LEDs using joysticks and buttons).

As such, the tests were definitely interoperability tests of the imple-
mentation. Yet, as for interoperability testing of the protocol itself, it
can be argued whether the testing conditions were “an environment rep-
resentative of reality” for the purposes of use in prosthetics.

The main differences between the testing environment and a prosthesis
use case are:

e The use of the bus arbitrator API and host software instead of a
single-device bus arbitrator.

e The tests involved neither mechanical actuators nor the type of
sensors that would be found in a prosthesis, specifically myoelectric
sensors whose sensor readings have a completely different character
than joystick readings.

66

7.3. TESTING AND RESULTS

e None of the control schemes used in the tests needed timing in-
formation about samples sent on the bus. In prostheses, timing
information is usually needed to a certain extent, to process noisy
EMG signals.

e All devices (except the bus arbitrator) used mostly the same soft-
ware, on the same model of microcontroller and CAN transceiver.
The tests did therefore not show whether devices developed on dif-
ferent hardware and by different developers can interoperate.

e The tests involved no more than 3 regular devices, which, though
maybe realistic for typical prostheses available nowadays, is nowhere
near the theoretical capacity of the profile.

The issue of timing has already been identified. The specification in
chapter 4 is of course just a first draft, and the specification cannot be
said to be complete yet. All of the above points can turn out to be issues
that need to be addressed in later revisions of the profile layer.

7.3.1 The Failure of Test 5

Because of time constraints, the cause of the failure was not investigated
thoroughly, but the fact that the host appeared to think the link was
there, seems to indicate a small bug in the low level bus arbitrator im-
plementation. The error does not appear to be indicative of a serious
problem with the profile layer itself.

In summary, the testing suite can be said to be sparse, and not rigor-
ous enough for more than a first proof of concept.

That said, the tests do cover most of the functionality described in the
specification, and presuming that the error of test 5 is not the symptom
of a deeper issue, the rough principles of the profile layer can be said to
be confirmed.

67

68

CHAPTER 7. DISCUSSION

Chapter 8

Conclusion

The work conducted for this thesis has produced a first draft of a specifi-
cation for a device profile layer for the Prosthetic Device Communication
Protocol. A proof-of-concept implementation has been made and tested,
proving that adding such a profile layer to PDCP is feasible.

An investigation into the concept of interoperability was conducted,
and an attempt was made to adapt the concepts found in the literature
to the effort of creating a device profile layer. Interoperability was found
to be a general term pertaining to the ability of agents in a network to
communicate meaningfully.

The implemented system consisted of 4 nodes with identical hard-
ware, where one was used as a bus arbitrator. This bus arbitrator node
communicated with the other three over PDCP, and with a host com-
puter over UART. The implemented profile layer code was run on the
computer. This setup was found to slightly diminish the value of the
implementation as an example implementation. Nevertheless, the merits
of the profile layer can be said to have been duly demonstrated.

The specification was found to be sufficient to achieve the desired func-
tionality in the implemented system. 5 tests were conducted, of which 4
were successes and the 5th was a partial failure. The failure was, however,
attributed to problems largely unrelated to the profile layer implementa-
tion.

69

70

CHAPTER 8. CONCLUSION

Chapter 9

Further Work

The creation of a profile layer for PDCP is only a small part of the
undertaking that is PDCP.

In addition to refining and expanding directly on the work of this
thesis (See section 4.6), future work in this area can include the following.

9.1 Manual Configuration

The purpose of the profile layer is to increase the usability of prostheses
using PDCP. However, manual configuration will always be necessary,
and a standardized framework for this is essential to the further increased
usability of PDCP. The bus arbitrator APT used in this thesis is a big step
towards this, but much remains.

9.1.1 Software

There should be software tools for configuring the prosthesis from a PC or
another type of computer. The scope of such software could be anything
from simple command line instructions to a full GUI with drawable links.

9.1.2 Connection

The bus arbitrator API uses UART, but this is not the only possibility.
Work is being conducted into allowing wireless configuration as well. In
any case, physical connectors would benefit from standardization.

71

CHAPTER 9. FURTHER WORK

9.2 Hardware

Many aspects of hardware can be considered in relation to the develop-
ment and deployment of PDCP. The addition of other classes of sensors
(pressure, acceleration) is being considered. PDCP will greatly reduce
the cost of additional devices, and new sensors is just one possible use
of these new possibilities. Other possibilities are human interface devices
such as buttons or displays.

There is also work to be done in standardizing the hardware aspects
of PDCP itself, specifically the bus wire and connectors.

