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Abstract. There are a vast number of methods for detecting obstacles,
though not taking resource consumption into consideration. The pro-
posed method is an obstacle detection and mapping method focused on
systems with constrained memory capacity and processing power, and is
called the Inverted Particle Filter. This method has small resource re-
quirements, and can be fine tuned according to available resources. The
conducted experiments show promising results.
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1 Introduction

The real world changes, and therefore obstacle detection is an important capa-
bility for robots manoeuvring through it. It is also a key component in creating
maps of the environment, which again benefits the robots manoeuvrability. Ob-
stacle detection has gained interest over the years and is widely used in cars,
ships, planes and many other automated vehicles.

The problems in obstacle detection has been researched in many years, and
there are a number of implementations and methods, each with different advan-
tages and disadvantages. The DARPA Grand Challenge [1] invites participants
to solve the general problem, and the outcome of these challenges has been used
elsewhere in general. However, these solutions often focus on sensor fusion and
redundancy, something which require expensive solutions with numerous sensors
and computers. To the authors knowledge, a solution for low-cost, low-power ap-
plications in the challenge has not been proposed yet.

Low-power applications has gained more and more attention over the years.
Applications with less power consumption, produce less heat and cost less, which
are desired properties in both user interface, design and production of a device.
Moore’s law[2] predicts that there is exponential growth in processing power and
memory capacity on a given area of integrated circuit, which again leads to more
available processing power and memory capacity.

There are many benefits that come with this increased processing power and
memory capacity on smaller circuits. The most common benefit is that imple-
mentations and methods can be less concerned about the resource consumption
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as the circuits are getting more powerful over time. Thus, newer methods can
be more complex with more focus on processing data into complete instances
containing more information rather than focusing on the speed and performance
of the processing, and the memory capacity required to process the data. An-
other way to exploit this exponential growth is that the methods that have a
low resource consumption can be implemented on smaller circuits. An important
benefit of this is reduced power consumption opening for new battery-powered
or energy harvesting applications. To take further advantage of this it is more
crucial to develop methods that require less resources such that smaller circuits
in the new devices and robots, can be developed.

In the fall of 2012 a project to study the possibility of creating a low-cost,
low-power multi-robot system, was commenced at the department of cybernetics
at NTNU. One of the key features of this system was the obstacle detection and
mapping system, which had the constraints of both low cost and low power.

In this paper, a novel particle filter method, the "Inverted Particle Filter",
used for detecting obstacles and creating the map in the multi-robot system, is
presented.

2 Problem definition

The main objective of the robots used in the experiment, was that they would
have low-cost, low power consumption and be small in size. Another target was
to make the robots independent of external reference systems.

Low cost and power consumption often requires a computer with low process-
ing power and constrained resources. Therefore it is beneficial with an obstacle
detection and mapping approach that has constant and predictable memory
consumption and processing time, and that both of these are linearly dependent
with the desired resolution of the map.

It is worth noting that low power consumption does not necessarily mean
low processing power nor constrained resources. Nonetheless, if a method is less
demanding it will in general perform better with restricted resources. Thus it is
a goal to develop methods that are more resource efficient.

Since the robots were not using any external reference systems, each robot
had to equipped with a sensor to detect obstacles.

Computer vision often use either one or two cameras and a computer to
process each frame captured by the camera(s). There are different algorithms to
use on a frame or a series of frames to detect objects within the field of view.
These algorithms often require intense computation, which is not favourable in
this application.

Ultrasonic and laser range sensors are often more affordable, and require only
an analogue reading to measure the distance to an object. Laser sensors are more
accurate than ultrasonic sensors, since ultrasonic waves spread out and create
additional echoes. The drawback with these sensors is that they only measure
distances, and do not have a way of determining if there is an obstacle or not.
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The two algorithms that are needed in this application is an obstacle detec-
tion algorithm and a mapping algorithm. These algorithms can easily be fused
together, as once an obstacle is detected, only the position of the obstacle is
required to add it to a map.

Mapping an obstacle has the benefits of reusability and that it can be dis-
tributed to other applications and even humans. However, using this approach
neglects the possible movement of an obstacle. If an obstacle moves and this is
not detected the map gets outdated. Another problem with the map is that the
map needs to be stored, and the more obstacles detected, the more data needs
to be stored in the map. This problem is an issue of decreasing concern, as the
memory and storing capacity in microcontrollers grows, as mentioned earlier.

