
Doctoral theses at NTNU, 2019:152

Doctoral theses at N
TN

U, 2019:152
M

arkus Peter Först

Markus Peter Först
Effects of Flow Dynamics on Bank
Erosion in Consecutive Meander
Bends.
A Field Study

ISBN 978-82-326-3902-1 (printed version)
ISBN 978-82-326-3903-8 (electronic version)

ISSN 1503-8181

NT
NU

N
or

w
eg

ia
n 

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

Fa
cu

lty
 o

f E
ng

in
ee

rin
g

De
pa

rt
m

en
t o

f C
iv

il 
an

d 
En

vi
ro

nm
en

ta
l E

ng
in

ee
rin

g



Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Markus Peter Först

Effects of Flow Dynamics on Bank
Erosion in Consecutive Meander
Bends.

A Field Study

Trondheim, May 2019

Faculty of Engineering
Department of Civil and Environmental Engineering



NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

ISBN 978-82-326-3902-1 (printed version)
ISBN 978-82-326-3903-8 (electronic version)
ISSN 1503-8181

Doctoral theses at NTNU, 2019:152

© Markus Peter Först

Faculty of Engineering
Department of Civil and Environmental Engineering

Printed by Skipnes Kommunikasjon as



- I - 

 

 

 

 

 

 

 

“However difficult life may seem, there is always 

something you can do, and succeed at.  

It matters that you don’t just give up.” 

 

Stephen Hawking  

Cambridge symposium, January 2012  
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Abstract 
 

The present dissertation describes the influence of natural alteration in the rivers flow regime on the 

change of morphology of a freely meandering river in Norway. It consists of a thesis and four attached 

research papers. 

Erosion along riverbanks is an important issue due to loss of soil, wildlife habitat, pollution or reservoir-

filling. The interest in the erosion processes, lies in the huge economical and environmental damage 

happening each year. Bank failure is mainly driven by mass failure and fluvial erosion processes.  

This thesis and research has focused on two different research sites. One site is a river bend located in 

middle Norway with some erosion protection near infrastructure. The other site is a meandering river 

located in northern Norway. This river is without erosion protection. Both sites are situated in 

unregulated catchments. This work investigates the fluvial erosion process in natural rivers at a 

microscale.  

Methods used, are Terrestrial Laser Scanner (TLS) in order to monitor changes in river bank 

morphology. The bathymetry has been mapped with Real Time Kinetic GPS (RTK-GPS) and Acoustic 

Doppler Current Profiler (ADCP) measurements. The sediment properties of a two layer river bank has 

been analyzed.  

The numerical model CONservational Channel Evolution and Pollutant Transport System (CONCEPTS) 

has been used to model the bank retreat at the river in middle Norway. The results showed that this 

model is not suitable for arctic climates.  

For the second site, transect across three meanders in the river have been measured with an ADCP as 

moving boat transects and stationary. The data has been post processed by distance averaging. This 

new method for post processing of flow data from an ADCP made it possible to identify different flow 

structures in nature. These flow structures were the high velocity cell, the secondary current and the 

secondary outer cell. Their behavior has been compared to the bathymetry of the river. The non-

conformity between water flows and bathymetry indicates that the bathymetry is strongly influenced 

by the hydraulic. Later calculations of shear stress from stationary ADCP measurements confirm this 

assumption. These data also showed a link between the movement of the high velocity cell and the 

appearance of the secondary outer cell. The observation of the secondary outer cell and the erosion 

and sedimentation along the cut bank leads to the assumption that the secondary outer cell reduces 

the fluvial erosion. Observed flash floods, which had no effect on erosion, might be explained by this 

phenomenon.  
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Introduction 
 

1.1. General Background 
Hiking in nature is for many people a very enjoyable free time activity. Along rivers banks the scenery 

is at its best when the river curls it natural way through the landscape. Scientists have been interested 

in this dynamic in a river for many years. The interest in the erosion processes lies in the substantial 

economic and environmental damage happening each year. Understanding the lateral migration of 

river systems has huge economic advantages. By understanding where and how a fast river will 

migrate, planning of new infrastructure projects such as roads and bridges can be improved. There are 

also projects in landscape architecture which are dealing with renaturation of river systems. This 

means removing erosion control and letting the river form its natural path again. Other applications 

are estimating whether existing infrastructures, cabins, roads or farm land, will become victim to 

future river migration and need special attention for erosion control.  

