
Mission planner for multiple AUVs: Verification procedures combining 

simulations and experiments 

Stephanie Buadu 

Dept of Marine Technology 

NTNU 

Trondheim, Norway 

stephaniebuadu@gmail.com 

Ingrid Schjølberg 

Dept of Marine Technology  

NTNU 

Trondheim, Norway 

ingrid.schjolberg@ntnu.no 

Tore Mo-Bjørkelund 

Dept of Marine Technology  

NTNU 

 Trondheim, Norway 

tore.mo-bjorkelund@ntnu.no

 

 
Abstract- This paper presents a mission control 

system (MCS) for a cooperative system of 

LAUVs. The proposed method is part of a system 

for operating several AUVs on a joint mission. 

The system is run on software and hardware from 

LSTS in Porto. The MCS can function as the only 

command and control software in the system or 

in integrated with Neptus, the command and 

control software offered in the LSTS-tool chain. 

The proposed mission planner has been tested 

through simulations and experiments conducted 

in the Trondheim Fjord on a cooperative system 

consisting of two AUV simulators and LAUV 

Fridtjof. The results are very promising, the MCS 

performed in accordance with its requirements, 

and the formation control proved able to control 

the formation during mission execution.   

 

Index terms - AUV, mission planning, formation 

control, cooperative system.  

I. INTRODUCTION 

Among the current applications for AUVs, both 

civil and military many require time, space, and 

functional distribution which is impossible to obtain 

with a common single vehicle approach. Multi-

vehicle application introduces new challenges that 

must be addressed, such as formation control; this is 

the task of controlling multiple vehicles to complete 

mission objectives while keeping a formation. 

Formation control becomes a central part of the high-

level mission plan which is broken down and 

specified to compute lower-level mission plans for 

the individual team members. 

In 2014 a survey conducted by [1] stated that the 

literature on formation control of AUVs is lacking 

compared to those on mobile robots and aircraft. 

Also, most of the available research is pure 

theoretical without sufficient experiments and 

practices. The current situation within the field has 

not changed significantly. Although, there are some 

more examples of literature referring to experiments 

and practice in connection with formation control of 

AUVs the number fades in comparison to other 

fields such as ground robots and aerial vehicles. In 

other words, the applications are ready, and there is 

a need for well-tested and functioning approaches to 

formation control for AUVs, but the current research 

does not cover the need.  

[2] defined three ways for mission planning 

given specific objectives. A fixed set of maneuvers 

can be generated: 

 Directly by a human operator. 

 By solving a control problem on a fixed 

discrete/hybrid graph containing the set of 

possible environment and vehicle actions. 

 By using constraint problem-solving 

algorithms. 

The optimal approach will depend on the mission 

objective, computational power available, system 

communication and environmental conditions. The 

presented work gives an example of mission plan 

generated by a human operator and directly 

implemented online. The uniqueness of the 

presented work is the implementation of the mission 

planner on a real system.  

There are several challenges associated with 

mission planning for AUVs, and the number of 

issues grows when several vehicles are added to the 

mix. A common denominator for many of the 

challenges is unreliable system communication. On 

the surface, some AUVs use cellular and satellite 

communication, but this has high latency and limits 

the size of the data being transferred. Underwater, 

not all types of signals can be transmitted, vision and 

acoustics, limiting the communication abilities even 

further. Acoustic communication is utilized for 

passing messages underwater, but this is prone to 

interference, disruption and unpredictable delays [3]. 

As a consequence of the unreliable and restricted 

underwater communication, missions with several 

AUVs are prone to lacking reliable relative position 

measurements, spatial restrictions between vehicles 

to preserve communication links, and challenges in 

how to handle large volumes of data. Also, mission 

planners and cooperative algorithms, in these types 

of missions, must be robust for communication 

faults. Changing dynamics in mission environments 

pose a challenge if a vehicle’s dynamics are altered 

as a result. [4] discusses how not considering this 

possibility in the initial planning phase may render 

certain tasks infeasible if a vehicle’s dynamics are 

changed. In the case of unknown or uncertain 

environment dynamics, a solution could be to 

estimate the next state of the environment based on 

the current state and use this to conclude on the 

mailto:stephaniebuadu@gmail.com


impact on the vehicle’s dynamics in-situ. However, 

this approach is not without its challenges [5].  

