
Mobile Robotics in Precision Agriculture
A CAN bus interface implementation of

differential drive and exploration of

localization, pose estimation and autonomous

navigation.

Torgrim Aalvik Lien

Master of Science in Engineering Cybernetics

Supervisor: Jan Tommy Gravdahl, ITK
Co-supervisor: Trygve Utstumo, Adigo AS

Department of Engineering Cybernetics

Submission date: July 2013

Norwegian University of Science and Technology

NTNU Fakultet for informasjonsteknologi,
Norges teknisk-naturvitenskapelige matematikk og elektroteknikk
universitet Institutt for teknisk kybernetikk

Master thesis

Name of the candidate: Torgrim Aalvik Lien

Subject: Engineering Cybernetics

Title: Mobile Robotics in Precision Agriculture
A CAN bus interface implementation of differential drive and exploration of
localization, pose estimation and autonomous navigation.

Background:
Adigo AS is a research partner in the consortium project "Multi-sensory Precision Agriculture"1, and
develop a mobile field robot. The robot has differential drive with two 5kW brushless DC motors and
SevCon Gen4 motor controllers with a CAN Open based interface. The robot will be equipped with a
GPS and an IMU (Inertial Measurement Unit) for localization and pose estimation. The software
architecture of the robot is built on top of ROS2.

The project has two main goals: Develop an interface from ROS to the CANopen motor-controllers,
and move towards autonomous navigation with waypoint following.

Differential drive and CanOpen interface
1. Build a lab setup with two motors and controllers communicating on the same CAN-bus.
2. Control the motors directly by an analogue input, and direct CANopen commands.
3. Develop a ROS package with a node for the motor-controller.
4. Implement and demonstrate differential drive in the lab.
5. Implement and test the differential drive controller on the field robot.

Autonomous Waypoint Navigation
1. Present a brief overview of localization, pose estimation, path-planning for non-holonomic

vehicles and path following.
2. Implement and test the GPS receiver with ROS.
3. Implement and test the IMU sensor with ROS.
4. Demonstrate localization and pose estimation.
5. Implement a path-planning algorithm
6. Perform a demonstration of autonomous waypoint navigation.

The laboratory experiments will be performed at NTNU in cooperation with Adigo, and field test and
full scale experiments will be performed at Adigo in Oppegård.

External advisor: Trygve Utstumo, Adigo AS
Project assigned: January, 2013
To be handed in by: June, 2013

Trondheim, January 2013

Jan Tommy Gravdahl
Professor, supervisor

1 The Norwegian Research Council, Application number: ES464593
Multisensory precision agriculture - improving yields and reducing environmental impact (Researcher project – MATPROGRAMMET)

2 Robotic Operating System, www.ros.org

II

Abstract

A complete setup of sensors, estimators and controllers for autonomous
and manual control of an unmanned differential steered ground vehicle
has been implemented in this paper. The entire system is implemented
in Robot Operative System (ROS) using the open source ROS software
platform FroboMind as a foundation. The system is running on a Ubuntu
12.10 laptop, with the Groovy distribution of ROS.

A reliable CANopen communication for real-time control and monitor-
ing of the motors over a single CAN bus have been deployed, with security
measures for handling loss of connection between the motor controllers and
the computer.

Pose and position estimation using sensor data from wheel odometry,
IMU sensor input and GPS signals has been implemented in an extended
kalman filter.

A scheme for waypoint navigation for has been deployed, with a slow
control loop for calculation of a manifold to ensure that the vehicle reaches
the waypoint with the right heading, and a fast subsystem ensuring that
the robot follows the manifold.

Due to inaccuracy of the compass and the IMU, the position and pose
estimator struggles a bit with the heading accuracy. This can be im-
proved greatly by a better calibration of the IMU. Since we are using a
stand alone GPS receiver, the accuracy of the position is in the range 2-3
meters, the accuracy of the estimators can not be more accurate. By using
another GPS receiver as a base unit, the accuracy may be improved to a
few cm.

The waypoint navigation works really well until the vehicle is close to
the waypoint, where the inaccuracies of the position estimator leads to
big changes in the parameters in waypoint navigation algorithm. This is

III

IV

solved by introducing a parking algorithm that ensures a smooth parking
of the vehicle.

Sammendrag

En platform av sensorer, estimatorer og kontrollere for b̊ade autonom og
manuell styring av et ubemannet bakkekjøretøy (UGV) har blitt imple-
mentert i denne oppgaven. Hele systemet er implementert i Robot Opera-
tive System(ROS). Programpakken FroboMind, et sett av åpen kildekode
ROS programmer laget for feltroboter har blitt brukt som fundament
for systemet. Systemet kjører p̊a en Ubuntu 12.10 laptop, med Groovy
ditribusjonen av ROS.

En p̊alitelig CANopen kommunikasjon mellom to motorkontrollere og
datamaskinen med sikkerhetsprosedyrer for h̊andtering av brudd i kom-
munikasjonen CAN bus er opprettet. All CAN kommunikasjon foreg̊ar
over en enkelt CAN bus.

Informasjon fra en GPS mottaker, kompasset i en IMU-enhet og m̊alinger
av hastighet fra hjulene kombineres i et ulineært Kalman filter for esti-
masjon av kjøretøyets posisjon,hastighet og retning.

Autonom kontroll av kjøretøyet er implementert i en rutepunktsnavi-
gasjonsalgoritme. Algoritmen best̊ar av to kontrolløkker,en treg kontroller
som regner ut et manifold som sikrer at kjøretøyet n̊ar rutepunktet. Og
en raskere kontroller som regner ut krummingen p̊a veibanen til kjøretøyet
som sikrer at kjøretøyet følger manifoldet inn til rutepunktet. Det er alts̊a
ikke snakk om å planlegge en optimal rute, for s̊a å følge den, men heller
å bruke vektorfelt som ”dytter” kjøretøyet i m̊al.

Da det kun brukes en GPS mottaker uten noen form for korreksjon her,
er nøyaktigheten p̊a posisjonen s̊apass lav at usikkerheten til posisjonen
blir p̊a flere meter. For praktisk bruk, m̊a en form for korreksjon imple-
menteres. Kalibrering av IMU-enheten har ogs̊a vist seg å være vanskelig,
da det er mange elementer p̊a kjøretøyet som forstyrrer jordens magnet-
felt. Dette gjør at Kalmanfilteret sliter litt med retningsestimatet n̊ar

V

VI

kjøretøyet svinger, men det korrigerer seg fort etter å ha kjørt rett fram
noen meter.

Rutepunktsnavigasjonen fungerer godt n̊ar avstanden til rutepunktet
er stor, men jo nærmere m̊alet en kommer, jo større innvirkning p̊a kon-
trolleren har unøyaktighetene fra posisjons- og retningsestimatet. Dette
har blitt løst ved å introdusere en egen parkeringsalgoritme som tar over
n̊ar kjøretøyet er under 1 meter fra rutepunktet.

Preface

There are many people who deserves my deepest gratitude for the help
offered on this project. I would like to start by thanking my co-supervisor
Trygve Utstumo at Adigo, for always being available to assist me and
being a good friend. I have spent several weeks working in the offices at
Adigo, and I am really grateful for the way everyone there has made me
feel welcome. Lars Molstad deserves my thanks for providing me with
a place to work and do field tests at the Norwegian University of Life
Sciences in Aas. Kjeld Jensen at the University of Southern Denmark,
has offered great assistance in implementation of FroboMind, he deserves
my thanks, both for the assistance he has provided me, and for developing
a great open source platform that I have found very helpful. Jan Tommy
Gravdahl, my supervisor here at NTNU also deserves my gratitude. His
calm nature has really helped in what would normally be a stressful period.
I have always felt more calm and confident after our meetings, even when
he has stressed that i should start writing some more on my paper.

VII

VIII

In loving memory of Egil Lien

X

Contents

1 Introduction 1

2 Theory 3

2.1 Mathematical modeling . 3

2.2 CANopen protocol . 5

2.3 Vehicle location and pose estimation 12

2.4 Waypoint Navigation . 16

3 Hardware 19

3.1 MotEnergy ME0970 electric motor 19

3.2 Sevcon gen4 motor controller 19

3.3 Septentrio polaRx2 gps receiver 21

3.4 Microstrain 3DMG-GX3-25 IMU 21

4 Software 23

4.1 ROS . 23

4.2 FroboMind . 24

5 Implementation 27

5.1 CAN communication . 27

5.2 Laboratory Setup . 27

5.3 ROS implementation . 28

5.4 Vehicle pose and position estimation 28

5.5 Waypoint Navigation . 32

6 Results and evaluation 39

6.1 Laboratory setup . 39

6.2 CANopen integration . 39

XI

XII Contents

6.3 GPS integration . 42
6.4 IMU integration . 42
6.5 Wheel odometry . 43
6.6 Pose Estimation . 43
6.7 Waypoint Navigation . 43

7 Conclusion 51
7.1 Further Work . 52

Bibliography 52

Appendix 54
A Data sheets . 55
B Header Files . 63

Chapter 1

Introduction

As a part of the consortium project ”Multi-sensory Precision Agriculture”
1Adigo A/S works with Bioforsk and The University in Aas on a un-
manned ground vehicle for effective N2O-measurements. The UGV mea-
sures N2O emissions by soil cover methods. Traditional soil cover methods
are labourous and requires a lot of big instruments. Hence robotic solu-
tions are needed for the project. Adigo has developed a UGV made for
holding all the sensory equipment for measuring N20 emissions.

