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Abstract

This thesis is motivated by the use of unmanned aerial vehicles for obtaining
measurements of the scene in a system for estimation of ice properties. Such sys-
tems are needed to ensure safety when conducting marine operations in Arctic
seas. As a possible testbed for UAV guidance and estimation algorithms, the use
of the Parrot AR.Drone 2.0 quadcopter has been proposed. As a consequence, a
positioning algorithm for the UAV is necessary, which is the topic of this thesis.

The aim of this thesis is to implement a positioning algorithm applicable to the
proposed lab setup. As a consequence, challenges such as the time aspect as well
as measurement loss and receiving outlier measurements for unknown periods of
time are directed.

A camera-based positioning system serves as the main measurement source in
this thesis. The system delivers position and orientation measurements based
on marker tracking through the use of cameras placed along the ceiling in a lab
setup. The measurements are subsequently used by two implemented positioning
algorithms.

The Camera Measurement Algorithm uses measurements from the camera system
to estimate the position, orientation, linear and angular velocities of the Parrot
AR.Drone 2.0, while the Integrated Camera System/INS Algorithm additionally
exploits inertial measurements from the UAV to estimate its position, orientation
and linear velocity as well as inertial sensor biases.

The algorithms both utilize extended Kalman filters to perform state estima-
tion, while the integrated algorithm also makes use of the sensor fusion feature
of the state estimator. Both algorithms are tested online in the lab setup, and
their applicabilities are, to some extent, validated. That is, no ground truths
are available in the online tests, and simulations are performed to validate the
accuracies of the state estimates. The algorithms have not yet been used as part
of a larger motion control system, and their performances cannot be completely
verified. With the goal of this thesis in mind, the Camera Measurement Algo-
rithm obtained the best results. However, further development of the Integrated
Camera System/INS Algorithm may lead to a different conclusion.





Sammendrag

Den overordnede bakgrunnen for denne hovedoppgaven er den økende bruken av
ubemannede fly. Slike farkoster kan benyttes for å innhente nødvendige målinger
i et system for beregning av isegenskaper, som er en nødvendig del av marine
operasjoner i arktiske strøk for å kunne ivareta sikkerheten på en god måte.
Kvadrokopteret Parrot AR.Drone 2.0 har blitt foreslått som del av et innendørs
testsystem for ulike algoritmer i forbindelse med slike systemer. En innendørs
posisjoneringsalgoritme er i så måte nødvendig for å kunne styre kvadrokopteret
til ønskede deler av rommet. Denne posisjoneringsalgoritmen er temaet for denne
oppgaven.

Målet med oppgaven er å implementere en posisjoneringsalgoritme som fungerer
godt i et overordnet system for styring av kvadrokopteret. Fordi algoritmen skal
brukes i et virkelig system, må det tas hensyn til forskjellige feil som kan inntr-
effe, f.eks. kan målinger utebli, eller de kan inneholde feil. I tillegg er det viktig
at tilstandsestimatene oppdateres kontinuerlig.

Et kamerabasert posisjoneringssystem benyttes som kilde til målinger i denne
oppgaven. Systemet leverer posisjons- og orienteringsmålinger basert på tracking
av markører, og disse benyttes av to implementerte posisjoneringsalgoritmer.

Den første algoritmen benytter data fra det kamerabaserte posisjoneringssys-
temet til å estimere posisjon og orientering samt lineære- og vinkelhastigheter,
mens den andre i tillegg benytter målinger fra IMUen ombord på UAVen til å es-
timere posisjon, orientering og lineær hastighet samt sensorbiaser.

Begge algoritmene bruker et extended Kalman filter for tilstandsestimering, mens
den integrerte algoritmen også utnytter sensor fusion-funksjonen til denne til-
standsestimatoren. Begge algoritmene er implementert for bruk i testsystemet,
men det kan ikke fastslås med sikkerhet at de fungerer optimalt fordi de ikke er
blitt testet som del av et større system ennå. Algoritmene er i tillegg simulert for
å undersøke nøyaktigheten i tilstandsestimatene, og de er funnet tilfredsstillende.
Den første algoritmen oppnådde de beste resultatene i denne hovedoppgaven,
men ved videre utvikling er det ikke unaturlig om den andre oppnår forbedret
funksjonalitet.
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Chapter 1

Introduction

1.1 Testbed for Estimation of Ice Properties in
Arctic Areas

The motivation for the assignment given in this thesis is the entering of off-
shore oil and gas production into Arctic seas, and the challenges that arise when
conducting marine operations in such areas. For safe operation in ice-infested
environments, knowledge of the nature of the surroundings is crucial. As a con-
sequence, a system for detection of ice and estimation of its properties is needed.

In a system for estimation of ice properties, the use of Unmanned Aerial Ve-
hicles (UAVs) for obtaining the required measurements of the scene has been
proposed. Such crafts can be remotely operated or autonomous, and are thus
suitable for mapping the area of interest. It follows that navigation as well as
guidance and control systems need be part of an overall system for directing the
UAV towards interesting areas.

As a possible testbed for UAV guidance and estimation algorithms, an indoor
lab setup consisting in part of the Parrot AR.Drone 2.0 quadcopter has been
proposed. In particular, the testing of algorithms for estimation of ice properties
in Arctic environments using measurements obtained by UAVs is intended. The
testbed will require a motion control system for commanding the quadcopter in
the lab setup, similarly to the full-scale setup outlined above. In [4], motion
control systems for large-area operation are divided into three separate blocks
denoted as the guidance, navigation, and control (GNC) systems. A GNC sys-
tem is depicted in Figure 1.1. The topic of this thesis is the development of
an Indoor Positioning System (IPS) for use in the proposed lab setup. Such a
system constitutes the Navigation block of Figure 1.1 when indoor operation is
intended.
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1.2. INDOOR POSITIONING SYSTEM FOR UNMANNED
QUADCOPTER

Figure 1.1: Figure reproduced from [4]. A motion control system divided into guid-
ance, navigation, and control subsystems is depicted. The right-most, framed block,
Navigation, for an indoor lab setup is the topic of this thesis.

1.2 Indoor Positioning System for Unmanned
Quadcopter

The implementation of an accurate system for determining the position, orien-
tation, and velocity of a small quadcopter is the assignment given in this thesis.
In the full-scale system described above, GPS would be used for this purpose,
possibly in combination with an Inertial Navigation System (INS), which utilizes
inertial sensors to obtain the required measurements for estimation of the vari-
ables in question. An indoor positioning system is used to determine the pose of
an object inside buildings (where GPS signals become unreliable), and there ex-
ist several different methods utilizing various sensor types which solve the indoor
positioning problem.

Previous work within the field include vision-based methods, the use of wire-
less networks, and inertial sensor systems, to mention a few types of setups. Of
special importance in this thesis is the integrated system proposed in [6], which
combines the use of inertial sensors and a video system to produce position, ori-
entation, and velocity estimates in a hand-tracking scenario. The measurement
fusion is performed using an Extended Kalman Filter (EKF), and the obtained
results include minimization of errors resulting from camera outages of short
duration. A selection of methods for indoor positioning is presented and com-
parisons are made in Chapter 2, thus a further literature review is not given here.

The task of choosing a suitable indoor positioning system for the Parrot AR.Drone
2.0 was first investigated in the project work performed in the fall of 2012 [17].
A candidate method to solve the problem was chosen based on a literature re-
view, and prototype implementation was performed. The chosen method used
cameras as sensors, recognizing markers attached to the UAV based on color.
Furthermore, the computer vision technique stereo vision was used to estimate
the 3D pose of the UAV from the image positions of the color markers. Finally,
an extended Kalman filter would use the world position of the quadcopter as
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CHAPTER 1. INTRODUCTION

well as its orientation as the required measurement input, and output position,
orientation, and velocity estimates.

The prototype implementation in the project work was performed using simu-
lated measurements, and for planar motion only. Thus, the project work was a
simplified and simulated version of an indoor positioning system. In this thesis, a
positioning algorithm based on measurements obtained by marker tracking from
a camera-based positioning system is implemented. An extended Kalman filter
estimates position, orientation, and velocity in all six Degrees of Freedom (DOF),
as opposed to the system in the project work. Furthermore, the algorithm in this
thesis is extended to include inertial measurements from the quadcopter, result-
ing in an integrated solution. Hence, this thesis intends to implement a system
similar to the one that was simulated in the fall of 2012, and subsequently develop
the positioning algorithm further.

1.3 Contribution of Thesis

The goal of this thesis is to implement an accurate positioning algorithm for
the Parrot AR.Drone 2.0. The algorithm should be suitable for online use in
the lab setup scenario described above. As part of the development of a suf-
ficiently accurate solution for the intended testbed, two positioning algorithms
are implemented for use with real sensors in the lab; The Camera Measure-
ment Algorithm, which uses data from a camera-based positioning system as
measurements, and the Integrated Camera System/INS Algorithm, which
augments the first algorithm by exploiting the inertial measurements obtained
by the Inertial Measurement Unit (IMU) attached to the UAV.

Challenges connected to implementing a system for use with real data in a real-
life scenario as opposed to simulations (such as the time aspect as well as mea-
surement loss and receiving outlier measurements for unknown periods of time)
are directed. Although time did not allow complete real-time implementations,
a "near real-time" approach using Matlab is chosen, and its applicability for
both algorithms in the lab setup is evaluated. Additionally, both positioning
algorithms are tested using simulated as well as recorded (real) measurements
to verify or reject the achieved performance against known ground truths, and
compare the algorithms to each other using the exact same scenario.

The positioning results achieved for the two implemented algorithms are ana-
lyzed and compared in order to come to a conclusion regarding the applicability
of each algorithm to the intended lab setup. That is, the differences between the
two system setups and resulting pose estimates are compared with the lab setup
in mind, discussing advantages and disadvantages of each solution.
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1.4 Outline of Thesis
As explained earlier, this thesis is divided into two separate indoor position-
ing algorithms, but both algorithms utilize the same camera-based measurement
system and share the use of an extended Kalman filter. As a consequence, the
coinciding aspects are elaborated in preceding chapters as well as in the presen-
tation of the first positioning algorithm, and subsequently updated according to
a new system structure in the Integrated Camera System/INS Algorithm presen-
tation.

The thesis is organized as follows:

The next chapter provides a brief overview of a selection of methods for in-
door positioning, including a more detailed presentation of camera-based indoor
positioning in general. Furthermore, Chapter 3 is dedicated to a presentation of
the particular camera-based positioning system used as the main measurement
source in this thesis. Before the two proposed positioning algorithms are pre-
sented, Chapter 4 provides an overview of the terminology and notation used
throughout the thesis. Important vectors and definitions for the utilized system
models are emphasized in this chapter.

The measurement vector from the camera-based positioning system is connected
to the rest of the Camera Measurement Algorithm in Chapter 5, and the func-
tionality, real-time challenges, mathematical modelling, and state estimation of
the algorithm are presented. Chapter 6 provides a corresponding presentation
of the Integrated Camera System/INS Algorithm including theoretical aspects
connected to inertial measurements and measurement integration.

The results achieved by both positioning algorithms are presented in Chapter 7
and discussed, along with challenges and limitations, in Chapter 8, while conclu-
sions with regards to the goal of the thesis are drawn in Chapter 9. Furthermore,
proposals for future work are made in this chapter.
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Chapter 2

Methods for Indoor
Positioning

The topic of this thesis is the development of an accurate positioning algorithm
suitable for use in an indoor lab setup. The task of the algorithm is to determine
the position, orientation, and velocity of the Parrot AR.Drone 2.0 online. To
provide an overview of the subject of indoor positioning, a short introduction
is given in the first section of this chapter, followed by a brief description and
comparison of a selection of indoor positioning systems.

The presentation of camera-based indoor positioning is given in more detail be-
cause both positioning algorithms implemented in this thesis are based on such
a system. The field of camera-based positioning was investigated in the project
work performed during the fall of 2012, a project in which Bluetooth-based meth-
ods were also considered, before a vision-based system using cameras as sensors
was simulated. The sections in this chapter covering these two methods as well
as the introduction to indoor positioning are based on the literature review per-
formed in the project work [17]. The second proposed positioning algorithm in
this thesis utilizes inertial sensors in addition to the camera system. Thus, in-
ertial sensors in positioning algorithms are briefly presented here and elaborated
in Chapter 6.

2.1 Introduction to Indoor Positioning
The task of an indoor positioning system is to provide accurate position informa-
tion for moving objects in real-time - inside buildings. GPS is the most common
positioning system for outdoor use, but the signals become unreliable when pass-
ing through walls and other obstacles. This necessitates another system more
appropriate for indoor use.

Position information is essential when designing guidance and control algorithms,
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and the data must be accurate and up-to-date in order to obtain acceptable per-
formance in the overall system. An IPS should therefore deliver highly accurate
information while maintaining efficient data processing, a problem which has been
addressed in the literature using several different types of sensors as well as data
processing algorithms. However, a positioning system may be divided into the
following necessary steps regardless of choice of sensors and algorithms:

· Measurements of the scene

· Processing of the measurements

· Real-time update of position estimates

2.2 Indoor Positioning Based on Wireless Tech-
nologies

2.2.1 Bluetooth
Indoor positioning systems using Bluetooth technology were, as previously men-
tioned, investigated in the project work [17]. Several of the reviewed approaches
utilize Received Signal Strength Indicator (RSSI), which is a measure of the
strength of a signal received by a Bluetooth device [8]. An RSSI value of zero
indicates a signal power within an optimal range with regards to battery con-
sumption during transmission. The RSSI value is converted to an estimate of the
distance between a Bluetooth transmitter and mobile device through a propaga-
tion model, utilizing that the received power should decrease proportionally to
the square of the distance from the transmitter [3], [8]. Furthermore, the esti-
mated distance can be used to calculate the position of the mobile device through
triangulation.

Using Bluetooth in an IPS is a relatively inexpensive solution because the tech-
nology is available in most ordinary, handheld devices today. However, Bluetooth
devices are designed to minimize power consumption, which means that the trans-
mission power is continuously adjusted in order to reach an RSSI level of zero [3].
Hence, the relationship between this value and distance is uncertain. The results
obtained in the literature are quite inaccurate because of this uncertainty as well
as other sources of error [3], [8]. Bluetooth-based methods which do not rely on
RSSI values have also been investigated in [3] as well as in other reviewed papers,
none of which reported sufficient accuracy for the application in this thesis. Thus,
Bluetooth-based positioning systems are low-cost and fairly straight-forward, but
also inaccurate.

2.2.2 Wireless Local Area Network
Another approach based on signal strength uses a Wireless Local Area Network
(WLAN) for data transfer. In [18], the beacon frames emitted by (stationary)
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wireless Access Points (APs) are received by a mobile device, and subsequently
used to determine the signal strength of all visible APs in its neighborhood. By
storing these signal strengths and the locations where they were detected, a radio
map of signal strength patterns is created in an offline phase. The assumption
that each location in the environment is associated with a unique collection of
signal strength values is made. An illustration of the offline phase is shown in
Figure 2.1.

Figure 2.1: Illustration of the offline phase in a WLAN indoor positioning system.
Beacon frames from two APs are received by a mobile device, and the necessary infor-
mation is stored.

In the online phase, signal strength readings are compared to the radio map
and the closest match is determined through a pattern recognition algorithm.
Thus, an estimate of the current position of the mobile device is found. This
method is quite straightforward and does not require additional hardware that
is not commonly found in indoor environments, but it is also inaccurate due
to multipath and other errors. Additionally, forming the radio map can be a
time-consuming process because a large number of locations need be accounted
for in order to provide acceptable position estimates in the online phase [18].
Another IPS utilizing WLAN technology in which positioning is modelled as a
state estimation problem is proposed in [18], but the accuracy remains low with
reported errors of > 1 m. Thus, indoor positioning based on WLAN technology
does not improve the results reported for Bluetooth-based IPS, and would not
be a better choice for the application in this thesis.

2.2.3 Radio Frequency Identification
A similar approach using Radio Frequency Identification (RFID) tags and readers
is described in [9]. Tags are placed in an environment that has been divided into
discrete locations. Reading patterns, i.e. patterns showing which tags are read
by an RFID reader at the respective discrete locations, are collected in an offline
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phase. The patterns are then used in combination with a pattern recognition
algorithm to determine the location of the RFID reader in the online phase. The
method achieves errors of about 1 m, which although not sufficiently accurate
for the use intended in this thesis, is better than the described WLAN approach.
Knowledge of which tags are within reading range at a given time step is the
only online information required for position estimation [9], making the RFID
approach a quite simple method. However, additional hardware is required as
compared to the Bluetooth and WLAN approaches, resulting in a higher cost
and a more complex setup.

2.3 Inertial Sensors in Indoor Positioning
An inertial navigation system is a system consisting of an IMU and software for
computing position, velocity, and attitude from the obtained measurements [16].
The sensor assembly of an IMU consists of three gyroscopes and three accelerom-
eters for measuring angular velocities and linear accelerations, respectively. A
strapdown inertial system is attached to the object of interest, and it has a rel-
atively low weight. Hence, such a system may be used with the small vehicles
capable of operating in indoor environments. In the field of navigation, inertial
navigation systems are often combined with GPS to exploit the complementary
advantages of the systems, and suppress their individual shortcomings. In an
indoor environment, GPS may be replaced by another positioning system or ex-
ternal aid more suitable for indoor use. For instance, the use of an IMU combined
with a map of the area of interest is proposed in [5]. Inertial sensors are robust
and accurate for short-term applications, and external disturbances do not have
much effect on such a system. Also, the system provides frequent measurements
[16]. However, the estimates from an INS tend to drift, a problem which Glanzer
et al. proposed to solve using characteristic building information, as mentioned
above [5]. The use of IMUs in navigation systems has become quite common,
and the cost of such devices has decreased significantly. The drift of the esti-
mates is the main reason for combining an IMU with another indoor positioning
scheme. The use of inertial sensors in indoor positioning will be further discussed
in Chapter 6.

2.4 Camera-Based Indoor Positioning
Yet another type of sensors is used by camera-based indoor positioning systems,
which is a wide notion covering several different image processing and computer
vision techniques as well as physical system setups. However, it was discovered in
the project work that the different approaches follow similar overall procedures in
order to obtain the intended functionality [17]. There are two possible problem
formulations when using cameras as sensors; to locate moving objects in images
captured by one or several cameras, or to estimate the position and orientation
of the camera itself. The first option is called a system with static sensors, while
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the latter approach is referred to as an ego-motion system [10]. Regardless of
chosen system setup, an algorithm for object detection as well as a method for
converting 2D (image) position into a 3D pose estimate is needed. In addition,
a state estimator is often used for noise suppression, velocity estimation and
tracking.

Figure 2.2: Schematic of the overall procedure of camera-based positioning systems.

This overall procedure is illustrated in Figure 2.2 and presented in the remainder
of this section, which is based on [17].

2.4.1 Object Detection
Using cameras as sensors in a system for obtaining position necessitates an al-
gorithm for detecting the object of interest in the image stream. However, the
first step is deciding whether to search for a predefined moving object, e.g. a
quadcopter, or some feature in the environment of operation of the IPS. The first

9



2.4. CAMERA-BASED INDOOR POSITIONING

option is, as mentioned earlier, referred to as a system with static sensors, and
it enables tracking of several objects of interest. In such systems, the object for
which position information is desired appears in the image stream of the cameras.
Several papers have reported satisfactory results using markers attached to the
object in the object detection procedure, i.e. [19]. When utilizing this approach,
the object detection algorithm detects these predefined markers in the images,
and calculates the 2D position of the object as the center (or some other geomet-
ric combination) of the detected markers [17]. The markers may be recognized by
the algorithm through different characteristics such as color, shape, or reflected
light. Regardless of chosen type of marker, placing them in a non-symmetrical
pattern allows for calculation of the orientation of the object as well as its world
position in a later step.

The latter option, searching for features in the environment of operation, in-
volves placing the camera on the object to be localized, and is thus called an
ego-motion system. To obtain the position of the camera through processing of
the images captured by it, the use of feature detection has been proposed in the
literature [17]. A feature is often a static, physical object in the environment
of operation, and it should differ sufficiently from its surroundings to allow for
detection in the images. In some approaches, the physical object is characterized
by a special image feature, allowing for 2D detection through stated mathemat-
ical criteria [7]. Edges, corners, ridges, and blobs are examples of such image
features, e.g. a ridge is used to describe elongated objects. The world position of
the recognized object must be known in advance. From this information, an esti-
mate of the 3D position as well as the orientation of the camera can be obtained.
For details on object detection methods for both system setups, see [17].