In this paper, we propose a mission planner for 

multiple AUVs. It is a cooperative AUV system 

based on the LSTS tool-chain [6] that includes a 

newly developed application for mission planning, 

execution, and monitoring of multi-vehicle missions, 

the MCS (Mission Control System). Within the 

application, a proposed  formation control method 

designed by adapting existing multi-vehicle mission 

theory from other fields is implemented. The system 

has been tested in simulation, and experiments, and 

in combination. The motivation behind this paper is 

the need for integrated AUV mission planners and 

procedures for testing and verification. The 

procedures are documented through implementation 

on a real system and experiments and field tests 

performed in the fjord of Trondheim (Norway). 

II. SYSTEM DESCRIPTION  

The vehicle applied in the presented mission 

and formation control is Fridtjof, an LAUV owned 

by NTNU, and shown in Fig.1.  

 

 
Fig. 1. LAUV Fridtjof.  

 

The LAUV is developed by the Underwater System 

and Technology Laboratory (LSTS) at Porto 

University in cooperation with OceanScan-MST. 

The LAUV was developed for security and 

surveillance, oceanography, and hydrography 

purposes, and is easily launched, operated, and 

recovered with minimal operational setup [3]. The 

vehicle is operated with software developed by 

LSTS; DUNE for on board operations and IMC 

messages for communication. The vehicle is 

operated with LAUV Remote close to shore, and a 

desktop command and control software like Neptus 

once it is a safe distance from shore. LAUV 

Fridtjof supports twelve motion primitives, but the 

system only requires one; the go to maneuver. The 

motion primitive maneuvers the vehicle to a 

waypoint defined by latitude, longitude, and depth 

or altitude, at a specified speed. The desired 

attitude at the destination can also be defined, but 

this property is not enabled by the system. 

                                                           
1 The coordinate origin of WGS 84 is meant to be 

located at the Earth’s center of mass and is used as a 

standard in navigation. 

III. METHOD 

The formation control method designed in this 

work has properties from existing formation 

control methods. AUV teams are categorized as 

either master or slave, and only one master is 

assigned per vehicle team. The method is described 

in three parts; formation, path generation and 

guidance, and maneuvering, and control algorithm. 

All equations in this section relating WGS 84 

coordinates1 to a displacement in meters are based 

on the assumption that the earth is spherical. The 

formation of the AUV team is inspired by virtual 

structures, and the vehicles are placed in a 

coordinate system where the master’s position 

defines origin. The position of each slave i is 

defined as a displacement δxi on the x-axis and δyi 

on the y-axis, from the master’s position. The 

structure does not rotate, and the attitude of the 

individual vehicle is not taken into account. Figure 

2 visualizes the displacements and constraints for a 

team consisting of a master and slave. A constraint 

(3.1) is set onto the distance d between the master 

and slave to preserve the geometrical relationship 

between the vehicles. Some deviations are allowed 

before the slave is considered to violate the 

constraints and counteractive measures are taken. 

 
Fig. 2. Displacement, distance and constraints on a 

two-vehicle team in formation. 

 

The vehicles’ positions are defined in WGS 84 

coordinates in the MCS and require conversion 

before the constraints can be checked. The Haversine 

formula, given in Calculate distance (3.1), bearing 

and more between Latitude/Longitude points (n.d.), 

is used to relate two latitude/longitude coordinates to 

a displacement in meters. 



 

            (3.1) 

 

 

(3.2) 

 

 

The master’s path is generated by the operator 

selecting waypoints, and these being connected by 

straight lines. The waypoints are later displaced to 

generate paths with the same shape and length for the 

slaves. The equation for displacing the waypoints is 

given in Calculate distance, bearing and more 

between Latitude/Longitude points (n.d.) and stated 

in (3.2)(3.3). 

 

φS = asin(sinφM · cosδ + cosφM · sinδ · cosθ), 

λS = λM + atan2(sinθ · sinδ · cosφM,cosδ − sinφM · 

sinφS) 

                                              (3.3) 

where φ is latitude, λ is longitude, ∆x and ∆y are 

displacements in meters, and R is the earth’s radius. 