72

Bibliography

[1] Oyvind Renningstad. “Possibility Study of Implementing a Device
Profile Layer in PDCP.” 2012.

[2] Prosthetic Device Communication Protocol for the AIF UNB Hand
Project. By Yves Losier. University of New Brunswick. 2012.

[3] PDCP Info (2011 05 04). University of New Brunswick.
[4] AIF2 System Data Capture (2012 02 21). University of New Brunswick.

[5] Road Vehicles - Controller Area Network (CAN). ISO 11898-1.
Norm. ISO, Geneva, Switzerland, 2003.

[6] Yazid Benkhellat, Marc Siebert, and Jean-Pierre Thomesse. “In-
teroperability of sensors and distributed systems”. In: 37-38 (June
1993).

[7] Amit K. Chopra and Munindar P. Singh. “Producing Compliant
Interactions: Conformance, Coverage, and Interoperability”. In:

Declarative Agent Languages and Technologies IV. 2006, pp. 1-
15.

[8] Anders Fougner et al. “Control of Upper Limb Prostheses: Termi-
nology and Proportional Myoelectric Control — A Review”. In:
(Sept. 2012).

[9] Prosthetic Device Communication Protocol Host j-; Bus Arbitrator
Communication. University of New Brunswick.

[10] URL: http://throwtheswitch.org/white-papers/unity-intro.
html.

[11] CANOpen Network CAN Bus Cabling Guide. By Advanced Motion
Controls. URL: http://www.a-m-c.com/download/support/an-
005.pdf (visited on 12/19/2012).

73

http://throwtheswitch.org/white-papers/unity-intro.html
http://throwtheswitch.org/white-papers/unity-intro.html
http://www.a-m-c.com/download/support/an-005.pdf
http://www.a-m-c.com/download/support/an-005.pdf

[12]

BIBLIOGRAPHY

Thomas M. Idstein et al. “Using the Controller Area Network for
Communication Between prosthesis Sensors and Control Systems”.
In: MEC ’11 Raising the Standard. From the MyoElectric Controls
Symposium in Fredericton, New Brunswick, Canada. 2011.

Andrew Szeto. Introduction to Biomedical Engineering. Elsevier
Inc., 2005. Chap. 5: Rehabilitation Engineering and Assistive Tech-
nology.

74

Appendix A

Glossary

e PDCP - Prosthetic Device Communication Protocol.

e “The device profile layer” or “the profile layer” - The pro-
tocol layer constructed, specified, implemented and tested in this
thesis work.

e Terminal Device/End Effector - Gripper etc. placed on the end
of a prosthesis.

e Control unit/Controller/Control (role) - The role of convert-
ing sensor data into set points for terminal device(s).

e NTNU - Norges Teknisk-Naturvitenskapelige Universitet (The Nor-
wegian University of Science and Technology), which this thesis is
written for.

e UNB - University of New Brunswick in Fredericton, Canada.
e Adam Wilson - Creator of PDCP, professor at UNB.

e Yves Losier - Creator of PDCP, professor at UNB, co-advisor for
this thesis.

e Low Level PDCP - The part of PDCP already created by Y.
Losier and A. Wilson, described in chapter 2, which the profile
layer of this thesis builds on.

e PDCP Profile Layer - Additional functionality for PDCP, de-
veloped in this thesis, with the purpose of allowing devices to be
connected in an automatic, semi-intelligent way.

75

APPENDIX A. GLOSSARY

UART - Universal Asynchronous Receiver Transmitter. A simple,
ubiquitous communication protocol.

TTL - Transistor-transistor logic. Usually used to specify the volt-
age levels used by most digital integrated ciruits (0-3.3V or 0-5V).

CAN - Controller Area Network. A network protocol designed for
use in noise-heavy environments, originally automobiles.

MPLAB X - IDE (Integrated Development Environment) soft-
ware used to create, compile, and load programs for Microchip’s
microcontrollers (PIC).

Unit Testing - Automated testing of small units of software.

Powered Prostheses - Prosthetic limbs with motors, providing
different functionality, and controlled using myoelectric sensors.

Myoelectric - A term designating things pertaining the study and
capture of the electric nerve signals that control muscles.

Bus Arbitrator (BA) - A specialized device which must be present
on the PDCP bus, see section 2.1. This device performs most of
the profile layer functionality.

76

Appendix B

Elaboration on the
Implementation of Device

Profiles in PDCP

This is chapter 8 of “Possibility Study of Implementing a De-
vice Profile Layer in PDCP.” by the author. It is reproduced
here for the reader’s convenience.

