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Abstract

In this study, we forecast day-ahead Value-at-Risk (VaR) and Expected Shortfall (ES) in German-Nordic

front-quarter and front-year electricity futures spreads. We achieve this by employing a set of univariate

and bivariate generalized autoregressive conditional heteroscedasticity (GARCH) models with different

distributional assumptions, along with two quantile regression models. We compare the out-of-sample

performance of two alternative forecasting procedures - one approach using a fixed estimation sample

and one approach which involves reestimation. We conclude that the GARCH model with an extreme

value theory distributional assumption, the GJR-GARCH model with skewed Student t distribution

and the constant conditional correlation (CCC) model with symmetric Student t distribution are the

most appropriate specifications when forecasting VaR and ES with a fixed estimation sample. Moreover,

we find that GARCH models with symmetric or skewed Student t distribution most accurately predict

VaR and ES when forecasting with reestimation. The German-Nordic electricity futures spreads were

subject to substantial market turmoil during September 2018, which gained international attention in

the financial community. Our results can provide valuable insights for regulators, market makers or other

market participants seeking to hedge or speculate on German-Nordic electricity futures spreads.
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Sammendrag

I denne studien predikerer vi daglig Value-at-Risk (VaR) og Expected Shortfall (ES) i prisdifferansen

mellom tyske og nordiske future-kontrakter p̊a elektrisitet med forfall i kommende kvartal og kom-

mende år. Til dette form̊alet bruker vi ulike univariate og bivariate formuleringer fra generalisert au-

toregressiv betinget heteroskedastisitet-modeller (GARCH-modeller). Resultatene sammenlignes basert

p̊a to alternative predikeringsmetoder - én metode som bruker konstant estimeringsutvalg og én metode

som involverer re-estimering. Vi konkluderer med at GARCH-modellen med fordelingsantagelse fra

ekstremverditeori, GJR-GARCH-modellen med asymmetrisk Student t-fordeling og konstant betinget

korrelasjons-modellen med symmetrisk Student t-fordeling oppn̊ar best nøyaktighet ved prediksjon av

VaR og ES med konstant estimeringsutvalg. Videre finner vi at GARCH-modellen med symmetrisk

og asymmetrisk Student t-fordeling gir best resultater ved prediksjon basert p̊a re-estimering. Ekstreme

prisbevegelser i de tyske og nordiske kraftmarkedene i september 2018 skapte stor internasjonal oppmerk-

somhet. V̊are resultater kan være av interesse for ulike markedsaktører som ønsker å sikre posisjoner

eller spekulere i prisdifferansen mellom tyske og nordiske future-kontrakter p̊a elektrisitet.
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1. INTRODUCTION

1 Introduction

In this thesis, we investigate the financial risk involved in simultaneously holding a position in German

and Nordic electricity futures. More specifically, we consider a portfolio where one futures contract

is bought long, and the other one is sold short. This is equivalent to undertaking a spread position of

German and Nordic electricity futures prices. Spread trading as a strategy entails identifying two financial

instruments, typically commodity or interest rate derivatives, which tend to display some relationship

over time and enter into long and short positions in each constituent, or leg, of the spread. This could be

in two derivatives based on separate underlying, or of the identical underlying with different maturities.

Thus, holding the positions which comprise the spread corresponds to speculating on the development

of the spread itself, as a result of the change in the two underlying. Furthermore, the dynamics and

drivers of the two underlying are not likely to be strictly analogous to the ones of the portfolio, as its

components are anticipated to be highly correlated. Our analysis focuses on modelling the Value-at-Risk

(VaR) and Expected Shortfall (ES) for a trader or investor positioned in the front-quarter and front-

year German-Nordic electricity futures spreads. The front-quarter and front-year electricity futures

refer to financial electricity derivatives with settlement at the end of the upcoming quarter or year,

respectively. We accomplish this by implementing univariate and bivariate generalized autoregressive

conditional heteroscedasticity (GARCH) models. Specifically, we consider the standard GARCH model,

GJR-GARCH, and Markov switching GARCH models by the univariate approach. For the bivariate

approach, we implement constant and dynamical conditional correlation (CCC and DCC) models. All

models are estimated by employing both the normal and Student t distributions. The skewed Student t

distribution is also applied for the GARCH and GJR-GARCH models. In addition to this, we include

RiskMetrics and models based on quantile regression. The objective of this study is to evaluate which

model that performs best in estimating VaR and ES for German-Nordic electricity futures spreads. This

is achieved by backtesting and assessing the models’ relative performance across forecasting procedures,

quantiles and data sets.

VaR has become a widely accepted and implemented risk measure aimed at monitoring financial risk.

Its popularity is due to several factors. Financial institutions and banks are obligated to use VaR for

managing risk and determine required capital reserves. This is in order to comply with regulatory policies

imposed on financial institutions by, e.g., Basel III. Additionally, VaR answers a question crucial to risk

managers in a straightforward and easily communicated manner: with a given probability, p, what is the

expected financial loss over a given time horizon? It turns out that this question also has a relatively

simple statistical definition, namely that VaR corresponds to the p-quantile of a given distribution.

Closely related to VaR is ES, which designates the expected loss given an occurrence which exceeds VaR.

ES complements VaR as it is more sensitive to the tails of a given distribution. These risk measures are

frequently used for financial securities and derivatives, and to some extent also for commodities trading.

Risk management and the application of VaR and ES for spread trading is, to our knowledge, not a

well-studied area of research, especially so for commodities. However, some of the largest commodity

trading losses of all time have been due to unexpected spread developments. In 1993, Metallgesellschaft,

a former German industrial conglomerate, lost an estimated amount of USD 2.8 billion trying to hedge

their obligations for delivery of fuel and oil products, i.e. forward contracts, with short-term futures.

This effectively made them long several spreads based on the same underlying with different times to

expiration (Edwards & Canter, 1995). In 2006, Amaranth Advisors, an American multi-strategy hedge-

fund, lost approximately USD 5 billion trading natural gas futures of various maturities (Chincarini,

2008). As noted by (Kroner, Kneafsey, & Claessens, 1995), commodities have historically been one of the
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most volatile asset classes internationally. Thus, speculating in a spread position of related commodities

may represent risks for the investor that could be hard to understand, and even more so to quantify.

Recently, a prominent Norwegian investor’s failed spread trade of German and Nordic electricity futures

caused major upheaval in the European energy markets. The event received significant attention from

the international financial community ((Stafford & Sheppard, 2018), (Ewing & Schreuer, 2019)). In the

week of September 3-7, 2018, the spreads of the German and Nordic electricity futures widened but did

not display abnormal volatility. However, on Monday, September 10, 2018, the market experienced an

extreme increase in both the front-quarter and front-year German-Nordic electricity futures spreads of

6.02 and 5.56 EUR/MWh, respectively. By considering the levels of the spreads, which were 4.93 and

9.95 EUR/MWh, respectively, it is clear that a short position in the either of the spreads on this day

would lose a significant portion of its value. Subsequently, as the daily margin call was issued to the

investor, he was not able to post the required collateral. This lead to the liquidation of the portfolio,

and resulted in a forced auction of the positions, which rendered total estimated losses of approximately

USD 140 million. The loss incidents mentioned above illustrate the need for proper risk management

when engaging in spread trading, both for hedging and speculative purposes. For electricity derivatives,

which may exhibit strong seasonal effects, extreme price spikes in addition to time-varying volatility and

correlation, a spread position imposes significant financial risk for an investor. To efficiently manage the

risk of such a portfolio, it is of great interest and importance, to model the distribution of returns, or at

least the tails of the return distribution, to quantify the potential losses one could face in the event of

an unexpected market event.

The modern European electricity market is the result of three decades of deregulation, which has facili-

tated increasingly integrated and transparent markets. The German and Nordic electricity markets are

some of the most active with regards to trading in electricity derivatives, and they are connected through

several transmission cables, both directly and indirectly. Moreover, Veka, Lien, Westgaard, and Higgs

(2012) note that the German and Nordic electricity markets are related. They show this by using volatil-

ity and correlation models, indicating that the Nordic electricity futures prices correlate the most with

its German counterparts, among a wide selection of energy commodities such as UK electricity futures,

Brent crude and natural gas. As the German and Nordic electricity markets are both correlated and

quite active with regards to trading of electricity derivatives, the topic and our results are of interest to

market participants holding futures positions in both the German and Nordic electricity markets. These

could be power producers seeking to hedge their long-term exposure to the electricity markets’ volatile

nature, or traders speculating on either a widening or tightening spread. To the best of our knowledge,

VaR and ES forecasting for the German-Nordic futures spreads have not been treated in the literature

as of June 2019. We also find that the literature is scarce on spread trading for electricity futures in

general.

In the remainder of this thesis, we structure our analysis as follows. In Section 2 we provide a brief

overview of the Nordic and German electricity markets, followed by a discussion on relevant literature

for electricity futures with a particular emphasis on VaR and ES models in Section 3. We then proceed

with a presentation of our methodology, with the univariate and bivariate models in Section 5 and 6,

respectively. Backtesting procedures for both VaR and ES are provided in Section 7. Our results and a

discussion of these are provided in Section 8. In Section 9, we conclude.
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2. MARKET OVERVIEW

2 Market overview

In this section, we provide a brief overview of the Nordic and German electricity markets, with an

emphasis on the two regions respective energy mix used for electricity generation and how their respective

market places are organized. The Nordic and German electricity markets are currently directly linked

through transmission lines and underwater power cables from Denmark and Sweden. There are also

several indirect connections, e.g. through Poland. Figure 1 shows the transmission lines from the Nordics

to Germany. Additional electricity cables from the Nordics to the UK and Germany are planned to be

installed from 2020 to 2025, which is expected to double the total export capacity from the current levels

approximately. Insight into how both the unique and shared market features affect electricity prices in

the two respective regions may provide an increased qualitative understanding of their co-movements.

Figure 1: Typical electricity transmission (MW) in the Nordics and into Europe and Germany (blue
arrows). Separate bidding regions in the Nordics are separated by red dotted lines (Statkraft, 2019)

.

2.1 Nordic electricity markets

The Nordic electricity market consists of producers, retailers, traders and other market participants in

Norway, Sweden, Denmark and Finland. Through the liberalization of the Norwegian electricity market,

following the Energy Act of 1990, market-based principles were introduced to broaden competition and

allow for more efficient markets. Sweden later introduced similar legislation, leading to the integration

of the Norwegian and Swedish electricity markets in 1996. This allowed for trading electricity across

the borders of the two countries on the mutual Norwegian-Swedish power exchange, Nord Pool. Finland

joined Nord Pool in 1998, and Denmark followed in 2000. The restructuring the Nordic electricity

markets in the 1990s and early 2000s led to more transparent electricity trading and the introduction of

derivatives for risk management such as futures, forwards and options.

Trading of electricity in the spot markets is carried out at Nord Pool. The exchange computes the daily
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electricity system price for the upcoming 24 hours. The system price is a theoretical price based on the

assumption of no congestion in the intra-market transmission grid and is the foundation and reference

price for price setting in the Nordic financial electricity market. There are several nationally bounded

spot price bidding zones within the Nordic price region, as can be seen in Figure 1. Financially settled

Nordic electricity derivatives have been used since 1995, and are today primarily traded on Nasdaq.

The derivatives are used by producers, retailers and end users as risk management tools, and by traders

who speculate on future spot prices. They comprise futures, forwards, electricity price area differentials

(EPAD) and options with forward contracts as underlying assets. The majority of Nordic futures and

forward contracts use the system price as a reference price, i.e. the EUR-denominated price of 1 MWh of

electricity. However, EPADs allow for speculation on the price differential between local bidding zones.

Other futures contracts, including German electricity futures, can also be traded on Nasdaq.

Table 1: Electricity production in the Nordics by source (%)

Source 2010 2011 2012 2013 2014 2015 2016 2017

Hydropower 52.1 53.6 59.3 53.4 55.7 58.6 56.5 55.9

Wind 3.3 4.7 4.9 6.2 7.3 9.1 8.5 9.5

Nuclear 20.6 21.6 20.8 22.8 22.1 19.6 21.4 21.3

Other∗ 24.0 20.1 15 17.6 14.9 12.7 13.6 13.3

The data is obtained and compiled from SSB (2018), Statistics Finland (2018),
Danish Energy Agency (2019) and Ekonomifakta (2019). Other electricity
sources refer to heat plants employing natural gas or oil, geothermal heat and
other resources which are less typical to the Nordics.

In Table 1, one can see that the energy mix in the Nordics has been relatively constant since 2010.

Hydropower accounts for a substantial amount of produced electricity in the Nordics. Approximately

50% of all Nordic electricity is generated from hydroelectric power plants. Norway has close to 100%

hydropower while Sweden and Finland have around 50% and 20% shares, respectively. Water reservoir

capacity is mainly a function of weather and precipitation. Thus, unusually cold winters and the amount

of rain and snow during the year can explain much of the electricity price movements in the Nordics.

Since 2010, the trend has been that fossil fuels and other carbon intensive energy carriers have been

phased out in favour of wind power.

2.2 German electricity markets

As the Nordic markets were liberalized, the European Union introduced similar policies, aimed at opening

cross-border electricity trading in continental Europe. Exchanges where electricity could be traded freely

originated in the early 2000s. The European Energy Exchange (EEX) based in Leipzig began operations

in 2002, which facilitated the integration of the European markets. The German electricity market is

the largest in Europe, with a diversified energy input mix consisting of nuclear, coal, oil, gas, wind,

hydropower, and solar. Due to this, several input variables could potentially impact the price formation

in German electricity markets, arguably more so than in the Nordics. The energy mix in Germany has

changed significantly over the last decade, with renewable energy accounting for more and more of the

total produced electricity. The historical development of German electricity by source is found in Table

2. A significant factor affecting the German electricity market is the price of CO2 emission certificates.

The certificates are part of a scheme regulated by the European Union Emissions Trading System (EU

ETS). Producers of CO2 emissions are granted a fixed amount of emission allowances, permitting them

to emit a certain amount of CO2 equivalents. Additional emission allowances must be purchased in the

market. As large amounts of German electricity is produced from coal, the electricity prices are sensitive
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to the cost of CO2 allowances. Also, the high share of wind power contributes significantly to the price

volatility in Germany. When wind power production is high, often during weekends or at night when

the demand for electricity is low, the oversupply of electricity leads to negative prices in the intra-day

markets. All in all, there is a large and complex set of variables that affect German spot and futures

prices.

Table 2: Electricity production in Germany by source (%)

Source 2010 2011 2012 2013 2014 2015 2016 2017

Coal 41.5 42.8 44.0 45.1 43.7 42 40.2 36.9

Nuclear 22.2 17.6 15.8 15.2 15.5 14.2 13.0 11.7

Natural Gas 14.1 14.0 12.1 10.6 9.7 9.6 12.5 13.3

Oil 1.4 1.2 1.2 1.1 0.9 1.0 0.9 0.9

Renewable energy 16.7 20.2 22.8 23.9 25.9 29.1 29.2 33.1

Wind 6.1 8.1 8.2 8.2 9.3 12.4 12.3 16.1

Solar 1.8 3.2 4.2 4.9 5.8 6.0 5.9 6.0

Biomass 4.6 5.2 6.1 6.3 6.7 6.9 6.9 6.9

Hydropower 3.3 2.9 3.5 3.6 3.1 2.9 3.2 3.1

Waste to energy 0.7 0.8 0.8 0.8 1.0 0.9 0.9 0.9

Other 4.1 4.2 4.1 4.1 4.3 4.1 4.2 4.1

The data is obtained from Energiebilanzen (2018).

Electricity trading and speculation is carried out via the EEX or EPEX SPOT. Day-ahead auctions

and intra-day trading occurs on the EPEX SPOT, which operates the short-term electricity markets for

Germany, France, Austria and Switzerland. The EEX derivatives market facilitates medium to long-term

portfolio management and offers a broad range of electricity products for the main European markets.

In addition to this, the market place provides derivatives on a wide variety of other commodities, e.g.

natural gas, CO2 emissions and wind power. Derivatives with both physical delivery and financial

settlement are traded on the EEX. Until recently, a system price for Germany, Austria and Luxembourg

has been calculated daily by the EPEX SPOT, referred to as the Phelix Day Base or Phelix Day Peak

Index. This spot price acts as the reference price for German/Austrian financial electricity derivatives

(e.g. futures contracts). The German/Austrian price zone was split in the fall of 2018, as additional

transmission capacity was added to the regional power grids. The effect this will have on the future

development and dynamics of electricity futures remains to be studied. Henceforth, we will refer to all

prices relating to the German/Austrian spot price, or the Phelix Day Base, as German.

2.3 Comparison of the German and Nordic electricity markets

The German and Nordic electricity markets are among the most active ones with regards to the trading

of electricity futures. The market places are also organized similarly. The EPEX SPOT serves the same

purpose in Germany as Nord Pool does for the Nordics, offering average system prices as reference for

the markets. Likewise, the EEX and Nasdaq provide a more diversified offering of trading products, with

financial electricity derivatives and products spanning other commodities and markets. The energy mix

in the two respective markets are different in several ways. Firstly, the Nordic market relies mostly on

renewable hydropower, in addition to nuclear power which is a stable and predictable source of energy

with regards to production costs. Thus, the most important determinant of Nordic electricity prices is

likely to be weather and the amount of precipitation during a given year. Germany, on the other hand

utilize a wider range of resources as input for their electricity generation. Several of them, such as coal

and natural gas are also potentially volatile commodities. A sudden price jump in either input factor
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would most likely cause higher electricity prices, which again would impact the futures prices. Secondly,

whereas the Nordics have maintained a large share of their produced electricity from hydropower and

nuclear, Germany is undergoing a large scale energy transition. The country is currently phasing out coal

and nuclear power in favour of wind, solar and other renewable sources of energy. As more transmission

capacity is expected to be installed between Germany and the Nordics, it will be left to future research

to determine how this will affect the two markets’ impact on each other.
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3 Literature review

In this section, we discuss literature which is relevant to our area of research. We emphasize that the

literature on VaR and ES is quite extensive when considering other assets than electricity futures. The

same applies to univariate and multivariate GARCH models. Thus we fill an interesting gap in the

literature by providing a broad assessment of several GARCH specifications employed for modelling the

risk of electricity futures spreads. Moreover, a significant portion of the academic literature related to

energy economics and electricity price modelling has been dedicated to the forecasting of prices, returns

and volatility. In addition to this, electricity spot prices are more frequently analyzed than electricity

futures. The latter also extends to VaR and ES forecasting. As we in this thesis specifically consider VaR

and ES forecasting for electricity futures spreads, we provide new insight into an apparently neglected

field of research at the intersection of financial econometrics and energy economics.

3.1 Electricity as a commodity and derivative

Commodity prices have historically been one of the most volatile asset classes internationally (Kroner et

al., 1995), a finding which also extends to electricity prices. However, electricity exhibits characteristics

that differ compared to other commodities. Firstly, electricity is generally not regarded as storable. All

produced electricity must be taken off the grid and utilized immediately. Secondly, there are no readily

available and viable substitutes to electricity, resulting in low price elasticity of demand, see Lijesen

(2007) and Labandeira, Labeaga, and López-Otero (2017). One consequence of this is high volatility

in the price of electricity, leading to frequent and large price movements, causing valuation and trading

of electricity products to be quite difficult. As there is almost a total absence of inventories to balance

changes in both supply and demand, production and consumption of electricity must be synchronized

at any given point in time. Because of this, there is limited room for arbitrage in electricity contracts

over time. Electricity derivatives can serve as investment vehicles to hedge against, or speculate on

developments in the underlying spot price. See Eydeland (2003) or Deng and Oren (2006) for a more

elaborate overview on electricity derivatives. It is important to note that electricity futures contracts are

less volatile and considerably more stable than the underlying spot prices. One explanation for this is that

futures contracts represent the market’s expectation of future demand, weather conditions, off-take and

generation capacity during the lifetime of the derivative (Malo & Kanto, 2006). The phenomenon is in line

with the Samuelson effect, originating from Samuelson (1965), who gives a general model showing that the

volatility of futures contracts increases as the time to expiration decreases. He assumes that competitive

forces in the futures market ensure that futures prices and spot prices converge towards maturity. See

also Galloway and Kolb (1996) for an analysis of the maturity effect. The literature is largely dedicated

to modelling and forecasting of electricity spot prices. Aggarwal, Saini, and Kumar (2009) provide an

extensive overview of the research which has been conducted with regards to forecasting models for

electricity prices and volatility. Most employ univariate time series models, assuming stationarity. See

also Weron (2014) or Nowotarski and Weron (2018) for the most recent overviews of research on electricity

price forecasting, which also consider volatility and VaR forecasting.

3.2 Spread trading

The notion of spread trading was introduced to the finance literature by Working (1949), who investigates

the costs of storage and its effect on pricing relationships. The author demonstrated that traders could
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profit from the existence of abnormal pricing relations between futures contracts with different expiration

dates. The author suggests the cost-of-storage theory as an explanation of inter-temporal price relations.

Spread trading has traditionally been used to speculate on the cost-of-carry between different futures

contracts. However, it is important to note that spread trading also enhances liquidity in the markets,

removes arbitrage and allows for hedging (Melamed, 1981).

Some studies on spread trading include Butterworth and Holmes (2002), who study the relative mispricing

in the UK index futures markets, Dunis, Laws, and Evans (2006), who develop trading strategies for

the gasoline crack spread, and Dunis, Laws, and Evans (2008), who assess spread trading strategies for

Brent Crude, WTI Crude, gasoline and heating oil. The crack spread, i.e. the spread between heating

oil futures and WTI crude oil futures prices with the same maturity, is treated by Alexander (2008c).

An assessment of the relative performance of how to model changes in spreads does not appear to exist

in the literature. A qualitative study of several loss incidents related to spread trading is provided by

Till (2012).

For electricity futures, the literature contains few, if any, studies that specifically analyze electricity price

spreads in regional and integrated markets. However, for spot markets, examples of studies which analyze

the interrelations of regional electricity spot prices are found in De Vany and Walls (1999) or Hadsell and

Shawky (2006) for the US markets and Worthington, Kay-Spratley, and Higgs (2005) for the Australian

markets. Moreover, Spodniak, Viljainen, Makkonen, and Jantunen (2013) note that studies focusing

on local electricity prices and their geographic price differences and spreads are rare for the European

markets. The same authors provide empirical evidence that significant long term differences in area price

spreads do exist among the bidding zones in the Nordics. See also Marckhoff and Wimschulte (2009)

and Kristiansen (2004) for studies on intra-market electricity spreads in the Nordics.

3.3 Volatility modelling

Deb, Albert, Hsue, and Brown (2000) note that the most accurate way to quantify electricity price

risks over any period is by modelling or simulating volatility. Extensive effort has been carried out

in this respect. Considering some of the characteristics of electricity spot prices, such as time-varying

mean and variance, seasonality, high levels of volatility along with a large number of price movements

of high magnitude (Aggarwal et al., 2009), various modelling approaches are suggested in the literature.

Large parts of the literature are concerned with the day-ahead and short-term electricity markets, see

Chang and Park (2007), Garcia, Contreras, van Akkeren, and Garcia (2005), Hadsell, Marathe, and

Shawky (2004), Higgs and Worthington (2008) and Knittel and Roberts (2005). Cifter (2013) analyzes

the spot price formation on Nord Pool to forecast volatility and proposes the use of Markov switching

models to capture time-varying volatility, as it enables more accurate forecasting compared to standard

GARCH models. Other approaches for understanding volatility in electricity futures market include

Haugom, Westgaard, Solibakke, and Lien (2011), who examine the link between future price volatility

and current observable economic variables by using realized volatility from Nordic electricity futures. See

also Solibakke (2006) for a stochastic model approach to volatility modelling for Nordic electricity prices,

Haugom (2013), who consider realized variance in the same market and Solibakke (2002) who propose

an ARMA-GARCH as a means to model volatility dynamics in Nordic spot prices. Volatility modelling

of other commodities includes the work of, e.g. Kroner et al. (1995). The authors use a combination of

implied volatility derived from option prices and GARCH models to estimate volatility in agricultural

commodities futures, which outperform the individual application of the two methods. However, low

trading volumes in electricity options on the futures considered in this paper cause this approach to
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be unfeasible for our purposes. Wang and Wu (2012) have compiled studies modelling the volatility of

crude oil futures by both univariate and multivariate GARCH methods. The authors conclude that the

multivariate models perform the best overall. However, among the univariate models, GARCH models

allowing for asymmetric effects achieve the greatest accuracy.

3.4 Correlation and covariance modelling

A common extension of univariate GARCH models, which can model volatility, are multivariate GARCH

models. These estimate the covariance and correlation matrices and often rely on univariate GARCH

models for volatility. Studies that use multivariate GARCH models for electricity futures are not very

common, and there does not appear to exist a coherent framework or methodology which performs

best across studies. Bauwens, Hafner, and Pierret (2013) apply the multivariate GARCH approach with

DCC-models for the conditional correlations and GJR-GARCH for the volatility of German front-month,

front-quarter and front-year electricity futures. Le Pen and Sévi (2010) use VAR-BEKK models to assess

volatility spillover, i.e. correlation, between Dutch, German and British electricity futures markets,

finding a clear connection between the three. Byström (2003) use bivariate GARCH models to assess the

relationship between future and spot prices from the Nord Pool exchange. The author also investigates

how time-varying volatility and correlation affects out-of-sample hedging performance for the futures and

spot prices. Malo and Kanto (2006) provide a study utilizing a broader array of multivariate GARCH

specifications for the Nordic electricity spot and futures prices. They consider, among others, CCC and

DCC models with the normal and Student t distributions, but their findings provide no inference as

to which of the models that are preferable. However, they conclude that for practitioners, the simpler

models, e.g., CCC models, may suffice for hedging purposes. Sotiriadis, Tsotsos, and Kosmidou (2016)

study the relationships between European energy markets but focus on spot prices rather than futures

prices. They employ CCC and DCC models for conditional volatility and correlation. The authors show

that the CCC and DCC models provide the same conclusions. Veka et al. (2012) also implement several

multivariate GARCH models to assess the correlation between varying energy commodities such as oil,

gas, coal, and electricity futures. They discover time-varying correlation and covariance matrices for

all commodity classes except for oil and note that CCC models may be misleading for several assets.

