NTNU - Trondheim
Norwegian University of

Science and Technology

Hardware platform for a Multi-Robot System

Adam Leon Kleppe
April 24,2013

ii

iii

ASSIGMENT

Research, design and implement a multi-robot system for small robotic vehicles.
It is encouraged to design the system to have low cost, weight and size, and dis-
couraged the use of heavy computing and complex sensors. The following items
should be considered:

Study methods and current implementations of multi-robot systems.

Research requirements and constraints for the multi-robot system, and pro-
pose a solution for the system.

Propose a hardware platform for the multi-robot system, and investigate the
different hardware components required to implement the platform.

Conduct experiments and simulations supporting the possibility of the im-
plementation.

Within the limitations of available time, create a prototype implementation.

Conclude your findings in a report, and evaluate the plausibility and suit-
ability of implementation.

iv

SUMMARY

This report presents a multi-robot system and the plausibility of it being success-
fully implemented. The purpose of the presented system is to look at how simple
a multi-robot system could be and still have cooperative properties. The system
will therefore have many constraints, and discourage the use of heavy computing
and complex sensors.

The full multi-robot system is not covered in this report, only the hardware plat-
form, and obstacle detection and positioning system. These aspects are thor-
oughly discussed, and proposed solutions for these aspects are presented.

A set of hardware, protocols and algorithms are presented, all whom which may
be implemented on the hardware platform, and solve possible problems presented
in this report. The report also presents experiments, tests and findings that sup-
ports the plausibility of successfully implementing the multi-robot system.

The plausibility of the presented system is questioned and discussed, and it is
concluded that the system may be implemented.

vi

vii

CONTENTS

Contents vii
List of Figures ix
1 Introduction 1
1.1 Simple overview of thesystem 2

1.2 Organization of thisreport 3

2 Problem description 5
21 Mainproblems L 5
22 Constraints e 6
23 GeneralMethods 7
24 ProposedSolutions 8
241 Obstacledetection, 9

242 Localization. e 9

3 Hardware Components 11
3.1 Introduction 11
3.2 Microcontroller e 12
321 ArduinoMega 13

322 UC3-A3Xplained 14

3.2.3 Otheralternatives 15

33 IR-laserrangesensor 16
3.3.1 Sharp GP2YOA21YKIRRangeSensor. 16

3.4 Omniwheel. e 20
35 IMU . .. e 20
351 MPUG0S0 e 21

352 HMCB883L e 21

3.6 Communication e 23

361 XBee e 23

viii Contents

3.7 UlrasoniCcsensor oo v i it et 24
3.7.1 400SR100 and 400ST100 24

4 Obstacle Detection 27
41 Introduction 27
42 Previouswork 28
421 SLAM . .. 28

422 Particlefilters. 30

43 Inverted particlefilter L. 32
44 Implementations 35
441 SCenariost e e e e 36

5 Relative positioning 41
5.1 Introduction 41
5.2 Measuring relative positions 00 43

53 Ultrasonicsensing 47
54 Protocol 49
54.1 Multidimensional scaling 51

5.5 Synchronizedclocks L. 53

6 Discussion 57
6.1 Problemdescription 57
6.2 Hardware. e 57
6.3 Obstacle Detection 58

6.4 Relative positioning L. 59

6.5 OVerview 59

7 Conclusion 61
A Appendix 63
A.1 MPU6050 Breakoutboard 63

Bibliography 65

ix

LiST OF FIGURES

1.1

3.1

3.2

3.3

34

35

3.6

3.7
3.8

3.9

3.10

3.11

3.12

The prototype of the robot built for this project 3
The Arduino Mega 2560 viewed from the front. Image provided by
arduino.cc 13
The UC3-A3 Xplained viewed from the front. Image provided by
atmel.com L 14
The Arduino Due was recently released. Image provided by ar-
duino.cc. 15

The Sharp GP2Y0A21YK IR Range Sensor is the range sensor used
on the robot to detect obstacles. Image provided by sparkfun.com . 16
The set-up of the experiment. The blue lines is the field of view
of the laser. At point 1 the Arudino Mega can be seen. At point 2
the laser mounted onto the servo. It is hard to see, but the motor
is under the cardboard box, and the laser is behind it facing the
variousobjects. 18
The contour map created by the IR-laser. The contours represents if
the set-up on Figure 3.5 is viewed from the right, mirrored around
the horizontal axis. The laser is situated in (0, 0) and facing in the

positive X-axis 19
The omniwheels used by the robot, provided by kornylak.com ... 20
The omniwheel viewed from the top. The wheel can roll in the
purple direction and slide in the green direction. 21
MPU6050 is a microcontroller with gyroscope and accelerometer.
Image provided by sparkfun.com 22
HMC5883L is a triple-axis magnetometer. Image provided by spark-
funcom 22
The XBee Series 2 is a module using ZigBee as a protocol for the
wireless communication. Image provided by sparkfun.com 24
The 400SR100 and 400ST100 are respectively a ultrasonic receiver

and transmitter in the 40 MHz range. Image provided by prowave.com 25

List of Figures

41 A graphical representation of the resampling wheel. Here each par-
ticle has a slice based on the weight w. The w; is the weight of the
particlei

4.2 The principle of the Inverted Particle Filter. On the top of the image:
The robot is placed beside obstacles A, B and C. The image on the
bottom represents the map of the Inverted Particle Filter at three
different times. The first map is the initial map of the particle filter
where all the particles are scattered, and they all are red (weight
of 0.5). The second map is when the robot has rotated and gained
information about the surroundings. Both obstacles A and B are
detected and the particles are black (weight of 1). The third map is
when the robot has all the information about the environment, and
all the obstacles are detected. The pink particles are particles with
weightsclosetozero.

4.3 To the left: A robot moving towards an obstacle. To the right: the
map created by the Inverted Particle Filter. It can be seen that the
particles represents the obstacle in front of the robot, and as the
robot move towards the obstacle, the particles move towards the X
(representing therobot)

44 A robot turning 4 radians, starting from 7 heading at position (0, 0).

45 A robot moving in a circle, starting from (-25, -25) with a radius
of 50 units, moving counter clock-wise. The map is set up with
two obstacles. One with centre (50, 75) other with centre (100, 25.
Particle count: 10000)

5.1 Robot viewed from above. Here an angle 6 between two light sources
on robot B are measured by robot A. It can be seen that because
robot B has an angle, robot A can not differ if robot B is positioned
atBorC.

5.2 Robot viewed from above. T represents a ultrasonic transmitter,
and R represents a ultrasonic receiver

5.3 Transmitter viewed from the side. As seen a sound wave emitted is
spread outinto acircularwave. L.

5.4 A sound wave is pulsed from one robot and the three receivers on
another robot measures thepulse

5.5 A graphical representation of the protocol. Each robot transmits
a signal at the beginning of their time slot. The other robots then
receives the signal. Since each robot has a given time slot the other
robots know which robot sent thesignal.

5.6 Three robots with their distances measured between each other.
Equation 5.1 describes the distance 6. The distance measured from
robot 1 to 2 is not the same as measured from2tol1

34
37

48

50

List of Figures xi

5.7

Al
A2

Problems with non-synchronized clocks. Robot A’s clock is one sec-
ond earlier then Robot B’s. When Robot A transmits and Robot B
receives, the real time between them is A;, but the calculated differ-
ence is A; — 1. When Robot B transmits the calculated time differ-
enceis Ar+ 1 . o . e 55

The MPU6050 breakoutboard 63
The schematic of the MPU6050 breakoutboard 64

xii

CHAPTER 1

INTRODUCTION

In recent years the there has been a huge growth in the need of autonomous robots
for exploration. Rescue missions, mapping of unknown terrain, military opera-
tions and exploration of hazardous areas are only some of the tasks that would
benefit from autonomous systems. There is no easy solution to this problem. A
robot requires many sensors, good mobility and smart algorithms and controllers
for it to be able to complete a mission on this scale. To further complicate things,
the robot should also be flexible enough to complete many of these tasks, maybe
even at once.

For a single robot to be able to accomplish this, it would require heavy com-
puting, and many sensors. Therefore a new branch in solutions have emerged:
multi-robot cooperative systems. Ten robots would be able to scan an area much
faster than one robot would; ten robots would be able to lift heavier objects than
one robot would; and ten robots would be able to survive longer than one robot
would. A multi-robot cooperative system is more effective than one robot, but it
also introduces more problems. A multi-robot system would need to be able to
communicate and coordinate with each other.

There are many solutions to multi-robot systems [Burgard and Moors, 2000],
[Davison et al., 2007], [Lucidarme, 2002], [Pagello et al., 1999], [Thrun, 2006],
[Tuci et al., 2006]. While many of them lie within the definition of swarm systems,
some are defined as an autonomous cooperative system. The robots in this defi-
nition are able to cooperate on tasks (e.g. formation, navigation) and have clearly
defined purpose, not just move in a swarms.

With a multi-robot system the complexity is high. This is because most of these
robots use complex sensors and require large amounts of processing power. It is
therefore desirable to look at how simple and low cost a system can be and still
have cooperative properties. This is a key element in fault-tolerant systems. A

2 Chapter 1. Introduction

fault-tolerant system is a system which can still operate after encountering a fault
in one or more of its components. Knowing how few components is required to
have cooperative properties is hence useful.

An educational project was the established at NTNU this fall to create a multi-
robot system. The goal of this project is to see how low cost and simple the
multi-robot system could be. The multi-robot system is focused on cooperation,
and will perform tasks like formation holding and obstacle avoidance. Combin-
ing these, much larger tasks like search-and-rescue could be accomplished. This
system is also going to be used as a demonstration, which limits both the size
and set-up. The current goal is 6 robots. This means that while it is desirable to
have scalability, some aspects of the system might compromise this in favour of
simplicity. These aspects must be redesigned in future work, if scalability is still
desirable.

This project is divided into different subsections:

m Control System Creating a cooperative behavioural control system that makes
the robots able to do different tasks.

m Hardware Platform Creating a hardware platform able to implement differ-
ent cooperative control systems

m Detection Systems Different systems and sensors able to detect other robots
and obstacles, which are feeded as input to the control system.

Only a brief overview of the control system will be described in Section 1.1 while
the full report may be read in [Klausen, 2012]. The plausibility of creating a hard-
ware platform will be discussed in this report, and a list of components that might
be used will be given. In this report there will also be given solutions on how to
detect obstacles and other robots. Some of these solutions are described in liter-
ature while some are developed by the author of this report. It is worth noticing
that the term project regards the project as a whole, and not only what is featured
in this report.

1.1 SIMPLE OVERVIEW OF THE SYSTEM

For simplicity the robots move on the ground. This to make them easy to control,
and to minimize the damage if something goes wrong. This in contrast to making
the robots fly, who might crash if something went wrong. For making the kine-
matics as simple as possible, the robots were made holonomic. This is done by
the use of omniwheels (see Section 3.4). The robots have a hexagonal shape, and
every odd side has an omniwheel on it. Using this shape and the properties of the
omniwheels, the robot is able to move in the plane without any non-holonomic

1.2. Organization of this report 3

proToType #1

Figure 1.1: The prototype of the robot built for this project

constraints. Figure 1.1 shows the prototype of this robot. It can be seen in the
figure that the omniwheels are placed on the odd sides, and in the front there is
an IR-laser range sensor. Further description of this can be read in Chapter 3. It is
worth noting that while the shape is hexagonal, all the illustrations in the report is
feature the robot as a triangle with each wheel in the corners of the triangle.