River migration in the context of this thesis should be understood as lateral movement of the river 

course over time in a floodplain. The movement happens by eroding the outside of a river bend (cut 

bank) and accumulating on the inside (point bar) of the riverbank. This will lead to cut offs of river 

bends and might give the river course a new direction. The term excludes all human intervention such 

as constructions along the river or regulating the water discharge. 

Nowadays there is a relatively good understanding of the concept of river bank erosion. River bed 

erosion and bank collapse are functions of hydraulic, bed material and its susceptibility to erosion 

(Hanson, 2001; Simon, 2000). There are also many numerical models which are able to predict river 

bank erosion and bank failure in river bends. The reason, that there are so many different models is, 

not only that there are countless factors which are involved in the river migration process, but also 

that the interaction between them is complex. Most of the models work within the limits that they 

have been developed for. Other models are able to predict erosion for a wider scope of application, 

but the results are more general. Therefore, the focus in river bank erosion research has shifted into 

smaller sub processes to identify single controlling factors (Bathurst, 1977; Julian, 2006).  

One challenging factor is the fluctuations in flow. In regulated rivers, most rivers in urban areas of 

Norway are regulated, fluctuations are caused by hydropower. However, in natural rivers these 

fluctuations are mainly driven by the climate. There are seasonal fluctuations, such as high discharge 

during spring because of melting snow, and weather related events such as rain storm evens. 

Researchers all over the world agree that these rain storms will become more severe and erratic within 

the next century due to global climate change. This raises the need for learning about how short, but 

intense flow will affect river migration.  

The other challenging factor is the flow structure. As long as the river course is straight, the water flows 

is symmetrically distributed across the river. The highest velocities are found in the middle of the river 

below the surface. At the point, when the current enters a bend, the momentum of the water with 

high velocities, pushes the current towards the outside. This generates a flow perpendicular to the 

main flow direction, known as secondary flow. This flow circulates from the inside to the outside under 

the water surface, goes down at the outside riverbank and back to the inside above the riverbed. Fine 

material, taken from the outside, follows the flow and accumulates along the inside of the river bend. 
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So far, this is the general understanding of the flow in a curved river course. However, in some spots 

the secondary current is deformed and another circular current appears at the outer bank, moving the 

opposite direction. This feature, which came again into focus in the last years, has been first discovered 

by Thorne and Hey (1979) and has been described by them as the outer-bank region. The outer bank 

region became a study object for Blanckaert (2001b, 2004a, b). While the discoverer thought that this 

outer bang region is supporting the migration of the river, newer experiments suggested that it slows 

down the erosion process along the cut bank.  

In order to combine the erosion process with a numerical model and later with the hydraulics, it was 

crucial to find sites where it was possible to observe the described factors. Two sites in Norway have 

been chosen. The first site was an unregulated river, with some erosion control and old bridge piles, in 

the middle region of Norway, near Trondheim. The second site was a natural river in the arctic region 

of northern Norway, near the town Tromsø.  

This work is mainly based on field measurements. Being outside in the Norwegian arctic nature 

motivated me to participate in the research community. Field work also means that one does not 

always get the conditions for measurements one wants. Anyway, the aim of this thesis is to look as 

close as possible into the hydraulic of a meandering river, measure the lateral movement as exact as 

possible, and combine these data. The result is another hypothesis of how the hydraulics interact with 

the cut bank I hope to provide enough data to build on for experiments in the flume or calibrating 

numerical models. 