Before the MCS accepts the paths, they are checked 

for potential collisions. The paths are parameterized, 

and the distance between points on the parameterized 

lines are checked against a threshold set by the 

operator. The piecewise parametrization of the path 

is given in (3.4), where A, B are two waypoints. The 

distance d between points on the path is given by 

(3.3) and checked to satisfy d > dmin. dmin is set by the 

operator and is the minimum distance allowed 

between two vehicles in the team. 

 

                                   
(3.4) 

where φ is latitude, λ is longitude, t is the 

parameterization variable. 

The guidance in the formation control method stands 

out from other leader-follower approaches because 

there is no explicit synchronization of path variables 

or direct feedback of the master’s position to the 

slaves during guidance. Instead, all vehicles start 

execution of their predetermined path at the same 

time, with the same desired speed set onto the speed 

controller, and no external actions are taken unless 

team constraints are violated. A prerequisite for this 

strategy to work is that the vehicles are in formation 

before mission execution begins, and this is achieved 

by commanding the vehicles to the first waypoint 

before mission execution. To ensure that the vehicles 

have the right heading before starting the mission 

their path includes a waypoint X before reaching the 

first waypoint. X is generated based on the two first 

waypoints on the path A and B. Starting in A, X 
extends the line between A and B by 20 meters. 

The formation control is placed in the MCS, 

resulting in a centralized control architecture. A 

control algorithm that checks the team constraints, 

and takes action if any are violated, is looped during 

mission execution. The algorithm falls into the 

category of behavior-based control, and three 

behaviors are available for the vehicles; path 

following, collision avoidance, and formation 

preservation. However, the vehicle’s resulting 

behavior is not a weighted combination, as the 

regular practice, but rather a single behavior. Path 

following is the default behavior, and the 

cooperative strategies activate the two remaining 

behaviors. 

 

Two team constraints (TC1 and TC2) have been 

defined in the formation control method, and they are 

presented in Table 3.1. TC2 is in place to ensure that 

the vehicles do not collide, and violation of this 

constraint should result in one or more vehicle 

switching behaviors from path following or 

formation preservation to collision avoidance. 

Cooperative strategies for handling the violations 

have not been implemented and is left as further 

work. To preserve the formation, TC1 is set onto 

each vehicle, and five cooperative strategies, 

presented in Table 3.2, are designed to handle 

violations of this constraint. The cooperative 

strategies define which vehicle should switch 

behaviors if different situations. Cooperative 

strategies CS1 and CS4 state that the master waits, 

i.e., take on formation preservation behavior, once 

for each slave if it falls behind, and once if the master 

catches up to it. A consequence of this is that a 

master will stop considering a slave as a team 

member if it has previously taken action not to 

violate the constraint. The master switches back to 

path following behavior once the constraint is 

satisfied or when the waiting period, currently set to 

30 seconds, is over, whichever comes first. CS2 and 

CS3 state that a slave must always wait if the master 

falls behind or the slave catches up to the master. 

There is no waiting period, and therefore the slave 

must wait until the constraint is satisfied before 

switching to path following behavior. To avoid 

producing of additional constraint violations, C5 

ensures that all slaves satisfying TS1 wait while the 

master waits. 

 

 

 



 
 

The control algorithm is looped five times per 

second for each slave and has conditions in place to 

catch and identify defined constraint violations.  

 

The requirements for the MCS are specified in Table 

3.3, and the priority ranging from ’High’ to ’Low’ 

was determined by the author. 

 

Table 3.3 Requirements for MCS 

 
 

In general, a significant amount of work is needed to 

design and implement the MCS. To simplify 

interfacing DUNE with the MCS the backend 

components of the application were written in C++. 

Keeping the MCS as a web application was 

considered, but linking the backend code in 

JavaScript proved challenging. Several 

programming languages were unsuccessfully tested 

for the frontend development before C++ proved 

successful. Qt Creator (discussed in Section 4.2.4) 

was used as the Integrated Development 

Environment (IDE) for building the application. 

The development has mainly taken place in two 

files; gui.cpp and mcslib.cpp. The user interface was 

designed using drag-and-drop functionality in Qt 

Creator, and a .ui file was auto-generated. The code 

for handling the TCP-connections in the application 

is developed by OceanScanMST and open source, 

and the code for handling incoming messages is 

developed by NTNU.  

IV. RESULTS AND VERIFICATION 

Fig. 2 gives an overview of the proposed system 

including hardware and software components. 