Before this project started the robot was controlled manually by an
operator with a joystick connected directly to the motor controllers of
the vehicle. In order to make a unmanned vehicle, the control of the
vehicle is to be done via the CAN interface of the controller. To monitor
position, orientation and speed of the vehicle, along with data from the
wheel odometry, available sensors are a Septentrio PolaRx2 gps receiver
and a Microstrain 3DM-GX3 inertial measurement unit.

In this project a system for controlling the vehicle both manual via an
wireless Xbox 360 controller and autonomous via a waypoint finding algo-
rithm will be implemented. All software will be implemented in ROS, an
open source pseudo operative system for robotic applications. FroboMind,
a set of open source ROS packages made for field robots developed at the
University of Southern Denmark and other universities and companies in
Denmark, will be used as a platform for the system.

As a core of the system a ROS node for handling transmission and

1The Norwegian Research Council, Application number: ES464593
Mutisensory precision agriculture - improving yields and reducing environmental impact
(Researcher project - MATPROGRAMMET

1

2 Chapter 1: Introduction

reception of CANopen messages from the motor. The motor controllers
are set to control the motors via an internal PI loop for controlling the
speed directly, so for controlling the motors, our system will send reference
speeds to the controllers. The reference speeds are either decided by an
input from the joystick or by a waypoint navigation controller.

For position estimation an extended Kalman filter, combining mea-
surements from wheel odometry, gps and IMU will be implemented.

The waypoint navigation algorithm used is an algorithm that calcu-
lates the curvature of the path to follow according to the position and
orientation of the vehicle relative to the position and orientation of the
waypoint. It does not plan a path and tries to follow this path, rather it
follows a manifold leading to the waypoint.

Testing of the system will be made at the Norwegian University of Life
Sciences in Aas.

This project is a built on a previous project ”Motor Control For Precision
Agriculture - A CAN bus interface implementation”(Lien, 2012).

Chapter 2

Theory

2.1 Mathematical modeling

2.1.1 Kinematic model of the vehicle

The differential steered vehicle is simple in its dynamics. The two driving
wheels move independent of each other and the rate of turning is decided
by the difference in speed of the two wheels.

The kinematics of the vehicle is straight forward

ω =
vright − vleft
dwheels

(2.1)

v =
1

2
(vright + vleft) (2.2)

3

4 Chapter 2: Theory

Figure 2.1: Vehicle from above

2.2 CANopen protocol 5

2.2 CANopen protocol

CANopen is the internationally standardized (EN 50325-4) CAN based
higher-layer protocol for embedded control systems. CAN defines the
physical and data layer of OSI level(OSI), CANopen implements the OSI
layers from the CAN interface and up to the application layer. The
CANopen protocol provides a set of protocols to configure, control and
supervise nodes in an embedded network.

Figure 2.2: The CANopen protocol covers both the network, transport,
session and presentation layer

2.2.1 The CANopen object dictionary

The CANopen Object Dictionary is the core of the CANopen protocol. Its
basically a grouping of parameters and objects accessible via the network
via predefined messages. Each object in the object dictionary is dressed by
a 16 bit index and an 8 bit subindex. All writing and reading of parameters

6 Chapter 2: Theory

are done via the object dictionary. Making this the interface between the
CAN messages and the application interface.

Figure 2.3: All parameters are set and read from the CANopen Object
Dictionary

The object dictionary is divided in several index ranges. Objects in
range 0x1000 to 0x1FFF is the same for every CANopen device. This is
the communication object area, where parameters for message handling
and setup of different CANopen messages are made. Objects in the range
0x2000 to 0x5FFF and 0x6000 to 0x9FFF describe the application be-
havior of the device, these objects the manufacturers are free to arrange
however desirable.

Index Description

0x0000 reserved
0x0001-0x025F Data Types
0x0260-0x0FFF reserved
0x1000-0x1FFF Communication object area
0x2000-0x5FFF Manufacturer specific area
0x6000-0x9FFF Device profile specific area
0xA000-0xBFFF Interface profile specific area
0xC000-0xFFFF reserved

Table 2.1: Index ranges in CANopen Object Dictionaries.

2.2 CANopen protocol 7

2.2.2 Protocols

Network management (NMT) protocols

A CANopen device can be in four different states; Initialization, PreOp-
erational, Operational and Stopped. To switch between these states a
network management state machine is used. The device working as a
NMT master sends NMT messages initiating state changes. Support for
the NMT slave state machine is a requirement for all CANopen devices.

Figure 2.4: NMT state machine

The NMT messages uses COB-ID 0x00, giving them the highest prior-
ity of all the messages sent on the CAN bus. The NMT message consists of
one single CAN data frame containing 2 bytes of data. The first byte holds
which state to go to, and the second byte holds which node to respond to
the message by changing its state. If the byte identifying the node is set
to zero, all the nodes on the network will act upon the message.

For creating a safe critical system, heartbeats are set up. The heart-
beats are used to check the presence of nodes in the network and to verify
that they are working correctly. The heartbeat message are sent cyclic
with a predefined time interval from the heartbeat producer, it is assigned

8 Chapter 2: Theory

with CAN-identifier 0x700+NodeID and contains one byte of data. The
data byte contains the state of the node. The heartbeat consumer has a
consumer time gap stored in it dictionary, if the consumer fails to receive
a heart beat within this time frame, a event will be generated.

Service Data Object (SDO) protocol

Service data objects are allowed to access any entry of the CANopen ob-
ject dictionary. The SDO protocol is a confirmed communication service,
which means it is a two-way communication. One SDO consists of two
CAN data frames with different CAN-IDs, following a SDO a peer-to-peer
client-server connection between two nodes can be established, making it
possible to send any number of data in a segmented way. Therefore SDO
is primarily used for sending configuration data.The node holding the ac-
cessed object dictionary is the server for the SDO. The device accessing
the object dictionary is the client. So when sending configuration data
from a PC to a CANopen device the device works as a server, and the PC
as a client during the SDO.

There are three different variants of the SDO protocol; expedited trans-
fer, normal transfer and block transfer. A normal transfer is initiated by
a SDO message sending a request to write or read a number of bytes, the
node holding the object dictionary written to or read from then sends a
response to the request, if granted, segments of 7 bytes will be sent, each
segment followed by a confirmation message from the receiver.

Confirmation of every CAN message sent takes time, to speed up the
transfer of large amounts of data, block transfer may be used. This works
as normal a normal transfer, but instead of sending a response to every
CAN message containing data, a confirmation will only be sent after a
block of data segments (max 127 segments).

For small amounts of data, the easiest and quickest way to send data
is by expedited transfer. Here the SDO message initiating the connection
also transfers the data. In expedited transfer the maximum amount of
data sent is 4 bytes.
A CANopen device can support up to 128 SDO server channels, and up
to 128 SDO client server channel. Each channel may be configured by
writing valid COB-IDs to the related SDO parameter set. Each channel
holds two COB-IDs, one server-to-client COB-ID and one client to server
COB-ID.

2.2 CANopen protocol 9

The parameters of the first SDO server channel is predefined and
must be the same for all CANopen devices. This channel uses COB-
ID (0x600+node ID) for client-server and COB-ID (0x580+node ID) for
server-client.

Process Data Object (PDO) protocol

Process Data Objects are short high-priority CAN messages transmitted
in a broadcast. These messages are sent in an unconfirmed manner, which
means that there is no acknowledgement that the messages has been re-
ceived by any node in the network (CiA). The high priority of the messages
makes the suitable for sending real time data.

A PDO message consists of one single CAN frame and is able to send 8
bytes of data. Within these 8 bytes up to 8 data objects can be mapped,
depending of the size of the data sent in each mapping. Transmission
of PDOs are configured in the Transfer PDO (TPDO) and receive PDO
(RPDO) slots in the data object dictionary.

When a PDO message is sent the producer sends a message corre-
sponding to the information configured in the TPDO communication and
mapping parameters stored in the data object library. If a node is sup-
posed to support reception of this message, the RPDO communication and
mapping parameters in the object dictionary of this node is set to recog-
nize the CAN-ID of the message and how the received data is structured
and stored in its object dictionary.

A PDO can be triggered by different events. It can be triggered by
a remote transmission request CAN-message (RTR), a SYNC message or
by device-internal events. Remotely triggered PDOs can be triggered by a
RTR CAN SYNC triggered messages can be used for sending cyclic data.

RPDO communication is arranged in data object dictionary index
0x1400-0x15FF, RPDO mapping is arranged in 0x1600-0x17FF. TPDO
communication is arranged in data object dictionary index 0x1800-0x19FF,
TPDO mapping is arranged in 0x1A00-0x1BFF.