This project focuses on simplicity and scalability. This limits the cooperative con-
trol system in many ways. Each robot uses the Null Space Behaviour(NSB)

[Studi et al., 2006] method for "keeping their own integrity" (e.g. avoiding obsta-
cles and robots, and avoiding other inhibitions compromising their actions). For
the robots to cooperate a framework for solving the agreement problem using the
methods in [Arcak, 2007] has been used. This choice of control system is very
scalable and applicable to many Newtonian and Lagrangian systems. For a better
description consult [Klausen, 2012].

1.2 ORGANIZATION OF THIS REPORT

Since there are many topics discussed in this report, it is divided into smaller
individual chapters to provide for better readability. These chapters are Problem
Description (Chapter 2), Hardware Components (Chapter 3), Obstacle Detection
(Chapter 4) and Relative Positioning (Chapter 5). Each chapter is somewhat self-
contained, but for a more complete view of the system the reader is encouraged
to read the chapters in the given sequence. They all have a small introduction
presenting background materials like previous work, restrictions and problems.

4 Chapter 1. Introduction

There will also be discussions within each chapter as well as a discussion chapter
at the end of this report.

This report first introduce the problem of multi-robot systems and this project.
Some general methods and the methods for this projects will be presented and
discussed before the current plausible solution is introduced.

The report continues with a look at hardware. Each section in this chapter will
feature a hardware component, what requirements it has and why it should be
used. The section will then follow up with possible products and the advantages
and disadvantages will be discussed. Some of these products have been tested,
which is also featured here. The questions of what hardware is required, and why
will be answered.

The obstacle detection system will then be introduced in Chapter 4. Previous work
and current solutions are discussed, followed by a presentation of a new obstacle
detection system called Inverse Particle Filter.

Following this will be a chapter featuring the positioning systems. The main
branches of solutions and previous work will be discussed, and the problems with
these will be presented. A system using ultrasonic sensors to detect the robots
relative position to each other is then presented, as well as what is required to
implement this system.

The report ends with a discussion chapter discussing loose threads from the pre-
vious chapters, and a total plausibility of the system.

CHAPTER 2

PROBLEM DESCRIPTION

There are many solutions for creating multi-robot systems, and there are no limits
on how these systems can be created. There is however constraints in this project,
which limits the solutions possible. This chapter discusses previous works, con-
straints to this project, and the possible solutions to this project.

This chapter starts with a definition of what the main problems regarding this
project is, as well as the constraints within it. Then comes a definition of the gen-
eral methods of solving such problems. Lastly there will be a discussion regarding
the current approach for solving these problems, and why they are chosen.

2.1 MAIN PROBLEMS

The main problems with this project can be split into three different categories:

m Cooparate control system The cooperate control system may be defined as
the behaviour of the robots. As mentioned in 1.1 this will not featured in this
report.

m Obstacle detection The robots are required to move around in an unex-
plored environment. They are therefore required to detect obstacles, which
then can make the control system avoid the obstacles.

m Localization The robots are also required to move in formation and to com-
municate where they are to each other. This requires localization and a form
of communication.

The two latter problems will be described in further detail in Chapter 4 and Chap-
ter 5. There are however many ways to solve these problems, and later in this

6 Chapter 2. Problem description

chapter there is a description of what solutions were thought of and why the cur-
rent plausible solutions were looked into.

2.2 CONSTRAINTS

There exists many solutions on creating multi-robot cooperative systems. Some
with platforms that would easily fit cooperative control system in [Klausen, 2012],
which is used in this project. However the focus in this project is to see how sim-
ple a cooperative control system can be. Restricting the solution to only contain
small microcontrollers, and the robots to be small and low in cost are only some
of the constraints on the solution. These constraints are not only for simplicity,
but as recalled from 1.1 these robots are meant as a demonstration tool. There are
therefore some constraints in size and weight due to handling and transportation.
Presented here are the main constraints:

m Cost The main concept of this project is to create many robots being able to
do tasks as good or better than one robot. This means that the cost of many
simple robots must be less or equal to one complex robot. Therefore the cost
must be low on each robot.

m Size and weight The robots are meant to be small. This for making it easier
to carry and handle. It would be less practical to have many robots that
would be harder to transport and handle, than to use one more complex
robot able to do the same task.

m Power Consumption By using small light weight robots, the energy source
needs to be small as well. This means that large motors or power hungry
sensors cannot be equipped on the robot.

m Memory capacity Each robot contains a small microcontroller. Since most
microcontrollers have very limited memory, the system cannot use memory
hungry methods.

m Processing capacity The microcontrollers used on the robots are not suited
for heavy computations either. Most microcontrollers are 8-16 MHz , mean-
ing that for it to be able to compute everything in time, the system cannot
have many heavy computations.

m External references Since the robots are to be used in various environments
with few possibilities to deploy and set up the robots, the robots should
be able to work on the fly. This means that the robots should not depend
much on external references, if at all. This will require smart solutions for
localization and interaction with the environment.

2.3. General Methods 7

m Sensor measurements The cost of the robots should be low, meaning that
cheaper sensors should be considered. The robots must also be small in size,
meaning that the sensors should be both small and cheap.

There will also be some race conditions and scheduling problems that needs atten-
tion. The robots require the position, velocity and orientation from each other to
be able to cooperate. The velocity and orientation can be measured and sent wire-
lessly. This requires a fast and precise communication for the information not to
be outdated, which would give race conditions. For acquiring position, communi-
cation is not enough. As mentioned above the dependence on external references
should be low, meaning relative positioning rises as an alternative. Each robot
must therefore be able to detect all the robots close to it. This has to be communi-
cated and calculated to create an estimation of their position. This requires good
scheduling.

2.3 GENERAL METHODS

For a robot to work within the real world there are three problems that arises
[Mullane et al., 2011]: Mapping, localization and path planning. Since our robots
would not have any external references of the world, these problems would be
needed to solved simultaneously. This is called an integrated approach.

Mapping is the problem best defined as "What does the world look like?" and
is to integrate all the data from the sensors and merging them to an image of the
world. This is opposite to the localization problem where the robot ask "Where am
I?", where the position of the robot relative to the map is needed. Path planning
is to understand where the robot is going, which requires a map, location and a
desired goal [Mullane et al., 2011].

Since such a system is integrated all the aspects are dependent on each other.
Therefore to create such a systems all problems must be handled simultaneously.
Taking this to the multi-robot level, the number of problems multiplies. The goal
with such systems is to create a completely generalized system. A robot able to
locate itself within the world, while understanding what the world is and able to
complete its tasks would be a general purpose robot. Having a multiple of these
robots able to cooperate, would be a solution able to handle numerous tasks in
different environments.

There are different approaches of implementing behaviour control systems. If the
system to control is imagined as a black box with an input and an output, there
are roughly two main methods of controlling it:

m Probabilistic methods Probabilistic methods try to look for patterns be-

8 Chapter 2. Problem description

tween the input and output without trying to understand the black box.
This is done by applying an input and estimating output as a probability. If
the output complies with the estimation, the method gets more confident.
This is a good approach if the black box is hard to model (e.g. too big, too
complex, too many variables). A disadvantage with this approach is that the
black box may never comply, and therefore render the method useless.

®m Model-based methods Model-based methods tries to make a mathematical
model of the black box and to find the right way of controlling the box. The
advantage of this is that the black box is defined, and therefore easy to get
the wanted output. To get the complete model of the black box may be
extremely hard, and complete control might also be impossible. Another
disadvantage is that the model might differ from the actual black box, and
may therefore give unwanted errors.

When creating a behavioural system for robots it is most beneficial to combine
some aspects of these branches. Since both the location and environment cannot
be modelled in advance, probabilistic methods can use probability and Gaussian-
distributions to calculate the likelihood of both the location of the robots and the
environment. Probabilistic methods can better process input which does not give
direct information, but rather has to be interpreted, e.g. images and maps. Im-
ages for instance, can be processed to give probabilities of objects being in front
of the robots. Model-based systems on the other hand, has the advantage of that
it can be simulated and tested before it is implemented, and a deviation will soon
be detected. Control references such as motion and formation can be defined in
advanced; a model of this will give the wanted behaviour. Combining these two
methods will prove beneficial. Making the behavioural decisions and coopera-
tion with model-based methods will make the behaviour of the robots consistent;
making it able to simulate scenarios in advanced. This combined with the de-
tection and exploration with probabilistic methods, which can sense the outside
world. Sensors have measurement faults and may misbehave or input error to the
system. These errors may be counteracted with a probabilistic systems.

This combination is a target for the multi-robot system in this project, and the
solutions presented here has this in mind.

2.4 PROPOSED SOLUTIONS

The proposed solutions of the two main problems mentioned in 2.1, are covered in
this report. Presented here is an introduction to the proposed solutions for solving
these problems.

2.4. Proposed Solutions 9

241 OBSTACLE DETECTION

The first thought on obstacle detection was to use SLAM (Section 4.2.1), but the
field of SLAM is so big that the focus on this project would switch solely to SLAM
rather than the hardware platform. Another problem with using SLAM is that it
requires much processing power and memory, which according to Section 2.2 is
not desirable.

The current solution is to use one or more IR-lasers and an Inverted Particle Filter.
The Inverted Particle Filter creates a local map which spans in a circle around the
robot. As the robot moves forward it "forgets" the obstacles detected behind him.
This gives a finite number of detected obstacles, and has a low cost in processing
power and memory.

2.4.2 LOCALIZATION

It was early decided that the positioning system would be relative. This means
that there is no absolute position of the robots, rather a relative position between
each robot. This is due to simplify for the set-up of the robots and to make the
robots able to move more freely.

When the thought of using SLAM was on the table it would be possible to find the
relative position of each robot by comparing the maps each of them had created.
This again would be complicated and when SLAM was declined so was this idea.
When the Inverted Particle Filter started to linger as a solution, the thought of
using ultrasound to detect the relative position rose. The initial thought was that
a robot sent a ultrasonic wave, which the other robots detected. The range could
then be calculated and a merging of the Inverted Particle Filter maps could locate
each robot. After consulting an acoustics engineer, it was understood that to de-
tect the angle of a sound wave was not hard, but to detect the distance required
synchronized clocks.

The current solution is therefore to use ultrasound and synchronized clocks to de-
tect the angle and distance of each robot, and a protocol (Section 5.4) to distinguish
each robot from each other.

CHAPTER 3

HARDWARE COMPONENTS

Hardware is an important part of any physical system. If the hardware does not
meet the requirement of the system, the system will not work. It is therefore vital
for any system to know what is required and why. It is also important to under-
stand what the hardware can and cannot do.

In this chapter the hardware on the robots used in this project will be discussed.
First there will be an introduction discussing the hardware in the robots in general.
For each section thereafter it will be discussed microcontrollers, IR-lasers, omni-
wheels, communication and ultrasonic sensors. Each section will describe what
each hardware component is, and what is required by the system. It then pro-
ceeds with suggesting different products for the system. Some of these products
have been tested, and some experiments have been conducted. This is presented
in each section.

3.1 INTRODUCTION

Using many cheap robots to replace one expensive robot has many advantages.
By using many robots, both risk and error is spread out into each robot. Therefore
if one robot fails, it does not affect the work of the other robots to much. If the
robot is also cheap, it is also easily replaceable. Therefore expense was one of the
main focuses in this project. One of the other constraints on the robots was that
they were primarily going to be used in demonstrations, where environment can
be very diverse, and where external equipment cannot always be set up. This
meant that the robots should not have any external references, and since they also
primarily are going to be indoors, they cannot use GPS either.

