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Samandrag

Hovudform̊alet med denne masteroppgava var å identifisere dei ukjende parame-
trane for det 6. leddet av robotmanipulatoren IRB 140, for deretter å lage
ein passivitetsbasert robust kontrollar for å kontrollere dette leddet.

Denne rapporten inneheld ein kort introduksjon til modellering av robot-
manipulatorar, systemidentifikasjon, digital signalbehandling og design av
passivitetsbaserte robuste kontrollarar.

Ei simulering av minste kvadraters metode for systemidentifikasjonsmodellen
vert presentert før den same metoden vert brukt for å estimere dei ukjende
parametrane for IRB 140. Deretter vert ein passivitetsbasert robust kontrol-
lar designa og testa for det 6. leddet av IRB 140.

I dei eksperimentelle resultata vart det oppdaga at dei estimerte parametrane
var feil. Det vart òg oppdaga at estimata for dei ukjente parametrane har stor
innverknad p̊a den passivitetsbaserte robuste kontrollaren. Dersom estimata
er feil vert nøyaktigheita for kontrollaren d̊arleg. Det vart oppdaga at dette
gjer at den designa kontrollaren er mindre presis enn ABB sin kontrollar i
RobotStudio.

For plukk- og plasséroppg̊aver med støypte komponentar og anna tilverking
av slike komponentar er det viktig å ha kraft- og hastigheitsavgrensing for
roboten, slik at den ikkje knuser komponentane eller misser taket p̊a dei.
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Summary

The main objective of this master’s thesis was to identify the unknown pa-
rameters for the 6th joint of robot manipulator IRB 140 and then create a
passivity-based robust controller for controlling this joint.

This report includes a brief introduction to modeling of robot manipulators,
system identification, digital signal processing and passivity-based robust
controllers.

A simulation of the least squares method for the system identification model
is presented before the same method is used to estimate the unknown pa-
rameters for IRB 140. Then a passivity-based robust controller is designed
and tested for the 6th joint of IRB 140.

From the experimental results it was discovered that the estimated param-
eters were incorrect. It was revealed that the estimates of the unknown
parameters have great influence on the passivity-based robust controller. If
the estimates are incorrect the accuracy of controller is poor. The controller
designed in this thesis was less precise than the ABB RobotStudio controller.

To pick-and-place and process casted components it is important to have
force and velocity limitations for the robot, so that it does not crush the
components or lose hold of them.

v



vi



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 5
2.1 The Robot Manipulator . . . . . . . . . . . . . . . . . . . . . 5
2.2 Denavit-Hartenberg Convention . . . . . . . . . . . . . . . . . 6
2.3 Jacobian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Euler-Lagrange . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Kinetic Energy . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Potential Energy . . . . . . . . . . . . . . . . . . . . . 13
2.4.3 Euler-Lagrange Equations . . . . . . . . . . . . . . . . 14

2.5 System Identification . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Statistical Properties . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Persistent Excitation . . . . . . . . . . . . . . . . . . . . . . . 20
2.8 Measurement Filtering . . . . . . . . . . . . . . . . . . . . . . 20
2.9 Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . 21
2.10 Passivity-Based Robust Controller . . . . . . . . . . . . . . . . 22

3 Identification of parameters for the 6th joint of IRB 140 27
3.1 Equations for System Identification . . . . . . . . . . . . . . . 28
3.2 Simulation of Least Squares Method . . . . . . . . . . . . . . 31
3.3 System Identification . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Time Step: 1 - 20 000 . . . . . . . . . . . . . . . . . . 43
3.3.2 Time Step: 11 - 4 874 . . . . . . . . . . . . . . . . . . 51

3.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . 79

4 Controller for the 6th joint of IRB 140 81
4.1 The Passivity-Based Robust Controller . . . . . . . . . . . . . 83

vii



4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 84
4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Conclusions and Further Work 95
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A Attached Files 100

References 102

viii



List of Figures

2.1 Kinematic structure of an articulated robot of elbow type. . . 8

3.1 MATLAB plot displaying the control input u(t). . . . . . . . . 33
3.2 Detail from the MATLAB plot displaying the control input u(t). 33
3.3 MATLAB plot displaying the position φ(t). . . . . . . . . . . 34
3.4 Detail from the MATLAB plot displaying the position φ(t). . . 34
3.5 MATLAB plot displaying the velocity φ̇(t). . . . . . . . . . . . 35
3.6 Detail from the MATLAB plot displaying the velocity φ̇(t). . . 35
3.7 MATLAB plot displaying the acceleration φ̈(t). . . . . . . . . 36
3.8 Detail from the MATLAB plot displaying the acceleration φ̈(t). 36
3.9 MATLAB plot displaying the error between the simulation

and the verification simulation for θ̂1. . . . . . . . . . . . . . . 37
3.10 Detail from the MATLAB plot displaying the error between

the simulation and the verification simulation for θ̂1. . . . . . 37
3.11 MATLAB plot displaying the error between simulation and

verification simulation for θ̂2. . . . . . . . . . . . . . . . . . . 38
3.12 Detail from the MATLAB plot displaying the error between

simulation and verification simulation for θ̂2. . . . . . . . . . . 38
3.13 MATLAB plot displaying the friction models for θ̂1 and for θ̂2. 39
3.14 MATLAB plot displaying the gravity models for θ̂1 and for θ̂2. 39
3.15 MATLAB plot displaying the error between the filtered mea-

surements and the verification simulaton for θ̂1. . . . . . . . . 45
3.16 Detail from the MATLAB plot displaying the error between

the filtered measurements and the verification simulation for θ̂1. 45
3.17 MATLAB plot displaying the error between the filtered mea-

surements and simulated verification for θ̂2. . . . . . . . . . . 46
3.18 Detail from the MATLAB plot displaying the error between

the filtered measurements and simulated verification for θ̂2. . . 46
3.19 MATLAB plot displaying the friction models for θ̂1 and for θ̂2. 47
3.20 Detail from the MATLAB plot displaying the friction models

for θ̂1 and for θ̂2. . . . . . . . . . . . . . . . . . . . . . . . . . 47

ix



3.21 MATLAB plot displaying the gravity models for θ̂1 and for θ̂2. 48
3.22 MATLAB plot displaying the error between the filtered mea-

surements and the verification simulation for θ̂1. . . . . . . . . 54
3.23 Detail from the MATLAB plot displaying the error between

the filtered measurements and the verification simulation for θ̂1. 54
3.24 MATLAB plot displaying the error between the filtered mea-

surements and the verification simulation for θ̂2. . . . . . . . . 55
3.25 Detail from the MATLAB plot displaying the error between

the filtered measurements and the verification simulation for θ̂2. 55
3.26 MATLAB plot displaying the error between the filtered mea-

surements and the verification simulation for the whole time
sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.27 Detail from the MATLAB plot displaying the error between
the filtered measurements and the verification simulation for
the whole time sequence. . . . . . . . . . . . . . . . . . . . . . 56

3.28 MATLAB plot displaying the error between the filtered mea-
surements and the verification simulation for the whole time
sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.29 Detail from the MATLAB plot displaying the error between
the filtered measurements and the verification simulation for
the whole time sequence. . . . . . . . . . . . . . . . . . . . . . 57

3.30 MATLAB plot displaying the friction models for θ̂1 and for θ̂2. 58
3.31 MATLAB plot displaying the gravity models for θ̂1 and for θ̂2. 58
3.32 MATLAB plot displaying the error between the filtered mea-

surements and the verification simulation for θ̂1. . . . . . . . . 63
3.33 Detail from the MATLAB plot displaying the error between

the filtered measurements and the verification simulation for θ̂1. 63
3.34 MATLAB plot displaying the error between the filtered mea-

surements and the verification simulation for θ̂2. . . . . . . . . 64
3.35 Detail from the MATLAB plot displaying the error between

the filtered measurements and the verification simulation for θ̂2. 64
3.36 MATLAB plot displaying the error between the filtered mea-

surements and the verification simulation for the whole time
sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.37 Detail from the MATLAB plot displaying the error between
the filtered measurements and the verification simulation for
the whole time sequence. . . . . . . . . . . . . . . . . . . . . . 65

3.38 MATLAB plot displaying the error between the filtered mea-
surements and the verification simulation for the whole time
sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

x



3.39 Detail from the MATLAB plot displaying the error the be-
tween filtered measurements and the verification simulation
for the whole time sequence. . . . . . . . . . . . . . . . . . . . 66

3.40 MATLAB plot displaying the friction models for θ̂1 and for θ̂2. 67
3.41 MATLAB plot displaying the gravity models for θ̂1 and for θ̂2. 67
3.42 MATLAB plot displaying the error between the filtered mea-

surements and the verification simulation for θ̂1. . . . . . . . . 72
3.43 Detail from the MATLAB plot displaying the error between

the filtered measurements and the verification simulation for θ̂1. 72
3.44 MATLAB plot displaying the error between the filtered mea-

surements and the verification simulation for θ̂2. . . . . . . . . 73
3.45 Detail from the MATLAB plot displaying the error between

the filtered measurements and the verification simulation for θ̂2. 73
3.46 MATLAB plot displaying the error between the filtered mea-

surements and the verification simulation for the whole time
sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.47 Detail from the MATLAB plot displaying the error between
the filtered measurements and the verification simulation for
the whole time sequence. . . . . . . . . . . . . . . . . . . . . . 74

3.48 MATLAB plot displaying the error between the filtered mea-
surements and the verification simulation for the whole time
sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.49 Detail from the MATLAB plot displaying the error between
the filtered measurements and the verification simulation for
the whole time sequence. . . . . . . . . . . . . . . . . . . . . . 75

3.50 MATLAB plot displaying the friction models for θ̂1 and for θ̂2. 76
3.51 MATLAB plot displaying the gravity models for θ̂1 and for θ̂2. 76

4.1 MATLAB plot displaying the position q6(t), for experiment
with empty gripper. . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 MATLAB plot displaying the error between the measured po-
sition and the measured reference position. . . . . . . . . . . . 85

4.3 MATLAB plot displaying the error between the measured po-
sition and the measured reference position. . . . . . . . . . . . 86

4.4 MATLAB plot displaying the error between the measured po-
sition and the measured reference position. . . . . . . . . . . . 87

4.5 MATLAB plot displaying the error between the measured po-
sition and the measured reference position. . . . . . . . . . . . 88

4.6 MATLAB plot displaying the error between the measured po-
sition and the measured reference position. . . . . . . . . . . . 89

xi



4.7 Detail from the MATLAB plot displaying the error between
the measured position and the measured reference position. . . 89

4.8 MATLAB plot displaying the error between the measured po-
sition and the measured reference position. . . . . . . . . . . . 91

4.9 Detail from the MATLAB plot displaying the error between
the measured position and the measured reference position. . . 91

4.10 MATLAB plot displaying the error between the measured po-
sition and the measured reference position. . . . . . . . . . . . 92

4.11 Detail from the MATLAB plot displaying the error between
the measured position and the measured reference position. . . 92

xii



List of Tables

2.1 DH parameters for IRB 140 and IRB 1600. . . . . . . . . . . . 9
2.2 Known parameters for IRB 140. . . . . . . . . . . . . . . . . . 9
2.3 Known parameters for IRB 1600. . . . . . . . . . . . . . . . . 9

3.1 Variable names used in MATLAB code and in figures contain-
ing plots from MATLAB. . . . . . . . . . . . . . . . . . . . . . 31

3.2 θ, parameters used to simulate the robot. . . . . . . . . . . . . 32
3.3 θ̂1, estimate of unknown parameters. . . . . . . . . . . . . . . 32
3.4 θ̂2, estimate of unknown parameters. . . . . . . . . . . . . . . 32
3.5 σ̂1, estimated variance of the disturbance for θ̂1. . . . . . . . . 32
3.6 σ̂2, estimated variance of the disturbance for θ̂2. . . . . . . . . 32
3.7 Variable names used in MATLAB code and in figures contain-

ing plots from MATLAB. . . . . . . . . . . . . . . . . . . . . . 41
3.8 The amplitude and the frequency for the three different ex-

periments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.9 θ̂1, estimate of unknown parameters. . . . . . . . . . . . . . . 44
3.10 θ̂2, estimate of unknown parameters. . . . . . . . . . . . . . . 44
3.11 The variance of the disturbance for θ̂1. . . . . . . . . . . . . . 44
3.12 The variance of the disturbance for θ̂2. . . . . . . . . . . . . . 44
3.13 θ̂1, estimate of unknown parameters. . . . . . . . . . . . . . . 53
3.14 θ̂2, estimate of unknown parameters. . . . . . . . . . . . . . . 53
3.15 σ̂1a, estimated variance of the disturbance for θ̂1 using filtered

measurements, time step: 1 - 20 000. . . . . . . . . . . . . . . 53
3.16 σ̂2a, estimated variance of the disturbance for θ̂2 using filtered

measurements, time step: 1 - 20 000. . . . . . . . . . . . . . . 53
3.17 σ̂1b, estimated variance of the disturbance for θ̂1 using filtered

measurements, time step: 11 - 4 874. . . . . . . . . . . . . . . 53
3.18 σ̂2b, estimated variance of the disturbance for θ̂2 using filtered

measurements, time step: 11 - 4 874. . . . . . . . . . . . . . . 53
3.19 θ̂1, estimate of unknown parameters. . . . . . . . . . . . . . . 62
3.20 θ̂2, estimate of unknown parameters. . . . . . . . . . . . . . . 62

xiii



3.21 σ̂1a, estimated variance of the disturbance for θ̂1 using filtered
measurements, time step: 1 - 20 000. . . . . . . . . . . . . . . 62