2.4.2 Obtain World Coordinates
When the images from the camera(s) have been processed to detect an interesting
region or object, this image position must be transformed into an estimate of the
corresponding 3D position with respect to a world coordinate system. There are
multiple algorithms for solving this 2D to 3D position problem, based on type
of system setup. For systems with static sensors, stereo vision is an appropriate
method. It requires two cameras in order to estimate the world position of a point
appearing in the images from both cameras [13]. Epipolar geometry, i.e. the pro-
jective geometry of stereo vision, as well as the intrinsic and extrinsic parameters
of the cameras are used in the intermediate calculations performed to obtain the
world position of the point. The mentioned parameters are obtained through
a process called camera calibration, and include the focal length and other pa-
rameters related to the inside of the camera (intrinsic parameters) as well as the
position and orientation of the camera (extrinsic parameters). Thus, accurate
knowledge of the system setup combined with projective geometry provides an
estimate of the world position of a point. The method is easily combined with a
marker detection algorithm, as discussed earlier. Accuracies of ±1 cm have been
reported in the literature, and the method can be augmented to calculate the
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orientation of the object of interest as well.

Space resection is a method suitable for use in ego-motion systems. The method
requires knowledge of both the image and world coordinates of some control
points appearing in the image stream in order to calculate the world coordinates
and orientation of the camera capturing the images [1]. The intrinsic parameters
of the camera are needed as well. An ego-motion system using space resection
and a system with static sensors using stereo vision both constitute accurate
camera-based positioning systems, although the two approaches may be thought
of as solving opposite problems. For details on 2D to 3D position algorithms, see
[17].

2.4.3 State Estimation
The world position estimates are, along with the orientation of the object of inter-
est, among the desired results of the positioning system. However, the estimates
may be noise-infested or even lost for some time steps, a problem which can be
solved using a state estimator. Furthermore, one may not be able to estimate all
of the desired states of the object of interest through the camera-based system
alone. Many of the papers reviewed in [17] use a Kalman filter for these purposes.
The position and orientation estimates obtained by the camera-based system are
used as measurement inputs to the Kalman filter, which performs noise filtering,
prediction, and also reconstruction of unmeasured states from the measurements
[4]. Additionally, a Kalman filter may be used to fuse measurements from several
sensors in order to improve the accuracy of the state estimates and provide redun-
dancy [16]. The extended Kalman filter, which is used with nonlinear systems,
will be presented in Chapter 5 and updated to utilize the sensor fusion feature
in Chapter 6. Further details on both linear and nonlinear Kalman filtering were
given in [17].

2.5 Summary, Comparison, and the IPS of this
Thesis

Indoor positioning based on three different wireless technologies as well as iner-
tial sensors and cameras have been presented. The systems based on wireless
technologies are quite similar, resulting in the following coinciding strength and
weakness; The methods are relatively straight-forward, but do not obtain high
accuracies. The Bluetooth and WLAN approaches are low-cost because the neces-
sary hardware is found in most handheld devices, while the RFID method requires
specialized equipment. A camera-based approach also requires extra hardware,
but high accuracies have been reported in the literature using ordinary, low-cost
web-cameras [17]. However, the utilized computer vision and image processing
techniques can be quite advanced, resulting in a need for efficient implementation.
Inertial sensors are low-cost and provide frequent and accurate measurements for
short-term applications, but the estimates tend to drift. Thus, an additional
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system for resetting the procedure and providing long-term accuracy is advised,
resulting in an integrated solution.

From the review given above, it may be noted that indoor positioning systems
differ with respect to the sensors used to obtain the required measurements of
the scene. The techniques for transforming the measurements into pose estimates
vary accordingly. A choice must be made by the developer as to what is more
important when designing an indoor positioning system for a specific application
- low cost, high accuracy, or moderate complexity.

In this thesis, a system combining the use of an IMU and a camera-based po-
sitioning system is the ultimate goal. This combination is expected to produce
accurate and frequent estimate updates, although the cost will be higher than
that of using web-cameras as the vision-based sensors. The reason is that a
specialized camera system which delivers preprocessed position and orientation
measurements based on marker tracking is used. Thus, some of the complexity
connected to using a camera-based IPS is removed, while the cost of the system
increases. The following chapter presents the various components of the camera
system responsible for delivering position and orientation measurements in this
thesis.
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Chapter 3

The Camera-Based
Positioning System
OptiTrack

The two positioning algorithms implemented in this thesis both rely on position
and orientation measurements from a camera-based system. The chosen camera
system is OptiTrack from NaturalPoint, which is an overall optical motion cap-
ture system provider. OptiTrack is the subgroup of NaturalPoint’s systems which
provides optical tracking of humans and objects capable of leaving the immediate
proximity of the sensors, and it includes several different options of both hard-
ware and software for this purpose. In this thesis, equipment from OptiTrack is
used with the aim of tracking a quadcopter in an indoor lab setup and streaming
the obtained information to Matlab for use in an extended Kalman filter. The
provided measurements consist of position and orientation data in six degrees of
freedom, i.e. a vector of three position and three orientation variables.

A brief presentation of motion capture systems in general is given in the first
section of this chapter, while the chosen components from OptiTrack as well as
other aspects related to the utilized system are presented in subsequent sections
(based on available material from the manufacturer). Finally, a constrained test
of the camera system accuracy as well as an investigation of the data transfer
between OptiTrack and Matlab have been performed. A presentation of the
findings concludes this chapter.

3.1 Motion Capture Systems
In [11], motion capture is defined as "The creation of a 3D representation of a
live performance". That is, a motion capture system observes an object moving
around a scene through sensors, and recreates the performed motion in three
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dimensions and in real-time. There are several types of motion capture systems,
e.g. mechanical, electromagnetic, and optical, of which optical is the most com-
monly used technology. Such systems often require special markers (which can be
tracked by the cameras) attached to the body or object, enabling the recreation
of the motion of the object of interest [11]. The markers may be reflective, i.e.
the motion capture cameras emit light which is reflected by the markers, or the
markers themselves can emit light. The most commonly known use of optical
motion capture is perhaps related to the film industry, where actors wearing spe-
cial suits perform the movements intended for an animated character. The suits
are equipped with markers, allowing the motion of the actor to be captured and
transferred to the animated character.

OptiTrack is, as mentioned earlier, an optical motion capture system. In this
thesis, the system is used to obtain position and orientation measurements of the
Parrot AR.Drone 2.0 for use in positioning algorithms.

3.2 Sensors - The Flex 13
As mentioned above, a camera-based positioning system is in this thesis used to
obtain measurement inputs for a state estimator. Together, the measurement
acquisition and subsequent processing constitute a positioning algorithm for an
indoor quadcopter, which is a type of UAV utilizing four rotors to generate lift
and motion. Thus, the object of interest is capable of moving in the entire test
environment, and the sensors must cover as much of the area as possible. That
is, if the cameras fail to cover any part of the lab setup, the measurements from
OptiTrack will be lost if and when the quadcopter enters that particular area.

The chosen sensor is the Flex 13 camera, which has the technical specifica-
tions listed in Table 3.11. The specifications of Table 3.1 are found in the Flex
13 Data Sheet [2] and on the company website (see footnote). The Flex 13 is a

Table 3.1: Technical Specifications, Flex 13

Resolution 1280 × 1024 pixels
Maximum Frame Rate 120 FPS
Horizontal FOV 56◦

Vertical FOV 46◦

Accuracy Sub-millimeter marker precision
Latency 8.3 ms
Maximum Range 12.2 m

medium volume motion capture camera, which means that the camera is capable
of tracking objects at a maximum distance of approximately 12 m (see Table 3.1).

1Source: www.naturalpoint.com/optitrack/products/flex-13
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The camera is equipped with 28 Light-Emitting Diodes (LEDs) which emit IR
light (see Figure 3.1). The reason for attaching the LEDs to the camera is that
the Flex 13 detects points which reflect its emitted light. As a consequence, light-
reflective markers need be attached to the object of interest. From this marker
information, position and orientation is calculated. Some of the required image
processing is performed in the camera before the data is sent to a PC. This will
be further discussed below.

3.2.1 Accuracy and Frame Rate
From Table 3.1, it can be seen that the promised accuracy of the Flex 13 is in the
sub-millimeter range for individual markers. Furthermore, the camera is capable
of delivering frames at a frequency of 120 Frames Per Second (FPS), which is
more than sufficient for NaturalPoint’s object tracking software Tracking Tools
to deliver timely pose measurements (Tracking Tools will be presented in Section
3.3). The combination of a high accuracy and a high output rate in the sensors
is desired for the application intended in this thesis.

Figure 3.1: Photo from NaturalPoint.2 The Flex 13 camera from NaturalPoint. LEDs
form a circular pattern around the lens.

3.2.2 System Setup and On-Camera Processing
The camera system setup used in this thesis consists of 16 Flex 13 cameras placed
with the aim of covering as much of the room as possible, i.e. to maximize the
capture volume. The capture volume is the area in which multiple OptiTrack
cameras have overlapping Fields of View (FOV). Tracking of the reflective mark-
ers can only occur within this area, i.e. a marker must be visible to at least
two cameras (ideally more) for it to be tracked [14]. In Figure 3.2, a capture

2Source: www.naturalpoint.com/optitrack/products/flex-13/

15



3.2. SENSORS - THE FLEX 13

volume resulting from three overlapping fields of view is depicted for illustration
of this concept. The capture volume is shown as the gray area in the figure. The
fields of view of the Flex 13 are stated to be 56◦ and 46◦ for the horizontal and
vertical directions, respectively. In comparison, humans are typically capable of
observing about 180◦ horizontally and 120◦ vertically. Although the Flex 13 has
considerably smaller FOVs than humans, a collection of 16 cameras arranged
cleverly in the environment should produce a sufficiently large capture volume
for the limited Parrot AR.Drone 2.0 lab setup intended in this thesis.

Figure 3.2: Figure reproduced from [15]. The resulting capture volume from three (red)
cameras. The scene is depicted from above.

Four of the cameras in the system setup are shown in Figure 3.3. As mentioned
earlier, the cameras are placed with the intention of including as much of the
room as possible in the capture volume. This is obtained by placing all 16 cam-
eras along the ceiling in a similar manner as the four cameras depicted in Figure
3.3. The overall reason for using the cameras is to send precise quadcopter po-
sition and orientation data to Matlab for use in a positioning algorithm. This
data is obtained through the use of the OptiTrack tracking software Tracking
Tools. However, some preprocessing of the captured frames is performed in each
camera. The user may choose between several video types, a choice which influ-
ences the type and amount of image processing performed on-board, and thus
the processing required of the PC. In this thesis, the Object Mode, in which the
location and size of the reflective markers is detected on-board each camera, is
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chosen. Thus, the PC receives marker information from which rigid body position
and orientation is calculated. The Object Mode is chosen because it requires less
bandwidth than the Precision Mode while still delivering highly accurate data
[14].

Figure 3.3: Part of the OptiTrack system setup. Four Flex 13 cameras along the ceiling
are highlighted by red circles while the left-handed coordinate system used by Tracking
Tools is placed on the floor.

The coordinate frame used by Tracking Tools is depicted in Figure 3.3. The xTT
axis points towards one of the long sides of the lab room, while the zTT axis is
directed towards one of the short edges. The yTT axis is perpendicular to the
x − z plane, completing a left-handed coordinate frame.

3.3 Software - Tracking Tools

When the cameras have captured images of the scene and obtained the loca-
tion and size of the detected markers, the information is sent to Tracking Tools,
where a 6 DOF pose estimate for the rigid body is calculated from the received
information. This section presents relevant aspects of Tracking Tools, while a pre-
sentation of the required communication between the utilized OptiTrack software
and Matlab is provided in Section 5.3.
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3.3.1 Initialization of the System
Calibration When the cameras have been set up, a calibration must be per-
formed. A wand with three reflective markers attached to it (identical to the
markers attached to the UAV for detection) is waved through the capture volume
while the cameras take samples, a process called "wanding" [14]. It is important
to cover as much as possible of the capture volume to ensure sufficient sampling
and proper performance by the tracking system. When the samples have been
collected, they are used to solve the intrinsic and extrinsic parameters of the cam-
eras (see Section 2.4). Thus, the somewhat complicated calibration calculations
required in camera-based positioning systems are performed by Tracking Tools.

Ground Plane When the 16 cameras of the system are calibrated, a world
coordinate frame to which the position and orientation measurements will be ref-
erenced is set by the user. The frame is left-handed by default, and in this thesis,
it is set as shown in Figure 3.3. Thus, a conversion to a somewhat more common
right-handed coordinate frame becomes a necessary part of the measurement pre-
processing performed in a positioning algorithm using the measurements. This
will be further discussed in subsequent chapters.

Create Rigid Body Once the ground plane is set, rigid bodies may be defined
relative to it. To track a rigid body using this system, reflective markers must
be attached to it, as explained earlier. The markers are placed on the object in
a random pattern, although it is important that the pattern is asymmetrical to
allow for orientation estimation. In this thesis, the markers are placed on the
Parrot AR.Drone 2.0 as shown in Figure 3.4.

Figure 3.4: The Parrot AR.Drone 2.0 with reflective markers attached to it. The
quadcopter is shown to the left, while a close-up of the attached markers is depicted to
the right. The collection of markers is placed on top of the quadcopter to exploit the
placement of the cameras along the ceiling.

The five reflective markers are attached with the intention of tracking the quad-
copter in the entire lab room. As shown in Figure 3.3, the cameras in the lab
setup are placed along the ceiling. Thus, placing the markers on top of the UAV
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should ensure its visibility in a sufficiently large area. The collection of five mark-
ers shown in Figure 3.4 is defined as a rigid body (called "trackable") in Tracking
Tools, and the software tracks the center point of this trackable. Hence, the
markers should be placed close to the center point of the quadcopter for accurate
tracking through marker detection. The asymmetrical pattern ensures accurate
orientation measurements (see Figure 3.4).

The process of defining an object as a rigid body mentioned above includes plac-
ing the object within the area covered by the cameras, and manually selecting its
markers as part of the rigid body to be localized. Thus, a unique arrangement
of markers define a unique rigid body, and its position and orientation may be
tracked by the system. The group of markers on top of the Parrot AR.Drone 2.0
is the only defined trackable in this thesis, although an extension of the system
to include several UAVs would be straightforward.

3.3.2 Marker Detection and Rigid Body Tracking

The system is ready for use when the initialization outlined above is performed,
i.e. real-time position and orientation information for the defined trackable is
available whenever at least three of its markers are visible to the cameras. How-
ever, limited information is revealed from the manufacturer regarding the algo-
rithms used to obtain these estimates. It is assumed that a marker detection
algorithm is running in each of the cameras, while a technique for transforming
the image positions of the markers to a world position estimate for the trackable
is performed by Tracking Tools. It is known that when several cameras are being
used, as is the case in this thesis, triangulation is used in the process of obtaining
the world position of a point of interest.

3.4 The Camera System used in Positioning Al-
gorithms

The camera-based positioning system used in this thesis is classified as a system
with static sensors, which implies that objects of interest are detected in the im-
ages captured by the cameras (see Section 2.4). As mentioned earlier, marker
detection is performed using emitted and reflected IR light, and the world posi-
tion of the object is calculated by Tracking Tools using triangulation and possibly
computer vision techniques. Hence, the main measurement system in this thesis
performs the first two steps of the overall procedure of camera-based positioning
systems shown in Figure 2.2, and delivers measurements to the state estimation
block of the figure. In the first positioning algorithm proposed in this thesis,
an extended Kalman filter performs state estimation based solely on measure-
ments from the OptiTrack system. That is, the Camera Measurement Algorithm
represents a possible implementation of the schematic shown in Figure 2.2.
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3.4.1 Accuracy of the OptiTrack System
The promised accuracy in the measurements from OptiTrack should be tested
to ensure that no large errors are propagated through the algorithm. However,
due to lack of redundancy in available sensors, there is a significant source of
error in this test; the physical movement of the trackable is quite inaccurate
when measured manually. This is the reason why only linear motion in the x − z

Figure 3.5: Setup for the OptiTrack accuracy test. Accuracy in the measurement of
planar, linear motion is tested by moving the trackable a predefined distance along the
rulers and observing the corresponding change in position in Tracking Tools.

plane of the Tracking Tools coordinate system is considered in this test - accu-
rate test measurements of angular motion and movement along the vertical axis
proved too difficult to obtain. Thus, the test is merely an investigation of whether
the camera system delivers measurements with accuracies within an acceptable
range, and it provides preliminary insight into the main measurement source of
the implemented positioning algorithms.

The test setup consisted of three rulers and the defined trackable as shown in Fig-
ure 3.5. The trackable was moved according to the rulers and the corresponding
change in position was observed in Tracking Tools. The results of the accuracy
test are shown in Table 3.2. From the table, it can be seen that the physically
moved distances ("Distance moved along ruler") correspond to the resulting ob-
servations displayed in Tracking Tools with less than 1 cm error in all three tests
and for both the x and z directions.
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Table 3.2: Test Results, OptiTrack Accuracy Test

Test 1 Test 2 Test 3
Start position x, TT −1.93 cm −2.27 cm −1.93 cm
Start position z, TT 0.012 cm 0.16 cm 20.17 cm
Distance moved along ruler, x 50 cm 0 cm 25 cm
Distance moved along ruler, z 20 cm 20 cm 0 cm
Stop position x, TT 49.01 cm −1.93 cm 23.75 cm
Stop position z, TT 19.34 cm 20.17 cm 19.58 cm

However, the source of error mentioned above is significant, and produces limi-
tations in the results due to the difficulty of knowing with certainty whether the
trackable was moved erroneously, or if the position calculated by Tracking Tools
is less accurate than promised. The promised accuracy is in the sub-millimeter
range for individual marker positions, and the calculation of the position of the
trackable from the marker information is not available to the user. Thus, it is
difficult to inspect.

Another aspect of this test is that the user of an OptiTrack system is responsi-
ble for performing a satisfactory calibration of the cameras prior to use. As a
consequence, the user may be at fault if the provided tracking accuracy is less
than optimal. However, a calibration result within the limits for optimal use (set
by the OptiTrack developers) was obtained in this thesis, making another source
of error more likely. No conclusion can be drawn with certainty with regards
to OptiTrack’s delivered accuracy using the equipment at hand. However, the
performed test in combination with observed changes in orientation and height
does show a promising accuracy for the main measurement source in this thesis.

3.4.2 Measurement Acquisition and Measurement Noise

The use of the OptiTrack Application Programming Interface (API) for obtaining
position and orientation measurements is tested by comparing stationary mea-
surements observed in the user interface of Tracking Tools to the same stationary
measurements obtained by Matlab (the API will be presented in Ch. 5). The
test is performed to ensure proper transfer of data, and to test the amount of
time spent on the start-up procedures of the OptiTrack system. Furthermore,
performing this test while the trackable is stationary provides an opportunity to
investigate the amount of noise in the measurements.
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Table 3.3: Test of OptiTrack to Matlab communication - Location displayed in Track-
ing Tools

xTT yTT zTT φTT θTT ψTT

0.190 ±
10−5 m

0.011 ±
10−5 m

−0.080 ±
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Figure 3.6: Test of OptiTrack to Matlab communication - Location received by Mat-
lab. The position measurements from OptiTrack are shown to the left, while the orien-
tation measurements are depicted to the right.

The initialization of the system is visible as the transients in Figure 3.6, i.e. the
period before the signals stabilize around their static values. This is a result of
performing necessary start-up procedures for the cameras and API, and it can
be seen that valid position and orientation estimates are received after approxi-
mately 2.5 seconds. Figure 3.6 also shows measurement noise in the orientation
measurements, corresponding to the uncertainty observed in Tracking Tools (Ta-
ble 3.3). However, the units of the two parts of Figure 3.6 differ, and a comparison
of the amount of noise in the position and orientation measurements is difficult
to perform based on this test alone.
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Chapter 4

Terminology and Notation

This chapter presents the notation used throughout this thesis as well as im-
portant vectors used in the two positioning algorithms. The utilized coordinate
frames are presented because of their importance with regards to mathematical
modelling of the two systems.

4.1 Coordinate Systems
Three coordinate systems are used in this thesis: The North-East-Down (NED)
frame, the BODY frame, and the left-handed frame to which the measurements
obtained by the OptiTrack system are referenced. The three coordinate systems
are shown in Figure 4.1 (the left-handed OptiTrack coordinate system is also
depicted in Figure 3.3).

