
Estimation of Sea Ice Drift Velocity

Anders Hetland

Master of Science in Engineering Cybernetics

Supervisor: Lars Imsland, ITK

Department of Engineering Cybernetics

Submission date: June 2013

Norwegian University of Science and Technology



 



    
 

 
 

 

Faculty of Information Technology, Mathematics and Electrical Engineering 
Department of Engineering Cybernetics 

  

 

 

Address Org.no. 974 767 880 Location Phone  
Sem Sælandsvei 5 E-mail: O.S. Bragstads plass 2D + 47 73 59 43 76  
NO-7491 Trondheim postmottak@itk.ntnu.no NO-7034 Trondheim Fax  
 http://www.itk.ntnu.no  + 47 73 59 45 99 Phone: + 47 47 23 19 49 

 

PROJECT DESCRIPTION SHEET 
 

Name of the candidate: Anders Hetland 
 

Thesis title (Norwegian):  
 

Thesis title (English):  Estimation of sea ice drift velocity 
 

Background 
As offshore oil- and gas production enters arctic seas, the presence of ice becomes a substantial challenge in 
station-keeping operations. An important part of such operations in the Arctic, is a system for doing ice 
management, that is, gather information about, and physically control, the ice environment. One of the most 
important ice properties are the drift speed of incoming sea ice. In this project, the candidate will model ice by 
distributed advection equations and develop estimators for drift velocity based on different sensor 
configurations. 

 
Work description 
1) Give a brief overview of ice management challenges, and the role of ice estimation systems. 
2) Give a very brief description of modeling and simulation of drift of sea ice.  
3) Discretize, implement and simulate a distributed model of ice concentration based on the advection 

equation. 
4) Implement a moving horizon estimation algorithm for estimation of drift velocity, for a 1D ice advection 

model. Consider drift velocity a parameter to be estimated. Consider different sensor information: 
a) Measure the complete ice concentration 
b) A few (two?) stationary sensors 
c) Mobile sensors (“UAVs”) 

5) Extend to consider a 2D ice model. 
6) Make illustrative simulations, and discuss. 
 
 

Start date: 14. January, 2013    Due date:  XX June, 2013 
 
Supervisor:   Lars Imsland 
Co-advisor(s):  Joakim Haugen 
 

Trondheim, __24. January 2013__________ 
 

___ ____ 
Lars Imsland 

Supervisor
 



ii



Abstract

The Arctic is an important region containing large amount of unused potential.
It is expected that a large amount of the worlds undiscovered oil and gas re-
sources are located here, and the shortest route between northern Europe and
eastern Asia called the Northern Sea Route (NSR) goes through the area. How-
ever, the presence of large amount of ice in the Arctic makes it a harsh and
difficult environment to operate in.

In order to operate in the areas where ice is present, some sort of ice manage-
ment system is required. Ice management can be described as the objective to
minimize the effect of ice features on floating vessels. Operations including oil
and gas exploration and exploitation is complex and require predictability with
respect to drifting ice in order to be able to disconnect in time. This has lead to
the need of ice intelligence which is able to predict the ice movement.

This study has look upon the problem of estimating ice drift velocity which
is a critical parameter in an ice intelligence system. The estimation scheme
used in this paper is based on ice concentration measurements and uses the
measurements in combination with a numerical model to estimate the ice drift
velocity.

The results from the study shows that it is possible to estimate both ice drift
velocity and ice concentration based on a limited amount of measurements.
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1 Introduction

In the recent years it has been discovered that the Arctic region contains large
potential for the oil and gas industry, tourism, mining and transportation. As
the climate changes, the environment in the Arctic changes and the area which
is seasonally ice-free grows (Berkman et al., 2009).

The United States Geological Survey has suggested that about 30% of the
worlds undiscovered gas and 13% of the worlds undiscovered oil is located
north of the Arctic Circle (Gautier et al., 2009). This has led to increased oil
and gas related activities in the Arctic (Borch et al., 2012).

It is a harsh environment in the Arctic with the presence of sea ice, ice ridges
and icebergs. This makes the operations more complex (Borch et al., 2012).
One example of an operation which becomes more complex in the offshore
Arctic environment, is the station-keeping operation, which is a key operation
for oil and gas exploration and exploitation. Station-keeping can be performed
by mooring or dynamic positioning (DP), where the term DP is used when the
vessel maintains its position exclusively by the use of thrusters. Both methods
have problems maintaining the position when exposed to sea ice (Hamilton,
2011).

In shipping, the Northern Sea Route (NSR) is expected to become more impor-
tant for the industry in the near future. It is the the shortest sea route between
northern Europe and eastern Asia, and the distance between Yokohama and
Hamburg is almost half of the distance compared to the route through the Suez
Canal (Johannessen et al., 2007). The route is covered by ice in the winter and
it is not completely ice free in the summer either. The ships which uses it is thus
able to break ice, or they are escorted by icebreakers.

The Arctic environment is very vulnerable and it has been proposed that oil in
Arctic sea water is more serious than in warmer water (Dunbar, 1973). Crude
oil spills in the Arctic is complex due to the oil behaviour together with snow
and ice with respect to absorption, transportation and spreading (Fingas and
Hollebone, 2003). This leads to the demands of even greater focus on safety
and regulations (Jensen, 2010).

In the ice infested areas where open water seasons without drift ice are small to
non-existent, some sort of ice management is needed in order to perform safe
operations (Hamilton et al., 2011). It has been suggested by Eik (2008) that
the success of ice management systems are considered to represent the main
factors for operating successfully in waters covered with ice.
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1.1 Background

Ice management has been defined by Eik (2008):

Ice management is the sum of all activities where the objective is to
reduce or avoid actions from any kind of ice features. This will include
but is not limited to:

• Detection, tracking and forecasting of sea ice, ice ridges and ice-
bergs

• Threat evaluation

• Physical ice management such as ice breaking and iceberg towing

• Procedures for disconnection of offshore structures applied in search
for or production of hydrocarbons

In order to perform detection, tracking and forecasting of sea ice, ice ridges and
icebergs, some sort of ice intelligence is needed. Ice intelligence is the process of
collecting and analysing relevant information about the environment in an area
of interest (Haugen et al., 2011). The current and past methods for obtaining
the necessary intelligence includes reconnaissance aircraft equipped with radar
systems, satellite imagery, shipboard sensors, drift buoys and visual observa-
tions (Timco et al., 2005; Eik and Løset, 2009). In addition to these methods,
the use of unmanned aerial vehicles (UAVs) and unmanned underwater vehicle
(UUV), in order to gather ice information, has been suggested in the literature
(Haugen et al., 2011; Eik and Løset, 2009).

Figure 1 shows an ice management system where an UAV is used for collecting
ice intelligence. The picture shows how the different icebreakers are located
upstream from the operating vessel. It shows the importance of ice forecast,
and especially the importance of ice drift velocity and directing. This is crucial
information for the ice management system which uses the information in order
to determine the position of the ice breakers (Hamilton, 2011).

The sensors currently in use may all be limited by weather, and none of them
are able to supply enough ice intelligence on their own (Eik, 2008; Eik and
Løset, 2009). It is therefore necessary to combine methods in order to achieve
the desired intelligence. This might be both overwhelming and time consuming
for a human to do and it has been suggested in the literature to include this in
an ice observer system (Haugen et al., 2011).

An ice observer system gathers information of the environment though mea-
surements and process the information in order to analyse it. The measure-
ments can be gathered by any of the previously mentioned methods, and the
analysis will be a process utilizing measurements and models. The output is the
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Figure 1: Ice management system for assisting DP operations as pictured by the KMB
Arctic DP (2013) project.

analysed data which can be estimates of unmeasured information, forecasts,
noise free measurements, visualisations, or other products of the processed data
(Haugen et al., 2011).

