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Abstract

The Prosthetic Device Communication Protocol is a CAN-based pro-
tocol developed specifically for use within prosthetic devices, for connect-
ing the components of the device, most importantly sensors and actua-
tors. The lower levels of this protocol have already been developed. This
thesis focuses on developing a device profile layer, to bring plug-and-play
functionality to the protocol.

Specifically, this thesis contains a proposed device profile layer, a de-
scription of an implementation of the profile layer, and testing of this
implementation. Testing results were largely successful, most of the de-
sired functionality was achieved in the implementation.
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Chapter 1

Introduction

The Prosthetic Device Communication Protocol is an emerging, open
source digital communication protocol for use in prosthetic devices. The
motivations behind the creation of the protocol are many; among them
are:

∙ Moving prosthetic device technology into a more digital world.

∙ Standardization of prosthesis function to the point where compo-
nents from different manufacturers are interchangeable.

∙ Lowering the cost of prostheses by simplifying and streamlining de-
sign, thereby also making it easier to make custom solutions.

∙ Making prostheses more robust by decreasing the amount of wiring.

The low level layers of the protocol are maturing, and the focus of this
thesis is on implementing higher level functions, specifically device pro-
files. The motivation behind adding device profiles is interchangeability
of components that perform equal or similar functions, and interoperabil-
ity of components that complement each other, but aren’t explicitly set
to communicate.

The work conducted for this thesis is a continuation of work the author
did in the fall of 2012. This previous work consisted of a report with a
theoretical discussion of how to implement a device profile layer in PDCP.
The main chapter of that report is reproduced in appendix B, and a
background section on lower-level PDCP is also reproduced in chapter 2.

This thesis contains three main chapters: (1) A chapter (chapter 4) ex-
panding and refining the thoughts from appendix B into the beginnings of
a device profile layer specification. (2) A chapter (chapter 5) describing a

1



CHAPTER 1. INTRODUCTION

simple software and hardware implementation. And (3) a chapter (chap-
ter 6) describing a suite of tests conducted on the implementation and
its results. In addition, chapter 3 examines more generally the concept of
interoperability in communication protocols and in device profiles. Ap-
pendix A is a glossary which explains how different expressions are used
in the report.

The report should come with an attachment file, the contents of which
are itemized in appendix C.

Main Findings

The main findings of the work are that making a useful device profile layer
for PDCP is likely possible without too much complexity - much of the
desired functionality is present in the rough implementation - but that
the implementation deviates from a production-grade actual prosthesis
implementation in several important ways.
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Chapter 2

The Prosthetic Device
Communication Protocol

This is chapter 2.2 of “Possibility Study of Implementing a
Device Profile Layer in PDCP.” by the author. It describes
the lower levels of PDCP. It is reproduced here because of its
relevance for understanding the rest of the report.

The Prosthetic Device Communication Protocol (PDCP) is a bus com-
munication protocol designed specifically for use in prostheses. PDCP is
built on top of the Controller Area Network (CAN) protocol. Figure 2.1
is an example of a fully configured PDCP network.

PDCP is still a work in progress and the lower layers of the protocol,
which a device profile layer will build on, are not completely specified.
There is also no definitive document containing the current specification.
The PDCP documentation consists, as of now, of:

∙ Prosthetic Device Communication Protocol for the AIF UNB Hand
Project, which describes basic function, and PDCP’s relationship to
CAN.

∙ PDCP Info (2011 05 04), which describes the implementation of
data channels.

∙ AIF2 System Data Capture (2012 02 21), which is a sample capture
of the bus communication during setup after power-on.1

1It should be noted that the values used in AIF2 System Data Capture (2012 02
21) for “Device Type and Profile” and “Channel Type and Profile” are dummy values
that do not have a specified meaning as of yet.

3



CHAPTER 2. PROSTHETIC DEVICE COMMUNICATION
PROTOCOL

Physical Bus
Data Channel Link

Input Channel

Output Channel

Bus 
Arbitrator

Device 3

Device 2

Device 1

Device 4

Figure 2.1: Example network structure of PDCP, including both physical and
logical links. Not drawn: All devices have an inherent logical link
to the Bus Arbitrator.

This section is based on these documents, in addition to correspon-
dence with one of the protocol’s creators, Yves Losier of UNB.

2.1 Bus Arbitrator

PDCP specifies that one node must have the role of “bus arbitrator”,
which oversees, and largely controls, the communication on the bus.

The bus arbitrator handles requests to join the bus, distributes node
IDs, and sets up logical links (“data channel links”) between devices. No
device can communicate on the bus without being joined2 to the bus by
the bus arbitrator3, and devices can only communicate directly with one
another after the bus arbitrator has set up a data channel link between
them.

The bus arbitrator role can be filled by a dedicated device or by a
device that already performs some other function, e.g. the prosthetic
hand.

4



2.2. MESSAGE STRUCTURE

CAN Message ID (11 bits)

PDCP Message Priority (2 bits)
PDCP Message Mode (1 bit)

PDCP Node ID (8 bits) PDCP Payload
(0-56 bits)

PDCP
Function Code

(8 bits)

S
O

F(
 1

 b
it)

R
TR

 (1
 b

it)

CAN Data field 
(0-64 bits)

CRC
(15 bits)ID

E
 (1

 b
it)

0

Data length 
(4 bits)

1 1

A
ck

 (1
 b

it)

EOF
(7 bits)

Figure 2.2: Bit layout of a PDCP message[2], in the context of a CAN mes-
sage[5]. The function code field is only used in communication with
the bus arbitrator.

2.2 Message Structure

PDCP uses the CAN base frame format, which means that it uses the
standard 11 bit message identifier field. The message ID is divided into
3 parts: The message priority, message mode, and node ID fields,
as seen in figure 2.2.

The message priority is a number (0-3) that specifies the urgency
of the message. 0, 1 and 2 mean “high priority”, “medium priority” and
“low priority” respectively, while 3 is used only when a device attempts to
perform the binding process. Except for level 3, priorities can be used at
will, but the common practice is to use high priority for data streaming on
channel links and for device beacons, and medium priority for everything
else4.

The message mode specifies if the message originates from the bus
arbitrator (1) or from another device (0).

The node ID specifies either the target device, the sending device,
or the source output data channel. See table 2.1.

CAN’s arbitration scheme works in such a way that if two devices start
transmitting at the same time, the message with the lowest message ID
gets through without delay, while the other message must be aborted and
retransmitted at a later time. This means that PDCP messages are pri-

2“Binding”
3The exception being Bind Device Requests.
4This is reflected in [4].
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PROTOCOL

From To Message Mode Field Node ID Field

Bus arbitrator Device 1 (from bus arbitrator) (Target) device

Device Bus arbitrator 0 (from device) (Source) device

Device Device 0 (from device)
(Source) output
channel

Table 2.1: Use cases of message modes and node ID types.

oritized first by priority, then by message mode, then by node ID.

In addition to this, in device-bus arbitrator communication, the first
byte of the CAN data field is reserved for a PDCP function code. An
overview of the predefined function codes can be found in table 2.2, with
corresponding response codes in table 2.3.

In device-device communication using data channels, the format of
the entire 8 byte data packet can be tailored to the needs of the channel,
i.e. there is no function code.

Function
Code

Description
Message
Size
(bytes)

Sender Recipient
Response
Function
Code

0x01 Bind Device Request 7 Device Bus Arbitrator 0x81

0x03 Get Device Parameter 3 Bus Arbitrator Device 0x83

0x04 Set Device Parameter 4-7 Bus Arbitrator Device 0x84

0x08 Suspend Device 3 Bus Arbitrator Device 0x88

0x09 Release Device 1 Bus Arbitrator Device 0x88

0x0A Device Beacon 1 Either Either N/A
0x0B Reset Device 1 Bus Arbitrator Device 0x8B

0x0C
Configure Get Bulk
Data Transfer

5 Bus Arbitrator Device 0x8C

0x0D
Configure Set Bulk
Data Transfer

5 Bus Arbitrator Device 0x8D

0x0E Bulk Data Transfer 3-8 Either Either 0x8E

0x0F Update Data Channel 2 Device Bus Arbitrator 0x8F

Table 2.2: List of all function codes of the PDCP protocol[2]. Missing function
codes are deprecated.See table 2.3 for a list of responses. Tables 2.4
to 2.6 contain the message structures of some of the message types.

6



2.2. MESSAGE STRUCTURE

Response
Function
Code

Description
Message
Size
(bytes)

Sender Recipient

0x81 Bind Device Request Response 7 Bus Arbitrator Device
0x83 Get Device Parameter Response 3 Device Bus Arbitrator
0x84 Set Device Parameter Response 4-7 Device Bus Arbitrator
0x88 Suspend Device Response 3 Device Bus Arbitrator
0x89 Release Device Response 1 Device Bus Arbitrator
0x8B Reset Device Response 1 Device Bus Arbitrator

0x8C
Configure Get Bulk Data Trans-
fer Response

5 Device Bus Arbitrator

0x8D
Configure Set Bulk Data Trans-
fer Response

5 Device Bus Arbitrator

0x8E Bulk Data Transfer Response 3-8 Either Either
0x8F Update Data Channel Response 2 Bus Arbitrator Device

Table 2.3: List of all response function codes of the PDCP protocol[2]. Missing
function codes are deprecated.

Function Code 0x01 - Bind Device Request

Data0 Data1 Data2 Data3 Data4 Data5 Data6

0x01 Device Vendor ID Device Product ID Device Serial Number

Function Code 0x81 - Bind Device Request Response

Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

0x81 Node ID Device Vendor ID Device Product ID Device Serial Number

Table 2.4: Structure of data field of message type 0x01 - Bind Device Request
and 0x81 - Bind Device Request Response.

Function Code 0x03 - Get Device Parameter

Data0 Data1 Data2

0x03
Parame-
ter ID

Channel
Index

Function Code 0x83 - Get Device Parameter Response

Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

0x83
Response
Code

Parame-
ter ID

Channel
Index

Parameter Value (1-4 bytes)

Table 2.5: Structure of data field of message type 0x03 - Get Device Parameter
and 0x83 - Get Device Parameter Response.
Response codes: 0: Failure, 1: Success, 2: Use Bulk Data Transfer.
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PROTOCOL

Function Code 0x04 - Set Device Parameter

Data0 Data1 Data2 Data3 Data4 Data5 Data6

0x04
Parame-
ter ID

Channel
Index

Parameter Value (1-4 bytes)

Function Code 0x84 - Set Device Parameter Response

Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

0x84
Response
Code

Parame-
ter ID

Channel
Index

Parameter Value (1-4 bytes)

Table 2.6: Structure of data field of message type 0x04 - Set Device Parameter
and 0x84 - Set Device Parameter Response.
Response codes: 0: Failure, 1: Success, 2: Use Bulk Data Transfer.

Function Code 0x0F - Update Data Channel Request

Data0 Data1

0x0F
Channel
Index

Function Code 0x8F - Update Data Channel Response

Data0 Data1 Data3

0x8F
Response
Code

Channel
Index

Table 2.7: Structure of data field of message type 0x0F - Update Data Channel
Request and 0x8F - Update Data Channel Response. the “Channel
Index” must refer to an input data channel.
Response codes: 0: Failure, 1: Success.

8



2.3. DEVICES, DATA CHANNELS AND NODE IDS

2.3 Devices, Data Channels and Node IDs

All devices on the PDCP bus have a number of input and output “data
channels”. A node ID is given (by the bus arbitrator) to each device as
well as to each output data channel5. The bus arbitrator then connects
output channels to input channels by giving the input channel the node
ID of the source output channel. The device then knows what node ID to
listen for. Several input channels can be connected to one output channel.

Each data channel has a channel index local to the device. This index
is used to reference the channel on the device. If a device has 𝑛 channels,
they must have indices 1 to 𝑛.

Using data channels is the only way for devices to communicate di-
rectly to other devices.

2.4 Parameters

Each device must store a number of parameters, both for itself as a device,
and for each of its data channels. These parameters are meant to help
the bus arbitrator set up the bus.

The bus arbitrator can access these parameters through the “Get/Set
Device Parameter” function codes, as described in tables 2.5 and 2.6. The
device-wide parameters are stored under channel index 0, while the pa-
rameters for each data channel are stored under its corresponding channel
index (1-255).

Tables 2.8 to 2.10 list the interpretations of parameter IDs of devices,
input channels, and output channels.

The size of these parameters is limited to 4 bytes, but the larger data
can be manipulated by using the “Bulk Data Transfer” commands.

2.5 Joining the Bus (Binding)

When a device wants to join the PDCP bus (e.g. after a power-on or
reset), it sends the “Bind Device Request” message seen in table 2.4

5The distinction between device node IDs and data channel node IDs is important:
Messages with message mode 0 (from device) and a device node ID are (implicitly)
bound for the bus arbitrator, while messages with mode 0 and a data channel node ID
are (also implicitly) bound for devices with input channels connected to the sending
channel. See table 2.1.