In Figure 4.1, the BODY frame is depicted in green. It is firmly attached to
the quadcopter, and moves with it. The BODY frame has the following axes [4]:

· xb directed from the back towards the front of the UAV
· yb directed towards the right side of the UAV
· zb directed from top to bottom

The NED frame (depicted in light blue in Figure 4.1) is attached to the ground,
and assumed inertial in this thesis. Consequently, it has a fixed relation to the
lab room, and it is the frame to which the position estimates from the two im-
plemented algorithms are referenced.

The OptiTrack coordinate system (depicted in dark blue in Figure 4.1) is in-
cluded in this presentation because it is left-handed by default, and cannot be
changed. It is worth noting that the following convention is used by the camera
system: φTT is the angle about the xTT axis, θTT is the angle about the zTT axis,
and ψTT is the angle about the yTT axis. Furthermore, because the OptiTrack
frame is left-handed, the positive rotation direction is clockwise.
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Figure 4.1: The (inertial) NED frame (xi, yi, zi) and the left-handed Tracking Tools
frame (xTT, yTT, zTT) are shown in blue, while the BODY frame (xb, yb, zb) is depicted
in green.

4.2 Notation
The three coordinate systems are abbreviated as follows:

· (Inertial) NED frame: i
· BODY frame: b
· Left-handed Tracking Tools frame: TT

As can be seen in Figure 4.1, the axes of a coordinate frame are written with
subscripts showing to which frame they belong, i.e. xi is the x axis of the inertial
frame.
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Vectors are written in bold letters, and the following vectorial notation is adopted
from [4]. To show which frame a vector is decomposed in, superscripts are used.
As an example, if the vector a is expressed in the BODY frame, it is denoted ab.
To describe movement of a frame with respect to another, subscripts are used.
For instance, cTT

b/i means that the vector c describes motion of the body-fixed
frame b with respect to i, expressed in TT (superscripts are used as explained
above). The Euler angles between the inertial and body-fixed frames are denoted
Θib.

For vectors and variables with subscripts not on the form cTT
b/i , the subscripts

simply denote an explanation or numbering of the variable in question (e.g. bb
acc

or x1), or it is part of the variable name (vx).

4.3 Important Vectors
State Vector 1 The state vector used in the Camera Measurement Algorithm
for quadcopter motion in all six degrees of freedom is given by

x1 =
[
x, y, z, φ, θ, ψ, vx, vy, vz, ωx, ωy, ωz

]ᵀ
, (4.1)

where the various elements refer to the following:

· x - position in the x direction
· y - position in the y direction
· z - position in the z direction
· φ - rotation about the x axis (Euler angle)
· θ - rotation about the y axis (Euler angle)
· ψ - rotation about the z axis (Euler angle)
· vx - linear velocity in the x direction
· vy - linear velocity in the y direction
· vz - linear velocity in the z direction
· ωx - angular velocity about the x axis
· ωy - angular velocity about the y axis
· ωz - angular velocity about the z axis

State Vector 2 The state vector used in the Integrated Camera System/INS
Algorithm is given by

x2 =
[
x, y, z, φ, θ, ψ, vx, vy, vz, bacc,x, bacc,y, bacc,z, bgyro,x, bgyro,y, bgyro,z

]ᵀ
, (4.2)

where the first nine elements are equal to the nine first states of x1 while the
latter six refer to:

· bacc,x - accelerometer bias, motion in the x direction
· bacc,y - accelerometer bias, motion in the y direction
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· bacc,z - accelerometer bias, motion in the z direction
· bgyro,x - gyroscope bias, motion about the x axis
· bgyro,y - gyroscope bias, motion about the y axis
· bgyro,z - gyroscope bias, motion about the z axis

The elements of x1 and x2 are given with respect to different coordinate systems
as follows:

pi
b/i =

⎡
⎣x

y
z

⎤
⎦ , Θib =

⎡
⎣φ

θ
ψ

⎤
⎦ , vb

b/i =

⎡
⎣vx

vy
vz

⎤
⎦ , ωb

b/i =

⎡
⎣ωx

ωy
ωz

⎤
⎦ (4.3)

bb
acc =

⎡
⎣bacc,x

bacc,y
bacc,z

⎤
⎦ , bb

gyro =

⎡
⎣bgyro,x

bgyro,y
bgyro,z

⎤
⎦ (4.4)

Measurement Vector 1 The measurement vector from OptiTrack is modelled
as

h(x1) =
[
x, y, z, φ, θ, ψ

]ᵀ (4.5)
z = h(x1) + v1, (4.6)

i.e. position and orientation are measured. v1 is the measurement noise.

Because the TT and i frames are defined according to opposite conventions,
no series of ordinary rotations will provide the transition between them. As can
be seen in Figure 4.1, the x axes coincide while the y and z axes are interchanged
and pointed in opposite directions. This transformation need be performed for
the measurement vector from OptiTrack, zTT, in order to use it in the position-
ing algorithms. That is, the linear elements of the measurement vector should be
expressed in the inertial frame, implying that the angular elements are the Euler
angles Θib.

Measurement Vector 2 and Input Vector The measurement vector used
in the Integrated Camera System/INS Algorithm is equal to the measurement
vector from OptiTrack, i.e.

h(x2) = h(x1) =
[
x, y, z, φ, θ, ψ

]ᵀ (4.7)
z = h(x2) + v2, (4.8)

where v2 is the measurement noise.

The input vector to the extended Kalman filter in the Integrated Camera Sys-
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tem/INS Algorithm is modelled as

u =

⎡
⎢⎢⎢⎢⎢⎢⎣

ameas,x + bacc,x
ameas,y + bacc,y
ameas,z + bacc,z

ωx + bgyro,x
ωy + bgyro,y
ωz + bgyro,z

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

uacc,x
uacc,y
uacc,z
ugyro,x
ugyro,y
ugyro,z

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.9)

uIMU = u + wIMU, (4.10)

where ameas,x, ameas,y, ameas,z are the noise- and bias-free outputs from accelerom-
eters, while ωx, ωy, ωz are noise- and bias-free outputs from gyroscopes. wIMU is
the measurement noise from an IMU. Thus, IMU measurements are modelled as
inputs to the EKF.
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Chapter 5

Camera Measurement
Algorithm: State
Estimation using Position
and Orientation Information

This chapter presents all components of the first implemented positioning al-
gorithm, i.e. using the measurements from OptiTrack only. The camera-based
positioning system was presented in Chapter 3, while this chapter connects the
measurement vector to the rest of the algorithm (see Figure 5.1). The first sec-
tion presents an overview of the main functionality of the algorithm, while the
more important aspects as well as the handling of various deviations from the
normal flow are elaborated in subsequent sections. Mathematical modelling of
the system is performed in Section 5.5 before the extended Kalman filter used
in the algorithm is presented. Finally, aspects related to implementation of the
Camera Measurement Algorithm are explained.

Figure 5.1: High-level schematic of the Camera Measurement Algorithm. To the left,
the OptiTrack subsystem as presented in Chapter 3 is depicted. The measurement vector
zTT is obtained from OptiTrack, preprocessed, and subsequently used as measurement
input to the EKF subsystem, which is to the right in the figure. The outputs from the
EKF are the desired variables - the position, orientation, and linear/angular velocity
estimates.
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ALGORITHM

5.1 Main Functionality of the First Positioning
Algorithm

Figure 5.2: Overall schematic of the main functionality of the Camera Measurement
Algorithm. The red blocks indicate start-up and stop actions, while the blue blocks
represent the various modules of the algorithm. Initially, the start-up procedures are
performed, while only the four lower modules are active afterwards. The dotted lines
pointing into "STOP" indicate that the algorithm may be aborted. Handling of possible
errors is performed in the modules, and is therefore not visible.
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Figure 5.2 is a somewhat more detailed schematic of the Camera Measurement
Algorithm, included with the intention of clarifying the flow of the algorithm.
This section aims at presenting a successful running (without deviations from
the normal flow due to system errors) of the Camera Measurement Algorithm in
order to provide an overview of its main functionality (handling of various system
errors will be presented in Section 5.4). The red "START" and "STOP" blocks in
Figure 5.2 refer to starting and closing down the system, while the blue blocks
represent the various subsystems of the algorithm which will now be presented.

Start-up Procedures The top-most module represents the necessary start-up
procedures for the camera system and the utilized API, which is a protocol for
communication between different software components. In this thesis, real-time
Tracking Tools data must be accessed by Matlab, a topic which is discussed in
Section 5.3 below. The start-up procedures include loading the Tracking Tools
API, loading a performed calibration as well as defined trackables in Matlab,
and initialization of the API as well as of several variables used by the algorithm.

Measurement Update When the start-up procedures have been performed
without errors, the cameras are collecting frames and the OptiTrack system can
be accessed from Matlab. For the current group of frames (one frame from
each of the 16 cameras), a search for the trackable connected to the UAV is
performed by OptiTrack, and a time stamp is stored. If the trackable is detected,
its position and orientation data is obtained. This corresponds to obtaining the
measurements zTT from the OptiTrack system as discussed in Chapter 3.

Preprocessing The OptiTrack system measures angles between −180◦ and
180◦, i.e. the measurements obtained from the camera system contain leaps of
±360◦ when an angular limit of either −180◦ or 180◦ is crossed. In the non-
planar angles φ and θ, such leaps are rarely experienced, but ψ may very well
reach these limits. A non-continuous measurement will propagate through the
system due to the system equations being interconnected. Thus, the OptiTrack
measurements zTT are preprocessed to avoid such leaps by letting the angular
limits become ±∞.

Furthermore, the measurements are transformed into the inertial coordinate
frame before use in the extended Kalman filter. The resulting position and orien-
tation is in accordance with the coordinate systems depicted in Figure 4.1 (and
the definition of angles used by the camera system, which was presented in Sec-
tion 4.1). An illustration of the various measured states expressed in the two
frames is shown in Figure 5.3 for clarity.

State Estimation The state estimates x̂1 are calculated by an extended Kalman
filter, which is further discussed in Section 5.6.
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Figure 5.3: Measurements expressed in the Tracking Tools as well as inertial frames.
The blue lines represent position and orientation expressed in the T T frame, while the
purple, dashed lines show the position and orientation with respect to the inertial frame.

Time Synchronization The sampling period of the OptiTrack system as well
as of the EKF is Δt, while the time spent processing the current OptiTrack mea-
surement is denoted tproc. To ensure that the next execution of the Measurement
Update block begins after Δt seconds, when a new measurement is available
from the camera system, the Time Synchronization block delays the system for
(Δt− tproc) seconds. It is assumed and tested that the processing time of a group
of frames is considerably shorter than Δt. Time aspects are further discussed in
the following section.

5.2 "Near Real-Time" Aspects
The estimates of the quadcopter states must be updated in a timely manner for
the positioning algorithm to be useful in the proposed test setup. Delayed posi-
tion estimates may cause the UAV to be erroneously directed towards obstacles
due to an incorrect perception of its current position. Furthermore, the estimates
must correspond to the correct sampled measurement from OptiTrack, i.e. the
time stamps and sampling rates of the various components of the algorithm must
be synchronized. The sampling period Δt of the camera system is the reciprocal
of its sampling rate (also known as its frame rate). Hence, the sampling rate of
the algorithm is determined by the chosen rate of acquiring frames in OptiTrack.

To avoid loss of data from OptiTrack, frames must be collected at least every
Δt seconds. Furthermore, for each collected group of frames, the position and
orientation data for the UAV must be extracted, preprocessed, and received as
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well as used by the EKF for state estimation. That is, the total time spent pro-
cessing a group of frames cannot exceed the sampling period of the system. The
processing time tproc includes

tproc = tgetMeas + tgetTime + tUAVinFrame + tgetLoc,TT + tgetLoc,i + tEKF,

where tgetMeas is the total time required to deliver a group of frames to Matlab,
tgetTime is spent obtaining a time stamp for the current measurement, tUAVinFrame
is the required time to check whether the UAV is in the current group of frames,
tgetLoc,TT is the time it takes to obtain the location of the UAV in the TT frame
while tgetLoc,i seconds is spent performing measurement preprocessing. tEKF sec-
onds is required to perform state estimation.

Finally, the processing should not be executed more than once for each mea-
surement input, i.e. frames should not be collected more often than every Δt
seconds. The demands outlined in this discussion are all fulfilled if a new group
of frames is collected exactly every Δt seconds for a Δt satisfying the real-time
requirement of the test setup (frequent output of estimates), and if tproc < Δt.
This is in accordance with the presentation of the Time Synchronization block
in Figure 5.2. The sampling rate of the OptiTrack system is set to 100 FPS in
this thesis, which means that measurements are updated quite frequently. Thus,
if the "near real-time" aspects discussed here are satisfied, state estimates should
be updated sufficiently often for the UAV to correctly perceive its position at all
times (given that the estimates are correct).

That being said, Matlab is not designed for real-time computing. A real-time
system must guarantee the response to an event within a strict time limit, and
such systems are often implemented using threads. Matlab does support the
use of multiple threads through the Parallel Computing Toolbox, but real-time
analysis is not the main task of Matlab. However, a "near real-time" implemen-
tation of the Camera Measurement Algorithm is achieved through the aspects
explained here, and its performance will be evaluated in Chapter 8.

5.2.1 Assumptions and Limitations
The Camera Measurement Algorithm is designed under certain assumptions. As
explained above, a "near real-time" implementation is achieved by letting the
algorithm control when a new measurement is available. That is, rather than the
sensor system transmitting measurements whenever new ones are detected, it is
assumed that the sensors sample at a constant rate, and the positioning algorithm
updates its measurements according to that sampling rate. Thus, delays or an
otherwise time-varying sampling rate in the camera system are not considered in
this thesis. An alternative could be a real-time implementation using a thread
continuously polling for new measurements, and interrupting the algorithm when
appropriate. However, the chosen approach to obtaining a positioning algorithm
that works in the lab setup scenario seems justified. The sampling rate of the
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OptiTrack system appears to be sufficiently high and constant for the "near real-
time" implementation to achieve satisfactory performance if the processing time
satisfies the limit given above.

5.3 Communication between the Camera System
and Algorithm

To access the measurements obtained by the camera system presented in Chap-
ter 3, support for communication between the two environments must be im-
plemented. The API mentioned above, which is used to obtain and stream the
necessary real-time data to Matlab, is presented in this section. The function
TT_Tools_demo1 has greatly inspired the OptiTrack to Matlab communication
in this thesis.

5.3.1 Dynamic-Link Library
The Tracking Tools API is a set of C/C++ function calls and a Dynamic-Link
Library (DLL), which can be loaded by the application wanting to use the API
[15]. A DLL is a shared library, and can thus be accessed by several programs
at the same time. Programs written in different languages can access the same
DLL, and such libraries provide a general method for storing functions that are
to be used by many applications.

One of the tasks performed as part of the start-up procedures in the Camera
Measurement Algorithm is to load the Tracking Tools DLL NPTrackingTools
and its header, and the library is frequently accessed throughout the algorithm.
NPTrackingTools contains all Tracking Tools functionality which can be accessed
through the C/C++ function calls mentioned above.

5.3.2 Use of the API
Before the API can be used to access position and orientation data for a track-
able, a Tracking Tools project must be created and saved. Such a project contains
defined trackables and a camera calibration result (see Section 3.3), and is stored
in a .tpp file. The API provides a function for loading the .tpp file in Matlab,
an action which is performed as part of the start-up procedures in the Camera
Measurement Algorithm.

The main functionality of the measurement acquisition part of the algorithm
includes polling for frames, detecting the UAV in the frames, and obtaining its
position and orientation. The API function TT_UpdateSingleFrame processes
a single group of camera data, triangulates, solves rigid bodies, and streams the

1Source: https://www.mathworks.com/matlabcentral/fileexchange/26449-tracking-tools-
optitrack
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tracking data to the application calling the function [15]. It must be called every
Δt seconds to ensure no loss of data, as explained in Subsection 5.2. Calling
TT_UpdateSingleFrame constitutes the main time usage of the measurement
acquisition part of the Camera Measurement Algorithm.

TT_TrackableLocation is another API function which is called frequently. It
returns the position and orientation of the selected rigid body whenever it is
in the current group of frames and the data has been streamed to Matlab
by calling TT_UpdateSingleFrame [15]. The Tracking Tools API also provides
functions for obtaining time stamps for the groups of frames as well as return-
ing information about whether a selected trackable is in a group of frames
(TT_IsTrackableTracked). Additionally, individual marker positions can be
acquired and various camera and trackable properties may be obtained and set
through the API. However, in this thesis, the three functions presented above as
well as some assisting functions are sufficient for obtaining the required informa-
tion from OptiTrack.

5.4 Extensions to Increase Robustness
The presentation of the Camera Measurement Algorithm thus far has consid-
ered the normal operation of the algorithm, i.e. possible deviations from the
normal flow have not been addressed. In this section, the subsystems Measure-
ment Update and Preprocessing are elaborated because several deviations from
the normal flow may occur here: The measurements from OptiTrack may be lost
(corresponding to the UAV being outside of the capture volume), or a connec-
tion loss between OptiTrack and Matlab might happen. Furthermore, outliers
in the measurements, i.e. receiving faulty position and/or orientation measure-
ments, need be considered. Other subsystems in a motion control system often
perform most of the active error handling. However, a positioning subsystem can
identify and discard outliers as well as attempt to improve the quality of the state
estimation as much as possible during measurement outages.

Figure 5.4 is a more detailed schematic of the Measurement Update and Pre-
processing subsystems shown in Figure 5.2 (the corresponding segment of Figure
5.2 is shown in the upper left corner of Figure 5.4). It depicts the measurement
acquisition from OptiTrack (the blue block containing "Update frame"), and the
subsequent processing performed before zi is obtained and sent to the State Es-
timation block of Figure 5.2. The blue blocks represent actions taken by the
algorithm, while the green blocks act as conditional statements for which "YES"
or "NO" decide what action to be performed next. The "Unwrap angles" action
corresponds to adjusting the angular limits to ±∞, as discussed in Section 5.1.

If the trackable has moved outside of the capture volume (result "NO" from the
"UAV in frame?" block), it is proposed to adjust the EKF matrices Q1 and R1,
which are used to achieve the desired state estimate behavior (these matrices will
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be presented below). During measurement outages, Q1,measError and R1,measError
are used rather than the regular matrices. It is proposed to use the last (correctly)
received measurement (zlast) as input to the state estimator until a new one is
available or a time limit has been reached, in combination with the adjusted EKF
matrices. These are tuned to put little emphasis on the measurement because
it is stale. The control system should be notified when an old measurement is

Figure 5.4: More detailed schematic of the Measurement Update and Preprocessing
subsystems (corresponding segment of Figure 5.2 shown in the upper left corner). The
blue blocks represent actions taken by the positioning algorithm, while the green blocks
act as conditional statements. The output of these subsystems is zi for the current time
step.

used. If the above-mentioned time limit is reached (result "NO" from the "May
use old?" blocks), the system should be aborted due to stale measurements and
consequently incorrect state estimates. The same should happen if an error in
the communication channel occurs, i.e. if the system fails during a call to the
Tracking Tools library.
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A similar approach is proposed for handling faulty measurements (result "NO"
from the "Correct zTT?" block). Such a measurement is simply discarded, and
the previously available z is used in combination with the appropriate tuning
matrices mentioned above (Q1,measError and R1,measError) for one time step (or
however long the measurements are incorrect). A measurement is characterized
as an outlier if it is larger than some threshold value, i.e. deviates too much from
the previous measurement. A time limit for accepting old measurements is set for
this erroneous behavior as well because the algorithm is not capable of operating
without new measurements indefinitely. The Camera Measurement Algorithm is
implemented with account for the possibility of the errors outlined here to occur,
as will be shown in the pseudocode presented in Section 5.7.

5.5 Mathematical Modelling
The intended functionality of the Camera Measurement Algorithm has now been
presented, and the rest of this chapter is dedicated to modelling the system,
presenting the state estimator, and discussing the performed implementation of
the algorithm. It is assumed that the UAV with the trackable attached to it is
a rigid body. The (kinematic) equations of motion for the Parrot AR.Drone 2.0
were derived for planar motion in the project work [17]. In this thesis, the full 6
DOF motion is considered, and the model is therefore expanded.

5.5.1 Kinematics

The following is based on [4]. To relate the time derivative of the position vector
pi

b/i to the velocity vector vb
b/i, a rotation matrix is used to describe the neces-

sary rotation between the BODY and NED frames. For further details, see [4],
Appendix A or the project work [17].