 

1.2. Secondary outer cell 
The secondary cell in the outer-bank region is supposed to occur independent of consecutive bends 

(Bathurst, 1977; Thorne and Hey, 1979) and is only a consequence of the geometry (figure 01). 

However, the influence of the bank stability and erosion rate is a function of additional parameters, 

such as geomorphology, sediment load, aggregate stability, and temperature (Bertrand, 2009; Cantón, 

2009; Simon, 2010). Additionally, aspects like aggregate stability are functions of other soil parameters, 

too (Le Bissonnais, 1996; Wakindiki, 2002). The erosion triggered by the outer secondary cell has not 

been studied in nature so far. Further, the measurements to determine the outer cell region, which 

were taken by Bathurst (1977; 1979), are 40 years ago and instruments didn’t give the necessary 

resolution. Therefore, it was not possible to measure at the crucial points and thus a high bias to 

determine exact values for shear stress was given. However, the evidence for the outer-bank region 

was given at this time. 

The outer cell region has been subject for research in irregular intervals. In the beginning, flow 

measurements in the field were performed with mechanical instruments. More recently, intensive 

investigation of the outer cell region has been performed in the laboratory (Blanckaert, 2001a). 

Experiments with different flow regimes were conducted (figure 01). Since the investigations until now 

are done under two different setups, the role of the outer region cell is unclear. While Bathurst (1979) 

measurements of currents in a natural environment theorize an expected increase in erosion and bank 

retreatment, Blanckaert (2004a) supposes that the secondary outer cell creates a protective layer 

between the high velocity cell and the river bank. The most recent study links the secondary outer cell 

to an increasing secondary flow with an increasing Froude number (Farhadi et al., 2018).  
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All approaches to understand the complex currents in meander bends and its impact to river banks 

have been mainly a subject of discharge and hydraulic. The next step is to conduct investigations in 

combination with sediment and soil loss in natural river systems. Thereby it will be possible to quantify 

the bank erosion and the necessary shear stress. Additionally this thesis will determine the 

circumstances under which the outer cell occurs and what influence it has on erosion and bank failure. 

 

1.3. Objectives 
The objectives of the Ph. D are divided into research (a-d) and teaching duties (e): 

a) Find a way to measure the secondary outer cell in a natural river. 

b) Does the outer cell increase or reduce erosion and how does the outer cell influence the 

geometry in the river?  

c) Does the bathymetry of a river determine the flow or the flow the bathymetry? 

d) Provide input and test data as well as physical process description for further development of 

a 3D hydraulic and sediment transport model. 

e) The PhD candidate did a variety of teaching, such as laboratory exercises, practical field work 

and supervised one master students and two bachelor students.  

- Felix Hahn (2012): Terrestrial Laser Scanning in short-term surveying of steep riverbanks. 

Master Thesis. 

- Susanne Haas (2013): Mean Velocity and Secondary Current in River Bends measured 

with Acoustic Doppler Velocimetry and Acoustic Doppler Current Profiling. Bachelor 

Thesis. 

- Christian Mörtl (2013): Groundwater Flow and River Bank Erosion. Bachelor Thesis. 

Figur 1: Outer bank region recognized in natural river bend (left in Bathurst (1977)) and laboratory (right in 
Blanckaert (2001b)). 



- 4 - 

- Teaching 2012: Headworks and Sedimentation engineering (TVM-5160) 

 

1.4. Thesis in the framework of today’s research 
River migration has been subject to research for centuries. Climate change with change in weather 

patterns makes this topic as up to date as it has been before. The uttermost studies agree on more 

intense and erratic precipitation events within the next decades (Aalbers et al., 2018; Alfieri et al., 

2015; Kjellström et al., 2018; Moss et al., 2010), just to name a few of them. Therefore riverine systems 

are coming under increasing pressure due a changing environment. 