9
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PROTOCOL

Device Parameters

Parameter ID Parameter Name

1 Device VID and PID

2 Device Serial Number

3 Device EAN13L

4 Device EAN13H

5 Device FW and HW ver.

6 Device Type and Profile

7 Device Descriptor

8 Device Node Id

9 Number of Data Channels

10 Beacon Interval

11 Time to Wait for Acknowledgement

12 Bind Request Timeout

13 Not yet specified
...

...

Table 2.8: Device-wide parameters.

Input Channel Parameters

Parameter ID Parameter Name

1 Channel Type and Profile

2 Channel Descriptor

3 Transfer Type (1: “input”)

4 Data Transfer Enabled Flag

5 Source’s VID and PID

6 Source’s SN and Channel Index

7 Source’s Node Ids

8 Not yet specified
...

...

Table 2.9: Input channel parameters.
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Output Channel Parameters

Parameter ID Parameter Name

1 Channel Type and Profile

2 Channel Descriptor

3 Transfer Type (2: “output”)

4 Data Transfer Enabled Flag

5 Channel Node Id

6 Not yet specified
...

...

Table 2.10: Output channel parameters.

(function code 0x01) using the requested node ID together with message
mode 0 and priority 3 (see table 2.11 for the full data frame).

The bus arbitrator’s response (function code 0x81) can also be found
in table 2.4. If the node ID in Data1 of the response does not match the
requested ID, the device must send another request using this suggested
ID. An ID is not properly granted until the requested ID matches the
ID in the response. See also table 2.12 for the frame format of the Bind
Request Response.

The Update Data Channel Request (table 2.7) includes the channel
index of an input channel, and is used to allow the bus arbitrator to find
an output channel for the given input channel.

Priority 3

Message
mode

0 (from device)

Node ID The requested node ID

Function
Code

0x01 (“Bind device request”)

VID (16 bits)
PID (16 bits)Payload
Serial number (16 bits)

Table 2.11: The “bind device request” packet structure.

The setup performed by the bus arbitrator follows these steps:

1. Collect desired parameters from device, such as Device Type and
Profile.
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Priority e.g. 1 (typical)

Message
mode

1 (from bus arbitrator)

Node ID The requested node ID

Function
Code

0x81 (“Bind device request response”)

The suggested/granted node ID (8 bits)
VID (16 bits)
PID (16 bits)

Payload

Serial number (16 bits)

Table 2.12: The “bind device request response” packet structure.

Priority e.g. 0 (typical)

Message
mode

0 (from device)

Node ID The node ID of the source output channel

Payload e.g. sensor readings

Table 2.13: The packet structure of a data channel link packet.

2. Get Number of Data Channels parameter.

3. Get transfer type (direction) of each channel.

4. For each output channel:

∙ Collect desired parameters from channel, such as Channel Type
and Profile or Channel Descriptor.

∙ Assign an available node ID.

5. For each input channel addressed by a Update Data Channel Re-
quest :

∙ Collect desired parameters from the channel, such as Channel
Type and Profile, Channel Descriptor, Source’s VID and PID,
or Source’s SN and Channel Index.

∙ Decide which output channel (if any) to assign to this channel6

and update Source’s Node Ids with the appropriate device ID
and output channel ID.

6The only way to do this now, is if the Source’s VID and PID and Source’s SN and
Channel Index are available.
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∙ If the channel is to be used, set Data Transfer Enabled Flag to
1.

6. Set Data Transfer Enabled Flag to 1 on all output channels that
have an input channel connected to it. This will start data transfer.

2.6 Exchanging Information

The only way for devices to send data directly to one another is through
data channel links. When a device sends a packet on a data channel link,
it will use the output channel’s node ID. The format of the data field is
not globally specified, so the meaning of bytes transferred on data channel
links can be tailored to the channel. Channel links are uni-directional;
packets are sent from an output data channel to one or more input data
channels. Table 2.13 shows the packet structure of data channel link
packets.

When all data channel links have been set up, devices with output
channels can at any time send data to the connected input channels.
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Chapter 3

General Protocol
Interoperability

This chapter will attempt to regard the problem of creating a fully inter-
operable profile layer in general terms.

3.1 Existing Theory

Literature is sparse on the topic of interoperability in contexts relevant to
this work. The word is used in many fields, both technological and not.
Relevant research focuses mainly on interoperability through the use of
fieldbuses1.

3.1.1 Interoperability Testing

Benkhellat, Siebert, and Thomesse[6] have this to say about interoper-
ability:

In general, the interoperability is the capability of N hetero-
geneous pieces of equipment to communicate and to cooperate
correctly. The conformance of this equipment to the same
profile is a necessary condition to achieve interoperability, but
not sufficient. Thus an interoperability definition is as fol-
lows: The interoperability is the capability of N heterogeneous

1PDCP can, of course, easily be considered a small-scale fieldbus.
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systems to conform to a set of OSI standards of the same pro-
file and to communicate according to these standards in an
environment representative of the reality.

Interoperability is essential for a profile to do its duty, thus arose the
need for interoperability testing. Methods for conformance testing were
already well standardized, but it was found [6] that interoperability “in an
environment representative of reality” is not assured through conformance
testing, which typically tests if a single device (or even a single layer)
conforms to specifications.

In this sense, interoperability is less related to profiles2 and more
related to a holistic or pragmatic way to view any communication protocol
regardless of the presence of a profile layer.

No actual interoperability testing procedures were found while search-
ing the literature.

3.1.2 Interoperability Verification

“Producing Compliant Interactions: Conformance, Coverage, and Inter-
operability”[7] addresses particularly the problem of implementations de-
viating from specifications. Such deviations can be harmless or harm-
ful. They can for example involve adding an extra step to a particular
procedure, or removing a procedure if another procedure exists to reach
the same state. In all these cases, a protocol that in its original form
ensures both conformance and interoperability can be broken in either
conformance or interoperability or both in an implementation. When an
implementation is broken, information does not flow as easily or not at
all.

In [7], a protocol is represented as a set of states, where agents take ac-
tions which cause state transitions. Different agents can perform different
roles, and thus have different actions and different states. The complete
protocol is then derived from sets of states and sets of actions. In short,
if this state model is available, one can determine whether the agents are
interoperable by checking for things such as deadlocks. When you view
agents as threads, the problem of interoperability becomes a problem of
concurrency.

The conformance of an implementation, according to [7], is verified

2The “profile” mentioned in the quote is not quite the same as the subject of this
thesis.
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through comparison with the protocol itself, while interoperability is ver-
ified through comparison with other implementations.

3.2 Interoperability Related to Device Profiles

How does the concept of interoperability, as presented in the theory, relate
to the concept of device profiles?

The central theme of interoperability seems to be “enabling agents
in a network to communicate meaningfully”. This is also the purpose of
device profiles, but it is really the purpose of any communication protocol.
What then is the specific purpose of a device profile layer?

An answer to this is “automation”, or in other words, “interoperability
in additional circumstances”, specifically circumstances of little or no
manual configuration.

The definition of device profiles is not set in stone, but in this thesis,
the purpose of the device profile layer is to provide something resembling
plug-and-play functionality.

Let’s define “link” as a medium for interoperation. A prerequisite for
meaningful communication, and thus for a link, is a shared context. It
is not sufficient to have a physical connection, there must be an agree-
ment on a number of values, or a shared state. A device profile layer is
a more comprehensive such agreement, which reaches a higher level of
abstraction.

The theory of interoperability seems to be more geared towards the
lower levels of a protocol, the individual messages. But the essence of
interoperability is also relevant in the profile layer.

Translating interoperability to the profile layer, the enemy of inter-
operation is not the inability to send messages, but rather the inability
to establish links. This means that a successful profile layer is one that
can provide agents with all the context required for communication. The
context required depends on the situation.

In addition to providing context, the profile layer must also provide
a framework for comparing, or relating, devices. And in the case of
PDCP, it must also sometimes make intelligent decisions regarding the
connections to set up. Making these decisions requires a way to compare
agents.

These two concepts, context and relation, are separate, though they
can be linked, such as if the context is implicit from the relational infor-
mation. In a profile layer, there needs to be a deciding entity that, using
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context and relation, decides which links to set up. In some cases there
also needs to be information about dependencies, because in some cases,
as in the case of PDCP, there needs to be webs of interconnected devices
that together perform all the necessary duties.

3.2.1 Hot-Swapping

Another relevant term, referenced in the assignment text, is “hot-swappability”.
This is a more specific term which means that a devices can be removed
and added without shutting down the system. Removed devices will
be registered as gone, and steps will be taken to handle this gracefully.
Added devices will be recognized and will start functioning without the
system restarting.

Hot-swappability is really just plug-and-play with the additional con-
straint of not resetting.
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Chapter 4

Specification of a Device
Profile Layer for PDCP

This chapter can be viewed as a continuation and slight revision of the
3rd chapter of [1], which is also reproduced in appendix B. This contin-
uation will aim to more completely and unambiguously specify a profile
layer for PDCP, but will also present some discussions and alternative
solutions.

The device profile layer will provide the following behaviors:

1. Storing the usual configuration of the system and setting this up
automatically each time the system powers on. This includes re-
dundant storage inside the bus arbitrator.

2. Automatic, intelligent reconfiguration when parts are removed and/or
exchanged.

3. Some amount of automatic configuration when the system is not
manually configured.

The 3rd point above warrants some rationalization. It could seem
unreasonable to implement the most advanced funtionality for the rarest
occasions. It is, however, the author’s opinion that, firstly, developing
this functionality will help bring a deeper understanding of the roles of
the different parts of a prosthesis into the protocol. Secondly, solutions
to the problems in the third point are likely to be relevant also to the
second point. Thirdly, intelligence for automatic configuration can be
incorporated into the process of manual configuration to give suggested
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configurations and/or set up “obvious” links in increasingly complex sys-
tems.

The profile layer will also provide a framework for information about
the devices on the bus. This includes

1. Context, or meta-information about the information transmitted on
the links.

2. Relational information that allows quantification of the similarity
between two channels. This is to pick suitable channels to connect
to.

3. Information to infer what links need to be set up to allow expedient
information flow.

The device profile layer builds on top of the lower layers (described
in chapter 2) developed by Yves Losier, Adam Wilson et. al. See fig. 4.1
for an illustration of the protocol layers involved. Some small changes to
the lower layers will be proposed.

Unspecified physical layer

CAN

Lower Layer PDCP (Binding, Channels, 
Channel Links, Device and Channel 

Parameters)

Device Profile Layer

Figure 4.1: Overview of the layers of PDCP, including the profile layer described
in this thesis.

In the terms of section 3.2, the entity deciding what channel links to
set up will be the bus arbitrator, and the carriers of context and relational
information will be the the type and the profile parameters respectively.
The carriers of dependency information will be new parameters called
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“Required Input Channels”, “Desired Input Channels”, and parts of the
type parameters.

4.1 System Architecture

As presented in [1], the profile layer assumes the structure seen in fig. 4.2.
This is a simplification of a general structure for prosthesis control that is
described in [8]. An illustration of this from [8] is reproduced in fig. 4.3.

Sensor

Sensor Data

Set Points

Terminal Device

Control

Figure 4.2: Generalization of prosthesis control for use in the device profile layer.

Figure 4.2 shows 3 roles and 2 signal types. In the profile layer, the
signal transfer is performed by PDCP channel links. These roles are
implicit - implied from the signal types in the following manner.

∙ A device performs the Sensor role if it presents one or more Sensor
Data output channels.

∙ A device performs the Control role if it presents one or more Sen-
sor Data input channels and/or Set Points output channels.

∙ A device performs the Terminal Device role if it presents one or
more Set Points input channels.

Multiple roles can be filled by the same device as illustrated in figs. 4.4
and 4.5. In the case of fig. 4.4, input and output channels for set points
are not needed. Still, adding set point input channels would make the
device more flexible, allowing the use of other control devices. In fig. 4.5,
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Figure 4.3: Conceptual model of a general prosthesis control scheme, as pro-
posed by Fougner et al. [8].
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Sensor

Sensor Data

Terminal Device

Control

Figure 4.4: Variation of fig. 4.2 where the control and terminal device roles are
performed by the same device.

Sensor

Set Points

Terminal Device

Control

Figure 4.5: Variation of fig. 4.2 where the sensor and control roles are performed
by the same device.
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the Sensor/Control device is required by the profile layer to present sen-
sor data output channels. The motivation behind this requirement is
to increase interoperability by ensuring that the data is available on the
bus in the rawest state, and by preventing situations where e.g. a Sen-
sor/ Control and a Control/Terminal Device cannot communicate even
though they have all roles between them. Any device that performs the
Sensor role, must provide one or more sensor data output channels.

4.1.1 Terminal Channels

To allow for systems like that in fig. 4.4, there is the concept of a Termi-
nal Channel. A terminal channel is an input channel that receives data
that is used to control a terminal device. A set point input channel is
always a terminal channel, and a sensor data input channel is a terminal
channel if the device is a combined Control and Terminal Device, and the
data received on the channel is used to control the actuation.

4.1.2 The Philosophy Behind the Channel

The channel is the primary unit of communication, the agent, in the
profile layer. The system is primarily seen as a collection of channels.
How many devices are present and which owns which channel is of little
importance in practice1.