Ri
b(Θib) = Rz,ψRy,θRx,φ, (5.1)

where Ra,α is the principal rotation of α about the a axis, i.e. a one-axis rotation.
Thus, the total rotation between the BODY and NED frames can be described
by the matrix product of three principal rotations, one about each axis by an
Euler angle. Hence,

ṗi
b/i = Ri

b(Θib)vb
b/i (5.2)

The transformation matrix TΘ(Θib) is used to describe a similar relation between
the time derivative of the Euler angles and the body-fixed angular velocity vector
ωb

b/i (see also Appendix A):

Θ̇ib = TΘ(Θib)ωb
b/i (5.3)
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5.5.2 Continuous System Model

Expansion of Eqs. (5.2) and (5.3), considering that

x1 =
[
(pi

b/i)
ᵀ, (Θib)ᵀ, (vb

b/i)
ᵀ, (ωb

b/i)
ᵀ
]ᵀ

(5.4)

yields the 6 DOF kinematic system model:

ẋ1 = f1,cont(x1) = (5.5)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cψcθ · vx + (cψsθsφ − sψcφ) · vy + (sψsφ + cψcφsθ) · vz
sψcθ · vx + (cψcφ + sφsθsψ) · vy + (sθsψcφ − cψsφ) · vz

−sθ · vx + cθsφ · vy + cθcφ · vz
ωx + sφtθ · ωy + cφtθ · ωz

cφ · ωy − sφ · ωz
sφ
cθ · ωy + cφ

cθ · ωz
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In Equation (5.5), sin is abbreviated s and c refers to cos. A singularity occurs
for θ = ±90◦ = ± π

2 rad (cos θ = 0) when using Euler angles. The control system
of the UAV should ensure that this does not happen.

The kinetic equations are not considered in this thesis, and the linear and angular
velocities are modelled constant in the Camera Measurement Algorithm.

5.6 Extended Kalman Filter
This section is based on theory outlined in [16].

5.6.1 Discrete Filter Model

The system will be expressed in the following general form to be used in a discrete
extended Kalman filter [16]:

x(k + 1) = f[x(k), u(k)] + w(k) (5.6)
z(k) = h[x(k)] + v(k), (5.7)

where it is assumed that the process and measurement noise w(k) and v(k)
are additive, Gaussian distributed and described through the covariance matri-
ces Q(k) and R(k), respectively. In the Camera Measurement Algorithm, the
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following filter model is obtained:

x1(k + 1) = x1(k) + Δt · f1,cont[x1(k)] + w1(k)
= f1[x1(k)] + w1(k) (5.8)

z(k) =
[
x(k), y(k), z(k), φ(k), θ(k), ψ(k)

]ᵀ + v1(k)
= h[x1(k)] + v1(k), (5.9)

as presented in Eqs. (4.5) and (4.6). Discretization of the planar kinematic model
was performed using forward Euler discretization in the project work, and the
same method is applied in this thesis. For details, see [17].

5.6.2 Functionality and Characteristics of the EKF
The key assumptions when designing a Kalman filter is that the underlying sys-
tem is linear and observable [16]. However, as discussed in the project work,
an extended Kalman filter can be used when the underlying system is nonlinear
[17]. It uses noisy measurements from a dynamical system as inputs, and out-
puts estimates of measured and unmeasured system states. In the case of linear
system dynamics, a Kalman filter will produce optimal estimates with respect to
minimum variance [16]. The EKF is an extension of this optimal state estimator,
designed to account for the fact that most real systems inhabit nonlinear char-
acteristics.

The linear as well as the extended Kalman filters are recursive processes di-
vided in a corrector and a predictor part, where the corrector corrects its state
estimates using a new measurement whenever one is available. These updated
state estimates are then used by the predictor to predict the states at the next
time step [17].

The diagonal covariance matrices briefly mentioned above, Q(k) and R(k), are
suspect to tuning when implementing a Kalman filter. That is, these matrices
represent assumptions made with regards to the system, and may be corrected
if found necessary. They are therefore often referred to as the design matrices
of a Kalman filter. In this thesis, the values of the design matrices are different
during measurement outages to emphasize modelled behavior. Q(k) contains as-
sumptions made with regards to the process noise w(k), while R(k) represents
the amount of noise v(k) assumed in the measurements. Q(k) and R(k) do not
influence the state update directly, they have an impact on the Kalman gain
K(k) and the error covariance matrix P(k). A high Kalman gain makes the
estimates follow the measurements closely, while a low K results in the filter em-
phasizing the modelled behavior, thus becoming less responsive to new inputs.
As mentioned earlier, the linear and angular velocities are unmeasured and mod-
elled constant in the Camera Measurement Algorithm. Through tuning of the
design matrices, quite accurate estimates of these states can be obtained using
an extended Kalman filter even though their true behavior is dynamical.
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5.6.3 Discrete EKF Equations
The equations of a discrete extended Kalman filter are stated below [16], [17].
The state and measurement vectors refer to the general system dynamics given
by Equations (5.6) and (5.7).

Design matrices:

Q(k) = QT(k) > 0, R(k) = RT(k) > 0 (5.10)

Initial conditions:
x̄(0) = x0 (5.11)

P̄(0) = E[(x(0) − x̂(0))(x(0) − x̂(0))T] = P0 (5.12)

Corrector equations:

H(k) =
∂h
∂x

∣∣∣∣
x=x̄(k)

(5.13)

K(k) = P̄(k)HT(k)[H(k)P̄(k)HT(k) + R(k)]−1 (5.14)

x̂(k) = x̄(k) + K(k)[z(k) − h[x̄(k)]] (5.15)

P̂(k) = [I − K(k)H(k)]P̄(k)[I − K(k)H(k)]T + K(k)R(k)KT(k) (5.16)

Predictor equations:

Φ(k) =
∂f
∂x

∣∣∣∣
x=x̂(k)

(5.17)

x̄(k + 1) = f[x̂(k), u(k)] (5.18)

P̄(k + 1) = Φ(k)P̂(k)ΦT(k) + Q(k) (5.19)

5.7 Implementation
The Camera Measurement Algorithm is implemented for use with the camera
system and UAV, i.e. for online use in the lab setup. However, in order to
accurately test the state estimates against known ground truths, the algorithm
is implemented for simulated measurements as well. Also, a simulation may
reveal errors connected to the algorithm prior to setting up the real system.
Furthermore, an offline version of the algorithm using recorded measurements
from OptiTrack is implemented for comparing the results to those obtained using
the Integrated Camera System/INS Algorithm for the exact same scenario. This
section presents relevant details of the implementation which have not already
been discussed. Pseudocode for the Camera Measurement Algorithm concludes
the section.
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5.7.1 Measurement Preprocessing
As mentioned earlier, OptiTrack transmits measured angles between ±180◦, al-
lowing the measurements to contain leaps whenever a limit is reached. Whenever
a measurement is received from the camera system, it is processed by using the
built-in Matlab function unwrap with the new as well as the previously obtained
correct OptiTrack measurement as inputs. If one of the angles in a measurement
vector contains a ±360◦ leap with respect to the previous, a corresponding mul-
tiple of 360◦ is added or subtracted to obtain the same angle, but without the
leap. The unwrap function seems to produce a considerably smaller, but still un-
acceptable leap for one time step. This smaller leap is characterized as a faulty
measurement, and can thus be handled by the measurement outlier mechanism
presented in Section 5.4. The result is smooth angular measurements, which
subsequently are transformed into the inertial frame and used as part of the
measurement input to the EKF.

5.7.2 Offline Processing
Measurements from OptiTrack can be recorded in the lab by storing the data as
a .csv (Comma Separated Values) file containing virtually all information about
a performed OptiTrack session. This measurement recording is performed by
OptiTrack. The .csv files are read into Matlab using the function readtext2

from Matlab Central, and the Camera Measurement Algorithm can be executed
using real measurements.

5.7.3 Preliminary Aspects: Analytical Calculation of EKF
Matrices

The extended Kalman filter is used when the underlying system is nonlinear,
and a linearization is required at each time step. The matrix Φ(k), as can be
seen in the predictor equations presented above, contains a linearized version of
the system function f[x(k), u(k)]. In a similar manner, the matrix H(k) is the
Jacobian of the measurement function h[x(k)]. The functions are linearized about
the best current estimate at each time step, x̂(k) and x̄(k), but the structures of
Φ(k) and H(k) do not change and may be calculated offline. In fact, the Jacobian
of the measurement function is constant in this thesis, as is shown below:

h[x1(k)] =
[
x(k), y(k), z(k), φ(k), θ(k), ψ(k)

]ᵀ =⇒

H1 =
∂h
∂x1

∣∣∣∣
x1=x̄1(k)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(5.20)

2Source: www.mathworks.com/matlabcentral/fileexchange/10946-readtext
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The analytical calculation of the Φ(k) matrix for the system in the Camera
Measurement Algorithm (that is, Φ1(k)) is shown in Equation (5.22) below. The
matrix is displayed using submatrices due to lack of space.

f1[x1(k)] = (5.21)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x + Δt[cψcθ · vx + (cψsθsφ − sψcφ) · vy + (sψsφ + cψcφsθ) · vz]
y + Δt[sψcθ · vx + (cψcφ + sφsθsψ) · vy + (sθsψcφ − cψsφ) · vz]

z + Δt[−sθ · vx + cθsφ · vy + cθcφ · vz]
φ + Δt[ωx + sφtθ · ωy + cφtθ · ωz]

θ + Δt[cφ · ωy − sφ · ωz]
ψ + Δt[ sφ

cθ · ωy + cφ
cθ · ωz]

vx

vy

vz

ωx

ωy

ωz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

Φ1(k) =
∂f1
∂x1

∣∣∣∣
x1=x̂1(k)

=

⎡
⎣Φ1,1 Φ1,2 Φ1,3

Φ1,4 Φ1,5 Φ1,6
Φ1,7 Φ1,8 Φ1,9

⎤
⎦

x1=x̂1(k),

(5.22)

where the elements of Φ1(k) are 4×4 matrices, and can be found in Appendix C.
The design matrices are assumed constant during normal flow, i.e. Q1(k) = Q1
and R1(k) = R1. However, the weighting is somewhat different during measure-
ment outages, as mentioned above. That is, two different, constant versions of
Q1 and R1 are used.

5.7.4 Pseudocode
Pseudocode for the Camera Measurement Algorithm is shown in Algorithm 1
on the next page. In the pseudocode, the state estimation is highlighted as a
procedure in which calculation of the various EKF matrices at each time step are
performed according to Equations (5.13)-(5.19) by calling functions (e.g. calc_K,
see Algorithm 1). The pseudocode, like the implemented algorithm, accounts for
the measures taken to increase robustness, as opposed to Figure 5.2, which de-
picts the main functionality of the algorithm. The arguments k are omitted from
the variables and functions for readability.

The if statement in line 5 of the pseudocode (which ends the algorithm if a
communication failure has occurred) is meant to account for connection loss dur-
ing all function calls to the Tracking Tools library.
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Algorithm 1 Camera Measurement Algorithm
1: initialize(library, API, UAVtrackable, project)
2: set(x̂1(0), P̂1(0), x̄1(0), P̄1(0), Δt, timeSteps, zTT(0), zi(0), zi

last(0),
zTT

last(0), Q1, R1, Q1,measError, R1,measError, stepsNoMeasurement(0),
noMeasLimit, outlierLimit)

3: k = 0
4: while k < timeSteps do
5: if communicationFailure then
6: end while
7: end if
8: increment(k)
9: tStart = get(time)

10: update_frame
11: if is_tracked(UAVtrackable) then
12: zTT = get_measurement(UAVtrackable)
13: if zTT > outlierLimit then
14: if stepsNoMeasurement < noMeasLimit then
15: goTo(line 36)
16: else
17: end while
18: end if
19: else
20: reset(stepsNoMeasurement)
21: zTT

last = zTT

22: zi = transform(zTT)
23: zi

last = zi

24: procedure state_estimation(zi, Q1, R1, H1, x̂1, P̂1, x̄1, P̄1)
25: K1 = calc_K(P̄1, H1, R1)
26: h(x̄1) = x̄1(1 : 6)
27: x̂1 = calc_x̂(K1, zi, h(x̄1))
28: P̂1 = calc_P̂(K1, H1, P̄1, R1)
29: x̄1 = calc_f(x̂1)
30: Φ1 = calc_Φ(x̂1)
31: P̄1 = calc_P̄(Φ1, P̂1, Q1)
32: return x̂1
33: end procedure
34: end if
35: else if stepsNoMeasurement < noMeasLimit then
36: increment(stepsNoMeasurement)
37: state_estimation(zi

last, Q1,measError, R1,measError, H1, x̂1, P̂1,
38: x̄1, P̄1)
39: else
40: end while
41: end if
42: tStop = get(time)
43: sleep(Δt - (tStop - tStart))
44: end while
45: shutdown(all)
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Chapter 6

Integrated Camera
System/INS Algorithm

The Integrated Camera System/INS Algorithm is an expanded version of the
Camera Measurement Algorithm, i.e. the two consist of the same overall compo-
nents: scene measurement acquisition, preprocessing of the measurements, and
state estimation. The features which are common to both algorithms will not
be repeated here. For this reason, some of the aspects of the Integrated Cam-
era System/INS Algorithm are explained by referring to the presentation of the
Camera Measurement Algorithm in Chapter 5.

The two proposed indoor positioning algorithms differ with respect to available
sensors, and the implications this has on the setup of the extended Kalman filter
used for state estimation. The algorithm presented in this chapter utilizes mea-
surements from both the camera system (Ch. 3) and on-board inertial sensors.
Thus, the Integrated Camera System/INS Algorithm is an integrated solution in
which the extended Kalman filter is used as an integration filter by exploiting its
sensor fusion feature. The algorithm is inspired by GPS/INS integration, which
is a widely used technique for obtaining accurate position estimates in large area
navigation systems [16] and by the system presented in [6].

The first section of this chapter is an introduction to the theory of inertial nav-
igation, while relevant aspects of measurement integration theory are presented
in Section 6.2. An overview of the Integrated Camera System/INS Algorithm
is given in Section 6.3, followed by an updated system model incorporating the
available sensors and their impacts on the system in Section 6.4. Finally, the
chosen EKF sensor fusion structure is stated (Section 6.5) and implementation
aspects are elaborated.
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6.1 Inertial Navigation Systems

In the Integrated Camera System/INS Algorithm, inertial sensors measuring lin-
ear acceleration and angular velocity are used in the process of obtaining accurate
and timely pose estimates for the Parrot AR.Drone 2.0. More specifically, a strap-
down inertial system is considered. As mentioned in Section 2.3, such a system
is attached to the object of interest and moves with it [16]. The system consists
of an inertial measurement unit for obtaining the required measurements, and
differential equations (the strapdown equations) for computing position, orienta-
tion, and velocity from the measurements.

The measurement part of an inertial navigation system, the IMU, is made up
of an Inertial Sensor Assembly (ISA) and hardware/low level software to inter-
face the ISA [16]. A schematic of the various layers and their connection in an
INS is depicted in Figure 6.1.

Figure 6.1: Figure inspired by [16]. Schematic of a strapdown INS. The outermost
(red) rectangle represents the whole inertial navigation system, which consists of an IMU
and the strapdown equations. The green rectangle represents the IMU, which consists
of an ISA as well as hardware and low level software. The smallest, blue rectangle
represents the ISA, which is a collection of three accelerometers and three gyroscopes.

6.1.1 Inertial Sensor Assembly

The inertial sensor assembly is the collection of sensors found in an INS (see
Figure 6.1). It consists of three accelerometers and three gyroscopes for measuring
the three components of linear acceleration and of angular velocity, respectively.
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Accelerometers Accelerometers measure specific force ab
meas, i.e. the acceler-

ation relative to free fall, decomposed in the b frame. The acceleration ab
b/i of the

object of interest is the quantity in which one is interested. The two are related
as follows [16]:

When the platform to which accelerometers are attached is at rest, the specific
force measurements made by the accelerometers will be

ab
meas = −Rb

i (Θib)gi, (6.1)

where
gi =

[
0, 0, g

]ᵀ =
[
0, 0, 9.81m/s2]ᵀ (6.2)

is the gravity due to the mass of the Earth (assumed constant). During acceler-
ation, the measurements will be

ab
meas = ab

b/i − Rb
i (Θib)gi, (6.3)

where
ab

b/i =
[
ax, ay, az

]ᵀ (6.4)
is the acceleration of the platform (the NED frame is assumed inertial). Hence,
gravity compensation must be included in the velocity dynamics.

The output from the accelerometers, ab
IMU, is often noticeably influenced by

biases, especially with low-cost sensors, as is the case in this thesis. Thus, the ac-
celerometer output model accounts for biases bb

acc as well as sensor measurement
noise wb

acc [4]:

ab
IMU = ab

meas + bb
acc + wb

acc

=
[
aIMU,x, aIMU,y, aIMU,z

]ᵀ
, (6.5)

where wb
acc is modelled as additive zero-mean measurement noise, and bias mod-

elling is discussed as part of the system model in Section 6.4.

Gyroscopes Gyroscopes measure angular velocity of the BODY frame relative
to the Earth Centered Inertial (ECI) frame, decomposed in the BODY frame;
ωb

b/ECI [16]. However, in this thesis, the NED frame is assumed inertial (with a
fixed position relative to the Earth), and the Earth rotation is neglected. Thus,
the approximation of assuming that the gyroscopes measure ωb

b/i is made. The
assumptions are further discussed below. The noise-free measurements made by
the three gyroscopes are

ωb
b/i =

[
ωx, ωy, ωz

]ᵀ (6.6)
Similarly to the accelerometers described above, the output from the gyroscopes,
ωb

IMU, is often influenced by biases. Thus, the gyroscope output model accounts
for biases bb

gyro as well as sensor measurement noise wb
gyro [4]:

ωb
IMU = ωb

b/i + bb
gyro + wb

gyro

=
[
ωIMU,x, ωIMU,y, ωIMU,z

]ᵀ
, (6.7)
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where wb
gyro is modelled as additive zero-mean measurement noise.

The biases and measurement noise mentioned above are not the only errors
present in measurements from IMUs. Scale-factor and misalignment errors are
also part of the output. However, for low dynamic applications, compensation
of bias error is sufficient to achieve satisfactory performance [16]. Thus, bias
estimation is included in the Integrated Camera System/INS Algorithm.

6.1.2 Initialization

Before reliable positioning data can be obtained from an inertial navigation sys-
tem, initialization of the system need be performed. In [16], three steps are
outlined: Position and velocity initialization, Attitude initialization (known as
alignment), and Instrument calibration. The platform utilized in this thesis per-
forms the attitude initialization automatically when the battery is connected to
the Parrot AR.Drone 2.0, while the instrument calibration is performed through
bias estimation in the integrated scheme of the Integrated Camera System/INS
Algorithm. The initial position is known from the camera system measurements,
while the velocity is initially zero.

6.1.3 Velocity Strapdown Equations

It has been shown in [16] that the velocity dynamics in a strapdown inertial
navigation system may be written

v̇i = ai
meas + gi − [2S(ωi

E/ECI) + S(ωi
i/E)]vi, (6.8)

where E and ECI are the Earth Centered Earth Fixed (ECEF) and ECI co-
ordinate systems, respectively. These two frames both have their origins in the
center of the Earth, but the axes of the ECI frame point in the same directions
regardless of the Earth rotation, while the ECEF frame is fixed to the Earth and
rotates with it [16]. In addition, S in Equation (6.8) is a skew-symmetric matrix
(see Appendix B).

ωi
E/ECI represents the rate of the Earth rotation (called turn rate) expressed

in the NED frame, while ωi
i/E is the function of change of the NED frame with

respect to ECEF (also called transport rate) [16]. The effects of these rates must
be accounted for when navigating in large areas and at high speeds. However, in
this thesis, a small UAV will be operating at low speeds in a relatively small lab
room. Thus, the NED frame (i) can be assumed inertial (with a fixed position
relative to the Earth) and the Earth rotation can be neglected [4], [6]. Hence,
both the turn and the transport rates are neglected in this thesis. The resulting
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velocity dynamics are given by

v̇i
b/i = ai

meas + gi

= Ri
b(Θib)[ab

IMU − bb
acc − wb

acc] + gi

�
v̇b

b/i = ab
IMU − bb

acc − wb
acc + Rb

i (Θib)gi (6.9)

In this thesis, the velocity strapdown equations are added to the UAV dynamics in
the system model. The position and attitude are already modelled (in the Camera
Measurement Algorithm, Section 5.5), while bias modelling will be discussed in
Section 6.4. The velocity strapdown equations provide a connection between the
acceleration measurements from the IMU and the resulting motion.