3.22 σ̂2a, estimated variance of the disturbance for θ̂2 using filtered
measurements, time step: 1 - 20 000. . . . . . . . . . . . . . . 62

3.23 σ̂1b, estimated variance of the disturbance for θ̂1 using filtered
measurements, time step: 11 - 4 874. . . . . . . . . . . . . . . 62

3.24 σ̂2b, estimated variance of the disturbance for θ̂2 using filtered
measurements, time step: 11 - 4 874. . . . . . . . . . . . . . . 62

3.25 θ̂1, estimate of unknown parameters. . . . . . . . . . . . . . . 71
3.26 θ̂2, estimate of unknown parameters. . . . . . . . . . . . . . . 71
3.27 σ̂1a, estimated variance of the disturbance for θ̂1 using filtered

measurements, time step: 1 - 20 000. . . . . . . . . . . . . . . 71
3.28 σ̂2a, estimated variance of the disturbance for θ̂2 using filtered

measurements, time step: 1 - 20 000. . . . . . . . . . . . . . . 71
3.29 σ̂1b, estimated variance of the disturbance for θ̂1 using filtered

measurements, time step: 11 - 4 874. . . . . . . . . . . . . . . 71
3.30 σ̂2b, estimated variance of the disturbance for θ̂2 using filtered

measurements, time step: 11 - 4 874. . . . . . . . . . . . . . . 71
3.31 Estimation results of unknown parameters. . . . . . . . . . . . 79

4.1 The four different scenarios and their abbreviations. . . . . . . 82
4.2 The amplitude and the frequency for the four different exper-

iments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xiv



List of Abbreviations

CAD Computer Aided Design
DFT Discrete Fourier Transform
DH Convention Denavit-Hartenberg Convention
DOF Degrees of Freedom
FFT Fast Fourier Transform
IRB Industrial RoBot, used in names for ABB robots
LS Least Squares
PE Persistent Excitation
RIA Robot Institute of America
TCP Tool Center Point

xv



xvi



Chapter 1

Introduction

1.1 Motivation

In 1920 Karel Čapek, a Czech playwright, was the first to introduce the term
robot in his play Rossum’s Universal Robots. The English term robot comes
from the Czech word for work, which is robota. After this the term robot
has been applied for many different mechanical devices with some sort of
autonomy to be controlled by a computer [10]. In this master thesis the robot
manipulator concerned is ABB’s IRB 140, an industrial robot manipulator
with 6 revolute joints.

The term robot which reflects todays use of robot technology is defined by
the Robot Institute of America (RIA) as

”A robot is a reprogrammable, multifunctional manipulator designed to move
material, parts, tools, or specialized devices through variable programmed mo-
tions for the performance of a variety of tasks” [10, p. 2].

This definition correspond well with the common understanding that com-
mercial and industrial robots can be employed for jobs which are too tiresome
or dangerous to be suitable for humans. E.g. robots working with manu-
facturing in combination with a conveyor belt; palletizing, assembling or
pick-and-place operations.

1



2 Chapter 1. Introduction

Today the field of robotics is ”seen as part of the field of mechatronics, which
is defined as the synergistic integration of mechanics, electronics, controls and
computer science” [10, p. iv]. The development of the robotics is therefore
included in a field which strive to develop more efficient and cost effective
tools.

1.2 The Problem

In this master thesis the parameters for the 6th joint of IRB 140 is to be
identified and a passivity-based robust controller is to be developed for the
same joint. The controller is then to be tested and analyzed. From the
specialization project ”Using ABB MultiMove Functionality for Cooperative
Manipulation Tasks” [6] by Fikkan it was discovered that the offline pro-
gramming with ABB RobotStudio was difficult since the reference for the
robot changed from offline state to online state. Therefore it is valuable to
identify the unknown parameters so that a controller which is easier to design
trajectories for can be created.
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1.3 Outline

Chapter 2 begins with an introduction to the Euler-Lagrange dynamic model
for robot manipulators, followed by a short part on system identification using
the Least Squares (LS) estimation method, and the statistical properties of
this method. Then the measurement filtering and Fast Fourier Transform
(FFT) are explained. In the end the passivity-based robust controller is
introduced.

In Chapter 3 a simulation of the LS method is presented, where the unknown
parameters for the 6th joint of IRB 140 are estimated. Then three different
measurements are used to estimate the same parameters. To achieve better
results when estimating these parameters, high frequency noise is removed
from the measurements with low pass filters. First all of the filtered mea-
surements are used for system identification, then a subset of the filtered
measurements are used. Subsequently the estimated parameters are used in
simulations to check whether or not it is possible to achieve the same results
as the measurements given by Stepan Pchelkin. In the end the best results
for the different estimation experiments are presented.

Next the passivity-based robust controller for the 6th joint of IRB 140 is
presented in Chapter 4. The experimental results for the controller are then
introduced and analyzed.

In the end the conclusions and possible further work are presented in Chap-
ter 5.

In Appendix A it is described where to find the attached files including the
Maple and MATLAB code.
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Chapter 2

Preliminaries

There are many interesting technical and scientific subjects in the discipline
of robotics. Sensor and vision technologies, real time systems, nonlinear and
linear system theories, man-machine interaction, system identification and
computer languages are some of the many topics one can come across when
working with robotics. This chapter gives a brief introduction to the parts of
robotics relevant for this master thesis, i.e. modeling of robot manipulators,
system identification, digital signal processing and passivity-based robust
controllers. This thesis will only give a brief introduction to these topics; for
a deeper and more thorough description see ”Robust Adaptive Control” [8]
by Ioannou and Sun, ”System Identification; Theory for the User” [9] by
Ljung, ”Robot Modeling and Control” [10] by Spong et al., ”Digital Signal
Processing” [12] by Proakis and Manolakis and ”System Identification” [13]
by Söderström and Stoica.

2.1 The Robot Manipulator

Models of robot manipulators are usually expressed in joint angles q and
their derivatives q̇, q̈, where q ∈ Rn. The matrix representation for the
Euler-Lagrange equations for motions is given as

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (2.1)

For an n link manipulator M(q) ∈ Rn×n is the inertia matrix, which is
symmetrical and positive definite,

5



6 Chapter 2. Preliminaries

C(q, q̇) ∈ Rn×n is the matrix representing centrifugal, Coriolis and friction
forces, g(q) ∈ Rn is the gravity force vector and τ ∈ Rn is the joint torque
vector.

The calculation of the Euler-Lagrange equations include the Jacobian,
J ∈ Rm×n, which depends on the calculation of the forward kinematics for the
robot. To derive the forward kinematics for a robot the Denavit-Hartenberg
Convention (DH Convention) is a useful methodology.

2.2 Denavit-Hartenberg Convention

This representation of robot manipulators will be restricted to the ”most
common type of industrial robot which is the six-axes articulated robot of
elbow type” [11, p. 13]. For the articulated robot of elbow type there are
no prismatic joints present, hence the parameter qi for each joint i represent
a variable angle given in radians. The joints of the robot manipulator are
assumed to be of one degree of freedom (DOF). To get the correct degree of
freedom for the spherical wrist this is usually modeled as three joints with
zero distance, where each of these three joint is of one DOF.

For an n-DOF robot manipulator the base frame is found at link 0, indicated
by the coordinate system x0y0z0. The tool frame is found at the nth link and
the coordinate system xnynzn indicate its orientation. A general rule is that
joint i is found between link i− 1 and link i. This implies that the first joint
combines link 0, the base frame, with link 1. To find and identify coordinate
system 0 to n, the two rules for the DH Convention can be used.

The two rules introduced in ”Robot Modeling and Control” [10] by Spong
are:

• ”(DH1) The axis x1 is perpendicular to the axis z0” [10, p. 78].

• ”(DH2) The axis x1 intersects the axis z0” [10, p. 78].

When the coordinate systems are identified, one have to determine the four
variables ai, αi, di and θi for each link i of the robot manipulator. The link
length is given by ai, the link twist by αi, the link offset by di and the joint
angle by θi [10]. For robots only consisting of revolute joints the variables d,
α and a are constant, while the fourth variable θ is the joint variable. This
is indicated with the variable name qi, i = 1, . . . , n and an asterisk. These
parameters are often presented in a DH parameter table.



2.2. Denavit-Hartenberg Convention 7

From the parameters in the DH table one can calculate the homogeneous
transformation matrices Ai−1

i . This can be seen in Equation (2.2). Here
cosφi is written as cφi

and sinφi is written as sφi
. After this calculation

the matrix Ai−1
i will take the form shown in Equation (2.3). The combined

homogeneous transformation matrices T0
i for the different links can be cal-

culated using the different matrices Ai−1
i ∈ i = 1, 2, . . . , n by multiplying

them as shown in Equation (2.4). See Equation (2.5) to identify where the
different vectors x0

i , y0
i , z0

i and o0
i can be found in T0

i .

In Figure 2.1 the different parameters and coordinate axes for a 6 DOF
articulated elbow manipulator can be found. For IRB 140 and IRB 1600
the DH parameters can be found in Table 2.1, where the known d and a
parameters, found in Product Specification, Articulated robot IRB 140 [1]
and Product Specification, Articulated robot IRB 1600 [2], can be seen in
Tables 2.2 and 2.3. The kinematic model and the DH parameters presented
in Figure 2.1 and Tables 2.1 - 2.3 were obtained from Stepan Pchelkin.

Ai−1
i = Rotz,θi

Transz,di
Transx,ai

Rotx,αi
(2.2)

=


cθi
−sθi

0 0
sθi

cθi
0 0

0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1



×


1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 cαi

−sαi
0

0 sαi
cαi

0
0 0 0 1



Ai−1
i =

[
Ri−1
i oi−1

i

0 1

]
(2.3)

T0
i = A0

1 · · · Ai−1
i (2.4)

T0
i =

[
R0
i o0

i

0 1

]
=
[
x0
i y0

i z0
i o0

i

0 0 0 1

]
(2.5)
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θ d a α
1 q∗1 d1 a1 −π

2
2 q∗2 − π

2 0 a2 0
3 q∗3 0 0 −π

2
4 q∗4 d4 0 π

2
5 q∗5 + π 0 0 π

2
6 q∗6 d6 0 0

Table 2.1: DH parameters for IRB 140 and IRB 1600.

Table 2.2: Known parameters for IRB 140.

d1 = 0.352 m
d2 = 0.380 m
d3 = 0.065 m
a1 = 0.070 m
a2 = 0.360 m

Table 2.3: Known parameters for IRB 1600.

d1 = 0.4865 m
d2 = 0.600 m
d3 = 0.065 m
a1 = 0.150 m
a2 = 0.475 m
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2.3 Jacobian

After deriving the forward kinematics for a robot the next step would be to
derive the velocity relationship of the end effector1 and the joint velocities.
”Mathematically, the forward kinematic equations define a function between
the space of Cartesian positions and orientations and the space of joint posi-
tions. The velocity relationships are then determined by the Jacobian of this
function” [10, p. 119]. It is also said that ”[t]he Jacobian is a matrix that
generalizes the notion of the Jacobian of the ordinary derivative of a scalar
function” [10, p. 119].

For each joint i in a manipulator there exists a Jacobian matrix. When
calculating the Jacobian for the nth joint one get the Jacobian for the end
effector. The size of the Jacobian matrix is 6 × n; each joint has its own
vertical vector with 3 elements for the linear velocities, and 3 elements for
the angular velocities.

The notation Jvi
indicates the vector elements inside the Jacobian matrix.