12 Chapter 3. Hardware Components

With these restrictions and the ones mentioned in Section 2.2, the choice of hard-
ware is crucial. The size of the robot restricts the size of components, and the
budget restricts the quality of the components. These combined restricts the per-
formance of the components. The use of simplicity and integration is key for
making the whole system work.

In this project it has been a big focus on commercially available modules. This is
due to the time constraint in finishing the prototype. Creating a complete board
with all functionality will be done at a later point.

3.2 MICROCONTROLLER

The most vital part of the hardware is the microcontroller. It needs to have good
performance and low power consumption. There has been many discussions on
which microcontroller to settle for, and which properties that are important to look
for. Some of the properties needed are:

m Speed For the cooperative control system to work efficiently and for all the
sensor data to be processed in time, the processor has to be fast enough.
Since the sensor complexity and system requirements are not known to the
full extent yet, this property is hard to fulfil.

m Resources The cooperative control system might require many resources,
like memory. The system is designed to some extent so that it does not collect
and store new data without replacing old data, the resource requirement of
the system is therefore thought to be constant.

m Programmability The microcontroller should be easy to program. The co-
operative system is most likely going to be implemented in SimuLink, using
SimuLink Coder to generate the code. The microcontroller should be easy
to connect to the computer, download this code and run it.

m Simplicity The microcontrollers should come on a complete board kit. This
because it is not enough time to create a circuit board from scratch. Board
kits these days comes in many forms and qualities and are usually very
cheap.

m Prototyping It should be easy to prototype with the microcontroller. If the
microcontroller is on a board, with the I/O pins laid out, it will be easy to
prototype, by adding and removing sensors.

The two microcontrollers that has been tested are the ATMEGA2560 on the Ar-
duion Mega2560 board, and the 32UC3A3256 on the UC3-A3 Xplained board.

3.2. Microcontroller 13

Figure 3.1: The Arduino Mega 2560 viewed from the front. Image provided by
arduino.cc

They are both on sold on complete board kits. Both boards are cheap and easy
to obtain.

3.2.1 ARDUINO MEGA

The Arduino Mega 2560 is a board based on the ATMEGA2560. It is a product
from the Arduino family where the focus is on prototyping. It has 57 I/O with 14
of them being PWM outputs, 16 analogue inputs and 4 UART ports. This is more
than sufficient when it comes to connecting to the rest of the hardware. With
16 MHz the speed might be a problem, but the full system has not yet been tested
on the chip. Simulink has an Arduino expansion pack making it able to create
code, compile it and upload it to the Arduino with only one click. This is very
favourable in this project. It is also easy to create pure C++ programs on the Ar-
duino and to create a library to be able to implement the C++ functions wanted.
This is very beneficial, because then you could create simulators in either C++ or
Simulink and test implementations. The implementations can then be almost di-
rectly be put onto the microcontroller. For one of these simulators see Section 4.4.
Arduino is designed for hobby projects and prototyping, and not well suited for a
complex systems or systems with real-time requirements. This can be a problem
when it comes to scheduling and positioning. The Arduino Mega has an inbuilt
bootloader, meaning it does not need any external programmer for it to be pro-
grammed, but also means that it doesn’t have a debug function.

14 Chapter 3. Hardware Components

hq'uqrq'
"ll'ﬂr'ﬁ-k

I - L
[WERTPFERUTAATRINRRRTTITINE

Figure 3.2: The UC3-A3 Xplained viewed from the front. Image provided by at-
mel.com

3.2.2 UC3-A3 XPLAINED

The UC3-A3 Xplained is a board based on the 32UC3A3256. It is part of the
Xplained series, which is a series created by Atmel used for learning and pro-
totyping. The 32-bit microcontroller run at 12 MHz , but can run at up to 66 MHz
. The biggest problem with the board is that it does not have any PWM drivers,
and that it does not have more than 4 PWM outputs. This may cause a prob-
lem when we are attaching other hardware. It only has 32 1/O ports, while the
microcontroller has 144. This means that the pins are multiplexed, which might
result in functions being unable to be used together. It has an external program-
mer, and therefore can be debugged. Since it is a 32-bit microcontroller, it is both
faster and bigger with more memory than the ATMEGA. The microcontroller is
programmed in C, and the most necessary external libraries available are created
by Atmel. Since there are less libraries available it would also require more time
to implement all the necessary functions. It is further worth noting that there is
no direct extension packs for Simulink to the UC3.

3.2. Microcontroller 15

RX ¢ W

- i Tx ot
Lo E
= oN'mm "
N

Figure 3.3: The Arduino Due was recently released. Image provided by arduino.cc

3.2.3 OTHER ALTERNATIVES

The Arduino Due was released on 22nd of October 2012, and is the first Arduino
board with a 32-bit processor. Its layout is almost the same as the Arduino Mega
(with 54 I/0O pins, where 12 are PWM, and 12 analogue inputs and 2 analogue
outputs). It has a staggering 512 KB flash memory and 96 KB SRAM. The clock
speed is 84 MHz . It even has a DMA on board. It comes with all of the advantages
that the Arduino Mega has, and it is much faster, has more memory and is less
power consuming. This is the most promising microcontroller, and a further look
into this will be done.

Other alternatives might be the Raspberry PI or the BeagleBone. These are very
fast and powerful, and can have Linux distros mounted onto them. They have
good enough power to do image processing, which could make it easy to detect
objects. The system the robots are going to use, does not require much to run,
but require many analogue and PWM signals. It is easier to control the signals
using a smaller microcontroller. For later use it might be beneficial to use these
microcontrollers.

The one worth looking into for the implementation is the Arduino Due, both since
it has many advantages regarding this project, but also because the Arduino plat-

16 Chapter 3. Hardware Components

Figure 3.4: The Sharp GP2Y0A21YK IR Range Sensor is the range sensor used on
the robot to detect obstacles. Image provided by sparkfun.com

form is familiar to the participants of this project.

3.3 IR-LASER RANGE SENSOR

For detecting obstacles, one or more IR-lasers are to be used. Reasons for this are
described in Chapter 4. There are some requirements to the IR laser.

m Accuracy The laser must be accurate enough to be able to work predictably.

m Range Range is not a huge requirement. It is required that it ranges far
enough to respond to the information given from the laser. A range of 50 cm
or more is sufficient.

m Strength The strength of the laser beam needs be low. The robots are re-
quired to not harm humans, so a beam that can potentially burn eyes or
skin cannot be used. Additionally, the beam is infrared, meaning that if it is
pointed towards the eye the beam is not seen. A harmful beam aimed at an
eye would therefore not be detected before it is to late.

3.3.1 SHARP GP2Y0A21YK IR RANGE SENSOR

An IR-laser range sensor that has been looked into is the Sharp GP2Y0A21YK. It
is cheap, and comes with a processor doing signal processing and filtering, so that
the only interface is a analogue signal. It is fairly accurate, the only limitation is
that the analogue signal is non-linear. This can easily be solved by passing the
signal through a lookup table with linear interlace. The laser’s strength is also at
a non-harmful value. It can detect ranges up to 80 cm . Ranges farther then this

3.3. IR-laser range sensor 17

will only give random high values. There exists other versions of this laser with
extended range.

One laser was bought because it was cheap. It was needed to test if the laser was
suitable, so an experiment on how easy it was to create a contour map with the
laser was conducted. The laser was mounted on top of a "9g small servo"! from
SparkFun.com. The servo and laser was controlled by a Arduino Mega2560 that
was programmed in Simulink. A range of miscellaneous objects were places in
front of the laser, and the servo sweeped from -45°to 45°. The analogue signal was
collected, and processed along with the angle accumulated to the servo. These two
parameters created a circular coordinate point which then was placed in a graph.
The sweeping motion was done 20 times before the program exited and created
the plot.

As seen in Figure 3.6 the contour is not a good representation of the obstacles
in front of the laser. If looking closely on Figure 3.5, it can be seen that at the
left end there is an open area, which is also present in the contour map. This is
represented by the huge spikes on the lower part of the plot. What can also be
seen in the contour is that the error is systematic and can be categorized into two
faults: A hysteresis and noise in form of spikes.

The hysteresis probably comes from the implementation in Simulink and the servo.
When Simulink takes a range measurement it also use the angle that it has just
given to the servo to calculate the coordinates. The servo has not been able to go
to the position it is supposed to be at, when the measurement is taken. When the
servo sweeps to the left, the servo’s actual angle is a little to the right then antic-
ipated, while when the servo sweeps to the right, the servo’s actual angle a little
to the left. The combined difference in angle comes in form of a hysteresis. When
the servo’s speed was lowered, the hysteresis decreased. To solve this, a delay can
be put between the time the servo gets a new input angle and the range measure-
ment is taken. This will give the servo time to get to the desired angle before the
measurement is taken.

The spike noise that is shown is probably the servo’s fault. As the servo moves it
jitters a lot because it constantly receives a new value. This can again be solved by
adding a delay between each servo input.

The errors that occur (hysteresis and spikes) are consistent, and the noise outside
of these is small. The laser itself is therefore not the source of error, and create little
noise. It is consistent and has a quick response time. The laser might therefore still
be suitable for this project. Due to time constraints this experiment was not con-
ducted again, with a delay added between the servo input and the measurement
capture.

1t weighs 9g, hence the name

18 Chapter 3. Hardware Components

Figure 3.5: The set-up of the experiment. The blue lines is the field of view of the
laser. At point 1 the Arudino Mega can be seen. At point 2 the laser mounted onto
the servo. It is hard to see, but the motor is under the cardboard box, and the laser
is behind it facing the various objects.

3.3. IR-laser range sensor 19

XY Plot
20 T T T T T

10F

Y Axis
=

40 ! SE] oy,
0 10 20 30 40 50 60
K AxIs

Figure 3.6: The contour map created by the IR-laser. The contours represents if
the set-up on Figure 3.5 is viewed from the right, mirrored around the horizontal
axis. The laser is situated in (0, 0) and facing in the positive X-axis

20 Chapter 3. Hardware Components

Figure 3.7: The omniwheels used by the robot, provided by kornylak.com

3.4 OMNIWHEEL

Omniwheels are wheels that can roll as normal wheels in one directions, and able
to slide sideways. These wheels were chosen because placing these on the robot
in a triangular shape will allow the robot to have true planar movement, without
non-holonomic constraints.

In Figure 3.8 it can be seen how the omniwheels work. It can be seen that the
omniwheel rolls in the purple direction, while it slides in the green direction. For
a more detailed description read [Klausen, 2012].

3.5 IMU

For making Kalman filters and giving the robot a heading, the need of inertial
measurements rise. This requires a gyroscope, a magnetometer, and an accelerom-
eter. The gyroscope and accelerometer measures the velocity and acceleration of
the robot, which can be integrated into finding the current position of the robot.
The magnetometer finds the orientation of the robot.

The magnetometer has a flaw because the magnetic field shifts if the robot is in a
metal container. This is fortunately a flaw that can be ignored in this project. If
the robot is placed within a metal container, it will have a consistent north (which
might not be the true north). The other robots (also in the container), will have
the same consistent north. The robots only needs to know the relative position of

3.5. IMU 21

Figure 3.8: The omniwheel viewed from the top. The wheel can roll in the purple
direction and slide in the green direction

each other, and therefore only needs to know the difference in angle, and not the
true angle.