This chapter is a discussion of how to implement a profile layer in PDCP.
I will try to present multiple solutions to problems, and make decisions
where it is appropriate for further discussion. The result will be a general
outline of one way to implement the profile layer.

The following is a set of goals I devised for the device profile layer
when it is finished. These will guide the decisions made in later sections.

e Full specification and standardization of the communication needed
for basic, prevalent prosthesis functions.

e Allowing vendors to implement custom functionality.

e Allowing for future extensions to the protocol and to the device
profile layer.

e Allowing for backwards compatibility.
e Being practical for use in existing systems.

e Being able to serve the increase in complexity that will come with
future systems.

77

APPENDIX B. ELABORATION ON THE IMPLEMENTATION OF
DEVICE PROFILES IN PDCP

B.1 System Architecture

Controlling a prosthesis is essentially the problem of converting sensor
data into motor input. Fougner et al.[8] divides the problem into a series
of steps, as illustrated in fig. 4.3. We will use this as the basis of our
system architecture.

As the information moves through the steps, it takes on different
values. The question is then: Which of the values in should be available
on the bus, and on what form?

The sensors will need to transmit their readings in some form, and
since each processing step necessarily reduces the amount of information,
the raw EMG /sensor signal should always be available, to allow for the
widest range of possible control schemes.

Additionally, since raw sensor signals usually have a relatively high
bit rate, a processed version could also be available. The best choice
seems to be the signal features/parameters, because this is the last step
where the signals from different sensors are kept separate, which means
the feature extraction can be done in the sensors themselves.

Further, the effector(s) could accept set points for individual motors,
to allow the control intelligence to reside outside the effector.

Lastly, the effectors should also be able to accept set points for at
least one generalized “movement class”! so that the control intelligence
is not required to be able to control all constellations of motors.

These constraints then outline three main roles in the system in addi-
tion to two helper roles which should be filled by the others. Figure B.1
shows the roles and signals. A device is also allowed to fill more than
one main role, such as a control unit in a terminal device. The device
should still be allowed to be used as just one or the other, i.e. exposing
all channels.

Since features and individual motor set points are not essential for
an implementation of a profile layer, the rest of the chapter will focus
on implementing raw sensor signals and movement class set points. The
simplified architecture is shown in fig. B.5. Support for features and
individual motor set points can also be added later if not part of the first
version of the profile layer.

'For example “grasp” or “wrist rotation”.

78

B.1. SYSTEM ARCHITECTURE

Signal capture

Raw Senéor Signal

: Feature
1 extraction
1

————q----

Features

Control

T
Movement class set points

1
Hardware 1
abstraction |

Individual motor set points

¥

Actuation

Figure B.1: This is the division of roles I suggest, and the signals that can travel

on the bus.
Sensors :
Can send either raw EMG PrOSthetIC
or the average amplitude Hand
(feature).

Accepts pinch grip set
points, average
amplitude, or raw
EMG.

Figure B.2: Example 1 of a prosthesis system conforming to the proposed spec-
ifications. Here, the control role is performed in the hand itself. If
the sensors send average amplitude (PMES), this system will be a
digital equivalent to modern two-site systems.

79

APPENDIX B. ELABORATION ON THE IMPLEMENTATION OF
DEVICE PROFILES IN PDCP

Sensors

Can send either raw EMG or the
average amplitude (feature).

Control

Prosthetic
Hand

Accepts both raw EMG
and the average
amplitude. Can send
grasp and/or elbow
rotation set points
(depending on the
number of sensors
available.

Accepts grasp set
points

Accepts elbow
rotation set points

Prosthetic
Elbow

Figure B.3: Example 2 of a prosthesis system conforming to the proposed spec-
ifications. This is a thought scenario with a control unit especially

suited to the combined elbow-hand prosthesis.

Sensors

Can send either raw EMG or a
number of features.

Control

Accepts both raw
EMG and features.
Uses features it gets
or extracts itself to
control grip and
rotation
simultaneously using
pattern recognition.

Prosthetic
Hand

Accepts pinch grip
and rotation set points

Figure B.4: Example 3 of a prosthesis system conforming to the proposed spec-

ifications.

Pattern recognition systems must be trained, so the

advantage of having a separate control unit is that hands can be
switched without needing to train a new control unit.

80

B.1. SYSTEM ARCHITECTURE

Signal capture

Raw Senlsor Signal

1
Feature 1
extraction :

Control

T
Movement class set points

: Hardware :
: abstraction :

Actuation

Figure B.5: This is a simplified version of the division of roles I suggest.