The subscript in the notation J0
i and the sub subscript in the notations J0

vi

and J0
ωi

indicate which joint the Jacobian are calculated for, in this case i. For
a manipulator with n links the angular velocity for the end effector is given
by ω0

n and the linear velocity is given by v0
n = ȯ0

n. The n link manipulator
has joint variables q1, ..., qn stacked in a vector q. The relation between joint
velocity and end effector velocity is given by

v0
n = J0

vn
q̇ (2.6)

ω0
n = J0

ωn
q̇ (2.7)

The Jacobian is given by J0
vn

and J0
ωn

placed on top of each other. Then the
Jacobian becomes

J0
n =

[
J0
vn

J0
ωn

]
(2.8)

where

J0
vn

= [Jv1 · · ·Jvn ] (2.9)
J0
ωn

= [Jω1 · · ·Jωn ] (2.10)

1An end effector is a tool attached to the end of a robotic arm, e.g. a gripper.
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For revolute joints the calculation of each column i in Equation (2.9) is

Jvi
= zi−1 × (on − oi−1) (2.11)

and the calculation for revolute joints of each column i in Equation (2.10) is

Jωi
= zi−1 (2.12)

where the vectors zi−1 and oi−1 are found in the T0
i−1 matrices and the vector

on is found in the T0
n matrix, calculated for the forward kinematics using the

DH-convention. See Equation (2.5) to identify where the different vectors
can be found in T0

i−1 and T0
n.

2.4 Euler-Lagrange

By using Newton’s second law for a one DOF system the Lagrangian can be
found as the difference between the kinetic and potential energy [10]. The
Lagrangian is given as

L = K − P (2.13)

where the kinetic energy for a rigid body is given as

K = 1
2 mv

Tv + 1
2 ω

TIω (2.14)

and the potential energy for a rigid body is given as

P = mgTrc (2.15)

where I is the inertia tensor relative the inertial frame given as

I = RIRT (2.16)

where I is the inertia tensor expressed in the body attached frame [10].
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I is a 3 × 3 matrix with the principal moments of inertia about x-, y- and
z-axis placed on the diagonal and the cross products of inertia place on the
off-diagonal. This is depicted in Equation (2.17)

I =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 (2.17)

where the principal moments of inertia are

Ixx =
∫ ∫ ∫

(y2 + z2)ρ(x, y, z) dx dy dz (2.18)

Iyy =
∫ ∫ ∫

(x2 + z2)ρ(x, y, z) dx dy dz (2.19)

Izz =
∫ ∫ ∫

(x2 + y2)ρ(x, y, z) dx dy dz (2.20)

and the cross products of inertia are

Ixy = Iyx = −
∫ ∫ ∫

xyρ(x, y, z) dx dy dz (2.21)

Ixz = Izx = −
∫ ∫ ∫

xzρ(x, y, z) dx dy dz (2.22)

Iyz = Izy = −
∫ ∫ ∫

yzρ(x, y, z) dx dy dz (2.23)

”If the mass distribution of the body is symmetric with respect to the body
attached frame, then the cross products of inertia are identically zero” [10,
p. 253].
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2.4.1 Kinetic Energy

For an n link robot the kinetic energy can be expressed in terms of the
Jacobian. By assuming that the mass of each link i is mi and that the
inertia matrix for each link i relative to the body frame of link i is Ii, the
equation for kinetic energy becomes

Ki = 1
2miv

T
i vi + 1

2ω
T
i Iiωi (2.24)

K =
n∑
i=1

Ki (2.25)

= 1
2 q̇

T

 n∑
i=1
{miJvi

(q)TJvi
(q) + Jωi

(q)TRi(q)IiRi(q)TJωi
(q)}

q̇ (2.26)

= 1
2 q̇

TM(q)q̇ (2.27)

2.4.2 Potential Energy

For an n link robot the potential energy for the ith link of the robot can be
expressed as

Pi = mig
Trci (2.28)

where g is the gravity in the inertial frame and rci gives the coordinates for
the center of mass for link i [10]. Then the total potential energy, which is
independent of the joint velocity, q̇, becomes

P =
n∑
i=1

Pi (2.29)
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2.4.3 Euler-Lagrange Equations

The following calculations are from Chapter 7.3 ”Equations of Motion” in
”Robot Modeling and Control” [10] by Spong. Based on the kinetic and
potential energy the Euler-Lagrange equations can be calculated as

d

dt

∂L
∂q̇k
− ∂L
∂qk

= τk, k = 1, . . . , n (2.30)

where

L = K − P = 1
2
∑
k,j

mkj(q)q̇kq̇j − P (q) (2.31)

The partial derivative with respect to the kth joint velocity is

∂L
∂q̇k

=
∑
j

mkj(q)q̇j (2.32)

and the derivative is

d

dt

∂L
∂q̇k

=
∑
j

mkj(q)q̈j +
∑
i,j

∂mkj

∂q̇i
(q)q̇iq̇j (2.33)

The partial derivative with respect to the kth joint position is

∂L
∂qk

= 1
2
∑
i,j

∂mij

∂qk
q̇iq̇j −

∂P

∂qk
(2.34)

By putting Equations (2.33) and (2.34) into Equation (2.31) the Euler-
Lagrange equations for each k = 1, . . . , n becomes

∑
j

mkj(q)q̈j +
∑
i,j

∂mkj

∂q̇i
(q)q̇iq̇j −

1
2
∑
i,j

∂mij

∂qk
q̇iq̇j −

∂P

∂qk
= τk (2.35)

∑
j

mkj(q)q̈j +
∑
i,j

∂mkj

∂q̇i
(q)q̇iq̇j −

1
2
∂mij

∂qk
q̇iq̇j

− ∂P

∂qk
= τk (2.36)
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By interchanging the order of summation and taking advantage of the sym-
metry

∂mkj

∂q̇i
(q)q̇iq̇j −

1
2
∂mij

∂qk
q̇iq̇j

 (2.37)

can be written as

1
2

∂mkj

∂qi
+ ∂mki

∂qj
− ∂mij

∂qk

 (2.38)

which again is the Christoffel symbols which has the abbreviation cijk. From
this point ∂P

∂qk
is defined as gk. Now the Euler-Lagrange equations can be

written as

n∑
j=1

mkj(q)q̈j +
n∑
i=1

n∑
j=1

cijk(q)q̇iq̇j + gk(q) = τk, k = 1, . . . , n (2.39)

By collecting terms this can be written in matrix form as

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (2.40)

which is the same as Equation (2.1).
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2.5 System Identification

For a robot manipulator system which has a known physical model with a
known model structure the so called gray box identification is needed to find
the unknown physical parameters. ”Model sets with adjustable parameters
with physical interpretation may, accordingly, be called gray boxes” [9, p. 13].

For such a system one has known quantities placed in the vector ϕ(t) ∈ Rn,
unknown parameters placed in the vector θ ∈ Rn and the measurable quan-
tity placed in the scalar y(t) [13]. From this the model structure can be
written as

y(t) = ϕT(t)θ (2.41)

”The elements of the vector ϕ(t) are often called regression variables or
regressors while y(t) is called the regressed variable. We will call θ the
parameter vector. The variable t takes integer values.” [13, p. 60]

One simple example for rewriting a differential system to the form shown
in Equation (2.41) is a cart pendulum system. The mathematical model
describing the physical characteristics of the cart pendulum can be seen in
Equation (2.42).

θ̈ + a sin(θ) = −bu (2.42)

where θ indicate the angle of the pendulum, a = mgl
J

and b = ku

J
are unknown

compound pendulum parameters, m is the mass of the pendulum system, l
is the distance from the center of mass of the pendulum system to the pivot
point, J is the moment of inertia of the pendulum system, ku is a transfer
constant of the DC-motor and g is the gravitational acceleration [3].

The regression model for the model presented in Equation (2.42) can be
created with filters as shown in Equations (2.43) - (2.45).

ξ1(t) = λ2

p2 + 2λp+ λ2 θ(t) (2.43)

ξ2(t) = λ2

p2 + 2λp+ λ2ν(t) (2.44)

ξ3(t) = λ2

p2 + 2λp+ λ2u(t) (2.45)
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where p = d/dt is the differential operator, u(t) is the control input, λ > 0
is a positive constant and ν(t) = sin(θ). After this parametrization the
model can be rewritten into the form of Equation (2.41) where y(t) = ξ̈1(t),
ϕT(t) = [ξ2(t) ξ3(t)] and θT = [−a − b].

By using least squares one can estimate θ̂ using measurements for y(1), ϕ(1),
. . . , y(N), ϕ(N), where N is the number of measured values. From these
measurements a overdetermined system of linear equations is obtained

y(1) = ϕT(1)θ
y(2) = ϕT(2)θ

...
y(N) = ϕT(N)θ

Using matrix notation the system of linear equations can be written as

Y = Φθ (2.46)

where Y and Φ are

Y =


y(1)
y(2)

...
y(N)

 (2.47)

Φ =


ϕT(1)
ϕT(2)

...
ϕT(N)

 (2.48)
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From ”System Identification” [13] by Söderström and Stoica it is given that
the least squares estimate of θ is defined as the vector θ̂ that minimizes the
loss function

V (θ) = 1
2

N∑
t=1
ε2(t) = 1

2ε
Tε = 1

2‖ε‖
2 (2.49)

where ε(t) is the equation error

ε(t) = y(t)−ϕT(t)θ (2.50)

The equation error stacked in the same manner as for Y and Φ in Equa-
tions (2.47) and (2.48) gives ε

ε =


ε(1)

...
ε(N)

 (2.51)

The solution of the optimization problem is given by Lemma 4.1. in ”System
Identification” [13] by Söderström and Stoica. For the cases where the matrix
ΦTΦ is positive definite the unique minimum point for V (θ) is given by

θ̂ = (ΦTΦ)−1ΦTY (2.52)

The proof of this Lemma can be seen in ”System Identification” [13] by
Söderström and Stoica.
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2.6 Statistical Properties

It is assumed that the model structure from Equation (2.41) is perturbated
by a general disturbance. Equation (2.41) then becomes

y(t) = ϕT(t)θ + w0(t) (2.53)

where the statistical properties of the disturbance is assumed to be given by

E[w0(t)] = 0 (2.54)
E[w0(t)w0(s)] = rts (2.55)

Using the matrix form previously presented this becomes

Y = Φθ + W (2.56)

where the statistical properties of the disturbance becomes

E[W] = 0 (2.57)
E[WWT] = R (2.58)

where

R = σI (2.59)

Here I is the identity matrix.

By using Lemma II.1 in Appendix II in ”System Identification; Theory for
the User” [9] by Ljung the estimate of the variance can be calculated. This
Lemma states that the estimate of the variance σ in Equation (2.59) can be
written as

σ̂ = N

N − d
V (θ̂) = 1

N − d

N∑
t=1

[y(t)−ϕT(t)θ̂]2 (2.60)

The proof of this Lemma can be found in Appendix II in ”System Identifi-
cation; Theory for the User” [9] by Ljung.
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2.7 Persistent Excitation

”A fundamental problem concerning parametrized model sets is whether a
parameter value can be uniquely determined based on input-output mea-
surements” [7, p. 3236]. From this problem one property about the input
signal called persistence of excitation can be deduced. That is, for the sys-
tem to have persistent excitation the input signal has to be ”general enough”
to allow distinction. See Definition 3 in ”Model structure identifiability and
persistence of excitation” [7] by Glad and Ljung for a generalized version of
the concept of persistence of excitation.

2.8 Measurement Filtering

To use the system identification method described in Section 2.5, measure-
ments from the system to be identified are needed. Such measurements
usually include disturbances caused by the environment. This could make it
difficult to achieve consistent results for the unknown parameters to be esti-
mated. These disturbances might also induce bias in the estimated values.

The inertia of the robot manipulator prevents it from having high frequency
movements, therefore it is reasonable to assume that the information of in-
terest should be at low frequencies. Noise at high frequencies can therefore
be removed using a low pass filter, where the cut off frequency can be decided
using a power density spectrum. The power density spectrum of the signal
can be found using Fast Fourier Transform (FFT). It is assumed that high
power at low frequencies contains the information of interest and therefore
should be preserved.