Also related to electricity futures markets, Balcılar, Demirer, Hammoudeh, and Nguyen (2016) employed

multivariate GARCH models for EUA spot and future prices (carbon emission certificates) to assess

its relationships with electricity, coal and natural gas futures prices. See also Bauwens, Laurent, and

Rombouts (2006) provide a survey of the applications, model specifications and inference methods for

multivariate GARCH models.

3.5 Value-at-Risk and Expected Shortfall for commodities

To the best of our knowledge, the literature and empirical studies on the modelling of VaR in European

electricity markets, let alone the German and Nordic markets individually, is scarce. One of the few is

Solibakke (2010) who uses EWMA and GARCH(1,1) with the normal distribution to estimate volatility,

and a CCC model for the correlations. The author also conducts individual VaR forecasting for both

German and Nordic front-year futures. Westgaard, Veka, Haugom, and Lien (2014) provide an exam-

ination of the risk characteristics of several energy commodities noting a lack of volatility clustering,

that empirical VaR differs greatly across asset classes and that most energy commodities exhibit skew

and kurtosis to a varying extent. Thus, model selection for VaR and tail risk assessment is a challeng-

ing endeavour. However, several studies estimate and model VaR for other energy commodities, e.g.
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Brent crude oil and WTI crude oil. Hung, Lee, and Liu (2008) suggest using fat-tailed GARCH models

to estimate VaR for energy commodities such as Brent crude oil, WTI crude oil and gas. Aloui and

Mabrouk (2010) model the same commodities for both long and short positions, with innovations from

the normal, Student t and skewed Student t distribution. They show that GARCH models allowing

for long-range memory, fat tails and asymmetry perform the best in predicting day-ahead VaR. Zhang,

Yao, and He (2015) find that linear one-regime models outperform Markov switching GJR-GARCH and

eGARCH models with up to three regimes when forecasting VaR for Brent crude oil. However, a two-

regime Markov switching GARCH performs best for volatility forecasting on a daily frequency. A study

on more simplistic models such as RiskMetrics, historical simulation and quantile regression is found in

Steen, Westgaard, and Gjølberg (2015). The authors find that quantile regression best estimates VaR

across energy and agricultural commodities during 1992-2013. Dahlen, Huisman, and Westgaard (2015)

employ the same models as Steen et al. (2015) for several energy commodities, including front-month

and front-quarter German and Nordic electricity futures. Their results indicate that RiskMetrics and

historical simulation has significant shortcomings, compared to, e.g. quantile regression. There is also

evidence in the literature that the linear quantile regression models, accounting for non-linear effects

of exogenous factors, outperform GARCH models with Student t in out-of-sample forecasting of price

distribution quantiles (Bunn, Andresen, Chen, & Westgaard, 2016). Giot and Laurent (2003b) model

long and short VaR for daily stock indices returns using parametric univariate and multivariate ARCH

class models based on the skewed Student t distribution. They provide evidence that symmetric density

distributions underperform compared to skewed density models when modelling both tails of the return

distribution. These findings are also in line with Giot and Laurent (2003a), which propose the skewed

t APARCH model to estimate day-ahead long and short VaR estimates for, among others, Brent and

WTI crude oil spot prices. The study did not include electricity futures. A skewed Student t APARCH

model performed best in all cases. However, a skewed Student t ARCH model delivered good results and

could be preferable due to its simplicity. To cope with the extreme volatility in the electricity markets,

extreme value theory (EVT), which utilizes the Generalized Pareto Distribution, has been proposed as

a remedial to account for fat tails (Byström, 2005). McNeil and Frey (2000) note the advantage of a

combined GARCH-EVT approach, as it enables conditional heteroscedasticity to be captured through

the GARCH framework, while subsequently estimating the extreme tail distribution with EVT models.

Fong Chan and Gray (2006) build on this, and conclude that combining EVT and GARCH models is a

useful technique in forecasting VaR in electricity markets.

An important matter to determine before estimating VaR for a portfolio is whether to implement the

model by univariate or multivariate means. Several authors conclude that univariate approaches perform

the best in this respect. See e.g. Berkowitz and O’ Brien (2002), Brooks and Persand (2003), Bauwens

et al. (2006) and Asai, Mcaleer, and Yu (2006). These studies do not consider VaR for electricity

commodities and are limited to portfolios containing relatively few assets. For portfolios with a large

variety of assets, Santos, Nogales, and Ruiz (2013) provide evidence to the contrary of this. The authors

suggest a DCC GARCH model with Student t as the most appropriate specification to estimate VaR for

large portfolios.

Žiković and Dizdarević (2011) evaluate the performance of a range of VaR and ES models on energy

commodities such as WTI crude oil, natural gas and coal. The models are considered at confidence

levels 95%, 99% and 99.5%. The obtained results, from among others EVT with GARCH, GARCH and

RiskMetrics, show that the best performing VaR models are almost identical to the best performing

ES models. Martins-Filho, Yao, and Torero (2018) propose the use of non-parametric models, e.g. the

Generalized Pareto Distribution, to estimate ES and for five agricultural commodities. This is because

few assumptions need to be made with regards to the entire distribution, and the focus is largely shifted
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towards the tails. There seems to exist wide support of the idea that extreme value theory may assist

in quantifying tail risk for several asset classes (McNeil & Frey, 2000), and studies from, e.g. Yamai and

Yoshiba (2005), Kuester, Mittnik, and Paolella (2006), Acerbi and Tasche (2002) and Inui and Kijima

(2005) suggest that EVT is the best approach when measuring and estimating the risk for the lowest and

highest quantiles. However, Ghorbel and Souilmi (2014) finds that EVT does not statistically outperform

standard GARCH models when estimating both VaR and ES for Brent crude oil and natural gas prices

from 1998 to 2012. González-Pedraz, Moreno, and Peña (2014) consider oil, gas, coal, and power futures

from 2005 to 2012 to assess the tail risk in various portfolios for both long and short positions, including

the estimation of ES by using among other specifications an asymmetric DCC GARCH model.
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4 Data

4.1 Source of data

We obtain the data comprising our time series from Montel, a company which maintains a database on

a wide array of commodities. In this thesis we use settlement prices from electricity deferred settlement

futures contracts (DS futures) with cash settlement. The specific contract tickers for the German and

Nordic futures are set forth in Appendix A. The German futures use the average of the hourly prices

from the day-ahead auction for the German price zone as contract base. Correspondingly, the Nordic

futures use the Nordic system price, quoted and published by Nord Pool. This yields a total of four

separate time series, two for the front-quarter contracts and two for the front-year contracts. The time

series are plotted in Figure 2a and 2b. The settlement prices originate from Nasdaq, and the data spans

the period from 5 January 2010 to 1 March 2019.

(a) Front-quarter futures prices: German (blue),
Nordic (red)

(b) Front-year futures prices: German (blue),
Nordic (red)

(c) Front-quarter spread (black) and sample mean
(dashed)

(d) Front-year spread (black) and sample mean (dashed)

Figure 2: Top: Time series of German and Nordic futures prices. Bottom: Time series of spread of
German and Nordic futures prices

4.2 Definitions

We define PGER,t as the electricity futures price at time t for the German contract, and PNOR,t as the

electricity futures price at time t for the Nordic contract. The prices have units in EUR/MWh. The

spread at time t, denoted by St, is defined as the difference between the futures price of the German and

Nordic contract with corresponding expiration dates:

St = PGER,t − PNOR,t (1)
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This gives one time series for the front-quarter spread and another time series for the front-year spread,

plotted in Figure 2c and 2d, respectively. In the rest of study, we often refer to daily profit and loss

(P&L) by which we mean daily price change. In univariate analysis of VaR and ES, we model daily P&L

of the spread which is defined as:

P&Lt = St − St−1 (2)

The daily P&L of the front-quarter spread is shown in Figure 3a. In bivariate analysis of VaR and ES,

rather than considering the spread as a univariate time series, we model a portfolio consisting of positions

in both legs of the spread. This means that we model the daily P&L of each of the two components of

the spread. We define daily P&L of the German contract and daily P&L of the Nordic contract as:

P&LGER,t = PGER,t − PGER,t−1 (3)

P&LNOR,t = PNOR,t − PNOR,t−1 (4)

The daily P&L of the front-quarter German contract and the daily P&L of the front-quarter Nordic

contract is shown in Figure 3b and 3c, respectively.

4.3 Modelling considerations

How to best model the spread is an important discussion for this thesis. As emphasized by Alexander

(2008c), an ordinary logarithmic return series is infeasible as the spread takes on both positive and

negative values. Further, attempting to model the spread, St, directly is not appropriate as the front-

year prices fail to reject the unit root hypothesis in the Dickey-Fuller test under the 5% significance level

(Dickey & Fuller, 1981).

In the literature review, we identify two distinct approaches for modelling the dynamics of the change

in commodity spreads. The first is most frequently encountered, and was proposed by Butterworth and

Holmes (2002) and also used by Dunis et al. (2006) and Dunis et al. (2008). They analyze the daily

change in the spread by considering the difference between the simple returns of the legs, expressed as:

Rt =
PGERt − PGERt−1

PGERt−1

−
PNORt − PNORt−1

PNORt−1

(5)

However, after conducting the Ljung Box test on the resulting time series, we find that both lack

autocorrelation in squared returns, R2
t . This is an important property for modelling conditional het-

eroscedasticity.

The second method was proposed by Alexander (2008c), where the author uses the P&L of the portfolio

to capture the dynamics of the spread in a VaR setting. We will in this thesis consider this methodology.

We argue that VaR and ES for a portfolio of contracts (in TWh) in this context are easily interpreted,

as the two measures will be denominated in EUR/MWh.

4.4 Data processing and cleaning

As futures contracts cease to trade upon expiry, i.e. when the contracts are rolled, we remove observations

from our time series when a new contract replaces the previous one as the front-quarter or front-year

contract. More explicitly, the P&L of the spread on a given date where the contract is rolled is removed
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from our time series, e.g. the day a Q1-contract is replaced by a Q2-contract or the 2018 contract by the

2019 contract. The P&Ls on such dates are not deemed to be caused by underlying market conditions,

but rather by technicalities related to trading and clearing of the contracts. In total, the front-quarter

contract involves the rolling of four contracts per year, and the front-year contract is rolled once per

year. Additional processing includes the removal of observations where price data lacks in either of the

legs, which primarily coincides with holidays in the Nordics and Germany.

4.5 Data characteristics

We observe from Figure 2 that the German futures contracts mostly trade higher than their Nordic

counterparts for both maturities. See also Table 3 for more specific details on the futures prices and

spread series. Moreover, we note that the trading ranges for the front-quarter futures and corresponding

spread exceed those of the front-year equivalents. Considering this, we also observe that the standard

deviations of the futures prices and spreads are higher for the front-quarter contracts compared to front-

year contracts.

Table 3: Futures prices and spread characteristics

Front-quarter T T− Min Max Mean Median Std.dev

Spread 2264 371 -28.87 20.56 4.62 4.76 6.04

German 2264 - 21.82 65.38 40.65 38.35 10.06

Nordic 2264 - 13.82 84.27 36.02 34.85 11.27

Front-year T T− Min Max Mean Median Std.dev

Spread 2288 39 -9.99 18.10 6.46 6.09 3.56

German 2288 - 20.90 60.70 40.54 37.72 9.98

Nordic 2288 - 16.30 61.44 34.08 34.65 8.80

T denotes the total number of observations and T− denotes the number of

observations below zero.

The P&L of the front-quarter futures prices are plotted in Figure 3 and their characteristics are summa-

rized in Table 4. We observe that the P&L of all contracts have a mean close to zero, which appears to

be constant over time. The Nordic P&L has a higher standard deviation than the German P&L for both

front-quarter and front-year contracts. Moreover, we note that the standard deviation of the spread P&L

is lower than that of the Nordic P&L. As the spread is a linear combination of the German and Nordic

futures (see (1)), this indicates that the futures prices are correlated. Also, from a visual inspection of

the plots of the P&L in Figure 3 the series appear to exhibit time-varying volatility. The same properties

are observable for the front-year contracts, given in Appendix F.1.
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Table 4: P&L characteristics

Front-quarter T Min Max Mean Median Std.dev

Spread 2264 -4.55 6.60 -0.01 -0.02 0.78

German 2264 -3.89 5.27 -0.01 -0.03 0.54

Nordic 2264 -7.10 5.95 0.00 0.00 0.85

Front-year T Min Max Mean Median Std.dev

Spread 2288 -3.21 5.56 0.00 0.00 0.40

German 2288 -4.70 2.63 0.00 -0.01 0.44

Nordic 2288 -3.00 2.88 0.01 0.00 0.50

T denotes the total number of observations

(a) Daily P&L of the front-quarter spread

(b) Daily P&L of German front-quarter contracts (c) Daily P&L of Nordic front-quarter contracts

Figure 3: Daily P&L of spread, German and Nordic front-quarter contracts

To establish an impression of the spreads’ historical tail risk, we provide empirical quantiles of the front-

quarter futures in Table 5. The corresponding quantiles for front-year contracts are found in Appendix

F.2, and the 95% quantiles for the front-quarter and front-year contracts are given in Appendix F.3 and

F.4, respectively. We also include the mean conditional on the observations exceeding the quantile. This

is calculated as the arithmetic average of the daily P&Ls that exceed the 99% quantile and interpreted

as the expected loss given that the P&L exceeds the given empirical quantile. The quantile and the

mean of the observations beyond the quantile are analogous to historical VaR and ES. The more volatile

front-quarter futures series and spreads have more extreme tails than the front-year equivalents, which
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coincide with our previous observations regarding volatility. Furthermore, the historical risk appears to

be have been greater for the Nordic futures than for the German futures. In Table 5 and Appendix F.2,

we provide an overview of how the excess kurtosis and skew has changed over time. The measures are

calculated on a per-year basis, and can be visually assessed by inspecting the histograms of the P&L per

year, which we provide in Appendix F.9 and F.10.

Table 5: Empirical properties of the P&L of front-quarter contracts

Contract (Position) 2010 2011 2012 2013 2014 2015 2016 2017 2018

99% empirical quantiles

Spread (Long) -3.54 -2.39 -1.72 -1.11 -1.11 -1.32 -1.42 -1.28 -2.54

Spread (Short) 3.85 2.64 1.61 1.43 0.88 1.13 1.55 1.32 3.34

German (Long) -1.14 -1.39 -1.37 -0.69 -0.61 -0.55 -1.51 -0.92 -2.93

German (Short) 1.45 2.32 1.09 0.64 0.6 0.59 1.54 1.14 2.31

Nordic (Long) -3.6 -2.86 -1.71 -1.46 -1.12 -1.15 -2.04 -1.25 -2.6

Nordic (Short) 4.05 3.08 1.48 1.38 1.14 1.48 1.63 1.2 2.71

Mean conditional on 99% quantile exceedance

Spread (Long) -3.99 -2.53 -1.93 -1.26 -1.14 -1.75 -1.63 -1.32 -3.66

Spread (Short) 5.03 3.58 1.67 1.53 1.21 1.64 1.76 1.6 4.79

German (Long) -1.21 -1.78 -1.65 -1.06 -1.11 -0.63 -1.9 -1.04 -3.4

German (Short) 1.9 3.69 1.19 0.67 0.83 0.74 2.05 1.21 2.83

Nordic (Long) -5.85 -3.24 -1.88 -1.57 -1.4 -1.83 -2.29 -1.69 -3.53

Nordic(Short) 4.76 3.6 1.92 1.73 1.18 1.99 1.75 1.65 3.01

Excess kurtosis

Spread 3.96 1.49 0.59 0.56 0.18 3.74 1.56 0.82 9.76

German 2.15 16.69 2.38 1.51 12.01 1.14 3.12 0.21 3.11

Nordic 3.99 1.43 0.56 0.69 0.17 3.82 2.32 1.55 2.43

Skew

Spread 0.65 0.36 -0.04 0.42 -0.06 -0.15 0.25 0.24 0.92

German 0.95 2.53 -0.36 -0.38 -1.4 0.31 0.22 0.26 -0.63

Nordic -0.31 0.27 0 0.04 -0.12 0.36 -0.4 -0.29 -0.42

2019 not included as datasample only runs the first two months
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4.6 Correlation dynamics

Figures 4a and 4b display scatter plots of the Nordic futures P&L and German futures P&L. By visual

inspection, there seems to be a positive relationship between the two. We also include a 95% contour line

from a zero-mean bivariate normal distribution, with unconditional variances and covariance estimated

from the series. If the joint distribution were bivariate normal, around 5% of the data should be outside

the red ellipse. Moreover, there seems to be heavy clustering around the middle, and we observe that

there are more extreme observations than one would expect from a normal distribution. Figure 4c and 4d

show the rolling unconditional correlation for 250 trailing trading days. These measures fluctuate across

our data sample and thus motivates the use of a correlation model that captures these time-varying

dynamics. Note especially the high correlation through 2017 as prices increased from the low levels in

2016. The same feature is observable throughout 2018 until the extreme movements that took place on

and after 10 September 2018. Lastly, we observe that the correlation for the front-quarter series is lower

than for the front-year series.

(a) Scatterplot of German and Nordic front-quarter
P&L with regression line and the 95% contour line of a

normal distribution

(b) Scatterplot of German and Nordic front-year P&L
with regression line and the 95% contour line of a

normal distribution

(c) 250 day trailing unconditional correlation,
front-quarter contracts (gray). Unconditional

correlation for sample (dashed)

(d) 250 day trailing unconditional correlation,
front-year contracts (gray). Unconditional correlation

for sample (dashed)

Figure 4: Summary of correlation dynamics for daily P&L of German and Nordic front-quarter and
front-year contracts
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In Figure 5, we give a panel of scatterplots per year in the period 2010 to 2018 the for Nordic and German

front-quarter P&L. The most extreme observations stem from mainly 2010, 2011 and 2018 when the price

level was higher. Whereas the data points are more clustered for the years where prices were, i.e. for the

years 2012 through 2016. The corresponding panel for front-year contracts is found in Appendix F.6.

(a) 2010 (b) 2011 (c) 2012

(d) 2013 (e) 2014 (f) 2015

(g) 2016 (h) 2017 (i) 2018

Figure 5: Scatterplots of daily P&L of Nordic and German front-quarter contracts per calendar year,
with a Nordic on German regression line. Red ellipse is 95% contour of a bivariate normal distribution
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4.7 Descriptive statistics

We provide descriptive statistics of each individual series in Table 6. The distributions of the P&Ls of

the spread, Nordic and German futures are leptokurtic, meaning that the distributions have higher peaks

and heavier tails than the normal density with the same variance (Alexander, 2008a). This is visible

from the histograms and quantile-quantile-plots (QQ-plots) in Figure 6, where the solid lines belong to

the normal distribution. Both distributions of the spread P&L show some skewness. However, for the

individual series, only the German front-quarter P&L displays skewness. Applying the method of Jarque

and Bera (1980), we obtain a test statistic which follows a χ2 distribution with 2 degrees of freedom,

with a critical value of 5.99 under the 5% significance level. We reject normality according to the JB

test for all series.

Prior to modelling the dynamics of correlation and volatility of the futures prices, stationarity must be

verified with unit root tests. We conduct the Augmented Dickey Fuller tests with 1 lag (DF) and 10

lags (ADF) (Dickey & Fuller, 1981). The critical value is -2.86 under the 5% confidence level, which is

exceeded for both for 1 and 10 lags. Thus, the series are stationary.

We test for autocorrelation using the Ljung-Box test (LB) in 10 lags (Ljung & Box, 1978). The test

statistic follows a χ2 distribution with degrees of freedom equal to the number of lags included. The

test statistic in 10 lags displays a value larger than the critical value of 18.31 under the 5% significance

level. Thus, the null hypothesis is rejected and autocorrelation is asserted. This is true for the Nordic

and German futures and the spread for both front-quarter and front-year contracts. The test statistics

indicate that the front-year futures have more autocorrelation in squared daily P&L than the front-

quarter equivalents across all contracts.

Table 6: Descriptive statistics

Front-quarter P&L series Skewness Excess kurtosis JB DF ADF LB

Spread 0.57 8.60 7 110* -45.67* -15.00* 1 091*

German 0.43 10.24 9 977* -43.10* -13.86* 697*

Nordic -0.10 6.37 3 840* -43.97* -14.84* 1 465*

Front-year P&L Skewness Kurtosis JB DF ADF LB

Spread 1.00 21.22 43 391* -46.70* -14.85* 451*

German -0.05 9.08 7 871* -44.35* -14.56* 558*

Nordic 0.04 4.07 1 582* -44.61* -14.34* 1 140*

*Indicates rejection of the null hypothesis at the 5% significance level.
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(a) Histogram of daily P&L of the spread (b) QQ-plot of daily P&L of the spread against
quantiles from the normal distribution

(c) Histogram of daily P&L of German contracts (d) QQ-plot of daily P&L of the German contracts
against quantiles from the normal distribution

(e) Histogram of daily P&L of Nordic contracts (f) QQ-plot of daily P&L of the Nordic contracts
against quantiles from the normal distribution

Figure 6: Histogram and QQ-plot of daily P&L, front-quarter. Spread (black), German (blue) and
Nordic (red). The daily P&Ls are standardized using GARCH(1,1)-n
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5 Univariate models

5.1 Conditional variance models

The daily P&L of the spread time series, as stated in (2), can be expressed in the following way:

P&Lt = µt + εt = µt + σtzt, zt ∼ i.i.d. D(0, 1) (6)

where εt can be referred to as the market shock (Alexander, 2008a), µt is the conditional mean and σ2
t

is the conditional variance. The random variable zt is an innovation term assumed to be identically and

independently distributed (i.i.d) according to some distribution D, with mean equal to zero and variance

equal to one. In this study, we consider the following univariate distributions: normal distribution,

Student t distribution, skewed Student t distribution and EVT.

In further analysis, we assume that the conditional mean of daily P&L, µt, is constant and equal to

zero. The mean does not appear to be time-varying and we cannot statistically reject a zero mean.

In general, on short horizons such as daily, returns or P&L, is dominated by the standard deviation

(Christoffersen, 2011). Hence, an assumption of mean equal to zero is not likely to affect results on VaR

and ES estimation. We aim for parsimonious models, and argue that a conditional mean of zero is a

reasonable assumption for daily P&L of both front-quarter and front-year spreads. Consequently, (6)

reduces to:

εt = σtzt, zt ∼ i.i.d. D(0, 1) (7)

In the next sections, we present the methods applied for calculating the conditional variance σ2
t .

5.1.1 RiskMetrics

RiskMetrics (1996) is an exponentially weighted moving average (EWMA) model where weights on past

squared returns on a financial asset decline exponentially as we move backward in time. Applied to

our data, we substitute returns with daily P&L of the spread. RiskMetrics captures the empirical

distribution of daily P&L, but represents a random walk process for variance and thus has no mean-

reversion. Estimates are changing in time merely due to the exponential weighting (Alexander, 2008a).

However, an EWMA model for conditional variance can be specified as:

εt = σtzt, zt ∼ i.i.d. N(0, 1) (8)

σ2
t+1 = (1− λ)ε2

t + λσ2
t (9)

where N(0, 1) denotes the standard normal distribution. According to the RiskMetrics specification for

daily data, we set λ = 0.94.

This is a restricted version of GARCH(1,1) with the normal distribution which will be introduced shortly.

The first term in (9), (1− λ)ε2
t , is interpreted as the intensity of reaction of volatility to market events,

while the second term, λσ2
t , determines persistence in volatility irrespective of market events (Alexander,

2008a). RiskMetrics has the advantage of no parameter estimation and is extensively used in practice.

On the other hand, an important limitation is the fact that the model does not capture time-varying

volatility.
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5.1.2 GARCH(1,1)

In the data analysis, we found that the volatility in daily P&L of the spread is time-varying. For this

reason, we need models that capture volatility clustering. The GARCH model proposed by Bollerslev

(1986) is a generalization of the autoregressive conditional heteroscedastic (ARCH) model developed by

Engle (1982). The dynamic behavior of the conditional variance is given by the following expression:

σ2
t+1 = ω + αε2

t + βσ2
t (10)

The (1,1) specification denotes that one length of ARCH lag (α) and one length of GARCH lag (β) is

used. The unconditional, or long-run average variance, is defined as follows:

σ2 ≡ E
[
σ2
t+1

]
=

ω

(1− α− β)
(11)

With w > 0, α, β ≥ 0 and α+ β < 1, this model represents a non-negative and stationary process. Over

time, the conditional variance σ2
t+1 reverts to the long-run average value. The parameters in GARCH(1,1)

are estimated by maximum likelihood estimation (MLE), based on a distributional assumption. The pro-

cedure for the normal distribution, standardized Student t distribution and skewed Student t distribution

is explained in Appendix C. The error parameter α measures how conditional volatility reacts to market

shocks, while the lag parameter β is a measure of persistence in conditional volatility, irrespective of

what happens in the market. Furthermore, α+ β determines the rate of convergence of the conditional

variance to the long-run average variance (Alexander, 2008a).

5.1.3 GJR-GARCH(1,1)

A GARCH(1,1) model assumes symmetric variance responses from positive and negative market shocks.

However, it is often the case in financial markets that variance responds asymmetrically to positive and

negative shocks, and this gives rise to the need for extended models. A model which copes with variance

asymmetry is the GJR-GARCH model proposed by Glosten, Jagannathan, and Runkle (1993). The

GARCH(1,1) model is extended by adding one parameter as well as an indicator variable, and augments

(positively or negatively) the volatility response from only negative market shocks (Alexander, 2008a):

σ2
t+1 = ω + αε2

t + γHtε
2
t + βσ2

t (12)

where

Ht =

1, if εt < 0

0, if εt ≥ 0
(13)

and γ is the asymmetric effect parameter. Negative shocks impact variance by (α + γ) while positive

shocks on the other hand impact variance by α. Depending on the sign of γ, the variance effect of a

negative shock can be greater than or smaller than the effect of a positive shock. Again, the parameters in

the model are found through MLE based on a distributional assumption. The unconditional, or long-run

average variance is given by:

σ2 ≡ E
[
σ2
t+1

]
=

ω

(1− α− β − γκ)
(14)

where κ is the expected value of zt below zero. In the case of symmetric distributions, such as the normal

distribution or the Student t distribution, the value of κ is simply 0.5. The rate of convergence is given

by α+ β + γκ, and for stationarity we require this to be less than 1. The conditions for non-negativity
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will be ω, α > 0, β ≥ 0 and α+ γ ≥ 0. That is, the model is still valid if γ < 0, provided that α+ γ ≥ 0

(Brooks, 2014).