Synchronization Object (SYNC)

The synchronization object is message sent periodically to trigger syn-
chronous events. It consists of a single CAN frame with ID 0x80. The
purpose of the SYNC message is to trigger messages that are set to send
synchronously, typically PDO messages containing real-time data from a

10 Chapter 2: Theory

Figure 2.5: Transmission of a PDO message. How TPDO configuration
sets up the transmitted message, and RPDO configuration sets up the
interpretation of the message when received

2.2 CANopen protocol 11

node. SYNC messages does not carry any data, but devices that support
CiA 301 version 4.1 or higher may provide an 1 byte counter to the SYNC
message. The SYNC protocol uses a producer/consumer communication.
There is one node in the network that works as a producer, and several
consumers. After the SYNC message is sent there is a time window where
synchronous PDOs are sent. Both the length of this window and the in-
terval between SYNC messages can be set to whatever value best suits the
system. The COB-ID, SYNC interval and SYNC window length of the
SYNC message is set in objects 0x1005-0x1007 in the data object library.

Emergency Object (EMCY) protocol

Emergency messages are triggered by internal failures in the CANopen
devices. Whenever an internal failure is discovered within a device, this
device sends an EMCY message with information of the failure. The error
message consists of one CAN frame containing the eight byte of data.
The data contains 1 byte Error register (read from object 0x1001 of the
object dictionary), a 2 byte Emergency error code, and up to 5 bytes of
manufacturer-specific error information. The EMCY message is only sent
when the error occurs. As long as no more errors occurs no more EMCY
messages will be sent. By default the COB-ID of an Error message is 0x80
+ its node ID.

Time stamp object (TIME) protocol

All nodes with an internal clock needs to synchronize the clock with each
other. One node in the network (TIME producer) sends its local time
to the other nodes (TIME consumers), and the other nodes adjusts their
local clock to this time. The default CAN identifier of a TIME message
is 0x100. It contains 6 bytes of data, containing the number of days since
January 1st 1984 and number of milliseconds since midnight.

12 Chapter 2: Theory

2.3 Vehicle location and pose estimation

This chapter will discuss techniques of determining the position and ori-
entation of a vehicle, what data we have available from our sensors, and
how this information can be combined in a Kalman filter for estimating
the position of the vehicle.

2.3.1 Dead Reckoning

Dead reckoning is the process of calculating one’s current position using a
previously determined position, orientation and rate of travel. The model
of motion is derived from the vehicle kinematics. The position is deter-
mined by integration of the vehicle’s linear and angular velocity.

Measurements usually comes from some sort of odometry, typically
from encoders on the wheels. Wheel encoders offers a high sampling rate
and accuracy of the rotational speed of the wheels. Although a highly
accurate measurement of the speed of each wheel does not necessarily
provide a good representation of the speed and turning of the vehicle. Er-
rors come from inaccurate modeling of the kinematics of the vehicle, such
as inaccurate model parameters for wheel diameter and wheel distance.
And also, most important, slipping of the wheels (the UGV is going to
drive on slippery fields, so a lot of slip is to be expected). Errors in the
position and orientation estimate accumulates, and grows large and un-
trustworthy with time. But for short time intervals dead reckoning gives
a good estimate of both position and orientation. To improve the orien-
tation estimate an inertial measurement unit can be used for finding the
orientation of the vehicle, using gyroscopes and accelerometers for measur-
ing rotational and linear velocities, and magnetometers using the earth’s
magnetic field to measure the heading of the vehicle. The magnetome-
ters are prune to disturbances from ferromagnetic materials and magnetic
fields induced from the electric equipment on the vehicle. Electric motors
generates a strong magnetic field, and may cause great disturbance to the
heading measurement.

2.3.2 GPS

To avoid drifting due to the accumulative nature of dead reckoning. The
position estimate must be updated with measurements of the position.
For outdoor systems the most used system for this is global positioning
system. GPS sensors measures it’s position by triangulating on signals

2.3 Vehicle location and pose estimation 13

sent from satellites with a known position.

2.3.3 Kalman Filtering

Since its introduction in 1960(Kalman, 1960), the Kalman (or Kalman-
Bucy) filter is widely used for state estimation. The Kalman filter is an
algorithm that combines a series of measurements and a model of the
system behavior to produce estimates of the states that are better then
using only one of the measurements.

The filtering algorithm works in two steps, the prediction step and the
measurement step. In the prediction step, the algorithm estimates the
states and the states uncertainty based on the input of the system and
the system dynamics. In the measurement step the estimates are updated
according to the accuracy of the measurement and previous estimate. The
higher the accuracy of an estimate or measurement is the higher this is
weighted.
In discrete time a linear system can be described by

xk = Φxk−1 + Bkuk + wk (2.3)

zk = Hkxk + vk (2.4)

where

� xk is the state of the system

� uk is the control input

� Φk is the state transition model between xk−1 and xk

� Bk is the control input model

� wk is the process noise, assumed to be mean 0 multivariate normal
distribution.

� Zk is the observation of the system

� Hk is the observation model of the system

� vk is the measurement noise, assumed to be mean 0 gaussian white
noise, and having zero cross correlation with process noise wk

14 Chapter 2: Theory

Let x̂k denote the estimate of the state vector x, and ek denote the esti-
mation error.

ek = xk − x̂k (2.5)

The goal of the filter is to minimize the estimation error. And by intro-
ducing

Pk = E[eke
T
k] = cov(xk − x̂k) (2.6)

Prediction step

The prediction step of the filter uses the system kinematics to project
ahead and estimate a new state x−

k+1 from a previously estimated state,

and from the new state calculate a new covariance matrix P−
k+1.

x−
k+1 = Φkx̂k (2.7)

The new estimation error is then

e−k+1 = xk − x̂k
= (Φkxk + wk)−Φkx̂k

= Φkek + wk (2.8)

From this we get a new estimate for the covariance matrix

P−
k+1 = E[e−k+1e

−T
k+1]

= E[(Φkek + wk)(Φkek + wk)
T]

= (ΦkPkΦ
T
k + Qk) (2.9)

x−
k = Φkxk−1 + Bk (2.10)

P−
k = ΦkPk−1Φ

T
k + ΓkQkΓ

T
k (2.11)

Update Step

To improve the estimate, the estimate is updated using the measurement
zk, and a new covariance matrix is calculated.

x̂k = x̂−
k + Kk(zk −Hkx̂

−
k) (2.12)

2.3 Vehicle location and pose estimation 15

Figure 2.6: Sequential loop in the Kalman filter

PK = E[(xk − x̂k)(xk − x̂k)
T]

Pk = (I−KkHk)P
−
k (I−KkHk)

T + KkRkK
T
k (2.13)

Here the blending factor Kk is introduced, determining how much a mea-
surement is to influence the a posteriori state. It can be shown that the
optimal Kk for minimizing Pk called the Kalman Gain (Brown, 1997) is
given by

Kk = P−
k HT

k [HkP
−
k HT

k + Rk]
−1 (2.14)

With the optimal Kalman gain 2.14, the expression for the covariance 2.13
can be expressed as

Pk = [I−KkHk]P
−
k (2.15)

These steps are repeated in a sequential loop, illustrated in figure 2.6

2.3.4 Extended Kalman Filtering

The original Kalman filter works on linear systems. A lot of extensions
has been developed for handling nonlinear systems. One of these is the
Extended Kalman Filter.

Consider the system

ẋ = f(x,ud, t) + u(t) (2.16)

16 Chapter 2: Theory

z = h(x, t) + v(t) (2.17)

where f and h are known linear functions, and ud is the control input of
the system. Let Fk and Hk be the Jacobian matrices of f and h:

Hk =
δh

δx
x̂−
k (2.18)

Fk =
δf

δx
x̂−
k (2.19)

Then it can be shown that the filtering algorithm of the extended Kalman
filter is as follows(Ribeiro, 2004)

x̂−
k = fk(x̂k−1) (2.20)

P̂−
k = Fk(P̂k−1)F

T
k + Qk (2.21)

2.4 Waypoint Navigation

The word navigation is derived from the Latin navas, ”ship” and agere,
”to drive” (Fossen, 2010). It is an older skill than recorded history and
has abled mankind to reach an populate every corner of the world. Given
an initial position and orientation, and a goal position and orientation,
the goal of waypoint navigation is to calculate a way to reach the goal in a
sensible way. Usually this is done in two steps, first an optimal path from
the initial position to the goal is calculated, and then a control scheme
for making the vehicle follow this path is deployed. The optimal path
can be derived in several ways, and may or may not include avoidance of
obstacles.

Another tactic for waypoint navigation is to calculate a manifold that
ensures that the waypoint is reached. In such a approach to waypoint
navigation, no path is planned. The controller only keeps track of the
vehicle position and orientation relative the waypoint. This is described
in greater detail in section 5.5

2.4.1 Path planning

Calculating the best path to a waypoint depends on several factors, such
as minimizing the distance traveled, assuring a smooth path, avoiding
obstacles, while allways taking in account the physical constraints of the
vehicle.