However, there is a need for numerical models combined with estimation tech-
niques in the forecasting of the environment Haugen et al. (2011).

1.2 Aim of the study

The aim of this study is to use a numerical model combined with estimation
techniques in order to estimate the drift velocity of sea ice. This will be achieved
by using a spatial discretized advection model to describe the drifting ice, and
then use the model in cooperation with measurements of ice concentration in
order to estimate the velocity.

The spatial discretized model describes ice drifting freely in an area of interest,
where ice leaving and entering the area are described through boundary values.
The boundary can either be estimated or measured.

The study will focus on the possibility to estimate both unknown states and
boundary values together with the velocity estimate. This will include scenarios
in both one and two dimensions, where the scenarios in one dimension is well
suited to illustrate principles and comparisons.

The estimation schemes used in this study will be moving horizon estimation
(MHE) and a variant of the extended Kalman filter (EKF).
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1.3 Outline

The next section will cover the method used to model the ice concentration,
and includes the necessary discretizations for numerical evaluation. Section 3
will cover how the discretized model can be used to estimate both unmeasured
states and unknown parameters. Both hybrid EKF and MHE will be covered as
estimation schemes. The tools used to implement the methods will be described
in section 4. Section 5 outlines the problem setup including scenarios and tun-
ing of the methods. Results from the simulations will be shown in section 5,
and then be discussed in section 6. Conclusions drawn from the discussion will
be presented in section 7 together with suggestions for further work.
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2 Model description and discretization

This section will look into the description of the mathematical model chosen
to describe the sea ice drift. The model will be spatially discretized, and two
methods for discretization in time, for use in a nonlinear programming (NLP)
formulation, will be presented.

2.1 Sea ice drift modelling

In order to simulate the drift of ice, a mathematical model describing the in-
volved dynamics is necessary. The model will be implemented and simulated
on a computer, and hence a model which can be discretized and solved numer-
ically is to be desired. Hibler III (1979) developed a model which most present
drift ice dynamic models are based on (Leppäranta, 2011). The model describes
both ice thickness and circulation, and is meant to be used for simulation of sea
ice over a large area. In the case of ice management, the area of interest is nor-
mally small and contains only open water and ice. Which means that the ice
will not collide and change shape. Due to this, many of the effects related to ice
colliding and hitting obstacles will be neglected and hence the model will be
simplified to a continuity equation. Since the timespan of interest is relatively
small, the melting and freezing of ice will also be neglected.

2.2 The continuity equation

The mathematical model which will be used to describe the ice concentration
is the continuity equation. The equation is a partial differential equation (PDE)
describing the transport of conserved quantity, but may also have a source/sink
term if the quantity changes. The continuity equation has previously been used
by Haugen et al. (2012) to describe the ice thickness, and the formulation in
this report will be the same with the exception that ice concentration has been
used instead of ice thickness. The source/sink therm will be the freezing and
melting of ice respectively.

In order to describe the area of interest, the open set Ω ⊂ R2 with the closure
∂Ω ⊂ R2 has been introduced and represents the area of interest and its bound-
ary respectively. Together they form the closed set Ω̄ := Ω ∪ ∂Ω. The continuity
equation describing the ice concentration can then be stated as

∂c

∂t
+∇ · (uc) = Sc(t, p, c), (2.1)
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where c(p, t) ∈ R is the ice concentration, t ∈ R is time, p = [x, y]T ∈ Ω̄ is the
position, and u (p, t) : Ω̄ × R → R2 is the velocity flux field. The term Sc(t, p, c)
is the source/sink term, and ∇ is defined as

∇ :=
[
∂

∂x
,
∂

∂y

]
. (2.2)

Since the model will be used to simulate and estimate ice concentration drifting
over a relatively short period of time, the source/sink term can be neglected,
Sc(t, p, c) = 0. Thus the continuity equation (2.1) can be stated as the following
advection equation,

∂c

∂t
+∇ · (uc) = 0. (2.3)

In addition to the simplifications mentioned above, the velocity flux field has
been simplified to a uniform velocity. Which mean that u (t) : R → R2 is only
dependent of time and not space. Uniform velocity has been assumed since the
area of interest is relatively small, which implies that the changes in velocity
due to location will be small.

The model is continuous in both space and time. Since the model will be eval-
uated numerical, a discretization scheme is needed in order to end up with a
finite number of states and variables.

2.3 Spatial discretization

Due to the model being continuous in space, a spatial discretization scheme is
needed. The drifting ice concentration which is modelled by (2.3) can have a
response which looks like a step (e.g ice drifting into open water). This is a
difficult response and introduce the need of a discretization scheme which is
able to mimic the response.

A third order Kurganov and Tadmor (2000) finite volume discretization method
has been chosen. This is a method which avoids the non physical oscillations
which can arise around step responses in lower order methods. The model has
been discretized as described in Kurganov and Levy (2000) by Joakim Haugen
1. The model has been spatially discretized in order to become an ordinary
differential equation (ODE), where the states are ice concentration in the dis-
cretized areas. Equation (2.3) has been discretized with rx ∈ N points in the

1Joakim Haugen, Department of Engineering Cybernetics, Norwegian University of Sci-
ence and Technology, O. S. Bragstads plass 2D, 7491 Trondheim, Norway. joakim.haugen at
itk.ntnu.no

mailto:joakim.haugen@itk.ntnu.no
mailto:joakim.haugen@itk.ntnu.no
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x direction and ry ∈ N points in the y direction, and the area of interest be-
comes [0, (rx + 1) dx] × [0, (ry + 1) dy] where dx and dy is the distance between
two points in the x and y direction respectively. The ice concentration in a given
discretized point (m,n) ∈ Z× Z will be defined as

cm,n(t) := c
(
[m · dx, n · dy]T , t

)
. (2.4)

The discretized area of interest will be defined as

Ω̄ := {(m,n) ∈ Z× Z : m ∈ [0, rx + 1], n ∈ [0, ry + 1]} , (2.5)
Ω := {(m,n) ∈ Z× Z : m ∈ [1, rx], n ∈ [1, ry]} , (2.6)

∂Ω := Ω̄ \ Ω. (2.7)

The ODE can then be stated as

˙̄c = f (c̄, c∂Ω, u) (2.8)

where c̄(t) ∈ R(rxry) is a vector containing the ice concentration in the dis-
cretized points, u(t) ∈ R2 is the velocity vector and c∂Ω ∈ R2rx+2ry is the vec-
tor containing the ice concentration on the boundary. f (c̄, c∂Ω, u) : R(rxry) ×
R2rx+2ry × R2 → R(rxry) is a nonlinear function describing ˙̄c(t) (for details, see
Kurganov and Levy (2000) and the implementation shown in Appendix A).

The interior states cm,n : (m,n) ∈ Ω are sorted in c̄ by the following ordering

c̄ :=
[
c1,1, . . . , c1,ry , c2,1, . . . , c2,ry , . . . , crx,1, . . . , crx,ry

]T
, (2.9)

and the boundary values cm,n : (m,n) ∈ ∂Ω are sorted in c∂Ω as

c∂Ω := [c1,0, . . . , crx,0, c1,ry+1, . . . , crx,ry+1,

c0,1, . . . , c0,ry , . . . , crx+1,1, . . . , crx+1,ry ]T . (2.10)

2.4 Discretization in time

The model (2.8) will be used in a NLP problem for estimation. This requires
that the model can be evaluated numerically. Since the model is continuous
in time, it will need some sort of discretization to be evaluated numerically.
Where direct single shooting, direct multiple shooting and direct collocation
are the most common methods for use with optimization. Solving ODEs with
an initial condition is called initial value problems (IVPs), and is often solved
by integration. The time is discretized in smaller finite elements.
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In order to discretize time in finite elements, an interval containing the time of
interest will be described as t ∈ [t0, tf ], where t0 is the time at the beginning
and tf is the time at the end. We now wish to partition the interval into a finite
number (N + 1) ∈ N. We thus introduce the time step h defined as h := tf−ts

N
.