There exist other extensions to GARCH(1,1) that are commonly used to model the leverage effect,

such as the E-GARCH (exponential GARCH) model advocated by Nelson (1991), and the A-GARCH

(asymmetric GARCH) model initially proposed by Engle (1990) and subsequently discussed by Engle

and Ng (1993). We have chosen to focus on GJR-GARCH due to its simplicity.

5.2 Univariate Value-at-Risk and Expected Shortfall models

With conditional volatility models in place, we can construct univariate VaR and ES estimates. The

probability of experiencing a loss greater than the VaR estimate on a given day is p. VaR can be defined

mathematically as:

V aRpt+1 = sup
xt+1

[
xt+1 | P (Xt+1 ≥ xt+1) ≥ p

]
(15)

where xt+1 represents the (1− p)th quantile of the distribution of the loss function Xt+1, conditional on

the information available at time t. The loss function is given by the following expression:

Xt+1 =

−P&Lt+1, if long position

P&Lt+1, if short position
(16)

Throughout the rest of the study, we consider the 5%, 1%, 95% and 99% quantiles of the conditional

P&L distribution. The former two and the latter two quantiles correspond to the 95% and 99% quantiles

of the conditional loss distribution for long and short positions, respectively. We will focus solely on a

risk horizon, meaning the number of trading days over which the VaR is measured, of 1 trading day.

This is denoted by t+ 1.

A key shortcoming of VaR is that this risk measure tells nothing about the magnitude of losses that

could be incurred if the VaR estimate is exceeded on a given day. ES is a metric which addresses this

limitation, and it can be expressed mathematically in the following way:

ESpt+1 = E
[
Xt+1 | Xt+1 > V aRpt+1

]
(17)

This means that ES is the expected value of the loss, given that it exceeds the VaR estimate. In the

following sections, we provide a description of the applied methods and how they are used to obtain VaR

and ES estimates.

5.2.1 RiskMetrics

When the conditional distribution of market shocks is normal distributed as stated in (8), daily VaR

with coverage rate p is given by the following expression:

V aRpt+1 = σt+1Φ−1
1−p (18)
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where σt+1 is calculated with the RiskMetrics model in (9) and Φ denotes the cumulative density function

of the standard normal distribution. Daily ES is given by:

ESpt+1 = σt+1

φ(Φ−1
1−p)

p
(19)

where φ denotes the density function of the standard normal distribution. See Christoffersen (2011) for

the derivation of this result. As the standard normal distribution is symmetric around zero, long and

short VaR and ES estimates for the same coverage rate will be equal. We include the RiskMetrics model

mainly for purposes of comparison with more sophisticated models.

5.2.2 GARCH: Normal distribution

We have employed two types of GARCH models to calculate the conditional volatility σt+1 in this study.

These two models are GARCH(1,1) and GJR-GARCH(1,1). In the case of the normal distribution, we

use the following expression:

εt = σtzt, zt ∼ i.i.d. N(0, 1) (20)

where σt is given by (10) and (12) for GARCH(1,1) and GJR-GARCH(1,1), respectively. When the

conditional distribution of innovations to daily P&L is standard normal distributed, the normal log

likelihood function is used in MLE. See Appendix C.1.1 for the log likelihood function. Daily VaR and

ES estimates with coverage rate p are obtained by (18) and (19), respectively.

5.2.3 GARCH: Student t distribution

The daily P&L of the spreads are not well described by the normal distribution, and therefore this is

an inaccurate distributional assumption. The conditional distribution of daily P&L is leptokurtic, and

therefore we need distributional assumptions which better capture the observed excess kurtosis. The

GARCH model with Student t distribution introduced by Bollerslev (1987), assumes the conditional

distribution of market shocks to be Student t distributed. We modify the expression in (20) as follows:

εt = σtzt, zt ∼ i.i.d. t̃(υ) (21)

with σt given in (10) and (12) for GARCH(1,1) and GJR-GARCH(1,1), respectively. t̃(υ) denotes the

standardized Student t distribution with mean equal to zero, variance equal to one and υ degrees of

freedom. υ is an additional parameter which is estimated along with the parameters in the conditional

variance equation. The estimation is carried out according to MLE with the Student t log likelihood

function, and from this we obtain the conditional volatility σt+1. See Appendix C.1.2 for the log likelihood

function. With the GARCH models in place, we calculate daily VaR estimates in the following manner:

V aRpt+1 = σt+1t̃
−1
1−p(υ) (22)

where t̃−1
1−p(υ) denotes quantile 1−p of the standardized Student t distribution with υ degrees of freedom.

Daily ES is given by the following expression (Alexander, 2008c):

ESpt+1 = σt+1

υ − 2 +
(
t̃−1
1−p(υ)

)2
p(υ − 1)

ft̃
(
t̃−1
1−p(υ); υ

)
(23)
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where ft̃(∗; υ) denotes the density function of the standardized Student t distribution with υ degrees

of freedom. We require υ > 2 for the distribution to be well defined. As the standardized Student t

distribution is symmetric, VaR and ES estimates for the same coverage rate p will be equal for long and

short positions.

5.2.4 GARCH: Skewed Student t distribution

The symmetric Student t distribution allows for excess kurtosis, but not for skewness. We find that

the distribution of daily P&L shows some skewness. By using a skewed, or asymmetric, Student t

distribution, the GARCH models can take into account both skewness and excess kurtosis. We use the

extension of the Student t distribution proposed by Hansen (1994), where market shocks are described

by the following expression:

εt = σtzt, zt ∼ i.i.d. tskew(υ, ξ) (24)

with σt given in (10) and (12) for GARCH(1,1) and GJR-GARCH(1,1), respectively. tskew(υ, ξ) is the

skewed Student t distribution with mean equal to zero, variance equal to one and parameters υ and ξ.

By setting ξ = 0, this distribution reduces to the standardized Student t distribution (Hansen, 1994).

Compared to the GARCH models with normal distribution, there are two additional parameters, υ and

ξ, to be estimated along with the parameters in the conditional variance equation. To obtain parameter

estimates, we use a quasi maximum likelihood estimation (QMLE) procedure as described in Appendix

C.1.3. Daily VaR estimates with GARCH skewed Student t is obtained by (Christoffersen, 2011):

V aRpt+1 = σt+1F
−1
skew(p; υ, ξ) (25)

where F−1
skew(p; υ, ξ) is the pth quantile of the skewed Student t distribution which is given by:

F−1
skew(p; υ, ξ) =


1
B

[
(1− ξ)t̃−1

p
1−ξ

(υ)−A
]
, if p < 1−ξ

2

1
B

[
(1 + ξ)t̃−1

p+ξ
1+ξ

(υ)−A
]
, if p ≥ 1−ξ

2

(26)

As before, t̃−1
p (υ) is the pth quantile of the standardized Student t distribution. The rest of the notation

is defined as follows:

A = 4ξC
υ − 2

υ − 1
, B =

√
1 + 3ξ2 −A2, C =

Γ(υ+1
2 )

Γ(υ2 )
√
π(υ − 2)

(27)

where Γ(∗) is the Gamma function, and we require υ > 2 and −1 < ξ < 1. Daily ES is given by the

following expression (Christoffersen, 2011):

ESpt+1 = σt+1ESskew(p) (28)
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ESskew(p) =



C(1− ξ)2

Bp

[[
1 +

1

υ − 2

(BF−1
skew(p; υ, ξ) +A

1− ξ

)2
] 1−υ

2 υ − 2

1− υ

]

−AC(1− ξ)
Bp

√
π(υ − 2)Γ(υ2 )

Γ(υ+1
2 )

t̃υ

(BF−1
skew(p; υ, ξ) +A

1− ξ

)
, if F−1

skew(p; υ, ξ) < −A
B

−C(1 + ξ)2

Bp

[[
1 +

1

υ − 2

(BF−1
skew(p; υ, ξ) +A

1 + ξ

)2
] 1−υ

2 υ − 2

1− υ

]

−AC(1 + ξ)

Bp

√
π(υ − 2)Γ(υ2 )

Γ(υ+1
2 )

[
1− t̃υ

(BF−1
skew(p; υ, ξ) +A

1 + ξ

)]
, if F−1

skew(p; υ, ξ) ≥ −A
B
(29)

where t̃υ(∗) is the cumulative distribution function of the standardized Student t distribution and the rest

of the notation is as defined earlier. As opposed to for the normal distribution and symmetric Student

t distribution, VaR and ES estimates for the same coverage rate p can be different for long and short

positions with skewed Student t distribution. We note that there exist other similar skewed Student

t densities, such as the one introduced by Fernández and Steel (1998) and developed by Lambert and

Laurent (2001).

5.2.5 GARCH: Extreme value theory

In this study, we aim to investigate tail risk in German-Nordic electricity futures spreads. To properly

examine this topic, we need to model the extreme tails of the of the conditional distribution of daily P&L

of the spread. In order to do this, we use methods from EVT, which relates to a class of distributions

that are derived from considering the extreme values in a sample (Alexander, 2008b). Applications of

EVT in financial risk management is discussed by among others McNeil (1999).

Before applying EVT, we must remove variance dynamics. We rewrite (7) and define standardized daily

P&L as below:

zt =
P&Lt
σt

(30)

where zt+1 ∼ i.i.d. D(0, 1). To calculate the conditional volatility σt+1, we use a GARCH(1,1) model

with normal distributed shocks, as given in (10) together with (20). We choose this model because it

captures volatility clustering but it does not accurately describe the tails of the daily P&L distribution.

Hence, this is a reasonable starting point for testing the effects of an EVT-based approach.

After applying the conditional volatility model, we have a complete distribution for zt. However, our

application of EVT is concerned only with the extreme tails of the distribution. We define this to be

the Tu = 50 most extreme observations in the distribution of zt. Furthermore, u is defined to be the

threshold value separating the extreme tail from the rest of the distribution of zt. The choice of Tu = 50,

and its associated u, which according to McNeil and Frey (2000) is the most critical implementation

issue in EVT, is made as an attempt to balance bias and variance. By setting u too large, very few

observations are left in the tail and estimates become noisy. On the contrary, if u is set too small,

the data may not conform sufficiently well to the Generalized Pareto Distribution, which we introduce

shortly. Consequently, this will generate biased estimates (Christoffersen, 2011).

An important result in EVT states that the extreme tails of various distributions can be approximately

described by the Generalized Pareto Distribution (GPD) (Christoffersen, 2011). We employ this result

26



5. UNIVARIATE MODELS

and approximate the distribution of all extreme tail observations y beyond u by:

GPD(y; η, β) =

1− (1 + ηy
β )−

1
η , if η > 0

1− e−
y
β , if η = 0

(31)

with scaling parameter β > 0 and y ≥ u. The tail index parameter η controls the shape of the tail

distribution. The normal distribution has exponential tails and η = 0, while for heavy-tailed distributions

such as Student t, the tail index parameter is positive. A more detailed discussion of the GPD and the

threshold method can be found in McNeil and Frey (2000).

It is possible to use MLE to estimate the GPD. However, our data suggests that the tail index parameter

η is strictly positive given that we have excess kurtosis and it is therefore possible to approximate the

GPD by the Hill estimator (Hill, 1975):

F (y) = 1− cy−
1
η ≈ 1− (1 +

ηy

β
)−

1
η = GPD(y; η, β) (32)

The conditional distribution of observations y beyond the threshold u is given by:

f(y | y > u) =
f(y)

1− F (u))
for y > u (33)

From the definition of F (y) in (32), we can obtain the density function as stated below:

f(y) =
∂F (y)

∂y
=

1

η
cy−

1
η−1 (34)

From this we can construct the likelihood function for all observations yi larger than the threshold u:

L =

Tu∏
i=1

f(yi)

1− F (u)
=

Tu∏
i=1

1

η

cy
− 1
η−1

i

cu−
1
η

for yi > u (35)

The log likelihood function is therefore:

ln(L) =

Tu∑
i=1

(
− ln(η)− (

1

η
+ 1)ln(yi) +

1

η
ln(u)

)
(36)

By taking the derivative with respect to η and setting it equal to zero, we obtain the Hill estimator of

the tail index parameter:

η =
1

Tu

Tu∑
i=1

ln
(yi
u

)
(37)

The c parameter can be estimated by ensuring that the fraction of observations beyond the threshold is

accurately captured by the density as below:

F (u) = 1− cu−
1
η = 1− Tu

T
(38)

where T denotes the total number of observations in the sample. Solving for c and inserting into (32)

gives closed form estimates, requiring no numerical optimization, of the cumulative distribution function

for observations beyond u:

F (y) = 1− cy−
1
η = 1− Tu

T

(y
u

)− 1
η

(39)
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To get quantiles, we compute the inverse cumulative distribution F−1
1−p, which implicitly is defined by:

F (F−1
1−p) = 1− p (40)

This means that there is only a probability of p of getting a standardized daily P&L worse than the

quantile. From (39), we can solve for the quantile. Ultimately, we can construct daily VaR estimates by

combining the EVT methodology with the conditional volatility model in (10) in the following manner:

V aRpt+1 = σt+1F
−1
1−p = σt+1u

[ p

Tu/T

]−η
(41)

Daily ES can be computed using:

ESpt+1 = −σt+1
u

η − 1

[ p

Tu/T

]−η
(42)

See Christoffersen (2011) for the derivation of this result. As opposed to for the other methods used

to obtain VaR and ES estimates, where we use confidence levels equal to 95% and 99%, we can only a

confidence level equal to 99% with this EVT methodology. This is due to the choice of Tu = 50, which

implies that we only model the 50 most extreme observations. McNeil and Frey (2000) find that, although

the Hill estimator is generally the most efficient estimator of η, it does not provide the most efficient

nor the most stable quantile estimator. This is a possible weakness compared to the GPD method with

MLE.

5.2.6 Markov switching GARCH: Normal and Student t distributions

The Markov switching GARCH model set forth by Haas (2004) allows for modelling conditional variance

by defining separate variance regimes. The process governing the regimes and the possible states of

the model follows a homogeneous Markov chain. It is thus possible to estimate the dynamics of several

regimes, e.g. by GARCH models, and model the unobserved transitions between them. Volatility in daily

P&L of German-Nordic electricity futures spreads appears to be relatively high in periods of unusual

market events, while it appears to be lower in normal market conditions. This motivates the use of

Markov switching GARCH in our study. By employing this model, we can assess if using two volatility

regimes with transition probabilities of moving from one regime to the next can enable more accurate

VaR and ES estimation. A general Markov switching GARCH specification in the context of our study

can be expressed as:

εt | st = k, It−1 ∼ N(0, σ2
t,k) (43)

εt | st = k, It−1 ∼ t(0, σ2
t,k, υ) (44)

where (43) is used with a normal distribution assumption and (44) is used with a Student t distribution

assumption. The information set up to t − 1 is denoted by It−1, whereas the integer state variable

st indicates the current regime. We use a Markov switching GARCH model with 2 regimes and so

st is defined on {1, 2}, and evolves according to a first-order ergodic homogeneous Markov chain. The

transition probability matrix of the Markov process is P with dimensions 2×2 and elements pi,j = P [st =

j | st−1 = i]. Similar to Haas (2004), we assume that the conditional variance follows a GARCH(1,1)

model. We rewrite (10) and define the conditional variance process for each regime k:

σ2
t+1,k = ωk + αkε

2
t + βkσ

2
t,k (45)
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The parameters are calculated through an MLE procedure which also estimates the transition probability

matrix P . In the case of the Student t distribution, the degrees of freedom parameter υ is also estimated

in the MLE. Like Sampid, Hasim, and Dai (2018) and Cifter (2013), we hold υ fixed across the two

regimes. See Appendix C.2 for an explanation of the MLE procedure. By matrix notation we estimate

the following parameters:

ω =

[
ω1

ω2

]
, α =

[
α1

α2

]
, β =

[
β1 0

0 β2

]
, P =

[
π1,1 π1,2

π2,1 π2,2

]
(46)

in addition to υ in the case of the Student t distribution. The rows in the transition probability matrix

P sums to 1, and the long-term probability of being in state k, denoted by Πk, can be calculated by

solving the following system of equations:

[
Π1 Π2

] [π1,1 π1,2

π2,1 π2,2

]
=
[
Π1 Π2

]
(47)

where

Π1 + Π2 = 1 (48)

The conditional probability function of εt+1 is a mixture of 2 regime-dependent distributions, and relies

on the parameters obtained from the MLE, Ψ̂. Let the conditional density of εt+1 in state st+1 = k be

denoted by fD(εt+1 | st+1 = k, Ψ̂, It). A discrete representation of the density integral, resulting in the

probability density function of εt+1, can be expressed as:

f(εt+1 | Ψ̂, It) =

2∑
i=1

2∑
j=1

πi,jηi,tfD(εt+1 | st+1 = j, Ψ̂, It) (49)

where ηi,t refers to the filtered probability of state i at time t, and πi,j is the transition probability of

moving from state i to state j. The filtered probabilities can be written as:

ηi,t = P [st = i | Ψ, It] (50)

The filtered probabilities are obtained via the Hamilton filter. See Hamilton (1989) and Hamilton (1994)

for details. The cumulative density function is obtained as follows:

F (εt+1 | Ψ̂, It) =

∫ εt+1

−∞
f(τ | Ψ̂, It)dτ (51)

VaR and ES estimates are obtained by numerically inverting the cumulative density function in (51), see

Ardia, Bluteau, Boudt, and Catania (2018) and Blasques, Koopman,  Lasak, and Lucas (2016).

5.2.7 Volatility-adjusted quantile regression

The concept and theory of quantile regression was first developed by Koenker and Bassett Jr (1978).

Applications of linear and non-linear regression quantile techniques in VaR estimation is covered by

Taylor (1999) and Engle and Manganelli (2004). We use volatility-adjusted quantile regression based on

RiskMetrics volatility, similarly as Steen et al. (2015). If P&Lt is the dependent variable and σt is the

independent variable, then the simple linear quantile regression model can be specified as:

P&Lpt = βp0 + βp1σt + εpt (52)
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where the distribution of the error term εp is left unspecified. The conditional pth quantile, with p ∈ (0, 1),

is found by solving an optimization problem:

min
β0,β1

T∑
t=1

(
p− 1P&Lt≤β0+β1σt

)(
P&Lt − (β0 + β1σt)

)
(53)

where

1P&Lt≤β0+β1σt =

1, if P&Lt ≤ β0 + β1σt

0, if P&Lt > β0 + β1σt
(54)

and T is the number of observations in the sample. This means that we minimize the sum of all weighted

residuals for a given quantile p to obtain the quantile regression coefficients β̂p0 and β̂p1 . The least absolute

error (the conditional mean) is a special case, but the quantile regression method explicitly allows for

modelling of all quantiles of the dependent variable (Steen et al., 2015). As VaR, in our framework, is

a particular conditional quantile of daily P&L of the spread, we can express the conditional quantile

function as:

V̂ aR
p

t+1 | σt+1 = β̂p0 + β̂p1σt+1 + εpt+1 | σt+1 (55)

No distributional assumptions are required, and the technique is especially useful in stress testing and

scenario analysis. However, this application of quantile regression provides only a model for quantiles,

and it is not clear how to calculate the corresponding ES (Taylor, 2008a). Consequently, we only use

volatility-adjusted quantile regression to estimate VaR and not to estimate ES.
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6 Bivariate models

6.1 Portfolio variance and conditional correlation models

In this section, we extend the univariate analysis and present bivariate models to estimate long and

short VaR and ES. In the univariate analysis, we considered a single position, either long or short, in

the spread itself. We will now switch focus and consider a portfolio consisting of positions in both legs

of the spread. The P&L on the portfolio on day t+ 1 is defined as:

P&LPF,t+1 = wGERP&LGER,t+1 + wNORP&LNOR,t+1 (56)

where P&LGER,t+1 denotes the daily P&L on the German futures contract defined in (3) and P&LNOR,t+1

denotes the daily P&L on the Nordic futures contract defined in (4). wGER and wNOR refer to the port-

folio weights in the German and Nordic leg of the spread, respectively. Throughout the rest of the study,

we will only consider two portfolios - one long portfolio and one short portfolio. The two portfolios are

defined by weights in the following way:

wGER = 1, wNOR = −1, if long portfolio

wGER = −1, wNOR = 1, if short portfolio
(57)

That is, we consider equal weights with opposite signs in the two legs of the spread. We emphasize

that the weights are not time-varying, meaning that they are considered to be constant over the entire

data period. We choose the portfolio weights for a long and short portfolio in this particular way in

order to enable backtesting of VaR and ES estimates from both univariate and bivariate models using

the same spread time series. The reason why we can backtest using the same realized spread data,

is because weights defined as in (57) lead to P&LPF,t+1 = P&Lt+1 for a long portfolio, as well as

P&LPF,t+1 = −P&Lt+1 for a short portfolio. As before, P&Lt+1 is defined as the daily P&L of the

spread when considering the spread as a univariate time series. In other words, by defining these specific

weights, daily P&L on the (long/short) portfolio considered in bivariate models will be equal to (+/−)

daily P&L of the spread considered in univariate models.

Portfolio variance is given by the following equation:

σ2
PF,t+1 = w2

GERσ
2
GER,t+1 + w2

NORσ
2
NOR,t+1 + 2wGERwNORσGER−NOR,t+1 (58)

where σGER−NOR,t+1 is the covariance of daily P&L on the German contract and daily P&L on the

Nordic contract. Using matrix notation, the portfolio variance can be equivalently defined as:

σ2
PF,t+1 = w

′
Σt+1w (59)

where w is the 2×1 vector of portfolio weights and Σt+1 is the 2×2 conditional covariance matrix. There

exists an extensive selection of multivariate GARCH models that can be used to model the dynamics of

the conditional covariance matrix. See Bauwens et al. (2006) and Silvennoinen and Teräsvirta (2009) for

surveys of multivariate GARCH models and their application in finance. We will assess the dynamics

using models based on the decomposition of the conditional covariance into conditional volatilities and

correlations. This can be written in matrix notation in the following way:

Σt+1 = Dt+1Υt+1Dt+1 (60)
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where Dt+1 is a 2×2 diagonal matrix of GARCH(1,1) volatilities as stated in (10) and Υt+1 is the 2×2

conditional correlation matrix which is symmetric positive definite with elements ρGER−NOR,t+1 on the

off-diagonal and 1 on the diagonal. ρGER−NOR,t+1 =
σGER−NOR,t+1

σGER,t+1σNOR,t+1
is the correlation of daily P&L

on the German contract and daily P&L on the Nordic contract.

In the following sections, we will introduce different specifications of the conditional correlation matrix

Υt. By modelling correlation, we can assess if time-variation in covariance arises solely from time-

variation in the volatilities of the two legs or if correlation has its own dynamic pattern (Christoffersen,

2011). The use of correlation models in our study is motivated by findings in the data analysis suggesting

that correlation is time-varying.

6.1.1 CCC

The constant conditional correlation (CCC) model of Bollerslev (1990) assumes that the covariance

matrix at time t+ 1 is described by:

Σt+1 = Dt+1ΥDt+1 (61)

where Υ is a correlation matrix which is not time-varying. The constant correlation can be specified in

different ways in the CCC model, but we apply the unconditional correlation given by:

ρGER−NOR =
1

T

T∑
t=1

zGER,tzNOR,t (62)

where zGER,t and zNOR,t denote standardized daily P&L of German and Nordic futures contracts on day

t, respectively, as defined in (7). As the correlation is constant, the CCC model requires no estimation

beyond the estimation of the two univariate GARCH(1,1) models to obtain zGER,t and zNOR,t.

6.1.2 DCC-EWMA

The assumption of constant conditional correlation can be unrealistic in many empirical applications.

Engle (2002), Engle and Sheppard (2001) and Tse and Tsui (2002) extend the conditional correlation

model and develop dynamic conditional correlation (DCC) models. DCC models assume that the con-

ditional correlation matrix is time-dependent and described by:

Υt+1 = diag(Q
−1/2
t+1 )Qt+1diag(Q

−1/2
t+1 ) (63)

where diag(Qt+1) is the diagonal matrix that is formed from the diagonal elements of the positive definite

matrix Qt+1. In the DCC-EWMA model described by Engle (2002), Qt+1 follows the process stated

below:

Qt+1 = (1− λ)(ztz
′

t) + λQt (64)

where λ is the exponential smoothing parameter and zt+1 is the 2× 1 vector of standardized daily P&L.

Normally, this model requires estimation of λ but we choose to set λ = 0.94 as in the RiskMetrics model

for conditional variance. This simplification is done to enable a parsimonious correlation model with the

advantage of no parameter estimation beyond estimation of the two univariate GARCH(1,1) models to

obtain zt+1.
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6.1.3 DCC-GARCH

Engle (2002) also proposes a DCC-GARCH model which, as opposed to DCC-EWMA, exhibits mean-

reverting correlation. The conditional correlation matrix is still given by (63) whereas Qt+1 evolves

according to:

Qt+1 = (1− α− β)Q̄+ αztz
′

t + βQt (65)

where Q̄ is the 2 × 2 unconditional correlation matrix of zt, and α and β are non-negative scalar

parameters. This model is stationary as long as α+β < 1, and if the sum is equal to 1 then this reduces

to the DCC-EWMA model in (64). The DCC-GARCH model captures correlation clustering, and is

estimated using a two-step procedure explained in Appendix D.1 based on a multivariate distributional

assumption.

6.1.4 Asymmetric DCC-GARCH

In the DCC-EWMA and DCC-GARCH models, correlation response to market shocks is symmetric.

Cappiello, Engle, and Sheppard (2006) generalize the DCC model to incorporate both asymmetric

correlation response and mean-reversion in correlation. In the asymmetric DCC-GARCH model, the

conditional correlation matrix is given by (63) and Qt+1 is described by:

Qt+1 = (1− α− β)Q̄+ α(ztz
′

t) + βQt + γ(ηtη
′

t − Γ̄) (66)

where ηi,t is defined by the negative part of zi,t in the following way for i ∈ {GER,NOR}:

ηi,t =

zi,t, if zi,t < 0

0, if zi,t ≥ 0
(67)

Also, Γ̄ = E(ηtη
′

t). We note that γ is the asymmetric effect parameter, and if γ is positive then the

correlation will increase more when zGER,t and zNOR,t are negative than in any other case. On the other

hand, if γ is negative, correlation will decrease more when zGER,t and zNOR,t are negative. The model

is motivated by the phenomenon often observed for risky assets, where correlation may increase more in

down markets compared to up markets (Christoffersen, 2011). The model is stationary if α+β+κγ < 1,

where κ is the maximum eigenvalue of Q̄−1/2Γ̄Q̄−1/2. The asymmetric DCC-GARCH model is, like its

symmetric equivalent, estimated using a two-step procedure explained in Appendix D.1.