4.2 Channel and Device Parameters

4.2.1 Device Type and Profile

The device type and profile parameters are not utilized.

4.2.2 Channel Profile

In the profile layer, the channel profile is determined from a tree structure
as explained in [1]2. An example of such a tree structure can be found in
fig. 4.6. Each child node is a specialization of its parent node. This tree
structure is used by the profile layer to determine the similarity between
two nodes for the purposes of finding replacements for missing channels

1Device roles are a concept that is of most use in thinking about the protocol, but
does not play a part in implementation.

2See appendix B.4.3

24



4.2. CHANNEL AND DEVICE PARAMETERS

and for autoconfiguration. In section 4.3.1, the concept of similarity is
explained in more detail.

Sensor
0x4

EMG
0x2

Accelerometer
0x6Encoder

0x4

Muscle
0x2

Pressure
Sensor

0x8

Wrist
0x2

Elbow
0x4

Terminal 
Device

0x2

Grip
0x2 Wrist 

Rotation
0x6

Pinch 
Grip
0x4

Power 
Grip
0x2

Elbow
0x4

Individual 
Muscles

...0x2 0x4

Figure 4.6: An example tree structure for the PDCP profile layer.

Values

Each node is given a 4 bit value, called a “profile component”, and a
profile value is constructed by concatenating the components from the
root node to, and including, the profile node. For example, in fig. 4.6,
the “Wrist” node has the profile value 0x462 because the “Sensor”, “Ac-
celerometer” and “Wrist” nodes have the values 0x4, 0x6, and 0x2 re-
spectively.
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This profile scheme implies that the profile value will be variable
length, and PDCP does support this. However, a fixed length value has
advantages in implementation, and a 16 bit value has been used previ-
ously. In fixed length values, the remaining bits can be padded with zeros
at the end (e.g 0x4620). A fixed length of 16 bits will be used throughout
this thesis, but is not mandatory.

The profile value of 0x0 is invalid and can be used as a null profile in
implementation.

In fig. 4.6 the values of the nodes are all even numbers. The odd
numbers can be reserved for vendor use or future expansion. The reason
why the used values are not bunched together is that a lower number
implies higher priority and will determine the order in which channels
are connected. This will be relevant if the system for example does not
have enough sensor signals to serve all terminal devices. In such a case,
the lower profile channels will be attempted connected first. The spread
scheme thus gives more flexibility to custom values.

4.2.3 Channel Type

In the profile layer, the channel type is used as a collection of flags. They
are currently defined as follows.
0 1 2 3 4 5 6 7 8 9 10

Byte Size Value Data 
Type Control Mode Sole 

Access
Terminal 
Channel Prescaler

11 ... 15

currently unused

∙ Bits 0-1 “Byte Size” - byte size of values transmitted/preferred by this
channel.

– 0b00: 4 bits

– 0b01: 8 bits

– 0b10: 12 bits

– 0b11: 16 bits

The purpose of this is both to know how to extract the data from the
payload, and to know the range of the value. 4 and 8 bit values take up
8 bits; 12 and 16 bit values take up 16 bits. A value’s full range is used,
e.g. 0-4095 for unsigned 12 bit integers.

∙ Bits 2-3 “Value Data Type”.

– 0b00: signed integer

– 0b01: unsigned integer

– 0b10: float

– 0b11: boolean
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The float type has not been specified yet, in terms of which standard to
use, and how to view its range. Boolean values are false when all bits are
0, and true otherwise.

∙ Bits 4-5 “Control Mode”

– 0b00: position

– 0b01: velocity

– 0b10: acceleration

– 0b11: other

The purpose of these flags is to inform of the level of differentiation of the
values on this channel. These are especially relevant for set points.

∙ Bit 6 “Sole Access” (For input channels)

– 0b1: This channel does not allow other input channels with this flag
set to be connected to its source output channel.

– 0b0: This channel can be connected to any output channel, subject
to profile value.

∙ Bit 7 “Terminal Channel” (For input channels)

– 0b1: This input channel directly controls a terminal device.

– 0b0: This input channel does not directly control a terminal device.

The purpose of this flag is to give the autoconfigure algorithm starting
points. See also listing 4.7.

∙ Bits 8-10 “Prescaler”. Scale the received value by an amount.

– 0b000: 1

– 0b001: 10−6

– 0b010: 10−3

– 0b011: 10−1

– 0b100: 101

– 0b101: 102

– 0b110: 103

– 0b111: 106

These prescaler values are suggestions, and further research will likely find
more useful values.

In all cases, the input channel cannot force some format on the out-
put channel. The output channel operates independently of the input
channels connected to it. Thus, for the input channel, flags such as the
byte size, data type, and control mode are to be regarded as the “desired”
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format (see listing 4.9). The values it receives might have another format.
The input channel will be required to “understand” all possible formats
of the values it receives.

The available flags favor using relative values and scaling them to
fill the range. However, this issue has not been thoroughly explored by
this author, and further work ought to determine if these flags should be
tailored differently.

Timing

There will probably also be a need to specify the frequency of the data
sent on the bus, because the timing information will likely be used in some
feature extraction algorithms. The best way to represent this information
has not been investigated in the course of this work, and will need to be
addressed in later work.

4.2.4 New Parameters

Device

No new device-wide parameters (channel index 0) have been defined.

Output Channel

The following additional parameters have been defined for output chan-
nels:

9. “Required Input Channels”: A value with length up to 256, where
each bit corresponds to a channel index. If an input channel’s bit
is set, this means that the device uses data received on that in-
put channel to calculate the data sent on this output channel. The
required input channels can then be connected. Only bits corre-
sponding to extant input channels should ever be set to 1. The
most significant bit refers to channel index 0.

10. “Desired Input Channels”: The same as “Required Input Chan-
nels”, except that the indicated channels are not required for the
operation of this channel, but will enhance the functionality. This
can, for example, be used for secondary feedback sensors which,
when present, can help a control unit give more close control.
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Input Channel

The following additional parameters have been defined for input channels:

8. “Source’s Type and Profile”: The type and profile of the source
output channel. Value is 0 (null) when not connected.

9. “Required Input Channels”: A value with length up to 256, where
each bit corresponds to a channel index. If an input channel’s bit is
set, it means that that input channel must be connected for the cur-
rent one to work. Only bits corresponding to extant input channels
should ever be set to 1. The most significant bit refers to channel
index 0.

10. “Desired Input Channels”: The same as “Required Input Chan-
nels”, except that the indicated channels are not required for the
operation of this channel, but will enhance the functionality. This
can, for example, be used for secondary feedback sensors which,
when present, can help an effector align itself.

11. “Terminal Profile”: The profile of the set points for the terminal
device that this channel controls. For set point channels, this is
identical to its regular profile.

The concept of terminal profile demonstrates the dual purpose of the
profile of a channel. The first is to determine similarity, and the sec-
ond, which is sometimes given to the terminal profile, is to communicate
function.

Examples

Here are some examples to illustrate the purpose of the added parameters
and flags.

Figure 4.7 shows an example system with a sensor, a control unit and
a terminal device. In this case, the terminal device’s channels will be
designated terminal channels, and their terminal profile will be the same
as their profile. But there is no point in connecting the terminal chan-
nels to the control unit without connecting the sensor to the control unit,
and this is the purpose of the “Required Input Channels” parameter.
The control unit’s output channels’ “Required Input Channels” parame-
ter will specify one or more of the control unit’s input channels. When
the bus arbitrator then connects an input channel to one of the control
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unit’s output channels, it knows to connect more channels, and can follow
this chain as far as it goes. If it is unable to complete a connection, it
may need to go back and tear down links. In the future, terminal devices
may also contain sensors, allowing for feedback loops. The “Required
Input Channels” parameter can then help set up complicated webs of
channel links in a recursive manner. The “Desired Input Channels” pa-
rameter works in almost the same way, except that desired channels are
not mandatory for proper operation so that connections can be set up
even if one or more desired channels cannot be connected.

Figure 4.8 shows an example system with two sensors, and a device
that is both a control unit and a terminal device. In this case, there will
be no set point channels in the system, but the sensor input channels
are used to control the terminal device. These channels will therefore be
designated terminal channels (The terminal channel flag will be set in the
channel type). The terminal profile will be the profile a set point channel
for the terminal device would have.

Input channels (not just output channels) also have a “Required Input
Channels” parameter. This is so that if, for example, channel 1 and 2
on the control unit are used to control opening and closing of a hand,
it would make no sense to connect just one of them. In that case, these
channels can reference each other in their required channels.

Sensor Control Terminal 
Device1

1

2

3
4
5

1

2

Figure 4.7: Example system 1. The numbered arrows represent input and out-
put channels.

Sensor

Control
1

2
Terminal 
Device

1

Sensor 1

Figure 4.8: Example system 2. The numbered arrows represent input and out-
put channels.
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4.3 Device Behavior

This section will describe how devices will behave differently with the
profile layer.

4.3.1 Bus Arbitrator

The bus arbitrator profile behavior will mostly occur right after a system
reset.

The bus arbitrator will perform the following procedure (listing 4.1)
when the system starts up:

Listing 4.1: Pseudo code for bus arbitrator startup procedure

1 if (there is a configuration in memory)

2 // Retrieve c o n f i g u r a t i o n from memory .

3 load_configuration ()

4 else

5 // Retrieve c o n f i g u r a t i o n from i n d i v i d u a l devices .

6 retrieve_configuration ()

7

8 // Connect ac co rd in g to re tr ie ve d c o n f i g u r a t i o n .

9 implement_configuration ()

10

11 if (configuration involves missing devices/channels)

12 // Try to find al te rn at e channels using type / profile .

13 find_replacements ()

14

15 if (there are unconnected terminal channels)

16 // Try to connect them ac co rd in g to type / profile .

17 autoconfigure ()

This means that the central configuration stored in the bus arbitrator
takes precedence over the distributed configuration. This prevents devices
configured in other systems to throw the system off with their foreign
configuration.

Further, the following procedure (listing 4.2) can be performed regu-
larly to provide hot-swapability.

Listing 4.2: Pseudo code for bus arbitrator hot-swapability duty cycle

1 if (devices/channels have disappeared since last cycle)

2 // Try to find al te rn at e channels using type / profile .

3 find_replacements ()

4
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5 if (there are unconnected terminal channels)

6 // Try to connect them ac co rd in g to type / profile .

7 autoconfigure ()

load configuration()

Retrieves a configuration from non-volatile memory.
See section 4.5 for more information about storing configurations.

retrieve configuration()

Retrieves a configuration by reading the Source VID, PID, serial number,
channel index, type and profile from all input channels in the system.

implement configuration()

Constucts the links described in the configuration.

Listing 4.3: Pseudo code for making links based on a retrieved configuration.

1 function implement_configuration ()

2 for (every link in configuration)

3 if (input channel is not terminal channel)

4 // connect link , r e s p e c t i n g sole access

5 connect(link)

6 else

7 // connect link , r e s p e c t i n g sole access ,

8 // required and desired channels

9 intelligently_connect(link)

Listing 4.4: Pseudo code for making links in a way that respects sole access.

1 function connect(link)

2 if (it does not violate sole access)

3 set up link

Listing 4.5: Pseudo code for making links in a way that respects required chan-
nels desired channels and sole access.

1 function intelligently_connect(link)

2 array created_links

3 connect(link)

4 if (failed)

5 return (failure)

6 else

32



4.3. DEVICE BEHAVIOR

7 add link to created_links

8 for (each channel that is required or desired)

9 if (not already connected)

10 find suitable output channel

11 intelligently_connect () // re cu rs iv e

12 if (failed)

13 if (input is required)

14 remove all links in created_links

15 return (failure)

16 return (success)

find replacements()

Tries to find replacements for channels that are in the configuration, but
are missing from the system.

Listing 4.6: Pseudo code for finding replacements for missing channels and con-
necting them.

1 function find_replacements ()

2 array repaired_links

3 for (each link with exactly one missing channel)

4 // find r e p l a c e m e n t based on type and profile

5 // of missing channel

6 find_similar_channel(missing channel)

7 if (succeeded)

8 add link to repaired_links (do not connect)

9 sort (repaired_links) by similarity between

10 input and output

11 for (each link in sorted repaired_links)

12 intelligently_connect(link)

autoconfigure()

Tries to connect channels in a sensible way if system is unconfigured or
partially configured. A system is fully configured when all its terminal
channels are connected.

Listing 4.7: Pseudo code for autoconfiguring an unfigured or partially configured
system.

1 function autoconfigure ()

2 array unconnected_chans

3 for (each unconnected terminal channel)

4 add channel to unconnected_chans
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5 sort (unconnected_chans) by terminal profile

6 (low to high)

7 for (each channel in sorted unconnected_chans)

8 // find suitable output channel based on

9 // type and profile

10 find_similar_channel(channel)

11 intelligently_connect ()

find channel()

Several procedures call for finding channels (replacements or candidates
for connection) based on type and profile.

Listing 4.8: Pseudo code for finding similar channels for replacement or connec-
tion.

1 function find_similar_channel(channel)

2 for (each candidate)

3 // c a n d i d a t e s have the correct di re ct io n ( input or output )

4 // and are free to be co nn ec te d to .