3.51 MPU6050

The MPU6050 is a 6-axis motion tracking system. It provides gyroscope and ac-
celerometer, and has I2C interface. It also has an external I>C connection making
it easy to connect to an external magnetometer.

A circuit for MPU6050 has been created, and the schematics and board layout is
provided in Appendix A.1.

3.5.2 HMC5883L

To complement the MPU6050 a HMC5883L. triple-axis magnetometer can be used.
It has an I?C interface, and can therefore be directly connected to the MPU6050. Tt
has been tested on the robots, and proves to be a good choice for measuring the
orientation of the robot.

22 Chapter 3. Hardware Components

Figure 3.9: MPU6050 is a microcontroller with gyroscope and accelerometer. Im-
age provided by sparkfun.com

Figure 3.10: HMC5883L is a triple-axis magnetometer. Image provided by spark-
fun.com

3.6. Communication 23

3.6 COMMUNICATION

For the robots to act together, they need to be able to communicate with each
other. There are mainly three ways of communicating wirelessly: WiFi, Bluetooth
and ZigBee. With the constraints in Section 2.2 in mind, following are the types of
wireless communication discussed.

m WiFi WiFi is a wireless communication which use radio waves and the IEEE
802.11 protocol. The WiFi standard is widespread today, and the WiFi chipsets
that are manufactured are getting smaller and cheaper. There are many ad-
vantages with a wireless network, where one is that they are able to commu-
nicate through the internet. This gives a human an opportunity to commu-
nicate with the robots even on the other side of the planet. It also gives the
robots an opportunity to download new updates or missions from a server.
Some disadvantages is that WiFi is not a mesh network. This means that all
the robots have to have communication with a host robot in order to work.
If the host malfunctions, the network is lost.

m Bluetooth Bluetooth is a wireless communication protocol for use in PAN
networks. Bluetooth was first used for communication between telephones,
but has spread to many devices and is now a very common protocol for
wireless communication. Bluetooth Low Energy(BLE) is a feature that came
with the Bluetooth 4.0 protocol. Although it has less data throughput and
range than the Bluetooth 4.0 protocol, it has a significant reduced energy
consumption. Bluetooth Low Energy is a good candidate for this project,
but the protocol does not have support for mesh networks yet. It has a
master-slave structure. There exists algorithms for creating bluetooth mesh
networks, but there is no widespread variant. Another problem with BLE
is that there are not many modules available, meaning that this has to be
made, which cost time.

m ZigBee ZigBee is a wireless communication protocol based on the IEEE 802
protocol. It is specifically created for mesh networks with low energy con-
sumptions. These are advantages that suit the constraints very well. The
Zigbee protocol was designed because many foresaw that Bluetooth and
WiFi would be unsuitable for wireless sensors and self-organizing networks.
Zigbee has many low-cost modules on the market, which makes ZigBee a
good candidate for this project.

3.6.1 XBEE

The XBee is a ZigBee module made by Digi International. It comes with a broad
range of antennas, with many different characteristics. The XBee 2mW Chip An-

24 Chapter 3. Hardware Components

Figure 3.11: The XBee Series 2 is a module using ZigBee as a protocol for the
wireless communication. Image provided by sparkfun.com

tenna 2 series has been tested in this project. The chip has the full ZigBee protocol
built in, with a 3v3 UART interface. It is cheap and easy to get a hold of. A XBee
Shield suited for Arduino can be bought which creates a compete ZigBee com-
munication between Arduino boards without any specific requirements. There
are also modules for connecting the XBee to an USB interface so that it can be
plugged into computers, giving communication between the robot mesh-network
and a computer. As mentioned above, the Zigbee protocol has a mesh-network
feature. This feature has not been tested on the X-Bee yet, but research show that
it is not hard to implement [Faludi, 2011]. The X-Bee though, has a master-slave
system, which is not desirable, but is sufficient enough for the purpose of this
project. A further improvement would be to have a ZigBee module without this
feature.

3.7 ULTRASONIC SENSOR

In Chapter 5 it will be an explanation of why ultrasonic sensors should be used.
There are not many cheap ultrasonic instruments on the market. This means that
circuits for transmitting and receiving ultrasonic signals has to be made. A basic
signal generator for transmitting, and a signal amplifier for receiving should be
sufficient. The frequency to be used can be discussed, but there is no right answer
here.

3.71 400SR100 AND 400ST100

The 4005SR100 and 400ST100 are respectively a ultrasonic receiver and transmitter
provided by Pro-Wave. They have a frequency of 40 MHz . These were mainly

3.7. Ultrasonic sensor 25

Figure 3.12: The 400SR100 and 400ST100 are respectively a ultrasonic receiver and
transmitter in the 40 MHz range. Image provided by prowave.com

chosen because they were cheap. Initial tests using a signal generator on the trans-
mitter and an oscilloscope on the receiver has proven that a signal can be detected
within a fair range. The receiver has noise at 320 mV , which is persistent. All
voltages higher than this may therefore be detected as a signal. To be able to
transmit a signal over 200 cm it only is required an amplitude 10 V. Creating a
signal generator at 10 V;;scan therefore be made for transmitting signals.

CHAPTER 4

OBSTACLE DETECTION

Obstacle detection is a problem when robots are moving through environments.
Obstacles can be dynamic or static, and detection of these obstacles usually re-
quires lots of resources and/or expensive sensors.

In this chapter there will be a brief description of previous works on solutions, and
why these are not suitable. This will be followed by a description of the Inverted
Particle Filter, which can be described as a brute force method for detecting obsta-
cles. In the end of this chapter there will be an implementation of the filter

4.1 INTRODUCTION

It is not hard for a robot to detect obstacles. This can easily be done with a laser
or a bumper with a sensor on it. It is to use this information to manoeuvre around
that is the challenge.

Using localization and obstacle detection combined is a hot topic to research. The
leading method is SLAM, Simultaneous Localization And Mapping. Other meth-
ods available are forms of particle filter. All these methods are complex and use
a lot of memory resources and processing power. It is therefore required to either
tweak existing methods or make a new one.

In this project there are not much room for complexity. This is also the point of
the project. The robots only need to create a local map around themselves so
they can interact with their surroundings, although a global map would be ben-
eficial. Methods like guidance and waypoint tracking are required to make the
robots do a task, but these require a map or some sort of reference. SLAM solves
this by building a map while exploring the environment, but then again SLAM is

28 Chapter 4. Obstacle Detection

very resource consuming and the robots does not need a full map. It looks like
this project is in a grey zone of this research field, where alternative solutions are
needed.

4.2 PREVIOUS WORK

421 SLAM

SLAM, short for Simultaneous Localization And Mapping, is a fairly new field
for exploration with robots. The point of SLAM is that while the robot moves,
and tracks its movement, it records features it senses. These features then cor-
rect the error in the movement the robot tracks, while simultaneously the tracked
movement corrects the error in the features’ position. The tracking mainly use
an extended Kalman filter or a particle filter on top of some sort of IMU or GPS.
There are many different methods for sensing features, and these mostly branch
into different SLAM methods. SLAM is very suitable for exploring and mapping
an area, where creating maps is the main task of the robot. Here are some of the
SLAM methods, both well-known and recently developed. Note in these meth-
ods, that pose is often used. A pose is a position and orientation of an agent at a
given point in time.

GRIDSLAM

In GridSLAM the map is set up in an opacity grid, where each cell has a value
of opacity telling the likelihood of an obstacle within the cell[Chae and Yu, 2010].
The main problem with GridSLAM is discretization. Depending on the grid size
the map either consumes large amounts of resources or has poor resolution. The
grid can be static in position and dynamic in size, where the robot moves around
the grid to observe more data. This will eventually lead to a large grid and there-
fore large resource consumption. To prevent this the grid can therefore be dy-
namic in position and static in size. The grid will therefore shift whenever the
robot moves. The problem here is that a shift of a large array like this will require
much processing power.

GRAPHSLAM

GraphSLAM[Thrun, 2006] uses a matrix Q and a vector & to create a map. Graph-
SLAM requires a feature detection. This means that the robot is required to detect
the range from it to a feature more than one time. A robot using GraphSLAM

4.2. Previous work 29

therefore usually use stereo vision to detect features. The) matrix is an n xn
matrix, where 7 is the number of poses the robot has measured plus the number
of features it has detected. The & vector is a n vector. Inside Q is the relationship
between the poses and features, while in the & vector the sum of ranges for one
pose or feature is placed. A finished Q and & with three poses and one features
might look like this:

1 -1 0 0 -5
11 -1 -1 0

Q=10 1 1 o [57] 4 1)
0 -1 0 1 9

Whenever the robot needs to calculate the most likely ranges to other poses (i.e.
the motion of the robot) and the ranges of the features (i.e. the position of the
features), then the simple equation for creating the best estimates of the variables
are used:

p=071¢ (4.2)

The problem with this method is that the size of the O matrix is depending on the
number of poses and features the robot registers. This means that the O matrix
potentially could have hundreds of columns and rows. To add to this, the matrix
has to be inverted to get any usable results. Even when using Householder Reflec-
tion, a matrix of this size would require a lot of processing power to invert.

MONOSLAM

A fairly new method is called MonoSLAM [Davison et al., 2007], short for Monoc-
ular SLAM. This is a SLAM method that only use one camera and an IMU. It
takes a picture and extracts the features from it (using either SIFT, SURF, FREAK
or other algorithms). Each picture is then compared, and the movement from one
picture to the next is calculated. This together with IMU data gives the motion of
the robot, while also giving a map of the area. MonoSLAM has only been imple-
mented on hexacopters with the camera facing downwards. It is therefore good
for mapping and exploration, but not for moving around on the ground. Another
problem is that the feature detection algorithms available require huge amounts
of resources and processing power.

The main problem with SLAM is that it requires a lot of resources and processing
power. SLAM is also more focused on mapping rather than localization. The
main focus for the robots in the projects is to localize themselves and each other,
and come around common obstacles located around them. There is no need for a

LS I N N

30 Chapter 4. Obstacle Detection

complete map or complex solutions. This again means that a solution like SLAM
might not be necessary.

4.2.2 PARTICLE FILTERS

Particle filters, also known as sequential Monte Carlo method, is a model esti-
mation technique. The method is mostly used in robotics to get the location of
a moving robot. Particles are scattered around an area with the same properties
as the robot using the filter. As the robot moves, the particles moves in the same
manner. For each measurement the robot takes, each particle does their own sim-
ulated measurement. The weight of the particles are then updated based on their
measurement compared to the robots measurement. If the particle’s measurement
is consistent with the robot’s measurement the weight is large, while if it is not
consistent the weight will be very small. After this a resampling phase occurs.
Here the particles will be selected randomly based on the weight, giving a new
set of particles. The result will be particles that are more accurate to the location
of the robot. After many cycles of this method, only a few particles that are near
the robot’s location will be present.

The heart of the particle filters is the resampling phase. The implementation of this
phase can make or break the filter. The phase is meant to sort out good from bad
particles, which means that if the phase sorts wrongly the filter converge to the
wrong particles. Each particle is has a weight property that determines whether
it follows the current measurements of the robot. However this does not mean
that the particles with the highest weights are the best. The measurements might
be noisy or completely wrong, and there might be many errors in the simulated
model of the filter.