An important feature of the DCC models described here is that Qt+1 is positive semidefinite as it is a

weighted average of positive semidefinite and positive definite matrices. This will consequently ensure

that the correlation matrix Υt+1 and covariance matrix Σt+1 is positive semidefinite, meaning that

σ2
PF,t+1 = w

′
Σt+1w ≥ 0 regardless of portfolio weights.
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6.2 Portfolio Value-at-Risk and Expected Shortfall models

6.2.1 CCC and DCC: Bivariate normal distribution

If we assume that the daily P&L of German and Nordic futures contracts are bivariate normal distributed,

the model can be specified as follows:

εt | It−1 ∼ N(0,Σt = DtΥtDt) (68)

where εt is the 2× 1 vector of market shocks and as before It−1 denotes the information set containing

all relevant information up to time t − 1. Dt consists of GARCH(1,1) volatilities from (10) and Υt

is described by one of the correlation models already introduced. We report results from CCC, DCC-

EWMA, DCC-GARCH and asymmetric DCC-GARCH assuming bivariate normal distribution.

The multivariate normal distribution has the property that a linear combination of multivariate normal

variables is also normally distributed. The long and short portfolio we consider are linear combinations

of daily P&L of German and Nordic futures contracts, and thus the day-ahead VaR and ES can be

estimated by the following expressions:

V aRpt+1 = σPF,t+1Φ−1
1−p (69)

ESpt+1 = σPF,t+1

φ(Φ−1
1−p)

p
(70)

where the portfolio volatility is defined by (59). See Appendix D.1.1 for the two-step estimation procedure

with bivariate normal distribution.

6.2.2 CCC and DCC: Bivariate Student t distribution

In many applications, the multivariate normal distribution fails to adequately capture the true multi-

variate risk. This motivates the use of the multivariate Student t distribution. A bivariate Student t

distribution model with υ degrees of freedom can in our case be specified in the following manner:

εt | It−1 ∼ t(0,Σt = DtΥtDt, υ) (71)

where Dt still consists of GARCH(1,1) volatilities from (10), and Υt is modelled by a conditional

correlation model. We report results from CCC, DCC-GARCH and asymmetric DCC-GARCH with a

distributional assumption of multivariate Student t. See Appendix D.1.2 for explanation of the two-step

estimation procedure with bivariate Student t distribution.

As a portfolio of multivariate Student t distributed variables does not itself follow the Student t distri-

bution in general, we need to use Monte Carlo simulation to estimate portfolio day-ahead VaR and ES.

The following representation can be applied to simulate standardized multivariate Student t variables

(Demarta & McNeil, 2005):

z =

√
υ − 2

υ

√
WU (72)

where W is a univariate inverse gamma random variable defined by W ∼ IG(υ2 ,
υ
2 ), U is a vector of

multivariate standard normal variables described by U ∼ N(0,Υt), and U and W are independent. The

simulated vector z is standardized multivariate Student t distributed with zero mean, variance equal to
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one and correlation matrix Υt.

In the next step, we simulate day-ahead P&L on the portfolio as P&LjPF,t+1 = zjσPF,t+1 for j = 1, . . . , j∗

simulations. From this, V aRpt+1 is computed as the pth quantile of P&LjPF,t+1 over the j∗ simulations.

Finally, we calculate ESpt+1 = 1
pj∗

j∗∑
j=1

P&LjPF,t+1 · 1(P&LjPF,t+1 < V aRpt+1) for a long portfolio and

ESpt+1 = 1
pj∗

j∗∑
j=1

P&LjPF,t+1 · 1(P&LjPF,t+1 > V aRpt+1) for a short portfolio, where 1(∗) takes the value

1 if the argument is true and 0 otherwise. Like Bauwens and Laurent (2005), we use j∗ = 10, 000 Monte

Carlo simulations.

6.2.3 Volatility and correlation-adjusted quantile regression

In this section, we present a model which, to the best of our knowledge, has not been proposed in the

existing literature with this specific formulation. We will refer to the model as volatility and correlation-

adjusted quantile regression. As the name suggests, the concept is similar the volatility-adjusted quantile

regression, which was introduced in Section 5.2.7. We note that this is a univariate model, as opposed

to the other models in Section 6. Nevertheless, we choose to include the model in this part of the study

as one of the independent variables is based on a conditional correlation model.

In volatility and correlation-adjusted quantile regression, we assume that P&Lt is the dependent variable

and that σGER,t, σNOR,t and ρGER−NOR,t are the three explanatory variables. σGER,t and σNOR,t are

based on RiskMetrics volatility as stated in (9), whereas ρGER−NOR,t comes from the DCC-EWMA

model summarized by (63) and (64). This leads to the following linear quantile regression model:

P&Lpt = βp0 + βp1σGER,t + βp2σNOR,t + βp3ρGER−NOR,t + εpt (73)

where the distribution of the error term εp is left unspecified. The conditional pth quantile, with p ∈ (0, 1),

is found by solving an optimization problem:

min
β0,β1,β2,β3

T∑
t=1

(
p− 1P&Lt≤β0+β1σGER,t+β2σNOR,t+β3ρGER−NOR,t

)(
P&Lt−

(β0 + β1σGER,t + β2σNOR,t + β3ρGER−NOR,t)
) (74)

where

1P&Lt≤β0+β1σGER,t+β2σNOR,t+β3ρGER−NOR,t =1, if P&Lt ≤ β0 + β1σGER,t + β2σNOR,t + β3ρGER−NOR,t

0, if P&Lt > β0 + β1σGER,t + β2σNOR,t + β3ρGER−NOR,t

(75)

and T is the number of observations in the sample. That is, we obtain the quantile regression coefficients

β̂p0 , β̂p1 , β̂p2 and β̂p3 by minimizing the sum of all weighted residuals for a given quantile p. Similar as in

(55), VaR can be expressed as the following conditional quantile function:

V̂ aR
p

t+1 | σGER,t+1, σNOR,t+1, ρGER−NOR,t+1 =

β̂p0 + β̂p1σGER,t+1 + β̂p2σNOR,t+1 + β̂p3ρGER−NOR,t+1 + εpt+1 | σGER,t+1, σNOR,t+1, ρGER−NOR,t+1

(76)

We only use volatility and correlation-adjusted quantile regression to estimate VaR and not to estimate
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ES.

The model has an intuitive interpretation in the sense that it assumes that daily P&L of the spread

is described by the volatility of both legs of the spread in addition to the correlation. Furthermore,

we argue that the simplicity of quantile regression is preserved by using relatively simple volatility

and correlation models. However, we note that the model implicitly assumes that there exists a linear

relationship between P&Lt and ρGER−NOR,t. Even if we accept that there may exist a linear relationship

between daily P&L and volatility, it is arguably more difficult to justify the same for correlation. A

possible extension of the model could include a non-linear relationship between P&Lt and ρGER−NOR,t.

Nevertheless, we have chosen the formulation described above for purposes of simplicity.
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7 Backtesting Value-at-Risk and Expected Shortfall

Backtesting refers to testing the accuracy of a VaR or ES model over a historical period when the true

outcome is known. We use the standard approach for backtesting, which in our study involves recording

the number of occasions over the period under consideration where the actual daily P&L of the spread

exceeds the model VaR or ES, and compare this number to the prespecified levels.

According to Christoffersen (2011), a proper VaR model should satisfy two conditions: (I) the number

of exceedances should be as close as possible to the number implied by the VaR quantile and (II) the

exceedances should be randomly distributed across the sample, meaning that we observe no clustering

of exceedances. In other words, we want to avoid that the model overestimates or underestimates the

number of exceedances in certain periods. To test the first condition, we use the unconditional test of

Kupiec (1995), and to test both conditions, we employ the conditional coverage test of Christoffersen

(1998). In addition to this, Engle and Manganelli (2004) argue that in each period, the probability of

exceeding the VaR should be independent of all past information, including the VaR estimate as well as

previous exceedances. To test this, we employ the dynamic quantile test. In summary, this gives three

different tests that we use to assess the accuracy and appropriateness of the VaR models.

7.1 Unconditional coverage test

The Kupiec (1995) test is a likelihood ratio test designed to reveal whether a VaR model provides the

desirable unconditional coverage. An indicator sequence is defined as follows:

Hp
t =

1, if Xt > V aRpt

0, if Xt ≤ V aRpt
(77)

where Xt is the loss function defined in (16). The indicator sequence implies that if the loss is greater

than the VaR estimate on a given day, we count an exceedance. Under the null hypothesis that the

number of exceedances is equal to the prespecified VaR, the test statistic is (Kupiec, 1995):

− 2ln(LRUC) = −2
[
n0ln(1− πexp) + n1ln(πexp)− n0ln(1− πobs)− n1ln(πobs)

]
(78)

where n1 and n0 is the number of exceedances and non-exceedances, respectively. πexp = p is the

expected proportion of exceedances, while πobs = n1

n0+n1
represents the observed fraction of exceedances.

The asymptotic distribution of −2ln(LRUC) is χ2 distributed with one degree of freedom.

7.2 Conditional coverage test

The unconditional test does not take into account whether several violations occur in rapid succession

or if they tend to be isolated. Christoffersen (1998) extended the Kupiec test and proposed a joint test

for correct coverage and for detection of whether a quantile exceedance today has implications for the

probability of a quantile exceedance tomorrow. Under the null hypothesis that the number of violations

is equal to the prespecified VaR and the violations are randomly distributed, the test statistic is:

−2ln(LRCC) = −2
[
n0ln(1−πexp)+n1ln(πexp)−n00ln(1−π01)−n01ln(π01)−n10ln(1−π11)−n11ln(π11)

]
(79)
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where nij denotes the number of times an indicator variable with value i is immediately followed by an

indicator variable with value j. Further, π01 = n01

n00+n01
, π11 = n11

n10+n11
and the rest of the notation is as

described for the Kupiec test. The test statistic follows a χ2 distribution with two degrees of freedom.

As a practical matter, one may incur samples where π11 = 0. In this case, the test statistic is stated as

(Christoffersen, 2011):

− 2ln(LRCC) = −2
[
n0ln(1− πexp) + n1ln(πexp)− n00ln(1− π01)− n01ln(π01)

]
(80)

A drawback of the conditional coverage test of Christoffersen is that the test only takes into account one

violation immediately followed by another, ignoring all other patterns of clustering.

7.3 Dynamic quantile test

The dynamic quantile test by Engle and Manganelli (2004) complements the backtesting framework

proposed by Christoffersen (1998). The test defines a hit variable similar to the indicator sequence Hp
t

in the unconditional coverage test as follows:

Hitpt =

1− p, if Xt > V aRpt

−p, if Xt ≤ V aRpt
(81)

where Xt again is the loss function defined in (16). Engle and Manganelli (2004) argue that Hitpt should

be uncorrelated with its own lagged values, any other lagged values of the past information set and

have an expected value of zero. This can be tested by regressing Hitpt on its own lagged values and

other variables which the hit variable should be uncorrelated with in a good VaR model. As Engle and

Manganelli (2004), we choose a lag order of 4 when conducting the dynamic quantile test. We also

include the VaR estimate on day t as well as the squared loss on day t − 1, as these two variables also

should be uncorrelated with the hit variable. This leads to the following regression on day t:

Hitpt = φ0 + φ1Hit
p
t−1 + φ2Hit

p
t−2 + φ3Hit

p
t−3 + φ4Hit

p
t−4 + φ5V aR

p
t + φ6X

2
t−1 (82)

In matrix notation notation, this can be expressed as:

Hitp = Y φ (83)

where Hitp consists of Hitpt for all days t = 1, . . . T , φ is the set of coefficients and Y is the set of

regressors from (82). The null hypothesis of no influence from the regressors is expressed as:

H0 : φ = 0 (84)

Engle and Manganelli (2004) show that the ordinary least squares solution to this regression is given by:

φ̂ = (Y
′
Y )−1Y

′
Hitp ∼ N(0, p(1− p)Y

′
Y ) (85)

They also give the following test statistic:

DQCC =
φ̂Y

′
Y φ̂

p(1− p)
(86)
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The asymptotic distribution of DQCC is χ2 distributed with q degrees of freedom. The degrees of freedom

is equal to the number of coefficients that are estimated during the regression, which in our application

gives q = 7.

7.4 Backtesting Expected Shortfall

McNeil and Frey (2000) propose a test for ES which considers the difference between realized losses

and ES estimates given that the loss is greater than the VaR estimate, called standardized exceedance

residuals. The test is based on the assumption that, if the estimated process dynamics are correct and

ES is an unbiased estimate of the expectation in the tail beyond the VaR, the standardized exceedance

residuals should behave as a sample from an i.i.d. zero mean process. By bootstrapping, one can assess

whether the mean of the residuals is statistically different from zero. The bootstrapping procedure is

defined and described in Appendix E. As McNeil and Frey (2000), we obtain the standardized exceedance

residuals ẑt by:

ẑt+1 =

{
Xt+1 − ESpt+1

σt+1
| Xt+1 > V aRpt+1

}
(87)

where Xt+1 is the loss function as defined in (16). The test results in p-values for a one-sided bootstrap

test of the null hypothesis that the standardized exceedance residuals have mean equal to zero against

the alternative hypothesis that the mean is greater than zero. As McNeil and Frey (2000), the null

hypothesis and alternative hypothesis are expressed as follows:

H0 : µẑ = 0, H1 : µẑ > 0 (88)

where µẑ is the mean of the standardized exceedance residuals. The argument for using a one-sided test is

that for risk management purposes, it is more critical to underestimate risk rather than to overestimate

risk. If µẑ is positive, then the ES estimates are too low on average. The test could be altered by

considering H1 : µẑ 6= 0, but it would then not be possible to infer whether risk is overestimated

or underestimated. Another approach is suggested by Taylor (2008b), who propose standardizing the

exceedance residuals by the VaR estimate instead of the conditional volatility. However, this method

increases the dependence on proper VaR models and may give false indications on the suitability and

performance of the ES model (Embrechts, Kaufmann, & Patie, 2005).

An apparent drawback of the framework offered by McNeil and Frey (2000), is that it relies explicitly

on the VaR estimates. If the conditional volatility model is incorrectly specified, or the underlying

distributional assumption is wrong, the results from the ES test could be misleading. Another matter

of concern is the size of the sample, as we only use observations corresponding to exceedances. If the

sample size is small, we would expect few exceedances. This will in turn result in few data points to use

during the bootstrap, which could potentially lead to less reliable results.

We choose to only use the one-sided test of McNeil and Frey (2000) to backtest ES. We are primarily

concerned with underestimation of risk and consider this to be a more appropriate ES backtesting

methodology for the purposes of our study compared to the two-sided version of the test and the approach

suggested by Taylor (2008b). Furthermore, we regard three test for VaR and one for ES to be a sufficient

number of criteria to assess the accuracy of our selection of models.
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8 Results

In order to evaluate the predictive ability of our selection of univariate and bivariate models, we create

day-ahead forecasts of VaR and ES. We define the out-of-sample window to be 1000 data points, which

implies an in-sample window, or estimation sample, of 1264 observations for the front-quarter spread

and 1288 observations for the front-year spread. This can be illustrated as:

Front-quarter: P&L1, P&L2, P&L3, ..., P&L1264=T∗︸ ︷︷ ︸
In-sample window

, P&L1265=T∗+1, P&L1266, ..., P&L2264=T︸ ︷︷ ︸
Out-of-sample window

Front-year: P&L1, P&L2, P&L3, ..., P&L1288=T∗︸ ︷︷ ︸
In-sample window

, P&L1289=T∗+1, P&L1266, ..., P&L2288=T︸ ︷︷ ︸
Out-of-sample window

The final dates of the in-sample window corresponds to February 2015. We set the out-of-sample window

equal to 1000 data points to balance two considerations. Firstly, we need an estimation sample sufficiently

large to enable good parameter estimates which in turn can facilitate predictive ability. Secondly, we

need a sufficiently large number of expected VaR exceedances at the 95% and 99% confidence levels so

that forecasting performance can be investigated through backtesting of VaR and ES estimates. Our

selected out-of-sample window implies that we expect 50 VaR violations at the 95% confidence level and

10 VaR violations at the 99% confidence level.

We predict VaR and ES using two different approaches. (I) In the first approach, we estimate model

parameters from the in-sample window and create 1000 rolling forecasts without any reestimation of

model parameters. That is, we fix the model parameters from the initial estimation, and compute day-

ahead forecast V aRpT∗+1 as well as ESpT∗+1. Then the models observe P&LT∗+1, and compute new

day-ahead forecast V aRpT∗+2 as well as ESpT∗+2. This procedure is repeated, without any reestimation,

until we have 1000 day-ahead VaR and ES predictions. (II) In the second approach, we also start by

estimating model parameters based on the in-sample window. The remaining procedure is however

different from the first approach, as we include reestimation every 20th day using a moving window

of T ∗ data points. This implies that we first create 20 rolling forecasts from the initial estimation,

before we reestimate all model parameters based on a moving estimation sample, including the most

recent 20 realized daily P&L and excluding the 20 first data points in the in-sample window. This is

repeated until we have 1000 day-ahead VaR and ES predictions. In summary, this gives 49 refits beyond

the initial estimation. An alternative procedure could include reestimation every day, but this would

be very computationally intensive. Bauwens et al. (2006) find that the results in VaR estimation are

qualitatively the same when updating model parameters every 5, 10 and 50 observations. Through testing

with different refit horizons on our data, we observe that we achieve better backtesting performance by

refitting every 20th day compared to every 50th day, but backtesting results are not significantly improved

by reestimating even more frequently. We also observe better backtesting performance by using a moving

window compared to an expanding window including all past data points. The only exceptions are the

Markov switching GARCH models. Therefore, in the reported results, Markov switching GARCH models

are reestimated with expanding window including all past observations, whereas the other models are

reestimated using a moving estimation window.

The main advantage of approach (I) is that it entails less computational effort, given that all models

are estimated only once. However, if the characteristics of the out-of-sample data differ from those of

the in-sample data, we would expect this procedure to yield inadequate predictive accuracy. From the

data analysis, we observe significant variation in excess kurtosis, skewness, empirical quantiles and mean
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conditional on quantile exceedances in different periods across the total data sample. Consequently, it is

reasonable to assume that VaR and ES forecasting without any estimation beyond the initial fit will be

challenging for the models. On the contrary, approach (II) involves much greater computational effort

but the resulting out-of-sample forecasts can gain accuracy.

We will proceed by first analyzing estimation results based on the in-sample window in Section 8.1. Then

we present backtesting results in Section 8.2, before we summarize and discuss results in Section 8.3.

Finally, we provide additional details on how to interpret the VaR and ES forecasts in Section 8.4.

8.1 Estimation results

8.1.1 Univariate GARCH models

Table 7: Estimation results for univariate GARCH models, front-quarter

Model ω α β υ ξ γ

GARCH(1,1)-n 0.006 (2.34) 0.088 (5.00) 0.903 (48.47) - - -

GARCH(1,1)-t 0.007 (2.14) 0.084 (4.30) 0.905 (43.16) 10.999 (3.65) - -

GARCH(1,1)-skew-t∗ 0.006 (2.34) 0.088 (5.00) 0.903 (48.47) 10.992 (3.85) 0.043 (1.08) -

GJR(1,1)-n 0.005 (1.92) 0.034 (1.96) 0.922 (47.62) - - 0.073 (3.72)

GJR(1,1)-t 0.005 (1.74) 0.035 (1.78) 0.920 (40.30) 12.055 (3.34) - 0.071 (3.09)

GJR(1,1)-skew-t∗ 0.005 (1.92) 0.034 (1.96) 0.922 (47.62) 12.020 (3.51) 0.043 (1.07) 0.073 (3.72)

MSGARCH(1,1)-n

Regime 1 0.000 (0.39) 0.026 (0.02) 0.974 (16537.51) - - -

Regime 2 0.038 (2.18) 0.135 (1.59) 0.839 (46.77) - - -

MSGARCH(1,1)-t

Regime 1 0.001 (1.83) 0.006 (1.57) 0.989 (191.10) 13.158 (3.00) - -

Regime 2 0.039 (1.92) 0.128 (3.20) 0.845 (21.20) 13.158 (3.00) - -

t-statistics are shown in parentheses. The critical value is approximately 1.96 at the 5% significance level. * denotes that
the model is estimated using QMLE.

Table 8: Estimation results for univariate GARCH models, front-year

Model ω α β υ ξ γ

GARCH(1,1)n 0.002 (2.00) 0.097 (3.82) 0.890 (30.35) - - -

GARCH(1,1)-t 0.002 (2.16) 0.093 (4.12) 0.892 (34.83) 10.931 (3.84) - -

GARCH(1,1)-skew-t∗ 0.002 (2.00) 0.097 (3.82) 0.890 (30.35) 10.888 (4.03) -0.036 (0.88) -

GJR(1,1)-n 0.002 (1.58) 0.081 (2.43) 0.897 (25.46) - - 0.018 (0.85)

GJR(1,1)-t 0.002 (2.09) 0.091 (3.13) 0.893 (33.82) 10.945 (3.83) - 0.002 (0.09)

GJR(1,1)-skew-t∗ 0.002 (1.58) 0.081 (2.43) 0.897 (25.46) 10.981 (3.97) -0.036 (0.88) 0.018 (0.85)

MSGARCH(1,1)-n

Regime 1 0.004 (1.11) 0.018 (0.51) 0.910 (14.16) - - -

Regime 2 0.030 (2.80) 0.159 (1.96) 0.729 (16.27) - - -

MSGARCH(1,1)-t

Regime 1 0.004 (1.71) 0.048 (2.19) 0.891 (18.10) 17.98 (2.23) - -

Regime 2 0.031 (2.48) 0.159 (3.23) 0.728 (9.50) 17.98 (2.23) - -

t-statistics are shown in parentheses. The critical value is approximately 1.96 at the 5% significance level. * denotes
that the model is estimated using QMLE.

Table 7 shows front-quarter estimation results for GARCH and GJR-GARCH models assuming normal,

Student t and skewed Student t distributions of market shocks, as well as estimation results for Markov

switching GARCH with normal and Student t distributions. Table 8 presents the corresponding results
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for front-year daily P&L. In the following discussion of the significance of parameters, we base our

conclusions on a significance level of 5%. This means that if a parameter has a t-statistic which, in

absolute value, is greater than the critical value from the Student t distribution with (T ∗− 1) degrees of

freedom at the 5% significance level in a two-tailed test, we argue that this parameter is significant.

The estimation results show that ω , α and β are significant for all GARCH(1,1) models. The fact that

the latter two parameters are significant, suggests that there exists conditional heteroscedasticity effects,

meaning that volatility in daily P&L is time-varying. Moreover, the degrees of freedom parameter υ

is significant, indicating excess kurtosis. This suggests that the normal distribution is an inaccurate

distributional assumption, and that the Student t distribution offers a better fit for the data. On the

other hand, the skewness parameter ξ is insignificant, implying that we do not obtain a statistically

significant better fit with the skewed Student t distribution compared to the symmetric version. These

conclusions are supported by the QQ-plots, which are given in Appendix F.7 and F.8 due to space

considerations. We use standardized daily P&L from the in-sample period with conditional volatility as

defined in (10). The subfigures (a), (e) and (g) show that the data is not well-described by the normal

distribution. On the contrary, subfigures (b), (f) and (h) show that Student t better captures the data

characteristics. It is not clear that the skewed Student t in (c) offers improved fit compared to the

Student t distribution in (b). These observations are consistent across front-quarter and front-year daily

P&L.

The front-quarter estimation results show that, for the GJR-GARCH(1,1) models, ω and α parameters

are insignificant with the exception of ω with Student t distribution. Furthermore, β is significant, and

the same conclusions that were made concerning υ and ξ for GARCH(1,1) models also hold for GJR-

GARCH(1,1). The asymmetry parameter γ is statistically significant for front-quarter data, implying

that variance responds asymmetrically to positive and negative market shocks of the same magnitude.

We also perform LR tests (see Appendix B.1) from which we conclude that the added parameter in

GJR-GARCH(1,1) relative to GARCH(1,1) is significant. The opposite is the case for front-year data,

where we cannot reject the null hypothesis of an insignificant added γ parameter.

Comparing estimation results for front-quarter and front-year daily P&L, we see that α is higher for the

latter and β is higher for the former. This signals that volatility is slightly more sensitive to market

shocks in the front-year time series, while persistence irrespective of market events is somewhat higher for

the front-quarter equivalent. These effects balance out in a fairly similar rate of convergence of volatility,

α + β. Naturally, as front-quarter contracts are more closely related to the spot price, unconditional

volatility is higher for front-quarter daily P&L according to (11) and (14).

The Markov switching GARCH models estimate parameters for two separate volatility regimes. Both

for front-quarter and front-year data, regime 2 have the highest long-run average variance according to

(11) and can be interpreted as the high-volatility regime. This is largely due to higher ω parameters

in regime 2 compared to regime 1. Moreover, we observe higher α and lower β parameters relative to

regime 1, indicating that volatility is more sensitive to market shocks and less persistent irrespective of

market movements in regime 2. For Markov switching GARCH with Student t distribution, we conclude

that υ is significant, indicating that this is a more precise distributional assumption.

In Table 9, we present the estimated transition probabilities in the Markov switching GARCH models.

The transition probabilities, π11 and π21, indicate very low probabilities of switching regimes on two

consecutive days. We observe that the long-term probability of being in state 1, Π1, is slightly higher

both for front-quarter and front-year data. We note that β and π11 have very high t-statistics as a

consequence of very low standard errors in the estimation. This is consistent with Marcucci (2005) and
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Bauwens, Preminger, and Rombouts (2010), who report comparable standard errors. In Figure 7, we

show the filtered probabilities of state 1 for Markov switching GARCH with normal distribution and

Student t distribution. The low probability of moving from one state to the next on two consecutive

days is clearly visible from the filtered probabilities.