5 determine_similarity(channel , candidate)

6 return (the most similar candidate)

determine similarity()

Returns a number describing the similarity between two channels, based
on the type and profile of those channels.

Listing 4.9: Pseudo code for determining the similarity between two channels.

1 function determine_similarity(channel 1, channel 2)

2 variable similarity

3 similarity <- 0

4 for (profile component from front of profile)

5 if (component is equal in

6 channel 1 and channel 2

7 and component is not 0)

8 similarity <- similarity + 8

9 else

10 exit for loop

11 if (channels have equal control mode in type)

12 similarity <- similarity + 4

13 if (channels have equal data type in type)

14 similarity <- similarity + 2

15 if (channels have equal byte size in type)
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16 similarity <- similarity + 1

This means that the similarity is determined primarily from the pro-
file, while control mode, data type, and byte size are used as tie breakers.

4.3.2 Regular Devices

Devices other than the bus arbitrator are responsible for presenting the
parameters and that they have the correct value. It should be noted that
the device is expected to retain both static and writable parameter values
in non-volatile memory. Writable values include source’s VID, source’s
PID, source’s serial number, source’s channel index, source’s type, and
source’s profile.

Other than this, devices should behave like before.
The update data channel message will have little or no function be-

cause the bus arbitrator always has the final say in which links to imple-
ment.

4.4 Notes on the Bus Arbitrator Device

This thesis assumes generally that the bus arbitrator is a separate device,
which has no other roles. However there are other possible constellations:

∙ The bus arbitrator is part of a device performing the sensor, con-
trol, or terminal device role. This should be avoided, because these
devices are more likely to be replaced.

∙ The bus arbitrator is part of another utility device such as a battery
pack, or a memory node. This is a better choice, because these
devices are more bound to the particular prosthesis.

Generally, a constellation which ensures that the bus arbitrator re-
mains with a prosthesis as permanently as possible is preferred. In terms
of cost, it would probably also be beneficial to consolidate all such per-
manent parts into one device. Examples of such permanent parts are:
Bus arbitrator, battery socket, memory, display, buttons etc.

4.5 Storing Configurations

In the context of the profile layer, “configuration” means “the way the
system is connected”. The profile layer calls for sentralized storage of
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configurations so that these can be reproduced. There is therefore a need
for a standardized way to describe a configuration. A natural way to think
of a configuration is a collection of channel links. This has therefore been
chosen as the approach to creating configuration descriptions.

This specification does not define constraints other than non-volatility
on where to store the central configuration. It can either be stored locally,
or a memory node can be a separate device on the bus.

4.5.1 Structure

The configuration is stored as a collection of links, and each link contains
an input channel and an output channel. The channels each contain these
8 values:

∙ type

∙ profile

∙ channel index

∙ owner’s VID

∙ owner’s PID

∙ owner’s serial number

∙ owner’s type3

∙ owner’s profile3

4.5.2 Semantics

The configuration is stored in memory as a string of bytes, and each value
takes up 3 bytes. The first byte of a value is a code that specifies what the
following 2 byte value means. The layout is as shown in fig. 4.9. These
codes are defined as shown in table 4.1.

0xNN 0xNNNN

Code Value

0xNNNN0xNN

Code Value

0xNN 0xNNNN

Code Value

0xNNNN0xNN

Code Value

0 1 3 4 6 7 10 129

Figure 4.9: An illustration of the layout of a stored configuration string.

“Configuration”, “Channel link”, “Input channel”, and “Output chan-
nel” have declarative roles as well, meaning that:

∙ A configuration declaration starts with “Configuration” and ends
with “Configuration” or “End”.

3Unneeded at this point, but included for future use.
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Code Name Value

1 # of configurations
The number of configurations in this col-
lection.

2 Configuration The index of this configuration.

3 # of links
The number of channel links in this con-
figuration.

4 Channel link The index of this channel link.
5 Input channel No defined meaning, use 0x00
6 Output channel No defined meaning, use 0x00
7 Channel type The type of the current channel.
8 Channel profile The profile of the current channel.
9 Channel index The channel index of the current channel.

10 Owner VID
The vendor ID of the device containing
the current channel.

11 Owner PID
The product ID of the device containing
the current channel.

12 Owner serial number
The serial number of the device contain-
ing the current channel.

13 Owner type
The type of the device containing the
current channel.

14 Owner profile
The profile of the device containing the
current channel.

15 End No defined meaning, use 0x00

Table 4.1: This is the definition of the code/value pairs used to store configura-
tions.
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∙ A channel link declaration starts with “Channel link” and ends with
“Channel link”, “Configuration” or “End”.

∙ An input channel declaration starts with “Input channel” and ends
with “Output channel”, “Channel link”, “Configuration” or “End”.

∙ An output channel declaration starts with “Output channel” and
ends with “Input channel”, “Channel link”, “Configuration” or
“End”.

Figure 4.10 shows an example of a set of stored configurations.

This framework allows storing multiple configurations with multiple
links, and since each value is explicitly described with a code, other val-
ues can be added at a later stage without disrupting previously made
configurations.

The framework is similar to the attribute system in Bluetooth LE [1].
JSON was also considered as a framework, but was discarded because of
the complexity of making a parser. With such short values (no strings),
JSON also has a high storage overhead.

4.6 Further Ideas

The following should be considered when continuing work on this speci-
fication.

4.6.1 Profile Hierarchy

The final profile hierarchy will need to be carefully constructed, bearing
the following in mind:

∙ The profile number is also a priority, so numbering is not arbitrary.
Previous sections mention using only even numbers, but other in-
tervals are also possible.

∙ Each standardized profile “node” should come with a set of require-
ments to standardize the behavior expected from different profiles.
The more specialized the profile (the farther it is from the root
node), the more unambiguous the requirements.
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1 2 # of configurations = 2

2 1 Start of configuration 1

3 2 Configuration 1 contains 2 links

4 1 Start of channel link 1

5 0 Start of link 1's input channel

7 10 Link 1's input channel has type 10

8 20 Link 1's input channel has profile 20

9 1 Link 1's input channel has channel index 1

30 Link 1's input channel's owner's VID is 30

40 Link 1's input channel's owner's PID is 40

50 Link 1's input channel's owner's serial number is 50

60 Link 1's input channel's owner's type is 60

70 Link 1's input channel's owner's profile is 70

10

11

12

13

14

6

10

10

10

10

10

10

7

8

9

10

11

12

13

14

Byte n

Byte n+3

Byte n+6

. . .

0 Start of link 1's output channel

10 Link 1's output channel has type 10

20 Link 1's output channel has profile 20

1 Link 1's output channel has channel index 1

30 Link 1's output channel's owner's VID is 30

40 Link 1's output channel's owner's PID is 40

50 Link 1's output channel's owner's serial number is 50

60 Link 1's output channel's owner's type is 60

70 Link 1's output channel's owner's profile is 70

4 2 Start of channel link 2

5 0 Start of link 2's input channel

6 0 Start of link 2's output channel

.. ...

.. ...

2 2 Start of configuration 2

3 1 Configuration 2 contains 1 link

4 1 Start of channel link 1

.. ...

15 0 End

Code Value

Figure 4.10: An example configuration storage.
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4.6.2 Algorithm intelligence

Some of the algorithms described here can be modified, and made more in-
telligent. An investigation into the level of intelligence which is most sensi-
ble when considering all things such as hardware and software constraints,
usability, practicality, and interoperability will probably be needed.

4.6.3 An Alternative Approach to Multiple-Role Devices

An alternative (conceived of in the later stages of this work) to the way
of handling multiple-role devices described above is to require that no
channels be dropped, and data is only allowed to flow between two roles
if the channels are connected, even if the roles are in the same device.4

The advantage of this approach is that it gives more flexibility to the
bus arbitrator, and that the “terminal profile” parameter5 may be un-
necessary. The disadvantage of this approach is a slight increase in logic
in devices (more channels, and inter-role communication), and increasing
the complexity of the system by introducing more channels. All things
considered, this method seems a good alternative, and would have been
pursued further if the idea had come earlier in the thesis work.

4.6.4 More Roles

The 3 roles introduced in section 4.1 were developed in [1], as a simpli-
fication of 5 roles (see fig. B.1 and fig. B.5). Adding these roles would
greatly increase the flexibility of the system. However, if they are added,
stronger guidelines would be needed to ensure interoperability. As an
example, a guideline could be that some roles cannot be split into indi-
vidual devices, and that channels of some profile must always be present
on the bus. If section 4.6.3 is realized, it might help interoperability, but
also bring new challenges if devices disagree on what roles are available.
Perhaps a compromise between the two alternatives would be best.

4.6.5 Expanding

It is the author’s opinion that the component of PDCP least robust to
expansion is the node ID. The system-wide upper limit of 256 node IDs
can quickly be too small as new classes of sensors are being put to use. If

4In this case, it would, of course, be wise to require that the device does not physi-
cally send the data to itself on the bus.

5Described in section 4.2.4.
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additional roles are added, this would also drive up the number of used
node IDs.

One solution to this problem is to increase the size of the node ID
value, and use the extended msg ID of CAN, which will provide an addi-
tional 18 bits. Not all of these will be needed, and some might even be
made freely usable as extra payload room.

4.6.6 Timing

As mentioned in section 4.2.3, information about the period of values
transmitted will need to be accomodated. As an extension of this, one
can envision two different types of signals: Periodic streams, and sporadic,
event-like messages.

Additionally, requirements for sensor signals and set points are some-
what different. There is little reason to send more than one set point in
the same message because they are used without consideration of past
set points. But sensor signals can be processed in many different ways,
and multiple samples can therefore be sent in each message to conserve
bandwidth.
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Chapter 5

Implementation

This chapter describes an implementation by the author of the profile
layer for testing purposes. All software should be available as an attach-
ment. The attachment contents are inventoried in appendix C.

The testing procedure is described in chapter 6.

5.1 The Hardware

The test setup is shown in fig. 5.1.

Figure 5.1: The test setup
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The software produced for this test was run on a PC, while the rest
of the bus arbitrator functionality resided on a PIC microcontroller1.
The profile layer (on the PC) communicated with the lower layer bus
arbitrator functionality (on the dsPIC33) through a UART link, using
the provided API. The reason the profile layer was implemented on a
separate device was that, due to licensing, the particular implementation
of the bus arbitrator lower levels used was closed source, and was provided
as a pre-compiled hex file.

The test system consisted of four identical nodes. These nodes were
created at UNB for a PDCP workshop at the MEC’112 conference and
consist of a Microstick3 connected to a circuit board created at UNB.
The UNB board contained a CAN tranceiver, connector for CAN bus, a
joystick and an array of LEDs. The microstick contained a single freely
controllable LED.

The CAN bus was a four-wire ribbon cable carrying Vcc and GND in
addition to the two CAN signals CANL and CANH. CANL and CANH
were terminated in both ends by 120Ω resistors.

The UART link consisted of 3 wires carrying RX, TX, and GND,
connected to a brandless USB to UART dongle.

The nodes were powered by the same USB link used to program them.
When the tests called for adding and removing devices from the bus, the
USB power was plugged or unplugged, and each device, starting with the
bus arbitrator were reset (push button reset).

5.2 The Software

The lower layer functionality was been implemented by Yves Losier and
Adam Wilson at UNB, and they have also implemented an API accessible
through a UART link.

The bulk of the test software was developed for a PC running Linux4.
It was written in C, and modularized, to ease later porting to a micro-
controller alongside low level functionality, if this is desired.

The complete test setup contains both code produced by the author,
and code produced by Yves Losier and Adam Wilson.

Figure 5.2 shows some of the software modules involved in the test

1Model no. dsPIC33FJ64MC802
2“MyoElectric Controls Symposium 2011” in Fredericton, New Brunswick, Canada.
3Development board for the dsPIC33 by Microchip
4Lubuntu 12.10
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Bus Arbitrator

Device

PC

Low level 
functionality

Host 
API

HOST API driver

Emulation of 
low level functionality

Profile layer

Drivers
(CAN, ADC, I2C, 
EEPROM, Timer)

PDCP 
functionality

Configuration 
storage

Figure 5.2: An outline of the software modules. Modules highlighted blue have
been developed by the author.

setup. Here follows a more detailed explanation of each device and mod-
ule.

5.2.1 The Bus Arbitrator

The bus arbitrator software was provided precompiled, a “black box”.
Interaction with it happened through a UART API called the Bus Arbi-
trator API. The API is documented in [9]. The API defines a message
format including a message ID field, a length field, and a variable length
payload field. The host (in this case the PC) sends a request and receives
a reply from the bus arbitrator. Communication is always initiated by
the host. The message ID specifies the request type. Message IDs come in
threes: request (𝑛), success response (𝑛+1), and failure response(𝑛+2).
With these messages, the host can inquire about the devices, channels,
and channel links of the system, read and write parameters manually, and
configure channel links. There are also options for resetting devices and
for sending a raw CAN packet onto the bus (“passthrough”), but these
were not used in the course of this work.
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Details of Functionality

From interaction through the Bus Arbitrator API, the following could be
inferred about the inner details of the bus arbitrator:

∙ It will always accept bind requests while running.