The most used resampling method is called the resampling wheel. It takes a ran-
dom selection of particles based on weight. Each particle represents a slice equal
to its weight on a wheel. Particles with a small weight gets a small slice, while
particles with large weight gets a larger slice. The algorithm 4.1 starts by picking
the index of a random particle. It then finds the current maximum weight of all
the particles. The algorithm then starts to pick N random particles. This is done
by choosing a random number . If the value of (3 is higher than the current par-
ticle weight pointed to by the index, the weight is subtracted from the 3, and the
index increased by one. This continues until the 3 is within a slice. The particle
owning the slice is then picked.

// pick random number
index = random([1..N]

// Get the current maximum weight
max_weight = max(weights)

19

20

21

22

23

24

25

26

27

4.2. Previous work 31

// for each particle
for(i = 1..N)

{

// choose a beta that is between
// 0 and the maximum weight * 2
beta = random[0..2 * max_weight]

// while the beta is outside

// the current slice pointed to
while weight[index] < beta

{

// remove the slice from beta
beta -= weight[index]

// move to the next slice
index = (index + 1) % N

}

// pick the particle pointed to by the index
pick particle[index]

Listing 4.1: Resampling wheel algorithm for re-sampling a particle filter

SE

Figure 4.1: A graphical representation of the resampling wheel. Here each particle
has a slice based on the weight w. The w; is the weight of the particle i

The resampling wheel covered earlier is only one way to implement the resam-
pling phase. There are many others which are more suitable for special cases.
The most common problem in designing a resampling method is called particle

32 Chapter 4. Obstacle Detection

depletion. The problem occurs because the resampling phase picks multiples of
some particles, and removes others. As the multiples grow in number, they may
be overrepresented, and the particles with low weight will be killed of. This will
lead to an overconfident result and the accuracy of the filter will drop. There are
no good solutions on how to fix this problem, but the most common solution is
to "mutate"” each particle as they are picked, so that none of the particles are the
same.

There are many types of particle filters, because a particle can be defined for dif-
ferent purposes. The only requirement a particle has is to have a weight and a
resampling method comparing the weights of each particle and selecting parti-
cles. Examples of these are Rao-Blackwellized particle filter, particle particle filter
and Gaussian particle filter.

4.3 INVERTED PARTICLE FILTER

The problem with the solutions presented above is that they require a lot of pro-
cessing power. It is therefore presented here an alternative solution, which is more
a brute force method for detecting obstacles. The method is called the Inverted
Particle Filter, and the idea is not to find the location of the robot using the environ-
ment (like a particle filter), but to find the obstacles in an environment using the
location of the robot. Each particle in the filter represents a point on the real world
relative to the robot, and which may or may not be part of an obstacle.

The particles in the filter forms a circular dynamic map, with a fixed radius and the
robot always in the centre (Figure 4.2). Each particle is spread out uniformly over
the map, and as the robot moves each particle moves in the opposite direction.
This represents that the obstacles "move" in the opposite direction of the robot,
see Figure 4.3. If a particle moves outside the map the particle is removed and a
new one is created on the other side of the map. Each time a laser measurement is
taken, a beam is created from the centre of the map in the direction and with the
length of the measurement. The particles close to the beam is less likely to be part
of an obstacle, which will lower the weight of the particle, while particles close to
the end of the beam are most likely to be part of an obstacle, which increases the
weight.

Each particle has an opacity value, also termed weight, ranging from 0 to 1 which
represents the probability of it being part of an obstacle. A value of 0 represents
that there is probably not an obstacle where the particle is, while a value of 1
represents that the particle is definitely part of an obstacle. Each movement the
robot has makes the value of each particle converge to 0.5. This represents that
each time the robot moves, the information of the particle depletes due to the

4.3. Inverted particle filter 33

Figure 4.2: The principle of the Inverted Particle Filter. On the top of the image:
The robot is placed beside obstacles A, B and C. The image on the bottom repre-
sents the map of the Inverted Particle Filter at three different times. The first map
is the initial map of the particle filter where all the particles are scattered, and they
all are red (weight of 0.5). The second map is when the robot has rotated and
gained information about the surroundings. Both obstacles A and B are detected
and the particles are black (weight of 1). The third map is when the robot has all
the information about the environment, and all the obstacles are detected. The
pink particles are particles with weights close to zero.

34 Chapter 4. Obstacle Detection

Obstacle

Figure 4.3: To the left: A robot moving towards an obstacle. To the right: the map
created by the Inverted Particle Filter. It can be seen that the particles represents
the obstacle in front of the robot, and as the robot move towards the obstacle, the
particles move towards the X (representing the robot)

4.4. Implementations 35

inaccuracy in the movement. When a particle has the value of 0.5 it is not possible
to determine if the particle is part of an obstacle or not.

An example of the Inverted Particle Filter can be seen in Figure 4.2. The robot
here is situated between three obstacles A, B and C. Each circle represents the
map formed by the individual particles in the filter, at different times. Each par-
ticle has a weight which ranges from 0 to 1, represented in the picture as ranging
from white to black, with red as 0.5. The first circle represents the initial particle
filter. As described above, the particles are uniformly scattered in a circular map,
and with an initial weight of 0.5. The map does not give any information about
the surrounding obstacles. After some time the robot has rotated to the left, and
acquired information about the surroundings. Recall that the robot uses a laser
measurement to determine the weights of the particles. The next circle represents
the state of the particle filter after the robot has turned for a while. It can be seen
here that the particle filter has detected obstacle A and B. This can be seen by the
particles being black (representing a weight of 1, and therefore a high probability
of it being part of an obstacle.). The third map is taken after the robot has turned
a full turn, the whole environment has been scanned, and the Inverted Particle
Filter shows three probable obstacles around the robot.

The Inverse Particle Filter is loosely based on the GridSLAM method, but instead
of having a grid with a fixed size which would cause a discretization problem, the
particles are more continuous. This means that a robot is not limited to traverse
through a grid as in GridSLAM, but can move freely around with as long as the
particles complies with the movement.

Particle filters also have a feature that is very beneficial when it comes to lim-
ited memory resource. Particle filters have a fixed number of particles, and the
processing capacity and memory resources are linearly dependant on the number
of particles. This makes the particle filter easy to use on small microcontrollers
where both processing speed and memory are limited.

44 IMPLEMENTATIONS

A simulation was created for this implementation to work. A map consisting of
squares with a width of 50 units as obstacles was created. The map can have
variable sizes and variable amounts of obstacles.

A robot can roam freely in the map and off the map (where there is infinitly noth-
ing). It may only move forward and turn, and has a laser in front, which returns a
range from 0 to 80 units depending on if there is an object in front it.

In this simulator an Inverted Particle Filter was implemented. Particles (ranged

36 Chapter 4. Obstacle Detection

from 1000 to 10 000) were scattered around the robot in a circle with radius of 200
units. Each particle initially has a weight 0.5 and can range from 0 to 1.

For each laser measurement the laser is represented as a line from the robot with
the length of the measurement. All the particles which are 1 unit away from the
line will get a weight close to 0. This representing that a particle close to the laser
probably is not a point on an obstacle. At the end of the line, the particles get
a weight close to 1, representing that that particle is probably part of an obsta-
cle.

After each movement the robot has, it sweeps by first turning 45°to the right and
then 90°to the left and back 45°to the right. All this while taking laser measure-
ments. This will give the robot a field of view of £45°. Also after each movement
the robot goes through a resampling phase where every particle with weight un-
der 0.5 is resampled using the resampling wheel.

Notice that the resampling technique used in the resampling phase is based on
the resampling wheel provided above, and is not optimal. It mostly removes the
particles with weights under 0.5, which then again leads to particle depletion. This
can be seen in the figures below by the huge blank spaces. This is good for static
obstacles, but will be a problem when dynamic obstacles are introduced.

Another thing to notice is that particles that are farther away than 200 units should
be removed and a new one should appear on the other end of the map. This is
currently not implemented. Therefore in Figure 4.5 where the robot moves the
particle "cloud" will not have the origin as centre, and not have newly generated
particles coming from outside. This does not affect the particle filter itself, but
must be dealt with when implementing on a physical robot.

4.4.1 SCENARIOS

The current map in the scenarios presented below is a map containing two square
obstacles with a width of 50 units. The centre of these two obstacles are (25, 75)
and (75, 25).

ROBOT TURNING ON THE SPOT

As seen in Figure 4.4, the robot starts in the origin with heading 7. The robot
turns 4 radian and takes measurement with the laser every 0.1 radian turn. It can
be seen in the figure that the robot clearly detects two obstacles in the upper right
corner. It can also be seen that there are unexplored areas to the left of the robot
since it has not done a full turn. This is an example of how simple but effective
the inverted particle filter is.

4.4. Implementations 37

IR L
BT VY TRt e
0 %Y %P @ o fgo o ° e ° o,
2 o SRy o ged §%
KXo %?é%fo%g%% ég@wi’“’ﬁ“i &mﬁ%%ﬂ
20”0 oot UBT oge B Y 50 e B8 et 8
| . et 0 S g S 9 oot * 5 g S 0
190 i 3@“?%%‘?%&5 e e X, “”z;%g"i%;m %% 55,
oo & 08 @ 2 of 5880 e08g b0 T U P08, SRYT %
Bl e s RS N L N SR
TR S R 4) °aﬁ“‘°°o%°u°°%°‘2% §° 00 s
DI NTIRO LN C IR 8 R ol B s, 20 C
o #c00 02 2500 B o FTon YT el W S R KPR RS
100 By G010 w"ﬁ: 28 W@ O%Vﬁ% B oty B o P R s po @
w%%‘zgm&) © 00 logfo S © g2 g, o 0a® &S, B0 . "B 2,
B S ST St Rl B G S glog
5 G RN
20d¥58 o &
i
3
501~
ol
50~
100}
150}
200

-200

Figure 4.4: A robot turning 4 radians, starting from 7 heading at position (0, 0).

38 Chapter 4. Obstacle Detection

Note that in the figure it can be seen that there are lines of particles within the
blank area. This is due to slow sampling rate on the range measurement. The
blank spaces between the lines are spaces where laser has taken a measurement
and the lines are particles that has not yet been detected by the laser.

ROBOT MOVING IN CIRCLE

200~
150

100

o

-100

-150

-200

-250 —

1 1 1 1 1
-150 -100 -50 0 50 100 150 200

Figure 4.5: A robot moving in a circle, starting from (-25, -25) with a radius of 50
units, moving counter clock-wise. The map is set up with two obstacles. One with
centre (50, 75) other with centre (100, 25. Particle count: 10 000)

As seen in Figure 4.5, the robot moves in a circle starting from (-25, -25) with a
radius of 50 units, moving counter clock-wise. The blank space forms a doughnut
shape. This is due to the unexplored area outside the blank space and in the
centre of the map. The blank space contained particles, but where removed in the

4.4. Implementations 39

resampling phase. The indentions in the doughnut shape are obstacles detected
by the laser. Looking closely on the figure, it can be seen that the colour of the
particles on the edge of the doughnut shape range from red to yellow to green
to blue. Red is here represented as weight of 1 and blue as 0.5. It can therefore
be seen that a particle detected recently is red, while older particles tend to be
blue.

CHAPTER 5

RELATIVE POSITIONING

As mentioned in Section 2.4 it would be wise to use relative positioning to solve
the positioning problem. This requires the robots to be synchronized, and some
sort of sensor to measure the position.

This chapter first introduces the concept of relative positioning. Section 5.2 dis-
cuss the advantages and disadvantages of a few sensors commonly used for po-
sitioning. It is then presented a method using ultrasonic sensors to measure the
relative position, followed by a protocol which could be implemented. Section 5.5
elaborates the need of synchronized clocks for the system to work.