Table 9: Transition probabilities and long-term probabilities for MSGARCH(1,1)

Front-quarter Front-year

Model π11 π21 Π1 Π2 π11 π21 Π1 Π2

MSGARCH(1,1)-n 0.9991 (676.92) 0.0012 (0.90) 0.5726 0.4274 0.9976 (428.40) 0.003 (1.50) 0.5492 0.4508

MSGARCH(1,1)-t 0.9988 (522.02) 0.0017 (0.49) 0.5879 0.4121 0.9992 (1040.10) 0.001 (0.76) 0.5567 0.4433

t-statistics are shown in parentheses. The critical value is approximately 1.96 at the 5% significance level.

(a) Front-quarter (b) Front-year

Figure 7: Filtered probabilities of st = 1, MSGARCH(1,1)-n in red and MSGARCH(1,1)-t in blue

8.1.2 GARCH: Extreme value theory

Table 10: Results for GPD using the Hill estimator

Front-quarter Front-year

Position T Tu u η T Tu u η

Long 1264 50 -1.738 0.249 1288 50 -1.817 0.227

Short 1264 50 1.771 0.242 1288 50 1.723 0.236

Table 10 presents results for the GARCH(1,1)-EVT model for front-quarter and front-year time series.

In the reported results, u denote the 51st most negative observation of P&Lt for a long position and the

51st most positive observation for a short position in the in-sample window, as we consider the Tu = 50

most extreme tail observations. For the front-quarter P&L, the tail index parameter η is larger for a

long position compared to a short position. For the front-year P&L, we observe the opposite. Different

η for long and short positions indicate asymmetry in the tail distributions. QQ-plots for standardized

daily P&L against quantiles from the EVT distribution show that EVT provides more extreme estimates

than the other distributional assumptions. The plots are given in subfigures (d) of Figure 19 and 20 in

Appendix F.7 and F.8, respectively.
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Table 11: Estimation results for volatility-adjusted
quantile regression

Data - quantile (position) β̂p0 β̂p1

Front-quarter - 95% (long) -0.201 (-1.67) -1.344 (-7.41)

Front-quarter - 95% (short) -0.030 (-0.23) 1.736 (7.82)

Front-quarter - 99% (long) -0.396 (-1.38) -1.949 (-3.52)

Front-quarter - 99% (short) -0.044 (-0.10) 2.599 (3.03)

Front-year - 95% (long) -0.070 (-1.06) -1.055 (-6.95)

Front-year - 95% (short) -0.013 (-0.19) 1.618 (6.52)

Front-year - 99% (long) -0.119 (-1.04) -2.199 (-6.14)

Front-year - 99% (short) 0.020 (0.13) 2.547 (4.43)

t-statistics are shown in parentheses. The critical value is
approximately 1.96 at the 5% significance level.

8.1.3 Volatility adjusted quantile regression

Table 11 presents the output from volatility-adjusted quantile regression for front-quarter and front-

year daily P&L. The estimation results show that β̂p1 is significant for all quantiles. The parameter β̂p1
is an indicator of how VaR reacts with respect to changes in the volatility obtained by RiskMetrics.

Naturally, this parameter differs in sign for long and short positions, as VaR is a negative number for

a long position and a positive number for a short position. As expected, the absolute value of β̂p1 is

higher as we investigate the more extreme 99% quantile compared to the 95% quantile. The intercept

parameter β̂p0 is insignificant across all quantiles.

8.1.4 Bivariate models

Table 12 presents estimation results for bivariate models based on front-quarter data, whereas Table

13 shows the same for front-year data. For each of the models, a GARCH(1,1) model is estimated for

both daily P&L on the German contract and daily P&L on the Nordic contract. In addition to this,

a conditional correlation model is estimated. From Table 12, we see that all GARCH(1,1) parameters

are significant. The DCC-GARCH parameters are also significant, with the exception of α for aDCC-

GARCH-t as well as the correlation asymmetry parameter γ in the aDCC models. Statistically significant

α and β parameters in the DCC models indicate that conditional correlation is time-varying. Maximized

log likelihood values are almost identical for symmetric and asymmetric DCC-GARCH models with the

same distributional assumption (see Table 15), and according to the LR test (see Appendix B.1), we

cannot reject the null hypothesis of an insignificant added γ parameter. Thus, we can infer that we do

not obtain a statistically significant better fit by allowing for asymmetric correlation response to market

shocks. The degrees of freedom parameter υ is significant in all of the conditional correlation models

using Student t. This suggests that bivariate Student t is a more accurate distributional assumption

compared to the bivariate normal distribution. From Table 13 with front-year data, we can draw similar

conclusions. The asymmetric correlation parameter γ is insignificant and Student t offers a better fit.

However, we observe that ω is insignificant for most of the GARCH(1,1) models.
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8.1.5 Volatility and correlation-adjusted quantile regression

Table 14: Estimation results for volatility and correlation-adjusted quantile
regression

Data - quantile (position) β̂p0 β̂p1 β̂p2 β̂p3

Front-quarter - 95‘% (long) -0.492 (-2.91) 0.212 (0.74) -1.239 (-6.11) 0.526 (1.65)

Front quarter - 95% (short) 0.243 (1.27) 0.084 (0.19) 1.564 (7.11) -0.654 (-2.28)

Front-quarter - 99% (long) -0.422 (-1.84) -0.337 (-0.37) -1.751 (-2.92) 0.469 (1.96)

Front quarter - 99% (short) -0.079 (-0.18) -0.346 (-0.27) 2.850 (3.10) -0.211 (-0.33)

Front-year - 95% (long) -0.265 (-2.15) -0.092 (-0.20) -1.181 (-3.31) 0.321 (1.66)

Front-year - 95% (short) 0.168 (2.07) 0.197 (0.67) 1.219 (4.36) -0.344 (-2.64)

Front-year - 99% (long) -0.338 (-1.86) 0.289 (0.45) -1.898 (-2.78) 0.240 (0.80)

Front-year - 99% (short) 0.589 (4.68) 1.013 (1.66) 1.330 (1.93) -1.022 (-5.12)

t-statistics are shown in parentheses. The critical value is approximately 1.96 at the 5% signifi-
cance level.

In Table 14, we show the output of the volatility and correlation-adjusted quantile regression model.

In this model, β̂p1 is a measure of how VaR reacts with respect to changes in RiskMetrics volatility of

daily P&L on the German contract, β̂p2 is the same for daily P&L on the Nordic contract, and β̂p3 shows

how VaR is affected by changes in conditional correlation obtained by DCC-EWMA. We observe that

all β̂p1 parameters are insignificant, whereas all β̂p2 parameters are significant with the exception of the

short 99% quantile for front-year data. Furthermore, β̂p2 parameters are a lot higher than β̂p1 parameters,

which may imply that volatility of the Nordic contract is a greater determinant of VaR than volatility of

the German contract. This coincides well with the observation that standard deviation in the daily P&L

of the Nordic contract is higher than standard deviation in the daily P&L of the German contract, see

Table 4. The correlation parameter, β̂p3 , is significant for all short quantiles excluding 99% front-quarter,

but is insignificant for all long quantiles. We also note that short VaR, which is a positive number,

appears to be negatively related to conditional correlation based on this output.

8.1.6 Information criteria

In Table 15, we present AIC and BIC values as well as maximum log likelihood values of the models

which are estimated using MLE. We omit the CCC models and DCC-EWMA as conditional correlation

is not estimated by MLE, even though the models include GARCH(1,1) for each leg of the spread which

indeed is estimated by MLE. The improvements offered by the Student t distribution over the normal

distribution is evident. Furthermore, as already verified by LR tests, the asymmetric DCC-GARCH

models do not offer a significantly better fit compared to their symmetric equivalents. GJR models

show lower AIC and BIC values compared to GARCH models for front-quarter data, and the opposite

holds for front-year data. This was previously verified by examining the significance of the γ parameters.

According to AIC, MSGARCH models and DCC-GARCH-t give the best fit among the univariate models

and bivariate models, respectively. On the other hand, among the univariate models, BIC tells us that

GJR(1,1) offer the best fit on front-quarter data while GARCH(1,1)-t offers the best fit on front-year

data. Among the bivariate models, DCC-GARCH-t gives the lowest statistic. See Appendix B.2 for an

explanation of the AIC and BIC criteria.
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Table 15: Information criteria and maximum log likelihood values

Front-quarter Front-year

Model AIC BIC LL AIC BIC LL

GARCH(1,1)-n 2.106 2.118 -1327.7 0.625 0.637 -399.8

GARCH(1,1)-t 2.092 2.109 -1318.3 0.609 0.625 -388.4

GARCH(1,1)-skew-t∗ - - - - - -

GJR(1,1)-n 2.096 2.113 -1320.8 0.626 0.642 -399.4

GJR(1,1)-t 2.086 2.106 -1313.3 0.611 0.631 -388.4

GJR(1,1)-skew-t∗ - - - - - -

MSGARCH(1,1)-n 2.099 2.132 -1318.9 0.603 0.635 -380.3

MSGARCH(1,1)-t 2.084 2.121 -1308.0 0.599 0.635 -376.7

DCC-GARCH-n 3.139 3.176 -1975.0 1.181 1.217 -751.6

DCC-GARCH-t 3.021 3.070 -1897.3 1.130 1.178 -715.9

aDCC-GARCH-n 3.141 3.182 -1975.0 1.181 1.221 -750.8

aDCC-GARCH-t 3.023 3.076 -1897.3 1.131 1.183 -715.6

Note that log likelihood functions have different distributions. * denotes that the
model is estimated using QMLE. Hence, AIC, BIC and LL values are not directly
comparable to the other models and are therefore omitted.

8.2 Backtesting results

In this section, we assess the predictive ability of our selection of models by analyzing VaR and ES

backtesting results. We only report out-of-sample results, and not in-sample results, as we want to

evaluate the models on the basis of how well they forecast VaR and ES. We use three criteria to evaluate

the VaR forecasts - the unconditional coverage test, the conditional coverage test and the dynamic

quantile test. ES forecasts are evaluated by the ES test of McNeil and Frey (2000). A proper tail risk

model should not be rejected according to any of the four tests. However, we emphasize that correct

unconditional and conditional coverage is regarded as most important, meaning that the number of

exceedances should be as close as possible to the number implied by the VaR quantile and that we

observe no clustering of exceedances. If a model fails on either of these two criteria, the performance on

the dynamic quantile test and the ES test is of less relevance. For both front-quarter and front-year data,

we report results for confidence levels 95% and 99% for long and short positions. Moreover, we show

results using both approach (I) with a fixed estimation window and approach (II) with reestimation. The

tables reporting the results show test statistics along with p-values for the three VaR criteria, as well as

p-values and bootstrapped p-values for the ES test. Bold numbers indicate the highest p-values according

to each criteria, meaning the highest performance on the specific test, for each quantile. Rejection at

the 10%, 5% and 1% significance level is denoted by *, ** and ***, respectively. We stress that several

models have very similar p-values on the different criteria. Hence, there can be marginal differences in

performance between a model which is highlighted in bold and other models. We are interested in the

best overall models, and we will therefore base our analysis on overall backtesting results rather than

specific test statistics at specific quantiles.

We note that GARCH(1,1)-EVT is not included in the 95% confidence level tables as we only model

the 50 most extreme observations. Furthermore, the two quantile regression models are only used to

estimate VaR and not ES, and RiskMetrics is omitted from the forecasting with reestimation tables as

the model cannot be reestimated when λ is fixed to 0.94.
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8.2.1 Front-quarter data

Table 16 shows backtesting results for 95% VaR and ES forecasts obtained using a fixed estimation

window for front-quarter data, whereas Table 17 shows the same for 99% VaR and ES forecasts. At the

95% confidence level, we observe that the conditional correlation models fail to predict the VaR quantile

which results in too few exceedances. The only exception is CCC-t, which interestingly passes all four

backtests both at the long and short quantile. From the actual number of VaR exceedances, it is evident

that the short quantile is more difficult to model than the long quantile. This is an expected result,

as the most extreme daily P&L occurrences in the out-of-sample window are positive values. A visual

inspection of Figure 3a verifies this observation. Moreover, we observe that the GJR models outperform

GARCH models with the same distributional assumption at the 95% confidence level when forecasting

with fixed estimation window. This is consistent with the significance of the asymmetry parameter, γ,

established in the analysis of estimation results for front-quarter data.

From the results reported for the 99% confidence level in Table 17, we see that the models in general

perform better on the three VaR backtests compared to the 95% confidence level. This result may seem

surprising, and indicates that when using forecasting without reestimating, predictive ability is better on

the more extreme 99% long and short quantiles. However, different performance at the two confidence

levels can be explained by studying the empirical quantiles of the daily P&L of the front-quarter spread.

In Table 5, we observe that, for the out-of-sample period, the absolute value of the short 99% quantile

exceeds the long 99% quantile. The opposite is the case for the 95% front-quarter empirical quantiles

in 2018 (see Table 31), where we observe that the absolute value of the long 95% quantile exceeds the

short 95% quantile. In summary, this implies that it is difficult to achieve simultaneous forecasting

accuracy at the 95% and 99% confidence levels, and can consequently serve as a possible explanation

for why the backtesting results differ. Moreover, from the backtesting results in Table 17, we see that

RiskMetrics does not provide the correct unconditional and conditional coverage. This is consistent with

the academic literature, which commonly reports that RiskMetrics fails to predict extreme tail risk. At

the 99% confidence level, we also observe that the DCC models show better performance on the VaR

backtests. They are however largely rejected on the ES test, implying that the mean of the excess VaR

violations is greater than zero. Furthermore, the improvements offered by a Student t distributional

assumption relative to the normal distribution, is evident from the results. GARCH(1,1)-EVT predicts

the exact number of expected exceedances both on the long and short quantile, and interestingly performs

very well on the backtests. Also, as for the 95% confidence level, CCC-t shows good overall performance.

Figure 8 and 9 show the 99% VaR and ES forecasts across the out-of-sample window.

To address the limitations imposed by forecasting approach (I), we consider the alternative estimation

procedure (II) which includes reestimation every 20th day. Table 18 presents backtesting results for 95%

VaR and ES forecasts, while Table 19 shows the same for 99% VaR and ES forecasts. By comparing the

two forecasting approaches, quite mixed results emerge. At the 95% confidence level, we see significant

improvements in forecasting performance across all models when introducing reestimation. On the

contrary, at the 99% confidence level, we observe that forecasting performance is worsened when including

reestimation. These mixed results illustrate the challenges in forecasting the out-of-sample data which

exhibit different data characteristics compared to the in-sample data.

At the 95% confidence level (Table 18), we observe that the Markov switching GARCH models and

DCC models show the worst performance in the model set as they produce too high VaR forecasts

leading to fewer exceedances than expected. Moreover, models assuming Student t or skewed Student

t outperform their normal distribution equivalents. High-performing models include GARCH and GJR
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with symmetric and skewed Student t, as well as volatility-adjusted quantile regression and CCC-t.

At the 99% confidence level (Table 19), MSGARCH models perform well on the VaR backtests. This

indicates that, at this specific confidence level, allowing for two volatility regimes can be beneficial for

forecasting VaR. Nevertheless, these models are rejected on the ES test, implying that the ES forecasts

are not unbiased estimates of the expectation in the tail beyond the VaR. We also observe that the

conditional correlation models with Student t distribution show good backtesting performance. As an

interesting note, we see that the proposed volatility and correlation-adjusted quantile regression has an

extremely high statistic on the dynamic quantile test. This is a consequence of the model severely failing

to model the extreme market movement in September 2018. Rejection on the dynamic quantile test

means that the probability of a VaR exceedance is not independent of all past information. Figure 12

and 13 show the 99% VaR and ES forecasts using reestimation across the out-of-sample window.

8.2.2 Front-year data

Table 20 shows backtesting results for 95% VaR and ES forecasts obtained using a fixed estimation

window for front-year data, whereas Table 21 shows the same for 99% VaR and ES forecasts. At the 95%

confidence level, we note better overall model performance for the short quantile compared to the long

quantile. This can be attributed to the positive skewness observed for front-year data. The conditional

correlation models accurately predict the short VaR quantile, but are consistently rejected according to

the unconditional and conditional coverage tests for the long quantile. Overall, the univariate models

offer better performance on the backtests.

At the 99% confidence level (Table 21), all models, excluding RiskMetrics and DCC-EWMA, pass the

VaR backtests on both the long and short quantiles. The observation that these two models fail to

produce accurate 99% VaR forecasts is an expected result, as they fail to capture volatility clustering.

Forecasting approach (II) with reestimation every 20th day produce mixed results compared to the fixed

estimation window approach. Table 22 presents backtesting results for 95% VaR and ES forecasts with

reestimation, while Table 23 shows the same for 99% VaR and ES forecasts. At the 95% confidence

level, we observe improved predictive ability for univariate models for the long quantile when including

reestimation. This is especially evident for volatility-adjusted quantile regression. The effect of changing

forecasting approach is however ambiguous for the conditional correlation models. DCC models are

accurate with both forecasting procedures at this confidence level, while the CCC models benefits from

using a fixed estimation sample. At the 99% confidence level, using forecasting approach (II) leads to

worsened performance for the short quantile and comparable performance for the long quantile. Again,

the mixed results from changing forecasting approach illustrate the challenges in forecasting the out-of-

sample data which exhibit different data characteristics compared to the in-sample data.

At the 95% confidence level (Table 22), several of the models do not pass the ES test. The GARCH(1,1)

models perform well on the VaR backtests on both the long and short quantiles. For the latter quantile,

DCC models also display good results.

At the 99% confidence level (Table 23), we note better backtesting results for the long quantile compared

to the short quantile for univariate GARCH models. On the other hand, volatility-adjusted quantile

regression shows good performance on both quantiles.
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8.3 Summary and discussion of results

It follows from the analysis of the backtesting results that no single model specification is clearly prefer-

able. However, there are several important findings which may aid in model selection. As noted initially

in Section 8.2, correct unconditional and conditional coverage are the two most important criteria when

evaluating the predictive ability of the models. In Table 24 and 25, we show aggregated results for the

unconditional and conditional coverage tests with forecasting approach (I) and (II), respectively. In the

tables, X denotes rejection at the 5% significance level. By assessing these two tables, we are able to con-

clude on which models perform the best overall in forecasting VaR in German-Nordic electricity futures

spreads, according to the unconditional and condtional coverage tests. The most successful models when

forecasting with fixed estimation window are GARCH(1,1)-EVT, GJR models with normal distribution,

Student t distribution or skewed Student distribution, as well as CCC-t. We argue that these models

show the highest performance as they are not rejected on neither the Kupiec test nor the Christoffersen

test for any of the quantiles for both front-quarter and front-year data. For these four highest-performing

models, we show aggregated results on the dynamic quantile test and ES test in Table 26. By assessing

these results, we can further refine our conclusions, and we find that GARCH(1,1)-EVT, GJR(1,1)-skew-

t and CCC-t are the three most successful models when forecasting VaR and ES with fixed estimation

window.

By the same reasoning, GARCH(1,1)-t, GARCH(1,1)-skew-t and volatility-adjusted quantile regression

are the most successful models when forecasting VaR with reestimation, according to the unconditional

and conditional coverage tests. By assessing Table 27, with aggregated dynamic quantile and ES test

results for these three models, we arrive upon our final conclusion that GARCH(1,1)-t and GARCH(1,1)-

skew-t are the two highest-performing models when forecasting VaR and ES with reestimation.

Apart from the overall conclusions on model performance, several interesting findings have emerged

from our results. One of most important findings is that the univariate models show overall better

performance compared to the bivariate models. This implies that when forecasting VaR and ES in

German-Nordic electricity futures spreads, modelling the spreads as univariate time series accommodate

improved predictive ability compared to modelling the two legs of the spreads as well as the correlation. A

notable exception among the bivariate models is CCC-t, which consistently show good backtesting results.

In the analysis of in-sample estimation results, we established statistically significant α and β parameters

for the DCC models, implying that correlation is time-varying. However, from the backtesting results, it

is evident that the DCC models fail to accurately forecast VaR and ES. At the 95% confidence level, the

DCC models overestimate the risk of a short position in the front-quarter spread and overestimate the

risk of a long position in the front-year spread. At these quantiles, the DCC models predict excessively

high portfolio variance which in turn leads to overestimation of VaR. We also observe that the asymmetric

DCC-GARCH models do not outperform the symmetric equivalents.

From the overall results, we also see that non-normal distributional assumptions produce more accurate

VaR and ES forecasts. This is an expected result, as the conditional distribution of the daily P&L of

the spreads exhibit excess kurtosis and skewness. Among the univariate GARCH models, we find that

GARCH(1,1) and GJR-GARCH(1,1) with Student t and skewed Student t show good predictive ability

of VaR and ES. However, we observe only minor differences in backtesting performance from using a

skewed version of Student t distribution compared to the symmetric version. The asymmetric parameter

in GJR-GARCH, γ, is statistically significant when estimating the models based on front-quarter data,

but not significant when estimating based on front-year data. Consequently, the GJR-GARCH model

specification outperforms the symmetric variance response GARCH model specification for front-quarter
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data, whereas backtesting results are similar for front-year data. Moreover, GARCH(1,1)-EVT, which in

our formulation requires no numerical optimization as we use the Hill estimator, shows good predictive

ability. This model also shows consistently good performance on the ES test.

The Markov switching GARCH models show considerably better backtesting performance at the 99%

quantiles compared to the 95% quantiles. We find that specifying two volatility regimes does not im-

prove forecasting accuracy compared to more simplistic GARCH models. As for the other univariate

GARCH models, we find that Markov switching GARCH performs better with a Student t distributional

assumption compared to the normal distribution.

An important result that has emerged from the present study is that volatility-adjusted quantile regres-

sion serves well the purpose of forecasting VaR in German-Nordic electricity futures spreads. Among

the models showing the highest performance, volatility-adjusted quantile regression is arguably both

simplest and most widely used in practice. Furthermore, we find that our proposed volatility and

correlation-adjusted quantile regression model does not outperform the simpler specification with only

one explanatory variable. Although showing desirable performance on the unconditional and conditional

coverage tests, we find that the quantile regression models perform worse on the dynamic quantile test

compared to other high-performing models.

Finally, we get mixed results by comparing the two forecasting approaches employed in this study. At the

95% confidence level, many of the models show improved performance when forecasting with reestimation

compared to forecasting with fixed estimation window. A similar improvement is however not observed

at the 99% confidence level.
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Table 16: Backtesting of 95% VaR and ES forecasts with fixed estimation window, front-quarter

50 expected Kupiec Christoffersen Engle & Manganelli ES test︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
Model Exceedances −2ln(LRUC)(p-val) −2ln(LRCC)(p-val) DQ(p-val) b.p-val(p-val)

Long:

RiskMetrics-n 49 0.021(0.884) 0.174(0.917) 2.181(0.949) 0.059*(0.020)**

Vol-adj qreg 42 1.421(0.233) 2.211(0.331) 4.377(0.735) -

GARCH(1,1)-n 40 2.253(0.133) 2.354(0.308) 3.794(0.803) 0.150(0.078)*

GARCH(1,1)-t 42 1.421(0.233) 1.454(0.483) 3.293(0.857) 0.480(0.439)

GARCH(1,1)-skew t 43 1.081(0.299) 1.093(0.579) 3.292(0.857) 0.368(0.294)

GARCH(1,1)-EVT - - - - -

MSGARCH(1,1)-n 41 1.812(0.178) 2.161(0.339) 4.511(0.719) 0.166(0.092)*

MSGARCH(1,1)-t 45 0.544(0.461) 0.544(0.762) 3.699(0.814) 0.352(0.272)

GJR(1,1)-n 42 1.421(0.233) 1.845(0.397) 2.395(0.935) 0.056*(0.020)**

GJR(1,1)-t 44 0.788(0.375) 1.384(0.501) 4.689(0.698) 0.284(0.198)

GJR(1,1)-skew t 47 0.193(0.660) 0.216(0.898) 0.396(1.000) 0.225(0.142)

Vol-corr-adj qreg 50 0.000(1.000) 0.855(0.652) 4.554(0.714) -

CCC-n 39 2.747(0.097)* 2.896(0.235) 7.452(0.383) 0.165(0.091)*

CCC-t 41 1.812(0.178) 1.874(0.392) 5.369(0.615) 0.682(0.726)

DCC-EWMA-n 43 1.081(0.299) 1.093(0.579) 3.791(0.803) 0.112(0.051)*

DCC-GARCH-n 32 7.777(0.005)*** 7.777(0.020)** 10.723(0.151) 0.144(0.074)*

DCC-GARCH-t 34 6.043(0.014)** 6.067(0.048)** 8.998(0.253) 0.673(0.717)

aDCC-GARCH-n 33 6.878(0.009)*** 6.887(0.032)** 10.667(0.154) 0.157(0.081)*

aDCC-GARCH-t 34 6.043(0.014)** 6.067(0.048)** 8.998(0.253) 0.673(0.717)

Short:

RiskMetrics-n 44 0.788(0.375) 4.844(0.089)* 5.908(0.551) 0.016**(0.012)**

Vol-adj qreg 43 1.081(0.299) 4.950(0.084)* 5.708(0.574) -

GARCH(1,1)-n 38 3.294(0.070)* 6.300(0.043)** 7.405(0.388) 0.060*(0.040)**

GARCH(1,1)-t 38 3.294(0.070)* 6.300(0.043)** 7.399(0.389) 0.140(0.086)*

GARCH(1,1)-skew t 38 3.294(0.070)* 6.300(0.043)** 7.405(0.388) 0.207(0.129)

GARCH(1,1)-EVT - - - - -

MSGARCH(1,1)-n 33 6.878(0.009)*** 9.133(0.010)** 8.782(0.269) 0.079*(0.049)**

MSGARCH(1,1)-t 37 3.895(0.048)** 6.742(0.034)** 8.670(0.277) 0.234(0.144)

GJR(1,1)-n 40 2.253(0.133) 2.534(0.282) 5.104(0.647) 0.019**(0.016)**

GJR(1,1)-t 41 1.812(0.178) 2.161(0.339) 4.689(0.698) 0.075*(0.047)**

GJR(1,1)-skew t 40 2.253(0.133) 2.534(0.282) 5.104(0.647) 0.087*(0.057)*

Vol-corr-adj qreg 41 1.812(0.178) 2.161(0.339) 7.891(0.342) -

CCC-n 37 3.895(0.048)** 6.742(0.034)** 6.288(0.507) 0.035**(0.019)**

CCC-t 40 2.253(0.133) 2.534(0.282) 6.599(0.472) 0.228(0.142)