It is difficult to distinguish between disturbances and information of interest if
they are present at the same frequencies. The disturbance at this bandwidth
might therefore still induce biases and make it difficult to find estimates
which are consistent.
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2.9 Fast Fourier Transform

Fast Fourier Transform (FFT) is an efficient algorithm for calculation of the
Discrete Fourier Transform (DFT) [5]. This is usually done on a digital signal
processor [12]. The Fourier transform X(ω) of a discrete-time signal x(n)
has to be done to perform a frequency analysis of the signal. The Fourier
transform is an aperiodic finite energy signal and hence has a continuous
spectrum. For an aperiodic discrete time signal x(n) the Fourier transform
is

X(ω) =
∞∑

n=−∞
x(n)e−jωn (2.61)

A set of N samples {X(k)} of the Fourier transform X(ω) is used to make the
DFT. Where ”[t]he sampling of X(ω) occurs at N equally spaced frequencies
ωk = 2πk/N , k = 0, 1, 2, ..., N − 1” [12, p. 464]

The DFT for an N-point sequence {x(n)} is

X(k) =
N−1∑
n=0

x(n)W kn
N (2.62)

where
WN = e−j2π/N (2.63)

There are many different algorithms to calculate the FFT for a discrete-time
signal. For this thesis the MATLAB function fft(x) was used, where x is the
discrete time signal to be taken the FFT of. To read more about different
FFT algorithms see Chapter 7 and 8 in ”Digital Signal Processing” [12] by
Proakis and Manolakis.
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2.10 Passivity-Based Robust Controller

When the system equations are calculated and the unknown parameters are
estimated using system identification methods, it is desirable to create a
controller for the system. There are many different approaches for controlling
a robot, passivity-based robust controller is one of those approaches. This
controller will be introduced in this section. The following theory is found
in Chapter 8.4.1 ”Passivity-Based Robust Control” in ”Robot Modeling and
Control” [10] by Spong .

The Euler-Lagrange equations written in matrix form for a robot manipulator
are

M(q)q̈ + C(q, q̇)q̇ + g(q) = u (2.64)

where u, the control input, is given as

u = M̂(q)a+ Ĉ(q, q̇)v + ĝ(q)−Kr (2.65)

where the notation ˆ( · ) represent the estimated value of ( · ) and v, a and
r are defined as

v = q̇d −Λq̃ (2.66)
a = v̇ = q̈d −Λ ˙̃q (2.67)
r = q̇ − v = ˙̃q + Λq̃ (2.68)

Here qd is desired joint position, q, and K and Λ are diagonal matrices of
constant, positive gains. q̃ and ˙̃q are defined as

q̃ = q − qd (2.69)
˙̃q = q̇ − q̇d (2.70)

The control input can be rewritten as

u = Y (q, q̇,a,v)θ̂ −Kr (2.71)
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Inserting Equation (2.71) into Equation (2.64) gives

M(q)q̈ + C(q, q̇)q̇ + g(q) = Y (q, q̇,a,v)θ̂ −Kr (2.72)

From this point M(q) is written as M, C(q, q̇) is written as C, g(q) is
written as g, and Y (q, q̇,a,v) is written as Y. By subtracting Ma and Cv
from both sides of Equation (2.72), this becomes

M(q̈ − a) + C(q̇ − v) + g = Y θ̂ −Kr −Ma−Cv (2.73)
M(q̈ − a) + C(q̇ − v) + Kr = Y θ̂ −Ma−Cv − g (2.74)

Then let

Yθ = Ma+ Cv + g (2.75)

By using Equation (2.75) and the definition of r in Equation (2.68), Equa-
tion (2.72) becomes

Mṙ + Cr + Kr = Y (θ̂ − θ) (2.76)

The term θ̂ in Equation (2.71) is chosen as

θ̂ = θ0 + δθ (2.77)

It is assumed that θ0 is a fixed nominal parameter vector and that δθ is an
additional control term. Inserting this into Equation (2.76), gives

Mṙ + Cr + Kr = Y (θ̃ + δθ) (2.78)

where the parametric uncertainty of the system is given by θ̃ = θ0 − θ.



24 Chapter 2. Preliminaries

If there exist a constant ρ ≥ 0, so that the uncertainty can be bounded like
this

‖θ̃‖ = ‖θ − θ0‖ ≤ ρ (2.79)

then the additional term δθ can be designed according to

δθ =
−ρ

Y Tr
‖Y Tr‖ ; if ‖Y Tr‖ > ε

−ρ
ε
Y Tr; if‖Y Tr‖ ≤ ε

(2.80)

Then consider the Lyapunov function candidate

V = 1
2r

TMr + q̃TΛKq̃ (2.81)

The calculation of V̇ becomes

V̇ = ṙTMr + 1
2r

TṀr + 2˙̃qTΛKq̃ (2.82)

= 1
2r

T2Cr − 1
2r

T2Cr + ṙTMr + 1
2r

TṀr + 2˙̃qTΛKq̃ (2.83)

= 1
2r

T(Ṁ− 2C)r + rTCr + ṙTMr + 2˙̃qTΛKq̃ (2.84)

Now rTCr + ṙTMr can be written as

rTCr + ṙTMr = rTCr + rTMṙ (2.85)
= rT(Mṙ + Cr) (2.86)
= rT(−Kr + Y(θ̃ + δθ)) (2.87)

Using this gives

V̇ = 1
2r

T(Ṁ− 2C)r − rTKr + rTY(θ̃ + δθ) + 2˙̃qTΛKq̃ (2.88)

From the skew symmetry property it is given that (Ṁ− 2C) is zero.
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Using the definition of r, −rTKr can be written as

−rTKr = −( ˙̃q + Λq̃)TK( ˙̃q + Λq̃) (2.89)
= − ˙̃qTK ˙̃q − 2q̃TΛKq̃ − q̃TΛKΛq̃ (2.90)

By using Equation (2.90) and the skew symmetry property, Equation (2.88)
reduces to

V̇ = − ˙̃qTK ˙̃q − q̃TΛKΛq̃ + rTY(θ̃ + δθ) (2.91)
= −eTQe+ rTY(θ̃ − δθ) (2.92)

where

Q =
[
ΛTKΛ 0

0 K

]
(2.93)

and

e =
[
q̃
˙̃q

]
(2.94)

Uniform ultimate boundedness of the tracking error is established with the
control δθ from Equation (2.80), as long as there is a constant bound ρ for
the constant vector θ̃.
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Chapter 3

Identification of parameters for
the 6th joint of IRB 140

The methods described in Sections 2.2 - 2.4 were used to calculate the ma-
trices M and C, and the vector g in Equation 2.1. These calculations were
computed in Maple. The Maple code used for these calculations was based on
a Maple code obtained from Stepan Pchelkin, which calculated the matrices
and vector for the first 3 joints of IRB 140. The code used for this thesis can
be found using the description in Appendix A. For practical reasons these
matrices were not included here.

It was decided to only concentrate on the 6th equation of the system, where
the centrifugal and Coriolis forces for the 6th joint are zero. The equations
for the 6th joint of IRB 140 were obtained by setting q1-q5 to zero. Then
the matrix C only contains the friction force, and for simplicity C(6, 6)q̇6 is
written as F (6, 1).

In order to verify the identification method, it was first tested on a simulated
model with known parameters. Then the same method was applied to the
filtered measurements from IRB 140 to estimate the unknown parameters for
the 6th joint.

It is assumed that noise is absent for the simulation, and present for the
estimations using filtered measurements.

27
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3.1 Equations for System Identification

The matrix form of the Euler-Lagrange equations for the 6th joint of IRB 140
is written as

M(6, 6)q̈6 +G(1, 6) + F (6, 1) = τ (6, 1) (3.1)

where the friction model is assumed to be Coulomb friction combined with
viscous friction.

F (6, 1) = a sign(q̇6) + b q̇6 (3.2)

For more information about friction see Chapter 5 ”Friction” in ”Modeling
and Simulation for Automatic Control” [4] by Egeland and Gravdahl.

The gravity forces are given by

G(1, 6) = m6 lmx6 g sin(q6) +m6 lmy6 g cos(q6) (3.3)

Written out Equation (3.1) is

q̈6 [m6 lm
2
x6 +m6 lm

2
y6 + I6z] + a sign(q̇6) + b q̇6 (3.4)

+m6 lmx6 g sin(q6) +m6 lmy6 g cos(q6) = u

This may be written as

q̈6 =− a sign(q̇6)
m6 lm2

x6 +m6 lm2
y6 + I6z

− b q̇6

m6 lm2
x6 +m6 lm2

y6 + I6z

− m6 lmx6 g sin(q6)
m6 lm2

x6 +m6 lm2
y6 + I6z

(3.5)

− m6 lmy6 g cos(q6)
m6 lm2

x6 +m6 lm2
y6 + I6z

+ u

m6 lm2
x6 +m6 lm2

y6 + I6z
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From which the unknown parameters are given as

k1 = a

m6 lm2
x6 +m6 lm2

y6 + I6z
(3.6)

k2 = b

m6 lm2
x6 +m6 lm2

y6 + I6z
(3.7)

k3 = m6 lmx6

m6 lm2
x6 +m6 lm2

y6 + I6z
(3.8)

k4 = m6 lmy6

m6 lmx2
6 +m6 lmy2

6 + I6z
(3.9)

ku = 1
m6 lm2

x6 +m6 lm2
y6 + I6z

(3.10)

Equation (3.1) can now be written as

q̈6 =− k1 sign(q̇6)− k2 q̇6 − k3 g sin(q6)− k4 g cos(q6) + ku u (3.11)

Parametrized to fit into the regression model presented in Equation (2.41)
this becomes

ξ1(t) = λ2

p2 + 2λp+ λ2 q6 (3.12)

ξ2(t) = − λ2

p2 + 2λp+ λ2 sign(q̇6) (3.13)

ξ3(t) = − λ2

p2 + 2λp+ λ2 q̇6 (3.14)

ξ4(t) = − λ2

p2 + 2λp+ λ2 g sin(q6) (3.15)

ξ5(t) = λ2

p2 + 2λp+ λ2 g cos(q6) (3.16)

ξ6(t) = λ2

p2 + 2λp+ λ2u(t) (3.17)

From this y(t) = ξ̈1, ϕT = [ξ2 ξ3 ξ4 ξ5 ξ6], θT = [k1 k2 k3 k4 ku].
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The estimate of the unknown parameters can then be found using the LS-
method by solving

θ̂ = (ΦTΦ)−1ΦTY (3.18)

where Y and Φ are created from measurements. Assuming there are some
general disturbance perturbating the system, the estimated variance of dis-
turbance is given by

σ̂ = 1
N − d

N∑
t=1

[
y(t)−ϕT(t)θ̂

]2
(3.19)

The calculations presented here are comprehensive and should preferably be
solved using a computer program, e.g. MATLAB.
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3.2 Simulation of Least Squares Method

The simulation of the 6th joint of IRB 140 and the estimation of the unknown
parameters, k1, k2, k3, k4 and ku, are computed in MATLAB. In Appendix A
it is explained where to find the MATLAB code for the simulation and esti-
mation. Table 3.1 shows the variable names used in the MATLAB code and
in the figures containing plots created with MATLAB. Filtered q6, q̇6 and q̈6
from Equations (3.12) - (3.17) are given as φ, φ̇ and φ̈ respectively.

Variable Simulation Estimation Verification Simulation
Position φ φest φest2

Velocity φ̇ φ̇est φ̇est2

Acceleration φ̈ φ̈est φ̈est2

Control input u uest uest2

Table 3.1: Variable names used in MATLAB code and in figures containing
plots from MATLAB.

For this simulation of the 6th joint of IRB 140 the unknown parameters in
Equations (3.6) - (3.10) are chosen as guesstimated values. These values can
be seen in Table 3.2.

With this simulation, estimates for the five unknown parameters are com-
puted. These estimates are presented as θ̂1. In parallel with the simulated
model an estimated model is created, using φ and u from the simulation.
Using this estimated model an alternative estimate called θ̂2 is computed.
In Tables 3.3 and 3.4 the two different estimates are presented. The simu-
lated and the estimated models used to create θ̂1 and θ̂2 are compared in
Figures 3.1 - 3.8.

Based on the estimated values the variance of the disturbance is calculated
using Equation (3.19). In Tables 3.5 and 3.6 the variance of the disturbances
for the two estimates are given.

A new simulation is computed using the estimated values to verify if the
estimated values are correct. By using the results from this estimation the
discrepancy between this simulation and the verification simulation are ob-
tained and presented in Figures 3.9 - 3.12. At the end the friction and gravity
models for the two different estimates are presented in Figures 3.13 and 3.14.
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k1 = 0.0880
k2 = 1.3376
k3 = 2.8495
k4 = 0.0032
ku = 0.5884

Table 3.2: θ, parameters used to simulate the robot.

k̂1 = 0.0878
k̂2 = 1.3377
k̂3 = 2.8491
k̂4 = 0.0032
k̂u = 0.5883

Table 3.3: θ̂1, estimate of unknown parameters.

k̂1 = 0.0880
k̂2 = 1.3376
k̂3 = 2.8495
k̂4 = 0.0032
k̂u = 0.5884

Table 3.4: θ̂2, estimate of unknown parameters.

σ̂1 = 1.0468 · 10−4

Table 3.5: σ̂1, estimated variance of the disturbance for θ̂1.