∙ It will not set up a link without being asked to by a device sending
an Update Data Channel Request, or by the host using the API.

∙ It will not let devices bind unless they send regular beacons.

∙ If a device disconnects from the bus, the bus arbitrator will still
report it as present through the API.5

Hot-Swappability

Hot-swappability was not implemented because of idiosyncracies in the
low level bus arbitrator implementation, as described above.

5.2.2 The Other Devices

The software for the non-bus arbitrator nodes was adapted from the code
used at the workshop the nodes were originally developed for.

The changes involved adding support for new parameters, and input
and output functionality for use in tests. In addition some refactoring
was done to facilitate the implementation of the different test cases.

The software consists of these components:

∙ ADC16- Driver for the analog to digital converter. Used to read
joystick input.

∙ CAN16 - Driver for CAN.

∙ DEE Emulation 16-bit6 - Driver for EEPROM (non-volatile mem-
ory).

∙ I2C6 - Driver for I2C. Used to control LED array.

∙ Timer6 - Interface for timers.

∙ PWM - Driver for PWM module. Used to fade the LED.

∙ PDCP - PDCP specific functionality.

5This fact disallowed implementation of hot-swappability.
6Unmodified by the author.
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∙ Main - Main program flow.

Most PDCP functionality is provided by the ProcessMessage() func-
tion in PDCP.c. This function interprets an incoming CAN message and
responds accordingly by sending a parameter value, updating a parameter
value, or storing a value received on a channel link.

The main() function has three parts:

1. A setup part which includes retrieving values from EEPROM,

2. A bind sequence part, and

3. An infinite loop performing three main functions:

(a) Sends a beacon every beacon interval.

(b) Reads and processes CAN messages.

(c) Performs channel-specific behavior (e.g. sending joystick val-
ues on a channel).

The code needs to be compiled with a “test number” macro (TEST_NUM)
and a “device number” macro (DEVICE_NUM); these are set in PDCP.h.
These macros dictate parameter values and channel behavior, and are
used to quickly switch between compiling the different test devices. The
list of possible parameters are found in PDCP.c and the list of channel
functions are found in Main.c.

The software was compiled and loaded using MPLAB X v1.80, the
standard IDE provided by Microchip.

5.2.3 The PC (Host) software

The PC software is the most substantial part of the software authored in
the course of this thesis work.

The software consists of a number of modules (also illustrated in
fig. 5.3):

∙ Primary modules:

– pdcp_driver

– pdcp_low_level

– pdcp_configurations

– pdcp_profiles
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∙ Helper modules:

– pdcp_error

– pdcp_malloc

– pdcp_names.h

∙ Runtime modules:

– pdcp_run

– main.c

pdcp_driver

pdcp_low_level

pdcp_profiles

pdcp_configurations

pdcp_run

main.c

pdcp_error

pdcp_malloc

pdcp_names.h

Runtime modules
Main modules
Helper modules
"Depends on"

Figure 5.3: The software modules of the host program run on the PC. The con-
figuration module’s dependency on the low level module is dotted.
This is because it only uses the struct definitions, not function calls.

Procject Structure

Each of the software modules includes a source file (.c) and a header
file(.h) (except main.c and pdcp_names.h). In addition, many modules
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have unit test files meant to be used with the Unity test framework [10].
The code can be found in the attachment, in the “hostkode” folder.

Header files are in “include”, source files in “src”, and test files in “test”.
The “obj” folder holds intermediate object files during compilation.

The “test” folder also contains a “test runners” folder, containing files
autogenerated by Unity.

The “hostkode” folder contains four test files(test conf.file, test read.file

and test write.file) used by the unit tests. It also contains a makefile,
the file containing stored configurations (configurations.file), and a
script (color output.sh) used to color console output. Usage:

make all |& ./color_output.sh or
make test |& ./color_output.sh

Makefile

The makefile can be used both to compile and run tests, and to compile
and run the main program. Run tests with make test, and main with
make all. The makefile will automatically compile (if needed) and run
the program (with test: multiple programs). make clean will remove
object files.

Module pdcp driver

This module provides an interface to the UART link by providing data
structures (uart_msg_struct, uart_msg_array and uart_conn), and a
send/read interface:

driver_send_msg(uart_conn* conn, const uart_msg_struct* in)

driver_blocking_read(uart_conn* conn, uart_msg_struct* out)

driver_blocking_read will not return before it has received a mes-
sage, unless a timeout occurs.

The fields of uart_msg_struct struct correspond to the message struc-
ture of the bus arbitrator API. The uart_conn struct contains file descrip-
tors and other meta information.

driver_init must be called before the driver module can be used.

Module pdcp low level

The low level module performs the emulation of low level funtionality by
use of the bus arbitrator API. It provides the data structures for storing
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system data, provides function for all the API features, and auxilliary
functions pertaining to the system info, such as printing to stdout, and
comparing variables.

At its core is the pdcp_system_info struct. This contains arrays of
all the devices, channels and channel links on the system. It has an array
called missing_devices. These are devices that are referenced by input
channels as source output channels, but are not present on the bus. Some
links in the channel_links array may also involve a missing device. In
that case, the link_status field of the channel link struct will be set to
LINK_STATUS_INACTIVE (= 1).

low_level_init must be called before the module can be used, and
will fetch all system info. To update the system info later,
explore_system_info can be used.

See pdcp_low_level.h for additional documentation.

Module pdcp configurations

The configurations module allows for storing and loading a single config-
uration7. The module provides its own data structures tailored for storing
configuration (pdcp_configuration, pdcp_channel_link_configuration
and pdcp_channel_configuration), and the following interface:

pdcp_configuration* load_configuration()

void save_configuration(const pdcp_system_info* system_info)

and some functions for comparing this module’s structs to the low
level module’s structs.

Module pdcp profiles

This module contains the profile logic. The algorithms described in sec-
tion 4.3.1 are implemented here.

Listing 4.1 is performed by profiles_first_setup. Listing 5.1 shows
pseudo code for this procedure, as it is implemented.

Listing 5.1: Profile layer startup procedure as implemented.

1 Wait until no bind requests for x ms.

2

3 if (there is a configuration in memory)

4 Retrieve configuration from memory.

5 Remove all channel links requested by devices

7The parser supports multiple configurations, but full support for this was not
prioritized.
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6 Connect according to retrieved configuration.

7 else

8 Allow all channel links requested by devices.

9

10 if (configuration involves missing devices/channels)

11 Try to find alternate channels using type/profile.

12

13 if (there are unconnected terminal channels)

14 Try to connect them according to type/profile.

Most of the algorithms in section 4.3.1 are implemented under the
same name, except

∙ retrieve_configuration(): This happens naturally through the
low level actions of the bus arbitrator and devices. The devices will
send update data channel requests and the bus arbitrator will set
up the channel links automatically. From there, the profile layer
can decide whether to keep them or not. If there is a configuration
stored centrally, this will be implemented, and the automatic links
will be removed.

∙ connect(link): The sole access checks mostly happen inline, and a
low level function named make_channel_link is used afterwards.8

∙ intelligently_connect(link): The implementation is named
intelligently_connect_links. Another function,
intelligently_connect_link, finds an appropriate output chan-
nel for an input channel, then calls intelligently_connect_links
on the two channels.

∙ find_replacements(): This functionality is covered by
find_replacements, which finds replacements for channels reported
as missing by the bus arbitrator, and find_ochan_replacement

and find_ichan_replacement which are used when channels in
the configuration saved to file are missing.9

∙ find_channel(): This is performed inline.

The module is used as shown in listing 5.2

Listing 5.2: Adapted code from pdcp run.c which demostrates the correct use
of the profile module

8make channel link raw is the same, only with different arguments.
9The functionality is split because of idiosyncrasies in the bus arbitrator implemen-

tation.

51



CHAPTER 5. IMPLEMENTATION

1 profiles_init ();

2 while (! profiles_ready_to_run_first_setup ()){}

3 profiles_first_setup(autoconfig );

profiles_first_setup takes a boolean value specifying whether to run
autoconfiguration.

Module pdcp error

This module provides the following functions:

void check_ret_value(int ret_value, int line_num);

void check_return_code(return_code ret, int line_num);

in addition to the global variable pdcp_errno, which works in the same
way as the standard errno. pdcp_errno is meant to report error codes
pertaining to the bus arbitrator API. However, these error codes are not
yet implemented, so pdcp_errno is unused at the moment.

The functions, however, are in use.

check_ret_value is used with values returned by standard Linux
library calls, such as read and write, where a negative value indicates an
error. The line number argument is for debugging purposes. The function
prints an error message to stdout.

check_return_code is used with the return_code type defined in
pdcp_names.h. The function prints an error message to stdout, in case
of atypical values (i.e. not OUT_VAR_FILLED).

Module pdcp malloc

This module provides wrappers for the standard functions malloc, realloc,
and free. The wrappers mainly count the number of allocated memory
areas, so the unit tests can verify that there is no memory leakage.

Module pdcp names.h

This header file contains a number of #defined values used by multiple
modules.

This file also contains the definition of the enumerated type return_code:
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typedef enum{

NO_ACTION,

OUT_VAR_FILLED,

BAD_POINTER,

TOO_SMALL,

ERROR_CONDITION

} return_code;

The return_code type is used throughout the host software to tell how
the execution of a function went.

All values except ERROR_CONDITION have to do with output argu-
ments. The function will take a pointer as argument, and attempt to set
the variable (usually a struct or array) it is pointing to.

∙ NO_ACTION means that there was nothing to fill the variable with.
E.g. if driver_blocking_read times out, it will return NO_ACTION.

∙ OUT_VAR_FILLED is the standard “success” response.

∙ BAD_POINTER means the output variable pointer is NULL.

∙ TOO_SMALL means an array among the arguments is too small.

∙ ERROR_CONDITION means some other error happened.

Module pdcp run

This module executes the program based on command line arguments:

./main.out [argument]

∙ “autoconfig” or no argument: Run profile layer normally (with au-
toconfiguration).

∙ “noautoconfig”: Run profile layer without autoconfiguration.

∙ “save”: Save the current system configuration

∙ “print”: Print the long system info (using print_system_info from
pdcp_low_level)

∙ “info”: Print the short system info (using print_system_info_short
from pdcp_low_level)

∙ “clear”: Remove all channel links in the system.

∙ “enforce”: Remove channel links that break sole access rules.
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Module main.c

Contains only this:

Listing 5.3: Contents of main.c

1 #include <stdio.h>

2 #include "pdcp_run.h"

3

4 int main(int argc , char* argv []){

5 pdcp_run(argc , &argv [0]);

6 return 0;

7 }
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Testing and Evaluation

6.1 Method

The implemented system was tested using 5 small tests involving 4 devices
each. For the purpose of the tests, a profile hierarchy was constructed,
shown in fig. 6.1. The testing was an attempt to verify different aspects
of the profile layer by observing what channel links were created under
different circumstances.

Sensor
0x2

Terminal 
Device

0x1

Joystick
0x1

Button
0x2

LED 
Array
0x1

Individual 
LED
0x2

X-axis
0x1

Y-axis
0x2

Bar
0x1

On-Off
0x2

Fader
0x1

On-Off
0x2

Figure 6.1: The profile hierarchy used in the tests.

6.1.1 Setup

The following explains how the testing environment was set up.

The hardware setup is displayed in fig. 5.1. The four devices were
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connected by a ribbon cable, the bus arbitrator was connected to the
Linux PC via UART, and all four devices were powered through USB. The
three non-BA devices were connected to a separate PC running Windows
and MPLAB X v1.80.

The tests utilized the 10-LED array on the MEC board and LED1 on
the Microstick for output. The LED array was used as a bar graph (the
On-Off profile was unused), while LED1 was used as an binary output
(the fader profile was implemented using PWM, but remained unused.).
The joystick’s two directions in addition to its push button were used as
inputs.

The non-BA device software included device specific functionality for
all tests (1-5)1 and all devices (1-3) in functions called
dutyCycle[test][device]() (e.g. dutyCycle32() for test 3, device 2).
The device specific parameters were set and chosen by preprocessor checks
on the value of the macros TEST_NUM and DEVICE_NUM. For each test, each
device was programmed individually with the appropriate TEST_NUM and
DEVICE_NUM.

The profile layer software was run on the Linux PC, using the com-
mand line arguments documented in section 5.2.3.

1Note: There is also a Test 7, but it was used only for debugging.
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6.2 Tests and Results

6.2.1 Test 1

Description

Device 1

Device 2

Device 3

1

1

1

2

Profiles

Device 1 Device 2 Device 3

Ch. 1: 0x2110 Ch. 1: 0x2110 Ch. 1: 0x2200
Ch. 2: 0x2120

Device 1’s and Device 2’s channels will be connected. Then Device 2
will be replaced by Device 3 to test the profile layer’s ability to find
replacements for missing input channels.

A video of this test can be found in the attachment.