DCC-EWMA-n 37 3.895(0.048)** 6.742(0.034)** 7.788(0.352) 0.023**(0.019)**

DCC-GARCH-n 31 8.739(0.003)*** 10.725(0.005)*** 9.806(0.200) 0.051*(0.034)**

DCC-GARCH-t 34 6.043(0.014)** 8.439(0.015)** 8.678(0.277) 0.278(0.178)

aDCC-GARCH-n 32 7.777(0.005)*** 9.895(0.007)*** 9.938(0.192) 0.056*(0.036)**

aDCC-GARCH-t 34 6.043(0.014)** 8.439(0.015)** 8.678(0.277) 0.278(0.178)

*, **, *** indicates rejection at the 10%, 5% and 1% significance level, respectively. The decision is based on critical values
from the χ2 distribution with 1 degree of freedom for −2ln(LRUC), 2 degrees of freedom for −2ln(LRCC) and 7 degrees of
freedom for the DQ, respectively. For the ES test, the bootstrapped p-value is given. p-values are shown in parentheses. Bold
numbers indicate highest p-value.
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Table 17: Backtesting of 99% VaR and ES forecasts with fixed estimation window, front-quarter

10 expected Kupiec Christoffersen Engle & Manganelli ES test︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
Model Exceedances −2ln(LRUC)(p-val) −2ln(LRCC)(p-val) DQ(p-val) b.p-val(p-val)

Long:

RiskMetrics-n 17 4.091(0.043)** 4.680(0.096)* 10.973(0.140) 0.120(0.069)*

Vol-adj qreg 11 0.098(0.754) 0.343(0.842) 3.429(0.843) -

GARCH(1,1)-n 13 0.831(0.362) 1.173(0.556) 3.016(0.883) 0.182(0.114)

GARCH(1,1)-t 10 0.000(1.000) 0.202(0.904) 1.520(0.982) 0.425(0.328)

GARCH(1,1)-skew t 11 0.098(0.754) 0.343(0.842) 2.025(0.958) 0.368(0.271)

GARCH(1,1)-EVT 10 0.000(1.000) 0.202(0.904) 1.521(0.982) 0.721(0.744)

MSGARCH(1,1)-n 10 0.000(1.000) 0.202(0.904) 3.149(0.871) 0.154(0.091)*

MSGARCH(1,1)-t 11 0.098(0.754) 0.343(0.842) 3.232(0.863) 0.395(0.320)

GJR(1,1)-n 15 2.189(0.139) 2.647(0.266) 4.691(0.698) 0.095*(0.056)*

GJR(1,1)-t 12 0.380(0.538) 0.672(0.715) 2.486(0.928) 0.482(0.384)

GJR(1,1)-skew t 13 0.831(0.362) 1.173(0.556) 2.446(0.931) 0.347(0.247)

Vol-corr-adj qreg 11 0.098(0.754) 0.343(0.842) 1.487(0.983) -

CCC-n 11 0.098(0.754) 0.343(0.842) 2.179(0.949) 0.093*(0.048)**

CCC-t 10 0.000(1.000) 0.202(0.904) 0.788(0.998) 0.804(0.865)

DCC-EWMA-n 12 0.380(0.538) 0.672(0.715) 4.507(0.720) 0.188(0.120)

DCC-GARCH-n 11 0.098(0.754) 0.343(0.842) 3.060(0.879) 0.365(0.256)

DCC-GARCH-t 8 0.434(0.510) 0.563(0.755) 0.786(0.998) 0.805(0.864)

aDCC-GARCH-n 11 0.098(0.754) 0.343(0.842) 1.245(0.990) 0.354(0.239)

aDCC-GARCH-t 8 0.434(0.510) 0.563(0.755) 1.860(0.967) 0.860(0.928)

Short:

RiskMetrics-n 18 5.225(0.022)** 5.886(0.053)* 14.957(0.037)** 0.034**(0.032)**

Vol-adj qreg 13 0.831(0.362) 1.173(0.556) 5.326(0.620) -

GARCH(1,1)-n 12 0.380(0.538) 0.672(0.715) 2.137(0.952) 0.041**(0.038)**

GARCH(1,1)-t 10 0.000(1.000) 0.202(0.904) 2.047(0.957) 0.069*(0.059)*

GARCH(1,1)-skew t 10 0.000(1.000) 0.202(0.904) 2.063(0.956) 0.084*(0.067)*

GARCH(1,1)-EVT 10 0.000(1.000) 0.202(0.904) 2.063(0.956) 0.156(0.107)

MSGARCH(1,1)-n 10 0.000(1.000) 0.202(0.904) 1.697(0.975) 0.045**(0.039)**

MSGARCH(1,1)-t 10 0.000(1.000) 0.202(0.904) 1.190(0.991) 0.082*(0.066)*

GJR(1,1)-n 15 2.189(0.139) 2.647(0.266) 5.872(0.555) 0.097*(0.066)*

GJR(1,1)-t 10 0.000(1.000) 0.202(0.904) 2.486(0.928) 0.069*(0.059)*

GJR(1,1)-skew t 9 0.105(0.746) 0.268(0.875) 1.933(0.963) 0.067*(0.058)*

Vol-corr-adj qreg 15 2.189(0.139) 2.647(0.266) 8.963(0.255) -

CCC-n 15 2.189(0.139) 2.647(0.266) 9.582(0.214) 0.068*(0.049)**

CCC-t 10 0.000(1.000) 0.202(0.904) 1.459(0.984) 0.284(0.199)

DCC-EWMA-n 13 0.831(0.362) 1.173(0.556) 3.040(0.881) 0.054*(0.046)**

DCC-GARCH-n 10 0.000(1.000) 0.202(0.904) 3.061(0.879) 0.043**(0.043)**

DCC-GARCH-t 9 0.105(0.746) 0.268(0.875) 0.846(0.997) 0.232(0.149)

aDCC-GARCH-n 10 0.000(1.000) 0.202(0.904) 1.254(0.990) 0.041**(0.042)**

aDCC-GARCH-t 7 1.016(0.314) 1.114(0.573) 1.283(0.989) 0.151(0.102)

*, **, *** indicates rejection at the 10%, 5% and 1% significance level, respectively. The decision is based on critical values
from the χ2 distribution with 1 degree of freedom for −2ln(LRUC), 2 degrees of freedom for −2ln(LRCC) and 7 degrees of
freedom for the DQ, respectively. For the ES test, the bootstrapped p-value is given. p-values are shown in parentheses. Bold
numbers indicate highest p-value.
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Table 18: Backtesting of 95% VaR and ES forecasts with reestimation, front-quarter

50 expected Kupiec Christoffersen Engle & Manganelli ES test︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
Model Exceedances −2ln(LRUC)(p-val) −2ln(LRCC)(p-val) DQ(p-val) b.p-val(p-val)

Long:

RiskMetrics-n - - - - -

Vol-adj qreg 52 0.083(0.773) 0.691(0.708) 3.407(0.845) -

GARCH(1,1)-n 46 0.346(0.557) 1.836(0.399) 4.043(0.775) 0.055*(0.018)**

GARCH(1,1)-t 51 0.021(0.885) 0.747(0.688) 4.454(0.726) 0.578(0.588)

GARCH(1,1)-skew t 50 0.000(1.000) 0.855(0.652) 2.158(0.951) 0.414(0.362)

GARCH(1,1)-EVT - - - - -

MSGARCH(1,1)-n 41 1.812(0.178) 2.161(0.339) 4.511(0.719) 0.166(0.092)*

MSGARCH(1,1)-t 45 0.544(0.461) 0.544(0.762) 3.699(0.814) 0.352(0.272)

GJR(1,1)-n 49 0.021(0.884) 0.174(0.917) 1.821(0.969) 0.065*(0.022)**

GJR(1,1)-t 51 0.021(0.885) 0.189(0.910) 5.285(0.625) 0.558(0.558)

GJR(1,1)-skew t 51 0.021(0.885) 0.085(0.958) 2.002(0.960) 0.378(0.308)

Vol-corr-adj qreg 43 1.081(0.299) 1.093(0.579) 6.408(0.493) -

CCC-n 48 0.085(0.770) 0.297(0.862) 3.606(0.824) 0.057*(0.021)**

CCC-t 51 0.021(0.885) 0.085(0.958) 2.932(0.891) 0.551(0.540)

DCC-EWMA-n 51 0.021(0.885) 0.747(0.688) 2.080(0.955) 0.054*(0.017)**

DCC-GARCH-n 38 3.294(0.070)* 3.459(0.177) 9.011(0.252) 0.170(0.096)*

DCC-GARCH-t 44 0.788(0.375) 1.384(0.501) 5.992(0.541) 0.815(0.890)

aDCC-GARCH-n 38 3.294(0.070)* 3.459(0.177) 7.772(0.353) 0.158(0.083)*

aDCC-GARCH-t 43 1.081(0.299) 1.587(0.452) 6.003(0.539) 0.779(0.851)

Short:

RiskMetrics-n - - - - -

Vol-adj qreg 50 0.000(1.000) 0.104(0.949) 7.159(0.413) -

GARCH(1,1)-n 44 0.788(0.375) 0.791(0.673) 3.900(0.791) 0.024**(0.016)**

GARCH(1,1)-t 46 0.346(0.557) 0.353(0.838) 3.763(0.807) 0.174(0.105)

GARCH(1,1)-skew t 47 0.193(0.660) 0.475(0.789) 3.292(0.857) 0.169(0.101)

GARCH(1,1)-EVT - - - - -

MSGARCH(1,1)-n 33 6.878(0.009)*** 9.133(0.010)** 8.782(0.269) 0.079*(0.049)**

MSGARCH(1,1)-t 37 3.895(0.048)** 6.742(0.034)** 8.670(0.277) 0.234(0.144)

GJR(1,1)-n 46 0.346(0.557) 0.707(0.702) 4.887(0.674) 0.020**(0.015)**

GJR(1,1)-t 49 0.021(0.884) 0.100(0.951) 5.285(0.625) 0.221(0.132)

GJR(1,1)-skew t 48 0.085(0.770) 1.233(0.540) 6.132(0.524) 0.166(0.099)*

Vol-corr-adj qreg 47 0.193(0.660) 0.216(0.898) 7.510(0.378) -

CCC-n 47 0.193(0.660) 0.216(0.898) 4.902(0.672) 0.023**(0.012)**

CCC-t 50 0.000(1.000) 0.119(0.942) 5.018(0.658) 0.212(0.128)

DCC-EWMA-n 42 1.421(0.233) 5.109(0.078)* 4.870(0.676) 0.015**(0.012)**

DCC-GARCH-n 37 3.895(0.048)** 4.014(0.134) 8.938(0.257) 0.055*(0.031)**

DCC-GARCH-t 38 3.294(0.070)* 6.300(0.043)** 5.975(0.543) 0.197(0.119)

aDCC-GARCH-n 39 2.747(0.097)* 2.966(0.227) 8.689(0.276) 0.065*(0.036)**

aDCC-GARCH-t 39 2.747(0.097)* 2.966(0.227) 6.668(0.464) 0.259(0.168)

*, **, *** indicates rejection at the 10%, 5% and 1% significance level, respectively. The decision is based on critical values
from the χ2 distribution with 1 degree of freedom for −2ln(LRUC), 2 degrees of freedom for −2ln(LRCC) and 7 degrees of
freedom for the DQ, respectively. For the ES test, the bootstrapped p-value is given. p-values are shown in parentheses. Bold
numbers indicate highest p-value.
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8. RESULTS

Table 19: Backtesting of 99% VaR and ES forecasts with reestimation, front-quarter

10 expected Kupiec Christoffersen Engle & Manganelli ES test︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
Model Exceedances −2ln(LRUC)(p-val) −2ln(LRCC)(p-val) DQ(p-val) b.p-val(p-val)

Long:

RiskMetrics-n - - - - -

Vol-adj qreg 14 1.437(0.231) 1.835(0.399) 3.356(0.850) -

GARCH(1,1)-n 18 5.225(0.022)** 5.886(0.053)* 13.991(0.051)* 0.262(0.172)

GARCH(1,1)-t 10 0.000(1.000) 0.202(0.904) 1.512(0.982) 0.471(0.378)

GARCH(1,1)-skew t 13 0.831(0.362) 1.173(0.556) 6.093(0.529) 0.815(0.880)

GARCH(1,1)-EVT 14 1.437(0.231) 1.835(0.399) 6.050(0.534) 0.937(0.982)

MSGARCH(1,1)-n 10 0.000(1.000) 0.202(0.904) 3.149(0.871) 0.154(0.091)*

MSGARCH(1,1)-t 11 0.098(0.754) 0.343(0.842) 3.232(0.863) 0.395(0.320)

GJR(1,1)-n 17 4.091(0.043)** 4.680(0.096)* 13.408(0.063)* 0.255(0.178)

GJR(1,1)-t 12 0.380(0.538) 0.672(0.715) 2.947(0.890) 0.556(0.499)

GJR(1,1)-skew t 11 0.098(0.754) 0.343(0.842) 1.510(0.982) 0.462(0.370)

Vol-corr-adj qreg 12 0.380(0.538) 0.672(0.715) 8.283(0.308) -

CCC-n 14 1.437(0.231) 1.835(0.399) 3.433(0.842) 0.037**(0.014)**

CCC-t 10 0.000(1.000) 0.202(0.904) 0.713(0.998) 0.577(0.517)

DCC-EWMA-n 18 5.225(0.022)** 5.886(0.053)* 10.305(0.172) 0.147(0.087)*

DCC-GARCH-n 12 0.380(0.538) 0.672(0.715) 10.359(0.169) 0.132(0.078)*

DCC-GARCH-t 9 0.105(0.746) 0.268(0.875) 0.639(0.999) 0.803(0.863)

aDCC-GARCH-n 12 0.380(0.538) 0.672(0.715) 2.451(0.931) 0.128(0.073)*

aDCC-GARCH-t 9 0.105(0.746) 0.268(0.875) 0.718(0.998) 0.828(0.891)

Short:

RiskMetrics-n - - - - -

Vol-adj qreg 15 2.189(0.139) 2.647(0.266) 9.059(0.248) -

GARCH(1,1)-n 16 3.077(0.079)* 3.597(0.166) 6.901(0.439) 0.050*(0.047)**

GARCH(1,1)-t 12 0.380(0.538) 0.672(0.715) 2.267(0.944) 0.149(0.101)

GARCH(1,1)-skew t 12 0.380(0.538) 0.672(0.715) 2.597(0.920) 0.275(0.182)

GARCH(1,1)-EVT 16 3.077(0.079)* 3.597(0.166) 6.866(0.443) 0.616(0.588)

MSGARCH(1,1)-n 10 0.000(1.000) 0.202(0.904) 1.697(0.975) 0.045**(0.039)**

MSGARCH(1,1)-t 10 0.000(1.000) 0.202(0.904) 1.190(0.991) 0.083*(0.066)*

GJR(1,1)-n 18 5.225(0.022)** 5.886(0.053)* 10.301(0.172) 0.074*(0.056)*

GJR(1,1)-t 13 0.831(0.362) 1.173(0.556) 2.947(0.890) 0.184(0.117)

GJR(1,1)-skew t 14 1.437(0.231) 1.835(0.399) 3.319(0.854) 0.268(0.172)

Vol-corr-adj qreg 15 2.189(0.139) 3.704(0.157) 36.343(0.000)*** -

CCC-n 18 5.225(0.022)** 5.886(0.053)* 12.141(0.096)* 0.023**(0.023)**

CCC-t 14 1.437(0.231) 1.835(0.399) 9.389(0.226) 0.337(0.227)

DCC-EWMA-n 18 5.225(0.022)** 5.886(0.053)* 10.359(0.169) 0.084*(0.061)*

DCC-GARCH-n 14 1.437(0.231) 1.835(0.399) 10.503(0.162) 0.089*(0.064)*

DCC-GARCH-t 10 0.000(1.000) 0.202(0.904) 1.389(0.986) 0.325(0.224)

aDCC-GARCH-n 14 1.437(0.231) 1.835(0.399) 10.489(0.163) 0.082*(0.061)*

aDCC-GARCH-t 10 0.000(1.000) 0.202(0.904) 10.767(0.149) 0.395(0.315)

*, **, *** indicates rejection at the 10%, 5% and 1% significance level, respectively. The decision is based on critical values
from the χ2 distribution with 1 degree of freedom for −2ln(LRUC), 2 degrees of freedom for −2ln(LRCC) and 7 degrees of
freedom for the DQ, respectively. For the ES test, the bootstrapped p-value is given. p-values are shown in parentheses. Bold
numbers indicate highest p-value.
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8. RESULTS

Table 20: Backtesting of 95% VaR and ES forecasts with fixed estimation window, front-year

50 expected Kupiec Christoffersen Engle & Manganelli ES test︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
Model Exceedances −2ln(LRUC)(p-val) −2ln(LRCC)(p-val) DQ(p-val) b.p-val(p-val)

Long:

RiskMetrics-n 40 2.253(0.133) 2.354(0.308) 4.572(0.712) 0.090*(0.039)**

Vol-adj qreg 29 10.867(0.001)*** 12.601(0.002)*** 10.412(0.166) -

GARCH(1,1)-n 41 1.812(0.178) 1.874(0.392) 3.121(0.874) 0.371(0.283)

GARCH(1,1)-t 43 1.081(0.299) 1.093(0.579) 1.927(0.964) 0.672(0.697)

GARCH(1,1)-skew t 41 1.812(0.178) 1.874(0.392) 3.121(0.874) 0.723(0.772)

GARCH(1,1)-EVT - - - - -

MSGARCH(1,1)-n 41 1.812(0.178) 5.322(0.070)* 6.852(0.444) 0.192(0.113)

MSGARCH(1,1)-t 52 0.083(0.773) 1.625(0.444) 5.230(0.632) 0.410(0.336)

GJR(1,1)-n 39 2.747(0.097)* 5.917(0.052)* 5.577(0.590) 0.191(0.113)

GJR(1,1)-t 42 1.421(0.233) 1.454(0.483) 6.483(0.485) 0.626(0.625)

GJR(1,1)-skew t 39 2.747(0.097)* 5.917(0.052)* 5.577(0.590) 0.556(0.526)

Vol-corr-adj qreg 33 6.878(0.009)*** 9.133(0.010)** 8.589(0.284) -

CCC-n 37 3.895(0.048)** 5.492(0.064)* 6.548(0.477) 0.206(0.122)

CCC-t 38 3.294(0.070)* 4.703(0.095)* 5.117(0.646) 0.442(0.357)

DCC-EWMA-n 37 3.895(0.048)** 4.014(0.134) 7.260(0.402) 0.179(0.101)

DCC-GARCH-n 31 8.739(0.003)*** 8.741(0.013)** 8.857(0.263) 0.154(0.081)*

DCC-GARCH-t 32 7.777(0.005)*** 7.777(0.020)** 7.862(0.345) 0.393(0.311)

aDCC-GARCH-n 34 6.043(0.014)** 6.067(0.048)** 4.948(0.666) 0.208(0.123)

aDCC-GARCH-t 33 6.878(0.009)*** 6.887(0.032)** 7.714(0.358) 0.390(0.307)

Short:

RiskMetrics-n 52 0.083(0.773) 0.691(0.708) 8.763(0.270) 0.037**(0.051)*

Vol-adj qreg 59 1.616(0.204) 2.282(0.319) 12.709(0.080)* -

GARCH(1,1)-n 46 0.346(0.557) 0.353(0.838) 5.046(0.654) 0.047**(0.063)*

GARCH(1,1)-t 48 0.085(0.770) 0.297(0.862) 5.132(0.644) 0.150(0.114)

GARCH(1,1)-skew t 51 0.021(0.885) 0.747(0.688) 6.417(0.492) 0.136(0.108)

GARCH(1,1)-EVT - - - - -

MSGARCH(1,1)-n 44 0.788(0.375) 1.384(0.501) 3.869(0.795) 0.039**(0.059)*

MSGARCH(1,1)-t 47 0.193(0.660) 1.095(0.578) 3.961(0.784) 0.067*(0.075)*

GJR(1,1)-n 48 0.085(0.770) 1.233(0.540) 6.638(0.467) 0.042**(0.064)*

GJR(1,1)-t 49 0.021(0.884) 1.017(0.601) 6.483(0.485) 0.152(0.117)

GJR(1,1)-skew t 48 0.085(0.770) 1.233(0.540) 6.638(0.467) 0.078*(0.083)*

Vol-corr-adj qreg 64 3.805(0.051)* 4.018(0.134) 11.381(0.123) -

CCC-n 51 0.021(0.885) 0.085(0.958) 4.042(0.775) 0.181(0.125)

CCC-t 52 0.083(0.773) 0.117(0.943) 3.927(0.788) 0.396(0.232)

DCC-EWMA-n 49 0.021(0.884) 0.174(0.917) 5.464(0.603) 0.057*(0.072)*

DCC-GARCH-n 47 0.193(0.660) 0.216(0.898) 7.090(0.420) 0.284(0.178)

DCC-GARCH-t 49 0.021(0.884) 0.174(0.917) 4.899(0.672) 0.447(0.286)

aDCC-GARCH-n 50 0.000(1.000) 0.119(0.942) 3.712(0.812) 0.252(0.160)

aDCC-GARCH-t 49 0.021(0.884) 0.100(0.951) 3.602(0.824) 0.420(0.262)

*, **, *** indicates rejection at the 10%, 5% and 1% significance level, respectively. The decision is based on critical values
from the χ2 distribution with 1 degree of freedom for −2ln(LRUC), 2 degrees of freedom for −2ln(LRCC) and 7 degrees of
freedom for the DQ, respectively. For the ES test, the bootstrapped p-value is given. p-values are shown in parentheses. Bold
numbers indicate highest p-value.
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8. RESULTS

Table 21: Backtesting of 99% VaR and ES forecasts with fixed estimation window, front-year

10 expected Kupiec Christoffersen Engle & Manganelli ES test︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
Model Exceedances −2ln(LRUC)(p-val) −2ln(LRCC)(p-val) DQ(p-val) b.p-val(p-val)

Long:

RiskMetrics-n 13 0.831(0.362) 1.173(0.556) 5.979(0.542) 0.047**(0.031)**

Vol-adj qreg 9 0.105(0.746) 0.268(0.875) 1.069(0.994) -

GARCH(1,1)-n 8 0.434(0.510) 0.563(0.755) 0.999(0.995) 0.014**(0.027)**

GARCH(1,1)-t 8 0.434(0.510) 0.563(0.755) 1.012(0.995) 0.308(0.193)

GARCH(1,1)-skew t 8 0.434(0.510) 0.563(0.755) 0.999(0.995) 0.423(0.285)

GARCH(1,1)-EVT 8 0.434(0.510) 0.563(0.755) 0.999(0.995) 0.574(0.478)

MSGARCH(1,1)-n 10 0.000(1.000) 0.202(0.904) 2.089(0.955) 0.118(0.065)*

MSGARCH(1,1)-t 9 0.105(0.746) 0.268(0.875) 1.163(0.992) 0.062*(0.040)**

GJR(1,1)-n 9 0.105(0.746) 0.268(0.875) 1.169(0.992) 0.025**(0.031)**

GJR(1,1)-t 8 0.434(0.510) 0.563(0.755) 1.938(0.963) 0.304(0.189)

GJR(1,1)-skew t 8 0.434(0.510) 0.563(0.755) 1.055(0.994) 0.352(0.233)

Vol-corr-adj qreg 7 1.016(0.314) 1.114(0.573) 3.290(0.857) -

CCC-n 10 0.000(1.000) 0.202(0.904) 8.712(0.274) 0.139(0.075)*

CCC-t 6 1.886(0.170) 1.959(0.376) 1.746(0.973) 0.146(0.077)*

DCC-EWMA-n 10 0.000(1.000) 0.202(0.904) 0.998(0.995) 0.225(0.163)

DCC-GARCH-n 7 1.016(0.314) 1.114(0.573) 2.010(0.959) 0.103(0.081)*

DCC-GARCH-t 7 1.016(0.314) 1.114(0.573) 2.052(0.957) 0.577(0.526)

aDCC-GARCH-n 8 0.434(0.510) 0.563(0.755) 8.678(0.277) 0.127(0.089)*

aDCC-GARCH-t 7 1.016(0.314) 1.114(0.573) 2.159(0.951) 0.564(0.531)

Short:

RiskMetrics-n 17 4.091(0.043)** 4.680(0.096)* 9.549(0.216) 0.081*(0.099)*

Vol-adj qreg 10 0.000(1.000) 0.202(0.904) 1.937(0.963) -

GARCH(1,1)-n 15 2.189(0.139) 2.647(0.266) 4.093(0.769) 0.167(0.132)

GARCH(1,1)-t 12 0.380(0.538) 0.672(0.715) 1.924(0.964) 0.286(0.166)

GARCH(1,1)-skew t 14 1.437(0.231) 1.835(0.399) 2.983(0.887) 0.327(0.184)

GARCH(1,1)-EVT 14 1.437(0.231) 1.835(0.399) 2.983(0.887) 0.434(0.248)

MSGARCH(1,1)-n 13 0.831(0.362) 1.173(0.556) 2.307(0.941) 0.144(0.124)

MSGARCH(1,1)-t 13 0.831(0.362) 1.173(0.556) 2.214(0.947) 0.174(0.134)

GJR(1,1)-n 15 2.189(0.139) 2.647(0.266) 4.110(0.767) 0.160(0.130)

GJR(1,1)-t 12 0.380(0.538) 0.672(0.715) 1.938(0.963) 0.292(0.165)

GJR(1,1)-skew t 12 0.380(0.538) 0.672(0.715) 2.044(0.957) 0.211(0.146)

Vol-corr-adj qreg 11 0.098(0.754) 0.343(0.842) 4.053(0.774) -

CCC-n 14 1.437(0.231) 1.835(0.399) 10.622(0.156) 0.229(0.143)

CCC-t 9 0.105(0.746) 0.268(0.875) 11.351(0.124) 0.303(0.171)

DCC-EWMA-n 16 3.077(0.079)* 3.597(0.166) 5.831(0.560) 0.195(0.141)

DCC-GARCH-n 11 0.098(0.754) 0.343(0.842) 1.225(0.990) 0.210(0.140)