σ̂2 = 1.0471 · 10−4

Table 3.6: σ̂2, estimated variance of the disturbance for θ̂2.
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Figure 3.1: MATLAB plot displaying the control input u(t).
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Figure 3.2: Detail from the MATLAB plot displaying the control input u(t).
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Figure 3.3: MATLAB plot displaying the position φ(t).
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Figure 3.4: Detail from the MATLAB plot displaying the position φ(t).
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Figure 3.5: MATLAB plot displaying the velocity φ̇(t).
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Figure 3.6: Detail from the MATLAB plot displaying the velocity φ̇(t).
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Figure 3.7: MATLAB plot displaying the acceleration φ̈(t).
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Figure 3.8: Detail from the MATLAB plot displaying the acceleration φ̈(t).
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Figure 3.9: MATLAB plot displaying the error between the simulation and
the verification simulation for θ̂1.
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Figure 3.10: Detail from the MATLAB plot displaying the error between the
simulation and the verification simulation for θ̂1.
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Figure 3.11: MATLAB plot displaying the error between simulation and
verification simulation for θ̂2.
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Figure 3.12: Detail from the MATLAB plot displaying the error between
simulation and verification simulation for θ̂2.
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Figure 3.13: MATLAB plot displaying the friction models for θ̂1 and for θ̂2.
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Figure 3.14: MATLAB plot displaying the gravity models for θ̂1 and for θ̂2.
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When studying Figures 3.1 - 3.8 it can be seen that the simulated and the
estimated models are very close to each other. This can be verified by looking
at the two different estimates θ̂1 and θ̂2 in Tables 3.3 and 3.4, which have
almost the same values. By comparing these estimates with the guesstimated
values chosen for the model seen in Table 3.2, it can be seen that θ̂2 results
in the same values as the guesstimates, while θ̂1 deviates only by a small
amount (less than 0.25%). This may indicate that the system identification
procedure for calculating θ̂2 achieves better estimates than the procedure for
calculating θ̂1.

Since there are no noise present in the measurement for this estimation, it is
not surprising that the variance of disturbance found in Tables 3.5 and 3.6
for the two estimates are very small.

In the error measurements for θ̂1 in Figures 3.9 and 3.10 it can be observed
that φ − φest2, φdot − φest2dot

and φddot − φest2ddot
have a 10 second transient

period, after which the error is approximately ±5 · 10−4. For θ̂2 the error
between the simulation and the verification simulation can be seen in Fig-
ures 3.11 and 3.12. Here it can be observed that φ − φest2, φdot − φest2dot

and φddot − φest2ddot
also have a transient period, after which the error is

approximately ±3 · 10−14. The error for θ̂2 is much smaller than for θ̂1.

The calculations for this simulation are computed using MATLAB. Hence
small deviations between the simulation and the verification simulation can
be caused by the numerical calculations in MATLAB. This will theoretically
give small deviations between two equal calculations based on MATLAB’s
numerical accuracy.

In Figure 3.13 the friction models are shown for θ̂1 and θ̂2. This figure is
created by plotting Fest2 against φ̇est2 for the whole time sequence for the
verification simulation for each of the two estimates. Plotting the whole
time sequence makes it easier to see if the friction force diverges. In the
figure some irregularities can be seen around zero, this is probably caused by
the way the figure is drawn in MATLAB. If the velocity crosses zero between
two measurements, MATLAB will draw a diagonal line between these points,
which will cause a mismatch between the plot in Figure 3.13 and the friction
model in Equation (3.2). The gravity models for θ̂1 and θ̂2 are created by
plotting Gest2 against φest2 for the whole time sequence for the verification
simulation for each of the two estimates. This can be seen in Figure 3.14.
It can be noticed that the two friction models and the two gravity models
do not differ much from each other, which is reasonable since the difference
between the two estimates are quite small.
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3.3 System Identification

In the following sections the unknown parameters for the 6th joint of IRB 140,
seen in Equations (3.6) - (3.10), are estimated using measurements, filtered
with MATLAB. The MATLAB code and the measurements to be filtered
can be found using the instructions seen in Appendix A. Table 3.7 shows
the variable names used in the MATLAB code and in the figures containing
plots created with MATLAB.

Variable Filtered Real
Measurements

Estimation Verification
Simulation

Position φ φest φest2

Velocity φ̇ φ̇est φ̇est2

Acceleration φ̈ φ̈est φ̈est2

Control input u uest uest2

Table 3.7: Variable names used in MATLAB code and in figures containing
plots from MATLAB.

The measurements were recorded from three different robot experiments with
the 6th joint of IRB 140. For these experiments the reference was given by

qd6 = ai sin(ωit), i = 1, 2, 3 (3.20)

By changing the values of a and ω in Equation (3.20) three different ex-
periments were created. The values for these experiments can be found in
Table 3.8.

a1 = π
2 ω1 = 3

2π

a2 = π
2 ω2 = π

a3 = π
4 ω3 = π

Table 3.8: The amplitude and the frequency for the three different experi-
ments.
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For each of the three different experiments measurements of q6, q̇6 and u6
were recorded. q6 is the measurement of the position of the 6th joint, q̇6 is
the measurement of the velocity of the 6th joint, and u6 is the measurement
of the control input. The different measurements were filtered using higher
order lowpass filters, to remove high frequency noise in the measurements.
From the filtered joint velocity q̇6, the joint acceleration q̈6 was obtained with
a differential filter designed using qualified analysis of the absolute value of
the calculated FFT. Filtered q6, q̇6 and q̈6 from Equations (3.12) - (3.17) are
given as φ, φ̇ and φ̈ respectively.

The cable tube containing all the cables for the gripper, is fastened with
brackets outside the robot. This cable tube might induce noise in the mea-
surements used to estimate the unknown parameters.

When moving the 6th joint of the robot this cable tube slides alongside
the robot. The movement of this tube is affected by the start position of the
gripper, the motion of the gripper and the placement of this cable tube which
can be changed manually. The motion of this tube is not repeatable, which
means that one can run the same program twice and get different movement
of the tube. Since the movement of the tube will be different each time a
robot program is run with the robot, this is seen as a source of noise in the
measurements.

In Appendix A it is explained where to find the MATLAB code used for the
different estimation experiments.
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3.3.1 Time Step: 1 - 20 000

The filtered measurements were used as a whole to estimate the unknown
parameters. The best estimates for the model were achieved with the second
experiment, where the amplitude and frequency for the reference in Equa-
tion (3.20) were set to a = π

2 and ω = π. Next the estimated parameters
and the variance of disturbance for the second experiment are presented to-
gether with the error between the filtered measurements and the verification
simulation.

The five unknown parameters were calculated using filtered measurements
from the 6th joint of IRB 140. These estimates are collected in the vector
θ̂1, and can be seen in Table 3.9.

An estimated model was created using φ and u from the filtered measure-
ments. With this estimated model an alternative estimate called θ̂2 was
computed. In Table 3.10 the estimate θ̂2 is presented.

Based on the estimated values the variance of the disturbance was calcu-
lated using Equation (3.19). In Tables 3.11 and 3.12 the variance of the
disturbances for the two estimates are shown.

A new simulation was performed using the estimated values, this was done
as a verification of the estimated values. The error between the filtered
measurements and this simulation is presented in Figures 3.15 - 3.18.

At the end the friction and gravity models for the two different estimates are
presented in Figures 3.19 - 3.21.
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k̂1 = 0.0196
k̂2 = −0.7649
k̂3 = 1.2545
k̂4 = 0.0002
k̂u = −0.1624

Table 3.9: θ̂1, estimate of unknown parameters.

k̂1 = 0.0561
k̂2 = 0.6106
k̂3 = 1.3446
k̂4 = −0.0031
k̂u = 0.1980

Table 3.10: θ̂2, estimate of unknown parameters.

σ̂1 = 3.3507

Table 3.11: The variance of the disturbance for θ̂1.

σ̂2 = 4.4794

Table 3.12: The variance of the disturbance for θ̂2.



3.3. System Identification 45

0 10 20 30 40 50 60 70 80
−2

0

2

4

6

8

10

12

14

16
x 1025

t [s]

D
el
ta

θ̂1

 

 
phi−phiest2
phidot−phiest2

dot

phiddot−phiest2
ddot

Figure 3.15: MATLAB plot displaying the error between the filtered mea-
surements and the verification simulaton for θ̂1.
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Figure 3.16: Detail from the MATLAB plot displaying the error between the
filtered measurements and the verification simulation for θ̂1.
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Figure 3.17: MATLAB plot displaying the error between the filtered mea-
surements and simulated verification for θ̂2.
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Figure 3.18: Detail from the MATLAB plot displaying the error between the
filtered measurements and simulated verification for θ̂2.
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Figure 3.19: MATLAB plot displaying the friction models for θ̂1 and for θ̂2.
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Figure 3.20: Detail from the MATLAB plot displaying the friction models
for θ̂1 and for θ̂2.
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Figure 3.21: MATLAB plot displaying the gravity models for θ̂1 and for θ̂2.
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When studying the two different estimates θ̂1 and θ̂2 in Tables 3.9 and 3.10
it can be seen that they differ from each other. This indicates that the
estimated model is not exactly the same as the filtered measurements. If
they were the same the two estimates θ̂1 and θ̂2 would be identical, which
they are not.

In Tables 3.9 and 3.10 it can be seen that θ̂1 has negative values for k̂2 and
k̂u and that θ̂2 has a negative value for k̂4. All five parameters are assumed
to be positive. When looking at Equation (3.11) it can be seen that the signs
of k̂2 and k̂u are more important than the signs of k̂1, k̂3 and k̂4, since k̂1, k̂3
and k̂4 are limited. If k̂2 is negative instead of positive the viscous friction
will work with the motion instead of against, and if k̂u is negative instead of
positive the actuator force will work in the wrong direction.

In the error measurements for θ̂1 in Figures 3.15 and 3.16, it can be seen that
the error between φ − φest2, φ̇ − φ̇est2 and φ̈ − φ̈est2 increases exponentially.
This is probably caused by the negative values for k̂2 and k̂u.

When looking at the error between the filtered measurements and the verifi-
cation simulation, for θ̂2 in Figures 3.17 and 3.18, it can be seen that φ−φest2
is almost zero, while φ̇− φ̇est2 and φ̈− φ̈est2 vary around zero. It can be ob-
served that the error is periodical for the first 25 seconds, then the error
pattern changes to be nonperiodic. This is probably caused by unmodeled
nonlinearities.

In Figure 3.19 the friction models are shown for θ̂1 and θ̂2. This figure is
created by plotting Fest2 against φ̇est2 for the whole time sequence for the
verification simulation for each of the two estimates. Plotting the whole time
sequence makes it easier to see if the friction force diverges. A mismatch
between the friction model for θ̂2 and the friction model in Equation (3.2)
can be seen in Figure 3.20. How this is created by MATLAB is explained
in Section 3.2. In Figure 3.19 it can be seen that the friction force diverges
for θ̂1. This might be caused by the same reason as for the exponential
error already discovered in Figure 3.15. The friction model using θ̂2 shows a
typical Coulomb friction combined with viscous friction, where the irregular
behavior around zero velocity probably is caused by MATLAB as mentioned
above.
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The gravity models for θ̂1 and θ̂2 are created by plotting Gest2 against φest2
for the whole time sequence for the verification simulation for each of the
two estimates. This can be seen in Figure 3.21. In this figure it can be
noticed that both θ̂1 and θ̂2 result in a sinusoidal shaped form, but the θ̂1
case diverges in the leftmost direction. This could be caused by the negative
values for k̂2 and k̂u.

Even though the variance of disturbance is lower for θ̂1 than for θ̂2, it is
quite clear by looking at the figures that the estimated parameters in θ̂2 is
a better match than the estimated parameters in θ̂1. When deciding what
estimate to select, one cannot only look at the variance. It is also important
to take into account the error between the measurements and the verification
simulation for the different estimates.

The calculations for this estimation are computed using MATLAB. Hence
the numerical accuracy explained in Section 3.2 applies here too. It is also
possible that the model used with the system identification method is wrong.
The friction model is assumed to be Coulomb friction combined with viscous
friction, which is a static model. This is one of the simplest models for
friction. Since the IRB 140 is a complicated device it is sensible to assume
that the actual friction model is more complicated than anticipated.

Since the model used for the system identification is quite simple, it was
decided to only use the first 25 seconds of measurements; apparently less
influenced by unmodeled nonlinear effects. It is believed that this might give
better estimates.
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3.3.2 Time Step: 11 - 4 874

Because of the simple nature of the system identification model it was decided
to only use the first 25 seconds of the filtered measurements for three new
estimation experiments. The first 10 measurements were also omitted from
the experiments, just to have another start position than the previous exper-
iments. The selected segment was therefore the one between N start = 11
and N stop = 4874.