B.1.1 A Note on Bandwidth

The CAN protocol has a relatively high bit rate (up to 1 Mbit/s for bus
lengths below 25 m [11]). Idstein et al. [12] report a bus utilization of
61% for a system transmitting 16 EMG signals with a resolution of 16 bits
and a rate of 1 kHz. This means that bandwidth will not be a problem
until prostheses become significantly more advanced than they are today.
This also means that the possibility of sending features on the bus is
not critical at this time, and could be, as mentioned, deferred to a later
version of the protocol.

B.1.2 A First Implementation

The following describes the behavior of a possible “first implementation”
of the above system architecture in a device profile layer. “First im-
plementation” means the basic, most essential behavior. The following
sections will go deeper into the profile layer to look at how to realize this
behavior.

81

APPENDIX B. ELABORATION ON THE IMPLEMENTATION OF
DEVICE PROFILES IN PDCP

Behavior
A system consisting of:

e A control unit

e Enough electrodes for the control unit’s control scheme
e A terminal device of any kind, and

e A bus arbitrator

all connected to the bus, will allow the terminal device to be con-
trolled along at least one degree of freedom by way of some sort of
activation of the electrodes. The system will behave the same way
after every power-on unless a device is added, removed or replaced,
in which case, the new behavior should be as similar as possible to
the old.

B.2 Data Channels - Setup

A device will use data channels to send or receive data, so it should have
a channel for each data type it accepts or provides. As an example: An
electrode will provide an EMG output channel, and the control module
will provide an EMG input channel.

The profile layer is responsible for specifying how to connect inputs
and outputs (“Configuration”) in the best possible way. The bus arbitra-
tor sets up the actual links, so we will assume it will also decide which
channels to connect to each other.

B.2.1 Configurations

One goal of the device profile layer is to be able to swap one part for
another, similar part or to add or remove devices. After the change,
the prosthesis should function as similarly as possible to before, but also
adapt to changes in complexity.

In essence, there are four different power-up scenarios which require
different kinds of configuration:

1. First power-up: All channels must be connected according to
device and channel profiles.

2. Restart of an already configured system: Trivial case of re-
connecting a stored connection scheme according to VIDs, PIDs,
Serial numbers, and channel indices.

82

B.2. DATA CHANNELS - SETUP

3. Restart of an already configured system with devices added,
removed, or replaced: A combination of the two previous, involv-
ing mapping the functions of the removed device(s) to the functions
of the new device(s) to make the new system behave similarly to
the old system.

4. Restart of an already configured system with devices added,
removed, or replaced, but the new system has also been
configured before: This is a possibility if, for example, a patient
owns different terminal devices for different uses, and switches be-
tween them. If the configuration is stored and can be identified, it
can be reused.

B.2.2 Storing Configurations

When the configuration of the system is completed once, the configura-
tion should be stored and reused on the next power-up. In the current
protocol, each device stores its own configuration. The input channel
parameters (table 2.9) contain a “Source’s VID and PID” and “Source’s
SN and Channel Index”, which can be written to after configuration, and
read later.

But in the event that a device is removed, it might be desirable to
know the information stored on the removed device. This would be ac-
complished if the bus arbitrator were to duplicate all information in its
own memory. But if the bus arbitrator role is filled by another device,
and this device is removed, the stored configurations are gone.

Another option is to have a dedicated memory device sitting in the
socket. Configurations for a particular prosthesis would then be “perma-
nently” available in the prosthesis.

As mentioned in appendix B.2.1, a patient may use different prosthesis
parts for different situations, and thus want multiple configurations to be
stored. This is certainly possible with the right data structures in the
memory node.

A memory node could also store other configuration information. A
control unit could use the memory node to store information about which
control strategy it uses etc. If this information is stored in a standardized
way, another control unit can retrieve it.

There are also other ways to make sure the information is available in
the network. Storing in the bus arbitrator has already been mentioned.
If the bus arbitrator were required to be a separate node, this would

83

APPENDIX B. ELABORATION ON THE IMPLEMENTATION OF
DEVICE PROFILES IN PDCP

be a good alternative. Other alternatives would be to distribute the
information among the nodes, e.g. by duplicating the information one or
more times.

B.2.3 Manual Configuration

No matter how well the device profile layer can configure the system, there
should be a possibility for manual configuration. People’s preferences
differ, and giving the patient part in the customization of their prosthesis
will help them get more out of it [13].