SLAM (Simultaneous location and mapping)[3] is a definition for methods
that constructs a map and estimates the position of the robot on the map, based
on sensor data. SLAM uses either stereo vision, LIDAR[4] or other sensors that
can be used to detect obstacles. When an obstacle gets detected it is placed in the
map. Current SLAM methods normally requires large amounts of memory and
processing power, which is not well suited for restrictions in processing power and
memory capacity. Therefore other methods had to be used in this application.

As time elapses the environment changes, and obstacles may have moved or
changed shape, making the map irrelevant. Therefore it is not meaningful to
create a map which is larger than a robot can maintain. In this aspect, main-
tainability depends on how fast the environment changes and how fast a robot
can detect the changes.

It would therefore be beneficial to modify the mapping approach such that
the robot only keeps a local map around the robot, where obstacles outside a
defined boundary are removed from the map. Only the obstacles nearby needs to
be avoided, and therefore information about the other obstacles are irrelevant.
This also gains the benefit of having a more accurate map, since the obstacles in
the map can be frequently updated. The other benefit of a map with boundaries
is that the map has a constant size, meaning there is a finite and known number
of obstacle. This makes the memory consumption predictable.

There are normally two main approaches of describing an obstacle in a map:
The vector approach and the grid approach. Examples of methods for both of
these approaches can be viewed in [3] and [5] respectively.

The vector approach tries to describe the obstacle with parameters and at-
tributes. E.g.the obstacle is a circle with a radius of 1 meter in coordinates (1.2,
0.8). The obstacle use little resources when stored, and it is easy to update the
obstacle since this only requires to change a few of the parameters. It is though
harder to determine how to describe the obstacle, and what the parameters are.
It requires much information and sensor data to make the parameters correct,
which is a problem when having a limited number of resources. The resolution of
the map is potentially infinite, but it is dependent on the error of the parameters.

The grid approach sets up a grid where each cell contains information about
what is in the specific position of the cell. Each cell requires little information,
usually only a boolean determining if there is something solid in that position or
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not. The resolution and error of the map is dependent on the grid size. Therefore
complex shapes will not be described well enough if the resolution is to low. There
are two main problems regarding limited resources. Since it is beneficial to use
a local map around the robot, then as the robot moves, the map changes. In the
case of a grid map, each cell needs to use a shift operation to move to the new
position. This requires much processing power, especially if the map has a high
resolution. The second problem is that all the cells contain the same amount of
information. This means that cells which does not contain an obstacle contains
information about there not being an obstacle. This is redundant since only cells
that contains an obstacle are needed.

A third approach of describing an obstacle in a map is by using particles.
This is based on the vector approach, but with some properties similar to the
grid approach. Each particle is part of a detected obstacle. As with the grid
method, the map resolution is dependent on the number of particles, and does
not have to cover the whole size and shape. Complex shapes can be described
with a much higher degree than with the grid map since the position of a particle
can be floating point. The particles does not have to be shifted, only change their
position, making movement much easier. The particles are only contained within
an obstacle, meaning that information about empty space does not need to be
contained. Therefore, using particles has many benefits when having limited
resources.

3 Particle filters

Particle filters[6] are recursive implementations of Monte Carlo-based statistical
signal processing. In robotics they are commonly used to find the position of
a robot based on measurements of the environment, and is an alternative to
the model-based Kalman filter. There are advantages and disadvantages with
both filters. One advantage for particle filters is that it is multimodal. If there
is ambiguity in the measurements the filter can converge to multiple solutions.
This is a required property when detecting multiple obstacles.

A short description of the particle filter can be that to create a finite set of
particles, and give each particle in the filter the same movement characteristics
as the robot using the filter. As the robot moves, each particle moves in the
same manner, and as the robot takes measurements, the particle takes the same
simulated measurements. The weight of a particle reflects its consistency of its
measurement compared to the measurement of the robot. After a given period,
the filter enters a resampling phase where particles with low weight are moved
to the position of the particles with high weight with a random offset. This will
eventually cause all particles to move to the same position, and thereby giving
the most likely position of the robot. Figure 1 shows a particle filter using an
IMU to measure the movement of the target. As the target moves, the particles
that moves through the walls gets lower weights due to the target being highly
unlikely to move through walls. The low-weighed particles are relocated into
a more likely position, which converges to a final solution. Notice that there
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are many solutions for the position of the target, but as time elapses there is
less ambiguity in the measurements and the filter eventually converges to one
solution. Here uses a full map of the environment to estimate the position of the
target.