Result

The test succeded. The final configuration was:

Device 1

Device 2

Device 3

1

1

1

2

57



CHAPTER 6. TESTING AND EVALUATION

6.2.2 Test 2

Description

Device 1 Device 2 Device 31
1

2

3
4
5

1

2

Profiles

Device 1 Device 2 Device 3

Ch. 1: 0x2120 Ch. 1: 0x2200 Ch. 1: 0x1110
Ch. 2: 0x2110 Ch. 2: 0x1220
Ch. 3: 0x1100
Ch. 4: 0x1210
Ch. 5: 0x1220

The system will be turned on without any configuration, testing the au-
toconfiguration capabilities of the profile layer.

A video of this test can be found in the attachment.

Result

The test succeded. The final configuration was:

Device 1 Device 2 Device 31
1

2

3
4
5

1

2
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6.2.3 Test 3

Description

Device 1 Device 2 Device 31
1

2

3
4
5

1

2

Profiles

Device 1 Device 2 Device 3

Ch. 1: 0x2120 Ch. 1: 0x2200 Ch. 1: 0x1110
Ch. 2: 0x2110 Ch. 2: 0x1220
Ch. 3: 0x1100
Ch. 4: 0x1210
Ch. 5: 0x1220

The system will be configured like above, and the configuration will be
saved. The system will then be reset, to test the profile layer’s ability to
recall the configuration, and reimplement it during power-up.

Result

The test succeded. The final configuration was:

Device 1 Device 2 Device 31
1

2

3
4
5

1

2
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6.2.4 Test 4

Description

Device 1

Device 2

Device 3

1

1

2

1

2

Profiles

Device 1 Device 2 Device 3

Ch. 1: 0x2110 Ch. 1: 0x2200 Ch. 1: 0x2200
Ch. 2: 0x2120 Ch. 2: 0x2110

Device 1’s channel and Device 3’s channel no. 2 will be connected, Device
1 will be replaced by Device 2, to test the profile layer’s ability to find
replacements for missing output channels.

Result

The test succeded. The final configuration was:

Device 1

Device 2

Device 3

1

1

2

1

2
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6.2.5 Test 5

Description

Device 1 Device 2 Device 31
1

2

3
4
5

1

2

Profiles

Device 1 Device 2 Device 3

Ch. 1: 0x2120 Ch. 1: 0x2200 Ch. 1: 0x1110
Ch. 2: 0x2110 Ch. 2: 0x1220
Ch. 3: 0x1100
Ch. 4: 0x1210
Ch. 5: 0x1220

The system will be configured, and subsequently reset with no saved
configuration to emulate a replaced bus arbitrator. This is to test the
profile layer’s ability to recall the configuration from just the information
on the individual devices.

A video of this test can be found in the attachment.

Result

The test failed partially. Channel 1 of device 3 was reported as connected,
but it did not work (LED array did not update) after resetting. This re-
sult is discussed in section 7.3.1. A printout of the system as reported
to the host at the end of this test can be found in appendix D. The final
configuration was:

Device 1 Device 2 Device 31
1

2

3
4
5

1

2
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Chapter 7

Discussion

7.1 Specification

The tasks of a device profile layer for PDCP were determined to be:

Behavior

1. Storing the usual configuration of the system and setting this up
automatically each time the system powers on. This includes re-
dundant storage inside the bus arbitrator.

2. Automatic, intelligent reconfiguration when parts are removed and/or
exchanged.

3. Some amount of automatic configuration when the system is not
manually configured.

Information Framework

4. Context, or meta-information about the information transmitted on
the links.

5. Relational information that allows quantification of the similarity
between two channels. This is to pick suitable channels to connect
to.

6. Information to infer what links need to be set up to allow expedient
information flow.

Does the specification address all these tasks satisfactorily?
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Behavior

1. The storage of configuration boils down to the markup language
described in section 4.5.2. The string of bytes can be stored in
any chosen, non-volatile way. The flexibility of the markup system
should be enough to store everything needed to recreate links.

2. The reconfiguration functionality is provided by listing 4.6. With
this algoritm, some amount of reconfiguration will happen, which
is also shown by the tests. There are many ways to achieve this
functionality, and no “best solution” is presented.

3. The autoconfiguration functionality is provided by listing 4.7. With
this algoritm, some amount of autoconfiguration will happen, which
is also shown by the tests. There are many ways to achieve this
functionality, and no “best solution” is presented.

Information Framework

4. Context is provided by the type parameter, and this is probably
inadequate to cope with all the different values that could be sent on
the bus. Already, timing information has been identified as missing.
The final design of the context should be done very carefully.

5. The primary relational information is contained in the profile and
terminal profile value. The tree structure paradigm gives a way
to compare not only identical agents but also more or less similar
agents. The use of the type value for additional filtering gives more
correct calculations of similarity. For the goals set for this work,
the profile value and tree structure perform satisfactorily.

6. The “desired input channels” and “required input channels” pa-
rameters, in addition to the “terminal profile” parameter and the
“sole access” and “terminal channel” flags of the type parameter
provide information about how to set up webs of links. These val-
ues together address all of the issues identified in appendix B.4.4[1].
This task is fulfilled for the purpose of all scenarios the author has
conceived of during a sizeable amount of consideration. For ex-
ample, this setup will accomodate feedback loops. Nonetheless, the
tests did not include more complicated systems than two-level linear
links, so further testing might bring up issues.
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7.1.1 The Alternative

The alternative presented in section 4.6.3 is intriguing.

The advantage is more streamlined behavior by further abstracting
the channels away from devices. One disadvantage is how to handle more
roles (discussed in section 4.6.4).

The best way might be middle ground. When a terminal channel is
explicitly indicated by setting the flag in the type parameter, the algo-
rithms should be able to handle it even if the different channels have
different root profile components. The terminal profile parameter can
then likely be dispensed of.

The author’s opinion is that this avenue should be investigated in
future work.

7.2 Implementation

The implementation includes several parts, not all of them pertaining di-
rectly to the device profile layer. The actual profile layer (pdcp_profiles)
module is less than 700 code lines, and thus not overly complex. For pro-
duction, this size would likely increase, but given good design, a single
integrated bus arbitrator node can, in the author’s opinion, be acheived
without a prohibiting level of complexity. Establishing this was one of
the goals of the work, and has thus been accomplished.

Some of the complexity and idiomaticity of this implementation is
due to the design of the bus arbitrator API. Much of the development of
the host software was completed with only the API documentation as a
guide, without actual devices to test on. This meant that some design
choices were based on misunderstandings of the actual behavior of the
bus arbitrator.

As an example, the representation of missing devices and channels,
and the implementations of find_replacements became cumbersome be-
cause of specific implementation details in the bus arbitrator.1

1When devices request to be connected to a device that is not present, the bus
arbitrator will remember this and realize the connection if the device appears later.
The bus arbitrator will also report these unrealized links to the host, indicating their
inactive state with a “link status”. On the other hand, when the host requests a link be
made, and one or both devices is not present, the request will fail and no “inactive” link
will be set up. This detail was not discovered until testing the completed code on the
physical system, and missing channels needed to be handled differently depending on
whether they were specified in the central configuration or on the devices themselves.
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The specification also allows for flexibility regarding complexity. Specif-
ically, the algorithms, especially find_replacements and autoconfigure
can be made as intelligent or simple as desired to accomodate limitations
and requirements.

7.2.1 Possibilities for Further Use

The purpose of the implementation was to create a proof of concept of a
profile layer for PDCP. This has largely been accomplished. The software
was written in C. This was partly in the hopes that it could be reused
in a single-chip implementation. However, the profile implementation is
probably too much shaped by the API to be of use without it.

Perhaps the biggest use for this software is to use the pdcp_low_level
module as C bindings for the bus arbitrator API. The low level module is
the largest one (> 1500 lines of code) and developing it took considerable
time, so this implementation can be useful for others making host software
using the API.

The API, though not ideally suited for a device profile implementa-
tion, can be very useful for developing tools for manual configuration.

7.3 Testing and Results

The testing can be likened to interoperability testing as described in sec-
tion 3.1.1. The likeness comes from the fact that the tests tested the
ability of the devices to actually communicate meaningfully and achieve
the intended functionality (controlling LEDs using joysticks and buttons).

As such, the tests were definitely interoperability tests of the imple-
mentation. Yet, as for interoperability testing of the protocol itself, it
can be argued whether the testing conditions were “an environment rep-
resentative of reality” for the purposes of use in prosthetics.

The main differences between the testing environment and a prosthesis
use case are:

∙ The use of the bus arbitrator API and host software instead of a
single-device bus arbitrator.

∙ The tests involved neither mechanical actuators nor the type of
sensors that would be found in a prosthesis, specifically myoelectric
sensors whose sensor readings have a completely different character
than joystick readings.
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∙ None of the control schemes used in the tests needed timing in-
formation about samples sent on the bus. In prostheses, timing
information is usually needed to a certain extent, to process noisy
EMG signals.

∙ All devices (except the bus arbitrator) used mostly the same soft-
ware, on the same model of microcontroller and CAN transceiver.
The tests did therefore not show whether devices developed on dif-
ferent hardware and by different developers can interoperate.

∙ The tests involved no more than 3 regular devices, which, though
maybe realistic for typical prostheses available nowadays, is nowhere
near the theoretical capacity of the profile.

The issue of timing has already been identified. The specification in
chapter 4 is of course just a first draft, and the specification cannot be
said to be complete yet. All of the above points can turn out to be issues
that need to be addressed in later revisions of the profile layer.

7.3.1 The Failure of Test 5

Because of time constraints, the cause of the failure was not investigated
thoroughly, but the fact that the host appeared to think the link was
there, seems to indicate a small bug in the low level bus arbitrator im-
plementation. The error does not appear to be indicative of a serious
problem with the profile layer itself.

In summary, the testing suite can be said to be sparse, and not rigor-
ous enough for more than a first proof of concept.

That said, the tests do cover most of the functionality described in the
specification, and presuming that the error of test 5 is not the symptom
of a deeper issue, the rough principles of the profile layer can be said to
be confirmed.
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Chapter 8

Conclusion

The work conducted for this thesis has produced a first draft of a specifi-
cation for a device profile layer for the Prosthetic Device Communication
Protocol. A proof-of-concept implementation has been made and tested,
proving that adding such a profile layer to PDCP is feasible.

An investigation into the concept of interoperability was conducted,
and an attempt was made to adapt the concepts found in the literature
to the effort of creating a device profile layer. Interoperability was found
to be a general term pertaining to the ability of agents in a network to
communicate meaningfully.

The implemented system consisted of 4 nodes with identical hard-
ware, where one was used as a bus arbitrator. This bus arbitrator node
communicated with the other three over PDCP, and with a host com-
puter over UART. The implemented profile layer code was run on the
computer. This setup was found to slightly diminish the value of the
implementation as an example implementation. Nevertheless, the merits
of the profile layer can be said to have been duly demonstrated.

The specification was found to be sufficient to achieve the desired func-
tionality in the implemented system. 5 tests were conducted, of which 4
were successes and the 5th was a partial failure. The failure was, however,
attributed to problems largely unrelated to the profile layer implementa-
tion.
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Chapter 9

Further Work

The creation of a profile layer for PDCP is only a small part of the
undertaking that is PDCP.

In addition to refining and expanding directly on the work of this
thesis (See section 4.6), future work in this area can include the following.

9.1 Manual Configuration

The purpose of the profile layer is to increase the usability of prostheses
using PDCP. However, manual configuration will always be necessary,
and a standardized framework for this is essential to the further increased
usability of PDCP. The bus arbitrator API used in this thesis is a big step
towards this, but much remains.

9.1.1 Software

There should be software tools for configuring the prosthesis from a PC or
another type of computer. The scope of such software could be anything
from simple command line instructions to a full GUI with drawable links.

9.1.2 Connection

The bus arbitrator API uses UART, but this is not the only possibility.
Work is being conducted into allowing wireless configuration as well. In
any case, physical connectors would benefit from standardization.
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9.2 Hardware

Many aspects of hardware can be considered in relation to the develop-
ment and deployment of PDCP. The addition of other classes of sensors
(pressure, acceleration) is being considered. PDCP will greatly reduce
the cost of additional devices, and new sensors is just one possible use
of these new possibilities. Other possibilities are human interface devices
such as buttons or displays.

There is also work to be done in standardizing the hardware aspects
of PDCP itself, specifically the bus wire and connectors.
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Appendix A

Glossary

∙ PDCP - Prosthetic Device Communication Protocol.

∙ “The device profile layer” or “the profile layer” - The pro-
tocol layer constructed, specified, implemented and tested in this
thesis work.

∙ Terminal Device/End Effector - Gripper etc. placed on the end
of a prosthesis.

∙ Control unit/Controller/Control (role) - The role of convert-
ing sensor data into set points for terminal device(s).

∙ NTNU - Norges Teknisk-Naturvitenskapelige Universitet (The Nor-
wegian University of Science and Technology), which this thesis is
written for.

∙ UNB - University of New Brunswick in Fredericton, Canada.

∙ Adam Wilson - Creator of PDCP, professor at UNB.

∙ Yves Losier - Creator of PDCP, professor at UNB, co-advisor for
this thesis.

∙ Low Level PDCP - The part of PDCP already created by Y.
Losier and A. Wilson, described in chapter 2, which the profile
layer of this thesis builds on.