From PDCP Info (2011 05 04) [3]:

(The) Bus Arbitrator (is) responsible for binding devices onto
(the) network and providing an interface for Software Appli-
cations to configure the devices and device interconnections on
the PDCP bus system.

This could be taken to mean that the bus arbitrator should be the
point of outside access to the system. Regardless, it is a natural choice,
since all manual configuration will probably reach it eventually.

Optimally, such configuration should be simple enough for the patient
to use at home. In terms of human interfaces, there are many possibilities:

e On the prosthesis:

— Buttons/knobs/joystick
— Display
— Touchscreen
e Computer software via wired or wireless connection to prosthesis.

e Dedicated handheld device via wired or wireless connection.

e Smartphone or tablet app, via wireless connection.

Manual configuration should allow the user to choose which electrodes
to use for which movement, which control strategy to use if more than one
is available, which movement classes to use and how to switch between
them, and tuning of parameters such as threshold and sensitivity.

84

B.3. DATA CHANNELS - TRANSMISSION

B.2.4 Control Units — Transparent or Opaque?

Consider a control unit with multiple possible control strategies. Should
each strategy have its own set of input channels, or should they share
input channels since only one strategy will be used at a time? In the first
case, the control strategy used can be determined from the input channels
used. In the second case, the control strategy would have to be stored
separately if record of it is to be kept.

However, in reality both cases would use a channel parameter to hold
the strategy information. The parameter would be static in the first
case and variable in the other. Since there are no real disadvantages of
the variable parameter, the second case, with shared channels, seems the
better choice.

B.3 Data Channels - Transmission

B.3.1 Information Integrity

What safeguards, if any, should be implemented to ensure the integrity
of packets sent on channel links?

Sources of transmission and reception errors include noise on the wire,
high bus loads, and buffer overflows. CAN itself already has quite a
system for detecting these errors, through ACKs, error flags, overload
flags, and retransmissions. This makes it robust to packet loss. In most
use cases for PDCP (low noise, low to medium bus utilization) packet
loss should be minimal. Idstein et al. [12] report:

Bus utilization was, on average, 62% for the upper limb system
and 73% for the lower limb system with no loss of data or
perceivable latency.

Extra measures including explicit retransmission should be unneces-
sary.

A sequence number can still be useful, because it will enable detec-
tion of bad transmission (packet loss, or faulty nodes transmitting the
same packet over and over) which is useful to know whether or not it is
acted upon. In addition it enables transmission of “special” packets, as
the meaning of the packet can be dependent on the sequence number.
An example of this would be defining sequence number 0 as containing
configuration data such as data rate and resolution.

85

APPENDIX B. ELABORATION ON THE IMPLEMENTATION OF
DEVICE PROFILES IN PDCP

B.3.2 Byte Format on Data Channel Links

Sender and receiver must agree on what format the data is. This could
be explicit or implicit.

As discussed in appendix B.3.1, if each frame contains a sequence
number, one sequence number can be used for configuration, and thus
to explicitly inform of the byte format. One disadvantage of a sequence
number is that it takes up space in the payload, reducing the net bit rate.
Another disadvantage is that if this configuration packet is somehow lost,
the rest of the correspondence will be unintelligible.

Another option is to put format information in a channel parameter.
The bus arbitrator would be required to inform input channels of the
output channel’s format information. The advantage of this is that the
format information is explicit, while also reserving the data channel link
for only data. A disadvantage is that the format information cannot
necessarily be changed after the channel link has been set up.

A third option is to have dedicated channel links for metadata. Mak-
ing data links in pairs would be a very flexible setup. The disadvantage
of this is halving the number of possible channels in each device. An
intriguing option is a broadcast channel, which can be used for metadata,
but this would require support in the lower levels of the protocol, and
may also be against the principles of PDCP.

A last option is that all format information is implicit. The type of
the output channel would dictate the correct way to interpret the signal.
This solution would, however, be troublesome, because input channels
can be matched with output channels of other types. The input channel
would then need to keep a record of all channel types and all possible
ways of interpretation.

In any case, more detailed studies should be conducted into the op-
timal sampling rate and resolution of EMG (and other) signals, so that
good standards for the byte format can be made.

B.4 Profiles

PDCP, as it stands now, allows devices and channels to specify their
“type and profile” and “descriptor”. In a device profile layer, these num-
bers should be the basis for configuring the network, and must therefore
contain most of the metadata needed to make a configuration. Especially
when reconfiguring the system after parts have been replaced, it is im-
portant that the new device can be compared to the old device by use

86

B.4. PROFILES

Grip
Position

N

Individual
Joints/Motors

Individual Muscles Orientations

Figure B.6: An example profile hierarchy for sensor channels.

of the profile information. Also, when the system is started for the first
time, the automatic configuration should be logical, even if some manual
configuration will usually be done afterwards.