Kleinhans (2010) names different approaches in order to describe processes in nature. One is to 

observe the object directly in nature. This approach, however, might be limited because of dangers (e. 

g. drowning) or the boundary condition are not as desired (e. g. unsteady discharge). The next 

approach is a physical model. In a physical model the investigated process can be better isolated as it 

would be in nature. It is also possible to determine boundary conditions. On the downside, unknown 

factors which are influencing the process remain unnamed, not to mention loss of information by down 

scaling from nature to the model and vice versa. The third approach is numerical modelling. This has 

become more common with increasing calculation power of computers. Often these models are a 

further simplification and can only give result within the limits we create by choosing the model. 

Therefore it is necessary to do research with all three approaches and when the results finally 

converge, we will get into an understanding of natural processes. 

Parker et al. (2011) observed migrating rivers over a decade and derived the idea that, numerical 

models have to take into account that erosion and sedimentation is not a linear process. This is 

something many models take account for. There have been developed many numerical models which 

are used to calculate river bank erosion and sediment transport, such as HEC-RAS (Song et al., 2015), 

CONCEPTS (Langendoen, 2000a), or BSTEM (Klavon et al., 2017),. Other authors work with more 

generalized models on reach (Rüther and Olsen, 2007; Yang et al., 2018) or catchment scale (Grenfell 

et al., 2014; Lammers and Bledsoe, 2018). These numerical approaches have in common that they 

need a certain amount of data, depending on how many processes and variables are included in the 

calculations.  

The physical models have advanced with the advancement of measurement equipment. Experiments 

have been done in a straight flume in order to investigate sediment transport and development of 

channels and meanders, where laser measurements recorded changes in the geometry (Li et al., 2019; 

Redolfi et al., 2018). Curved flumes have been used in order to investigate flow in river bends. High 

precision measurements such as Acoustic Doppler Velocity meters (ADV) gave insight in the flow 

structure in bends (Blanckaert, 2003, 2004a; Blanckaert et al., 2012; Farhadi et al., 2018). Other 

experiments have been conducted in order investigate turbulence and shear stress in different kinds 

of setups (Biron et al., 2004).  

Flow and erosion measurements in rivers have been done for a long time. Here again, the advancement 

of measurement devices made way to new possibilities for investigation. Erosion pins are, or have 

been, a very common technique to measure riverbank erosion Lawler (1993) and Couper et al. (2002). 

Advantages are that erosion pins can be applied in a range of different fluvial environments, and are 

cost-efficient. The newer versions can detect bank retreat within the order of millimetres. 



- 5 - 

Disadvantages are the spatial sampling resolution since this is a point-specific technique. Furthermore,  

this is an intrusive method and measurements might therefore be effected by other erosion pins. Jugie 

et al. (2018) combined these pins with Surface for Motion (SfM) photogrametry. Submerged pins might 

vibrate or generate local turbulence and pins on the riverbank might intercept eroded material which 

is moving downslope. The use of Light Detection And Ranging (LiDAR) in airborne survey over large 

areas has been applied recently (Milan et al., 2010). However, its application is limited when surveying 

vertical or near-vertical structures. This limitation can be overcome by using a Terrestrial LiDAR 

(Terrestrial Laser Scanning, TLS). As a non-intrusive method, it avoids the physical impact of the 

measurement device at investigated ground. Additionally, it collects a high amount of measurement 

points. This setup results in a dataset with a much higher resolution, compared to e.g. the above 

mentioned erosion pins (Day et al., 2013a, b; O'Neal and Pizzuto, 2011; Resop and Hession, 2010; 

Wheaton et al., 2010) and hence a more detailed insight into the sediment balance of a riverbank 

(Nasermoaddeli, 2008).  

The Acoustic Doppler Current Profiler (ADCP) became accepted as measurement device for many 

different applications within hydrology. The two main companies, SonTek and RD-Instruments, build 

ADCP devices in different sizes and configurations. They have usually three to four ultrasound beams 

to measure the water velocity and direction by the sound distortion from the reflected soundwave. 