2.4 Waypoint Navigation 17

2.4.2 Path following

The principle of path tracking is to employ a controller that ensures that
the vehicle follows a given path. Figure 2.7 shows the principle of path
tracking, where e shows the position error of the vehicle and θe is the
directional error of the vehicle. Let ω denote the agular velocity of the
vehicle and vc denote the linear velocity, then the dynamics of e and θe
can be described by (

ė

∆̇θ

)
=

(
vcsin(∆θ)

ω

)
(2.22)

The Lyapunov function candidate

V =
1

2
(θ2e + e2) (2.23)

V̇ = θeθ̇e + eė

= e(vcsin(θe)) + θeω (2.24)

To achieve stable path following, a control law must be deployed to satisfy

V̇ ≤ 0∀θe, e (2.25)

Where the equality only holds if θe = 0 and e = 0

18 Chapter 2: Theory

Figure 2.7: Path tracking

Chapter 3

Hardware

3.1 MotEnergy ME0970 electric motor

The lab setup consists of two MotEnergy ME0970 permanent magnet AC
(PMAC) motors. The motors are equipped with UVW encoders for mea-
suring the rotation of the motors.

3.1.1 PMAC motors

A permanent magnet AC motor is different from an induction motor in
that it has a permanent magnet on the rotor. There are only windings
creating a electrical induced magnetic field on the stator. Permanent
magnet fields are permanent and not subject to failure, except in extreme
cases of abuse and demagnetization by overheating (Murphy, 2012). The
magnets of the ME0907 are rated to max 150◦C.

The magnetic field in set up by the stator is set up by three sinusoidal
waves with a 120◦offset. The windings of each of the inputs are set up so
so they create a magnetic flux field with an angle of 120◦on the others.
This results in magnetic flux lines that seems to rotate in the stator, which
applies a momentum on the magnets in the rotor, making it rotate.

Since the magnetic field of the stator is constant one needs to know
the orientation of the rotor to be able to control the motor. Therefore a
motor controller that is able to control an PMAC motor needs an UVW
encoder signal or a sin/cos resolver signal.

3.2 Sevcon gen4 motor controller

The motor controller used in this project is a Sevcon Gen4 size 2 motor
controller. The Sevcon Gen4 controller is a controller designed to control

19

20 Chapter 3: Hardware

Figure 3.1: Three phase motor

both PMAC motors and AC induction motors. The controller is equipped
with multiple motor feedback options. An absolute UVW-encoder input,
an absolute Sin/Cos encoder input and an Incremental AB encoder input.
Inputs and outputs includes 8 digital inputs, 2 analog inputs, 3 contac-
tor/solenoid outputs and 1 encoder supply output. The controller has a
built-in CAN controller and a CANopen interface, which will be used for
communication to the computer in this assignment. For controlling the
motor the controller has two built in PI controllers, one for controlling
the current through the motor, and if one choses to control the motor in
speed mode, a PI loop for controlling the speed of the motor.

3.2.1 UVW Encoder

The motor comes with a Hall sensor based UVW encoder for providing an-
gular information of the motor. The output of a UVW encoder resembles
the output of a quadrature AB encoder. It generates digital signals that
switch as the motor rotates. A UVW encoder generates three digital sig-
nals. The pulses generated on each signal are 120 electrical degrees out of
phase. Making it possible to read the speed of the rotation, the direction
of the rotation and the orientation of the rotor. The MotEnergy ME0907
has 4 poles, so one revolution of the motor results in 360*4 = 1440 electri-
cal degrees. Because of the low resolution of the UVW encoder (1440/120

3.3 Septentrio polaRx2 gps receiver 21

= 12 pulses per revolution for the MotEnergy motor), the UVW encoder
is not very well suited for operations at low speed.

3.3 Septentrio polaRx2 gps receiver

The gps used on the vehicle is a Septentrio polaRx2 gps receiver. This is
an industrial high end gps receiver, with posibility pair up one as rover
unit, and one as a base unit for improving the accuracy of position down
to a few centimeters. The data of this receiver is not freely available,
even the datasheet from the manufactor is not available to read without
logging in to their webpage. Therefore I will not go into detail describing
the specifications of this receiver. Communication with the receiver will
be done via standard NMEA GPGGA messages via a RS-232 interface.

3.4 Microstrain 3DMG-GX3-25 IMU

The Microstrain 3dmg-GX3 is a gyroscope enhanced IMU (inertial mea-
surement unit). It combines a triaxis accelerometer, with a triaxis gyro-
scope, a triaxis magnetometer and temperature sensors for calculation of
its orientation, oritational speed and linear acceleration. The controller
communicates with the PC via USB providing euler angles, rotational ma-
trices, deltaAngle, deltaVelocity, acceleration- and angular rate vectors.
The data

The triaxis magnetometer uses the magnetic field of the earth to de-
termine its heading relative the nort-east reference system. The UGV
is equipped with a lot of electrical equippment, including two electro-
magnetic motors generating their own magnetic fields. This will cause a
disturbance to the earths magnetic field used by the IMU to determine its
heading. Therefore this has to be taken in consideration when mounting
the IMU.

22 Chapter 3: Hardware

Chapter 4

Software

4.1 ROS

ROS is an open-source robot operating system developed at Stanford Uni-
versity and the University of Southern California. ROS is not an operat-
ing system in the traditional sense of process managment and scheduling
(Quigley et al., 2009). It provides a communication layer on top of the
host operating system of a computer. The communication layer provided
by ROS consists of nodes, messages, topics and services.

Nodes are processes that perform computation and communicates with
other nodes. A system usually consists of many nodes. The term ”node”
comes from how ROS systems are visualized at runtime, as it is conve-
nient to visualize the peer-to-peer communications as a graph, with the
processes as nodes and the peer to peer links as arcs (Quigley et al., 2009).
Nodes can be programmed in both C++ and python, and a node written
in C++ can communicate with a node written in python and vice versa.

Communication between the nodes are done by passing messages. Mes-
sages are strictly typed data structures. A message can consist of standard
primitive types, and arrays of primitive types and constants. A message
can also hold other messages and arrays of other messages, nested arbi-
trarily deep.

A message is published to a topic, a string identifying the message. The
node receiving messages subscribes to the topic of a message. And appro-
priate callback functions are made for handling the data in the message
when received. There may be multiple nodes publishing and subscrib-
ing to messages with the same topic at the same time. The topic-based
transmission of messages is non-synchronous, meaning the publisher of the

23

24 Chapter 4: Software

message does not know whether or not its message has been received.
For synchronous parsing of data, services are used. A service consists

of a string name and a set of strictly typed messages, one for the request
and one for the response. Only one node can advertise a service of one
given name.

ROS is open source, so a lot of packages are available online. With
support for a lot of different sensors, actuators and other hardware.

4.2 FroboMind

FroboMind is a software platform for field robotics research developed
implemented in ROS at the University of Southern Denmark. The goal of
FroboMind is to standardize software among different field robots, and to
optimize the software for reliability, modularity, extensibility, scalability
and code reuse(Nielsen et al., 2011).

FroboMind is based on an intuitive decomposition of a simple decision
making agent. Through sensors and feedback from the robot platform, the
robot perceives the environment and combines this with a’ priori knowl-
edge and shared knowledge. This knowledge and user interaction is con-
tinously monitored by the mission planner, making decisions towards the
fulfillment of the mission.

4.2 FroboMind 25

Processing

Extracting

Sensors

Executing

Controlling

Actuating

Environment

Mission Planning Behaviour

Stimuli

Data

Information

Knowledge Plans

Commands

Signals

State

P
er

ce
pt

io
n

A
ct

io
n

Decision making

Field Robot

Figure 4.1: Decomposition of a simple decision making agent in Frobo-
Mind (Nielsen et al., 2011)

26 Chapter 4: Software

Chapter 5

Implementation

5.1 CAN communication

The communication with the motor controller is made via the CAN bus,
using the CANopen protocol. This is implemented in the CAN Message
Handler node(CANMsgHandler.cpp). This is a multithreaded node with
one thread reading from the rx buffer of the IXXAT USB2CAN compact
CAN controller. And a main thread writing to the tx buffer of the CAN
controller. Writing and reading of messages are achieved by using the
embedded control interface library from IXXAT. Vehicle speed commands
are sent as TPDOs from the laptop to the controller every 50 ms. And
various data from the controller are recieved by the controller via RPDOs
i.e motor speed, current through the motor and temperatures. PDO con-
figuration is set up in the motor controller using the configuration software
DVT manager, provided by Sevcon.

5.2 Laboratory Setup

In (Lien, 2012) a single motor, single motor controller setup was made.
For this project this setup is extended, to two motors and two motor
controllers communicating via the same CAN-bus. This to simulate the
differential steered vehicle. The motors are set up in an welded iron casing.
The rotors of the motors are facing each other, so that it will be possible
for later projects to run physical tests of the motors, coupling the rotors
of the two motors together.

Two motors require twice the amount of current as one. The power
supply used in (Lien, 2012) was working at the limit of what it could
withstand. So for this setup four 12V motor cycle batteries in series where

27

28 Chapter 5: Implementation

used as a power supply. Unfortunately, one of the motors have been
damaged in an earlier experiment. This damage has caused great friction
in the motor, therefore it needs a significantly higher current to run. The
wiring of the lab setup is not thick enough to withhold currents of such
a magnitude. Thus a minimal amount of testing of the motors have been
made in the lab setup.

5.3 ROS implementation

The system consists of a total of 10 ROS nodes.

� serial string node reads raw string data via the serial port.