B.4.1 Channel Profiles

It seems natural that most of the profile layer functionality should be
implemented using channel profiles rather than device profiles. This is
because a physical device can perform multiple roles, while a channel has a
single function. The same tendency is seen in both USB and in Bluetooth
4.0. In USB, many devices will have their classes specified in the interface
descriptor rather than the device descriptor. In Bluetooth 4.0, a device
can support many profiles, and profiles themselves are mostly specified
in terms of individual services.

B.4.2 Device Profiles

Even though the most important profile information will reside in the
channels, it would probably be useful to also utilize the device-wide “Type
and Profile”. One possible use is to specify whether the device is a sensor,
control unit, terminal device, or a combination of these.

B.4.3 Tree Structure

A natural way to represent both information and relation is a tree struc-
ture. Examples of such tree structures for sensor channels and movement
class set point channels can be seen in fig. B.6 and fig. B.7.

A channel’s profile could be any of these nodes. A node can then be
identified by a sequence of numbers, which we will call the “profile code”.

87

APPENDIX B. ELABORATION ON THE IMPLEMENTATION OF
DEVICE PROFILES IN PDCP

Movement
Class
0x00
Elbow
0x01
- Elbow
Wrist Grip Rotation
Rotation 0x02 0x00
0x01
Hook Fist Point Pinch Power | | Custom
0x00 H 0x01 H 0x02 0x00 Grip Grip
0x01 0x80

Figure B.7: An example profile hierarchy for movement class set point channels,
with enumeration.

E.g., if each node is assigned a number as in fig. B.7, then a “Power Grip”
movement class could be identified by the profile code 0x00000201. A
portion of the numbers, for example above 0x80, could also be reserved
for non-standard devices, as with the “Custom Grip” in fig. B.7.

The final structure of this hierarchy would have to be carefully con-
sidered, because once it is official, nodes can only be added to the tree in
certain ways, so that the profile code of each node is unchanged.

The control strategy parameter described in appendix B.2.4 can also
be made from a tree structure. That way, a new control unit can be
matched to the old, to provide similar behavior when replaced.

B.4.4 Channel-Matching

The way channels will be matched is that when a device sends an Update
Data Channel Request message, the bus arbitrator will find the most
similar output channel and connect it. Similarity is measured by how
far down in the tree structure the profiles are alike, i.e. how many bytes
(from the front) in the profile code are equal. E.g., the similarity of pinch
and power grip is 3 (the depth of “grip”).

In PDCP, multiple input channels can be connected to one output
channel, but this is not always desirable. For example, an EMG sensor
can only be used once as control input. This can be solved by specifying
if the input channel needs exclusive use of the output channel. Only
one input channel with exclusive use can be connected to a given output
channel.

Sometimes, particularly for the input channels of the control unit,
either all or none need to be connected. E.g. for a two-site system, it
is useless for only one of the two input channels to be connected to an

88

B.4. PROFILES

electrode. This can be solved if each channel has a number (we can call
it the “channel group”), which will be the same for channels that need to
all be connected.

If a control module is flexible, i.e. it can use different control schemes
dependent on the terminal device and the number of electrodes available,
it will need to have channels for all possibilities. To know which channels
to use, it should wait until the terminal device is configured, then decide
which input channels to request? to be connected. It can prioritize its
channels by requesting the most important channel first, etc. If there are
not enough sensor channels to supply its needs, the bus arbitrator can
deny the requests>.

B.4.5 Channel-Matching in Previously Configured Net-
works

In some cases, devices may have “Source’s VID and PID” and “Sources
SN and Channel Index” filled incorrectly, if:

e A channels source has been removed or replaced.

e A device has been configured in another system.

One possible way to cope with this is to make the memory node
accessible to all devices, which can retrieve the correct configuration.
This would, however, be problematic if the memory node has multiple
configuration stored. The devices do not know which configuration to use.
One possible solution is to have the bus arbitrator tell every device which
of the configurations to use. It is still a slightly complicated approach,
because the devices must first be granted a channel to the memory node,
then be told the configuration index, then read the configuration, then
be granted channels to each other.

It is also possible for the bus arbitrator to write the actual configura-
tion to each device. This would be a more straight-forward approach.

A third possibility is to have the devices act the same in all scenarios,
and have the bus arbitrator guide the setup. It would then have to deny
“incorrect” Update Data Channel Requests and coax the right requests
out of the devices.