For each of the three experiments, θ̂1 and θ̂2 were tested with a simulation.
Then the error between the simulation and the filtered measurements were
calculated. These simulations were performed to get an idea of how these
estimates behaved for the whole time sequence, since only the first 25 seconds
were tested during the estimation experiments.

To give an indication about the noise level, the variance of disturbance was
calculated too.

When it is written that the whole time sequence is used, all the measurements
between N start = 1 and N stop = 20000 are used, and when it is written
that the segment of the time sequence is used, the measurements between
N start = 11 and N stop = 4874 are used. The estimation experiments are
computed using the segment of the time sequence while the simulation using
the whole time sequence and the figures showing friction and gravity usually
uses the whole time sequence. This is done to give an idea of how these
estimates will perform if used past the first 25 seconds.
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3.3.2.1 Estimation using measurements from the first experiment

For this case the amplitude and frequency for the reference in Equation (3.20)
were set to a = π

2 and ω = 3
2π.

The five unknown parameters were calculated using filtered measurements
from the 6th joint of IRB 140. These estimates are collected in the vector
θ̂1, and can be seen in Table 3.13.

An estimated model was created using φ and u from the filtered measure-
ments. With this estimated model an alternative estimate called θ̂2 was
computed. In Table 3.14 the estimate θ̂2 is presented.

Based on θ̂1 and θ̂2 the variance of the disturbances, found in Equation (3.19),
were calculated using the filtered measurements. In Tables 3.15 - 3.18 the
variance of the disturbances for the two estimates are shown.

A new simulation was performed using the estimated values, this was done
as a verification of the estimated values. The error between the filtered mea-
surements and this simulation is presented in Figures 3.22 - 3.25. Then a sim-
ulation using the whole time sequence was performed, and the error between
the simulation and the filtered measurements is shown in Figures 3.26 - 3.29.

At the end the friction and gravity models for the two different estimates are
presented in Figures 3.30 and 3.31.
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k̂1 = 0.0513
k̂2 = 13.5641
k̂3 = 1.0338
k̂4 = −0.0017
k̂u = 6.0657

Table 3.13: θ̂1, estimate of unknown parameters.

k̂1 = −0.0457
k̂2 = 12.9797
k̂3 = 1.3750
k̂4 = −0.0910
k̂u = 5.5883

Table 3.14: θ̂2, estimate of unknown parameters.

σ̂1a = 42.2473

Table 3.15: σ̂1a, estimated variance of the disturbance for θ̂1 using filtered
measurements, time step: 1 - 20 000.

σ̂2a = 48.9239

Table 3.16: σ̂2a, estimated variance of the disturbance for θ̂2 using filtered
measurements, time step: 1 - 20 000.

σ̂1b = 0.7305

Table 3.17: σ̂1b, estimated variance of the disturbance for θ̂1 using filtered
measurements, time step: 11 - 4 874.

σ̂2b = 7.5723

Table 3.18: σ̂2b, estimated variance of the disturbance for θ̂2 using filtered
measurements, time step: 11 - 4 874.
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Figure 3.22: MATLAB plot displaying the error between the filtered mea-
surements and the verification simulation for θ̂1.
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Figure 3.23: Detail from the MATLAB plot displaying the error between the
filtered measurements and the verification simulation for θ̂1.
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Figure 3.24: MATLAB plot displaying the error between the filtered mea-
surements and the verification simulation for θ̂2.
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Figure 3.25: Detail from the MATLAB plot displaying the error between the
filtered measurements and the verification simulation for θ̂2.
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Figure 3.26: MATLAB plot displaying the error between the filtered mea-
surements and the verification simulation for the whole time sequence.
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Figure 3.27: Detail from the MATLAB plot displaying the error between
the filtered measurements and the verification simulation for the whole time
sequence.
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Figure 3.28: MATLAB plot displaying the error between the filtered mea-
surements and the verification simulation for the whole time sequence.
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Figure 3.29: Detail from the MATLAB plot displaying the error between
the filtered measurements and the verification simulation for the whole time
sequence.
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Figure 3.30: MATLAB plot displaying the friction models for θ̂1 and for θ̂2.
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Figure 3.31: MATLAB plot displaying the gravity models for θ̂1 and for θ̂2.
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When studying the two different estimates θ̂1 and θ̂2 in Tables 3.13 and 3.14,
it can be seen that they differ from each other. This indicates that the
estimated model is not exactly the same as the filtered measurements. If
they were the same the two estimates θ̂1 and θ̂2 would be identical, which
they are not.

In Tables 3.13 and 3.14 it can be seen that θ̂1 has a negative value for k̂4 and
that θ̂2 has negative values for k̂1 and k̂4. All five parameters are assumed to
be positive. When looking at Equation (3.11) it can be seen that the signs
of k̂2 and k̂u are more important than the signs of k̂1, k̂3 and k̂4, since k̂1, k̂3
and k̂4 are limited.

In Figures 3.22 - 3.25 the error between the filtered measurements and the
verification simulation can be seen. It is difficult to see the difference between
the error created by using θ̂1 and θ̂2. By a closer look it can be seen that
the error between φ− φest2 and φ̇− φ̇est2 for θ̂2 is a bit smaller than for θ̂1,
but the error between φ̈− φ̈est2 is a bit smaller for θ̂1 than θ̂2. The error for
φ−φest2 and φ̇− φ̇est2 converges to zero for both cases, and φ̈− φ̈est2 oscillates
around zero with a higher amplitude.

When looking at the estimated variance of disturbance in Tables 3.15 - 3.18
it can be seen that the estimated variance of disturbance for the first 25
seconds is small, and the estimated variance of disturbance for the whole
time sequence is 6 to 58 times larger. For both of the time segments, σ1 gives
the smallest values.

For the simulation of the whole time sequence it can be seen that the error
after 25 seconds is larger than the error before. This applies for both of the
estimates. As mentioned above, the error before 25 seconds converges to zero
for φ−φest2 and φ̇− φ̇est2, but after 25 seconds the error is non-periodic with
a higher amplitude. For both estimates θ̂1 and θ̂2 the error is varying around
zero for φ− φsim, φ̇− φ̇sim and φ̈− φ̈sim.
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In Figure 3.30 the friction models are shown for θ̂1 and θ̂2. This figure is
created by plotting Fest2 against φ̇est2 for the whole time sequence for the
verification simulation for each of the two estimates. Plotting the whole time
sequence makes it easier to see if the friction force diverges. It can be seen
that the difference between the estimated friction for the two estimates is
small. k̂1 is almost zero for both cases and hence the Coulomb friction is
almost non-existing. The friction force is therefore dominated by the viscous
friction, given by k2. In the figure some irregularities can be seen around
zero. It is explained in Section 3.2 how these are created by MATLAB. Here
the Coulomb friction is almost zero, and the zero crossing error does not
manifest itself so clearly as for cases where the Coulomb friction is larger.

The gravity models for θ̂1 and θ̂2 are created by plotting Gest2 against φest2
for the whole time sequence for the verification simulation for each of the two
estimates. This can be seen in Figure 3.31. In this figure it can be noticed
that both θ̂1 and θ̂2 result in a sinusoidal shaped form.

The calculations for this estimation are computed using MATLAB. Hence
the numerical accuracy explained in Section 3.2 applies here too. It is also
possible that the model used with the system identification method is wrong.
The friction model is assumed to be Coulomb friction combined with viscous
friction, which is a static model. This is one of the simplest models for
friction. Since the IRB 140 is a complicated device it is sensible to assume
that the actual friction model is more complicated than anticipated.
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3.3.2.2 Estimation using measurements from the second experi-
ment

For this case the amplitude and frequency for the reference in Equation (3.20)
were set to a = π

2 and ω = π.

The five unknown parameters were calculated using filtered measurements
from the 6th joint of IRB 140. These estimates are collected in the vector
θ̂1, and can be seen in Table 3.19.

An estimated model was created using φ and u from the filtered measure-
ments. With this estimated model an alternative estimate called θ̂2 was
computed. In Table 3.20 the estimate θ̂2 is presented.

Based on θ̂1 and θ̂2 the variance of the disturbances, found in Equation (3.19),
were calculated using the filtered measurements. In Tables 3.21 - 3.24 the
variance of the disturbances for the two estimates are shown.

A new simulation was performed using the estimated values, this was done
as a verification of the estimated values. The error between the filtered mea-
surements and this simulation is presented in Figures 3.32 - 3.35. Then a sim-
ulation using the whole time sequence was performed, and the error between
this simulation and the filtered measurements is shown in Figures 3.36 - 3.39.

At the end the friction and gravity models for the two different estimates are
presented in Figures 3.40 and 3.41.
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k̂1 = 0.0115
k̂2 = 3.7190
k̂3 = 1.1298
k̂4 = 0.0048
k̂u = 1.2382

Table 3.19: θ̂1, estimate of unknown parameters.

k̂1 = −0.0221
k̂2 = 2.2875
k̂3 = 1.2034
k̂4 = 0.0166
k̂u = 0.7075

Table 3.20: θ̂2, estimate of unknown parameters.

σ̂1a = 4.1284

Table 3.21: σ̂1a, estimated variance of the disturbance for θ̂1 using filtered
measurements, time step: 1 - 20 000.

σ̂2a = 4.2640

Table 3.22: σ̂2a, estimated variance of the disturbance for θ̂2 using filtered
measurements, time step: 1 - 20 000.

σ̂1b = 0.3765

Table 3.23: σ̂1b, estimated variance of the disturbance for θ̂1 using filtered
measurements, time step: 11 - 4 874.

σ̂2b = 0.9690

Table 3.24: σ̂2b, estimated variance of the disturbance for θ̂2 using filtered
measurements, time step: 11 - 4 874.
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Figure 3.32: MATLAB plot displaying the error between the filtered mea-
surements and the verification simulation for θ̂1.
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Figure 3.33: Detail from the MATLAB plot displaying the error between the
filtered measurements and the verification simulation for θ̂1.
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Figure 3.34: MATLAB plot displaying the error between the filtered mea-
surements and the verification simulation for θ̂2.
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Figure 3.35: Detail from the MATLAB plot displaying the error between the
filtered measurements and the verification simulation for θ̂2.
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Figure 3.36: MATLAB plot displaying the error between the filtered mea-
surements and the verification simulation for the whole time sequence.
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Figure 3.37: Detail from the MATLAB plot displaying the error between
the filtered measurements and the verification simulation for the whole time
sequence.
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Figure 3.38: MATLAB plot displaying the error between the filtered mea-
surements and the verification simulation for the whole time sequence.
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Figure 3.39: Detail from the MATLAB plot displaying the error the between
filtered measurements and the verification simulation for the whole time se-
quence.
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Figure 3.40: MATLAB plot displaying the friction models for θ̂1 and for θ̂2.
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Figure 3.41: MATLAB plot displaying the gravity models for θ̂1 and for θ̂2.
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When studying the two different estimates θ̂1 and θ̂2 in Tables 3.19 and 3.20,
it can be seen that they differ from each other. This indicates that the
estimated model is not exactly the same as the filtered measurements. If
they were the same the two estimates θ̂1 and θ̂2 would be identical, which
they are not.

In Tables 3.19 and 3.20 it can be seen that θ̂1 has a negative value for k̂1. All
five parameters are assumed to be positive. When looking at Equation (3.11)
it can be seen that the signs of k̂2 and k̂u are more important than the signs
of k̂1, k̂3 and k̂4, since k̂1, k̂3 and k̂4 are limited.

In Figures 3.32 - 3.35 the error between the filtered measurements and the
verification simulation can be seen. It is difficult to see the difference between
the error created by using θ̂1 and θ̂2. By a closer look it can be seen that
the error between φ− φest2 and φ̇− φ̇est2 for θ̂2 is a bit smaller than for θ̂1,
but the error between φ̈− φ̈est2 is a bit smaller for θ̂1 than θ̂2. The error for
φ− φest2 converges for θ̂2, and varies around zero for θ̂1. All in all the error
for θ̂1 is more varying than the error for θ̂2.

When looking at the estimated variance of disturbance in Tables 3.21 - 3.24
it can be seen that the estimated variance of disturbance for the first 25
seconds is small and the estimated variance of disturbance for the whole
time sequence is 4 to 10 times larger. For both the time segments σ1 gives
the smallest values, but the difference is minimal.