� nmea to gpgga converts the strings read from serial string node to
GPGGA format

� gpgga to tranmerc converts GPGGA data to data on a transverse
mercator representation of the position.

� joy node reads data from the Xbox360 wireless controller.

� microstrain 3dmgx3 node reads data from the IMU.

� CAN communication Handles CAN communications, holds all infor-
mation about the states of the motors.

� differential odometry calculates wheel odometry based on the speed
of each motor.

� pose estimator calculates an estimate of pose position by kalman
filtering

� robot track map provides a real time plot of pose and position

� waypoint controller is where the waypoint navigation is implemented.

Figure 5.2 shows how the different nodes communicate with each other

5.4 Vehicle pose and position estimation

From the sensors of the vehicle there are three sources of information
available:

� The rpm measured by the UVW encoder of each motor

5.4 Vehicle pose and position estimation 29

Figure 5.1: Schematic overview of the laboratory setup

30 Chapter 5: Implementation

Figure 5.2: ROS nodes and messages transmitted in the system

5.4 Vehicle pose and position estimation 31

� IMU data

� GPS data

These are combined to provide an estimate of the pose and position of the
vehicle.

Wheel odometry

The wheel odometry is calculated in the FroboMind node differential odometry,
a ROS node for calculating the wheel odometry of differential steered ve-
hicles. The node takes in encoder ticks from the motor and calculates the
odometry according to the distance of the driving wheels, and its diam-
eter. Since the Sevcon Gen4 motor controller does not provide encoder
ticks via the CAN bus, the rpm information from the motor controller
are converted to virtual encoder ticks before being sent from the CAN
Message Handler node.

Kalman Filter

The FroboMind node pose 2d estimation combines wheel odometry gps
data and IMU data in an Kalman filter to provide an estimate of position
and orientation of the vehicle. The filter is still in development, so I have
made a few changes to work around some flaws. The filter has three states,
x and y position and heading.xk+1

yk+1

θk+1

 =

xk + vkcos(θk)
xk + vksin(θk)

θ + ωkT

 (5.1)

Then according to 2.19 and 2.20

Fk =

−vksin(θk)
vkcos(θ)
ωk

 (5.2)

The information from these sources are combined in an Extended
Kalman Filter explained in section 2.3.4 for estimating the pose, speed
and orientation of the vehicle.

32 Chapter 5: Implementation

5.5 Waypoint Navigation

Since the goal of this this UGV is to reach given waypoints at with a given
heading, the path the robot follows is not of great importance. It just has
to arrive at the given point with the given heading. In order to achieve a
smooth path with minimal stress on the actuators and other components
of the robot, an algorithm for autonomous wheel chairs purposed by (Park
and Kuipers, 2011) is implemented.(

ṙ

θ̇

)
=

(
−vcos(δ)
v
r sin(δ)

)
(5.3)

δ̇ =
v

r
sin(δ) + ω (5.4)

The system is divided into two subsystems. A slow subsystem (5.3),
the position of the vehicle. And a fast subsystem (5.4) controlling the
angle δ of the vehicle.

5.5.1 Slow system dynamics

For the slow subsystem the Lyapunov function candidate is considered.

V =
1

2
(r2 + θ2) (5.5)

V̇ = (rṙ + θθ̇) = −rvcos(δ) +
v

r
θsin(δ) (5.6)

Using
δ = arctan(−k1θ) (5.7)

as a virtual control gives the following derivative of the Lyapunov function
candidate

V̇ = −rvcos(arctan(−k1θ)) +
v

r
θsin(arctan(−k1θ)) (5.8)

Since v ≥ 0 and r ≥ 0 by definition and

cos(arctan(−k1θ)) > 0∀ ∈ (−π, π]

sgn(sin(arctan(−k1θ))) = −sgn(θ∀ ∈ (−π, π]

(5.8) is stricktly less than zero everywhere but r=0. Hence r=0 is
asymptotically stable.

5.5 Waypoint Navigation 33

5.5.2 Fast system dynamics

For the fast system a feedback control is developed. Let z denote the
difference between the actual state δ and the desired value arctan(−k1θ)

z = δ − arctan(−k1θ)

ż =
v

r
sin(δ)− −k1

1 + (k1θ)2
θ̇ + ω

(5.9)

ż = θ̇ + ω +
−k1

1 + (k1θ)2
θ̇

ż = (1 +
−k1

1 + (k1θ)2
)
v

r
sin(z + arctan(−k1θ)) + ω

(5.10)

In order to achieve an exponetially stable system we want the following
solution.

εż = −z (5.11)

By chosing

ω = −v
r

(k2z + (1 +
k1

1 + (k1θ)2
sin(z + arctan(−k1θ))) (5.12)

we achieve
ż = −k2

v

r
z (5.13)

Where ε = r
k2v

. Consider τ = r
v denoting the smallest time to which the

slow subsystem can reach the goal. Then we have ε = τ
k2

. By choosing
k2 >> 1 the fast subsystem will be sufficiently faster than the slow sub-
system.
In the original coordinates the control law (5.12) is written as

ω = −v
r

(k2(δ − arctan(−k1θ)) + (1 +
k1

1 + (k1θ)2
sin(δ)) (5.14)

Note that ω is linearly dependent of the speed v of the vehicle. Let R
denote the radius of the turn. Then the curvature of the path is defined
by κ = 1

R , which again can be written as κ = ω
v . The curvature of the

path from this control law is then

κ = −1

r
(k2(δ − arctan(−k1θ)) + (1 +

k1
1 + (k1θ)2

sin(δ)) (5.15)

34 Chapter 5: Implementation

The speed of the vehicle does not affect the path it follows, so the speed
is a free variable for the designer to chose (as long as it is positive). For
a smooth motion of the robot we want it to slow down when turning and
speed up when going straight. A control law fulfilling this is

v =
1

1 + β|κ|λ
(5.16)

This will also ensure v → 0 as r → 0 since κ→∞ as r → 0. One problem
however, is that if the vehicle drives straight forward towards a goal, κ = 0
just until r = 0. So to achieve a smooth parking of the vehicle a different
control law for the velocity is deployed when the vehicle is close to the
target.

vparking = vmaxk3r (5.17)

For a smooth transition the smallest of the two velocities will override
the largest at all time.

5.5.3 How each parameter influences the controller

As one can see from the feedback law

ω = −v
r

(k2(δ − arctan(−k1θ)) + (1 +
k1

1 + (k1θ)2
sin(δ)) (5.18)

The parameter k1 affects how much θ influences the path of the robot. As
seen in figure 5.3 a the smaller k1 is the more directly towards the goal
position the trajectory will go. As by increasing it, the trajectory will be
smoother and ensure that when the vehicle nears the goal, it is already
heading in the right direction. The parameter k2 only affects which degree
the vehicle will stay at the most optimal path according to the slow sub
system. As seen in the graph where k1 = 0.1 we can se that chosing a
to low k1 will prevent the vehicle from ending reaching the goal at the
right orientation. Since ω is linearly dependent on the vehicle speed v,
the vehicle will not turn when v=0, and v → 0 when r → 0. So k1 has to
sufficiently large to ensure θ → 0 as r → 0.
Another thing to consider is how this control scheme handles internal
modelling errors of the vehicle. Say that there is some offset between the
real angular velocity of the vehicle and the one the controller sets as an

5.5 Waypoint Navigation 35

input. To test this a plot has been made where the real ω is as much as
50% lower than the input set by the controller. As figure 5.4 shows, this
will not prevent the vehicle of reaching the goal pose. Althoug the vehicle
will not be able to follow the optimal path given by the controller.

36 Chapter 5: Implementation

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

goal=(10,10,0)

goal=(10,0,0)

goal=(10,−10,0)

goal=(0,−10,0)

goal=(−10,−10,0)

goal=(−10,0,0)

goal=(−10,0,0)

goal=(0,10,0)

k1 = 1, k2 = 5

−20 −15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

goal=(10,10,0)

goal=(10,0,0)

goal=(10,−10,0)

goal=(0,−10,0)

goal=(−10,−10,0)

goal=(−10,0,0)

goal=(−10,0,0)

goal=(0,10,0)

k1 = 3, k2 = 5

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

goal=(10,10,0)

goal=(10,0,0)

goal=(10,−10,0)

goal=(0,−10,0)

goal=(−10,−10,0)

goal=(−10,0,0)

goal=(−10,0,0)

goal=(0,10,0)

k1 = 1, k2 = 15

−15 −10 −5 0 5 10 15
−10

−8

−6

−4

−2

0

2

4

6

8

10

goal=(10,10,0)

goal=(10,0,0)

goal=(10,−10,0)

goal=(0,−10,0)

goal=(−10,−10,0)

goal=(−10,0,0)

goal=(−10,0,0)

goal=(0,10,0)

k1 = 0.1, k2 = 30

Figure 5.3: Trajectories with the proposed control law with different
values for k1 and k2. The poses are given as (x, y, θP) where θP is the
orientation of the vehicle. The initial pose of the vehicle is at (0,0,0) for
every trajectory

5.5 Waypoint Navigation 37

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

Figure 5.4: How an offset between real and calculated ω influences the
trajectory of the path. Blu striped lines shows how the vehicle would move
without any modelling errors. Red solid lines show how the trajectory of a
vehicle where the real world ω is 50% lower than the one of the controller.