6.2 GPS/INS Integration

The Integrated Camera System/INS Algorithm seeks to combine measurements
obtained by the camera system with inertial sensor outputs from the quadcopter.
The intention is to provide redundancy in the sensors while achieving equally
frequent state estimate updates with respect to the results obtained using the
camera system only. Two separate measurement sources may provide continued
satisfactory estimation through short outages in one of the sensor systems. As
mentioned earlier, the utilized measurement integration scheme is greatly inspired
by GPS/INS integration. That is, the GPS measurements are replaced by image
information in this thesis, which is more suitable for indoor use.

GPS and INS are often combined to provide an integrated navigation system
for wide-area operation (see also Sec. 2.3). The integration is performed to ex-
ploit the individual advantages of each system, i.e. the high output rate and
excellent short-term accuracy of INS is combined with the long-term accuracy of
GPS [16]. Furthermore, should one of the systems experience an error, the other
may ensure continued navigation. In [16], several architectures for GPS/INS in-
tegration are presented which differ in terms of level of coupling and choice of
variables. This section is based on theory based in [16], and presents the most
common GPS/INS architectures in order to provide background theory on the
subject of measurement integration before the chosen integration scheme in this
thesis is presented in the next section.

As shown in Figure 6.2, an integrated GPS/INS system consists of three sub-
systems; the GPS, the INS, and the integration filter. Several schemes for im-
plementing the integration exist, known as integration architectures. The most
common ones are uncoupled, loosely coupled, tightly coupled, and deeply coupled
integration.
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Figure 6.2: Figure reproduced from [16]. An uncoupled GPS/INS integration architec-
ture is depicted. In the figure, P, V, and A refer to position, velocity, and attitude. A
large amount of measurement processing is performed in the GPS and INS subsystems,
resulting in position, velocity, and attitude being the input variables to the integration
filter.

As the names suggest, the differences between the setups are connected to amount
of individual processing performed in the GPS and INS subsystems before data is
sent to the integration filter, and what information is fed back to the measurement
subsystems. That is, the level of coupling. In an uncoupled integration archi-
tecture (illustrated in Figure 6.2), position, velocity, and attitude information
is sent from both measurement subsystems to the integration filter, i.e. a large
amount of measurement processing is performed in each subsystem individually.
As the figure suggests, there is no information feedback from the integration fil-
ter. An advantage of the uncoupled scheme is that a high degree of redundancy
is obtained, and errors in a subsystem may be tolerated.

At the other outer limit, the integration filter performs virtually all process-
ing in a deeply coupled architecture. Such a scheme is often implemented using
direct variables, referring to the estimation of the whole states in the integration
filter. The other possibility is using indirect variables, an approach in which error
states are estimated. Indirect variables are often used in uncoupled and loosely
coupled architectures.

Between the two boundaries, loosely and tightly coupled integration also rep-
resent quite different systems. A tightly coupled GPS/INS system uses raw mea-
surements instead of position, velocity, and attitude as inputs to the filter, and
is illustrated in Figure 6.3. Hence, the GPS and strapdown equations need be
implemented in the integration filter when using this integration architecture.
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Figure 6.3: Figure reproduced from [16]. A tightly coupled GPS/INS integration ar-
chitecture is depicted. In the figure, ωIMU and aIMU represent the raw gyroscope and
accelerometer measurements.

In a loosely coupled integration, preprocessed measurements of position, velocity,
and attitude are used as integration filter inputs, similarly to the uncoupled
scheme outlined in Figure 6.2. The difference between the uncoupled and loosely
coupled architectures is the use of feedback. Several possibilities for feedback
are present in the loosely coupled scheme. Of relevance in this thesis is the
reset feedback, which provides calibration of the INS using error feedback to the
strapdown equation computation.

6.3 Overview of the Second Positioning Algorithm
This section provides an overview of the Integrated Camera System/INS Algo-
rithm utilizing the theory outlined in the previous two sections as well as the
presentation of the Camera Measurement Algorithm in Chapter 5. The main
extension from the Camera Measurement Algorithm is the use of inertial sensor
measurements. As a consequence, synchronization and communication between
the OptiTrack system, the computer running the algorithm and the IMU mounted
on the UAV is required and discussed in this section. Furthermore, the normal
flow of the Integrated Camera System/INS Algorithm as well as the handling
of possible deviations from it due to various system errors are presented. The
"near real-time", system modelling, and state estimation aspects are updated with
respect to Chapter 5 to account for the new system setup, before the implemen-
tation is discussed in Section 6.6.

The integration architecture chosen in the Integrated Camera System/INS Algo-
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rithm is shown in Figure 6.4. The architecture is a combination of an uncoupled
and a tightly coupled GPS/INS scheme, as presented above. That is, the Camera
measurement subsystem, which replaces the GPS, provides processed measure-
ments (pb/i and Θib), while raw IMU measurements (aIMU and ωIMU) are used.
No information is fed back to the measurement subsystems, but the inertial sensor
biases are estimated in the filter and used to limit the influence of these errors
on the estimates. This may be thought of as a version of the reset feedback
mentioned in Section 6.2.

Figure 6.4: Figure inspired by GPS/INS integration figures in [16]. A high-level il-
lustration of the Integrated Camera System/INS Algorithm is shown, with the two mea-
surement subsystems to the left, and the EKF to the right. The camera measurement
subsystem consists of image acquisition and processing, while raw measurements are
transmitted from the inertial sensors.

The measurements are fused using an extended Kalman filter, which, in addition
to the kinematic equations for position and attitude dynamics as well as bias es-
timation, performs computation of the velocity strapdown equations presented in
Section 6.1. The outputs from the integration filter (x̂2) are full state estimates,
i.e. direct variables are used. The choice of integration architecture and overall
structure is based on published papers utilizing the same scheme for similar po-
sitioning systems fusing video and inertial measurements, [6] in particular, and
it is greatly inspired by [16]. Using position, orientation, angular velocity, and
linear acceleration measurements fits nicely with a somewhat altered version of
the kinematic system model presented in Chapter 5 for the Camera Measurement
Algorithm, as will be shown below.

6.3.1 Communication and Synchronization with the UAV
To use the inertial measurements from the on-board sensors of the UAV, commu-
nication between the computer running the Integrated Camera System/INS Al-
gorithm and the Parrot AR.Drone 2.0 is needed. This task is performed through
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the use of a remote computer running Linux, which communicates with the UAV
directly, and transmits the required navigation data to the local computer (run-
ning the positioning algorithm). The remote computer is connected to the UAV
through WiFi, while the connection between the computers is obtained using
wired Transmission Control Protocol/Internet Protocol (TCP/IP). In the posi-
tioning algorithm implemented in this thesis, the TCP/IP connection request
from the remote computer is accepted, and messages containing the inertial mea-
surements are received online. The rest of the required communication is per-
formed outside of the algorithm implemented in this thesis.

Furthermore, the two sensor systems need be synchronized to ensure that the
measurements from the systems comply. That is, the coordinate systems as-
sumed by the two need be synchronized such that the BODY frame of the UAV
when all angles are zero coincides with the inertial frame to which camera mea-
surements are referenced (see Figure 4.1). This is accomplished by placing the
UAV accordingly, and connecting the battery. As mentioned earlier, the attitude
initialization of the IMU is performed automatically on start-up.

6.3.2 Main Functionality of the Integrated Camera Sys-
tem/INS Algorithm

The overall flow of the Integrated Camera System/INS Algorithm is quite similar
to the Camera Measurement Algorithm due to the purposes of the positioning
algorithms being identical - obtaining accurate position, orientation, and velocity
estimates for the UAV. Thus, Figure 5.2 represents an overall view of the main
functionality of the Integrated Camera System/INS Algorithm as well. However,
the second positioning algorithm of this thesis considers measurements from two
separate sensor systems which require individual start-up procedures and mea-
surement update schemes. Furthermore, the setup of the state estimator is altered
because of the measurement integration performed.

A more detailed schematic of the normal flow of the algorithm (not account-
ing for deviations due to errors) is shown in Figure 6.5. In the figure, the gray
block in the upper left corner represents the part of the inertial measurement up-
date not performed by the algorithm developed in this thesis. That is, the WiFi
communication with the UAV and the sending side of the TCP/IP connection,
as explained above. The start-up procedures for the inertial sensors (left side of
Figure 6.5) include establishing the TCP/IP connection between two computers
as well as initialization of required variables. This is performed in the upper part
of the gray as well as the topmost, left blue block (above the respective dashed
lines), while the sending and receiving of navdata is executed every 4th iteration
(when the "Available measurement?" block evaluates to "YES"). In between re-
ceiving updated navdata, the last received uIMU is used. This will be further
explained in Subsection 6.3.4.
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Figure 6.5: Main functionality of the Integrated Camera System/INS Algorithm (no
deviations from normal flow depicted). The inertial measurement part is shown to
the left, while the camera measurement subsystem is depicted to the right. The green
blocks act as conditional statements for which "YES" or "NO" decide what action to
be performed next, while the blue blocks are actions taken. The gray block contains
functionality not performed in this thesis. The lower block represents the state estimator
and required synchronization of time.

As shown in Figure 6.5, the navigation data (navdata) from the IMU is stored
in the variable uIMU whenever available, and used as input to the EKF along
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with the measurements from OptiTrack (zi). The modules of the Camera Mea-
surement Algorithm presented in Section 5.1 are performed in the Integrated
Camera System/INS Algorithm as well (right side of Fig. 6.5). The algorithm is
aborted when a "stop" indicator (which is the response to a user keyboard input)
is received via TCP/IP from the Linux program.

6.3.3 Deviations from the Normal Flow
Similarly to the implementation of the Camera Measurement Algorithm presented
in Ch. 5, failure in various components of the Integrated Camera System/INS
Algorithm have been accounted for. For the OptiTrack subsystem, the same pos-
sible errors are considered: Measurement loss, communication loss, and faulty
measurements. The deviations from the normal flow are handled in the manner
presented in Section 5.4 (Fig. 5.4), aided by the now available IMU measure-
ments, which influence the weighting in the Q2,measError and R2,measError matri-
ces.

Similarly, the inertial sensor subsystem components may fail, i.e. the IMU mea-
surements may be lost, the TCP/IP communication may fail, and the received
measurements may contain outliers. Measurement outages from the inertial sen-
sors are handled by using the last correctly received measurement until a new one
is obtained or a time limit has been reached, while failure in the TCP/IP connec-
tion results in the algorithm being aborted. Outliers are identified and discarded,
analogously to the actions taken when receiving incorrect camera system mea-
surements (see Section 5.4). That is, the extensions to increase robustness in the
Integrated Camera System/INS Algorithm are similar to the aspects discussed
for the Camera Measurement Algorithm, and are not elaborated further.

6.3.4 "Near Real-Time" Aspects Revisited
Because the algorithm presented in this chapter fuses measurements from two
separate sources, the "near real-time" aspects outlined for the Camera Measure-
ment Algorithm need be updated. Now, the synchronization and processing of
data from two sensor systems is performed, while the overall aim remains the
same: Timely (and correct) updates of the state estimates.

The sampling rate of the IMU is considerably less frequent than that of the
camera system, i.e. ΔtTT = 0.01 s while ΔtIMU � 0.04 s. The sampling interval
of the extended Kalman filter is set equal to ΔtTT = Δt. Thus, it is assumed that
all required processing is performed within this time limit; tproc < Δt. Hence,
in an error-free running of the Integrated Camera System/INS Algorithm, IMU
measurement updates are performed once for every 4th time step, while cam-
era system measurements are updated every time step. In between available
IMU measurement updates, the last updated acceleration and angular velocity
measurements are used along with updated camera system measurements. A
similar mechanism for synchronization of time as in the Camera Measurement
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Algorithm is used, i.e. a sleep block ensures that each execution of the camera
system measurement update is performed after Δt − tproc seconds, which subse-
quently implies the update of the inertial sensor measurements every 0.04 seconds.

This "near real-time" discussion reveals that similar assumptions as in the Camera
Measurement Algorithm (Subsection 5.2.1) have been made with regards to the
sensor systems: The camera system is still assumed to deliver new measurements
every 0.01 seconds, while the inertial measurements are assumed to be updated
every 0.04 seconds. Furthermore, the algorithm polls for new measurements ac-
cording to these sampling intervals, disregarding any delays. For the IMU, a
worst-case sampling rate has been used. It is assumed and tested that the total
processing time tproc is still considerably shorter than Δt.

6.4 System Model Revisited
The state vector from Chapter 5 (Eq. (4.1)) is somewhat altered when the inte-
grated solution using inertial and camera measurements is proposed. The vector
is augmented to include inertial sensor biases, while the angular velocities are
included in the input vector u rather than in the state vector in this integrated
positioning system (see Sec. 4.3). The result is estimation of the states of x2
presented in Equation (4.2). This corresponds to an integration scheme using
direct variables as proposed in [16].

6.4.1 Bias Modelling
To estimate and compensate for the sensor biases present in the IMU measure-
ments, a model is required. In [16], the first order Gauss-Markov process is pro-
posed as a suitable model for slowly varying processes, while the Wiener process
is used to model near-constant processes. The first order Gauss-Markov process
is described by letting white noise travel through a low-pass filter [16]:

ḃ(t) = − 1
T

b(t) + w(t),

where w(t) is zero-mean white noise and T is the Markov time constant. Letting
T become large results in the Wiener process:

ḃ(t) = w(t)

In this thesis, the first order Gauss-Markov process is used to model the sensor
biases. However, experiments with various values of the time constant T have
been performed, and large values seem to lead to satisfactory results. The biases
are expressed as follows:[

ḃacc
ḃgyro

]
= −T−1

[
bacc
bgyro

]
+ wG-M, (6.10)

where T is a vector of time constants while wG-M is a vector of zero-mean white
noise.
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6.4.2 Continuous System Model
Disregarding the procedure in which accelerations are obtained, i.e. measure-
ments of specific force influenced by bias and noise, the velocity dynamics de-
composed in the BODY frame are simply

v̇b
b/i = ab

b/i (6.11)

The altered state vector,

x2 =
[
(pi

b/i)
ᵀ, (Θib)ᵀ, (vb

b/i)
ᵀ, (bb

acc)ᵀ, (bb
gyro)ᵀ

]ᵀ
, (6.12)

in combination with Equations (5.5), (6.10), and (6.11) results in the following
augmented continuous system model:

ẋ2 = f2,cont(x2, ab
b/i, ωb

b/i) + w2,cont = (6.13)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cψcθ · vx + (cψsθsφ − sψcφ) · vy + (sψsφ + cψcφsθ) · vz
sψcθ · vx + (cψcφ + sφsθsψ) · vy + (sθsψcφ − cψsφ) · vz

−sθ · vx + cθsφ · vy + cθcφ · vz
ωx + sφtθ · ωy + cφtθ · ωz

cφ · ωy − sφ · ωz
sφ
cθ · ωy + cφ

cθ · ωz
ax
ay
az

− 1
T1

· bacc,x
− 1

T2
· bacc,y

− 1
T3

· bacc,z
− 1

T4
· bgyro,x

− 1
T5

· bgyro,y
− 1

T6
· bgyro,z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+w2,cont,

where w2,cont is the continuous system noise including the zero-mean white noise
wG-M of the Gauss-Markov processes. Equation (6.13) is invalid for θ = ±90◦ =
± π

2 rad (cos θ = 0).

6.5 Integrated Solution - EKF Setup
The extended Kalman filter used as an integration filter exploits the sensor fusion
properties of the state estimator. In addition to performing the state estimation,
the filter can be tuned to achieve the best possible weighting of the available
measurement sources. In theory, an extra measurement will always improve the
resulting state estimates [16]. The additional measurements in the Integrated
Camera System/INS Algorithm (with respect to the first version of the algorithm)
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are modelled as inputs uIMU to the filter rather than augmenting the measurement
vector z [6] (see Sec. 4.3). Hence, z remains unchanged, while uIMU is given by
Equations (4.9) and (4.10) (repeated here for clarity):

u =

⎡
⎢⎢⎢⎢⎢⎢⎣

ameas,x + bacc,x
ameas,y + bacc,y
ameas,z + bacc,z

ωx + bgyro,x
ωy + bgyro,y
ωz + bgyro,z

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

uacc,x
uacc,y
uacc,z
ugyro,x
ugyro,y
ugyro,z

⎤
⎥⎥⎥⎥⎥⎥⎦

, uIMU = u + wIMU =
[

aIMU
ωIMU

]

The IMU output models (Eqs. (6.5) and (6.7)) are used to account for biases
and noise in the inertial sensor readings.

The updated system will now be expressed in the form given by Equations (5.6)
and (5.7) for use in the second version of the extended Kalman filter:

x2(k + 1) = x2(k) + Δt · [f2,cont[x2(k), u(k)] + w2,cont(k)]
= f2[x2(k), u(k)] + w2(k), (6.14)

where w2(k) is the process noise which also accounts for the noise included in
the measurements from the inertial sensors, wIMU.

z(k) =
[
x(k), y(k), z(k), φ(k), θ(k), ψ(k)

]ᵀ + v2(k)
= h[x2(k)] + v2(k), (6.15)

where v2(k) is the measurement noise included in the information from Tracking
Tools.

The EKF equations given by Eqs. (5.10)-(5.19) are used in the second positioning
algorithm as well, for updated system model as well as state, measurement, and
input vectors.

6.6 Implementation
The Integrated Camera System/INS Algorithm is implemented for both simu-
lated IMU measurements as well as offline and online use of real measurements.
The version using simulated IMU measurements is implemented to be able to ac-
curately test the state estimation against known ground truths, while the online
version of the algorithm is of practical use for the proposed lab setup. Further-
more, the offline version in combination with its Camera Measurement Algorithm
equivalent may be used for comparison of the two. This section aims to present
relevant details of the implementation which have not already been discussed. As
a consequence, neither the OptiTrack measurement preprocessing nor the offline
processing of OptiTrack measurements (presented in Section 5.7) are repeated
here. The choice of not including an equivalent to the Camera Measurement Al-
gorithm pseudocode (Algorithm 1) has been made because the similarities as well
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as differences between the two have already been presented. Thus, it is assumed
that little new information would be revealed by doing so. Furthermore, all code
produced in this thesis is available upon request.

6.6.1 Simulated IMU Measurements and Offline Process-
ing

The version of the Integrated Camera System/INS Algorithm using simulated
IMU measurements is obtained by first acquiring camera system measurements
from the lab, and subsequently processing the data offline using the Camera
Measurement Algorithm. Furthermore, the angular velocities as well as linear
accelerations are extracted from the processed camera system measurements, and
sensor biases are added. Thus, IMU measurements are simulated. The recorded
OptiTrack and simulated IMU measurements are then processed by the Inte-
grated Camera System/INS Algorithm, and the resulting state estimates can be
compared to a known ground truth.

To process real IMU data offline, measurements are recorded by storing data
as .txt files. These files may then be read into Matlab through use of the built-
in function textscan. To perform offline processing using the Integrated Camera
System/INS Algorithm, the recorded measurements from the two sources need
be synchronized. As explained earlier, the two sensor systems are accessed by
separate computers (the remote Linux computer receives inertial sensor measure-
ments while the local PC communicates with OptiTrack). As a consequence, the
synchronization is achieved by manually starting the programs on both comput-
ers simultaneously. Furthermore, a visual correction is performed when needed.
That is, if the recorded measurements are displaced with respect to each other,
the appropriate time steps are deleted from the files.

6.6.2 TCP/IP Communication

The part of the data exchange between the Parrot AR.Drone 2.0 and the com-
puter running the Integrated Camera System/INS Algorithm performed in this
thesis (presented in Subsection 6.3.1) is implemented through use of the Matlab
Central function jtcp1. The function uses Matlab’s Java interface to per-
form TCP/IP communication with a remote computer. As mentioned earlier,
the UAV to Linux computer data exchange is not part of this thesis. The jtcp
function is used to establish a TCP/IP connection between the two computers,
and subsequently read messages containing the latest IMU navigation data.