One time element can thus be expressed as ti = ti−1 + h where i ∈ {1, . . . , N}
and tN = tf .

2.4.1 Direct single and multiple shooting

Both direct single shooting and direct multiple shooting relies on the ODE first
being discretized in time e.g. by a Runge-Kutta solver, and then numerically
solved for the necessary time steps.

Direct single shooting formulates the NLP problem such that the ODE is solved
only one time. The formulation uses an initial value for the start, and solves the
problem as an IVP in order to get the final value.

In direct multiple shooting, the ODE is solved for every element. That is, a new
IVP problem is formulated and solved for every time element, where the initial
value is the previous result, and the final value is the value at the next step.

Multiple shooting relies on an ODE solver, and in this report a fourth order
explicit Runge-Kutta (ERK) method will be used. The fourth order ERK for (2.8)
can be expressed as follows (Egeland and Gravdahl, 2002)

k1 = f (c̄n, u) , (2.11a)
k2 = f (c̄n + h (a21k1) , c∂Ω, u) , (2.11b)
k3 = f (c̄n + h (a31k1 + a32k2) , c∂Ω, u) , (2.11c)
k4 = f (c̄n + h (a41k1 + a42k2 + a43k3) , c∂Ω, u) , (2.11d)

c̄n+1 = cn + h (b1k1 + b2k2 + b3k3 + b4k4) , (2.11e)

where h is the length of the time step, c̄0 represent the initial value and c̄n the
discretized value at time tn = n · h. It is assumed that u and c∂Ω are constant
during one time step h. The constants aij and bj are given by Table 2.

The approximated solution to (2.8) can thus be expressed as

c̄(tn) ≈ c̄n, (2.12)

where c̄0 = c̄(t0) is given as the initial value. We can also write it as

c̄(tn) ≈ F (c̄0, c∂Ω, u, tn, t0) , (2.13)

since c̄0, c∂Ω and u are the only variables needed in order to calculate c̄(tn). It
is assumed that c∂Ω and u are constant from t0 to tn, and F is a function which
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0
c2 = 1

2 a21 = 1
2

c3 = 1
2 a31 = 0 a32 = 1

2
c4 = 1 a41 = 0 a42 = 0 a43 = 1

b1 = 1
6 b2 = 2

6 b3 = 2
6 b4 = 1

6

Table 2: The Butcher array for the fourth order ERK method.

calls (2.11e) n times. The function F is thus an approximation of the integral

c̄(tn) =
∫ tn

t0
(f (c̄, c∂Ω, u)) dt. (2.14)

Note that the time step h, is usually lower in ERK method than the time step h
used in multiple shooting steps.

2.4.2 Direct collocation

Direct collocation utilize polynomials in order to discretize and solve the ODE.
The collocation equations become a part of the NLP formulation and is solved
through the optimization (Biegler, 2010).

The method relies on approximations made by polynomials. The time is parti-
tioned in N time steps, and one time step h is partitioned in smaller elements
τj, where j ∈ {0, . . . , K}, as shown in Figure 2. This is an effective approxima-
tion where the partitioned time elements indicate the interpolation points of
the polynomial, which will be of degree K.

The use of collocation hence introduces a larger system, but with more sparsity
and structure. This can be utilized by many large scale NLP solvers and it can
therefore be solved very effectively (Biegler, 2010). We introduce the notation
c̄i,j where i ∈ {0, . . . , N} and j ∈ {0, . . . , K + 1}. The parameter c̄i,0 will be the
approximation of c̄(ti).

The system (2.8) will be approximated with a polynomial c̄K(t) with degree
K in order to approximate the states c̄(t), where Lagrange interpolation will
be used to find its coefficients. The finite element is then divided in K + 1
interpolation points τik, k ∈ {0, . . . , K} as shown in Figure 2. The polynomial
for a finite element i can then be expressed as

t = ti−1 + hτ,
c̄K(t) = ∑K

j=0 `j (τ) c̄ij,

}
t ∈ [ti−1, ti] , τ ∈ [0, 1] , i ∈ {1, N} , (2.15)
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Figure 2: Polynomial approximation for state profile across a finite element i. Courtesy
of Biegler (2010)

where the time h represent the time of one finite element i from time ti−1 to ti.
The element `j(τ) is called the cardinal polynomial and given by

`j (τ) =
K∏

k=0,6=j

(τ − τk)
(τj − τk)

, (2.16)

where τ0 = 0, τj < τj+1, j ∈ {0, . . . , K − 1}. The polynomial c̄K now has the
property that c̄K (tij) = c̄ij with tij = ti−1 + τjh. Inserting c̄K in (2.8) and
assuming constant parameters gives us the equation

dc̄K

dt
(tik) = f

(
c̄K(tik), c∂Ω, u

)
, k = 1, . . . , K, (2.17)

where we get the collocation equation by applying dc̄K

dτ
= hdc̄

K

dt

K∑
j=0

c̄ij
d`j (τk)
dτ

= hf (c̄ik, c∂Ω, u) , k = 1, . . . , K. (2.18)

In order to assure continuity between the finite elements, the following equality
restrictions between finite elements are added

c̄i+1,0 =
K∑
j=0

`j (1) c̄ij, i = 1, . . . , N − 1,

c̄f =
K∑
j=0

`j (1) c̄Nj, c̄1,0 = c̄0,

(2.19)

Since our problem will be a MHE problem, the number of finite time steps N
will be the same as the horizon length.
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The interpolation nodes τ has been chosen from the shifted Gauss-Legendre
and Radau roots from Biegler (2010) as shown in Table 3. This is in order to
achieve a better interpolation than with equal spacing.

The implicit collocation equations will be solved by the NLP solver as part of
the estimation problem.

Table 3: Shifted Gauss-Legendre and Radau roots as collocation points

Degree K Legendre Roots Radu Roots
1 0.500000 1.000000
2 0.211325 0.333333

0.788675 1.000000
3 0.112702 0.155051

0.500000 0.644949
0.887298 1.000000

4 0.069432 0.088588
0.330009 0.409467
0.669991 0.787659
0.930568 1.000000

5 0.046910 0.057104
0.230765 0.276843
0.500000 0.583590
0.769235 0.860240
0.953090 1.000000
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3 State and parameter estimation

The goal of this study is to know every parameter and state in (2.8) based on a
few measurements. In order to accomplish this, some sort of estimation scheme
is needed. The most used estimation scheme for nonlinear systems is probably
the EKF (Julier and Uhlmann, 2004). However, there are some drawbacks with
the EKF, and an alternative to EKF is the MHE which has been successful in
estimating states in cases where EKF fails (Tenny and Rawlings, 2002; Haseltine
and Rawlings, 2005).

This section will include a description of the MHE and the hybrid EKF. The
focus has been placed on the MHE which is a relatively new method to use
compared with the EKF.

The continuous time spatial discretized system (2.8) will be subject to measure-
ments done in discrete time. That is, a measurement yk at time tk expressed as

yk = hk (c̄k) + vk, (3.1)

where vk ∈ Rny is measurement noise, c̄k = c̄(tk) and hk(c̄k) : Rrxry → Rny . The
number of measurements is ny.

3.1 Observability

Observability is a property that says if a system is observable, then it is possible
to uniquely determine the unknown initial states from the output and input of
the system over the time span (0, t) (Chen, 1999). For linear systems the ob-
servability can be determined from the matrix relating states to outputs, and
the matrix relating old states to new states. The observability does not include
noise and model uncertainties, and can therefore fail due to noise or distur-
bances.