The so called Doppler Effect. This made it possible to measure water velocities in different depth 

simultaneously in the water. Therefore they were used in the beginning to measure discharge instead 

of mechanical measurement with a current meter. However, researches started using them to analyze 

the raw data and took a closer look into the flow structure (Barua and Rahman, 1998; Muste et al., 

2005; Muste et al., 2004a; Muste et al., 2004b; Szupiany et al., 2007) and sediment transport (Guerrero 

et al., 2017).  

Others methods to investigate the flow structure are Acoustic Doppler Velocimeters (ADV). They are 

based on the same principle as the ADCP, the Doppler Effect, to measure the water velocity. The 

difference is, that they have a very small sampling volume (< 1cm2) in comparison to ADCPs, which 

measure the whole water column. The area of applications for ADV are therefore limited. On the other 

hand ADV can measure with a sampling frequency of 200Hz. Therefore, they are often used in the 

laboratory for near bed measurements (Groom and Friedrich, 2019) or turbulence measurements 

(Biron et al., 2004; Farzadkhoo et al., 2018; Leng and Chanson, 2018). But they can also be used in 

small rivers. Schnauder and Sukhodolov (2012) studied the turbulence around vegetation in a small 

river with ADVs. Sukhodolov (2012a) obtained turbulent flow characteristic for a short river reach.  

Due to the changing weather patterns it will be increasingly more important to understand flood and 

flash flood events. Kasvi et al. (2017) conducted ADCP measurements during a nine-day long flooding 

period in a meandering river. It was possible to visualize the normal flow patterns such as high velocity 

cell and secondary cell in the bend. The outer secondary cell, however, has not been described.  

This work is mainly about case studies in nature and builds on the experience and research which have 

been mentioned. Changes of the river bank morphology will be measured with a Terrestrial Laser 

Scanner in order to avoid disturbance by the measurement method itself. This work will provide a new 

methods for analysis of ADCP data in order to get better insight in the flow structure of natural river 

bends. These two methods will be combined in order to explain erosion patterns. Some of these 
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structures seem to prevent erosion during single flood events. Results from flow data and erosion will 

can be used in different numerical models.  

 

1.5. Outline of the Thesis 
The thesis divided into 5 chapters plus references and the appendix. Chapter 1 gives an introduction, 

explains the objectives of this work, and puts it into place between other researches done. Chapter 2 

gives an overview over the research sites and explains the methods used to gain the data. Chapter 3 

gives a summary of published papers during the PhD. In chapter 4 the conclusions will be presented. 

Chapter 5 describes ongoing work and gives an outlook into future research possibilities based on this 

work. In appendix A, a copy of the publications is presented. Appendix B presents all transects 

measured during the field work to give a complete insight in the flow structure of three consecutive 

river bends. 
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2. Research Methods 
 

2.1. Research Campaigns 
There have been conducted four research campaigns. The first one in middle Norway from autumn 

2010 to spring 2011. The other three have been conducted in northern Norway during the short 

summer period in 2011, 2012, and 2013. The last one was the shortest and lasted only three weeks. 

Both sites are shown in figure 02. 

 

Figure 2: Map over Research sites. Breivikselva in Northern Norway and Forra River in Middle Norway. 

 

2.2. Description of the research sites 
This thesis contains investigations at two different sites in Norway. The first one is located in middle 

Norway near Trondheim, the second one is located in the northern part near Tromsø. Both rivers are 

unregulated. However, while the river Forra near Trondheim has some erosion control, the course of 

river Breivikselva near Tromsø is natural with no erosion control. 
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The river Forra (catchment nr. 124.AA0) is a tributary to Stjørdalselva, which has a couple of tributaries 

itself. The catchment area covers around 600 km2 with a field length of 49 km. The land use around is 

mainly farm land and some urban infrastructure, which made it necessary to protect parts of the river 

bank against erosion. The climate is subpolar (Cfc) with less extreme temperatures between summer 

and winter.  