Fig. 1. A particle filter in action. Initially the particles are evenly distributed over
a map, but as measurements are taken they move to a more plausible location of the
target. Image provided by German Aerospace Center, Institute for Communication and
Navigation[7]

The resampling phase can be designed to suit any situation. The most com-
mon approach is called the resampling wheel. This approach distributes the
particles closer to the particles with high weights, increasing the number of high
weighted particles. The more measurements are taken, the less ambiguous the
solution gets, leading to less particles with high weights. This cycle eventually
makes the particles converge to a solution.

The resampling phase can make or break the particle filter. Particle depletion
is one of the major issues when resampling. Particle depletion happens when
particles converge to the wrong solution. What happens is that as particles drift
around according to the robots motion there may be only one or a few particles
within the area with high probability of having the correct solution, and be a lot
of particles in very unlikely solutions. The particles with the wrong positions is
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overrepresented, and the particles with the correct answer will eventually give in
and move to a different location making it very hard to converge to the correct
solution unless the filter restarts.

Particle filters have some beneficial properties for low-cost, low-power sys-
tems. First of all, there are always a constant number of particles in the filter.
This leads to a predictable usage of memory. Secondly, the update sequence of
a particle filter is O(n) which leads to a constant processing time. This means
that both memory and processing time are linearly dependant on the number of
particles. And thirdly, each particle can be designed to have whatever state is
needed, making the particle filter a versatile approach suited for many needs.

3.1 Inverted Particle Filter

Particle filters are often used to find the position of a robot based on its measure-
ments of the environment. The Inverted Particle Filter described below inverts
the problem: It finds the position of the environment based on its measurements
of the position.

The output from the Inverted Particle Filter is a map of particles, with
the robot always in the center. The map is therefore relative to the robot. In
this application the map is circular. The weight of each particle represents the
likelihood of the particle being a part of an obstacle. The weights are values
between 0 and 1. The weight of 0 represents the particle not being part of an
obstacle, 1 represents the particle being part of an obstacle, and when the weight
is 0.5 it cannot be determined. We define low-weighted, mid-weighted and high-
weighted particles to have weights close to 0, 0.5 and 1 respectively.

As the robot moves, each particle on the map will move in the opposite
direction. This reflects the position of the particle relative to the new position
of the robot, as shown in Figure 2.

High-weighted particles
Mid-weighted particles

Fig. 2. A movement of the robot is represented as all the particles moving in the
opposite direction in the particle filter
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Low-weighted particles Mid-weighted particles High-weighted particles

Fig. 3. On the left: A robot rotating while taking laser measurements in an environment
with three obstacles. On the right: The particles in the Inverse Particle Filter as the
filter is updated.
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In our application a laser measurement is used to detect the distance to
an obstacle, but any sensor that measures the distance to an obstacle can be
used. Whenever a measurement is taken, the filter is updated. The measurement
together with the orientation of the robot creates a polar coordinate. A line
is then constructed from the center of the map to the measurement coordinate.
The line represents, in this application, the actual laser beam. All of the particles
close to the line are given a low weight, i.e. unlikely being part of an obstacle. The
particles close to the measurement coordinate are given a high weight, i.e. likely
being part of an obstacle. If the line runs through a particle there is nothing
there, but particles where the line stops are most likely part of an obstacle.
Figure 3 shows the particle filter in action. It can be seen here that at first the
particles are evenly distributed, but as more measurements are taken, more of
the particles move towards the position of the obstacles.

There are many benefits of using the Inverted Particle Filter. It has a pre-
dictable and constant memory usage and processing time, and depending on the
number of particles in the filter. The detail of the map is also dependent on
the number of particles; the more particles the more detail and obstacles can be
detected. The filter is also versatile. As long as the weights are set according to
the measurements, the filter will construct the map. If there are many robots
using Inverted Particle Filters then the particles can be distributed among the
robots. As mentioned, our application uses circular maps. This means that the
robots can easily detect when the maps overlap. The particles within the overlap
can be shared making obstacles detected by one robot available to another. The
particles can also be sent and stored in an external computer creating a larger
more connected map.