It is very difficult to find the observability for nonlinear systems, and in this
report an approximation will be used. The approximation will be a linearised
observability matrix around the current state and parameter estimate. It will be
hard to conclude on the observability of the system based on the linearisation,
but it will provide a good indication on the observability.

Observability is usually a requirement in order to achieve proper estimates.
Due to the linearisation, the system may still be observable even if the linearised
system is not observable. Observability may not even be a requirement for good
estimates in this case, since all the states is not necessary of interest.
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The linearised observability matrix for tk can be expressed as

Ok =


Ck
CkAk

...
CkA

n−1
k

 , (3.2)

where

Ck =
[
∂h
∂c̄

∣∣∣
c̄k,pk

∂h
∂p

∣∣∣
c̄k,pk

]
,

Ak =
 ∂f
∂c̄

∣∣∣
c̄k,pk

∂f
∂p

∣∣∣
c̄,pk

0np×nc̄ 0np×np

 . (3.3)

Here, p is a vector containing the parameters which are to be estimated, and n
is the dimension of Ak.

3.2 Hybrid extended Kalman filter

In this study, the hybrid EKF will be used for state and parameter estimation.
The estimates from the EKF will additionally be used in the arrival cost in the
MHE problem. The hybrid EKF is a continuous time EKF with discrete time
updates (Simon, 2006).

From (2.8) and (3.1), the system can be written as

˙̄c = f (c̄, c∂Ω, u) + w, (3.4a)
yk = hk (c̄k) + vk, (3.4b)

w (t) ∼ (0, Q) , (3.4c)
vk ∼ (0, Rk) , (3.4d)

where w (t) ∈ Rrxry and vk are white noise with covariance Q and Rk respec-
tively. The time update equation for the hybrid EKF will then be

˙̄̂c = f
(
ˆ̄c, c∂Ω, u

)
,

Ṗ = AP + PAT + LQLT .
(3.5)

The equation propagates the state estimate ˆ̄c from ˆ̄c+
k−1 to ˆ̄c−k , and P from P+

k−1
to P−k . Where A and L is given by:

A = ∂f

∂c̄

∣∣∣∣∣ˆ̄c ,
L = ∂f

∂w

∣∣∣∣∣ˆ̄c .
(3.6)
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The updates which needs to be calculated at each step k is given by

Kk = P−k H
T
k

(
HkP

−
k H

T
k +MkRkM

T
k

)−1

ˆ̄c+
k = ˆ̄c−k +Kk

[
yk − hk

(
ˆ̄c−k
)]

P+
k = (I −KkHk)P−k (I −KkHk)T +KkMkRkM

T
k K

T
k .

(3.7)

Hk and Mk are the partial derivatives of (3.4b) with respect to c̄k and vk respec-
tively. They are evaluated at ˆ̄c−k . The relationship between Q and Rk determine
how much the measurements are trusted compared to the model, where high
covariance in the process noise compared to the covariance in the measure-
ments will lead to more trust in the measurements.

In order to perform parameter estimation with the hybrid EKF, the parameters
need to be augmented into the state variables. This can be achieved by intro-
ducing the augmented state variable Z as

Z :=
[
c̄
p

]
, (3.8)

where p is a vector containing the unknown states. The covariance matrix Q
will need to be augmented in order to contain covariances for the parameters,
and Hk will be the partial derivative of (3.4b) with respect to Z. The augmented
version of (3.6) becomes

A =
 ∂f

∂c̄

∣∣∣ˆ̄c,p̂ ∂f
∂p

∣∣∣ˆ̄c,p̂
0np×nc̄ 0np×np

 ,
L = ∂f

∂w

∣∣∣∣∣ˆ̄c,p̂ .
(3.9)

Since the parameters are assumed to be constant, (3.5) need to be extended
with

ċ∂Ω = 0,
u̇ = 0.

(3.10)

The relationship hk (c̄k) between the measurements and the states will in this
case be a linear relationship. With the augmented states, (3.4b) can be written
as

yk = HkZk +Mkvk, (3.11)

where Hk ∈ R(ny)×(ryrx+np), Mk ∈ Rny×ny and np = 2(rx + ry) + 2 in the case of
full parameter estimation.
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3.3 Moving horizon estimation

Another approach for estimating states and parameter is to use a MHE scheme,
where the estimation problem becomes a dynamic optimization problem. This is
a method which require more computation speed than EKF and thus is becom-
ing more and more used as new and better computer hardware is introduced.
MHE can be seen as an extension of the EKF (Rao and Rawlings, 2002).

The objective is to minimize an estimation error with respect to the model
dynamics as a constraint together with minimum and maximum values on the
states and parameters.

3.3.1 Problem formulation

In order to formulate the MHE problem, some sort of cost function needs to be
formulated. In this case, the estimation error squared will be used as the cost
function together with process noise and arrival cost. The quadratic cost makes
large deviations more expensive than small, and is well suited for estimation
problems.

The state estimation error can be formulated as

ej = yj − hj
(
˜̄cj
)
, (3.12)

where ˜̄cj = ˜̄c(tj) represent the estimate of the state at time tj. The quadratic
cost function Lc (ej) then becomes

Lc (ej) = eTj R
−1ej, (3.13)

where the index j indicate the time sample in the horizon. The weighting matrix
R ∈ R(ny)×(ny) is a diagonal covariance matrix of the measurement noise, and
ny is the number of states which is being measured. The process noise cost term
can be formulated as

Lw(w̃j) = w̃Tj Q
−1w̃j, (3.14)

where w̃j = w̃(tj) is the estimated process noise and Q is a diagonal covariance
matrix describing the process noise.

Equation (3.4) can then be expressed as a MHE problem with the horizon length
N

min
˜̄ck−N ,...,˜̄ck−1,˜̄ck

p̃
w̃k−N ,...,w̃k−1

Γ
(
˜̄ck−M , c∂Ω, u

)
+

k∑
j=k−N

Lc (ej) +
k−1∑

j=k−N
Lw(w̃j) (3.15)
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s.t. ˙̄̃c = f
(
˜̄c, c∂Ω, u

)
+ w(t), t ∈ [tk−N , tk]

˜̄cmin ≤ ˜̄c(t) ≤ ˜̄cmax t ∈ [tk−N , tk]
p̃min ≤ p̃ ≤ p̃max
w̃min ≤ w̃(t) ≤ w̃max t ∈ [tk−N , tk]

(3.16)

Where the present time is tk and p is a vector containing the parameters which
need to be estimated. The measurements used are thus yk−N , . . . , yk−1, yk.

The result is a semi discrete dynamic optimization problem where the cost func-
tion is discrete and the constraints are continuous in time. If the cost function
had been continuous in time, it would have been an integral.

3.3.2 Arrival cost

In the optimal case, the horizon used in the MHE formulation should be in-
finitely large in order to cover all the information available. This is not so
practical since the problem would get infinitely large and hence require too
much computational power. In order to cope with the limited horizon, a term
Γ
(
˜̄ck−M , c∂Ω, u

)
is introduced in order to representing the information from t0

to the start of the estimation horizon tl = tk−N . This term is known as the ar-
rival cost, and will in many cases be calculated with a variant of the Kalman
filter (KF) (Qu and Hahn, 2009). Without the arrival cost, horizons contain-
ing small to none changes in measurements might fail on estimating states and
parameters.

The arrival cost will in this case be the quadratic error between the estimation
variables at time tl and the estimations from the hybrid EKF. We introduce the
variable V defined as

Vj :=
[˜̄cj
p

]
, (3.17)

where Vj indicates the variables at time tj.

The arrival cost function can then be defined as

Γ
(
˜̄ck−M , c∂Ω, u

)
:=
(
Vk−M − Ẑ+

k−M

)T (
P+
k−M

)−1 (
Vk−M − Ẑ+

k−M

)
, (3.18)

where Ẑ+
k−M and P+

k−M are given by (3.7).