38 Chapter 5: Implementation

Chapter 6

Results and evaluation

6.1 Laboratory setup

As one of the motors are damaged a minimum of testing with the lab-
oratory setup was made. As seen from figures 6.1 and 6.2 the amount
of current drawn from the damaged motor is peaks at over 100A, while
the non-damaged motor peaks at less than 6A. The PI controllers of both
motors are configured with the same parameters, but it is obvious that
the controller is extremely bad tuned for the damaged motor due to the
increased friction. I tried to do some tuning of the PI controller of the
damaged motor. Because of the heat developed in the wiring lead to smoke
and melting isolation, I decided to quit the tuning due to security reasons.

6.2 CANopen integration

Transmission and reception of PDO messages works according to the re-
quired specifications for control of the vehicle. Speed commands are sent
from the computer at 20Hz and motor speeds are read at rate of 40Hz.
Methods for sending and receiving SDO messages are made, these are not
used in this project, but will be really useful later for developement of con-
figuration tools. The state of each motor controller are monitored via the
Heartbeat messages. As a security measure the motors are programmed
to stop and go neutral if no PDO messages are received for 500ms. So if
for some reason the computer looses connection to the motor controllers,
the vehicle will come to a stop declaring a PDO message timeout fault.

39

40 Chapter 6: Results and evaluation

Throttle input

Motor speed ω

Motor current Iq

Figure 6.1: Throttle input, motor speed and motor current for the func-
tioning motor

6.2 CANopen integration 41

Throttle input

Motor speed ω

Motor current Iq

Figure 6.2: Throttle input, motor speed and motor current for the dam-
aged motor

42 Chapter 6: Results and evaluation

Figure 6.3: Variation of GPS position when vehicle stands still

6.3 GPS integration

The gps position is feched by reading the standard NMEA GPGGA mes-
sages over a serial port. Figure 6.3 shows a plot of the gps position, when
the vehicle is at a stand still for about three minutes. As you can see the
position varies with almost two meters. Something to expected when using
only one gps antenna for determining position. No matter how fine tuned
the controller is, it is impossible to guarantee a greater precision than the
precision of the gps, for further work it is desirable to use some form of
correctional signals to improve the accuracy of the gps. The Septentrio
PolaRx 2e is capable of using one receiver as a base station, and another
as a rover. Tests done at Adigo, have shown that such a setup can give
an accuracy of a few centimeters.

6.4 IMU integration

Some problems have occured when implementing the IMU. The unit has
been calibrated with Microstrain’s own calibration tool 3DM-GX3 Iron
Calibration. But still I have not been able to calibrate it perfectly, so
there is a discrepancy between the angle read from the IMU and the real
angle. The offset of the IMU angle and the real angle of the sensor varies

6.5 Wheel odometry 43

with the orientation of the sensor, and in worst case it looked like it was
as much as 6-7 degrees. However it seems like the offset is fairly constant
at each angle, so it should be possible to get a better calibration. Or if
that fails it should be possible to make a software solution to the problem,
adding or subtracting a correction the IMU angle based on the IMU angle.

6.5 Wheel odometry

The path derived from the odometry of the vehicle is really accurate when
there is no slip. Since this is a vehicle that is to drive on fields that may
or may not be slippery, it is difficult to know how reliable these readings
are. A wet surface greatly increases the slip of the wheels, so does tall
grass and vegetation. When the surface is both wet and the grass is tall,
the wheel odometry is so unreliable it is almost useless.

6.6 Pose Estimation

Figure 6.4 shows the kalman filtered position along with the gps position
of the vehicle when it follows a path where it does two donuts. Figure
6.5 shows the path derived from the wheel odometry in the same scenario.
When this test was done, the surface was fearly dry and the grass was
short, so the wheel odometry is quite reliable in this scenario. Initially
the pose is off because of an error in the initial guess of pose and position.
After a while the filter gets the path on the right track. It is also wort
noticing that the position estimation is better when the vehicle is heading
west than when the vehicle is heading east. This might be a result of the
varying offset of the IMU described in section 6.4.

6.7 Waypoint Navigation

Plots of two different scenarios are presented in this section. One where
the waypoint is behind the starting point, and one where the waypoint is
in front of the starting point.

6.7.1 First scenario

In the first plot the waypoint is about 12 m west of the starting point of the
vehicle. The reference heading of the vehicle is straight east. The initial
heading of the robot is also pointing east, so the goal is behind the vehicle.
As seen in 6.6 the robot path goes around the waypoint and approaches
it from the west ensuring that the heading of the robot is correct as it
approaches the waypoint. In the beginning you can see that the vehicle

44 Chapter 6: Results and evaluation

Figure 6.4: Kalman filtered position (red) and gps position (red)

Figure 6.5: Postion from wheel odometry alone

6.7 Waypoint Navigation 45

Figure 6.6: Kalman filtered position (red), gps position(black) and
goal(middle of the green vehicle)

overturns and follows a non-optimal path, this is because the kalman filter
is not initialized before the robot starts to drive, and the initial guesses are
of. As the vehicle has driven for some time the kalman filter approaches
correct values, and the vehicle from then on follows a path that fits the
control scheme.

6.7.2 Second scenario

In figure 6.7 the waypoint is north-east of the starting point, the reference
heading is straight east and the initial heading of the vehicle is east. This
shows the worst case scenario of the parking algorithm, and its weakness.
The parking algorithm is supposed to continue driving as long as the
distance to the waypoint decreases, here a small jump in the GPS position
when it is just less than 1m from the goal makes it believe it has passed
the waypoint.

6.7.3 Problems when approaching goal

As seen in figures 6.8 and 6.9 both δ and θ are prune to great variations as
r → 0. Therefore using a control scheme that utilizes these variables when
the vehicle is close to the goal would lead to a very jumpy and unstable

46 Chapter 6: Results and evaluation

Figure 6.7: Kalman filtered position (red), gps position(black) and
goal(middle of the green vehicle)

6.7 Waypoint Navigation 47

Figure 6.8: The controller variable δ, in the first scenario

control, and not ensure that θ → 0 and θ → 0.

48 Chapter 6: Results and evaluation

Figure 6.9: The controller variable θ in the first scenario

Figure 6.10: The controller variable δ, in the second scenario

6.7 Waypoint Navigation 49

Figure 6.11: The controller variable θ in the second scenario

50 Chapter 6: Results and evaluation

Chapter 7

Conclusion

Using ROS as a platform for the entire system, a CANopen interface for
realtime control and monitoring of a two motor, two motor controller ve-
hicle using a single CAN bus has been implemented. Applications for
reading sensor data from an IMU and a GPS receiver are made for pro-
viding data to an extended kalman filter for pose and position estimation.
Using the estimated pose and position, a waypoint navigation algorithm
has been deployed for autonomous control of the vehicle. Manual control
via a wireless Xbox 360 controller is made ensuring a simple and accurate
control of the vehicle.

The entire systems consists of 10 different ROS nodes communicating
with each other via ROS messages. The ROS platform has proved to
be a stable platform, during hours and hours of testing, we have not
experienced a single system crash. The FroboMind platform has proven
to be a good choice for the system, with a logical and easy to understand
hierarchy, and several built in functions, easing the work of implementation
of sensors and control nodes.

The pose and position estimators suffers from an inacurate IMU and
GPS, but works well enough for the UGV to drive smoothly. With a better
calibrated IMU and a base-rover configuration of the GPS the work a lot
better.

The waypoint navigation ensures that the estimated position of the
vehicle ends up at maximum 1m (worst case) from the waypoint. But
usually the estimated position ends up well within 40cm of the waypoint.
With a better working pose and position estimator, this could be improved
greatly.

51

52 Chapter 7: Conclusion

7.1 Further Work

Eventually this system will be made for navigating through fields with
row cultures. In order to navigate along the rows,the system needs to be
equipped with cameras for visual sensing. Visual sensing will also open
for obstacle detection, now the system does not have any form of obstacle
detection or obstacle avoidance scheme. This is something that needs
to be implemented in the future, for safe operations, and operations in
non-open environments.

The purpose of this system is to drive around on fields making envi-
ronmental measurements. To be able to do this the measurement system
needs to be controlled via the system developed in this paper. Implemen-
tation of ROS nodes to initiate measurements, and initiate navigation to
the next waypoint once the measurements are done, are required. Lower-
ing and rising of the measurement chambers are done via two relays. The
Sevcon gen4 has two unused relay outputs, making it easy to implement
a control of the relays.

Bibliography

Open system interconnection model, iso 7498-1.

Stanley A Brown. Introduction to random signals & applied kalman fil-
tering with matlab exercises & solutions 3e sol. 1997.

CiA. http://www.can-cia.org/index.php?id=153.

Thor I Fossen. Guidance and control of marine craft, 2010.

Rudolph Emil Kalman. A new approach to linear filtering and prediction
problems. Journal of basic Engineering, 82(1):35–45, 1960.

Torgrim Aalvik Lien. Motor control for precision agriculture - a can bus
interface implementation. 2012.

Jim Murphy. Understanding ac induction, permanent magnet and servo
motor technologies: Operation, capabilities an caveats, 2012.