1Source: www.mathworks.com/matlabcentral/fileexchange/24524-tcpip-communications-
in-matlab
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6.6.3 Preliminary Aspects: Analytical Calculation of EKF
Matrices Revisited

Similarly to the Camera Measurement Algorithm (Subsection 5.7.3), the Jaco-
bians of the system and measurement functions, the Φ2(k) and H2(k) = H2
matrices, are calculated offline. Φ2(k) is displayed in a similar manner as its
Camera Measurement Algorithm equivalent. That is, submatrices are used due
to lack of space. The arguments k are omitted for simplicity.

h[x2(k)] =
[
x(k), y(k), z(k), φ(k), θ(k), ψ(k)

]ᵀ =⇒

H2 =
∂h
∂x2

∣∣∣∣
x2=x̄2(k)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.16)

f2[x2(k), u(k)] =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x + Δt[cψcθ · vx + (cψsθsφ − sψcφ) · vy + (sψsφ + cψcφsθ) · vz]
y + Δt[sψcθ · vx + (cψcφ + sφsθsψ) · vy + (sθsψcφ − cψsφ) · vz]

z + Δt[−sθ · vx + cθsφ · vy + cθcφ · vz]
φ + Δt[(ugyro,x − bgyro,x) + sφtθ · (ugyro,y − bgyro,y) + cφtθ · (ugyro,z − bgyro,z)]

θ + Δt[cφ · (ugyro,y − bgyro,y) − sφ · (ugyro,z − bgyro,z)]
ψ + Δt[ sφ

cθ · (ugyro,y − bgyro,y) + cφ
cθ · (ugyro,z − bgyro,z)]

vx + Δt[uacc,x − bacc,x − sθg]
vy + Δt[uacc,y − bacc,y + cθsφg]
vz + Δt[uacc,z − bacc,z + cθcφg]

bacc,x − Δt[ 1
T1

bacc,x]
bacc,y − Δt[ 1

T2
bacc,y]

bacc,z − Δt[ 1
T3

bacc,z]
bgyro,x − Δt[ 1

T4
bgyro,x]

bgyro,y − Δt[ 1
T5

bgyro,y]
bgyro,z − Δt[ 1

T6
bgyro,z]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

(6.17)

Φ2(k) =
∂f2
∂x2

∣∣∣∣
x2=x̂2(k)

=

⎡
⎣Φ2,1 Φ2,2 Φ2,3

Φ2,4 Φ2,5 Φ2,6
Φ2,7 Φ2,8 Φ2,9

⎤
⎦

x2=x̂2(k),

(6.18)

where the elements of Φ2(k) are 5 × 5 matrices, and can be found in Appendix
C.
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Chapter 7

Simulations, Testing, and
Results

Several aspects of the two implemented positioning algorithms have been tested
to investigate the applicability of the algorithms to the proposed lab setup; Pre-
processing of the OptiTrack measurements, the "near real-time" demands, state
estimation under the best possible conditions, and state estimation when loss
of or erroneous measurements are experienced. Additionally, both algorithms
were tested using simulated as well as recorded measurements, and the inertial
measurements with corresponding bias estimates used in the Integrated Camera
System/INS Algorithm were investigated for a stationary scenario. This chapter
presents the setups and input parameters as well as the results of the performed
tests, and it is organized as follows:

Camera Measurement Algorithm (Sections 7.1 & 7.2)
The first two sections are dedicated to analysis of the Camera Measurement
Algorithm. First, tests performed using simulated measurements are presented
(Section 7.1), while investigation of its performance in the lab setup is conducted
in Section 7.2.

State vector : x1 =
[
(pi

b/i)
ᵀ, (Θib)ᵀ, (vb

b/i)
ᵀ, (ωb

b/i)
ᵀ
]ᵀ

Available measurements: h(x1) =
[
x, y, z, φ, θ, ψ

]ᵀ

Integrated Camera System/INS Algorithm (Sections 7.3 & 7.4)
The third and fourth sections contain tests organized similarly, but for the Inte-
grated Camera System/INS Algorithm. Section 7.3 consists of tests performed
using recorded measurements from the camera system combined with simulated
IMU measurements, while Section 7.4 presents the results achieved in the lab
setup.

State vector : x2 =
[
(pi

b/i)
ᵀ, (Θib)ᵀ, (vb

b/i)
ᵀ, (bb

acc)ᵀ, (bb
gyro)ᵀ

]ᵀ
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Available measurements: h(x2) =
[
x, y, z, φ, θ, ψ

]ᵀ,
u =

[
uacc,x, uacc,y, uacc,z, ugyro,x, ugyro,y, ugyro,z

]ᵀ

Finally, an offline comparison of the two positioning algorithms concludes the
chapter in Section 7.5.

7.1 Camera Measurement Algorithm - Simulated
Measurements

The Camera Measurement Algorithm using real measurements is implemented for
6 DOF motion in the lab. However, in order to detect possible errors, investigate
the results under known circumstances, and accurately test the performance of
the unmeasured state estimation, the algorithm is first evaluated using simulated
measurements. Two specific scenarios were simulated - the UAV flying diago-
nally with a constant velocity (Scenario 1), and hovering in a circular pattern
(Scenario 2). For both scenarios, an error-free running as well as the impacts of
measurement errors are tested. The input parameters common to all simulations
are presented in Table 7.1, while process and measurement noise were added to
the simulated plants according to 0.01 · std(Q1) and 0.01 · std(R1), respectively.
This section presents Scenario 1 (diagonal flying with constant velocity), while
the results of Scenario 2 are given in Appendix D.1.

Table 7.1: Input Parameters, Simulations of Camera Measurement Algorithm

Q1
diag [0.1, 0.1, 0.1, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1,
0.1]

R1 diag [0.001, 0.001, 0.001, 0.1, 0.1, 0.1]

Δt 0.1 s

P̄1(0) diag [100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100]

Q1,measError
diag [0.01, 0.01, 0.01, 0.001, 0.001, 0.001, 0.01, 0.01, 0.06, 0.02,
0.02, 0.02]

R1,measError diag [100000, 100000, 100000, 100000, 100000, 100000]

7.1.1 Performance of State Estimation, Simulation Scenario
1

The initial conditions for the state vector used in the plant of Scenario 1 are
given by

x1(0) =
[
0, 0, 0.5, 0, 0, 0, 1, 0.4, 0, 0, 0, 0

]ᵀ
, (7.1)

while the initial x̄1 was

x̄1(0) =
[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

]ᵀ (7.2)
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Due to the vx and vy values (elements 7 and 8 in the state vector) being constant
in the plant model and initially given by Eq. (7.1), these velocities will remain
approximately constant throughout the simulation. As a consequence, the UAV
would have followed a straight, diagonal path in the noise-free case. In this first
test, a normal running of the Camera Measurement Algorithm (without any spe-
cial cases) was simulated.

The results of the test using the initial conditions given above as well as the
input parameters of Table 7.1 are shown in Figures 7.1 and 7.2 for the measured
and unmeasured states, respectively. The oscillations in the measurements and
corresponding estimates are a result of the process and measurement noise added
to the simulation.

The values of the plant (and estimated) positions (x, y, z [m]) are larger than
the actual indoor lab setup due to the main goal being the testing of (unmea-
sured) velocity estimation under realistic conditions. That is, with the plant
being simulated using the same model as in the filter (ṗi = Ri

bvb, v̇b = 0), the x
and y positions will increase linearly when the initial velocities are constant and
non-zero.
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Figure 7.1: Measured state estimation, Simulation Scenario 1, Camera Measurement
Algorithm. The UAV is flying in a diagonal manner with constant vx and vy velocities.
The real values from the plant are shown as blue, dashed lines while the estimates are
represented by red lines. The top-most row depicts the position, while the lower row
shows the orientation.
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Figure 7.2: Unmeasured state estimation, Simulation Scenario 1, Camera Measure-
ment Algorithm. The UAV is flying in a diagonal manner with constant vx and vy

velocities. The real values from the plant are shown as blue, dashed lines while the esti-
mates are represented by red lines. The linear velocities are shown in the top-most row,
while the angular velocities are depicted in the second row.

7.1.2 Impacts of Measurement Loss, Simulation Scenario 1

The impacts of measurement loss on the state estimation are tested using simu-
lated measurements for the same scenario as in the previous subsection (Scenario
1). The same input parameters were used (Table 7.1 and Eqs. (7.1) and (7.2)),
and this test required the Q1,measError and R1,measError matrices to be put to
use. These tuning matrices are used during measurement outages to ensure more
appropriate weighting of modelled vs. measured behavior.

For four seconds at t = 20 − 24 s and two seconds at t = 41 − 43 s, the simulated
camera measurements were lost. The actions taken by the algorithm when receiv-
ing incorrect measurements are equal to the response to measurement loss, i.e.
the previously received (correct) measurement is used as input to the state esti-
mator (along with appropriate Q1,measError and R1,measError) until a new, correct
z is received (see Section 5.4). Hence, the impacts of both types of measurement
errors on the state estimates were tested.

In Figures 7.3 and 7.4, the estimation errors are depicted, i.e. the difference
between real (plant) and estimated values. The impact of measurement loss is
visible in Figure 7.3 as the regions in which these estimation errors increase.
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Figure 7.3: Impact of measurement loss on position and orientation estimation, Sim-
ulation Scenario 1, Camera Measurement Algorithm. The UAV is flying in a diagonal
manner with constant vx and vy velocities, and the measurements are lost twice. The
top-most row shows the position error, while the lower row depicts orientation error.
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Figure 7.4: Impact of measurement loss on linear and angular velocity estimation,
Simulation Scenario 1, Camera Measurement Algorithm. The UAV is flying in a diago-
nal manner with constant vx and vy velocities, and the measurements are lost twice. The
top-most row shows the error in linear velocities, while the lower row depicts angular
velocity error.
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The measured state estimation errors reach peaks with acceptable values for
both outages, while the unmeasured state estimates seem unaffected by the loss
of measurements. That is, by close inspection of Figure 7.4, it can be seen that
the estimates are affected to some degree, although not significantly.

7.2 Camera Measurement Algorithm - Online Im-
plementation

This section presents the results of running the Camera Measurement Algorithm
in the lab setup using the OptiTrack system. The input parameters of Table 7.2
were used in all tests. As can be seen in the table, the design matrices have been
tuned compared to the values used during the simulations presented above (Table
7.1). It was discovered through trial and error that running the algorithm with
the real system required the relative weighting presented in Table 7.2 to perform
in the best possible manner.

Table 7.2: Input Parameters, Online Tests of Camera Measurement Algorithm

Q1 diag [0.1, 0.1, 0.1, 0.01, 0.01, 0.01, 0.5, 0.5, 0.5, 0.3, 0.3, 0.3]

R1 diag [0.001, 0.001, 0.001, 0.1, 0.1, 0.1]

Δt 0.01 s

P̄1(0) diag [100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100]

x̄1(0)ᵀ
[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

]

Q1,measError
diag [0.01, 0.01, 0.01, 0.001, 0.001, 0.001, 0.0005, 0.0005,
0.0005, 0.001, 0.001, 0.001]

R1,measError diag [1000, 1000, 1000, 1000, 1000, 1000]

noMeasLimit 500 time steps

In this section, the estimated linear velocities have been rotated to the inertial
frame before being shown in figures. This is performed to enable direct compar-
ison with the corresponding positions for each test due to there being no mea-
surements to compare the velocity estimates to. The original estimates, which
are expressed in the BODY frame, are found in Appendix D.2.

The start-up procedures of the camera system are visible in the figures depicting
real-life scenarios as the period (from t = 0 to approximately t � 5 seconds)
in which the measurements approach their initial values. The unmeasured state
estimation begins when this initialization procedure is over.
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7.2.1 Time Test
In the presentation of the Camera Measurement Algorithm in Chapter 5, the
"near real-time" demands of the positioning algorithm were discussed. It was
stated that in order to avoid loss of data from OptiTrack while at the same time
not performing state estimation more than once for each measurement input,
a new measurement should be collected from OptiTrack exactly every Δt sec-
onds, where Δt is the sampling period of the system. For each measurement
update, processing demanding the total time of tproc need be performed. Hence,
tproc < Δt is required. These "near real-time" aspects are investigated in this test.

The while loop of the Camera Measurement Algorithm was run for 4000 time
steps, and for each step, the processing time as well as the sleep interval were
logged. The time spent during the call to the sleep function was logged in or-
der to investigate the accuracy of this function, which influences when a new
measurement input is collected (see Algorithm 1). The difference between the
desired sleep interval (sleep(Δt− tproc)) and the actual time spent pausing was
investigated.

Table 7.3: Results of Time Test, Camera Measurement Algorithm

max (tproc) 0.0221 s

mean (tproc) 0.0016 s

max (pause_error) 0.0310 s

mean (pause_error) 0.0013 s

The maximum values of both tproc and pause_error were detected during the
system start-up procedures, and they are the only unacceptably large values for
both variables. That is, all other tproc values are significantly smaller than the
sampling interval Δt = 0.01 s, fulfilling the tproc < Δt demand.

As Table 7.3 shows, the pause interval is somewhat inaccurate with a mean error
value of 0.0013 s. The error was even larger when using built-in Matlab pause
functions, thus Java’s sleep function was utilized. As mentioned above, this
function decides how long the system is delayed waiting for a new measurement
to be available, and is ideally given by Δt − tproc. However, the online tests of
the performance of the algorithm show satisfying results despite the inaccuracy
in the pause function.

7.2.2 State Estimation under Ideal Conditions, Test 1
The performance of the Camera Measurement Algorithm was tested in a realistic
setting, i.e. the position, orientation, and velocities were estimated for the UAV
while it was flying around the lab setup. During the tests, the cameras were col-
lecting frames and sending measurements to Matlab. This subsection presents
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the results of Test 1, while another scenario (Test 2) is presented in Appendix
D.2.2. No incorrect or loss of measurements were experienced during these two
tests, i.e. the main functionality is tested.

The results of Test 1 are presented in Figures 7.5 and 7.6 for the measured and
unmeasured states, respectively. Some of the larger spikes in the blue, dashed
lines (which represent the measurements from the camera system) in Figure 7.5
may be measurement outliers, which are handled by the faulty measurement
mechanism described in Section 5.4. However, in the φ and θ angles especially,
some of the spikes are due to these angles receiving control signals to induce
motion [12]. That is, the non-planar angles are controlled to obtain motion in
the x and y directions, resulting in angular motion as well.

Figure 7.5 shows that the estimates of the measured states follow the measure-
ments quite closely, while filtering out what was assumed to be errors in the
measurements from the OptiTrack system. Measurement noise is visible partic-
ularly in the orientation states, which is in compliance with the measurement
noise observed during the testing of the OptiTrack to Matlab communication
in Subsection 3.4.2 (Table 3.3 and Figure 3.6). It can be seen that the state
estimator performs noise filtering particularly in these states.

The measured yaw angle ψ and its estimate cross the 180◦ limit in Figure 7.5, and
the result of the measurement preprocessing is visible. No leaps occur because
the angle continues to increase rather than jump from 180◦ to −180◦.
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Figure 7.5: In-flight measured state estimation, Test 1, Camera Measurement Algo-
rithm. The blue, dashed lines are the measured values obtained from OptiTrack, while
the red lines represent the states estimated using the Camera Measurement Algorithm.
The top-most row depicts the position, while the lower row shows the orientation.
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Figure 7.6: In-flight unmeasured state estimation, Test 1, Camera Measurement Algo-
rithm. The linear velocity estimates (expressed in the inertial frame) are shown in the
top-most row, while the angular velocity estimates are depicted in the second row.

Figure 7.6 depicts the results of estimating the unmeasured states, which natu-
rally have no measurements to be compared to. As mentioned in the beginning
of this section, the velocity estimates are rotated to the inertial frame to enable
direct comparison with the corresponding positions in Figure 7.5, while the orig-
inal velocity estimates (expressed in BODY) can be found in Appendix D.2.1 for
this test.

7.2.3 State Estimation with Measurement Errors

This test was performed under similar conditions as the scenario in the previous
subsection. However, the UAV was now moved manually around the lab setup
in order to provoke OptiTrack measurement loss. As mentioned earlier, receiving
incorrect measurements has the same consequences as if the measurements were
lost. That is, the impacts of both types of measurement errors are investigated
in this test.

Figure 7.7 depicts the measured state estimation for a scenario in which the
trackable connected to the UAV was missed by the cameras several times. As
can be seen in the figure, the state estimation was affected by the measurement
losses, which occurred between t � 14.5 s and t � 16 s, and for approximately two
seconds at t � 27 s. OptiTrack outputs the last obtained measurement until the
trackable is within the capture volume once more, that is, the measurements be-
come constant. The states are estimated by emphasizing the modelled behavior,
and do not become constant.
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Figure 7.7: Online measured state estimation with measurement loss, Camera Mea-
surement Algorithm. The blue, dashed lines are the measured values obtained from
OptiTrack, while the red lines represent the states estimated using the Camera Measure-
ment Algorithm. The top-most row depicts the position, while the lower row shows the
orientation.
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Figure 7.8: Online unmeasured state estimation with measurement loss, Camera Mea-
surement Algorithm. The linear velocity estimates (expressed in the inertial frame) are
shown in the top-most row, while the angular velocity estimates are depicted in the
second row.

The validity of the state estimates during measurement outages is difficult to
test accurately. Incorrect or inaccurate state estimates should not be sent to the
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control system, which is the reason for setting a time limit for allowing state
estimation without inputs before the algorithm is aborted.

In Figure 7.8, the linear velocity estimates expressed in the inertial frame are
depicted, while the original estimates (relative to BODY) can be found in Ap-
pendix D.2.3. From Figure 7.8, it is seen that the unmeasured state estimation
was also affected by the loss of measurements. The impacts of measurement loss
are more difficult to see due to there being no ground truth in the real system,
but in the results obtained for simulated measurements (Subsec. 7.1.2), the im-
pacts were visible in the measured state estimates, while the velocity estimates
were less affected.

This concludes the results obtained for the Camera Measurement Algorithm.
The remaining sections of this chapter are dedicated to testing the performance
of the Integrated Camera System/INS Algorithm, and to a comparison of the
two using recorded measurements of identical scenarios.

7.3 Integrated Camera System/INS Algorithm -
Simulated IMU Measurements

The Integrated Camera System/INS Algorithm is, like the Camera Measurement
Algorithm, implemented for use with real measurements in the lab. However,
results obtained by the second positioning algorithm using recorded camera and
simulated IMU measurements are presented in this section for similar reasons as in
the Camera Measurement Algorithm equivalent in Section 7.1. As velocity ground
truths, trajectories estimated using the first positioning algorithm were used (see
Subsection 6.6.1 for details on the IMU measurement simulation justifying this),
while the biases were set to be slow-varying processes similar to the real biases
observed in stationary inertial measurements from the Parrot AR.Drone 2.0. The
input parameters of Table 7.4 were used in all simulations.
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Table 7.4: Input Parameters, Simulations of Integrated Camera System/INS Algorithm

Q2
diag [1, 1, 1, 0.01, 0.01, 0.01, 0.2, 0.2, 0.2, 0.1, 0.1, 0.1, 0.001,
0.001, 0.001]

R2 diag [0.01, 0.01, 0.01, 0.1, 0.1, 0.1]

Δt 0.01 s

P̄2(0) diag [100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
100, 100, 100]

x̄2(0)ᵀ
[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

]

T
[
1000, 1000, 1000, 100, 100, 100

]

Q2,measError
diag [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.06, 0.06, 0.06, 0.001,
0.001, 0.001, 0.0001, 0.0001, 0.0001]

R2,measError diag [100000, 100000, 100000, 100000, 100000, 100000]

7.3.1 Performance of State Estimation

In the test performed in this subsection, a successful running of the Integrated
Camera System/INS Algorithm is investigated (analogously to the first tests of
the Camera Measurement Algorithm). That is, no measurement outages were
experienced. Consequently, the state estimation results under ideal conditions
are tested. The results obtained using the input parameters of Table 7.4 are
shown in Figures 7.9, 7.10, and 7.11 for the measured states, velocities, and bi-
ases, respectively.

It can be seen in Figure 7.9 that the position and orientation estimates follow
the measurements quite closely, while filtering out what was assumed to be mea-
surement noise from the camera system. Furthermore, the velocity estimates in
Figure 7.10 also follow the real values obtained through processing of recorded
camera system measurements. As mentioned above, these processed measure-
ments were used as ground truths in this simulation although it cannot be said
with absolute certainty that these velocities are the ground truth. However, this
test shows that the Integrated Camera System/INS Algorithm is capable of es-
timating velocities that follow the corresponding real values, while a verification
of the authenticity of the utilized real values is outside the scope of this test.