The valley infill is post glacial stratified fine-grained sediment which was deposited since the last glacial 

maximum (Lyså et al., 2008). The discharge is continuously monitored by the Norwegian Water 

Resources and Energy Directorate (NVE) at Høggås Bridge, which is located about 10 km upstream 

from the investigated river bank. The discharge has been scaled to fit the larger catchment. The 

measured discharge and the scaled discharge are shown in figure 03. The data shows that from mid-

November to end of January, the discharge is very low. This is due to snow where the precipitation is 

stored and released in spring during snow melting. This happens for a short time end of January and 

later on form mid-March.  

 

Figure 3: Discharge for Forra river between September 2010 and April 2011. The blue line shows data from the 
station Høggås Brigde, the orange line are scaled discharge at the research site.  

The river Breivikselva (catchment nr 203.2B) drains to the sea about 4 km downstream from the 

investigated reach at Breivikseidet. The catchment is 164 km2 with a field length of 19 km. Nearly 60 % 

of the catchment are barren mountain areas. This makes the discharge sensitive to water input such 

as rain events or increased snow melting when the sun faces rocky areas. The climate is subarctic (Dfc) 

and therefore the temperature difference between summer and winter more extreme.  

Breivikeidet is a typical fjord valley which has a thick layering of sediments that were formed by infilling, 

emergence, incision, and terracing during the last deglacial-postglacial period. The contribution of 

sediment to fjord valleys in northern Norway is driven by the glaciation and deglaciation. During the 
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glaciation stage, the fjord-valley stage, the sediment distribution was steered by a fjord-glacier and the 

sediments, composed of till and glaciofluvial sand and gravel, were deposited at or close to the glacier 

margin. At this stage the glacier is an outlet glacier with direct contact to a marine environment and 

fine sand, silt, and clay are deposited on the fjord floor beyond the glacier margin. During the 

deglaciation, the retreat of the glacier, sediments composed of sand and gravel were delivered to the 

head of the fjord by glacier-fed rivers (Corner, 2006).  

The low relief and fine sediment supports the development of meanders. Bayous of different age can 

be seen as residuals of former river movement. River bed sediment samples and under water 

observations showed that the upstream part of the reach was dominated by smaller gravels whereas 

the downstream part was exposed to three dimensional bed forms. 

The water level has been measured by two water loggers at the investigated reach. One upstream of 

the investigated reach and one downstream. The logger have been installed each year to begin the 

campaign and removed over winter time. In 2012 there were technical problems, which resulted in 

just one logger (upstream) for the first half of the campaign. The water level from the upstream logger 

is shown in figure 04. One can see that in the beginning of June during the 2011 campaign the snow 

from the surrounding mountains is still melting. This leads on one hand to a rather high water level 

early in the campaign. On the other hand, it shows a daily fluctuation, which degrease over the 

summer. These small fluctuations are caused by increased snow melting when the sun heats the rocks 

during the day. The year after, the main snow melting was earlier and the river, Breivikselva, had a 

constant lower water level. Again, the fluctuations from snow melting during the day are recorded.  

 

Figur 4: Water level during the field campaigns in 2011, 2012, and 2013.  

 

The discharge has been measured during the first campaign in 2011 for different water levels in order 

to create a rating curve (figure 05).  
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Figur 5: Discharge rating curve created during the first field campaign in 2011. 

 

2.1. Setup of Field Measurement 
All research was conducted in the field, in natural rivers. This makes the setup of the measurements 

the first challenge. While some measurements are just well known methods, such as taking and 

analyzing sediment samples, others are more challenging such as fixed measurements with an ADCP 

or even three ADVs simultaneously.  

2.1.1. Sediment properties 
For the first campaign soil samples have been taken for analyses of critical shear stress, texture, and 

total organic content (TOC). For the measurement of critical shear stress, a vane shear stress meter H-

60 from GEONOR has been used. The sampling has been done direct in the field.  