Starting at the top left, the Light Autonomous 

Underwater Vehicle (LAUV) ‘Fridtjof’ is the 

physical vehicle used during field tests. The Manta 

Communications Gateway enables communication 

between LAUV Fridtjof and the remaining software 

components by routing WiFi-signals. Neptus is the 

mission command and control software offered in 

the LSTS toolchain, and in this system, it is utilized 

first and foremost for commanding LAUV Fridtjof 

between missions and as a backup control 

application. There is no explicit functionality for 

cooperative systems in Neptus, hence the need for 

the additional functionality that the MCS introduces 

next to the toolchains offerings. The MCS may be 

run both standalone and in combination with Neptus. 

During simulations for instance, Neptus can be left 

out of the system architecture, as there is no risk of 

damaging the vehicle, and the extra security and 

single vehicle control functionality that Neptus 

offers is not required.  

 
The LAUV simulator used for testing run on the 

same computer as the MCS, and all communication 

throughout the system was enabled by Inter-Module 

Communication (IMC) messages, which are also 

included in the LSTS toolchain.  

 

Figures 3-5 show the developed MCS’ user interface 

in which an operator may generate a high-level 

mission plan which is decomposed and sent to the 

individual vehicles. The MCS handles formation 

control and allows the operator to monitor and 

intervene during mission execution. 

 
Fig. 2. System overview MCS. 

 
Fig. 3. View 1 of the MCS. Interface for defining the 

vehicle team, formation, and constraints. 



 
 

Fig. 4: View 2 of the MCS. Enables defining and 

reviewing the path for the team and loading the 

mission plan onto the individual vehicles. 

 

 
Fig. 5: View 3 of the MCS. The view for starting 

mission execution and monitoring mission 

execution. 

  
The designed formation control method includes 

elements from virtual structures, leader-follower, 

and behavioral methods. Each vehicle implements 

three behaviors; path following, obstacle avoidance, 

and formation preservation. Path following is the 

default behavior. Five cooperative strategies were 

implemented to handle constraint violations and set 

the right behavior onto each vehicle.  

The vehicles switching behavior based on what 

happens in real time makes it difficult to prove the 

validity of the formation control method analytically. 

Therefore, simulations and field tests have been 

conducted to test the method. The logical reasoning 

behind why the implemented cooperative strategies 

should yield successful formation control is 

presented in this section. First, an argument is made 

for the validity of the formation control method in 

the case where the vehicle team is exposed to equal 

current, wind, and wave forces. It has been 

established that the path generated for each vehicle 

has the same length and shape and that the desired 

speed is identical. Further assumptions are: 

 The vehicles are homogeneous with similar 

vehicle dynamics. 

 The motion controllers on the vehicles are 

equal. 

 The vehicles are in formation and have the 

same heading before mission execution. 

 The generated mission is feasible. 

 

The conclusion to be drawn from this is; if the 

vehicle’s start mission execution at the same point in 

time and respond equally to the forces they are 

exposed to, their mission progress will be identical, 

and the vehicles will complete the mission while 

staying in formation. 

The second case to consider is the case of the vehicle 

team being exposed to non-uniform external forces 

causing a violation of TC1, and the following 

assumptions are made in addition to the assumptions 

stated in the previous case: 

 The mission progress sent by the vehicle is 

continuously updated and gives an accurate 

representation of the vehicle’s mission 

progress. 

The master’s wait period is sufficient for a 

slave to get back into the formation in the 

Initial testing of the MCS and the formation 

control method, in particular, was performed through 

simulations with the LAUV simulators. The 

simulations were conducted first and foremost to 

validate the cooperative strategies used in the 

formation control method in a controlled 

environment before proceeding with field testing. 

Two of the tests are shown in the following.  In the 

case that the desired constraint violation did not 

occur naturally, vehicles were manually stopped and 

started, i.e., mission execution was aborted or 

resumed. All missions were conducted on the 

surface, without restrictions on the minimum 

distance between the vehicles. A number of case 

studies were performed.  

In Case 1, Slave B falls behind mission was 

designed to demonstrate CS1 and CS5. The mission 

entailed a three-vehicle team maneuvering north in 

parallel vertical lines. Maximum allowed deviation 

was set to 20%, which translates to ± 5.7m for both 

slaves. The vehicles’ paths and trajectories are 

depicted in Figure 6, and the vehicles’ positions and 

headings at times of interest are represented by 

rectangular markers. t = 0 marks the beginning of 

mission execution. 