3.3.3 Dynamic optimization

A dynamic optimization problem is an optimization problem which is subject
to dynamic equations as constraints. Hence a differential algebraic equation
(DAE) or ODE solver usually need to be embedded within the NLP problem.
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The MHE problem formulated in (3.15) and (3.16) needs to be solved as a
dynamic optimization problem, and needs some discretization in order to make
it a finite element problem.

It has been suggested in the literature to use direct collocation for the dis-
cretization of the ODE (Biegler, 2010) in the NLP problem. With the use of
direct collocation as described by (2.18) and (2.19), the NLP problem (3.15)
and (3.16) becomes

min
z
p̃

w̃k−N ,...,w̃k−1

Γ
(
˜̄ck−M , c∂Ω, u

)
+

k∑
j=k−N

Lc (ej) +
k−1∑

j=k−N
Lw(w̃j) (3.19)

s.t.
∑K
j=0

˙̀
j(τk)˜̄ci,j − hf

(
˜̄cik, c∂Ω, u

)
= 0 i = k −N, . . . , k − 1, k

zmin ≤ z ≤ zmax
pmin ≤ p ≤ pmax
˜̄ci+1,0 = ∑K

j=0 `j(1)˜̄cij i = k −N, . . . , k − 1
˜̄cf = ∑K

j=0 `j(1)˜̄ckj ˜̄c1,0 = ˜̄c(t0)

(3.20)

where z is a vector containing the collocated states

z :=
[
˜̄ck−N,0, . . . , ˜̄ck−N,K , ˜̄ck+1−N,0, . . . , ˜̄ck+1−N,K , . . . , ˜̄ck,K

]T
, (3.21)

and ˜̄ci = ˜̄ci,0.

The alternative to direct collocation is direct multiple shooting, and the problem
would then become

min
˜̄ck−N ,...,˜̄ck−1,˜̄ck

p̃
w̃k−N ,...,w̃k−1

Γ
(
˜̄ck−M , c∂Ω, u

)
+

k∑
j=k−N

Lc (ej) +
k−1∑

j=k−N
Lw(w̃j) (3.22)

s.t. ˜̄ci+1 − F
(
˜̄ci, c∂Ω, u, ti+1, ti

)
= 0 i = k −N, . . . , k − 1

˜̄cj,min ≤ ˜̄cj ≤ ˜̄cj,max j = k −N, . . . , k − 1, k,
pmin ≤ p ≤ pmax
˜̄cf = F

(
˜̄ck, c∂Ω, u, tk+1 − tk

)
˜̄c0 = ˜̄c(t0)

(3.23)
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4 Tools

The implementation is written in Python with the use of SciPy, Numpy, Mat-
plotlib, CasADi, IPOPT and CVODES. The implemented code can be seen in
Appendix A.

4.1 Python

Python is a cross-platform programming language, and is very powerful when
considering flexibility, syntax, style and extendability (Bressert, 2012). It sup-
port interactive mode and it is easy to combine with compiled languages like
Fortran, C and C++ (Langtangen, 2012). This makes it a fast language to work
with, and together with the packages SciPy, Matplotlib and Numpy it offers
much of the same functionality as Matlab (Jones et al., 2001–; Hunter, 2007;
Oliphant, 2007).

4.2 CasADi

CasADi is a free, open source software written in self containing code(Andersson
et al., 2012a). The software can be used with Python, Octave and C++, and it is
intended for use with nonlinear optimization problems with focus on dynamic
optimization problems.

It can be described as a minimalistic computer algebra system (CAS) and imple-
ments automatic differentiation (AD). AD is an algorithmic derivative method
where the calculation of the derivative is done by the chain rule. For more in-
formation on the subject, see Griewank and Walther (2008).

In order to solve the optimization problems, CasADi supplies interfaces to sev-
eral numerical NLP solvers, ODE/DAE integrators, quadratic programming (QP)
and linear systems solvers (Andersson et al., 2012a,b).

In this report, CasADi has been used through Python to implement the model
symbolically, formulating the MHE problem, setting up the hybrid EKF, and
interfacing CVODES and IPOPT.

4.3 CVODES

CVODES is an ODE solver for IVPs from SUNDIALS (Hindmarsh et al., 2005).
It is a stiff and nonstiff solver with sensitivity analysis capabilities and solves
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the ODE by either backward differentiation formula or Adams-Moulton Serban
and Hindmarsh (2005). When CVODES is used through the CasADi interface,
the necessary Jacobian and the forward and adjoint sensitivity equations are
automatically calculated by CasADi.

CVODES has been used used in this report to simulate the model, and to create
datasets for the MHE and EKF to work on.

4.4 IPOPT

IPOPT is a NLP solver based on Interior Point OPTimization. It has been in-
terfaced through CasADi, which means that CasADi will supply it with the
Jacobian of the constraints and the Hessian of the Lagrangian function. The
mathematics behind IPOPT can be read about in (Wächter and Biegler, 2006).

IPOPT is an interior point method which makes it a very efficient solver for
large and sparse problems. When using MHE together with direct collocation
the resulting NLP problem becomes large and sparse (Zavala and Biegler, 2009;
Biegler, 2010).

The MHE problem (3.19) and (3.20) has been solved with IPOPT using the
MA27 linear solver from HSL (2013). MA27 solves sparse symmetric systems.
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5 Problem setup

This section will cover the setup of the problem. That is, which scenarios that
has been chosen, tuning of the different algorithms and general settings for the
simulations.

5.1 Scenarios

There will be simulations of several scenarios. Some of the scenarios will be
to illustrate the performance of the system, and some will be more focused on
realistic similarities.

In the scenarios, it will be assumed that some of the states are known through
measurements. The measurements represent the ice concentration in a state
given in the range of [0, 1], where 0 is open water, 1 is completely covered
by ice, and the values between indicates a combination. With infinite spatial
resolution, the measurement would be either 0 or 1. In this setup the resolution
will be limited to rx = 15 for the one dimensional case, and rx = 5 and ry =
5 when operating with two dimensions. The values are a trade-off between
simulation time and accuracy.

The simulation will be over an area of 750m × 750m, which in the one dimen-
sional case will be a 750m wide area. This is a relatively small area for ice
surveillance, but the effects seen in the simulations will be similar to those one
would expect to see in a larger case. Ice drifting into the area will be constant
in some of the simulations and time dependent in others. The simulations with
constant boundary are included in order to study the performance of constant
variable estimation.

The time horizon will be 900s (15 minutes) discretized in tn = 51 steps.

There will be simulations with both constant and time dependent velocity, and
the velocity will be in the range of [−1, 1]m/s. This is a realistic range according
to Hamilton (2011).

The initial values for for both estimation schemes has been set to zero for all
parameters and states. Both process and measurement noise has been left out
of the simulation.
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5.2 Tuning of the hybrid EKF

The tuning in the EKF is done through the covariance matrices R and Q. The
preferred values was found by trial and error, and validated through estimation
tests. The result was the following diagonal weighting matrices

Q =


q1,1 0 . . . 0
0 q2,2

. . . ...
... . . . . . . 0
0 . . . 0 qnz ,nz

 , (5.1)

R =


r1,1 0 . . . 0
0 r2,2

. . . ...
... . . . . . . 0
0 . . . 0 rny ,ny

 , (5.2)

where nz is sum of states and unknown parameters and ny is the number of
measurements. An element qi,i in the matrix corresponds to the covariance as-
sociated with Zi, where Zi is the i-th element in the augmented state vector
(3.8). The following weights was found by trail and error

qi,i =


0.1 if Zi is a measured state
1.5 if Zi is a parameter estimate
1.1 if Zi is a state estimate

, (5.3)

and the elements rj,j = 0.1 for i = {0, . . . , nz} and j = {0, . . . , ny}.