The exact way to solve this problem will have to be elaborated on in
a later study.

2Using the Update Data Channel Request.
3More diverse response codes would be useful for this purpose.

89

APPENDIX B. ELABORATION ON THE IMPLEMENTATION OF
DEVICE PROFILES IN PDCP

B.4.6 Profiles as the Basis for Message Format

A message could have a profile corresponding to a node in the tree struc-
ture. Each node could then possibly have different value format. Since
channels of different kinds could be connected, what profile should the
message have? To avoid having to know the value format of all nodes in
the tree, a message profile should be the node where the two channel pro-
files branch away from each other?. This way, each channel is required to
know the value format of each node from the root node to its own profile.

As an example (see fig. B.7), if 0x00000201 (Power Grip) set points
are used to control 0x000001 (Wrist Rotation), then the signals have
profile 0x0000 (Hand).

This approach would necessarily mean that details are lost when trans-
mitting on other message formats, and conversion rules must be estab-
lished, but the details lost would be details irrelevant to channels not of
the same type, and thus not understandable by the input channel.

An alternative to this approach is to have a description of the format
in a channel parameter, including such things as the unit (V, m/s?, etc.),
range, scale, and maybe also the byte format (signed/unsigned, int/float,
bit length, etc.). The input channel would then read the output chan-
nel’s message format parameter, and ideally understand messages from
this. The disadvantage of this, is that channels must know of all types
of formats. Some format information, such as scaling and range could be
explicit, but all information on units must be standardized, and channels
can only use known units. If an output channel has a custom profile,
it can still not use a custom format, unless it makes duplicates of its
channels, with standard profiles, so they can be used by all.

B.5 Fringe Cases

As it is not clearly defined how the bus arbitrator role will be fulfilled,
there may be situations where more than one device is ready to take
the role. There is no way to solve this in the current protocol. One
possibility would be that all bus arbitrators must send a message as soon
as it is turned on. Since no device is bound to the bus, other devices
will be using priority 3. Other priority values could be used to negotiate
between multiple bus arbitrators.

Prostheses which contain both a prosthetic elbow and a prosthetic

4This is incidentally the node that determines their similarity.

90

B.5. FRINGE CASES

hand are commercially available. In implementations with PDCP, these
systems could easily end up containing multiple control units because the
elbow and hand could come with one control unit each. This would also
happen if a regular system (with one terminal device) with a separate
control unit was fitted with a terminal device with its own control unit.
In the first example, both control units are needed, while in the second,
one control unit is superfluous.

The problem with the elbow-hand example is that in most cases, they
will be controlled one at a time, with one set of electrodes. The control
units would need to hand over control to one another, which would need
to be done through channels, or through a change in the lower layers of
PDCP. A quick fix is to demand that a system must contain a control
unit capable of controlling all terminal devices present in the system.

In the case of duplicate control units, the built-in control unit can
avoid the collision by never setting up its set point channels on the bus.
This would mean that the separate control unit never takes part on the
bus because no terminal device connects to it. Or the built-in control
unit can choose to always attempt to connect its set point channels first,
to allow a separate control unit to take control if it is present. This might
give more consistent behavior. The user could in any case later manually
configure the system to use the other control unit.

91

APPENDIX B. ELABORATION ON THE IMPLEMENTATION OF
DEVICE PROFILES IN PDCP

92

Appendix C

Attachment Inventory

The following is the contents of the attachment to this report.

- Code: Contains all the code produced in the course of this work.
-- Host: Contains all code for the PC.
--- hostkode: Contains all code produced by the author. The
contents are described in section 5.2.3.

--- unity: Contains the Unity unit test framework.
-- Nodes: Contains all code for the PDCP nodes.
- Bus Arbitrator: Contains the pre-compiled hex files for the
bus arbitrator software.
---- BusArbitrator.hex: Bus arbitrator software. The bus
arbitrator API communicates at a baud rate of 128000.

---- BusArbitrator_57600.hex: Bus arbitrator software. The
bus arbitrator API communicates at a baud rate of 57600.
--- Devices: Contains the code for the other, non-bus arbitrator
nodes.
..« klientkode: Contains the MPLAB X project.
- Documents: Contains relevant documents.
- PDCP Documentation: Contains documentation of the low level
PDCP including the Bus Arbitrator API.

- PDCP Nodes: Contains documents pertaining to the hardware of
the PDCP nodes.

-- Possibility Study of Implementing Device Profile Layer
in PDCP: Qyvind Rgnningstad (2012).pdf: This is [1], the re-
port produced by the author in 2012.
- Videos: Contains videos of 3 of the 5 tests.