However, there are numerous of potential problems with the resampling phase
in the Inverted Particle Filter. Because of this there are some guidelines that
should be followed:

1. Mid-weighted particles should be untouched when resampled. This is because
the particles in the mid range tells the filter that it is not known what is in
the particles location. Moving such a particle will cause the filter to assume
that the location is empty, potentially hiding an obstacle.

2. If the obstacles can move, there should always be particles in the empty space
around the obstacle. This is to avoid particle depletion. If the obstacles move
to a location where there are no particles, the obstacle will not be detected.

3. If particles move outside the boundaries of the map, then they must be
relocated to another place on the map. This is because particles outside the
map are unused.

4. If the robot moves, then particles with weights of 0.5 should enter from the
outer boundaries, representing unknown terrain. This combined with point 3
means that particles outside the boundaries should reenter on the other side
of the map. An unfortunate part of this is that there will be an uneven stream
of particles reentering the filter due to the particles clustering together when
they detect an obstacle. To get an even stream, it is therefore wise not only
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to use the particles outside the map, but also the particles inside the map.
Figure 4 shows an example of this.

Fig. 4. The particle filter when the robot moves. The particles with grey colour are
outside the map and reenteres as the particles shown in green

Using the variables in Table 1 the initialization and update algorithms for
the Inverted Particle Filter can be viewed in Algorithm 1 and Algorithm 2 re-
spectively. In Algorithm 1 it is seen that the particles are spread out evenly in
a circle around origo (which is the robot). It can also be seen that the particles
are rotated in the opposite direction of the robots rotation. Algorithm 2 can be
split into three sections. First the weight of each particle moves toward to 0.5.
This is due to the increase in uncertainty of the weight over time. After this the
algorithm uses the most current measurement and constructs a line from the
center of the map to the coordinate of the measurement as described earlier,
and sets the weights of the particles according to their distance to the line. The
last section moves the particles according to the robots movement, and if the
particles move outside the boundaries of the map, the particle is removed and a
new particle is created on the other side. The algorithm for the resampling phase
is not presented. The resampling method used in the experiment is a resampling
wheel method with a slight modification. The method is only efficient if both the
robot and the obstacles are stationary, which is sufficient for this experiment.
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Algorithm 1 Pseudo code for initializing the Inverted Particle Filter algorithm
Require: p, θ, ω
Ensure: p.length <= r

for all Particles i do
// set the position and angle of the particle
pi = rand(x, y); where x2 + y2 <= r
θi = φ+ π;
ωi = 0.5

end for

Algorithm 2 Pseudo code for updating the particle filter the Inverted Particle
Filter algorithm
Require: p, θ, ω, y,m, ey, em

Line l = Line((0, 0), y)
for all Particles i do

// reduce the information in the filter
if ωi < 0.5 then
ωi
t = ωi

t−1 · (1 + eω)
else
ωi
t = ωi

t−1 · (1− eω)
end if

// update regarding measurement
dy = closest distance from pi to y
dl = closest distance from pi to l

if dy ≤ ly then
ωi = 1− dy

ly
· ey

else if dl ≤ ly then
ωi = dl

ly
· ey

end if

// update regarding movement
pit = pit−1 −m
if length(pi) > r then

remove particle
create new particle on the other side

end if
θi = φ+ π

end for
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Table 1. Variables used in the Inverted Particle Filter

p The position of the particle
θ The angle of the particle
ω The weight of the particle
y The measurement of the robot
m The movement of the robot
φ The rotation of the robot
ey The probability of error in the measurement
em The probability of error in the movement
eω The probability of error in the weight
r The radius of the Inverted Particle Filter map
ly The length of the beam of the measurement

4 Experiment

The experiment was set up with a laser1 placed upon a servo2. The laser and
servo were controlled by an application which ran on a Beaglebone, which is a
single creditcard-sized board computer provided by Beagleboard.org/bone with
a Linux operating system. The application was implemented in C++. The servo
was set up to move from 0◦ to 90◦ with the step of 1◦ after each time the laser
took a measurement. This happened at an interval of 500 ms. Each measure-
ment outputted an analogue signal ranging from 370 to 3560 with a resolution
of 16-bit. The signal was transformed in a lookup table to output the measure-
ments in centimetres. The application treated every measurement over 80 cm as
80 cm, since these measurements were more unpredictable. Each measurement
was complimented with a the (known) angle of the servo, resulting in a polar
coordinate relative to the laser. A various number of obstacles were placed in
the field of view of the laser as shown in Figure 5(c).