5.3 Tuning of the MHE

There are a couple of parameters which can be tuned in the MHE formulation,
including the weighting matrices, boundaries, the horizon length, time step for
the ERK method for multiple shooting and degree of the polynomial approxi-
mation in the collocation method.

5.3.1 Weighting matrices

The model used is fully known, and it was hence decided to drop the process
noise term. That is Q = 0. This reduces the number of variables in the NLP
problem, but it makes the problem strict since there is no room for model inac-
curacies if the process noise is removed. With no Q matrix, the weights in the
weighting matrix R becomes less important and it has been set to the identity
matrix.
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5.3.2 Boundaries

The ability to put boundaries on the variables is one of the strengths in MHE.
The states in this study represent ice concentration, which only gives meaning
in the interval [0, 1], and the minimum value for the states has hence been set
to 0 and the max to 1. The same goes for the boundary, while the velocity has a
minimum value of −3 and maximum of 3 which should be more than enough.

5.3.3 Time step h for the fourth order ERK method

The performance of the fourth order ERK solver used in the multiple shooting
formulation has been tested against CVODES, a variable step ODE solver in
order to test its accuracy. The results is included in Appendix B. The time step
h was chosen to h = 1 as a compromise between speed and accuracy.

5.3.4 Horizon length

Since the parameters are constant in the estimation scheme, a short horizon
will make it more adaptable to slowly varying parameters. The velocity might
be slowly varying, but the boundary will be a fast changing parameter in most
cases. The optimal horizon found by trial and error was nk = 5 and has been
used throughout the simulations. Longer horizon length introduces a larger NLP
problem, which increases the need for computational power and time.

5.3.5 Tuning of the collocation algorithm

The direct collocation algorithm is based on a polynomial interpolation where
the interpolation points can be tuned. Table 3 shows the optimal interpolation
points for a polynomial up to a degree of five. A comparison between multiple
shooting and direct collocation with a three and fifth order polynomial can be
seen in Appendix B. The interpolation points used in this study was chosen as
the fifth order Radu roots.

5.4 Choosing MHE method

A comparison between the direct collocation and multiple shooting method
was performed and is included in Appendix B. The comparison was performed
in order to decide which method to use. The results showed that the time used
by multiple shooting was many times as high as the one with collocation, and
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the differences in the estimates was low in most of the tests. This lead to the
conclusion to use direct collocation as the discretization method in the MHE
formulation.

5.5 Error calculation

A function to calculate the error from the different methods has been imple-
mented. The error is calculated with quadratic cost, that is

Errorstates =
i=N∑
i=0

[cest,i − creal,i]T [cest,i − creal,i] ,

Errorparameters =
i=N∑
i=0

[pest,i − preal,i]T [pest,i − preal,i] ,

Errortotal = Errorstates + Errorparameters,

(5.4)

where N is the number of estimates calculated.
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6 Results

The simulations which has been run shows different scenarios with combina-
tions of state and parameter estimations. The grid on the state estimation plots
corresponds with the spatial discretization.

6.1 Simulations in one dimension

Most of the simulations has been performed in one dimension. The results are
easier to represent graphical in one dimension, and it is easier to compare plots.
Most of the results from the simulation in one dimension will be applicable for
the case with two dimensions.

6.1.1 Velocity estimation

The first simulation is velocity estimation where every state and the boundary
is known. The spatial resolution is rx = 15, and the boundary values are c∂Ω =
[1, 0]T which means that ice is drifting in from the left.

Table 4 sums up data about the estimation.

Table 4: Data from the velocity estimation

EKF MHE
Time used: 2.02s 226.95s
Total error: 1.033 · 10−2 3.392 · 10−4

– State error: 1.502 · 10−9 1.445 · 10−4

– Parameter error: 1.033 · 10−2 1.947 · 10−4

Max rank on linearised observability matrix: 16
Min rank on linearised observability matrix: 16

A plot showing the results can be seen in Figure 13 in Appendix C. The fig-
ure shows some snapshots of the states from t0 = 0 up to tf = 900, and the
estimated velocity.

6.1.2 Velocity and state estimation (two states are measured)

The next simulation shows the performance when the velocity is estimated from
only two states, c0 and c5. The boundary values are known and are the same as
in the previous simulation. The results can be seen in Figure 3 and Table 5.
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Table 5: Data from the velocity and state estimation (two states are measured)

EKF MHE
Time used: 2.20s 520.18s
Total error: 0.0610 23.258
– State error: 0.0370 8.2939
– Parameter error: 0.0240 14.964
Max rank on linearised observability matrix: 16
Min rank on linearised observability matrix: 10

6.1.3 Parameter and state estimation (four states are measured)

Figure 4 shows a simulation where both the velocity and boundary concen-
tration are estimated. The measured states are c0, c4, c5 and c9, which means
that the 11 other states also are estimated. Table 6 shows the error from the
estimates.

Table 6: Data from the parameter and state estimation (four states are measured)

EKF MHE
Time used: 2.90s 442.17s
Total error: 29.891 38.878
– State error: 17.406 7.5239
– Parameter error: 12.484 31.354
Max rank on linearised observability matrix: 18
Min rank on linearised observability matrix: 14

6.1.4 Parameter and state estimation (three states are measured)

The result from removing one of the measurements from the previous simula-
tion is shown in Figure 5. Figure 5b and Figure 5d shows that the performance
with only three measurements are poor which can be verified by the errors
shown in Table 7. It is only c0, c5 and c9 which are measured.

6.1.5 Parameter and state estimation, time dependent boundary

The simulation with time varying boundary is shown in Figure 6 and Table 8,
where the simulation illustrate what it might look like if an ice floe came drifting
into the area.
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Table 7: Data from the parameter and state estimation (three states are measured)

EKF MHE
Time used: 3.08s 1323.94s
Total error: 167.37 79.014
– State error: 133.44 45.118
– Parameter error: 33.928 33.895
Max rank on linearised observability matrix: 18
Min rank on linearised observability matrix: 9

Table 8: Data from the parameter and state estimation, time dependent boundary

EKF MHE
Time used: 2.91s 1147.94s
Total error: 40.711 25.697
– State error: 23.267 5.1373
– Parameter error: 17.444 20.560
Max rank on linearised observability matrix: 18
Min rank on linearised observability matrix: 14

6.1.6 Parameter and state estimation, time dependent boundary and ve-
locity

In a real life scenario, both boundary and velocity would be dependent of time.
This has been simulated in Figure 7. Table 9 shows that the MHE does a better
estimate than the EKF.

Table 9: Data from the parameter and state estimation, time dependent boundary and
velocity

EKF MHE
Time used: 2.85s 849.45s
Total error: 63.274 28.621
– State error: 42.862 14.339
– Parameter error: 20.411 14.282
Max rank on linearised observability matrix: 18
Min rank on linearised observability matrix: 15
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Figure 3: Simulation of state and parameter (velocity) estimation. Only the states c0
and c5 are measured, and the boundary is assumed to be known.
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Figure 4: Simulation of state and parameter estimation. The states c0, c4, c5 and c9
are measured. The rest of the states together with all the parameters are
estimated.
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Figure 5: Simulation of state and parameter estimation. The states c0, c5 and c9 are
measured. The rest of the states together with all the parameters are esti-
mated.
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Figure 6: Simulation of state and parameter estimation. The states c0, c4, c5 and c9
are measured. The rest of the states together with all the parameters are
estimated. The left boundary varies with time.
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Figure 7: Simulation of state and parameter estimation. The states c0, c4, c5 and c9
are measured. The rest of the states together with all the parameters are
estimated. The left boundary and the velocity varies with time.



6 Results 33

6.2 Simulations in two dimensions

The more realist approach is to use two dimensions. The model used to simulate
the ice concentration when operating in two dimensions is more complex, and it
is only the EKF which manage to produce estimates within a reasonable amount
of time when the spatial resolution is rx = 5 and ry = 5.