5.1 INTRODUCTION

Relative positioning is mostly not used in robotics. This due to GPS and other
systems being able to give a very accurate measurement of the position of a robot.
By using GPS, some odometry, an accelerometer and other sensors and putting the
information into a Kalman filter or other types of position estimators, the problem
is solved. The output is roughly a position of the robot or vehicle, which can be
sent out to other robots requiring this information. Mostly robots and vehicles
are also very large in size and slow in movement. This gives the estimator time
to create a good enough estimation, and the robots/vehicles time to handle this
information.

If the robot/vehicle is situated inside, the GPS will not give any signal at all. This
is not a problem if the robot/vehicle is alone. The robot/vehicle is then only
required to know the position of it’s origin or goal relative to itself to navigate
around the environment. If there are more robots/vehicles that are cooperating,
the easiest method is to create reference points that the robots can measure. This

42 Chapter 5. Relative positioning

will give a position relative to the reference points and therefore a relative posi-
tion to each robot. This is usually done by using a differential GPS [Vik, 2012]
or laser towers[Sperre et al., 2012]. Differential GPS (DGPS) is mostly used to
enhance GPS accuracy and removes common errors. Relative positioning with
DGPS works by having two or more GPS senders stationary on ground and hav-
ing the robot/vehicle receiving the GPS signal. This is also called local GPS, or
LPS. Laser towers are used by having a spinning laser tower on each robot, shoot-
ing two laser beams. Three or more stationary receiver towers looks for the laser
beams and measures the distance to them. The robot then uses triangulation to
find its position.

Another more widespread method using reference points is to use one or several
cameras and a way of identifying each robot (either using lights with different
colours, or unique symbols printed on each robot). A computer calculates the
position of each robot using input from the cameras, and tells each robots what
their position is.

These methods will not create a robust system. GPS is not accurate enough to es-
timate a good enough location when the robots are as small as they are, and GPS
is useless inside. The problem with using reference points is that the robots are
relying on sensors outside themselves. This is a huge risk, because if the refer-
ence points have errors or are not active, the robots will be immobilized. It also
requires the reference points to be deployed before any tasks can be done. This
not only takes time, it also limits the area the robots can operate. Using an outside
computer to calculate the robots” positions is not a scalable method, as it is only a
limited number of colours and symbols to be used. The robots are acting more as
dumb agents being told what to do, and not a cooperative team. It also requires
more set-up for the robots to work, so much set-up that it usually requires a hu-
man team to install the equipment. This is very time and cost consuming, and is
almost considered cheating.

Making each robot able to only detect the relative position of its neighbouring
robots purely on its own, is not easy to implement, but gives many advantages:

m Scalability Making the robot only able to detect its neighbours gives each
robot a finite number for neighbours to deal with. This because there will at
one point not be enough room in a robot’s "neighbourhood". This will create
a mesh network between the all robots, with the robots able to communicate
through routes in the neighbourhood. The system is therefore very scalable.
The problem in these mesh networks is that information have to go through
many nodes to go from one end of the network to the next, thus being very
slow. This is not a huge problem as a robot does not need much information
about all the robots in the network (only its neighbours), and therefore does
not need to send or receive information throughout the whole network.

5.2. Measuring relative positions 43

m Master- and slaveless If the robots only detect their neighbours, there is no
need for a master/slave system. The main problem of a master/slave system
is that if a master is disabled, the system will need a method for electing a
new one. If the network is spilt for some reason, there will be elected two
masters, and a merge between two networks will need another re-election.
In fact every change in the network will require a check in who is master
in the system. The master is also required to communicate with the whole
network, inhibiting scalability.

m No reference points As explained earlier using reference points to find the
position of the robots is risky. A fault in the reference point, or a lack of
reference point may potentially immobilize the robots. It also requires de-
ployment, which can not be done in all environments. It also restricts the
area the robots can operate.

m Environment Being able to behave consistently in different environments
is key. To have one robot able to handle all sorts of environments without
needing to switch out sensors or other hardware is very cost efficient. This
makes a robust system. If the robot does not require others than itself to
detect other robots to cooperate with, it can easily do so in all sorts of envi-
ronments.

If you look towards nature, and especially insects and birds, it can be seen that
relative positions are used. For locusts swarms and bird flocks to be able to fly as
a team, there has to be a way for them to detect the position of everybody within
the swarm. It would be hard for a locust to have a master or a reference point, and
the only requirement a cricket has is the position of its neighbours for the swarm to
work. The Boids algorithm[Reynolds, 1987] is an algorithm able to create swarm
behaviour by only using relative position and velocity. The algorithm is easy to
implement, but lacks cooperative properties. Birds and insects are not able to
cooperate without having a social protocol, and are therefore unable to do tasks
like picking up heavy objects as a team. Nevertheless it can be seen that relative
positioning is the most robust method when using cooperative control.

5.2 MEASURING RELATIVE POSITIONS

Using relative positioning, and having every robot able to detect its neighbours
requires both distance measurements and triangulation. The cheapest and most
used methods to measure distances are either by light, sound or imaging.

Imaging is getting more popular to use. Following here are some advantages and
disadvantages to using it:

44 Chapter 5. Relative positioning

ADVANTAGES

m Detects more Using image processing, it is easier to detect the position of
other objects as well as a robot’s neighbouring robots. The amount sensors
needed will therefore be less, and therefore more robust against noise.

m Identification It is easy to place symbols, lights or colours on each robot,
giving them a unique identification. This can then be detected by imaging,
making it easy to identify which robots are neighbours.

DISADVANTAGES

m Heavy processing Image processing requires much processing and mem-
ory resources to work. This is due to the analysing of images required to
get the wanted information. This is not suited for this project, because of
the constraints in processing and memory capacity (see Section 2.2). This
might also make the microcontroller to slow to be able to handle the other
deadlines that it has.

m Field of view Cameras have a restriction in the field of view, which is a
problem when a robot is trying to detect everything around itself. This can
be fixed by either limiting the movement of the robot to only moving for-
ward and turning, which causes the robot to detect anything it is walking
towards. It can also be fixed by making the camera sweep or spin. This will
make it harder to detect moving objects, since after taking one measurement
the camera has to wait for a whole sweep or spin to take another measure-
ment at the same angle. The movement an object has had between these two
measurement is unknown. The last method of fixing this problem is to use
many cameras, which again raises the number of the sensors, and the power
supply of the robot.

m Learning algorithm Image processing requires some sort of learning algo-
rithm to work. The problem with using a learning algorithm for detecting
objects is that the algorithm might not converge fast enough or not at all.
This leads to the robot not detecting the objects. It is more reliable to use
methods that have a proof — proving the method gives the desired result.

It can be seen here that imaging is not suited for solving the relative position prob-
lem for this project. It is more used in robots or computers capable of handling
heavy computing, and mostly used for single robots.

The more unusual sensor for sensing other robots is by using light. Sensing dis-
tances with light implies adding two or more lights (preferably LEDs) and pho-
todetector on each robot. Each robot then uses the photodetectors to detect the

5.2. Measuring relative positions 45

strength of nearby light sources.

ADVANTAGES

m Continuous detection Since light travels at the speed of light, there is no
delay from the light being emitted to it being detected. This means that each
robot can be detected continuously without delay.

m Detecting angles It is easy to detect the angle of the light source by using
many photodetectors and knowing the distance between them. This can be
done with simple triangulation.

DISADVANTAGES

m Identification There is no way to distinguish one light source from another
without them having different frequencies. This is a problem since this gives
a limiting number of robots able to work at the same time. This also means
that the light must be preprogrammed with a unique frequency, or have a
unique diode soldered in.

m Detecting distances Detecting distances is hard using light. To detect the
distance of an object emitting light, it requires the object to have more then
one light source, and a known distance between the light sources. When
viewing two light sources on a robot from the side, the distance between the
sources vary if viewed from different angles, see Figure 5.1. This means that
the angle of the robot must be known to be able to detect the distance from
it.

m Frequency Electromagnetism has a disadvantage when it comes to frequency.
If the robots who are to be detected emits visible light, then any light source
in a room interferes with the sensor. This also applies to infrared and ultra-
violet light when used outside. Higher frequencies like X-rays and gamma
rays will be harder to produce, and potentially dangerous. The sensors are
therefore limited to only using frequencies lying in the microwave and radio
wave region.

Detecting using light is not easy without having information about the robots an-
gle, and even then it would be hard. It can be argued that by only using the
strength of the light source to detect the distance, and having many photodetec-
tors to detect the angle. This is an easy and possible solution, but it still has a
problem with identification. There is another way of using light. This is done by
having two lasers with a known distance apart, spinning with a constant speed,
on top of each robot[Sperre et al., 2012]. As the lasers travel the photodetectors

46 Chapter 5. Relative positioning

Figure 5.1: Robot viewed from above. Here an angle 8 between two light sources
on robot B are measured by robot A. It can be seen that because robot B has an
angle, robot A can not differ if robot B is positioned at B or C

on the other robots detect two blinks that comes from the lasers as they sweep
by. The time between the two blinks will give a distance, and using two or more
photodetectors will give an angle. This is a good solution, but it requires much
more complex measurements and electronics, and it still has the problem of iden-
tification.

Sound on the other hand has properties that makes it easy to use for measuring
positions. By placing one sound transmitter and three or more sound receiver,
with known distances between them, on each robot, the relative distance and an-
gle can be calculated. This will be explained in Section 5.3. Here are some advan-
tages and disadvantages by using sound for detecting relative positions:

ADVANTAGES

m Speed of sound The speed of sound is 340.29 % . When two microphones
are placed beside each other and sound wave travels by them, the time dif-
ference between each detection is measurable with a good enough sample
rate. Therefore by using triangulation and three or more microphones the
angle of a sound wave can be measured easily and precisely.

m Identification Unlike light, the energy of a sound wave does not vary with
the frequency. This means that one sound wave at 40 kHz and one at 41 kHz
have the same energy given the same amplitude. Different frequencies can
therefore give different identifications. Another way for identifying each
robot is presented in Section 5.4.

m Noise Outside 20 kHz there are not many sounds in everyday life. Sounds

5.3. Ultrasonic sensing 47

higher then 20 kHz are usually created by motors and electrical appliances,
but at very low amplitudes. This means that there is not much measurement
noise when using high frequencies.

DISADVANTAGES

m Detecting distances When detecting distances using sound, the time be-
tween emittance and measurement is used. This means that the time be-
tween one robot emitting a sound wave and another detecting it needs to be
known to be able to calculate the distance. This requires synchronized clocks
and a communication channel telling when a sound wave was emitted and
when it was detected.

The simplest solution is by using sound. It is the most robust type of sensor, and
the only requirement is a synchronized clock and a communication channel. The
communication is already meant to be implemented which only leaves synchro-
nized clocks.

5.3 ULTRASONIC SENSING

Placing one ultrasonic transmitter and three ultrasonic receivers on each robot,
the problem with relative position can be solved. The ultrasonic transmitter is
placed in centre of the robot, shown in Figure 5.2, facing such that a pulse from
the transmitter creates a circle of sound waves on the horizontal plane, i.e. a water
drop hitting a water surface. This can be accomplished by placing the transmitter
upwards, and with a pyramid shape on top of it - spreading the sound wave, see
Figure 5.3. Each receiver is placed with equal distance apart and equal distance
apart from the transmitter. Applying synchronized clocks and a protocol, the rel-
ative position of every robot can be detected. The sound waves emitted are in the
ultrasonic range since there is little noise in these frequencies.