Søren Hundevadt Nielsen, Anders Bøgild, Kjeld Jensen, and Keld Kjærhus
Bertelsen. Implementations of frobomind using the robot operating sys-
tem framework. In NJF Seminar 441 Automation and System Technol-
ogy in Plant Production, volume 7, pages 10–14, 2011.

Jong Jin Park and Benjamin Kuipers. A smooth control law for graceful
motion of differential wheeled mobile robots in 2d environment. In
Robotics and Automation (ICRA), 2011 IEEE International Conference
on, pages 4896–4902. IEEE, 2011.

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source
robot operating system. In ICRA workshop on open source software,
volume 3, 2009.

53

54 Bibliography

Maria Isabel Ribeiro. Kalman and extended kalman filters: Concept,
derivation and properties. Institute for Systems and Robotics, pages
1–43, 2004.

A Data sheets 55

Appendix

A Data sheets

The Gen4 range represents the latest design in
compact AC Controllers. These reliable
controllers are intended for on-road and off-road
electric vehicles and feature the smallest size in
the industry for their power capacity.

Thanks to the high efficiency it is possible to
integrate these controllers into very tight spaces
without sacrificing performance. The design has
been optimised for the lowest possible installed
cost while maintaining superior reliability in the
most demanding applications.

AC MOTOR CONTROLLER

• Advance flux vector control
• Autocheck system diagnostic
• Integrated logic circuit
• Hardware & software failsafe watchdog

operation
• Supports both PMAC motor and AC

induction motor control
• Integrated fuse holder
• IP66 protection

FEATURES

Gen4

MULTIPLE MOTOR FEEDBACK OPTIONS

Gen4 provides a number of motor feedback possibilities from a range of hardware
inputs and software control, allowing a great deal of flexibility.

• Absolute UVW encoder input
• Absolute Sin/Cos encoder input
• Incremental AB encoder input

INTEGRATED I/O

Gen4 includes a fully-integrated set of inputs and outputs (I/0) designed to handle
a wide range of vehicle requirements. This eliminated the need for additional
external I/O modules or vehicle controllers and connectors.

• 8 digital inputs
• 2 analogue inputs (can be configured as digital)
• 3 contactor/solenoid outputs
• 1 encoder supply output - programmable 5V or 10V

OTHER FEATURES

• A CANopen bus allows easy interconnection of controllers and devices
such as displays and driver controls.

• The CANbus allows the user to wire the vehicle to best suit vehicle layout
since inputs and outputs can be connected to any of the controllers on
the vehicle and the desired status is passed over the CAN network to the
relevant motor controller.

• The Gen4 controller can dynamically change the allowed battery current
by exchanging CAN messages with a compatible Battery Management
System.

• Configurable as vehicle control master or motor slave.

86

305
170

78

168 227

71

187 151

KEY PARAMETERS

CONFIGURATION TOOLS

Sevcon offers a range of configuration tools
for the Gen4 controller, with options for
Windows based PC or calibrator handset unit.
These tools provide a simple yet powerful
means of accessing the CANopen bus for
diagnostics or parameter adjustment. The
handset unit features password protected
access levels and a customized logo start-up
screen.

Gen4

Sevcon Ltd Kingsway South
Gateshead NE11 0QA England
T +44 (0191) 497 9000
F +44 (0191) 482 4223
sales.uk@sevcon.com

Sevcon Inc 155 Northboro Road
Southborough MA01772 USA
T +1 (508) 281 5500
F +1 (508) 281 5341
sales.us@sevcon.com

Sevcon SAS Parc d’Activité
du Vert Galant Rue Saint Simon
St Ouen l’Aumône
95041 Cergy Pontoise Cedex France
T +33 (0)1 34 30 35 00
F +33 (0)1 34 21 77 02
sales.fr@sevcon.com

Sevcon Japan K.K.
Kansai Office 51-26 Ohyabu Hikone
Shiga Japan 522-0053
T +81 (0) 7 49465766
jp.info@sevcon.com

Sevcon Asia Ltd
Room No.202 Dong-Ah Heights Bldg
449-1 Sang-Dong Wonmi-Gu
Bucheon City Gyeounggi-Do
420-816 Korea
T +82 32 215 5070
F +82 32 215 8027
sales.kr@sevcon.com

follow @Sevcon

Germany: IXXAT Automation GmbH, Leibnizstr. 15, 88250 Weingarten, info@ixxat.de, www.ixxat.de
USA: IXXAT Inc., 120 Bedford Center Road, Bedford, NH 03110, sales@ixxatusa.com, www.ixxat.com

USBtoCAN Interface

USBtoCAN compact Intelligent lowcost CAN
interface for the USBPort

The USBtoCAN compact is a lowcost,
active CAN interface for connection to the
USB bus. The 16bit microcontroller system

enables reliable, lossfree transmission and reception of
messages in CAN networks with both a high transmission
rate and a high bus load. In addition, messages are provided with a timestamp and can be filtered and buffered
directly in the USBtoCAN compact. The module can also be used as a master assembly, e.g. for CANopen
systems. Together with the universal CAN driver VCI, supplied with the delivery, the USBtoCAN compact
allows the simple integration of PCsupported applications into CAN systems.

Combining an extremely attractive price with compact construction, the USBtoCAN compact interface is ideal
for use in series products and in conjunction with the canAnalyser for development, service and maintenance
work.

Technical Data
PC bus interface USB, version 2.0 (full speed)

Microcontroller Infineon C161U

CAN controller SJA 1000

CAN bus
interface

ISO 118982, Sub D9 connector or RJ45 connector according to CiA
3031

Power supply Provided by USB port, 250 mA typ

Galvanic
isolation

optional (1 kV, 1 sec.)

Temperature
range

20 ºC ... +80 ºC

Certification CE, FCC, CSA/UL, IEC 609501:2005 (2nd Edition) / EN 609501:2006 +
A11:2009

Size 80 x 45 x 20 mm

Contents of delivery
 USB CAN Interface
 User's manual
 CAN driver VCI for Windows 2000, XP, Vista, Windows 7
 Simple CAN monitor "miniMon"

Order number

1.01.0087.10100 USBtoCAN compact (SUBD9 plug)

1.01.0087.10200 USBtoCAN compact (SUBD9 plug); with galvanic isolation

1.01.0088.10200 USBtoCAN compact (RJ45 plug); with galvanic isolation

LORD PRODUCT DATASHEET

The 3DM-GX3® -25 is a high-performance, miniature Attitude
Heading Reference System (AHRS), utilizing MEMS sensor
technology. It combines a triaxial accelerometer, triaxial gyro, triaxial
magnetometer, temperature sensors, and an on-board processor
running a sophisticated sensor fusion algorithm to provide static and
dynamic orientation, and inertial measurements.

System Overview
The 3DM-GX3® -25 offers a range of fully calibrated inertial
measurements including acceleration, angular rate, magnetic field,
deltaTheta and deltaVelocity vectors. It can also output computed
orientation estimates including Euler angles (pitch, roll, and heading
(yaw)), rotation matrix and quaternion. All quantities are fully
temperature compensated and are mathematically aligned to an
orthogonal coordinate system. The angular rate quantities are further
corrected for g-sensitivity and scale factor non-linearity to third order.
The 3DM-GX3® -25 architecture has been carefully designed to
substantially eliminate common sources of error such as hysteresis
induced by temperature changes and sensitivity to supply voltage
variations. Gyro drift is eliminated in AHRS mode by referencing
magnetic North and Earth’s gravity and compensating for gyro bias.
On-board coning and sculling compensation allows for use of lower
data output rates while maintaining performance of a fast internal
sampling rate.

The 3DM-GX3® -25 is initially sold as a starter kit consisting of an
AHRS module, RS-232 or USB communication and power cable,
software CD, user manual, and quick start guide.

3DM-GX3 -25
Miniature Attitude Heading Reference System

Features & Benefits
Best in Class

 precise attitude estimations
 high-speed sample rate & flexible data outputs
 high performance under vibration

Easiest to Use
 smallest, lightest industrial AHRS available
 simple integration supported by SDK and comprehensive API

Cost Effective
 reduced cost and rapid time to market for customer’s
applications
 aggressive volume discount schedule

Applications
Accurate navigation and orientation under dynamic conditions such as:

Inertial Aiding of GPS
Unmanned Vehicle Navigation
Platform Stabilization, Artificial Horizon
Antenna and Camera Pointing
Health and Usage Monitoring of Vehicles
Reconnaissance, Surveillance, and Target Acquisition
Robotic Control
Personnel Tracking