93

APPENDIX C. ATTACHMENT INVENTORY

94

Appendix D

Detailed Printout of the
System in Test 5

This printout was generated immediately after the conclusion of Test 5.

ronningstad@oyvind: ~/Dropbox/masteroppgave/hostkode$./main.out print
n_devices: 3

n_missing_devices: 0O

n_input_channels: 4

n_output_channels: 4

n_channel_links: 3

device 0 (8A93010):
name: D
vendor id: 2
product id: 2
serial number: 4

node_id: O
type: O
profile: 0

of input channels: 0

of output channels: 1
input channels:

output channels: 8A93108,

device 1 (8A93030):
name: D
vendor id: 2
product id: 2
serial number: 5

node_id: O
type: O
profile: O

95

APPENDIX D. DETAILED PRINTOUT OF THE SYSTEM IN TEST
)

of input channels: 2

of output channels: 3

input channels: 8A930A0, 8A930B8,

output channels: 8A93120, 8A93138, 8A93150,

device 2 (8A93050):
name: D
vendor id: 2
product id: 2
serial number: 6

node_id: O
type: O
profile: 0

of input channels: 2

of output channels: 0O

input channels: 8A930D0, 8A930ES8,
output channels:

input channel 0 (8A930A0):
channel index: 1
type: 7200
profile: 2200
transfer enable: 99
required ichans: 0O
desired ichans: O
terminal profile: O
source channel node id: O
source device node id: O
source vid: FFFF
source pid: FFFF
source snum: FFFF
source ci: FF
source type: O
source profile: 0O
owner: 8A93030
channel link: O

input channel 1 (8A930B8):
channel index: 2
type: 5200
profile: 2110
transfer enable: 99
required ichans: O
desired ichans: O
terminal profile: O
source channel node id: O
source device node id: O
source vid: 2

96

source pid: 2

source snum: 4

source ci: 1

source type: 5000
source profile: 2120
owner: 8A93030
channel link: 8A931EOQ

input channel 2 (8A930DO):
channel index: 1
type: 5300
profile: 1110
transfer enable: 99
required ichans: 0O
desired ichans: O
terminal profile: 1110
source channel node id: O
source device node id: O
source vid: 2
source pid: 2
source snum: 5
source ci: 3
source type: 5000
source profile: 1100
owner: 8A93050
channel link: 8A931EC

input channel 3 (8A930E8):
channel index: 2
type: 7300
profile: 1220
transfer enable: 99
required ichans: 0
desired ichans: O
terminal profile: 1220
source channel node id: O
source device node id: O
source vid: 2
source pid: 2
source snum: 5
source ci: 5
source type: 7000
source profile: 1220
owner: 8A93050
channel link: 8A931F8

APPENDIX D. DETAILED PRINTOUT OF THE SYSTEM IN TEST
)

output channel 0 (8A93108):
node id: O
channel index: 1
type: 5000
profile 2120
node id O
transfer enable: 63
required ichans: 0
desired ichans: O
owner: 8A93010
of channel links: 1
channel links: 8A931EO,

output channel 1 (8A93120):
node id: O
channel index: 3
type: 5000
profile 1100
node id 0O
transfer enable: 63
required ichans: 32
desired ichans: 0
owner: 8A93030
of channel links: 1
channel links: 8A931EC,

output channel 2 (8A93138):
node id: O
channel index: 4
type: 5000
profile 1210
node id 0
transfer enable: 63
required ichans: 64
desired ichans: O
owner: 8A93030
of channel links: O
channel links:

output channel 3 (8A93150):
node id: O
channel index: 5
type: 7000
profile 1220
node id 0
transfer enable: 63

98

required ichans: 32
desired ichans: 0O
owner: 8A93030

of channel links: 1
channel links: 8A931F8,

channel link O (8A931E0):
input channel:8A930B8
output channel:8A93108
link status: 2

channel link 1 (8A931EC):
input channel:8A930D0
output channel:8A93120
link status: 2

channel 1link 2 (8A931F8):
input channel:8A930E8
output channel:8A93150
link status: 2

99

	
	
	
	
	
	
	
	

	
	
	
	

	
	

	
	
	
	

	
	
	
	
	

	
	
	

	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	

	
	
	

	
	
	
	
	
	

	
	
	

	
	

	
	

	
	
	
	
	

	

	
	
	
	
	

	
	
	
	
	

	
	
	

	
	
	
	
	
	
	

	

	
	