Finally, Figure 7.11 depicts the bias estimates against the set ground truth. It
can be seen that the estimates converge quite quickly, although some fluctuations
are present in the estimates, possibly reflecting motion in the corresponding ori-
entation states (by comparison with Figure 7.9).
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Figure 7.9: Position and orientation estimation (simulated IMU), Integrated Camera
System/INS Algorithm. Recorded measurements from the camera system are used. The
real values are shown as blue, dashed lines while the estimates are represented by red
lines. The top-most row depicts the position, while the lower row shows the orientation.
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Figure 7.10: Velocity estimation (simulated IMU), Integrated Camera System/INS
Algorithm. The velocities are expressed in the BODY frame. Recorded measurements
from the camera system are used. The real values are shown as blue, dashed lines while
the estimates are represented by red lines.
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Figure 7.11: Bias estimation (simulated IMU), Integrated Camera System/INS Al-
gorithm. Recorded measurements from the camera system are used. The real values
are shown as blue, dashed lines while the estimates are represented by red lines. The
top-most row depicts the accelerometer biases, while the lower row shows the gyro biases.

7.3.2 Impacts of Measurement Loss

The Integrated Camera System/INS Algorithm uses two separate measurement
sources and therefore, two separate measurements may be lost or faulty. In
this subsection, the results of losing or receiving faulty measurements from both
sources are investigated for the same scenario as in the previous subsection. The
figures in this section depict error signals, i.e. the difference between actual and
estimated values.

Camera System Measurement Loss The effects of camera measurement
outages on the state estimates produced by the Integrated Camera System/INS
Algorithm are presented in this paragraph. The measurements from OptiTrack
were lost twice: for t = 40 − 44 s, and t = 75 − 77 s, coinciding with the regions
in Figure 7.12 where the estimation errors increase. The measured state esti-
mation errors increase and reach quite high values during the two outages, the
first one in particular for the positions. Furthermore, it can be seen that the ve-
locity estimates are also affected by the camera measurement losses (Figure 7.13).

The bias estimation errors are depicted in Figure 7.14, and it can be seen that
especially the gyroscope bias estimates are more affected by UAV motion than
by the camera measurement losses (by comparison with Figure 7.9, which depicts
the motion experienced for the error-free version of the same scenario).
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Figure 7.12: Position and orientation estimation error with camera system outages
(simulated IMU), Integrated Camera System/INS Algorithm. The top-most row contains
position estimation errors, while the second row depicts orientation estimation errors.
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Figure 7.13: Velocity estimation error with camera system outages (simulated IMU),
Integrated Camera System/INS Algorithm.
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Figure 7.14: Bias estimation error with camera system outages (simulated IMU),
Integrated Camera System/INS Algorithm. The top-most row contains accelerometer
bias estimation errors, while the second row depicts gyro bias estimation errors.

The gyro bias estimation errors seem to become approximately constant for the
duration of the camera measurement outages, while the accelerometer bias esti-
mates seem to be affected by the first outage in particular.

Inertial Sensor Measurement Loss The effects of inertial sensor outages
on the state estimates are presented in this paragraph. The measurements from
the inertial sensors were also lost twice, for the time intervals in which camera
measurement outages were experienced for the same scenario above.

Figure 7.15 depicts the errors in the measured state estimation, i.e. position
and orientation estimation errors. The figure shows that the position estimates
are virtually unaffected by the inertial measurement losses, with the error result-
ing from the first outage having a magnitude of 10−4, and the error resulting from
the second measurement loss being even smaller. The orientation estimation is
not significantly influenced either.

The velocity estimation error is depicted in Figure 7.16, and it can be seen that
the estimates are affected by the first inertial sensor outage especially.

76



CHAPTER 7. SIMULATIONS, TESTING, AND RESULTS

0 20 40 60 80 100 120
−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10−4

Time [s]

P
o
si
ti
o
n
er
ro
r
[m

]

Offline position and orientation estimation error (simulated IMU), Integrated Camera System/INS Algorithm

x̃
ỹ
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Figure 7.15: Position and orientation estimation error with inertial sensor measure-
ment loss (simulated IMU), Integrated Camera System/INS Algorithm. The top-most
row contains position estimation errors, while the second row depicts orientation esti-
mation errors.
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Figure 7.16: Velocity estimation error with inertial sensor measurement loss (simu-
lated IMU), Integrated Camera System/INS Algorithm.
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Figure 7.17: Bias estimation error with inertial sensor measurement loss (simu-
lated IMU), Integrated Camera System/INS Algorithm. The top-most row contains
accelerometer bias estimation errors, while the second row depicts gyro bias estimation
errors.

Figure 7.17 shows the bias estimation errors. The gyro bias estimation errors in
the y and z directions (b̃gyro,y and b̃gyro,z) seem to be influenced the most by the
outages, while all gyro bias estimates still seem to react to motion in the UAV
(by comparison with Figure 7.9, which depicts the position and orientation for
the error-free version of the same scenario). The accelerometer bias estimates
seem to be influenced by the first measurement outage, while the second iner-
tial measurement loss is not visible in the accelerometer bias estimation errors
depicted in Figure 7.17.

7.4 Integrated Camera System/INS Algorithm -
Online Implementation

This section presents the results of running the Integrated Camera System/INS
Algorithm in the lab setup using measurements from the OptiTrack system as
well as the inertial sensors on-board the UAV. The results are organized analo-
gously to the corresponding Camera Measurement Algorithm section (Sec. 7.2),
although this section is introduced by a stationary analysis of the received iner-
tial measurements and the corresponding bias estimation. The input parameters
presented in Table 7.5 were used in all the performed tests. Again, the design
matrices have been tuned compared to its values for the simulated tests per-
formed above. Through trial and error, the values presented in Table 7.5 seemed
to produce the best results.
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The estimated linear velocities presented in this section are also rotated to the
inertial frame to enable direct comparison with the corresponding positions, while
the original estimates (relative to the BODY frame) can be found in Appendix
E. The start-up procedures of the camera system are visible in all figures de-
picting real-life scenarios, similarly to the situation in the testing of the Camera
Measurement Algorithm in Section 7.2.

Table 7.5: Input Parameters, Online Tests of Integrated Camera System/INS Algo-
rithm

Q2
diag [0.1, 0.1, 0.1, 0.01, 0.01, 0.01, 10, 10, 10, 1, 1, 0.3, 0.01,
0.01, 0.01]

R2 diag [0.01, 0.01, 0.01, 0.1, 0.1, 0.1]

Δt 0.01 s

P̄2(0) diag [100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
100, 100, 100]

x̄2(0)ᵀ
[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

]

T [1000, 1000, 1000, 100, 100, 100]

Q2,measError
diag [0.01, 0.01, 0.01, 0.01, 0.0001, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1,
0.1, 0.1, 0.1, 0.1]

R2,measError diag [1000, 1000, 1000, 1000, 1000, 1000]
noMeasLimit,
OT 400 time steps

noMeasLimit,
IMU 300 time steps

7.4.1 Stationary Analysis of Inertial Measurements and Bias
Estimation

A test to investigate the magnitudes of the actual accelerometer and gyroscope
biases as well as the rate of convergence of the estimates was performed with
the UAV sitting on the floor. According to theory, the measurements made by
the three accelerometers will contain the appropriate component of gravity when
no motion is experienced (Section 6.1). With the UAV being stationary on the
floor, the non-planar angles should be zero (φ = 0, θ = 0), and only the received
acceleration in the z direction (aIMU,z) contains gravity (Eqs. (6.1) and (6.5)).
However, the outputs from both types of inertial sensors used in this thesis also
contain noise as well as biases, which is the topic of this analysis.

Figure 7.18 shows the six components of the inertial measurements obtained
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from the IMU: aIMU,x, aIMU,y, aIMU,z, ωIMU,x, ωIMU,y, and ωIMU,z. The influ-
ence of gravity is clearly visible in aIMU,z (the upper, right-most part of Figure
7.18), while the biases are visible in all components. That is, it is assumed that
the mean stationary values of the measurements would be zero (-g for aIMU,z) if
biases were not present. The fluctuations reflect the measurement noise.
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Figure 7.18: Stationary IMU measurements.
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Figure 7.19: Stationary bias estimation.

Figure 7.19 depicts the estimated biases for the same scenario. By comparing
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the two figures, it can be seen that the accelerometer bias estimates (top-most
row of Figure 7.19) converge quite quickly, although a steady-state error can be
observed particularly in b̂acc,y. The gyroscope bias estimates converge quickly,
while containing some oscillations.

7.4.2 Time Test

The updated "near real-time" aspects discussed in Subsection 6.3.4 were tested by
inspection of the tproc and pause_error intervals first presented in Section 7.2.
The test is analogous to the investigation performed for the Camera Measure-
ment Algorithm. That is, the while loop was run for 4000 time steps, and the
interesting time intervals were logged. Table 7.6 shows that the mean processing
time is still considerably shorter than the sampling interval Δt = 0.01 s, thus
fulfilling the tproc < Δt demand. The maximum values for both time intervals
were detected during the start-up procedures.

Table 7.6: Results of Time Test, Integrated Camera System/INS Algorithm

max (tproc) 0.0402 s

mean (tproc) 0.0036 s

max (pause_error) 0.0519 s

mean (pause_error) 0.0011 s

7.4.3 State Estimation under Ideal Conditions, Test 1

In this subsection, the performance of the Integrated Camera System/INS Algo-
rithm is investigated in a realistic setting. That is, the UAV was flying around
the lab while the cameras and the inertial sensors were transmitting measure-
ments to the algorithm, which in turn estimated the system states online. The
results of Test 1 are shown here, while a second test is presented in Appendix
E.2 (Test 2). Results of running the implemented positioning algorithm online
using real measurements are shown in Figures 7.20, 7.21, and 7.22 below.

The first figure depicts the online position and orientation estimation performed
by the positioning algorithm. It shows that the estimates follow the measure-
ments while filtering out what was assumed to be measurement noise. The figure
also shows that the measured and estimated ψ angles cross the −180◦ limit with-
out a leap occurring, i.e. the measurement preprocessing is successful.
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Figure 7.20: In-flight measured state estimation, Test 1, Integrated Camera Sys-
tem/INS Algorithm. The blue, dashed lines are the measurements obtained from Opti-
Track, while the red lines represent the estimated states. The top-most row depicts the
position, while the lower row shows the orientation.
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Figure 7.21: In-flight velocity estimation, Test 1, Integrated Camera System/INS
Algorithm. The velocity estimates are expressed in the inertial frame.
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Figure 7.22: In-flight bias estimation, Test 1, Integrated Camera System/INS Algo-
rithm. The top-most row shows the accelerometer bias estimates, while the gyro bias
estimates are shown in the lower row.

The velocity estimates (Figure 7.21), which have no measurements to be com-
pared to, seem reasonable when compared to the corresponding positions shown
in Figure 7.20. However, they seem to contain more oscillations than their cor-
responding values estimated using the Camera Measurement Algorithm. The
scenario ended with the UAV landing gently, which is the reason for the behavior
of v̂i

z for t � 57 − 58 s. The original estimates (expressed in BODY) are found in
Appendix E.1.

Lastly, the estimated biases are influenced by motion, i.e. when the UAV is
moving, the estimates are not constant (see Figure 7.20). The three figures from
this test show that when the UAV is standing still (58 < t < 78 s), the bias esti-
mates converge towards the true values for stationary scenarios shown in Figure
7.18.

7.4.4 State Estimation with Camera Measurement Loss
A scenario in which the trackable connected to the UAV was outside of the cap-
ture volume is presented in this subsection. For t � 27 − 28.5 s, the camera
system was unable to calculate the position and orientation of the trackable, and
the algorithm therefore did not receive camera measurements for this time pe-
riod. The measurements from the inertial sensors were error-free during the test.

The loss of measurements occurred at t � 27 s, and is especially visible by
close inspection of x̂ in Figure 7.23. As mentioned earlier, the OptiTrack system
outputs the last calculated position and orientation for the duration of time in
which the trackable is outside of the capture volume, while the Integrated Cam-
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era System/INS Algorithm seeks to estimate the states based on prediction as
well as the available IMU measurements.
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Figure 7.23: Online position and orientation estimation with camera measurement
loss, Integrated Camera System/INS Algorithm. The blue, dashed lines are the measured
values obtained from OptiTrack, while the red lines represent the states estimated using
the Integrated Camera System/INS Algorithm. The top-most row depicts the position,
while the lower row shows the orientation.
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Figure 7.24: Online velocity estimation with camera measurement loss, Integrated
Camera System/INS Algorithm. The velocity estimates are expressed in the inertial
frame.
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Figure 7.25: Online bias estimation with camera measurement loss, Integrated Camera
System/INS Algorithm. The top-most row shows the accelerometer bias estimates, while
the gyro bias estimates are shown in the lower row.

The impact of measurement loss on the velocity estimates is visible especially in
v̂i

x (Figure 7.24), which is reasonable considering that x̂ was most influenced as
well. However, the estimate quickly follows a likely progression when the outage
is over. Similarly to other velocity estimate figures, the estimates presented here
are expressed in the inertial frame, while the corresponding figure of the velocity
estimates expressed in b can be found in Appendix E.3.

For the estimated biases, the accelerometer values seem to be most influenced by
losing the camera system measurements. The estimated gyroscope biases seem
to be more affected by UAV motion than loss of camera system measurements,
which correspond to the results obtained using simulated IMU measurements
above.

7.5 Comparison of State Estimates
This section aims at comparing the two implemented positioning algorithms by
processing measurements from the same scenario using both algorithms. For this
purpose, the UAV was flown around the lab while both the camera system and
the inertial sensors were collecting data. These recorded measurements were used
as input to the two algorithms (the camera measurements only in the Camera
Measurement Algorithm case), and the results are shown below. Only the state
estimates common to both algorithms, i.e. position, orientation, and linear ve-
locity, are depicted. The input parameters given in Tables 7.2 and 7.5 were used
for the Camera Measurement and Integrated Camera System/INS Algorithms,
respectively.
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Figure 7.26: Offline position and orientation estimation, Camera Measurement Algo-
rithm. The blue, dashed lines are the measured values obtained from OptiTrack, while
the red lines represent the states estimated using the Camera Measurement Algorithm.
The top-most row depicts the position, while the lower row shows the orientation.
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Figure 7.27: Offline position and orientation estimation, Integrated Camera Sys-
tem/INS Algorithm. The blue, dashed lines are the measured values obtained from
OptiTrack, while the red lines represent the states estimated using the Integrated Cam-
era System/INS Algorithm. The top-most row depicts the position, while the lower row
shows the orientation.
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Figure 7.28: Offline velocity estimation, Camera Measurement Algorithm. The veloc-
ities are depicted relative to the (original) BODY frame.
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Figure 7.29: Offline velocity estimation, Integrated Camera System/INS Algorithm.
The velocities are depicted relative to the (original) BODY frame.

The results will be discussed, along with the rest of this chapter, in the next
chapter.
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Chapter 8

Discussion

In this chapter, the two proposed positioning algorithms are discussed and com-
pared with the aim of obtaining an applicable and accurate solution for the
intended Parrot AR.Drone 2.0 lab scenario in mind. In particular, the results
presented in Chapter 7 are analyzed, and decisions made with regards to solving
the assignment given are assessed after implementation of the two chosen setups
has been performed. Furthermore, the role of the positioning algorithms in a
larger system for indoor motion control of the UAV is elaborated.

8.1 Camera Measurement Algorithm
The first positioning algorithm implemented in this thesis, the Camera Measure-
ment Algorithm, was presented in Chapter 5. It uses measurements from the
camera system only to estimate the position, orientation, linear, and angular ve-
locities of the Parrot AR.Drone 2.0 online.

The results of testing the algorithm using simulated measurements show that
the estimates of both the measured and unmeasured states quickly converge to
their true values (and follow them for the duration of the simulation) for arbi-
trary initial conditions and scenarios in which the system is subject to process
and measurement noise. In the real-time tests performed in the lab, the accuracy
of the velocity estimates is difficult to inspect due to there being no measure-
ments available for these states. However, a comparison with the corresponding
position and orientation estimates and their measurements in conjunction with
the simulation results provide a strong implication for the performance of the
unmeasured state estimation being satisfactory.

The position and orientation estimates are compared to the camera system mea-
surements in the online tests. The reception of outliers is a quite likely scenario
in real-life systems, which is the reason why a mechanism for identifying and
discarding faulty measurements has been implemented for both positioning algo-
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rithms, resulting in smoother measurements, especially for the orientation. How-
ever, the mechanism may have been too aggressive, with the result that correct
measurements have been discarded. This may have been the case for φ and θ
in particular, which are control variables for linear motion, and thus experience
spikes when UAV motion is induced. However, the position estimates follow their
measurements in a satisfactory manner, and outliers are discarded.

It should be noted that no ground truths are available in the lab setup. That is,
the correctness of the measurements from the camera system against which the
position and orientation estimates are compared cannot be completely verified.
The reason is that there is no redundancy in the available sensors (time did not
allow a comparison with inertial measurements). However, the accuracy of the
planar, linear measurements from the OptiTrack system was briefly tested in Sec-
tion 3.4 with seemingly satisfactory results. This test alone should not be used
as a complete verification of the authenticity of the measurements, but its results
can be used as an argument for using the trajectories of the OptiTrack measure-
ments as the overall course to follow. That is, noise filtering (especially when
estimating the orientation) is performed, but the noise-reduced measurements
should be (and are) followed by the estimates.

8.2 Integrated Camera System/INS Algorithm
The second positioning algorithm implemented in this thesis, the Integrated Cam-
era System/INS Algorithm, was presented in Chapter 6. It fuses the camera sys-
tem measurements with outputs from the on-board inertial sensors to estimate
the position, orientation, and linear velocity of the UAV as well as the inertial
sensor biases.

The performance of the algorithm was first investigated using recorded camera
system and simulated IMU measurements, a test which showed satisfactory re-
sults. The measured state estimates follow their ground truths, while the velocity
and bias estimates quickly converge to theirs, although some fluctuations in the
bias estimates are experienced. The oscillations seem to coincide with movement
in the corresponding position or orientation state.

The tests performed in the lab reveal that the velocity estimates contain fluc-
tuations about their mean values, although they seem to follow likely overall tra-
jectories when compared to the corresponding positions. Similarly to the Camera
Measurement Algorithm results, the simulations in conjunction with online be-
havior imply that the velocity estimation is satisfactory despite the observed
noise, which was not unexpected. That is, the camera system delivers mea-
surements of quite good quality, while IMU measurements containing noise and
biases are added in the Integrated Camera System/INS Algorithm, resulting in
increased noise in the system.
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The bias estimates are seemingly influenced by UAV motion, resulting in non-
constant values for periods of time in which the UAV was not stationary, while
converging towards the values observed in measurements from the IMU when
stationary. Steady-state errors were also observed in the online tests, resulting in
a need for further tuning and testing of the system. However, in the simulations,
the bias estimates quickly approached their true values. Thus, the reason for the
observed steady-state errors in the lab tests may be connected to other factors
than the state estimation. Furthermore, the velocity estimates, which might be
considered more important with the goal of this thesis in mind (a well-functioning
and accurate positioning algorithm for use in a proposed testbed), seem to be
satisfactory (to the extent explained above) despite the obtained bias estimates.

The position and orientation estimates follow their respective measurements suc-
cessfully while filtering out what was assumed to be measurement noise. However,
the discussion of whether the outlier mechanism is too aggressive presented above
applies to the Integrated Camera System/INS Algorithm as well.

In this thesis, it was assumed that the UAV with the trackable attached to it
constitutes a rigid body. However, the tests performed in the lab setup revealed
that this may not be the case. That is, the trackable (attached to the top of
the UAV) seemed to move independently of the UAV. This may have caused
inaccurate camera measurements as well as a moving center of gravity. Further-
more, the IMU measurements may have added more noise than observed in the
stationary test (Figure 7.18) as well as varying biases when the UAV was moving.

8.3 Comparison and Final Remarks
The main difference between the Camera Measurement and Integrated Camera
System/INS Algorithms is that the first algorithm uses measurements from one
source, while the latter is an integrated solution utilizing two sensor systems. As
a consequence, the two inhabit different advantages and disadvantages which are
elaborated here.

The two algorithms were run using identical measurements in Section 7.5, a
test which confirmed that the velocity estimates from the Integrated Camera
System/INS Algorithm contain more noise than their equivalents resulting from
use of the Camera Measurement Algorithm. As mentioned above, this was not
unexpected because the IMU adds noise to the system. The test also showed that
when estimating measured states, either algorithm may be used with excellent
results.

When using the Camera Measurement Algorithm, estimates of angular veloc-
ities are obtained in addition to the position, orientation, and linear velocity
estimates, while measurements of the angular velocities are available in the Inte-
grated Camera System/INS Algorithm. However, the angular velocities are the
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estimates from the Camera Measurement Algorithm which seem to contain the
most noise in the online tests, making the choice between measured and estimated
angular velocities less obvious. Nevertheless, the estimates seem to behave better
than unfiltered gyroscope measurements.