DCC-GARCH-t 8 0.434(0.510) 0.563(0.755) 0.861(0.997) 0.316(0.175)

aDCC-GARCH-n 11 0.098(0.754) 0.343(0.842) 8.653(0.279) 0.172(0.133)

aDCC-GARCH-t 10 0.000(1.000) 0.202(0.904) 0.916(0.996) 0.368(0.193)

*, **, *** indicates rejection at the 10%, 5% and 1% significance level, respectively. The decision is based on critical values
from the χ2 distribution with 1 degree of freedom for −2ln(LRUC), 2 degrees of freedom for −2ln(LRCC) and 7 degrees of
freedom for the DQ, respectively. For the ES test, the bootstrapped p-value is given. p-values are shown in parentheses. Bold
numbers indicate highest p-value.
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8. RESULTS

Table 22: Backtesting of 95% VaR and ES forecasts with reestimation, front-year

50 expected Kupiec Christoffersen Engle & Manganelli ES test︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
Model Exceedances −2ln(LRUC)(p-val) −2ln(LRCC)(p-val) DQ(p-val) b.p-val(p-val)

Long:

RiskMetrics-n - - - - -

Vol-adj qreg 54 0.329(0.566) 0.688(0.709) 4.552(0.715) -

GARCH(1,1)-n 47 0.193(0.660) 1.095(0.578) 5.346(0.618) 0.294(0.208)

GARCH(1,1)-t 54 0.329(0.566) 0.688(0.709) 5.054(0.653) 0.793(0.862)

GARCH(1,1)-skew t 50 0.000(1.000) 1.267(0.531) 4.843(0.679) 0.787(0.849)

GARCH(1,1)-EVT - - - - -

MSGARCH(1,1)-n 41 1.812(0.178) 5.322(0.070)* 6.852(0.444) 0.195(0.113)

MSGARCH(1,1)-t 52 0.083(0.773) 1.625(0.444) 5.230(0.632) 0.413(0.336)

GJR(1,1)-n 48 0.085(0.770) 0.132(0.936) 6.691(0.462) 0.280(0.196)

GJR(1,1)-t 55 0.510(0.475) 0.949(0.622) 7.060(0.423) 0.810(0.883)

GJR(1,1)-skew t 51 0.021(0.885) 0.189(0.910) 5.379(0.614) 0.753(0.806)

Vol-corr-adj qreg 49 0.021(0.884) 0.174(0.917) 10.124(0.182) -

CCC-n 54 0.329(0.566) 0.735(0.693) 6.501(0.483) 0.222(0.135)

CCC-t 52 0.083(0.773) 0.691(0.708) 7.430(0.386) 0.478(0.406)

DCC-EWMA-n 40 2.253(0.133) 2.534(0.282) 5.092(0.649) 0.159(0.086)*

DCC-GARCH-n 32 7.777(0.005)*** 7.777(0.020)** 5.065(0.652) 0.158(0.087)*

DCC-GARCH-t 33 6.878(0.009)*** 6.887(0.032)** 7.626(0.367) 0.499(0.451)

aDCC-GARCH-n 33 6.878(0.009)*** 9.370(0.009)*** 10.630(0.156) 0.146(0.081)*

aDCC-GARCH-t 34 6.043(0.014)** 6.067(0.048)** 7.026(0.426) 0.479(0.418)

Short:

RiskMetrics-n - - - - -

Vol-adj qreg 60 1.984(0.159) 3.522(0.172) 14.147(0.049)** -

GARCH(1,1)-n 49 0.021(0.884) 0.174(0.917) 6.666(0.464) 0.022**(0.038)**

GARCH(1,1)-t 51 0.021(0.885) 0.085(0.958) 8.800(0.267) 0.123(0.096)*

GARCH(1,1)-skew t 52 0.083(0.773) 0.117(0.943) 7.001(0.429) 0.056*(0.069)*

GARCH(1,1)-EVT - - - - -

MSGARCH(1,1)-n 44 0.788(0.375) 1.384(0.501) 3.869(0.795) 0.040**(0.059)*

MSGARCH(1,1)-t 47 0.193(0.660) 1.095(0.578) 3.961(0.784) 0.067*(0.075)*

GJR(1,1)-n 54 0.329(0.566) 0.331(0.847) 7.331(0.395) 0.025**(0.040)**

GJR(1,1)-t 55 0.510(0.475) 0.511(0.775) 7.060(0.423) 0.159(0.116)

GJR(1,1)-skew t 57 0.989(0.320) 1.011(0.603) 7.812(0.349) 0.088*(0.081)*

Vol-corr-adj qreg 62 2.826(0.093)* 4.019(0.134) 13.852(0.054)* -

CCC-n 63 3.299(0.069)* 3.581(0.167) 10.211(0.177) 0.046**(0.059)*

CCC-t 63 3.299(0.069)* 3.299(0.192) 10.307(0.172) 0.203(0.134)

DCC-EWMA-n 51 0.021(0.885) 0.747(0.688) 5.065(0.652) 0.040**(0.057)*

DCC-GARCH-n 46 0.346(0.557) 1.139(0.566) 4.826(0.681) 0.167(0.123)

DCC-GARCH-t 49 0.021(0.884) 0.100(0.951) 2.782(0.904) 0.437(0.260)

aDCC-GARCH-n 51 0.021(0.885) 0.189(0.910) 4.948(0.666) 0.172(0.123)

aDCC-GARCH-t 49 0.021(0.884) 1.160(0.560) 4.281(0.747) 0.353(0.200)

*, **, *** indicates rejection at the 10%, 5% and 1% significance level, respectively. The decision is based on critical values
from the χ2 distribution with 1 degree of freedom for −2ln(LRUC), 2 degrees of freedom for −2ln(LRCC) and 7 degrees of
freedom for the DQ, respectively. For the ES test, the bootstrapped p-value is given. p-values are shown in parentheses. Bold
numbers indicate highest p-value.
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8. RESULTS

Table 23: Backtesting of 99% VaR and ES forecasts with reestimation, front-year

10 expected Kupiec Christoffersen Engle & Manganelli ES test︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
Model Exceedances −2ln(LRUC)(p-val) −2ln(LRCC)(p-val) DQ(p-val) b.p-val(p-val)

Long:

RiskMetrics-n - - - - -

Vol-adj qreg 14 1.437(0.231) 1.835(0.399) 3.785(0.804) -

GARCH(1,1)-n 10 0.000(1.000) 0.202(0.904) 0.772(0.998) 0.060*(0.048)**

GARCH(1,1)-t 8 0.434(0.510) 0.563(0.755) 1.014(0.995) 0.145(0.122)

GARCH(1,1)-skew t 8 0.434(0.510) 0.563(0.755) 0.906(0.996) 0.433(0.317)

GARCH(1,1)-EVT 10 0.000(1.000) 0.202(0.904) 0.803(0.997) 0.606(0.557)

MSGARCH(1,1)-n 10 0.000(1.000) 0.202(0.904) 2.089(0.955) 0.119(0.065)*

MSGARCH(1,1)-t 9 0.105(0.746) 0.268(0.875) 1.163(0.992) 0.061*(0.040)**

GJR(1,1)-n 10 0.000(1.000) 0.202(0.904) 0.818(0.997) 0.038**(0.030)**

GJR(1,1)-t 9 0.105(0.746) 0.268(0.875) 9.231(0.236) 0.231(0.166)

GJR(1,1)-skew t 8 0.434(0.510) 0.563(0.755) 0.963(0.995) 0.319(0.194)

Vol-corr-adj qreg 15 2.189(0.139) 2.647(0.266) 11.423(0.121) -

CCC-n 16 3.077(0.079)* 4.384(0.112) 16.846(0.018)** 0.108(0.059)*

CCC-t 11 0.098(0.754) 0.343(0.842) 7.780(0.352) 0.266(0.170)

DCC-EWMA-n 11 0.098(0.754) 0.343(0.842) 1.461(0.984) 0.263(0.201)

DCC-GARCH-n 8 0.434(0.510) 0.563(0.755) 1.912(0.965) 0.443(0.363)

DCC-GARCH-t 5 3.094(0.079)* 3.144(0.208) 2.714(0.910) 0.421(0.372)

aDCC-GARCH-n 9 0.105(0.746) 0.268(0.875) 8.468(0.293) 0.436(0.345)

aDCC-GARCH-t 5 3.094(0.079)* 3.144(0.208) 3.183(0.868) 0.474(0.478)

Short:

RiskMetrics-n - - - - -

Vol-adj qreg 14 1.437(0.231) 1.835(0.399) 4.833(0.680) -

GARCH(1,1)-n 20 7.827(0.005)*** 8.644(0.013)** 13.815(0.055)* 0.132(0.122)

GARCH(1,1)-t 16 3.077(0.079)* 3.597(0.166) 5.726(0.572) 0.328(0.184)

GARCH(1,1)-skew t 16 3.077(0.079)* 3.597(0.166) 6.097(0.528) 0.304(0.177)

GARCH(1,1)-EVT 17 4.091(0.043)** 4.680(0.096)* 7.692(0.360) 0.481(0.296)

MSGARCH(1,1)-n 13 0.831(0.362) 1.173(0.556) 2.307(0.941) 0.147(0.124)

MSGARCH(1,1)-t 13 0.831(0.362) 1.173(0.556) 2.214(0.947) 0.173(0.134)

GJR(1,1)-n 21 9.284(0.002)*** 10.186(0.006)*** 16.494(0.021)** 0.110(0.111)

GJR(1,1)-t 18 5.225(0.022)** 5.886(0.053)* 9.231(0.236) 0.352(0.199)

GJR(1,1)-skew t 18 5.225(0.022)** 5.886(0.053)* 9.243(0.236) 0.336(0.196)

Vol-corr-adj qreg 17 4.091(0.043)** 4.680(0.096)* 32.447(0.000)*** -

CCC-n 22 10.838(0.001)*** 11.829(0.003)*** 20.345(0.005)*** 0.222(0.142)

CCC-t 18 5.225(0.022)** 5.886(0.053)* 13.705(0.057)* 0.425(0.240)

DCC-EWMA-n 18 5.225(0.022)** 5.886(0.053)* 11.469(0.119) 0.183(0.135)

DCC-GARCH-n 11 0.098(0.754) 0.343(0.842) 1.252(0.990) 0.232(0.144)

DCC-GARCH-t 8 0.434(0.510) 0.563(0.755) 0.793(0.998) 0.350(0.188)

aDCC-GARCH-n 13 0.831(0.362) 1.173(0.556) 8.453(0.294) 0.244(0.148)

aDCC-GARCH-t 9 0.105(0.746) 0.268(0.875) 0.644(0.999) 0.375(0.206)

*, **, *** indicates rejection at the 10%, 5% and 1% significance level, respectively. The decision is based on critical values
from the χ2 distribution with 1 degree of freedom for −2ln(LRUC), 2 degrees of freedom for −2ln(LRCC) and 7 degrees of
freedom for the DQ, respectively. For the ES test, the bootstrapped p-value is given. p-values are shown in parentheses. Bold
numbers indicate highest p-value.
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8. RESULTS

(a) RiskMetrics-n (b) Volatility-adjusted quantile regression

(c) GARCH(1,1)-n (d) GJR-GARCH(1,1)-n

(e) GARCH(1,1)-t (f) GJR-GARCH(1,1)-t

(g) GARCH(1,1)-skew t (h) GJR-GARCH(1,1)-skew t

(i) MSGARCH(1,1)-n (j) MSGARCH(1,1)-t

Figure 8: 99% VaR and ES forecasts with fixed estimation window for a long position (solid blue and
dotted blue) and short position (solid red and dotted red), front-quarter

63



8. RESULTS

(a) GARCH(1,1)-EVT (b) Vol-corr-adj qreg

(c) CCC-n (d) CCC-t

(e) DCC-n (f) DCC-t

(g) aDCC-n (h) aDCC-t

(i) DCC-EWMA

Figure 9: 99% VaR and ES forecasts with fixed estimation window for a long position (solid blue and
dotted blue) and short position (solid red and dotted red), front-quarter
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8. RESULTS

(a) RiskMetrics-n (b) Volatility-adjusted quantile regression

(c) GARCH(1,1)-n (d) GJR-GARCH(1,1)-n

(e) GARCH(1,1)-t (f) GJR-GARCH(1,1)-t

(g) GARCH(1,1)-skew t (h) GJR-GARCH(1,1)-skew t

(i) MSGARCH(1,1)-n (j) MSGARCH(1,1)-t

Figure 10: 99% VaR and ES forecasts with fixed estimation window for a long position (solid blue and
dotted blue) and short position (solid red and dotted red), front-year
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8. RESULTS

(a) GARCH(1,1)-EVT (b) Vol-corr-adj qreg

(c) CCC-n (d) CCC-t

(e) DCC-n (f) DCC-t

(g) aDCC-n (h) aDCC-t

(i) DCC-EWMA

Figure 11: 99% VaR and ES forecasts with fixed estimation window for a long position (solid blue and
dotted blue) and short position (solid red and dotted red), front-year
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8. RESULTS

(a) RiskMetrics-n (b) Volatility-adjusted quantile regression

(c) GARCH(1,1)-n (d) GJR-GARCH(1,1)-n

(e) GARCH(1,1)-t (f) GJR-GARCH(1,1)-t

(g) GARCH(1,1)-skew t (h) GJR-GARCH(1,1)-skew t

(i) MSGARCH(1,1)-n (j) MSGARCH(1,1)-t

Figure 12: 99% VaR and ES forecasts with reestimation for a long position (solid blue and dotted
blue), short position (solid red and dotted red), front-quarter
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8. RESULTS

(a) GARCH(1,1)-EVT (b) Vol-corr-adj qreg

(c) CCC-n (d) CCC-t

(e) DCC-n (f) DCC-t

(g) aDCC-n (h) aDCC-t

(i) DCC-EWMA

Figure 13: 99% VaR and ES forecasts with reestimation for a long position (solid blue and dotted
blue), short position (solid red and dotted red), front-quarter
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8. RESULTS

(a) RiskMetrics-n (b) Volatility-adjusted quantile regression

(c) GARCH(1,1)-n (d) GJR-GARCH(1,1)-n

(e) GARCH(1,1)-t (f) GJR-GARCH(1,1)-t

(g) GARCH(1,1)-skew t (h) GJR-GARCH(1,1)-skew t

(i) MSGARCH(1,1)-n (j) MSGARCH(1,1)-t

Figure 14: 99% VaR and ES forecasts with reestimation for a long position (solid blue and dotted
blue), short position (solid red and dotted red), front-year

69



8. RESULTS

(a) GARCH(1,1)-EVT (b) Vol-corr-adj qreg

(c) CCC-n (d) CCC-t

(e) DCC-n (f) DCC-t

(g) aDCC-n (h) aDCC-t

(i) DCC-EWMA

Figure 15: 99% VaR and ES forecasts with reestimation for a long position (solid blue and dotted
blue), short position (solid red and dotted red), front-year
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8. RESULTS

8.4 Interpretation of VaR and ES forecasts

The most volatile period of our out-of-sample forecast window takes place during September 2018. Table

28 exhibit VaR and ES forecasts for a short position in the spread, estimated by procedure (II), for the

days which coincide with the most extreme out-of-sample observations for both the front-quarter and

front-year electricity futures spreads. We note that on 10, September, all models forecast VaR and ES

that is materially lower than the realized P&L. However, we emphasize that at the 99% level, our models

are not expected to capture these extreme dynamics. Naturally, the market shock of 10 September,

causes the 99% VaR and ES forecasts for the subsequent days to inflate notably.

Table 28: Forecast of 99% VaR and ES on extreme events

10 September 2018 13 September 2019︷ ︸︸ ︷ ︷ ︸︸ ︷
Front-quarter

6.02 EUR/MWh

Front-year

5.56 EUR/MWh

Front-quarter

-3.74 EUR/MWh

Front-year

-3.21 EUR/MWh

Model VaR ES VaR ES VaR ES VaR ES

RiskMetrics-n 1.88 2.16 1.10 1.26 -3.76 -4.31 -3.21 -3.68

Vol-adj qreg 1.80 - 1.16 - -2.64 - -1.65 -

GARCH(1,1)-n 1.61 1.84 1.04 1.19 -3.40 -3.89 -3.58 -4.10

GARCH(1,1)-t 1.84 2.29 1.11 1.35 -3.95 -4.92 -3.69 -4.51

GARCH(1,1)-skew t 1.74 2.18 1.12 1.37 -3.71 -4.66 -3.78 -4.61

GARCH(1,1)-EVT 1.72 2.52 1.16 1.56 -3.62 -5.06 -3.61 -4.63

MSGARCH(1,1)-n 1.94 2.24 1.16 1.32 -4.46 -4.87 -2.40 -2.39

MSGARCH(1,1)-t 2.09 2.49 1.20 1.43 -4.43 -4.80 -2.39 -2.41

GJR(1,1)-n 1.65 1.89 1.07 1.22 -3.66 -4.20 -3.73 -4.27

GJR(1,1)-t 1.88 2.33 1.14 1.39 -4.19 -5.22 -3.90 -4.76

GJR(1,1)-skew t 1.78 2.21 1.15 1.40 -3.98 -4.96 -3.92 -4.77

Vol-corr-adj qreg 1.91 - 1.28 - -1.83 - -0.72 -

CCC-n 2.45 2.81 1.45 1.66 -2.90 -3.32 -1.91 -2.19

CCC-t 2.57 3.22 1.56 1.82 -3.13 -3.86 -1.99 -2.44

DCC-EWMA 1.85 2.12 1.28 1.46 -3.32 -3.81 -3.18 -3.64

DCC-n 2.40 2.75 1.48 1.69 -3.09 -3.54 -3.08 -3.53

DCC-t 2.65 3.32 1.54 1.86 -3.24 -4.18 -3.25 -4.00

aDCC-n 2.40 2.75 1.46 1.69 -3.08 -3.54 -3.04 -3.53

aDCC-t 2.62 3.28 1.53 1.94 -3.35 -4.42 -3.13 -3.81

6.02, 5.56, -3.74 and -3.21 EUR/MWh denote the daily P&L on the respective days as seen above.

To interpret the VaR and ES forecasts, it is necessary to consider the level of the spreads. On 10

September, the spreads widened from 4.93 to 11.13 EUR/MWh and 9.95 to 15.51 EUR/MWh for the

front-quarter and front-year spreads, respectively. On 13 September, the spreads narrowed from 10.04

to 6.30 EUR/MWh and 16.20 to 12.99 EUR/MWh, for the front-quarter and front-year spreads, respec-

tively. By entering a short position in the front-quarter spread on the preceding day, and forecast VaR

and ES for September 10, one could infer that VaR corresponds to nearly 50% of the position’s value.

Comparing this to a scenario where the front-quarter spread lies around its peak of 20.56 EUR/MWh

(see Table 3), where GARCH(1,1)-t produce short VaR and ES forecasts of 4.94 and 6.14 EUR/MWh,

respectively, the VaR and ES forecasts indicate losses of approximately 25% of the portfolio for the 99%

quantile. It is thus clear that our proposed framework requires a two-step evaluation to quantify market

risk, by first forecasting VaR and ES, and then by evaluating these in relation to the level of the spread.

71



9. CONCLUSION

9 Conclusion

In this thesis, we have studied tail risk in the spreads of German and Nordic electricity futures prices

for front-quarter and front-year contracts. We have done this by forecasting VaR and ES for a portfolio

consisting of a long position in either of the aforementioned futures contracts, and a short position in the

other contract of the corresponding maturity. The spreads have been modelled from both a univariate and

bivariate perspective. By the univariate approach, we have considered the daily P&L of the spread itself,

calculated as the daily change in the difference of the German and Nordic electricity futures prices. The

bivariate approach involves the daily P&L of both the German and Nordic electricity futures contracts.

The former procedure lends itself directly to the computation of the spreads’ conditional volatility, and

subsequently to VaR and ES estimation. The latter requires the estimation of the conditional volatility for

both series, in addition to the conditional correlation between the German and Nordic electricity futures

prices, to arrive upon portfolio VaR and ES. Conditional volatility has been modelled by RiskMetrics and

GARCH, GJR-GARCH and Markov switching GARCH models, while CCC, DCC and aDCC models

have been utilized to establish conditional correlation. Moreover, VaR has been modelled directly by

volatility-adjusted quantile regression, and by a novel approach which we call volatility and correlation-

adjusted quantile regression. The former has been specified to only include the volatility of the spread

itself and an intercept, whereas the latter incorporates an intercept, the conditional volatility of both

futures P&L, in addition to the correlation between the German and Nordic electricity futures prices.

The volatilities and correlation employed for quantile regression have been estimated by RiskMetrics

and DCC-EWMA. We have considered market shocks from the normal, Student t and skewed Student

t distributions and EVT. All models and their performance for the 95% and 99% quantiles for long

and short positions have been compared by backtesting of unconditional and conditional coverage, in

addition to the dynamical quantile test and an expected shortfall test. This thesis is, to the authors’

knowledge, the first attempt at modelling VaR and ES for electricity futures spreads. Furthermore,

this extends to our approach of modelling the daily P&L of the spread directly, inspired by Alexander

(2008c). Additionally, we have yet to identify an academic treatment of the front-quarter and front-year

German-Nordic electricity futures spreads. Thus, we provide new insight into an apparently neglected

field of research at the intersection of financial econometrics and energy economics.

Financial literature on European energy markets provides evidence of high volatility in electricity fu-

tures prices, leading to frequent and large price movements, which further complicates hedging and

trading. The historical development of the futures spreads in this study conforms with these findings.

The spreads are characterized by substantial price changes and high volatility, which can be attributed

to a combination of market drivers. Moreover, our results support other contributions in suggesting

that the German and Nordic markets are closely related. We find that stationary conditional volatility

and correlations models have explanatory power, indicating that volatility in the P&L of the spread is

mean-reverting over longer periods. This is an important feature which justifies trading and specula-

tion in the spreads. This thesis addresses the question of whether univariate or multivariate portfolio

modelling is most appropriate for forecasting VaR and ES for electricity futures spreads. The findings

of this thesis have several important implications from both academic and practitioner points of view.

As noted by several researchers, multivariate modelling of tail risk does not increase predictive power

compared to univariate modelling for portfolios of few assets, see e.g., Berkowitz and O’ Brien (2002),

Brooks and Persand (2003), Bauwens et al. (2006) and Asai et al. (2006). Our results provide similar

inference, as we find that allowing for time-varying correlation is detrimental to the predictive power

of VaR and ES forecasts. A notable exception of this is the CCC-t model implemented with moving

reestimation, which predicts VaR and ES well for the front-quarter contracts, across all quantiles assessed
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in Section 8. For the univariate GARCH models, we identify a small set of models which consistently

outperform other specifications. Specifically, we find that that GARCH(1,1)-EVT, GJR(1,1)-skew-t and

CCC-t are the three most successful models when forecasting VaR and ES with fixed estimation win-

dow. Furthermore, GARCH(1,1)-t and GARCH(1,1)-skew-t are the two highest-performing models when

forecasting VaR and ES with reestimation. As noted by Steen et al. (2015), volatility-adjusted quantile

regression performs well in estimating in-sample VaR for a wide range of commodities, which did not

include electricity futures. Our research extends on this approach by forecasting VaR out-of-sample for

electricity futures. We show that volatility-adjusted quantile regression gives appropriate forecasts of

VaR for German-Nordic electricity futures spreads. However, we find that our proposed volatility and

correlation-adjusted quantile regression model does not outperform the simpler specification with only

one explanatory variable. For practitioners, which could be traders, market-makers such as Nasdaq and

regulators who impose risk management policies on market-makers, these results are promising. Our

results indicate that the simpler univariate approach, which is considerably less computationally expen-

sive than the bivariate, provide adequate predictive power when forecasting tail risk. Furthermore, the

parsimonious GARCH with symmetric and skewed Student t serves the purpose of forecasting VaR and

ES well. In addition to this, the volatility-adjusted quantile regression, which is easily implemented in

spreadsheet-like environments, can be employed for VaR forecasting. Finally, GARCH with EVT shows

strong performance with regards to ES forecasting. Considering that we in this thesis employ the easily

implemented Hill estimator for EVT, this could complement volatility-adjusted quantile regression and

aid practitioners in establishing a more holistic impression of market risk.

With regards to the potential weaknesses of this study, we highlight that a longer data window is desirable.

This would allow for a larger amount of observations to estimate are models upon, which could result in

more granular backtesting results. The predictive power of all models could then be asserted to a greater

extent, and consequently, ease model selection. We also acknowledge that implementing additional ES

backtests could help differentiate between which models that best estimates ES, e.g. those of Taylor

(2008a) and Taylor (2008b), or by altering the test of McNeil and Frey (2000) to include a two-sided

alternative hypothesis of zero-mean standardized exceedances. There are also other GARCH models

which could be estimated on the dataset used in this thesis. An interesting model would be the APARCH

model, which is found by Giot and Laurent (2003a) to exhibit strong performance in forecasting VaR

for both long and short positions in Brent and WTI crude oil spot prices.

Further studies should aim at facing the challenges described above. As our models achieve predictive

power when estimating the dynamics of the univariate series, i.e. the spreads P&L, this approach could be

evaluated for other spread series. Moreover, an analysis of the fundamental drivers of the German-Nordic

electricity futures spreads could be a fruitful direction for further research. Both regression analysis and

principal component analysis could be possible tools in this respect. The volatility and correlation-

adjusted quantile regression model proposed in this thesis show adequate performance in quantifying tail

risk for German-Nordic electricity futures spreads. This particular specification of quantile regression

could be tested for other data series. Furthermore, an assessment of how volatility and correlation should

be included for this model deserves further research, e.g., by examining whether a non-linear term for the

correlation improves predictive performance. Also, by including additional risk factors as explanatory

variables for quantile regression, such as, e.g., Dahlen et al. (2015), the model is likely to capture the true

risk in these markets better. Another approach for incorporating additional explanatory variables could

be a DCCx model, which allow exogenous factors, such as, e.g., daily import and export of electricity,

to impact correlation. Finally, a study of possible spread trading or hedging strategies, based on the

approach we lay out in this thesis, in European electricity markets is an interesting topic left to future

research.
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Appendices

A Contract tickers

The contract tickers for Nordic and German DS futures are stated in Table 29.

Table 29: Contract ticker specification

Spread series Nordic DS futures German DS futures

Front-quarter ENOQ[Q][YY] EDEBLQ[Q][YY]

Front-year ENOYR[YY] EDEBLYR[YY]

YY and Q refer to the relevant year and quarter, respectively.