For detecting a single robot, the robot only needs to send a short pulse with its
transmitter, and record when it was emitted. The surrounding robots eventually
receives the sound wave, and records when each of its receivers senses the sound
wave. The distance from the emitting transmitter to each of the receivers can then
be measured using the time recordings Figure 5.4. Here synchronized clocks are
necessary.

For detecting multiple robots multiple frequencies can by used, but an alternative
solution is presented in Section 5.4.

48 Chapter 5. Relative positioning

Figure 5.2: Robot viewed from above. T represents a ultrasonic transmitter, and R
represents a ultrasonic receiver

o Pyramid
>
[
2
o]
c
3
o
19p)
NNNSSIST
Transmitter

Figure 5.3: Transmitter viewed from the side. As seen a sound wave emitted is
spread out into a circular wave.

5.4. Protocol 49

Figure 5.4: A sound wave is pulsed from one robot and the three receivers on
another robot measures the pulse

5.4 PROTOCOL

To use relative positioning the robots are required to differentiate each other from
another. When using sound for detecting, the first method that comes to mind is
to differentiate using different frequencies. The problem with this is that it usually
requires complex hardware circuits and/or fast Fourier transform for filtering the
sounds. This also require the sensors and transmitters to be able to sense and
produce different frequencies.

Another solution to identifying is by using a communication protocol. Since syn-
chronized clocks has to be implemented if sound is used to measure the relative
position, it would be beneficial to use it for identifying which robot emits which
sound.

By implementing a time slot for when each robot is allowed to emit a sound wave,
the identification problem can be solved. The robots agree on which time slot
belongs to which robot, and each robot must then emit a pulse within this time
slot.

As seen in Figure 5.5, there are 4 robots interacting with each other. When they
enter the first time slot, the first robot sends an ultrasonic pulse. This is received
at different times by each robot!. When the robots enters the second time slot, the
second robot sends a signal. Since each robot has been given a unique time slot,

!Note that the robots actually receives three signals, one from each ultrasonic receiver it has. These
signals are then used to triangulate the position. This has been abstracted away in the figure.

50 Chapter 5. Relative positioning

h ta t3 ty
| I I I I
Robot1 |H 0 B m B Transmit
B Receive
Robot 2 a [| 0 B
Robot 3 ([(N [| b
Robot 4 O M [|

Figure 5.5: A graphical representation of the protocol. Each robot transmits a
signal at the beginning of their time slot. The other robots then receives the signal.
Since each robot has a given time slot the other robots know which robot sent the
signal.

the other robots can identify which robot sent the signal depending on which time
slot they are in.

EXAMPLE

6 robots have synchronized clocks and ultrasonic sensors as described above. In
this example a time slot can have a period of % seconds. This so that each cycle
is completed within one second, which is sufficient for this example. When the
robots enter the first time slot, the first robot emits a sound pulse and the others
receives and calculates the distance to it. The sound emitted travels at a maximum
of 56.72 meters before it "enters" the next time slot, which is farther then the robots
normally would move away from each other.

The questions raised in the above example is what happens if one robot move to
far from the other robots so they receive the sound wave outside the time slot?
And what happens when there are to many robots for the time slots to be effi-
cient?

For addressing the distance question first. The sound wave will probably dimin-
ish so it will not be detected by the other robots. If this is not the case, then there is
arisk of the robot being so far away from the other robots that when its signal is re-
ceived it might be received to late (i.e. some one else’s time slot). This will cripple
the whole system, and the other robots will not be able to identify the right robot.
Having different time slots on different frequencies solves this problem. Using the
example: Having one time slot at 40 kHz with a period of % s and another time

5.4. Protocol 51

slot at 41 kHz with a period of 0.5 s . Now the 40 kHz frequency can be used to
detect nearby robots, while the 41 kHz frequency can be used to detect robots far
from each other (up to 170 meters). It can be seen in Figure 5.5 that Robot 1 and 3
are dangerously far away from each other. A small delay in the transmission will
make them miss the deadline. Here it would be wise to implement a double time
slot as mentioned. There is also worth mentioning that detecting robots very far
away from each other is neither necessary nor interesting. These robots might be
out doing other objectives, and there is no risk in colliding with them either.

What happens when there are to many robots for the time slots to be efficient?
An example of this problem might be if there were 100 robots trying to detect
each other. If the whole time slot cycle still were to be 1 second, the time slots
would have to be 1/100 s. It would be hard for the robots to keep the calculation
deadlines, and the maximum travel range of a sound wave would only be 3.4
meters. If the time slots were to have a period of 1/10 s, the robots would be
able to hold up, but the complete cycle would be 10 seconds. This means that
the update rate of the positions would be 10 seconds, and is very inefficient and
leads to potential collisions. The solution is again using different frequencies and
different time slots. Having 10 time slots with frequency range from 40 kHz to
50 kHz with a step of 500 Hz , and a period of 1/5 s , each robot would be able to
detect each other within a range of 68 meters. This means that 10 robots transmits
a signal within the same time slot, but at 10 different frequencies. It is worth
noting that with this amount of robots there would be other potential problems
that needs to be solved before this problem occurs.

5.4.1 MULTIDIMENSIONAL SCALING

A problem that arise when measuring distances is that the measurements differ
from each of the robots (Figure 5.6). This occurs because the clock on each robot
differ. The error in time leads to an error in distance when detecting transmitted
sound. This problem is called multidimensional scaling (MDS) when this goes
over multiple dimension (i.e. multiple measured distances). It is therefore needed
to calculate the most plausible distances between them. The problem is formu-
lated as

%;,; = robot i's measured distance to robot j (5.1)

52 Chapter 5. Relative positioning

Figure 5.6: Three robots with their distances measured between each other. Equa-
tion 5.1 describes the distance §. The distance measured from robot 1 to 2 is not
the same as measured from 2 to 1

5.5. Synchronized clocks 53

By putting all the measurements in a dissimilarity matrix

511 612 &3 o big
01 G2 b3 v by

A=| 031 832 833 - O3y (5.2)
571 1 571,2 571,3 5n,n

’

The multidimensional scaling problem can be converted into a metric multidi-
mensional scaling problem(MMDS), being a simpler variant of MDS. In order for
this, the entries in the matrix must hold two properties: non-degeneracy and trian-
gular inequality. Non-degeneracy can be formulated as:

6;;=0, 1< i<n (5.3)
While the triangular inequality can be formulated as:
51',]' + 5i,k < 5j,k (5.4)

Since the entries on the matrix are distances, this can easily be proven. There is
also an unfortunate property in this matrix, which is:

51‘,]‘ * 5]',1‘ (5.5)

There is no straight forward method for solving this problem, but a cost function
for a least square problem can be formulated as:

min Y (|x; - x;] - 6; ;) (5.6)

X1yeesXn o
1, rnl<]

While this problem occurs with distances, this problem will not occur when mea-
suring angles. This is because measuring angles are not dependent on the time
the sound was emitted. Since it is not dependent on this, the synchronized clocks
do not have any effect on the measurements, and an error between the clocks does
not affect the measurement of angles.

5.5 SYNCHRONIZED CLOCKS

The problem with the clocks on microcontrollers is that the clocks may differ. Even
clocks that are initialized the same, will eventually differ due to clock drift. No
clocks are the same, and will therefore at one point in time be different. This is a
big problem since many computer systems that interact with each other requires
to be synchronized to function properly.

54 Chapter 5. Relative positioning

In regard to the relative positioning system above, synchronized clocks are vital.
An example is given in Figure 5.7. Here two robots where robot A is one second
earlier than robot B. Robot A transmits its ultrasonic signal at real time ty (which
is tg for robot A and fy -1 for robot B). At real time t; the signal is received at
robot B. The time difference between t; and t(is A;. When robot A communicates
that it transmitted the signal at ty and robot B communicates that it received at
t1 — 1, they calculate the time difference is given as A; — 1. The distance between
them would then be wrong by over 340 meters. When robot B then transmits,
the difference calculated would be A; + 1, which is another 340 meters difference
in the other direction for a total of over 680 meters. Getting the clock difference
down to microseconds would therefore be desirable.

One might think that for the example above that robot A tells its time to robot
B, and robot B corrects its time to this, would solve the problem. The problem
with this is that the transmission time of the information and the computation
time would contribute to the time difference. The time difference above would be
reduced to milliseconds instead of one second, but it still persists.

Better algorithms exists, and many of these have different accuracies, properties
and requirements. There are two main branches of solutions:

m Centralized systems are systems where there is one master dictating the
time to the slaves. Algorithms that use this are for instance Christian’s algo-
rithm and Berkeley algorithm.

m Distributed systems are systems where there is no master nor slave, and the
information is distributed. This means that an average of the time has to be
created.

For this project, the robots does not care about the time of the outside world. This
means that the correct time is not significant, only that the difference between
the clocks is very small. Therefore neither centralized nor distributed algorithms
is more beneficial then the other. Therefore any algorithm can be used, but one
with sub-microsecond precision is fancied. The use of the Precision Time Protocol
[Mills, 1985] should be looked at more thoroughly because of this feature. It was
first defined in IEEE 1588-2002, but revised in IEEE 1588-2008 with better accu-
racy and robustness. The Precision Time Protocol needs a reference clock. This
clock usually is an atomic clock. This clock then synchronizes with other com-
puter clocks, also refereed to as server clocks. These server clocks are then used
to synchronize with client clocks. As mentioned, the robots do not require an ab-
solute time, but a small time difference. Therefore promoting one of the robots as
the reference clock and synchronize the rest of the robots to it would be sufficient.
The protocol is also highly scalable, by electing many clocks to be reference clocks,
which also makes the protocol fault-tolerant.

5.5. Synchronized clocks 55

tb At tl‘éil

t2+1 t
t3+1 Ay ta
x

Figure 5.7: Problems with non-synchronized clocks. Robot A’s clock is one second
earlier then Robot B’s. When Robot A transmits and Robot B receives, the real
time between them is A;, but the calculated difference is Ay — 1. When Robot B
transmits the calculated time difference is A; + 1

CHAPTER 6

DISCUSSION

This chapter will provide some hindsight on this project. In each section below
each chapter will be discussed, and some hindsight and experience will be pre-
sented. After this an overall discussion of the project is presented.

6.1 PROBLEM DESCRIPTION

It could be discussed if the solution of using a mere laser and some ultrasonic
sensors is sufficient for the project to work. It is true that using a microcontroller
with a Linux distro and use an image processing library like OpenCL to give the
robots camera vision, would be a plausible solution as well. It is true that such
an approach is more applicable than the current solution, but it would require a
lot more work get right. The current solution is also something which probably
never has been done before, and the field of multi-robot systems would benefit
from the knowledge acquired in this report. As mentioned in the introduction,
this solution would be beneficial to see how simple a system could be and still
have cooperative properties.

6.2 HARDWARE

The products presented in Chapter 3 can be discussed. There might be many
modules able to perform better, but the time required to research this is too long
for this report and maybe even this project. The proposed products are familiar to
the participants of the project, and they are easily accessible.

58 Chapter 6. Discussion

None of the presented products have been thoroughly tested, although the Ar-
duino Due is related to the Arduino Mega, which is a known platform by the
participants of the project. The experiment on the IR-laser was disappointing (pre-
sumably not the laser’s fault), and other than that, the only component tested is
the X-Bee, which has yet only been tested for two-way communication.