∙ PDCP Profile Layer - Additional functionality for PDCP, de-
veloped in this thesis, with the purpose of allowing devices to be
connected in an automatic, semi-intelligent way.
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∙ UART - Universal Asynchronous Receiver Transmitter. A simple,
ubiquitous communication protocol.

∙ TTL - Transistor-transistor logic. Usually used to specify the volt-
age levels used by most digital integrated ciruits (0-3.3V or 0-5V).

∙ CAN - Controller Area Network. A network protocol designed for
use in noise-heavy environments, originally automobiles.

∙ MPLAB X - IDE (Integrated Development Environment) soft-
ware used to create, compile, and load programs for Microchip’s
microcontrollers (PIC).

∙ Unit Testing - Automated testing of small units of software.

∙ Powered Prostheses - Prosthetic limbs with motors, providing
different functionality, and controlled using myoelectric sensors.

∙ Myoelectric - A term designating things pertaining the study and
capture of the electric nerve signals that control muscles.

∙ Bus Arbitrator (BA) - A specialized device which must be present
on the PDCP bus, see section 2.1. This device performs most of
the profile layer functionality.
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Elaboration on the
Implementation of Device
Profiles in PDCP

This is chapter 3 of “Possibility Study of Implementing a De-
vice Profile Layer in PDCP.” by the author. It is reproduced
here for the reader’s convenience.

This chapter is a discussion of how to implement a profile layer in PDCP.
I will try to present multiple solutions to problems, and make decisions
where it is appropriate for further discussion. The result will be a general
outline of one way to implement the profile layer.

The following is a set of goals I devised for the device profile layer
when it is finished. These will guide the decisions made in later sections.

∙ Full specification and standardization of the communication needed
for basic, prevalent prosthesis functions.

∙ Allowing vendors to implement custom functionality.

∙ Allowing for future extensions to the protocol and to the device
profile layer.

∙ Allowing for backwards compatibility.

∙ Being practical for use in existing systems.

∙ Being able to serve the increase in complexity that will come with
future systems.
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APPENDIX B. ELABORATION ON THE IMPLEMENTATION OF
DEVICE PROFILES IN PDCP

B.1 System Architecture

Controlling a prosthesis is essentially the problem of converting sensor
data into motor input. Fougner et al.[8] divides the problem into a series
of steps, as illustrated in fig. 4.3. We will use this as the basis of our
system architecture.

As the information moves through the steps, it takes on different
values. The question is then: Which of the values in should be available
on the bus, and on what form?

The sensors will need to transmit their readings in some form, and
since each processing step necessarily reduces the amount of information,
the raw EMG/sensor signal should always be available, to allow for the
widest range of possible control schemes.

Additionally, since raw sensor signals usually have a relatively high
bit rate, a processed version could also be available. The best choice
seems to be the signal features/parameters, because this is the last step
where the signals from different sensors are kept separate, which means
the feature extraction can be done in the sensors themselves.

Further, the effector(s) could accept set points for individual motors,
to allow the control intelligence to reside outside the effector.

Lastly, the effectors should also be able to accept set points for at
least one generalized “movement class”1 so that the control intelligence
is not required to be able to control all constellations of motors.

These constraints then outline three main roles in the system in addi-
tion to two helper roles which should be filled by the others. Figure B.1
shows the roles and signals. A device is also allowed to fill more than
one main role, such as a control unit in a terminal device. The device
should still be allowed to be used as just one or the other, i.e. exposing
all channels.

Since features and individual motor set points are not essential for
an implementation of a profile layer, the rest of the chapter will focus
on implementing raw sensor signals and movement class set points. The
simplified architecture is shown in fig. B.5. Support for features and
individual motor set points can also be added later if not part of the first
version of the profile layer.

1For example “grasp” or “wrist rotation”.
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Signal capture

Feature 
extraction

Control

Hardware 
abstraction

Actuation

Raw Sensor Signal

Features

Movement class set points

Individual motor set points

Figure B.1: This is the division of roles I suggest, and the signals that can travel
on the bus.

Sensors
Can send either raw EMG 
or the average amplitude 

(feature).

Accepts pinch grip set 
points, average 

amplitude, or raw 
EMG.

Prosthetic 
Hand

Figure B.2: Example 1 of a prosthesis system conforming to the proposed spec-
ifications. Here, the control role is performed in the hand itself. If
the sensors send average amplitude (PMES), this system will be a
digital equivalent to modern two-site systems.
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Sensors

Control
Can send either raw EMG or the 

average amplitude (feature).

Accepts both raw EMG 
and the average 

amplitude. Can send 
grasp and/or elbow 
rotation set points 
(depending on the 
number of sensors 

available.

Accepts grasp set 
points

Prosthetic 
Hand

Accepts elbow 
rotation set points

Prosthetic 
Elbow

Figure B.3: Example 2 of a prosthesis system conforming to the proposed spec-
ifications. This is a thought scenario with a control unit especially
suited to the combined elbow-hand prosthesis.

Sensors

Control
Can send either raw EMG or a 

number of features.

Accepts both raw 
EMG and features. 

Uses features it gets 
or extracts itself to 

control grip and 
rotation 

simultaneously using 
pattern recognition.

Accepts pinch grip 
and rotation set points

Prosthetic 
Hand

Figure B.4: Example 3 of a prosthesis system conforming to the proposed spec-
ifications. Pattern recognition systems must be trained, so the
advantage of having a separate control unit is that hands can be
switched without needing to train a new control unit.
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Signal capture

Feature 
extraction

Hardware 
abstraction

Raw Sensor Signal

Movement class set points

Actuation

Control

Figure B.5: This is a simplified version of the division of roles I suggest.

B.1.1 A Note on Bandwidth

The CAN protocol has a relatively high bit rate (up to 1 Mbit/s for bus
lengths below 25 m [11]). Idstein et al. [12] report a bus utilization of
61% for a system transmitting 16 EMG signals with a resolution of 16 bits
and a rate of 1 kHz. This means that bandwidth will not be a problem
until prostheses become significantly more advanced than they are today.
This also means that the possibility of sending features on the bus is
not critical at this time, and could be, as mentioned, deferred to a later
version of the protocol.

B.1.2 A First Implementation

The following describes the behavior of a possible “first implementation”
of the above system architecture in a device profile layer. “First im-
plementation” means the basic, most essential behavior. The following
sections will go deeper into the profile layer to look at how to realize this
behavior.
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Behavior
A system consisting of:

∙ A control unit

∙ Enough electrodes for the control unit’s control scheme

∙ A terminal device of any kind, and

∙ A bus arbitrator

all connected to the bus, will allow the terminal device to be con-
trolled along at least one degree of freedom by way of some sort of
activation of the electrodes. The system will behave the same way
after every power-on unless a device is added, removed or replaced,
in which case, the new behavior should be as similar as possible to
the old.

B.2 Data Channels - Setup

A device will use data channels to send or receive data, so it should have
a channel for each data type it accepts or provides. As an example: An
electrode will provide an EMG output channel, and the control module
will provide an EMG input channel.

The profile layer is responsible for specifying how to connect inputs
and outputs (“Configuration”) in the best possible way. The bus arbitra-
tor sets up the actual links, so we will assume it will also decide which
channels to connect to each other.

B.2.1 Configurations

One goal of the device profile layer is to be able to swap one part for
another, similar part or to add or remove devices. After the change,
the prosthesis should function as similarly as possible to before, but also
adapt to changes in complexity.

In essence, there are four different power-up scenarios which require
different kinds of configuration:

1. First power-up: All channels must be connected according to
device and channel profiles.

2. Restart of an already configured system: Trivial case of re-
connecting a stored connection scheme according to VIDs, PIDs,
Serial numbers, and channel indices.
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3. Restart of an already configured system with devices added,
removed, or replaced: A combination of the two previous, involv-
ing mapping the functions of the removed device(s) to the functions
of the new device(s) to make the new system behave similarly to
the old system.

4. Restart of an already configured system with devices added,
removed, or replaced, but the new system has also been
configured before: This is a possibility if, for example, a patient
owns different terminal devices for different uses, and switches be-
tween them. If the configuration is stored and can be identified, it
can be reused.

B.2.2 Storing Configurations

When the configuration of the system is completed once, the configura-
tion should be stored and reused on the next power-up. In the current
protocol, each device stores its own configuration. The input channel
parameters (table 2.9) contain a “Source’s VID and PID” and “Source’s
SN and Channel Index”, which can be written to after configuration, and
read later.

But in the event that a device is removed, it might be desirable to
know the information stored on the removed device. This would be ac-
complished if the bus arbitrator were to duplicate all information in its
own memory. But if the bus arbitrator role is filled by another device,
and this device is removed, the stored configurations are gone.

Another option is to have a dedicated memory device sitting in the
socket. Configurations for a particular prosthesis would then be “perma-
nently” available in the prosthesis.

As mentioned in appendix B.2.1, a patient may use different prosthesis
parts for different situations, and thus want multiple configurations to be
stored. This is certainly possible with the right data structures in the
memory node.

A memory node could also store other configuration information. A
control unit could use the memory node to store information about which
control strategy it uses etc. If this information is stored in a standardized
way, another control unit can retrieve it.

There are also other ways to make sure the information is available in
the network. Storing in the bus arbitrator has already been mentioned.
If the bus arbitrator were required to be a separate node, this would
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be a good alternative. Other alternatives would be to distribute the
information among the nodes, e.g. by duplicating the information one or
more times.

B.2.3 Manual Configuration

No matter how well the device profile layer can configure the system, there
should be a possibility for manual configuration. People’s preferences
differ, and giving the patient part in the customization of their prosthesis
will help them get more out of it [13].

From PDCP Info (2011 05 04) [3]:

(The) Bus Arbitrator (is) responsible for binding devices onto
(the) network and providing an interface for Software Appli-
cations to configure the devices and device interconnections on
the PDCP bus system.

This could be taken to mean that the bus arbitrator should be the
point of outside access to the system. Regardless, it is a natural choice,
since all manual configuration will probably reach it eventually.

Optimally, such configuration should be simple enough for the patient
to use at home. In terms of human interfaces, there are many possibilities:

∙ On the prosthesis:

– Buttons/knobs/joystick

– Display

– Touchscreen

∙ Computer software via wired or wireless connection to prosthesis.

∙ Dedicated handheld device via wired or wireless connection.

∙ Smartphone or tablet app, via wireless connection.

Manual configuration should allow the user to choose which electrodes
to use for which movement, which control strategy to use if more than one
is available, which movement classes to use and how to switch between
them, and tuning of parameters such as threshold and sensitivity.
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B.2.4 Control Units – Transparent or Opaque?

Consider a control unit with multiple possible control strategies. Should
each strategy have its own set of input channels, or should they share
input channels since only one strategy will be used at a time? In the first
case, the control strategy used can be determined from the input channels
used. In the second case, the control strategy would have to be stored
separately if record of it is to be kept.

However, in reality both cases would use a channel parameter to hold
the strategy information. The parameter would be static in the first
case and variable in the other. Since there are no real disadvantages of
the variable parameter, the second case, with shared channels, seems the
better choice.

B.3 Data Channels - Transmission

B.3.1 Information Integrity

What safeguards, if any, should be implemented to ensure the integrity
of packets sent on channel links?

Sources of transmission and reception errors include noise on the wire,
high bus loads, and buffer overflows. CAN itself already has quite a
system for detecting these errors, through ACKs, error flags, overload
flags, and retransmissions. This makes it robust to packet loss. In most
use cases for PDCP (low noise, low to medium bus utilization) packet
loss should be minimal. Idstein et al. [12] report:

Bus utilization was, on average, 62% for the upper limb system
and 73% for the lower limb system with no loss of data or
perceivable latency.

Extra measures including explicit retransmission should be unneces-
sary.

A sequence number can still be useful, because it will enable detec-
tion of bad transmission (packet loss, or faulty nodes transmitting the
same packet over and over) which is useful to know whether or not it is
acted upon. In addition it enables transmission of “special” packets, as
the meaning of the packet can be dependent on the sequence number.
An example of this would be defining sequence number 0 as containing
configuration data such as data rate and resolution.
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B.3.2 Byte Format on Data Channel Links

Sender and receiver must agree on what format the data is. This could
be explicit or implicit.

As discussed in appendix B.3.1, if each frame contains a sequence
number, one sequence number can be used for configuration, and thus
to explicitly inform of the byte format. One disadvantage of a sequence
number is that it takes up space in the payload, reducing the net bit rate.
Another disadvantage is that if this configuration packet is somehow lost,
the rest of the correspondence will be unintelligible.

Another option is to put format information in a channel parameter.
The bus arbitrator would be required to inform input channels of the
output channel’s format information. The advantage of this is that the
format information is explicit, while also reserving the data channel link
for only data. A disadvantage is that the format information cannot
necessarily be changed after the channel link has been set up.

A third option is to have dedicated channel links for metadata. Mak-
ing data links in pairs would be a very flexible setup. The disadvantage
of this is halving the number of possible channels in each device. An
intriguing option is a broadcast channel, which can be used for metadata,
but this would require support in the lower levels of the protocol, and
may also be against the principles of PDCP.