For the simulation of the whole time sequence it can be seen that the error
after 25 seconds is larger than the error before. This applies for both of the
estimates. The error before 25 seconds is commented on above, for the error
after 25 seconds the error is non-periodic with a higher amplitude. For both
the estimates the error is varying around zero for φ − φsim, φ̇ − φ̇sim and
φ̈− φ̈sim.
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In Figure 3.40 the friction models are shown for θ̂1 and θ̂2. This figure is
created by plotting Fest2 against φ̇est2 for the whole time sequence for the
verification simulation for each of the two estimates. Plotting the whole time
sequence makes it easier to see if the friction force diverges. It can be seen
that the difference between the estimated friction for the two estimates is
small. k̂1 is almost zero for both cases and hence the Coulomb friction is
almost non-existing. The friction force is therefore dominated by the viscous
friction, given by k2. In the figure some irregularities can be seen around
zero. It is explained in Section 3.2 how these are created by MATLAB. Here
the Coulomb friction is almost zero, and the zero crossing error does not
manifest itself so clearly as for cases where the Coulomb friction is larger.

The gravity models for θ̂1 and θ̂2 are created by plotting Gest2 against φest2
for the whole time sequence for the verification simulation for each of the two
estimates. This can be seen in Figure 3.41. In this figure it can be noticed
that both θ̂1 and θ̂2 result in a sinusoidal shaped form.

The calculations for this estimation are computed using MATLAB. Hence
the numerical accuracy explained in Section 3.2 applies here too. It is also
possible that the model used with the system identification method is wrong.
The friction model is assumed to be Coulomb friction combined with viscous
friction, which is a static model. This is one of the simplest models for
friction. Since the IRB 140 is a complicated device it is sensible to assume
that the actual friction model is more complicated than anticipated.
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3.3.2.3 Estimation using measurements from the third experi-
ment

For this case the amplitude and frequency for the reference in Equation (3.20)
were set to a = π

4 and ω = π.

The five unknown parameters were calculated using filtered measurements
from the 6th joint of IRB 140. These estimates are collected in the vector
θ̂1, and can be seen in Table 3.25.

An estimated model was created using φ and u from the filtered measure-
ments. With this estimated model an alternative estimate called θ̂2 was
computed. In Table 3.26 the estimate θ̂2 is presented.

Based on θ̂1 and θ̂2 the variance of the disturbances, found in Equation (3.19),
were calculated using the filtered measurements. In Tables 3.27 - 3.30 the
variance of the disturbances for the two estimates are shown.

A new simulation was performed using the estimated values, this was done
as a verification of the estimated values. The error between the filtered mea-
surements and this simulation is presented in Figures 3.42 - 3.45. Then a sim-
ulation using the whole time sequence was performed, and the error between
this simulation and the filtered measurements is shown in Figures 3.46 - 3.49.

At the end the friction and gravity models for the two different estimates are
presented in Figures 3.50 and 3.51.
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k̂1 = −0.0232
k̂2 = 1.4224
k̂3 = 1.0338
k̂4 = −0.0094
k̂u = 0.3167

Table 3.25: θ̂1, estimate of unknown parameters.

k̂1 = −0.0296
k̂2 = −2.5162
k̂3 = 1.0397
k̂4 = 0.0025
k̂u = −0.4998

Table 3.26: θ̂2, estimate of unknown parameters.

σ̂1a = 1.4404

Table 3.27: σ̂1a, estimated variance of the disturbance for θ̂1 using filtered
measurements, time step: 1 - 20 000.

σ̂2a = 1.5640

Table 3.28: σ̂2a, estimated variance of the disturbance for θ̂2 using filtered
measurements, time step: 1 - 20 000.

σ̂1b = 0.0124

Table 3.29: σ̂1b, estimated variance of the disturbance for θ̂1 using filtered
measurements, time step: 11 - 4 874.

σ̂2b = 0.1923

Table 3.30: σ̂2b, estimated variance of the disturbance for θ̂2 using filtered
measurements, time step: 11 - 4 874.
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Figure 3.42: MATLAB plot displaying the error between the filtered mea-
surements and the verification simulation for θ̂1.
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Figure 3.43: Detail from the MATLAB plot displaying the error between the
filtered measurements and the verification simulation for θ̂1.
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Figure 3.44: MATLAB plot displaying the error between the filtered mea-
surements and the verification simulation for θ̂2.
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Figure 3.45: Detail from the MATLAB plot displaying the error between the
filtered measurements and the verification simulation for θ̂2.
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Figure 3.46: MATLAB plot displaying the error between the filtered mea-
surements and the verification simulation for the whole time sequence.

33 33.5 34 34.5 35 35.5 36 36.5

−3

−2

−1

0

1

2

3

t [s]

D
el
ta

θ̂1

 

 
phi−phisim
phidot−phidot

sim

phiddot−phiddot
sim

Figure 3.47: Detail from the MATLAB plot displaying the error between
the filtered measurements and the verification simulation for the whole time
sequence.
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Figure 3.48: MATLAB plot displaying the error between the filtered mea-
surements and the verification simulation for the whole time sequence.
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Figure 3.49: Detail from the MATLAB plot displaying the error between
the filtered measurements and the verification simulation for the whole time
sequence.
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Figure 3.50: MATLAB plot displaying the friction models for θ̂1 and for θ̂2.
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Figure 3.51: MATLAB plot displaying the gravity models for θ̂1 and for θ̂2.
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When studying the two different estimates θ̂1 and θ̂2 in Tables 3.25 and 3.26
it can be seen that they differ from each other. This indicates that the
estimated model is not exactly the same as the filtered measurements. If
they were the same the two estimates θ̂1 and θ̂2 would be identical, which
they are not.

In Tables 3.25 and 3.26 it can be seen that θ̂1 has negative values for k̂1 and
k̂4 and that θ̂2 has negative values for k̂1, k̂2 and k̂u. All five parameters are
assumed to be positive. When looking at Equation (3.11) it can be seen that
the signs of k̂2 and k̂u are more important than the signs of k̂1, k̂3 and k̂4,
since k̂1, k̂3 and k̂4 are limited. If k̂2 is negative instead of positive the viscous
friction will work with the motion instead of against, and if k̂u is negative
instead of positive the actuator force will work in the wrong direction. Based
on this it is likely to guess that θ̂1 is closer to the true values than θ̂2.

When looking at the error between the filtered measurements and the verifi-
cation simulation, for θ̂1 in Figures 3.42 and 3.43, it can be seen that φ−φest2,
φ̇− φ̇est2 and φ̈− φ̈est2 oscillates around zero.

In the error measurements for θ̂2 in Figures 3.44 and 3.45, it can be seen that
the error between φ − φest2, φ̇ − φ̇est2 and φ̈ − φ̈est2 increase exponentially.
This is probably caused by the negative values for k̂2 and k̂u.

When looking at the estimated variance of disturbance in Tables 3.27 - 3.30
it can be seen that the estimated variance of disturbance for the first 25
seconds is small and the estimated variance of disturbance for the whole
time sequence is 8 to 116 times larger. For both the time segments σ1 gives
the smallest values, but not by much.

For the simulation of the whole time sequence for θ̂1 it can be seen that the
error after 25 seconds is larger than the error before. The error before 25
seconds is commented on above, for the error after 25 seconds the error is
non-periodic with a higher amplitude, i.e. the error is varying around zero
for φ − φsim, φ̇ − φ̇sim and φ̈ − φ̈sim. For θ̂2 it can be seen that the error
between φ− φsim, φ̇− φ̇sim and φ̈− φ̈sim increase exponentially.
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In Figure 3.50 the friction models are shown for θ̂1 and θ̂2. This figure is
created by plotting Fest2 against φ̇est2 for the whole time sequence for the
verification simulation for each of the two estimates. Plotting the whole time
sequence makes it easier to see if the friction force diverges. It is explained
in Section 3.2 how the plots are drawn in MATLAB. In Figure 3.50 it can
be seen that the friction force diverges for θ̂2. This might be caused by the
same reason as for the exponential error already discovered in Figure 3.44.
The friction model for θ̂1 shows a typical viscous friction.

The gravity models for θ̂1 and θ̂2 is created by plotting Gest2 against φest2 for
the whole time sequence for the verification simulation for each of the two
estimates. This can be seen in Figure 3.51. In this figure it can be noticed
that both θ̂1 and θ̂2 result in a sinusoidal shaped form. It is observed that
the sinusoid shape created from θ̂2 diverges in the leftmost direction. This
could be caused by the negative values for k̂2 and k̂u.

Even though the variance of disturbance is small for both θ̂1 and θ̂2, it is
quite clear by looking at the figures that the estimated parameters in θ̂2
is not a valid choice. When deciding what estimate to select, one cannot
only look at the variance. It is also important to take into account the error
between the measurements and the verification simulation for the different
estimates.

The calculations for this estimation are computed using MATLAB. Hence
the numerical accuracy explained in Section 3.2 applies here too. It is also
possible that the model used with the system identification method is wrong.
The friction model is assumed to be Coulomb friction combined with viscous
friction, which is a static model. This is one of the simplest models for
friction. Since the IRB 140 is a complicated device it is sensible to assume
that the actual friction model is more complicated than assumed here.
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3.4 Discussion and Conclusion

It was assumed that the five unknown parameters could be estimated despite
the presence of disturbance. With three different experiments six different es-
timates were created. To get better estimates segments of the measurements
were used as basis for system identification.

When studying these segmented experiments it was discovered that the first
experiment had larger variance of disturbance than the second and third
experiments. For the third experiment it was discovered that the errors
between φ− φsim, φ̇− φ̇sim and φ̈− φ̈sim were much larger than for the first
and second experiments. For the second experiment it was discovered that
both the variance of disturbance and the errors between φ − φsim, φ̇ − φ̇sim
and φ̈− φ̈sim were quite small.

From these discoveries it was concluded that the second experiment gave the
best estimate. Then θ̂1 and θ̂2 had to be examined to find the best estimate
for the IRB 140.

It was discovered that the largest difference between θ̂1 and θ̂2 was that θ̂2
converges to zero for φ− φest2, while θ̂1 do not have this quality. From this
it was deduced that θ̂2 was a better choice than θ̂1.

The values for θ̂2 using the second experiment is

k̂1 = −0.0221
k̂2 = 2.2875
k̂3 = 1.2034
k̂4 = 0.0166
k̂u = 0.7075

Table 3.31: Estimation results of unknown parameters.

These estimated parameters will be used with a controller in Chapter 4.
Notice that k̂1 and k̂4 are close to zero. When used with the passivity-based
robust controller, the friction compensation will almost be linear.
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Chapter 4

Controller for the 6th joint of
IRB 140

A passivity-based robust controller for the 6th joint of IRB 140 was created
using the method described in Section 2.10. The estimated parameters which
were concluded to be the best in Chapter 3 were used with this controller.
When using these parameters the Coulomb friction is small, and the friction
compensation is therefore almost proportional to the velocity, q̇6.

The controller was implemented and tested using Simulink, before it was
added to the robot software used to control IRB 140 at the Robotics Lab.
Anton Pyrkin and Stepan Pchelkin implemented the designed controller with
the robot software and run the different experiments at the lab. Using the
instructions in Appendix A the Simulink code for the controller can be found.

The controller was tested with four different scenarios, and with four different
experiment for each of the scenarios. The different scenarios are presented
in Table 4.1 together with their abbreviation used in the figures. For each
of the experiments measurements for q6, qd6 , u and q6error were recorded. For
these experiments the reference is given by

qd6 = a sin(ωit), i = 1, 2, 3, 4 (4.1)

By changing the values of ω in Equation (4.1) the different experiments were
created. The values for these experiments can be found in Table 4.2.
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Experiment Abbreviation
Empty gripper e
Loaded gripper, holding a stick in its center point m
Loaded gripper, holding a stick, the longest end pointing up t
Loaded gripper, holding a broom, with the brush end down b

Table 4.1: The four different scenarios and their abbreviations.

a = π
2 ω1 = 0.1

a = π
2 ω2 = 0.5

a = π
2 ω3 = 1.5

a = π
2 ω4 = 2.3

Table 4.2: The amplitude and the frequency for the four different experi-
ments.
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4.1 The Passivity-Based Robust Controller

Remember Equation (3.11) from Chapter 3, where the system to be con-
trolled was assumed to be

q̈6 = −k1 sign(q̇6)− k2 q̇6 − k3 g sin(q6)− k4 g cos(q6) + ku u (4.2)

The designed controller is

u = a

k̂u
+ k̂1

k̂u
sign(v) + k̂2

k̂u
v + k̂3

k̂u
g sin(q6) + k̂4

k̂u
g cos(q6)− K r

k̂u
(4.3)

where

v = q̇d6 − λ1q̃6 (4.4)
a = v̇ = q̈d6 − λ2 ˙̃q6 (4.5)

r = q̇6 − v = ˙̃q6 + λ1q̃6 (4.6)

Here qd6 is desired joint position, q6, and λ1, λ2 and K are positive scalar
constants, and q̃6 and ˙̃q6 are defined as

q̃6 = q6 − qd6 (4.7)
˙̃q6 = q̇6 − q̇d6 (4.8)

For the scenarios the positive scalar constants were chosen as λ1 = 2, λ2 = 1
and K = 2.
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4.2 Experimental Results

The frequency ω1 = 0.1 was chosen for the four different scenarios. In Fig-
ure 4.1 a comparison between the measured position and the measured refer-
ence position for the experiment with empty gripper can be seen. The figures
containing the comparison between the measured position and the measured
reference position for the three other scenarios are almost the same as for
the first scenario and are not included here.