Due to time constraints and a minimal budget, most of the presented hardware
was not obtained, and therefore not tested. This is not desirable when decid-
ing on an implementation, but the research on the components show positive re-
sults.

6.3 OBSTACLE DETECTION

It can be discussed if the approach of using a laser for obstacle detection is enough,
and if only a local map is needed for the robots to be able to navigate and explore
the environment.

As seen in the simulations (Section 4.4), a system consisting of only a laser and an
Inverted Particle Filter gives promising results for a single robot. This is sufficient
for obstacle detection, but a thought of reusability of maps rise. As discussed
in Section 2.4.1 a merge of local maps would be beneficial for the total system.
Since the Inverted Particle Filter creates a circular map, and the relative position-
ing system gives a distance between the robots, it can easily be checked for col-
lision between the local maps. When two local maps overlaps the particles can
be compared. This can be accomplished by temporarily adding the overlapping
particles to the maps, and let the resampling function keep the particles if they
add information to the map.

The Inverted Particle Filter (presented in Section 4.3) has its flaws when it comes
to dynamic obstacles. This is due to the resampling function. The resampling
function can however be constructed for any specification, and can therefore be
used in this project. A robot might be able to move around with the current im-
plementation of the particle filter, but it would require some more trial and error
for the robot to move efficiently. There has yet to be anything indicating that a
resampling function is not able to handle dynamic obstacles, so this study will be
done at a later stage of this project.

Another implementation that would be beneficial to the obstacle detection system
is to implement the obstacles as single objects rather then a set of particles. This
can be done with some simple line or corner detection algorithms on top of the
Inverted Particle Filter.

6.4. Relative positioning 59

6.4 RELATIVE POSITIONING

The method for detecting relative position using ultrasound that was presented
in Chapter 5 is only theoretical. No implementation of the method exists yet, so
if it works remains to be seen. The test presented in 3.7 reveals promising results
for detecting sound waves, but an experiment in triangulation has not been con-
ducted yet. If the experiment gives negative results, the positioning system must
be re-evaluated. Neither the protocol for synchronized clocks or identification
has been tested, nor has the multidimensional scaling problem been looked thor-
oughly into. There are potentially many problems in the implementation of this
method that has not been discovered yet, and only time will tell if this method is
plausible, though the research is promising.

6.5 OVERVIEW

The hardware platform presented in Chapter 2 seems plausible to implement.
Sadly the presented solution is highly theoretical, and potential problems may
arise. The relative positioning system is purely theoretical, and the obstacle detec-
tion system has some flaws in the Inverted Particle Filter.

Though there are many theoretical aspects of this report, most of the experiments
done have given promising results. There has not yet been any evidence that
the presented solution would not work, and therefore the next step is to test the
system in a practical manner. By investing in the given hardware components
and testing them individually and collectively, the plausibility of the system will
strengthen. While the project might stumble upon many problems in the future,
the research conducted supports the possibility of successfully implementing the
current solution.

CHAPTER 7

CONCLUSION

A project started fall 2012 with the purpose of creating a functional multi-robot
system for demonstrations and educational purposes. In this report there has
been an investigation in how simple a multi-robot system can be and still be able
to handle different cooperative control systems.

A solution that is plausible has been presented, and different hardware compo-
nents, methods and algorithms that supports the solution has been presented as
well.

The solution presented contains a planar holonomic robots moving using omni-
wheels. The robots have an IR-laser which measures the range to obstacles, com-
plimented with an Inverted Particle Filter, to create a local map of these obstacles.
The robots also use ultrasonic transmitters and receivers to calculate the relative
position of each other for cooperation.

The hardware components for the platform has been discussed. The components
that are key for creating this platform, and the requirements for each of them has
been thoroughly discussed. Recommended products for each component, which
support the requirements has been presented. Tests on some of these products
has been done, and experiments that support the use of some products has been
conducted. All this is present in the report.

In this report it has been a research on how the robots should interact with obsta-
cles. The obstacle detection system operates using IR-laser to measure the range
from the robot to an obstacle, and a new method called the Inverted Particle Filter,
which creates a local map of the robots surroundings. The Inverted Particle Filter
use the input from range-measurements to create this map. This method has also
been tested in a simulator and the results are positive, though some further work
is needed to improve the implementation.

62 Chapter 7. Conclusion

The positioning system has been discussed, and a conclusion to use relative posi-
tion has been taken. This is due to the constrains of the project and the scalability
of the system. Different methods and sensors used to solve the problems of rel-
ative positioning have been presented and discussed. It has been concluded to
use a ultrasonic transmitter, three ultrasonic receivers, synchronized clocks and
triangulation to find the distance and angle between each robot. This method is
supported by the use of a protocol for sending sonic pulses, so that the robots can
identify each other. A short look upon Multidimensional Scaling for comparing
the measurements and calculate the positions has been conducted.

A deeper understanding of what problems lie ahead, when trying to implement
this multi-robot system has been achieved. It is possible to make a multi-robot
systems which is very simple in implementation and low in cost. A fully cooper-
ative control system that has both obstacle avoidance and formation control can
be implemented on this platform. The platform can provide a positioning and
obstacle detection system which a cooperative control system has an interface to.
The hardware platform is simple and to many degrees scalable, but still highly
theoretical.

Some of the methods discussed in the report might only be suitable for this project,
and larger robots with fewer constraints and other purposes would probably ben-
efit more from other methods. With larger robots it would be more beneficial to
use faster computers and more complex sensors, making it possible to use more
intricate methods for obstacle detection and positioning. It would also be wise to
use multifarious methods to make the system more fault-tolerant.

This report gives insight on how simple a functional multi-robot system can be,
and provides such a solution.

CHAPTER A

APPENDIX

A.1 MPU6050 BREAKOUT BOARD

For the use of the MPU6050, it was required to create a breakout board. The board
was based on the "Tripple Axis Accelerometer 6 Gyrp Breakout - MPU6050" board
provide by SparkFun. Most of the schematics are the same, but it is configured to
better suit the HMC588L Magnetometer. The board is smaller in size than the one
provided by Sparkfun, and has a GND and VCC out with the additional 1>C so
that the HMC588]1 Magnetometer could fit right on top of the breakout board. The
board was produced using the ProtoMatS62, but an unfortunate error in the set-
up gave a malfunctioning board. Due to time constraints a new board has not
been produces.

VIO
SDA
SCL
INT
ucc
GND

Figure A.1: The MPU6050 breakout board

Appendix A. Appendix

A0L

64

—
o
=

SH

O0A

S

QAN
o
S

aNo OND QNS AN aN9 aNo
T
4uol uz'z HnLo
1-0609-NdIN

vol_l ano | Nolﬁ o) o

o] /AN 1Nodo I—47 vas

5 1N0OD3Y oL 01

VOS2 NETO - ——ND IN

05 &2 ONASH - N5 OOA

VaS_ XNV 9] INE TN aNo

108XV 7] e
m anNS

=P 108 XNV |
= Son 4NL0 vas Xnv |
oA
aNo |

[

Figure A.2: The schematic of the MPU6050 breakout board

BIBLIOGRAPHY

[Arcak, 2007] Arcak, M. (2007). Passivity as a design tool for group coordination.
Automatic Control, IEEE Transactions on, 52(8):1380-1390.

[Burgard and Moors, 2000] Burgard, W. and Moors, M. (2000). Collaborative
multi-robot exploration. ...and Automation, 2000 ..., (April).

[Chae and Yu, 2010] Chae, H. and Yu, W. (2010). Artificial landmark map build-
ing method based on grid SLAM in large scale indoor environment. 2010 IEEE
International Conference on Systems, Man and Cybernetics, pages 4251-4256.

[Davison et al., 2007] Davison, A.]J., Reid, I. D., Molton, N. D., and Stasse, O.
(2007). MonoSLAM: real-time single camera SLAM. IEEE transactions on pattern
analysis and machine intelligence, 29(6):1052-67.

[Faludi, 2011] Faludi, R. (2011). Building Wireless Sensor Network. O’ Reilly.

[Klausen, 2012] Klausen, K. (2012). Coordinated and cooperative control of a multi-
robot system. Student project, NTNU.

[Kraft et al., 2008] Kraft, M., Schmidt, A., and Kasinski, A. (2008). High-speed im-
age feature detection using fpga implementation of fast algorithm. Proc. VIS-
APP (1), pages 174-179.

[Lucidarme, 2002] Lucidarme, P. (2002). Implementation and evaluation of a sat-
isfaction/altruism based architecture for multi-robot systems. Robotics and Au-
tomation, ..., (May):1007-1012.

[Mills, 1985] Mills, D. (1985). @ Network time protocol (NTP). Network,
(September):1-15.

[Mullane et al., 2011] Mullane, J., Vo, B.-N., Adams, M., and Vo, B.-T. (2011). Ran-
dom Finite Sets for Robot Mapping and SLAM.

66 Bibliography

[Pagello et al., 1999] Pagello, E., D’Angelo, A., Montesello, F., Garelli, E, and Fer-
rari, C. (1999). Cooperative behaviors in multi-robot systems through implicit
communication. Robotics and Autonomous Systems, 29(1):65-77.

[Reynolds, 1987] Reynolds, C. W. (1987). Flocks, herds and schools: A distributed
behavioral model. ACM SIGGRAPH Computer Graphics, 21(4):25-34.

[Sperre et al., 2012] Sperre, A. H., Halvorsen, A., and Myren, S. R. k. (2012). Eu-
robot NTNU 2012. Master thesis, NTNU.

[Studi et al., 2006] Studi, D., Cassino, D. I., Universit, A., and Arrichiello, E. (2006).
Coordination Control of Multiple Mobile Robots. (November).

[Thrun, 2006] Thrun, S. (2006). The Graph SLAM Algorithm with Applications to
Large-Scale Mapping of Urban Structures. The International Journal of Robotics
Research, 25(5-6):403-429.

[Tuci et al., 2006] Tuci, E., Grofs, R., and Trianni, V. (2006). Cooperation through
self-assembly in multi-robot systems. ...and Adaptive Systems ..., 1(2):115-150.

[Vik, 2012] Vik, B. r. (2012). Integrated Satellite and Inertial Navigation Systems. De-
partment of Engineering Cybernetics, NTNU.

[Wiggins, 2006] Wiggins, R. (2006). Myths and realities of Wi-Fi mesh networking.
Yankee group report, (February 2006).

	Contents
	List of Figures
	Introduction
	Simple overview of the system
	Organization of this report

	Problem description
	Main problems
	Constraints
	General Methods
	Proposed Solutions
	Obstacle detection
	Localization

	Hardware Components
	Introduction
	Microcontroller
	Arduino Mega
	UC3-A3 Xplained
	Other alternatives

	IR-laser range sensor
	Sharp GP2Y0A21YK IR Range Sensor

	Omniwheel
	IMU
	MPU6050
	HMC5883L

	Communication
	XBee

	Ultrasonic sensor
	400SR100 and 400ST100

	Obstacle Detection
	Introduction
	Previous work
	SLAM
	Particle filters

	Inverted particle filter
	Implementations
	Scenarios

	Relative positioning
	Introduction
	Measuring relative positions
	Ultrasonic sensing
	Protocol
	Multidimensional scaling

	Synchronized clocks

	Discussion
	Problem description
	Hardware
	Obstacle Detection
	Relative positioning
	Overview

	Conclusion
	Appendix
	MPU6050 Breakout board

	Bibliography