®

459 Hurricane Lane,
Suite 102
Williston, VT 05495 USA
www.microstrain.com

ph: 800-449-3878
fax: 802-863-4093
sales@microstrain.com

LORD Corporation
MicroStrain® Sensing Systems

3DM-GX3 -25 Miniature Attitude Heading Reference System®

IMU Specifications
 Accels Gyros Mags

Measurement range ±5 g ±300°/sec ±2.5 Gauss

Non-linearity ±0.1 % fs ±0.03 % fs ±0.4 % fs

In-run bias stability ±0.04 mg 18°/hr —

Initial bias error ±0.002 g ±0.25°/sec ±0.003 Gauss

Scale factor stability ±0.05 % ±0.05 % ±0.1 %

Noise density 80 µg/√Hz 0.03°/sec/√Hz 100 µGauss/√Hz

Alignment error ±0.05° ±0.05° ±0.05°

User adjustable bandwidth 225 Hz max 440 Hz max 230 Hz max

Sampling rate 30 kHz 30 kHz 7.5 kHz max

Options

Accelerometer range ±1.7 g, ±16 g, ±50 g

Gyroscope range ±50°/sec, ±600°/sec, ±1200°/sec

AHRS Specifications
Attitude and Heading

Attitude heading range 360° about all 3 axes

Accelerometer range ±5g standard

Gyroscope range ±300°/sec standard

Static accuracy ±0.5° pitch, roll, heading typical for static test conditions

Dynamic accuracy ±2.0° pitch, roll, heading for dynamic (cyclic) test conditions and
for arbitrary angles

Long term drift eliminated by complimentary filter architecture

Repeatability 0.2°

Resolution <0.1°

Data output rate up to 1000 Hz

Filtering sensors sampled at 30 kHz, digitally filtered (user adjustable)
and scaled into physical units; coning and sculling integrals
computed at 1 kHz

Output modes acceleration, angular rate, and magnetic field
deltaTheta and deltaVelocity, Euler angles, quaternion, rotation
matrix

General

A/D resolution 16 bits SAR oversampled to 17 bits

Interface options USB 2.0 or RS232

Baud rate 115,200 bps to 921,600 bps

Power supply voltage +3.2 to +16 volts DC

Power consumption 80 mA @ 5 volts with USB

Connector micro-DB9

Operating temperature -40° C to +70° C

Dimensions 44 mm x 24 mm x 11 mm - excluding mounting tabs, width
across tabs 37 mm

Weight 18 grams

ROHS compliant

Shock limit 500 g

Software utility CD in starter kit (XP/Vista/Win7 compatible)

Software development kit (SDK) complete data communications protocol and sample code

Specifications

Version 8400-0033 rev. 002 Patent(s) or Patent(s) Pending

© Copyright 2013 LORD MicroStrain®
MicroStrain®, FAS-A®, 3DM®, 3DM-DH®, 3DM-GX3® and 3DM-DH3™ are trademarks of LORD
MicroStrain®
Specifications are subject to change without notice.

B Header Files 63

B Header Files

File: /home/torgrim/Documents/Maste…ort/cFiles/CANMessageHandler.h Page 1 of 1

#ifndef CANMESSAGEHANDLER_INCLUDED_
#define CANMESSAGEHANDLER_INCLUDED_

#include <ntnu_fieldflux/EciDemo109.h>
#include <ntnu_fieldflux/EciDemoCommon.h>
#include <ntnu_fieldflux/CANopenMessages.h>
#include <ntnu_fieldflux/PdoConfiguration.h>
#include <ntnu_fieldflux/initUSB2CAN.h>
#include <ntnu_fieldflux/system_values.h>
#include <ntnu_fieldflux/motor_reference.h>
#include <ros/ros.h>
#include <pthread.h>
#include <boost/bind.hpp>

/**
Thread for reading CAN messages from the rx buffer

*/
void *CANReadLoop(void *arg);
/**

main function
*/
int main(int argc, char**argv,char** envp);
#endif

File: /home/torgrim/Documents/Maste…eport/cFiles/motor_reference.h Page 1 of 1

#ifndef MOTOR_REFERENCE_INCLUDED_
#define MOTOR_REFERENCE_INCLUDED_

#include <ECI109.h>
#include <sensor_msgs/Joy.h>
#include <geometry_msgs/Twist.h>
///
/**
 class holding all the parameters sent to the controller via CAN

 @param leftSpeed reference speed sent to left motor
 @param rightSpeed reference speed sent to right motor
 @param leftDir reference direction sent to left motor
 @param rightDir reference direction sent to left motor
 @param leftState state of the left motor
 @param rightState state of the right motor
 @param manual_linear_scale constant for converting joystick input to motor input
 @param manual_angular_scale constant for converting joystick input to motor input
*/
class motor_reference{

private:
DWORD leftSpeed;
DWORD rightSpeed;
DWORD leftDir;
DWORD rightDir;
DWORD leftState;
DWORD rightState;

public:
double manual_throttle_scale;
double manual_turn_scale;
double auto_lin_scale;
double auto_ang_scale;
double wheel_distance;
double wheel_radius;
double gear_ratio;
int joy_mode;
int auto_mode;
int is_joystick_calibrated;

int stay_in_loop;
int indoor_mode;
int receiving_cmd;
motor_reference();

/**
callback function for reception of cmd_vel messages from the waypoint navigation controller

*/
void cmd_vel_callback(const geometry_msgs::Twist::ConstPtr& mot);

/**
callback function for reception of joy messages from the joystick_node

*/
void joyCallback(const sensor_msgs::Joy::ConstPtr& joy);

DWORD getLeftSpeed(){return leftSpeed;}
DWORD getRightSpeed(){return rightSpeed;}
DWORD getLeftDir(){return leftDir;}
DWORD getRightDir(){return rightDir;}
DWORD getLeftState(){return leftState;}
DWORD getRightState(){return rightState;}

};

#endif

File: /home/torgrim/Documents/Master/Report/cFiles/system_values.h Page 1 of 1

#ifndef SYSTEM_VALUES_H_INCLUDED
#define SYSTEM_VALUES_H_INCLUDED

#include<ntnu_fieldflux/EciDemo109.h>
//struct containing all the information sent from the motorcontrollers via CANopen
typedef struct __motor_t
{
 int targetVelocity;
 int velocity;
 int16_t targetIq;
 int16_t targetId;
 int16_t iq;
 int16_t id;

DWORD capacitorVoltage;
DWORD heatsinkTemp;
DWORD batteryCurrent;
DWORD maxTorque;
DWORD voltageLimit;
DWORD maxFluxCurrent;
DWORD maxIqAllowed;
DWORD tempMeasured;
int16_t ud;
int16_t uq;
int16_t voltageModulation;
int16_t inductanceMeasured;
DWORD state;

 int ticks;

} motor_t;

//struct containing the information of the vehicle
typedef struct __vehicle_t
{

int SDOResponseSent;
motor_t leftMotor;
motor_t rightMotor;

}vehicle_t;
//struct containing parameters for the ixxat usb2can controller
typedef struct __ixxat_param_t
{
 ECI_HW_PARA stcHwPara;
 ECI_HW_INFO stcHwInfo;
 DWORD dwHwIndex;
 DWORD dwCtrlIndex;
 ECI_CTRL_CONFIG stcCtrlConfig;
 ECI_CTRL_CAPABILITIES stcCtrlCaps;
 ECI_CTRL_HDL dwCtrlHandle;
} ixxat_param_t;

//struct parsed to the thread reading CANmessages
typedef struct __thread_param_t
{
 vehicle_t v;
 ixxat_param_t ip;
} thread_param_t;

#endif //SYSTEM_VALUES_H_INCLUDE

File: /home/torgrim/Documents/Maste…ort/cFiles/waypoinNavigation.h Page 1 of 1

#include <ros/ros.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <sstream>
#include <nav_msgs/Odometry.h>
#include <geometry_msgs/Twist.h>
#include <std_msgs/Int16.h>

class SCcontroller
{
public:

int hasGoal;
//controller parameters
double k1;
double k2;
double k3;
double beta;
double lambda;
//controller parameters when close to the goal

double r_limit;

//robot parameters
double yaw;
double pos_x;
double pos_y;
//position and orientation of waypoint
double goal_x;
double goal_y;
double goal_yaw;
//max speed allowed
double v_max;
//curvature of the path at given point
double K;

double alpha;
double delta;
double theta;
double r;
double r_prev;

//parameters sent by controller
double v;
double omega;
//booleans used for parking controller
int pos_ok;
int yaw_ok;
int close_to_goal;
/*!
 *The publisher to publish the geometry twist message from the controller
*/
ros::Publisher pub;
/**
function for updating parameter of the controller
*/
void updateParameters();
void publishSystemInput();
//callback funtion for reception of odometry
void processOdometry(const nav_msgs::Odometry::ConstPtr& msg);
//callback funtion for reception of a new waypoint
void processWaypoint(const nav_msgs::Odometry::ConstPtr& msg);

private:
//keep all angles betwee -pi and pi
void correct_angle(double& angle);
int main(int argc,char** argv);

	Introduction
	Theory
	Mathematical modeling
	CANopen protocol
	Vehicle location and pose estimation
	Waypoint Navigation

	Hardware
	MotEnergy ME0970 electric motor
	Sevcon gen4 motor controller
	Septentrio polaRx2 gps receiver
	Microstrain 3DMG-GX3-25 IMU

	Software
	ROS
	FroboMind

	Implementation
	CAN communication
	Laboratory Setup
	ROS implementation
	Vehicle pose and position estimation
	Waypoint Navigation

	Results and evaluation
	Laboratory setup
	CANopen integration
	GPS integration
	IMU integration
	Wheel odometry
	Pose Estimation
	Waypoint Navigation

	Conclusion
	Further Work

	Bibliography
	Appendix
	Data sheets
	Header Files