6.2.1 Parameter estimation in two dimensions

Figure 8 shows a simulation where all the parameters are unknown, and all the
states are measured. Figure 8e and Figure 8f shows that the estimated velocity
converge to the real velocity, but it can be seen from Table 10 that there are
some errors in the estimate of the boundary.

Table 10: Data from the parameter estimation in two dimensions

EKF
Time used: 376.41s
Total error: 87.132
– State error: 0.0010
– Parameter error: 87.131
Max rank on linearised observability matrix: 44
Min rank on linearised observability matrix: 30

Note that all the parameters was estimated. The number nz of variables is there-
fore nz = nx + np, where nx = rx · ry = 25, and np = 2 + 2rx + 2ry = 22. Thus
the number of variables to estimate is nz = 47.

6.2.2 Velocity and state estimation in two dimensions

Figure 9 shows a simulation with both state and velocity estimation. Only the
states c0,1, c1,0 and c2,3 are measured. The boundary values are known. Figure 9e
and Figure 9f shows that the velocity estimations are close to the real value.
Table 11 confirms that the estimation error is very small.

The number nz of variables is therefore nz = nx + np, where nx = rx · ry = 25,
and np = 2. This makes it a total of nz = 27 variables to estimate.
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Table 11: Data from the velocity and state estimation in two dimensions

EKF
Time used: 22.77s
Total error: 3.1784
– State error: 1.2075
– Parameter error: 1.9709
Max rank on linearised observability matrix: 27
Min rank on linearised observability matrix: 19

6.2.3 Parameter and state estimation in two dimensions

Figure 10 shows a simulation with both state and parameter estimation. Only
the states c0,1, c1,0, c4,0, c3,1, c2,2, c1,3, c0,4, c2,1 and c1,2 are measured. Figure 10e
and Figure 10f shows that only the velocity u in x direction is estimated close
to the real value. Table 12 shows that the error in the estimated states are very
low compared to the estimated parameters.

Table 12: Data from the parameter and state estimation in two dimensions

EKF
Time used: 507.49s
Total error: 459.40
– State error: 24.460
– Parameter error: 434.94
Max rank on linearised observability matrix: 34
Min rank on linearised observability matrix: 32



6 Results 35

0 100 200 300 400 500 600 700
x [m]

0

100

200

300

400

500

600

700

y 
[m

]

Simulation, time: 0.0

0.040

0.125

0.250

0.375

0.500

0.625

0.750

0.875

1.050

(a) The simulations initial condition

0 100 200 300 400 500 600 700
x [m]

0

100

200

300

400

500

600

700

y 
[m

]

Simulation, time: 900.0

0.040

0.125

0.250

0.375

0.500

0.625

0.750

0.875

1.050

(b) The estimation initial condition

0 100 200 300 400 500 600 700
x [m]

0

100

200

300

400

500

600

700

y 
[m

]

Estimation, time: 0.0

0.040

0.125

0.250

0.375

0.500

0.625

0.750

0.875

1.050

(c) The simulations at the end
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(d) The estimation at the end
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Figure 8: Simulation in two dimensions. Every state is known, but the velocity and
boundary are unknown. The blue area indicates water, while white indicates
ice.
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(c) The simulations at the end
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(d) The estimation at the end

0 100 200 300 400 500 600 700 800 900
t [s]

0.0

0.2

0.4

0.6

0.8

1.0

u
 [

m
/s

]

Velocity estimation (u)

Real
EKF

(e) The estimated velocity u

0 100 200 300 400 500 600 700 800 900
t [s]

0.0

0.2

0.4

0.6

0.8

1.0

v 
[m

/s
]

Velocity estimation (v)

Real
EKF

(f) The estimated velocity v

Figure 9: Simulation in two dimensions. The states c0,1, c1,0 and c2,3 together with the
boundary are known. The blue area indicates water, while white indicates
ice.
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(c) The simulations at the end
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(d) The estimation at the end
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Figure 10: Simulation in two dimensions. The states c0,1, c1,0, c4,0, c3,1, c2,2, c1,3, c0,4,
c2,1, and c1,2 is known. The other states together with the velocity and
boundary are unknown. The blue area indicates water, while white indi-
cates ice.
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7 Discussion

It is clear from the results that it is possible to estimate the ice drift velocity. The
first simulation shown in Figure 13 demonstrates how accurate the estimation
is when only the ice drift velocity is unknown. The result is as expected since
there is only one unknown. The linearised observability matrix has full rank
throughout the estimation, and hence support that the problem is solvable.

The next simulation extended the problem to include both states and param-
eters. Only two states were measured, and the rest of the states together with
the velocity was estimated. The boundary was constant and known. Figure 3
shows that the estimator manages to estimate the unknown states and velocity.
From Figure 3c and Figure 3e it can be seen that the MHE algorithm has some
problems. Figure 3e shows that estimated velocity is completely off from 270s to
470s. It might be that the NLP problem is ill conditioned in the interval. IPOPT
failed to converge to a solution during some of the iterations, and that explains
the drastic increase in time used to solve the problem.

Extending the problem to include full parameter estimation, based on a few
state measurements, can be seen in Figure 4 and Figure 5. In the first case with
four measurements located at c0, c4, c5 and c9, all the parameters converge to
their correct values. In the other simulation, the measurement of c4 was left out.
The result with one less measurement was that both the EKF and MHE failed to
estimate both states and parameters. The MHE formulation still has problems
with the velocity estimation as shown in Figure 5d. It was noted from running
the simulations that IPOPT failed to find the minimum several times during the
iterations.

Figure 6 and Figure 7 contains simulations with time varying parameters. The
first case contains a time varying boundary while both boundary and velocity
are time varying in the second case. The MHE makes better estimates with the
time varying parameters compared to the simulation with constant parameters,
while the EKF makes slightly worse estimates with variable parameters. The
reason for the improvements in the MHE is probably due to the higher varia-
tions in the measured states. The result shows that the MHE manage to estimate
time varying parameters even when the parameters are constants in the MHE
problem. This is related to the horizon length nk = 5, where a short horizon
makes the periods with constant parameters shorter.

The simulations in two dimensions was only performed with the EKF and con-
stant parameters. The MHE was too computationally expensive. The reason
might be that the implemented model is too complex. By printing the symbolic
equation for ċ0, it is observed that the print contains around 11000 symbols
(including brackets and variable names such as ci,j).
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The simulation shown in Figure 8, where all the parameters are estimated,
shows that it is possible to estimate all the variables based on measurements of
all the states. It is only the velocities estimation which are shown since those
are the ones of interest. Note that the linearised observability matrix is not
observable, and the errors shown in section 6.2.3 indicates that it does not
manage to estimate all the boundary values. Figure 9 shows that it is possible
to estimate most of the states and the velocity if the boundary values are known.

A simulation where only some of the states are measured has been performed,
and the results are shown in Figure 10. It shows that it almost manages to
estimate the velocity u in the x direction. The linearised observability matrix
reaches at most a rank of 34 whereas the number of parameters in the esti-
mation problem is 47. This indicate that it might not be possible to estimate
the parameters based on the current configuration. A problem with the simu-
lation is the low resolution, which makes the number of parameters very high
compared with the number of states.

The effect seen in some of the plots, both states and parameters "jumps" out
of position and that IPOPT fails to find the minimum, might be related to the
objective function in cooperation with constraints. It might be related to small
differences in the dynamic constraints and the real model, that is both col-
location and multiple shooting with the ERK solver relies on simplifications
compared to the CVODES solver used for simulation. The noise term q in the
implemented MHE was dropped due to the simulations being noise free. This
might have been an oversimplification since there might be small differences in
the mentioned ODE solver, which the process noise term would have taken care
of.
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8 Conclusion and future work

The results show that the problem with estimating sea ice drift velocity is solv-
able. The important question is only how much data is available. It has been
shown to be an easy problem when both states and boundaries are measured
or known. This is not usually the case, but it might be applicable to aerial sen-
sors or satellites. The fact that all states are measured simultaneously usually
implies a small area with normal resolution or a large area with low resolution.