An argument for using the Integrated Camera System/INS Algorithm in the
proposed lab setup could be the provided redundancy in sensors, especially with
continued state estimation during camera measurement outages in mind. An
investigation of whether the integrated solution using additional IMU measure-
ments is able to produce satisfactory state estimates for longer camera measure-
ment outages than the corresponding algorithm based on camera measurements
only was performed. Tests were conducted for simulated scenarios as well as in
the lab. The simulations show that the smallest estimation errors result from
use of the Camera Measurement Algorithm when measurement outages of equal
duration were experienced, which, to some degree, was unexpected. An explana-
tion might be that the IMU measurements contain more noise than the camera
system, and it seems that emphasizing the modelled behavior using the Camera
Measurement Algorithm is a better choice than exploiting the IMU measurements
using the integrated solution. However, time did not allow sufficient tuning and
testing of the Integrated Camera System/INS Algorithm, which is a likely part of
the reason for the obtained results. Furthermore, the simulated scenarios used for
the two algorithms were not identical due to the Integrated Camera System/INS
Algorithm using real, recorded camera measurements, and a direct comparison
thus cannot be made.

A conclusion with regards to the performance of the algorithms during cam-
era measurement outages in the lab is difficult do draw due to the nature of the
problem. That is, no measurements are available for comparison, which was the
reason for performing the simulations. However, the results obtained online show
that all state estimates quickly approach satisfactory values when a new mea-
surement is received. A conclusion that one of the algorithms provides better
state estimation during camera measurement outages cannot be drawn based on
this thesis alone, due to lack of extensive testing and possibly imperfect tuning.
Further tuning and testing should be performed with this in mind.

The results of losing camera measurements as opposed to inertial sensor measure-
ments were also investigated for the Integrated Camera System/INS Algorithm.
In simulations, camera measurement outages seem to produce the highest increase
in position and orientation estimation errors, while inertial sensor outages appear
to have the most influence on the bias estimates (the real-life impacts of inertial
measurement loss were not investigated due to the limited time available). How-
ever, the impact of camera measurement loss on the acceleration biases in the lab
is visible in Figure 7.25. This could be a result of imperfect tuning, when com-
pared to the simulation of a similar scenario. Furthermore, the velocity estimates
seem to be somewhat affected by both types of outages. Limits for accepting con-
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tinued state estimation without inputs can be set for each measurement source
individually, depending on the priorities of the user.

8.3.1 The Positioning Algorithms in a Real-Time, Closed-
Loop System

A positioning algorithm represents one subsystem of an overall motion control
system. As a consequence, the performances of the two implemented algorithms
should be seen in connection with the larger system of which they will be part.

An aspect which has not yet been discussed is the "near real-time" demands
outlined in Sections 5.2 and 6.3.4. The delivered state estimates must be up-
dated in a timely manner for a positioning algorithm to be useful in the proposed
test setup, a challenge which was addressed using a "near real-time" approach
in which the sampling rates of both sensor systems are assumed constant, and
the respective algorithm updates its measurements according to these sampling
rates. Furthermore, a processing time shorter than the system sampling rate is
required. The results of choosing this approach were investigated through testing
of the tproc < Δt demand with a Δt satisfying the requirement of timely estimate
updates, and the approach seems to be satisfactory. However, the state estimates
have not been used in an overall motion control system due to the limited time
available, a test which must be performed before the success of the "near real-
time" approach can be verified.

The measures taken to increase the robustness of the positioning algorithms may
be labelled passive, i.e. when an error occurs, the algorithms merely perform as
well as possible under the given circumstances. This is due to the sensors being
outside the scope of the positioning algorithms, they represent a separate system
which cannot be controlled by the user of the positioning algorithm. In addition,
the control block in a motion control system often contains much of the error
handling in the overall system. However, the actions taken to discard outliers
and improve state estimation during measurement outages should ensure that
acceptable estimates are sent to the control system for a longer period of time
than if no actions were taken.

The goal of implementing an accurate positioning algorithm for the Parrot
AR.Drone 2.0 suitable for online use in the proposed lab setup is fulfilled to the
extent outlined in the discussion above. That is, further tuning and extensive
testing of the algorithms need be performed. Even more importantly, the abilities
of the algorithms to close the loop in a motion control system must be tested.
However, both algorithms seem to perform in a satisfactory manner (the Inte-
grated Camera System/INS Algorithm contains more noise due to the added IMU
measurements) for scenarios without measurement errors, while the extensions
to increase robustness should be developed further.
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Considering the results obtained and discussed in this thesis, the Camera Mea-
surement Algorithm would be the current choice for the Parrot AR.Drone 2.0 lab
setup because of the quality of its velocity estimates, and the fact that the redun-
dancy in sensors in the Integrated Camera System/INS Algorithm does not seem
to have been fully utilized. That is, with more time available, the state estimates
during measurement outages could have been optimized through further tuning
and testing, making the decision a more difficult one.
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Chapter 9

Conclusion

This thesis is motivated by the use of UAVs for acquiring measurements of the
scene in a system for estimation of ice properties. Such systems are needed to
ensure safety when conducting marine operations in Arctic seas. As a possi-
ble testbed for UAV guidance and estimation algorithms, the use of the Parrot
AR.Drone 2.0 quadcopter has been proposed, necessitating a positioning algo-
rithm for the UAV. The goal of this thesis was to develop an accurate indoor
positioning algorithm suitable for online use in the proposed lab setup.

The first part of this thesis included a brief overview of methods for indoor po-
sitioning, focusing on their individual system setups as well as relative strengths
and weaknesses. A more detailed presentation of camera-based indoor positioning
was given before the main (camera-based) measurement source of this thesis was
presented. This camera system provides position and orientation measurements
in six DOF for a rigid body through tracking of reflective markers attached to
the object of interest.

Strong implications for satisfactory performance by the Camera Measurement
Algorithm in an online scenario have been shown, although a "near real-time" im-
plementation only is performed. The algorithm performs accurate estimation of
position, orientation, linear and angular velocities in simulations, and appears to
obtain the same results online. Furthermore, faulty measurements are discarded
and a mechanism for maintaining satisfactory state estimation during short mea-
surement outages is included. Hence, the algorithm should be applicable to the
intended Parrot AR.Drone 2.0 lab setup. However, further testing of the func-
tionality of the algorithm, especially during measurement outages, along with
experiments in which the algorithm is used in a motion control system should be
performed.

The Integrated Camera System/INS Algorithm performs accurate position, ori-
entation, linear velocity and sensor bias estimation in simulations, while tests
conducted of its online behavior show increased noise in the velocity estimates

95



9.1. FUTURE WORK

when compared to the Camera Measurement Algorithm. Furthermore, its per-
formance during camera measurement outages cannot be validated based on this
thesis alone. Further tuning and testing should be performed, especially for use
in a motion control system

9.1 Future Work
The algorithms implemented in this thesis are ready-to-use with the camera sys-
tem in the lab. However, testing of the algorithms as part of a larger system is not
performed, and the estimates are not optimized. For future work, the following
is proposed:

· Testing of both algorithms used in a guidance system

· Further tuning of the extended Kalman filters

· Investigation of results of a real-time implementation (as opposed to the
"near real-time" approach chosen in this thesis)

· Testing of a less aggressive outlier mechanism

· Investigation of results with the trackable attached differently
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Appendix A

Rotation and
Transformation Matrix
Properties

A.1 Rotation Matrices
A rotation matrix describes the rotation between two frames b and c:

ac = Rc
b(α)ab (A.1)

Here, ac is a vector expressed in coordinate system c, and ab is the same vector
referenced to coordinate system b. Rc

b(α) is the rotation matrix between the
frames. Thus, frame b is rotated by the angle α to obtain frame c.

A rotation matrix is an element in SO(3), which is the special orthogonal group
of order 3 :

SO(3) = {R|R ∈ R
3×3, R is orthogonal, det R = 1} (A.2)

SO(3) is a subset of all orthogonal matrices of order 3, O(3), where O(3) is defined
as

O(3) � {R|R ∈ R
3×3, RRT = RTR = I} (A.3)

A rotation matrix R ∈ SO(3) satisfies the following properties:

· RRT = RTR = I

· det R = 1

· R−1 = RT

· Ra
b Rb

c = Ra
c

For further details, see [4].

99
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A.2 Transformation Matrices
The relationship between a body-fixed angular velocity vector ωb

b/i and the Euler
rate vector Θ̇ib is described by a transformation matrix TΘ(Θib):

Θ̇ib = TΘ(Θib)ωb
b/i (A.4)

The transformation matrix can be derived as follows:

ωb
b/i =

⎡
⎣φ̇

0
0

⎤
⎦ + Rᵀ

x,φ

⎡
⎣0

θ̇
0

⎤
⎦ + Rᵀ

x,φRᵀ
y,θ

⎡
⎣0

0
ψ̇

⎤
⎦ � T−1

Θ (Θib)Θ̇ib (A.5)

For further details, see [4].
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Appendix B

Skew-Symmetrical Matrices

.

Skew-Symmetry of Matrix A matrix S ∈ SS(n), where SS(n) is the set of
skew-symmetric matrices of order n, is skew-symmetrical if

S = −Sᵀ (B.1)

Cross Product Operator The vector cross product × is defined by

λ × a � S(λ)a, (B.2)

where S(λ) ∈ SS(3) is skew-symmetric and defined as

S(λ) = −Sᵀ(λ) =

⎡
⎣ 0 −λ3 λ2

λ3 0 −λ1
−λ2 λ1 0

⎤
⎦ , λ =

⎡
⎣λ1

λ2
λ3

⎤
⎦ (B.3)

For further details, see [4].
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Appendix C

Elements of System
Function Jacobians

The elements of the Jacobians of the two system functions are shown here. The
larger elements of both Jacobians are displayed at the end of the appendix due
to lack of space.

C.1 Camera Measurement Algorithm

Φ1,1 =

⎡
⎢⎢⎣

1 0 0 Δt · [(cψsθcφ + sψsφ) · vy + (sψcφ − cψsφsθ) · vz]
0 1 0 Δt · [(cφsθsψ − cψsφ) · vy − (sθsψsφ + cψcφ) · vz]
0 0 1 Δt · [cθcφ · vy − cθsφ · vz]
0 0 0 1 + Δt · [cφtθ · ωy − sφtθ · ωz]

⎤
⎥⎥⎦ (C.1)

Φ1,3 =

⎡
⎢⎢⎣

Δt · [sψsφ + cψcφsθ] 0 0 0
Δt · [sθsψcφ − cψsφ] 0 0 0

Δt · cθcφ 0 0 0
0 Δt Δt · sφtθ Δt · cφtθ

⎤
⎥⎥⎦ (C.2)

Φ1,4 =

⎡
⎢⎢⎣

0 0 0 −Δt[sφ · ωy + cφ · ωz]
0 0 0 Δt[ cφ

cθ · ωy − sφ
cθ · ωz]

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ (C.3)

Φ1,5 =

⎡
⎢⎢⎣

1 0 0 0
Δt[sφ sec θtθ · ωy + cφ sec θtθ · ωz] 1 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (C.4)

Φ1,6 =

⎡
⎢⎢⎣

0 0 Δt · cφ −Δt · sφ

0 0 Δt · sφ
cθ Δt · cφ

cθ
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ (C.5)
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Φ1,7 = Φ1,8 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ (C.6)

Φ1,9 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (C.7)

C.2 Integrated Camera System/INS Algorithm

Φ2,3 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 −Δt −Δt · sφtθ −Δt · cφtθ
0 0 0 −Δt · cφ Δt · sφ

⎤
⎥⎥⎥⎥⎦ (C.8)

Φ2,5 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 −Δt
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1 − Δt · 1

T1

⎤
⎥⎥⎥⎥⎦ (C.9)

Φ2,6 =

⎡
⎢⎢⎢⎢⎣

0 0 0 −Δt · sφ
cθ −Δt · cφ

cθ
0 0 0 0 0

−Δt 0 0 0 0
0 −Δt 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ (C.10)

Φ2,7 = Φ2,8 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ (C.11)

Φ2,9 =

⎡
⎢⎢⎢⎢⎣

1 − Δt · 1
T2

0 0 0 0
0 1 − Δt · 1

T3
0 0 0

0 0 1 − Δt · 1
T4

0 0
0 0 0 1 − Δt · 1

T5
0

0 0 0 0 1 − Δt · 1
T6

⎤
⎥⎥⎥⎥⎦

(C.12)
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Appendix D

Results, Camera
Measurement Algorithm

D.1 Simulated Measurements

D.1.1 Performance of State Estimation, Simulation Sce-
nario 2

The second simulation conducted to investigate the performance of the state es-
timation performed by the Camera Measurement Algorithm (without any mea-
surement errors) is presented here. The initial conditions specific for the scenario
in the second simulation as well as the results are shown.

The following initial state vector and estimates were used:

x1(0) =
[
0, 0, 0.4, 0, 0, 0, 0.8, 0, 0, 0, 0, 7

]ᵀ (D.1)

x̄1(0) =
[
0, 0, 3, 0, 0, π, 0, 1, 0, 0, 2, 0

]ᵀ (D.2)

The initial vx and ωz are constant and non-zero, and all velocities are modelled
constant in the plant. The result is that in a noise-free simulation, the UAV
should hover in a circular manner. The results of running the algorithm using
the input parameters of Table 7.1, the process and measurement noise given in
Section 7.1, and the initial conditions given by Eqs. (D.1) and (D.2) are shown
in Figures D.1 and D.2 for the measured and unmeasured states, respectively.
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Figure D.1: Measured state estimation, Simulation Scenario 2, Camera Measurement
Algorithm. The UAV is hovering with constant linear velocity vx and constant angular
velocity ωz. The real values from the plant are shown as blue, dashed lines while the
estimates are represented by red lines. The top-most row depicts the position, while the
lower row shows the orientation.
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Figure D.2: Unmeasured state estimation, Simulation Scenario 2, Camera Measure-
ment Algorithm. The UAV is hovering with constant linear velocity vx and constant
angular velocity ωz. The real values from the plant are shown as blue, dashed lines
while the estimates are represented by red lines. The linear velocities are shown in the
top-most row, while the angular velocities are depicted in the second row.
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D.1.2 Impacts of Measurement Loss, Simulation Scenario
2

The second simulation conducted to investigate the performance of the Camera
Measurement Algorithm when measurement losses are experienced is presented
here. The initial conditions specific for the scenario in the second simulation are
given by Eqs. (D.1) and (D.2), while the input parameters were shown in Table
7.1.

Process and measurement noise was added to the simulation, equivalently to
Scenario 1 (see Section 7.1) as well as the error-free version of Simulation
Scenario 2 presented above. Two occurrences of measurement loss were expe-
rienced during the simulation, the first after t = 20 seconds and the second at
t = 41 seconds (analogously to the situation in Simulation Scenario 1). The
results are shown in Figures D.3 and D.4 for the measured and unmeasured states,
respectively. The measurement losses are visible in the figures as the regions in
which the estimation errors increase.
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Figure D.3: Impact of measurement loss on position and orientation estimation, Simu-
lation Scenario 2, Camera Measurement Algorithm. The UAV is hovering with constant
linear velocity vx and constant angular velocity ωz, and the measurements are lost twice.
The top-most row shows the position error, while the lower row depicts orientation error.
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Figure D.4: Impact of measurement loss on linear and angular velocity estimation,
Simulation Scenario 2, Camera Measurement Algorithm. The UAV is hovering with
constant linear velocity vx and constant angular velocity ωz, and the measurements are
lost twice. The top-most row shows the error in linear velocities, while the lower row
depicts angular velocity error.

110



APPENDIX D. RESULTS, CAMERA MEASUREMENT ALGORITHM

D.2 Online State Estimation

D.2.1 State Estimation under Ideal Conditions, Test 1

The estimated linear and angular velocities for the first test of state estimation
under ideal conditions performed in Section 7.2 (Test 1), expressed in the BODY
frame, are depicted here.
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Figure D.5: In-flight estimation of unmeasured states, Test 1, Camera Measurement
Algorithm. The linear velocity estimates (expressed in the BODY frame) are shown in
the top-most row, while the angular velocity estimates are depicted in the second row.

D.2.2 State Estimation under Ideal Conditions, Test 2

The second online test of the main functionality of the Camera Measurement
Algorithm is presented here. The input parameters presented in Table 7.2 were
used, and a realistic scenario in which the UAV was flying around the lab setup
while the cameras collected measurements is investigated. The linear velocities
are expressed in the (original) BODY as well as the inertial frames in the figures
depicted below.
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Figure D.6: In-flight measured state estimation, Test 2, Camera Measurement Algo-
rithm. The blue, dashed lines are the measured values obtained from OptiTrack, while
the red lines represent the states estimated using the Camera Measurement Algorithm.
The top-most row depicts the position, while the lower row shows the orientation.
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Figure D.7: In-flight unmeasured state estimation, Test 2, Camera Measurement Al-
gorithm. The linear velocity estimates (expressed in the BODY frame) are shown in the
top-most row, while the angular velocity estimates are depicted in the second row.

112



APPENDIX D. RESULTS, CAMERA MEASUREMENT ALGORITHM

0 10 20 30 40 50 60
−1.5

−1

−0.5

0

0.5

1

1.5

Time [s]

v̂
x
[m

/
s]

v̂ix

0 10 20 30 40 50 60
−1

−0.5

0

0.5

1

1.5

Time [s]

v̂
y
[m

/
s]

Real-time estimation of unmeasured states, Camera Measurement Algorithm (velocities expressed in NED)

v̂iy

0 10 20 30 40 50 60
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time [s]

v̂
z
[m

/
s]

v̂iz

0 10 20 30 40 50 60
−100

−50

0

50

100

Time [s]

ω̂
x
[d
eg
/
s]

ω̂x

0 10 20 30 40 50 60
−60

−40

−20

0

20

40

60

Time [s]

ω̂
y
[d
eg
/
s]

ω̂y

0 10 20 30 40 50 60
−100

−50

0

50

100

Time [s]

ω̂
z
[d
eg
/
s]

ω̂z

Figure D.8: In-flight unmeasured state estimation, Test 2, Camera Measurement Al-
gorithm. The linear velocity estimates (expressed in the inertial frame) are shown in
the top-most row, while the angular velocity estimates are depicted in the second row.
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D.2.3 State Estimation with Measurement Errors
The estimated linear and angular velocities for the scenario with measurement
loss in Section 7.2, expressed in the BODY frame, are depicted here.
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Figure D.9: Online unmeasured state estimation, several measurement losses, Camera
Measurement Algorithm. The linear velocity estimates (expressed in the BODY frame)
are shown in the top-most row, while the angular velocity estimates are depicted in the
second row.
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Appendix E

Results, Integrated Camera
System/INS Algorithm

E.1 Online State Estimation under Ideal Condi-
tions, Test 1

The estimated linear velocities for Test 1 of state estimation under ideal condi-
tions, expressed in the BODY frame, are depicted here.
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Figure E.1: In-flight velocity estimation, Test 1, Integrated Camera System/INS Al-
gorithm. The original velocity estimates (expressed in BODY) are shown.
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E.2. ONLINE STATE ESTIMATION UNDER IDEAL CONDITIONS, TEST
2

E.2 Online State Estimation under Ideal Condi-
tions, Test 2
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Figure E.2: In-flight measured state estimation, Test 2, Integrated Camera Sys-
tem/INS Algorithm. The blue, dashed lines are the measurements obtained from Opti-
Track, while the red lines represent the estimated states. The top-most row depicts the
position, while the lower row shown the orientation.
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Figure E.3: In-flight velocity estimation, Test 2, Integrated Camera System/INS Al-
gorithm. The original velocity estimates (expressed in BODY) are shown.
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APPENDIX E. RESULTS, INTEGRATED CAMERA SYSTEM/INS
ALGORITHM
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Figure E.4: In-flight velocity estimation, Test 2, Integrated Camera System/INS Al-
gorithm. The velocity estimates are expressed in the inertial frame.
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Figure E.5: In-flight bias estimation, Test 2, Integrated Camera System/INS Algo-
rithm. The top-most row shows the accelerometer bias estimates, while the gyro bias
estimates are shown in the lower row.
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E.3. ONLINE STATE ESTIMATION WITH CAMERA MEASUREMENT
LOSS

E.3 Online State Estimation with Camera Mea-
surement Loss

The estimated linear velocities for the scenario with measurement loss in Section
7.4, expressed in the BODY frame, are depicted here.
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Figure E.6: Online velocity estimation with measurement loss, Integrated Camera
System/INS Algorithm. The linear velocity estimates are expressed in the inertial frame.
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