For a more extensive overview of the specific terms of the contracts, see Nasdaq (2018).

B GARCH model evaluation

The GARCH models in this article are estimated using maximum likelihood. The maximized value of

the likelihood based on the estimation sample can be used as an indication of the goodness of fit of

different models (Alexander, 2008a). In the following sections, we describe the likelihood-based criteria

used in this study.

B.1 Likelihood ratio (LR)

When extending a GARCH model by adding parameters, the LR test provides a way to judge if the added

parameters are statistically significant (Christoffersen, 2011). If two different models have maximum

likelihood values L0 and L1, and model 0 is a special case of model 1, the likelihood ratio statistic is:

− 2ln(LR) = 2
[
ln(L1)− ln(L0)

]
(89)

Given that model 1 contains model 0, the former will always fit the data better. The test statistic

follows a χ2 distribution with degrees of freedom equal to the number of added parameters in model

1 compared to model 0. The null hypothesis states that the additional parameters in model 1 are

insignificant (Christoffersen, 2011). We have used the LR test to judge if the additional parameter γ in

the GJR-GARCH(1,1) model compared to GARCH(1,1), and DCC-GARCH compared to asymmetric

DCC-GARCH, is statistically significant.

B.2 Information criteria

The Akaike information criterion (AIC) and the Bayesian information criterion (BIC) penalize models

for additional parameters, and can be used as indicators of goodness of fit of different models (Alexander,

2008a). AIC is defined as:

AIC =
1

T

[
2k − 2ln(L)

]
(90)
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where ln(L) is the maximum log likelihood value, k is the number of parameters to be estimated and T

is number of observations in the sample. BIC is defined as:

BIC =
1

T

[
kln(T )− 2ln(L)

]
(91)

The model that offers the lowest value of AIC or BIC is considered to be the best fit, according to these

criteria.

C Estimation of univariate models

C.1 Maximum likelihood estimation with univariate distributions

The parameters in GARCH(1,1) as given in (10) or GJR-GARCH(1,1) as given in (12) are obtained

by MLE based on a distributional assumption. In the following sections, we show the log likelihood

functions of the normal distribution, the standardized Student t distribution and the skewed Student t

distribution.

C.1.1 Normal distribution

We restate (20):

εt = σtzt, zt ∼ i.i.d. N(0, 1) (92)

The density function of the normal distribution is given by the following expression:

f(εt) =
1√

2πσ2
t

e
− (εt)

2

2σ2t (93)

The joint likelihood of the entire sample is specified as:

L =
T∏
t=1

f(εt) =
T∏
t=1

1√
2πσ2

t

e
− (εt)

2

2σ2t (94)

From this, the log likelihood of all observations is given by:

ln(L) =

T∑
t=1

[
− 1

2
ln(2π)− 1

2
ln(σ2

t )− 1

2

ε2
t

σ2
t

]
(95)

σt is the conditional volatility which is modelled by either a GARCH(1,1) model or a GJR-GARCH(1,1)

model. We maximize the expression above and from this we obtain the optimal parameters ω, α, β and

γ.

C.1.2 Standardized Student t distribution

We restate (21):

εt = σtzt, zt ∼ i.i.d. t̃(υ) (96)
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The standardized Student t distribution with υ > 2 has the following density function :

ft̃(εt; υ) =
(

(υ − 2)π
)−1/2

Γ
(υ

2

)−1

Γ
(υ + 1

2

)(
1 +

ε2
t

υ − 2

)− υ+1
2

(97)

The joint log likelihood of the entire sample is given by:

ln(L) = −
T∑
t=1

[
ln(σt) +

(υ + 1

2

)
ln
(

1 + (υ − 2)−1
( εt
σt

)2)]
+ T ln

[(
(υ − 2)π

)− 1
2

Γ
(υ

2

)−1

Γ
(υ + 1

2

)] (98)

where the conditional volatility σt is included to estimate all parameters simultaneously. Again, σt is

modelled by either a GARCH(1,1) model or a GJR-GARCH(1,1) model. We maximize the expression

above and from this we obtain the optimal parameters ω, α, β and γ, along with the υ parameter of the

standardized Student t distribution.

C.1.3 Skewed Student t distribution

We restate (24):

εt = σtzt, zt ∼ i.i.d. Fskew(υ, ξ) (99)

The skewed Student t distribution proposed by Hansen (1994) with υ > 2 and −1 < ξ < 1 has the

following density function:

fskew(εt; υ, ξ) =


BC

[
1 + (Bεt+A)2(

(1−ξ)2(υ−2)
)]− 1+υ

2

, if εt < −A
B

BC
[
1 + (Bεt+A)2(

(1+ξ)2(υ−2)
)]− 1+υ

2

, if εt ≥ −A
B

(100)

We repeat the following definitions:

A = 4ξC
υ − 2

υ − 1
, B =

√
1 + 3ξ2 −A2, C =

Γ(υ+1
2 )

Γ(υ2 )
√
π(υ − 2)

(101)

To estimate the GARCH(1,1) and GJR-GARCH(1,1) models with skewed Student t, we use QMLE

as developed in Bollerslev and Wooldridge (1992). First, we estimate the parameters included in the

GARCH models ( ω, α, β and γ) by maximizing the log likelihood function assuming normal distribution

(95), and from this we obtain standardized daily P&L, zt. Then we treat zt as a regular random variable,

and thus implicitly assume that conditional variance is estimated without error. Then we estimate the υ

and ξ parameters in the skewed Student t distribution by maximizing the log likelihood function stated

below:

ln
(
fskew(εt; υ, ξ)

)
=


ln(BC)− ( 1+υ

2 )ln

(
1 + (Bzt+A)2(

(1−ξ)2(υ−2)
)), if zt < −A

B

ln(BC)− ( 1+υ
2 )ln

(
1 + (Bzt+A)2(

(1+ξ)2(υ−2)
)), if zt ≥ −A

B

(102)

ln(L) =

T∑
t=1

ln
(
fskew(εt; υ, ξ)

)
(103)

In general, the QMLE method will give consistent but inefficient estimates. We choose to use QMLE to
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make the numerical optimization easier, and thus we trade trade theoretical asymptotic parameter effi-

ciency for practicality (Christoffersen, 2011). Nevertheless, using this approach compared to estimating

all parameters simultaneously is not likely to represent an issue in our application of the results.

C.2 Estimation of Markov switching GARCH

We estimate the Markov switching GARCH models by maximizing the log likelihood function of the

density, which we obtain by integrating over the state variable st. Let the vector Ψ encompass all

parameters across the two regimes {1, 2}. Also, let the conditional density of εt+1 in state st = k be

denoted by fD(εt+1 | st+1 = k, Ψ̂, It). The discrete representation of the density integral from (49) is

repeated:

f(εt+1 | Ψ̂, It) =

2∑
i=1

2∑
j=1

πi,jηi,tfD(εt+1 | st+1 = j, Ψ̂, It) (104)

where ηi,t−1 refers to the filtered probability of state i at time t− 1, and pi,j is the transition probability

of moving from state i to state j. The filtered probabilities can be written in the following way as stated

in (50):

ηi,t = P [st = i | Ψ, It] (105)

The filtered probabilities are obtained via the Hamilton filter. See Hamilton (1989) and Hamilton (1994)

for details. The likelihood function is then expressed as:

ln(L) = ln
( T∏
t=1

f(εt | Ψ̂, It−1)
)

(106)

This expression can be combined with the log likelihood of the normal distribution in (95) or the log

likelihood of the Student t distribution in (98) to estimate all required parameters simultaneously.

D Estimation of bivariate models

D.1 Two-step estimation of DCC-GARCH and asymmetric DCC-GARCH

The parameters in the DCC-GARCH and asymmetric DCC-GARCH models are estimated using a two-

step approach. In step one, we estimate two univariate GARCH(1,1) models - one for daily P&L on the

German futures contract and one for daily P&L on the Nordic futures contract. From this, we obtain

two sets of GARCH parameters - ωGER, αGER and βGER, as well as ωNOR, αNOR and βNOR. In the

case of the Student t distribution, we also obtain υGER and υNOR in the first step of the estimation

procedure.

From the GARCH(1,1) models, we calculate zt, which is the 2 × 1 vector of standardized daily P&L.

Then we move on to the second step of the estimation procedure, where we maximize the log likelihood

function of a bivariate distribution while keeping the two sets of GARCH parameters fixed. From this,

we obtain the DCC parameters α, β and γ. In the case of the bivariate Student t distribution, we also

obtain υ in the second step.

We note that when estimating a DCC model with bivariate normal distribution in step two, we use

univariate normal distribution in each GARCH(1,1) model in step one. Similarly, when estimating a
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DCC model with bivariate Student t distribution in step two, we use univariate Student t distribution

in each GARCH(1,1) model in step one.

Engle (2002) showed that the two-step approach gives consistent estimates under the assumption of

multivariate normal distribution. The disadvantage of this method is, as for QMLE, that estimates are

not fully efficient. However, Bauwens and Laurent (2005) argue that this is not relevant for forecasting

VaR. They also show that the two-step procedure gives very similar estimates compared to one-step

estimation with multivariate Student t.

The first step is accomplished by maximizing the log likelihood functions in (95) or (98). In the following

sections, we show the log likelihood functions which are maximized in step two for bivariate standard

normal distribution and bivariate standardized Student t distribution.

D.1.1 Bivariate standard normal distribution

We repeat the following assumption from (68):

εt | It−1 ∼ N(0,Σt = DtΥtDt) (107)

The bivariate standard normal density is given by:

f(zt; Υt) =
1

2π | Υt |1/2
e−

1
2z
′
tΥ
−1
t zt (108)

where | Υt | denotes the determinant of the correlation matrix Υt and Υt is modelled by a DCC model.

The second step of the estimation procedure is performed by maximizing the following expression:

ln(L) =

T∑
t=1

[
− ln(2π)− 1

2
ln
(
| Υt |

)
− 1

2
z
′

tΥ
−1
t zt

]
(109)

From this we obtain the DCC parameters α and β, as well as γ in the case of an asymmetric DCC model.

D.1.2 Bivariate standardized Student t distribution

We repeat the following assumption from (71):

εt | It−1 ∼ t(0,Σt = DtΥtDt, υ) (110)

The density function of the bivariate standardized Student t distribution with υ > 2 is given by:

ft̃(zt; Υt, υ) = C(Υt, υ)

(
1 +

z
′

tΥ
−1
t zt

υ − 2

)− υ+2
2

(111)

where

C(Υt, υ) =
Γ
(
υ+2

2

)
Γ
(
υ
2

)(
(υ − 2)π

)
| Υt |1/2

(112)

The second step of the estimation procedure is performed by maximizing the following expression:

ln(L) =

T∑
t=1

[
ln
(
C(Υt, υ)

)
− υ + 2

2

(
1 +

z
′

tΥ
−1
t zt

υ − 2

)]
(113)
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From this, we obtain the DCC and asymmetric DCC parameters α and β and γ, as well as the υ

parameter of the bivariate standardized Student t distribution.

We note that when estimating the CCC model with bivariate Student t distribution, we still need to

maximize (113) to obtain υ. However, the conditional correlation is constant so we set Υt = Υ.

E Bootstrapping in the Expected Shortfall test

The bootstrapping procedure used in the ES test is explained in detail in Efron (1993). The method

is based on empirically finding an appropriate null distribution of a test statistic, rather than assuming

one. We then compare the test statistic with the bootstrapped test statistic to assess the hypothesis of

zero mean standardized exceedance residuals. We consider the following test statistic:

T (ẑ) =
µ̂ẑ − µẑ

σ̂ẑ√
nẑ

=
µ̂ẑ
σ̂ẑ√
nẑ

(114)

where µ̂ẑ and σ̂ẑ are the mean and standard deviation of the variable we use to test ẑt by bootstrapping,

and nẑ is the number of VaR exceedances. The appropriate null distribution should follow the null

hypothesis. In our case, this is for ẑt to have a zero mean. We define the zero mean variable z̃t = ẑt− µ̂ẑ.
Random bootstrap samples z̃∗ of size nẑ is then drawn from z̃ with replacement. An empirical null

distribution of T is obtained by calculating corresponding test statistics for each sample:

T (z̃∗) =
µ̂z̃∗
σ̂z̃∗√
nz̃∗

=
µ̂z̃∗
σ̂z̃∗√
nẑ

(115)
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F Data

F.1 P&L of front-year contracts

(a) Daily P&L of the front-year spread

(b) Daily P&L of German front-year contracts (c) Daily P&L of Nordic front-year contracts

Figure 16: P&L of spread, German and Nordic front-year contracts
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F.2 Empirical properties of the daily P&L of front-year contracts

Table 30: Empirical properties of the daily P&L of front-year contracts

Contract (Position) 2010 2011 2012 2013 2014 2015 2016 2017 2018

99% empirical quantiles

Spread (Long) -1.8 -1.09 -0.61 -0.57 -0.55 -0.61 -0.78 -0.69 -1.36

Spread (Short) 1.59 1.15 0.53 0.66 0.46 0.58 1.09 0.85 1.42

German (Long) -1.12 -0.96 -0.79 -0.70 -0.46 -0.52 -1.05 -0.85 -1.64

German (Short) 1.29 1.12 0.84 0.70 0.45 0.43 1.23 0.93 2.10

Nordic (Long) -1.89 -1.43 -0.80 -0.90 -0.57 -0.7 -1.22 -1.08 -1.65

Nordic (Short) 2.30 1.26 0.85 0.80 0.60 0.59 1.26 0.90 1.76

Mean conditional on 99% quantile exceedance

Spread (Long) -1.96 -1.23 -0.63 -0.62 -0.65 -0.97 -0.82 -0.75 -2.26

Spread (Short) 2.00 1.37 0.56 0.82 0.53 0.64 1.19 0.94 3.35

German (Long) -1.56 -1.19 -0.96 -0.94 -0.58 -0.62 -1.29 -1.25 -2.7

German (Short) 1.71 1.96 1.00 0.78 0.58 0.49 1.38 1.05 2.43

Nordic (Long) -2.48 -1.67 -0.99 -1.03 -0.60 -0.88 -1.46 -1.67 -2.39

Nordic(Short) 2.63 1.87 1.01 0.91 0.62 1.08 1.27 1.03 2.03

Excess kurtosis

Spread 1.74 0.78 -0.29 0.53 -0.09 6.94 1.82 0.82 25.77

German 1.84 3.54 1.17 1.95 1.70 0.76 0.56 0.92 7.57

Nordic 1.82 1.32 -0.06 0.67 -0.33 5.69 1.43 6.07 2.23

Skew

Spread 0.13 -0.03 -0.23 0.38 -0.23 -1.00 0.64 0.15 2.36

German 0.36 0.91 0.32 -0.08 -0.08 -0.26 0.12 -0.08 -0.87

Nordic 0.08 0.19 0.03 -0.07 0.01 0.70 -0.12 -1.05 -0.4

2019 not included as datasample only runs the first two months
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F.3 Empirical properties of the 95% quantile of the P&L of all contracts,

front-quarter

Table 31: Empirical properties of the 95% quantile of the P&L of all contracts, front-quarter

Contract (Position) 2010 2011 2012 2013 2014 2015 2016 2017 2018

Empirical quantiles

Spread (Long) -2.14 -1.49 -1.12 -0.76 -0.81 -0.68 -0.89 -0.81 -1.40

Spread (Short) 1.85 1.80 1.02 0.80 0.68 0.77 0.95 0.84 1.25

German (Long) -0.74 -0.86 -0.72 -0.50 -0.42 -0.39 -0.82 -0.63 -1.43

German (Short) 1.23 0.88 0.69 0.45 0.35 0.38 1.05 0.77 1.37

Nordic (Long) -1.98 -1.83 -1.19 -0.99 -0.89 -0.89 -0.93 -0.94 -1.57

Nordic (Short) 2.15 1.51 1.07 0.85 0.80 0.85 1.20 0.81 1.44

Mean conditional on 95% quantile exceedance

Spread (Long) -2.86 -1.94 -1.43 -0.97 -0.98 -1.11 -1.21 -1.05 -2.23

Spread (Short) 3.10 2.46 1.44 1.17 0.86 1.10 1.32 1.16 2.36

German (Long) -0.97 -1.20 -1.13 -0.72 -0.65 -0.52 -1.25 -0.78 -2.33

German (Short) 1.45 1.85 0.91 0.57 0.55 0.53 1.42 0.98 2.00

Nordic (Long) -3.24 -2.57 -1.49 -1.26 -1.08 -1.22 -1.52 -1.24 -2.27

Nordic (Short) 3.41 2.55 1.41 1.24 1.00 1.31 1.49 1.09 2.22

2019 not included as datasample only runs the first two months

F.4 Empirical properties of the 95% quantile of the P&L of all contracts,

front-year

Table 32: Empirical properties of the 95% quantile of the P&L of all contracts, front-year

95% empirical quantiles

Spread (Long) -1.00 -0.68 -0.49 -0.41 -0.38 -0.30 -0.54 -0.45 -0.78

Spread (Short) 0.93 0.76 0.35 0.46 0.34 0.37 0.52 0.45 0.71

German (Long) -0.70 -0.70 -0.50 -0.47 -0.33 -0.33 -0.74 -0.57 -1.01

German (Short) 0.86 0.80 0.50 0.49 0.27 0.27 0.81 0.65 1.15

Nordic (Long) -1.18 -0.95 -0.60 -0.58 -0.47 -0.50 -0.79 -0.55 -1.02

Nordic (Short) 1.39 0.85 0.65 0.54 0.40 0.38 0.78 0.51 1.06

Mean conditional on 95% quantile exceedance

Spread (Long) -1.44 -0.93 -0.56 -0.51 -0.47 -0.52 -0.67 -0.58 -1.27

Spread (Short) 1.33 1.01 0.45 0.61 0.42 0.51 0.88 0.67 1.46

German (Long) -1.00 -0.93 -0.69 -0.65 -0.44 -0.45 -0.96 -0.80 -1.63

German (Short) 1.19 1.16 0.72 0.62 0.42 0.37 1.07 0.84 1.61

Nordic (Long) -1.67 -1.31 -0.75 -0.78 -0.53 -0.67 -1.06 -1.01 -1.46

Nordic (Short) 1.93 1.27 0.77 0.69 0.55 0.64 1.10 0.75 1.47

2019 not included as datasample only runs the first two months
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F.5 Histogram and QQ-plot of front-year contracts

(a) Histogram of daily P&L of the spread (b) QQ-plot of daily P&L of the spread against
quantiles from the normal distribution

(c) Histogram of daily P&L of German contracts (d) QQ-plot of daily P&L of German contracts against
quantiles from the normal distribution

(e) Histogram of P&L of Nordic contracts (f) QQ-plot of daily P&L of Nordic contracts against
quantiles from the normal distribution

Figure 17: Histogram and QQ-plot of P&L of front-year contracts. Spread (black), German (blue) and
Nordic (red). The P&Ls are standardized using GARCH(1,1)
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F.6 Scatterplots per year of P&L of German and Nordic contracts, front-

quarter

(a) 2010 (b) 2011 (c) 2012

(d) 2013 (e) 2014 (f) 2015

(g) 2016 (h) 2017 (i) 2018

Figure 18: Scatterplots of daily P&L of Nordic and German front-year contracts per calendar year,
with a Nordic on German regression line. Red ellipse is 95% contour of a bivariate normal distribution
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F.7 QQ-plots of in-sample P&L, front-quarter

(a) Spread daily P&L vs Normal quantiles (b) Spread daily P&L vs Student t quantiles

(c) Spread daily P&L vs skewed Student t quantiles (d) Spread daily P&L of spread vs EVT quantiles

(e) German daily P&L vs normal quantiles (f) German daily P&L vs Student t quantiles

(g) Nordic daily P&L vs normal quantiles (h) Nordic daily P&L vs Student t quantiles

Figure 19: QQ-plots - P&L of front-quarter Spread, and German and Nordic futures prices by using a
GARCH(1,1)-n and plotted vs selected distribution quantiles
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F.8 QQ-plots of in-sample P&L, front-year

(a) Spread daily P&L vs Normal quantiles (b) Spread daily P&L vs Student t quantiles

(c) Spread daily P&L vs skewed Student t
quantiles

(d) Spread daily P&L of spread vs EVT quantiles

(e) German daily P&L vs normal quantiles (f) German daily P&L vs Student t quantiles

(g) Nordic daily P&L vs normal quantiles (h) Nordic daily P&L vs Student t quantiles

Figure 20: QQ-plots - Standardized P&L of front-year Spread, and German and Nordic futures prices
by using a GARCH(1,1)-n and plotted vs selected distribution quantiles
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F.9 Histogram of P&L, front-quarter

F.9.1 Histogram of spread P&L, front-quarter

(a) 2010 (b) 2011 (c) 2012

(d) 2013 (e) 2014 (f) 2015

(g) 2016 (h) 2017 (i) 2018

Figure 21: Histogram of front-quarter spread P&L per year, with an overlay from the normal
distribution (solid black)
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F.9.2 Histogram of German P&L, front-quarter

(a) 2010 (b) 2011 (c) 2012

(d) 2013 (e) 2014 (f) 2015

(g) 2016 (h) 2017 (i) 2018

Figure 22: Histogram of front-quarter German P&L per year, with an overlay from the normal
distribution (solid black)
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F.9.3 Histogram of Nordic P&L, front-quarter

(a) 2010 (b) 2011 (c) 2012

(d) 2013 (e) 2014 (f) 2015

(g) 2016 (h) 2017 (i) 2018

Figure 23: Histogram of front-year Nordic P&L per year, with an overlay from the normal distribution
(solid black)
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F.10 Histogram of P&L, front-year

F.10.1 Histogram of spread P&L, front-year

(a) 2010 (b) 2011 (c) 2012

(d) 2013 (e) 2014 (f) 2015

(g) 2016 (h) 2017 (i) 2018

Figure 24: Histogram of front-year spread P&L per year, with an overlay from the normal distribution
(solid black)
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F.10.2 Histogram of German P&L, front-year

(a) 2010 (b) 2011 (c) 2012

(d) 2013 (e) 2014 (f) 2015

(g) 2016 (h) 2017 (i) 2018

Figure 25: Histogram of front-year German P&L per year, with an overlay from the normal
distribution (solid black)
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F.10.3 Histogram of Nordic P&L, front-year

(a) 2010 (b) 2011 (c) 2012

(d) 2013 (e) 2014 (f) 2015

(g) 2016 (h) 2017 (i) 2018

Figure 26: Histogram of front-year Nordic P&L per year, with an overlay from the normal distribution
(solid black)
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F.11 95% VaR and ES forecasts with fixed estimation window

(a) RiskMetrics-n (b) Volatility-adjusted quantile regression

(c) GARCH(1,1)-n (d) GJR-GARCH(1,1)-n

(e) GARCH(1,1)-t (f) GJR-GARCH(1,1)-t

(g) GARCH(1,1)-skew t (h) GJR-GARCH(1,1)-skew t

(i) MSGARCH(1,1)-n (j) MSGARCH(1,1)-t

Figure 27: 95% VaR and ES forecasts with fixed estimation window for a long position (solid blue and
dotted blue) and short position (solid red and dotted red), front-quarter
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(a) GARCH(1,1)-EVT (b) Vol-corr-adj qreg

(c) CCC-n (d) CCC-t

(e) DCC-n (f) DCC-t

(g) aDCC-n (h) aDCC-t

(i) DCC-EWMA

Figure 28: 95% VaR and ES forecasts with fixed estimation window for a long position (solid blue and
dotted blue) and short position (solid red and dotted red), front-quarter
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(a) RiskMetrics-n (b) Volatility-adjusted quantile regression

(c) GARCH(1,1)-n (d) GJR-GARCH(1,1)-n

(e) GARCH(1,1)-t (f) GJR-GARCH(1,1)-t

(g) GARCH(1,1)-skew t (h) GJR-GARCH(1,1)-skew t

(i) MSGARCH(1,1)-n (j) MSGARCH(1,1)-t

Figure 29: 95% VaR and ES forecasts with fixed estimation window for a long position (solid blue and
dotted blue) and short position (solid red and dotted red), front-year
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(a) GARCH(1,1)-EVT (b) Vol-corr-adj qreg

(c) CCC-n (d) CCC-t

(e) DCC-n (f) DCC-t

(g) aDCC-n (h) aDCC-t

(i) DCC-EWMA

Figure 30: 95% VaR and ES forecasts with fixed estimation window for a long position (solid blue and
dotted blue) and short position (solid red and dotted red), front-year
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F.12 95% VaR and ES forecasts with reestimation

(a) RiskMetrics-n (b) Volatility-adjusted quantile regression

(c) GARCH(1,1)-n (d) GJR-GARCH(1,1)-n

(e) GARCH(1,1)-t (f) GJR-GARCH(1,1)-t

(g) GARCH(1,1)-skew t (h) GJR-GARCH(1,1)-skew t

(i) MSGARCH(1,1)-n (j) MSGARCH(1,1)-t

Figure 31: 95% VaR and ES forecasts with reestimation for a long position (solid blue and dotted
blue), short position (solid red and dotted red), front-quarter
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(a) GARCH(1,1)-EVT (b) Vol-corr-adj qreg

(c) CCC-n (d) CCC-t

(e) DCC-n (f) DCC-t

(g) aDCC-n (h) aDCC-t

(i) DCC-EWMA

Figure 32: 95% VaR and ES forecasts with reestimation for a long position (solid blue and dotted
blue), short position (solid red and dotted red), front-quarter
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(a) RiskMetrics-n (b) Volatility-adjusted quantile regression

(c) GARCH(1,1)-n (d) GJR-GARCH(1,1)-n

(e) GARCH(1,1)-t (f) GJR-GARCH(1,1)-t

(g) GARCH(1,1)-skew t (h) GJR-GARCH(1,1)-skew t

(i) MSGARCH(1,1)-n (j) MSGARCH(1,1)-t

Figure 33: 95% VaR and ES forecasts with reestimation for a long position (solid blue and dotted
blue), short position (solid red and dotted red), front-year
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(a) GARCH(1,1)-EVT (b) Vol-corr-adj qreg

(c) CCC-n (d) CCC-t

(e) DCC-n (f) DCC-t

(g) aDCC-n (h) aDCC-t

(i) DCC-EWMA

Figure 34: 95% VaR and ES forecasts with reestimation for a long position (solid blue and dotted
blue), short position (solid red and dotted red), front-year
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