After the program started, the servo moved from 0◦ to 90◦ then back to
0◦, while the laser measurements were taken. The filter was updated after each
measurement. When the servo reached 0◦, each particle was saved in a CSV-file
and transmitted to an external computer. Images of the setup of the experiment
can be viewed in Figure 5.

5 Results and discussion

In Figure 6(a) the contours in the distribution of the particles represents the
obstacles in the environment. There is only one quadrant in the plot that has
any valuable information, Figure 6(b) is a plot of this, the upper left quadrant.
There were no measurements taken in the direction of the other three quadrants.
and therefore particles within those do not contain any information
1 The laser was a Sharp GP2Y0A21YK IR Range Sensor acquired from Robonor.no.
2 The servo was a 9g Small Servo acquired from Sparkfun.com.
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(a) View of the laser on top of the
servo(left) and the Beaglebone(back)

(b) Overview of the testing area

(c) Top view of the testing area. The laser can be viewed in the centre bottom of
the image, while the obstacle terrain can be viewed in the top half of the image

Fig. 5. Images of the set-up and testing area
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(a) Plot showing all the particles after the
experiment was terminated. Red colour is
a high-weighted particle, blue is a low-
weighted particle and turquoise is a mid-
weighted particle
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(b) Zoomed in plot of Figure 6(a).

−0.100.10.20.30.40.50.60.70.80.9
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) Overlap of Figure 6(b) over the setup environment

Fig. 6. Plots of the particles in the Inverted Particle Filter after the experiment ter-
minated. The colour of a particle is based on the weight ranging from green(low) to
blue(mid) to red(high).
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The contours of the obstacles that can be seen in Figure 5(c) are detected
and plotted in Figure 6(b). An overlap of the plot in Figure 6(b) and the setup
of the obstacles is found in Figure 6(c). The particles printed with red color have
a high weight and represents the contours of an obstacle. Note that the particles
in red with a distance of more than 0.8 m from the center represents as the
maximum range of the sensor used is 80 cm.

It can be seen in Figure 6(b) that there are no particles in the area where
there are no obstacles. This is, as mentioned earlier, problematic if either the
robot or obstacles move, but in this experiment it makes the figure more clear.

It is worth noting that there has been conducted experiments with the robot
moving while taking measurements. The experiments were successful, but the
reaction time of the laser is too slow. The laser’s measurements does not give
the exact distance of the laser beam instantly. If the distance of the laser beam
changes, the measurements gradually converges to the distance. Therefore the
laser measurements cannot keep up with the robot’s movements if it moves to
quickly.

Each particle in the implementation only used 5 single-float values, meaning
a filter of 10 000 particles only require 50 kB of memory on a 32-bit processor.
An approximate measurement of the memory usage of the filter was measured
to 1.5 MB on the Beaglebone. The measurement is a rough estimate since there
were no simle way of measuring memory usage on the Beaglebone with our
selected tools.

This experiment was also done when the Beaglebone was replaced with an
Arduino Mega, a single board microcontroller using an 8-bit ATmega1280. The
experiment was successful, implying that the filter in general can be implemented
even on smaller microcontrollers. Note that the number of particles was reduced
to 1000 particles.

An objection that might be raised here in these experiments is that the par-
ticles do not represents avoidable obstacles. These could be found by creating
lines between neighbouring high-weighted particles which then again could be
combined to form obstacles, or other feature extraction methods used in visual
processing. In contrast to the motivation many of these methods are computa-
tionally intensive. However, if the system is too constrained to perform such a
processing, the filter could easily just return the nearest particle to be avoided.

6 Conclusion

The Inverted Particle Filter is a tool for detecting and mapping obstacles, with
a focus on limited resources. The main advantages of the filter is that it requires
small amounts of resources both for executable code and memory while running.
These resource requirements for the filter are predictable and, the filter can be
tuned according to the limitations of the system.
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