To be able to see the accuracy of the controller the error of all the different
scenarios are presented together in Figure 4.2. The controller should theoret-
ically have smaller error for the empty gripper than for the other scenarios,
since this is the same case as used to identify the parameters for the model.

0 10 20 30 40 50 60 70 80

−1.5

−1

−0.5

0

0.5

1

1.5

t [s]

q 6
[r
a
d
]

Comparison between q6 and qd6 , ω1 = 0.1

 

 
eq6

eq6
d

Figure 4.1: MATLAB plot displaying the position q6(t), for experiment with
empty gripper.
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Figure 4.2: MATLAB plot displaying the error between the measured posi-
tion and the measured reference position.
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When looking at Figure 4.2 it can be seen that the error is approximately the
same for the four different scenarios. The differences in frequencies, which is
easier to see at the end of the figure than in the start, indicate that there are
some unmodelled nonlinearities which affect the system. This is reasonable
since the robot joint might be affected by nonlinear friction forces, which is
controlled using an almost linear friction compensation.

Two additional scenarios were designed to investigate if it was possible to
achieve smaller error for the empty gripper. First the friction coefficients k̂1
and k̂2 was set to 0; in the figures this is indicated by eNFC. Then λ1 and K
was set to 5; in the figures this is indicated by el5k5. The error measurements
from these two supplementary experiments can be seen in Figure 4.3.
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Figure 4.3: MATLAB plot displaying the error between the measured posi-
tion and the measured reference position.

When looking at Figure 4.3 it is easy to see that the removal of the friction
compensation and the change of parameters for λ1 and K have minimal
effect on the accuracy of the passivity-based robust controller. This gives
an indication that the estimated parameters for the friction model might be
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wrong, since it is of no consequence to remove the friction compensation from
the controller. It is even a possibility that the chosen friction model is wrong.

To validate if this was the case for other frequencies, ω was set to 0.5 for the
four different scenarios. The error of the scenarios are presented together in
Figure 4.4, and the two additional scenarios are presented in Figure 4.5.
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Figure 4.4: MATLAB plot displaying the error between the measured posi-
tion and the measured reference position.
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Figure 4.5: MATLAB plot displaying the error between the measured posi-
tion and the measured reference position.

When looking at Figures 4.4 and 4.5, the amplitude of the error is the same for
all of the original scenarios and the additional scenarios. This acknowledges
the suspicion from the experiment with ω1 = 0.1. The estimates for the
friction parameters or the friction model are probably wrong. This means
that the friction compensation probably is wrong too. It can also be noticed
that the change in frequency affect the amplitude of the error between q6 and
qd6 . Higher frequency gives higher error amplitude.

For the fourth scenario the friction in the gripper was not large enough to
hold the broom for frequency ω = 0.8. When running the robot with this
frequency the gripper lost hold of the broom after 44 s. This can be seen in
Figures 4.6 and 4.7. When inspecting the broom after the experiments, it
was discovered to have visible marks in the wood where it had been held by
the gripper.
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Figure 4.6: MATLAB plot displaying the error between the measured posi-
tion and the measured reference position.
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Figure 4.7: Detail from the MATLAB plot displaying the error between the
measured position and the measured reference position.
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For the three other scenarios where the gripper was able to hold the load
for higher frequencies than ω = 0.8, the frequencies ω3 = 1.5 and ω4 = 2.3
were tested. The error between the position measurements and the position
reference measurements can be seen in Figures 4.8 - 4.11.

In Figures 4.8 - 4.11 it can be seen that the error between the measured po-
sition and the measured reference position is almost the same for the three
different experiments, for both values of ω. The error has a bit higher am-
plitude for ω4 = 2.3 than for ω3 = 1.5.

When studying the details in Figures 4.9 and 4.11 some jumps in the error
can be seen. These jumps can be caused by different reasons. One reason
might be the communication between the sensor in the robot and the com-
puter recording the measurements. Another reason can be that the reference
changed in such a way that the positon of the robot suddenly was closer to
or farther from the reference.

The estimated values for the parameters used with the controller were incor-
rect, therefore it was proposed to use the new measurements for the empty
gripper and see if it was possible to achieve new estimates which could give
a more correct model of the robot and hence achieve better accuracy for
the controller. The estimates obtained from the new measurements from the
passivity-based robust controller for system identification was worse than the
estimates already presented in Chapter 3. The estimated values for the five
parameters were all negative or close to zero. The variance of disturbance was
high, and the error between the filtered measurements and the verification
simulation was large.
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Figure 4.8: MATLAB plot displaying the error between the measured posi-
tion and the measured reference position.
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Figure 4.9: Detail from the MATLAB plot displaying the error between the
measured position and the measured reference position.
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Figure 4.10: MATLAB plot displaying the error between the measured posi-
tion and the measured reference position.
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Figure 4.11: Detail from the MATLAB plot displaying the error between the
measured position and the measured reference position.
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4.3 Discussion

From the experiments at the Robotics Lab with the passivity-based robust
controller for the 6th joint of IRB 140, it was discovered that the estimated
parameters were not the same as the unknown parameters. When the un-
known parameters were estimated, measurements from the empty gripper
was used. The error should thus be smaller for the scenario with the empty
gripper than for the other scenarios. Since this was not the case it was
assumed that the estimated parameters for the 6th joint of IRB 140 were
incorrect.

To create a more correct estimate of the parameters the new measurements
of the empty gripper were filtered and used to create new estimates of the
unknown parameters. The estimates achieved from using the new measure-
ments from the passivity-based robust controller for system identification
was worse than the estimates already presented in Chapter 3. The estimated
values for the five parameters were all negative or close to zero. The variance
of disturbance was high, and the error between the filtered measurements
and the verification simulation was large.

For the lowest frequency tested it can be seen that the error between the
reference and the position was oscillating with an amplitude at ±0.002 rad.
Hence it was discovered that the passivity-based robust controller is less
accurate than the ABB RobotStudio controller. The poor accuracy for the
passivity-based robust controller is clearly linked to the estimated parameters
for the 6th joint of IRB 140. It is assumed that better estimated parameters
would have given better accuracy for the passivity-based robust controller
for the 6th joint of IRB 140.

All experiments in Chapter 3 and in Chapter 4 used a simple sinusoidal signal
as reference. A reference signal containing a simple sinusoidal signal is not
general enough for a system with five unknown parameters to be identified.
It is likely that the reference used for the estimation experiments, when the
6th joint was to be identified, was not general enough for the signal to be PE
for this system.
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For the experiment with the broom it was discovered that the friction in the
gripper was too low to actually manage to hold onto the broom for higher
frequencies. The broom itself also had marks from where the gripper had
been holding it. To avoid a casted component to be thrown through the room
or to be crushed with the gripper, limitations of the velocity and force control
of the gripper have to be evaluated. When this is controlled, pick-and-place
and processing operations of different complexities can be performed with
and on a casted component.

In Chapter 3 it was discovered that the system identification model was too
simple to interpret the nonlinearities in the measurements. With a more
complicated friction model the problem with nonlinearities could have been
removed and the estimated parameters would probably have been more cor-
rect. A combination of a more complicated friction model and a more gen-
eral reference signal used to excite the 6th joint of IRB 140 would probably
achieved better accuracy for the passivity-based robust controller for the 6th
joint of IRB 140.

When creating the reference for the passivity-based robust controller it was
discovered that the reference created was the same as the reference used with
the controller. In ”Using ABB MultiMove Functionality for Cooperative Ma-
nipulation Tasks” [6] by Fikkan it was seen that the reference created offline
was not the same reference used by the robot when running the program on-
line. With the poor accuracy for the passivity-based robust controller there
is a trade-off between which controller to use. The passivity-based robust
controller is not very accurate, but it is easy to create the correct reference.
For the ABB RobotStudio controller the accuracy is sufficient, but it is diffi-
cult to program the robot so that the reference is the same offline and online
for the robot.

The best solution would probably be to create new measurements to be used
with an updated system identification model. Then create new consistent
estimates for an updated passivity-based robust controller. When an ac-
curate enough controller for the 6th joint of IRB 140 is created, and the
force/velocity limitations of the gripper is taken care of, it is possible to
begin investigating pick-and-place and processing operations with and on
casted components.
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Conclusions and Further Work

5.1 Conclusions

In Chapter 3 the LS method was tested on a simulated model for the 6th
joint of IRB 140. Then the same method was used to estimate the unknown
parameters, using three different filtered measurements from the IRB 140.
The results achieved were not consistent. After comparing the results against
each other, it were decided to use the estimated parameters from the second
experiment. More precise θ̂2, found using a segment of the filtered measure-
ments for the second experiment.

Then in Chapter 4 a passivity-based robust controller was created for the
6th joint of IRB 140, using the estimated parameters from Chapter 3. When
studying the experimental results for the controller, it was discovered that
the error was approximately the same for the case used to estimate the pa-
rameters and the cases where the gripper was holding additional load. This
indicated that the estimated parameters were incorrect.

From the experimental results it was discovered that it did not matter if the
friction compensation of the controller was turned on or off. This can be
caused by three different reasons, or a combination of them. One of them
is that the single sinusoidal reference signal used to identify the unknown
parameters is too simple for the signal to have PE. Another reason is that
the lowpass filter used to filter the measurements did not remove enough of
the noise and that the cut off frequency has to be tuned one more time. The
third reason is that the friction model chosen was too simple compared to
the real friction forces of IRB 140.
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The measurements from the new experiments with the scenarios for the
empty gripper was filtered and used for system identification with the LS
method presented in Chapter 3. The idea was that this might give better
estimates than the filtered measurements obtained from Stepan Pchelkin.
When comparing the results from these new estimates it was easy to see that
the original estimates achieved using the measurements from Stepan Pchelkin
was better than the new estimates.

When the robot was holding a broom in the gripper it was discovered that
the friction in the gripper did not manage to hold onto the broomstick at
frequency ω = 0.8. The broom had marks from the gripper which indicate
that the gripper was holding tight, but the gripper still lost hold of the
broomstick. Based on this it was decided that it is essential to consider
force/velocity limitations for the gripper to not crush the casted component
while grasping it and to not lose hold of casted components while moving.
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5.2 Further Work

To use IRB 140, IRB 1600 and IRB 4600 for pick-and-place and processing
operations of different complexities, the estimation of parameters for IRB 140
has to be completed, and a controller has to be created using the correct
estimates. In the Discussion in Chapter 4 it was proposed to create new
measurements, which should be based on a more general reference signal than
a simple sinusoidal signal to be used with an updated system identification
model including a more advanced friction model, for creating new consistent
estimates.

Because of the noise it could be interesting to investigate if the errors-in-
variables models could be used instead of the LS method for identifying
the unknown parameters. When consistent results have been achieved these
parameters could be used to update the passivity-based robust controller
including the updated friction model. When satisfied with the accuracy after
testing it at the Robotics Lab with IRB 140, the force/velocity limitations
of the gripper should be taken care of. The system identification should
be computed for all of the joints of IRB 140, so that a controller could be
designed to control the whole robot.

When the controller for IRB 140 is designed and tested to be accurate enough,
the parameters for IRB 1600 and IRB 4600 should be identified and imple-
mented with controllers where the speed and force limitations are taken care
of. Then pick-and-place and processing operation scenarios could be devel-
oped for the three robots.
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Appendix A

Attached Files

Together with this thesis a compressed archive with relevant measurements
and source code is delivered. The directories contained in the archive are

• Maple This directory contains the Maple code used to calculate the
dynamic model for IRB 140 including the matrices M and C, and the
vector g for the identification of parameters of the 6th link of IRB 140
in Chapter 3.

• MATLAB This directory is divided into Chapter 3 and 4. Chapter
3 contains the MATLAB code and the measurements used for iden-
tification the five unknown parameters for the 6th link of IRB 140.
Chapter 4 contains the measurements from the lab experiments with
the controller and the code used to plot the measurements.

• Simulink This directory contains the Simulink model for the controller
which is exported to MATLAB 2010b, to be used to control the 6th
joint of IRB 140 at the Robotics Lab.
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