The case where only some of the states are measured showed that it was pos-
sible to estimate both unknown states and parameters. It showed that around
four states were needed in one dimension, and around 10 states were needed
in the two dimensional case. The two dimensional estimation problem would
probably be easier to solve with higher resolution, given the same ratio between
measured and unmeasured states, due to the high amount of boundary values.
This will most likely be the case in real world applications.

The simulations showed that there were only a few cases where MHE provided
better estimates than EKF, but it used several times the amount of time as the
EKF. The problem with MHE was mainly related to ill conditioned problems
which lead to IPOPT reaching its maximum number of iterations. The perfor-
mance of MHE with respect to estimation error was superior in the cases with
time varying parameters, which are the realistic scenarios. It should be noted
that the objective function in the EKF and the MHE was different since the MHE
did not include process noise.

It is noted that with the current implementation, measurements of many of the
states are needed in order to achieve good estimates of the sea ice drift velocity.
In cases where enough measurements are available, the estimates of the sea ice
drift velocity in combination with ice coverage estimates might be very useful
for offshore activities.

Good ice management and ice surveillance in the combination with a warmer
Arctic might make the NSR more accessible. Estimates of the ice drift velocity
in cooperation with ice concentration estimates could make it possible to do
path planning in order to avoid ice.

In the case of the oil and gas industry, where the main challenge is the desire
to do reliable station-keeping operations, better ice velocity estimates together
with ice concentration estimates of the area might make it possible to extend
the time of safe station-keeping.
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8.1 Future work

During the study, some areas were discovered which would be interesting to
study further. This includes the possibility of changing the NLP problem in cases
where the data is not exciting, as proposed in Sui and Johansen (2011).

Another improvement might be to combine the estimation schemes with the use
of smart mobile sensors, which would make it possible to get state corrections
for a large area. The use of mobile sensors might help on the exciting of the
data, and thus make the estimation problem easier to solve.

In order to make MHE faster, a simpler model for use in the MHE formula-
tion should be investigated, including a simpler spatial discretization scheme.
The inaccuracy caused by a simpler model might not be a problem since other
inaccuracies between the model and reality will be present.

The system proposed in this study is general in the sense that the model used
describes the transport of conserved quantities. It might be of interest in areas
other than ice management, and could maybe be used to estimate oil spills.
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Appendix A CD

The implemented code has been included in a CD attached to the report. A
short summary of the included material is:

Folder 1: Source code. Contains the source files in order to run the simula-
tions.

RunEstimationOfDriftIceVelocity.py The main file used to run the sim-
ulation. Most settings will be defined in the file.

iceConcentrationModel1D.py and iceConcentrationModel2D.py contains
the spatial discretized model for the one and two dimensional cases
respectively.

iceConcentrationSimulation1D.py runs the simulation and generates
the dataset for estimation. The datasets are saved to txt files.

iceConcentrationMHE.py is the MHE algorithm done with direct col-
location together with the hybrid EKF. It outputs the measurements
as txt files.

iceConcentrationMHEmultipleShooting_RK4.py is the MHE algorithm
done with multiple shooting.

iceConcentrationPlotting1D.py and iceConcentrationPlotting2D.py are
used to plot in one and two dimensions respectively.

iceConcentrationParameterPlotting.py is used to plot and compare the
parameters.

RK4.py includes the implementation of the fourth order ERK method.

iceConcentrationHEKF.py is the implemented hybrid EKF.

estimationErrorFcn.py includes a function for calculating quadratic
errors.
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Appendix B Comparison plots

Comparison between CVODES and a fourth order ERK method

In order to determine what time step h should be used in the fourth order
ERK method (2.11e), a series of simulations comparing the variable step solver
CVODES against the ERK method was performed. The velocity of the drifting
ice in the simulation is set to 1.5m/s.

The tests were performed with different spatial resolutions and time steps in
order to determine how large the time step could be before the solver got un-
stable. Figure 11b shows that the ERK method is unstable for h = 2 when the
spatial resolution is rx = 100, and Figure 11a shows that the error is large even
for rx = 10. The simulation time with the ERK method is 3.68s for rx = 100 and
0.35s for rx = 10.

Figure 11c and Figure 11d shows the difference when h = 1, and it is stable for
both rx = 10 and rx = 100. The time used to run the simulation is 6.18s and
1.58s for rx = 100 and rx = 10 respectively.

A simulation with h = 0.5 can be seen in Figure 11e and Figure 11d. The figures
shows that the error decrease when h decreases. The simulation took 12.25s for
rx = 100 and 1.27s when rx = 10.
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(b) Spatial discretized with 100 points,
time step h = 2
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(c) Spatial discretized with 10 points, time
step h = 1
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(d) Spatial discretized with 100 points,
time step h = 1
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(e) Spatial discretized with 10 points, time
step h = 0.5
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(f) Spatial discretized with 100 points, time
step h = 0.5

Figure 11: A comparison between the variable step solver CVODES and the fixed step
fourth order ERK solver. Simulated with different time steps and spatial
resolution.
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Comparison between multiple shooting, direct collocation and
EKF

The performance of MHE implemented with multiple shooting has been tested
against the MHE implemented with direct collocation. The result can be summed
up by studying the parameter estimation shown in Figure 12.

The performance with respect to speed can be analysed by considering the num-
ber of variables. The total number of variables in the case of multiple shooting
is nx · (nk + 1) + np = 61 when nx = rx = 10 and only one parameter is esti-
mated. It can be seen from the IPOPT analysis that the number of nonzeros in
equality constraint Jacobian is 600, and the number of nonzeros in Lagrangian
Hessian is 331. The sparsity of the Jacobian is therefore 1 − 600

612 ≈ 84%. In the
case of direct collocation where the number of variables is 211 and the number
of nonzeros in the Jacobian is 1360, we end up with a sparsity of 97%.

The time used to solve the MHE problem with multiple shooting was 503s while
the implementation with direct collocation took 87s. The simulations which
were compared were the ones where five of the states are measured, and the
direct collocation polynomial was of order three.
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(c) Direct collocation with 3. order poly-
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(e) Direct collocation with 5. order poly-
nomial, five of the ten states are mea-
sured.
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Figure 12: Comparison of the parameter estimation from MHE with direct collocation
and multiple shooting, and the EKF.
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Appendix C Additional plots

Some plots where left out from the results and put in the appendix in order to
keep the result section easy to follow.

0 100 200 300 400 500 600 700
x [m]

0.0

0.2

0.4

0.6

0.8

1.0

c̄ 
[-

]

Real (simulated) and estimated ice concentration, time: 0.0s

Real
EKF
MHE

(a) Initial conditions

0 100 200 300 400 500 600 700
x [m]

0.0

0.2

0.4

0.6

0.8

1.0

c̄ 
[-

]

Real (simulated) and estimated ice concentration, time: 180.0s

Real
EKF
MHE

(b) The states after 180s

0 100 200 300 400 500 600 700
x [m]

0.0

0.2

0.4

0.6

0.8

1.0

c̄ 
[-

]

Real (simulated) and estimated ice concentration, time: 540.0s

Real
EKF
MHE

(c) The states after 540s

0 100 200 300 400 500 600 700
x [m]

0.0

0.2

0.4

0.6

0.8

1.0

c̄ 
[-

]

Real (simulated) and estimated ice concentration, time: 900.0s

Real
EKF
MHE

(d) The states at the end
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Figure 13: Simulation of parameter estimation where only velocity is estimated.
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