A last option is that all format information is implicit. The type of
the output channel would dictate the correct way to interpret the signal.
This solution would, however, be troublesome, because input channels
can be matched with output channels of other types. The input channel
would then need to keep a record of all channel types and all possible
ways of interpretation.

In any case, more detailed studies should be conducted into the op-
timal sampling rate and resolution of EMG (and other) signals, so that
good standards for the byte format can be made.

B.4 Profiles

PDCP, as it stands now, allows devices and channels to specify their
“type and profile” and “descriptor”. In a device profile layer, these num-
bers should be the basis for configuring the network, and must therefore
contain most of the metadata needed to make a configuration. Especially
when reconfiguring the system after parts have been replaced, it is im-
portant that the new device can be compared to the old device by use
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Sensor

EMG
Accelerometer Encoder

Arm
Joint 

Rotation
Lower 
Arm

Upper 
Arm

Arm

Lower 
Arm

Upper 
Arm

Individual Muscles Orientations

Torso

Chest

Shoulder

Grip 
Position

Individual 
Joints/Motors

Figure B.6: An example profile hierarchy for sensor channels.

of the profile information. Also, when the system is started for the first
time, the automatic configuration should be logical, even if some manual
configuration will usually be done afterwards.

B.4.1 Channel Profiles

It seems natural that most of the profile layer functionality should be
implemented using channel profiles rather than device profiles. This is
because a physical device can perform multiple roles, while a channel has a
single function. The same tendency is seen in both USB and in Bluetooth
4.0. In USB, many devices will have their classes specified in the interface
descriptor rather than the device descriptor. In Bluetooth 4.0, a device
can support many profiles, and profiles themselves are mostly specified
in terms of individual services.

B.4.2 Device Profiles

Even though the most important profile information will reside in the
channels, it would probably be useful to also utilize the device-wide “Type
and Profile”. One possible use is to specify whether the device is a sensor,
control unit, terminal device, or a combination of these.

B.4.3 Tree Structure

A natural way to represent both information and relation is a tree struc-
ture. Examples of such tree structures for sensor channels and movement
class set point channels can be seen in fig. B.6 and fig. B.7.

A channel’s profile could be any of these nodes. A node can then be
identified by a sequence of numbers, which we will call the “profile code”.
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Figure B.7: An example profile hierarchy for movement class set point channels,
with enumeration.

E.g., if each node is assigned a number as in fig. B.7, then a “Power Grip”
movement class could be identified by the profile code 0x00000201. A
portion of the numbers, for example above 0x80, could also be reserved
for non-standard devices, as with the “Custom Grip” in fig. B.7.

The final structure of this hierarchy would have to be carefully con-
sidered, because once it is official, nodes can only be added to the tree in
certain ways, so that the profile code of each node is unchanged.

The control strategy parameter described in appendix B.2.4 can also
be made from a tree structure. That way, a new control unit can be
matched to the old, to provide similar behavior when replaced.

B.4.4 Channel-Matching

The way channels will be matched is that when a device sends an Update
Data Channel Request message, the bus arbitrator will find the most
similar output channel and connect it. Similarity is measured by how
far down in the tree structure the profiles are alike, i.e. how many bytes
(from the front) in the profile code are equal. E.g., the similarity of pinch
and power grip is 3 (the depth of “grip”).

In PDCP, multiple input channels can be connected to one output
channel, but this is not always desirable. For example, an EMG sensor
can only be used once as control input. This can be solved by specifying
if the input channel needs exclusive use of the output channel. Only
one input channel with exclusive use can be connected to a given output
channel.

Sometimes, particularly for the input channels of the control unit,
either all or none need to be connected. E.g. for a two-site system, it
is useless for only one of the two input channels to be connected to an
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electrode. This can be solved if each channel has a number (we can call
it the “channel group”), which will be the same for channels that need to
all be connected.

If a control module is flexible, i.e. it can use different control schemes
dependent on the terminal device and the number of electrodes available,
it will need to have channels for all possibilities. To know which channels
to use, it should wait until the terminal device is configured, then decide
which input channels to request2 to be connected. It can prioritize its
channels by requesting the most important channel first, etc. If there are
not enough sensor channels to supply its needs, the bus arbitrator can
deny the requests3.

B.4.5 Channel-Matching in Previously Configured Net-
works

In some cases, devices may have “Source’s VID and PID” and “Sources
SN and Channel Index” filled incorrectly, if:

∙ A channels source has been removed or replaced.

∙ A device has been configured in another system.

One possible way to cope with this is to make the memory node
accessible to all devices, which can retrieve the correct configuration.
This would, however, be problematic if the memory node has multiple
configuration stored. The devices do not know which configuration to use.
One possible solution is to have the bus arbitrator tell every device which
of the configurations to use. It is still a slightly complicated approach,
because the devices must first be granted a channel to the memory node,
then be told the configuration index, then read the configuration, then
be granted channels to each other.

It is also possible for the bus arbitrator to write the actual configura-
tion to each device. This would be a more straight-forward approach.

A third possibility is to have the devices act the same in all scenarios,
and have the bus arbitrator guide the setup. It would then have to deny
“incorrect” Update Data Channel Requests and coax the right requests
out of the devices.

The exact way to solve this problem will have to be elaborated on in
a later study.

2Using the Update Data Channel Request.
3More diverse response codes would be useful for this purpose.
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B.4.6 Profiles as the Basis for Message Format

A message could have a profile corresponding to a node in the tree struc-
ture. Each node could then possibly have different value format. Since
channels of different kinds could be connected, what profile should the
message have? To avoid having to know the value format of all nodes in
the tree, a message profile should be the node where the two channel pro-
files branch away from each other4. This way, each channel is required to
know the value format of each node from the root node to its own profile.

As an example (see fig. B.7), if 0x00000201 (Power Grip) set points
are used to control 0x000001 (Wrist Rotation), then the signals have
profile 0x0000 (Hand).

This approach would necessarily mean that details are lost when trans-
mitting on other message formats, and conversion rules must be estab-
lished, but the details lost would be details irrelevant to channels not of
the same type, and thus not understandable by the input channel.

An alternative to this approach is to have a description of the format
in a channel parameter, including such things as the unit (𝑉 , 𝑚/𝑠2, etc.),
range, scale, and maybe also the byte format (signed/unsigned, int/float,
bit length, etc.). The input channel would then read the output chan-
nel’s message format parameter, and ideally understand messages from
this. The disadvantage of this, is that channels must know of all types
of formats. Some format information, such as scaling and range could be
explicit, but all information on units must be standardized, and channels
can only use known units. If an output channel has a custom profile,
it can still not use a custom format, unless it makes duplicates of its
channels, with standard profiles, so they can be used by all.

B.5 Fringe Cases

As it is not clearly defined how the bus arbitrator role will be fulfilled,
there may be situations where more than one device is ready to take
the role. There is no way to solve this in the current protocol. One
possibility would be that all bus arbitrators must send a message as soon
as it is turned on. Since no device is bound to the bus, other devices
will be using priority 3. Other priority values could be used to negotiate
between multiple bus arbitrators.

Prostheses which contain both a prosthetic elbow and a prosthetic

4This is incidentally the node that determines their similarity.
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hand are commercially available. In implementations with PDCP, these
systems could easily end up containing multiple control units because the
elbow and hand could come with one control unit each. This would also
happen if a regular system (with one terminal device) with a separate
control unit was fitted with a terminal device with its own control unit.
In the first example, both control units are needed, while in the second,
one control unit is superfluous.

The problem with the elbow-hand example is that in most cases, they
will be controlled one at a time, with one set of electrodes. The control
units would need to hand over control to one another, which would need
to be done through channels, or through a change in the lower layers of
PDCP. A quick fix is to demand that a system must contain a control
unit capable of controlling all terminal devices present in the system.

In the case of duplicate control units, the built-in control unit can
avoid the collision by never setting up its set point channels on the bus.
This would mean that the separate control unit never takes part on the
bus because no terminal device connects to it. Or the built-in control
unit can choose to always attempt to connect its set point channels first,
to allow a separate control unit to take control if it is present. This might
give more consistent behavior. The user could in any case later manually
configure the system to use the other control unit.
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Attachment Inventory

The following is the contents of the attachment to this report.

· Code: Contains all the code produced in the course of this work.
·· Host: Contains all code for the PC.

··· hostkode: Contains all code produced by the author. The
contents are described in section 5.2.3.

··· unity: Contains the Unity unit test framework.
·· Nodes: Contains all code for the PDCP nodes.

··· Bus Arbitrator: Contains the pre-compiled hex files for the
bus arbitrator software.
···· BusArbitrator.hex: Bus arbitrator software. The bus

arbitrator API communicates at a baud rate of 128000.

···· BusArbitrator 57600.hex: Bus arbitrator software. The
bus arbitrator API communicates at a baud rate of 57600.

··· Devices: Contains the code for the other, non-bus arbitrator
nodes.
···· klientkode: Contains the MPLAB X project.

· Documents: Contains relevant documents.
·· PDCP Documentation: Contains documentation of the low level
PDCP including the Bus Arbitrator API.

·· PDCP Nodes: Contains documents pertaining to the hardware of
the PDCP nodes.

·· Possibility Study of Implementing Device Profile Layer
in PDCP: Øyvind Rønningstad (2012).pdf: This is [1], the re-
port produced by the author in 2012.

· Videos: Contains videos of 3 of the 5 tests.
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Detailed Printout of the
System in Test 5

This printout was generated immediately after the conclusion of Test 5.

ronningstad@oyvind:~/Dropbox/masteroppgave/hostkode$ ./main.out print

n_devices: 3

n_missing_devices: 0

n_input_channels: 4

n_output_channels: 4

n_channel_links: 3

device 0 (8A93010):

name: D

vendor id: 2

product id: 2

serial number: 4

node_id: 0

type: 0

profile: 0

# of input channels: 0

# of output channels: 1

input channels:

output channels: 8A93108,

device 1 (8A93030):

name: D

vendor id: 2

product id: 2

serial number: 5

node_id: 0

type: 0

profile: 0
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# of input channels: 2

# of output channels: 3

input channels: 8A930A0, 8A930B8,

output channels: 8A93120, 8A93138, 8A93150,

device 2 (8A93050):

name: D

vendor id: 2

product id: 2

serial number: 6

node_id: 0

type: 0

profile: 0

# of input channels: 2

# of output channels: 0

input channels: 8A930D0, 8A930E8,

output channels:

input channel 0 (8A930A0):

channel index: 1

type: 7200

profile: 2200

transfer enable: 99

required ichans: 0

desired ichans: 0

terminal profile: 0

source channel node id: 0

source device node id: 0

source vid: FFFF

source pid: FFFF

source snum: FFFF

source ci: FF

source type: 0

source profile: 0

owner: 8A93030

channel link: 0

input channel 1 (8A930B8):

channel index: 2

type: 5200

profile: 2110

transfer enable: 99

required ichans: 0

desired ichans: 0

terminal profile: 0

source channel node id: 0

source device node id: 0

source vid: 2
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source pid: 2

source snum: 4

source ci: 1

source type: 5000

source profile: 2120

owner: 8A93030

channel link: 8A931E0

input channel 2 (8A930D0):

channel index: 1

type: 5300

profile: 1110

transfer enable: 99

required ichans: 0

desired ichans: 0

terminal profile: 1110

source channel node id: 0

source device node id: 0

source vid: 2

source pid: 2

source snum: 5

source ci: 3

source type: 5000

source profile: 1100

owner: 8A93050

channel link: 8A931EC

input channel 3 (8A930E8):

channel index: 2

type: 7300

profile: 1220

transfer enable: 99

required ichans: 0

desired ichans: 0

terminal profile: 1220

source channel node id: 0

source device node id: 0

source vid: 2

source pid: 2

source snum: 5

source ci: 5

source type: 7000

source profile: 1220

owner: 8A93050

channel link: 8A931F8
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output channel 0 (8A93108):

node id: 0

channel index: 1

type: 5000

profile 2120

node id 0

transfer enable: 63

required ichans: 0

desired ichans: 0

owner: 8A93010

# of channel links: 1

channel links: 8A931E0,

output channel 1 (8A93120):

node id: 0

channel index: 3

type: 5000

profile 1100

node id 0

transfer enable: 63

required ichans: 32

desired ichans: 0

owner: 8A93030

# of channel links: 1

channel links: 8A931EC,

output channel 2 (8A93138):

node id: 0

channel index: 4

type: 5000

profile 1210

node id 0

transfer enable: 63

required ichans: 64

desired ichans: 0

owner: 8A93030

# of channel links: 0

channel links:

output channel 3 (8A93150):

node id: 0

channel index: 5

type: 7000

profile 1220

node id 0

transfer enable: 63
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required ichans: 32

desired ichans: 0

owner: 8A93030

# of channel links: 1

channel links: 8A931F8,

channel link 0 (8A931E0):

input channel:8A930B8

output channel:8A93108

link status: 2

channel link 1 (8A931EC):

input channel:8A930D0

output channel:8A93120

link status: 2

channel link 2 (8A931F8):

input channel:8A930E8

output channel:8A93150

link status: 2
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