 

 
Fig. 6. Case 1. Slave falls behind position. 



 
In Case 2, the master catches up to slave mission was 

designed to demonstrate CS4, however, during 

mission execution, CS3 was also activated. The 

mission objective was for two vehicles to maneuver 

north in parallel vertical lines. Maximum allowed 

deviation was set to 15%, which translates to ± 
4.2m. None of the constraint violations that occurred 

during mission execution were induced. Figure 8 

illustrates the LAUV in operation during Case 2 in 

the fjord.  

 

 
Fig. 7. Case 2. Master catches up on slave mission. 

 

 
Fig.8. Case 2 Mission. 

V. CONCLUSIONS 

This paper has presented a MCS application for 

controlling a cooperative system of LAUVs with 

mission planning and formation control capabilities. 

The application is a part of a system for operating 

cooperative AUV systems that consists of software 

and hardware from the LSTS. The MCS can function 

as the only command and control software in the 

system or in cooperation with Neptus, the command 

and control software offered in the LSTS-toolchain. 

The proposed mission planner has been tested 

through simulations and experiments were 

conducted in the Trondheim Fjord with a cooperative 

system consisting of two simulators and LAUV 

Fridtjof. The results are very promising, the MCS 

performed in accordance with its requirements, and 

the formation control proved able to control the 

formation during mission execution.  Verification 

and testing of the MCS, show that the mission 

planning capabilities of the application satisfy the 

application requirements and needs of a cooperative 

system. Although, the field tests revealed that the 

path generation should be made more complex to 

obtain paths that are better suited for physical 

vehicles. The formation control capabilities in the 

MCS are enabled by a formation control method 

with properties from leader-follower systems, virtual 

structures, and behavior-based formation control. 

The combination of properties from different types 

of existing formation control proved successful for 

cooperative LAUVs, and results from simulations 

and field tests show that the vehicle team’s formation 

was successfully maintained during mission 

execution. The experimental verification method 

allowed for testing before the for the formation 

method was completed, and collision avoidance 

should be designed and implemented before 

experiments with multiple physical vehicles are to be 

conducted. 

 

Further work will be to further develop the 

application to include more advanced mission 

capabilities.   

 REFERENCES 

[1] Li, X., Zhu, D., & Qian, Y. (2014, 10).  A 

Survey on Formation Control Algorithms for 

Multi-AUV System. Unmanned Systems. 

[2] Pinto, J., Dias, P. S., Martins, R., Fortuna, J., 

Marques, E., & Sousa, J. (2013). The LSTS 

toolchain for networked vehicle systems. 2013 

MTS/IEEE OCEANS - Bergen, (pp. 1-9). 

Bergen. 

[3] Madureira, L., Sousa, A., Braga, J., Calado, P., 

Dias, P., Martins, R., Pinto, J. and Sousa, J. 

(2013), The light autonomous underwater 

vehicle: Evolutions and networking, OCEANS 
Bergen, 2013 MTS/IEEE . pp. 1 – 6. doi: 

10.1109/OCEANS-Bergen.2013.6608189. 

[4] McMahon, J. and Plaku, E. (2016), Mission and 

motion planning for autonomous underwater 

vehicles operating in spatially and temporally 

complex environments, IEEE Journal of Oceanic 
Engineering 41(4). pp. 893–912. doi: 

10.1109/JOE.2015.2503498. 

[5] MahmoudZadeh, S., Powers, D. M., Sammut, 

K. and Yazdani, A. (2016), Toward efficient 

task assignment and motion planning for large-

scale underwater missions, International 
Journal of Advanced Robotic Systems 13(5). pp. 

1–13. doi: 10.1177/1729881416657974. 

[6] Pinto, J., Calado, P., Braga, J., Dias, P., Martins, 

R., Marques, E. and Sousa, J. (2012), 

Implementation of a Control Architecture for 

Networked Vehicle Systems, IFAC Proceedings 
Volumes 45(5). 3rd IFAC Workshop on 

Navigation, Guidance and Control of 

Underwater Vehicles, pp. 100 – 105. doi: 

10.3182/20120410-3-PT-4028.00018. 

 