For further analyses of soil properties, the samples were sieved down to 2 mm grainsize. Sieving 

showed that there were nearly no grains (3 – 5 per 140 g sample) larger than 2 mm. Afterwards, 10 g 

of air dried material were taken for further processing. Each sample was treated with H2O and 35 % 

hydrogen peroxide solution (H2O2) and heated to 50° C in order to remove organic matter. In 

preparation for further grain size analysis samples were dissolved in H2O and 50 ml of sodium 

hexametaphosphate (NaPO3)6. This solution was shaken for at least twelve hours at 160 rpm. For the 

final texture analyses the laser diffractometry was chosen as method, due to better reproducibility 

(Beuselinck, 1998). For the analyses a Coulter LS 230 was used with a particle size analysis range from 

0.04 µm to 2000 µm. Three runs, each 120 sec for each sample were done using the Fraunhofer optical 

model.  

 

2.1.2. Terrestrial Laser Scanning  
For all erosion measurements a terrestrial laser scanner (TLS), Topcon GLS-1000, has been used 

(Momm et al., 2011). The scanner has a range up to 330 m with a single point accuracy of minimum 4 

mm at a range up to 150 m. There has been used four georeferenced targets during the scans in order 

to get the lowest georeferencing error (Coveney and Stewart Fotheringham, 2011).  Every site was 
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scanned from at least two angels to cover also areas which were out of sight, due to a shadow effect 

from obstacles. These scans were put together with the standard software for this laser scanner 

(Topcon ScanMaster) and exported as point cloud.  

These point clouds showed single points which have to be regarded as artefacts. These single points 

created during the scan have been removed by a density filter. The basis of the filter has been provided 

by Point Cloud Library (PCL 2013). The filter projected a sphere with the radius R around each point 

and counted the amount of points within this sphere. If there has been a certain amount of neighbour 

points N within this sphere, then it was defined as good point, otherwise it was regarded as outlier 

(Brodu and Lague, 2012; Lague et al., 2013). After a manually inspection whether the point cloud was 

still coherent, it became clear that larger part of vegetation and dead wood also met the criteria for 

valid points. Some parts of vegetation could be removed by a colour filter. However, most part of it 

needed to be removed manually. This has been done with ArcScene©. 

 

2.1.3. Bathymetry 
Bathymetry measurements were conducted with the ADCP from Sontek (M9). This has been equipped 

with a differential GPS. The measurement range for the M9 is between 0.3 and 60 meters. Parts of the 

river, which were shallower than 0.3 m were measured with a RTK-GPS. Also, all nearly horizontal areas 

were measured with a RTK-GPS, such as the point bars. The riverine geometry was measured with a 

terrestrial laser scanner. The combination of the three data sets led to a detailed DTM of the river 

reach. 

 

2.1.4. Moving ADCP 
In order to get reproducible transects, a cable way was rigged up. The cableway consisted of a rope 

which was fixed in pulleys on either side of the river. The pulleys itself were fastened with a tension 

belt over a wooden support system at the ground (figure 06).  

The Streampro© ADCP was mounted in the middle. Thus it was possible to pull the ADCP steady over 

the river. For each transect the ADCP was pulled over the reach four times, two times from left to right 

and two times from right to left. In order for a measurement to be valid, it had to have less than 5 % 

of invalid bins.  

All transects have been georeferenced at the mounting point for the cable lines. Thus it is possible to 

measure the same positions with changing environmental parameters.  
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Figure 6: Setup of the moving boat cableway. 

 

2.1.5. Stationary Measurement Setup (ADCP and ADV) 
A platform system was built to make it possible for fixed measurements with the ADCP and later with 

ADVs in the river. In order to make the platform mobile, to measure different transect and stable at 

the same time, the platform was mounted on a double rope system. The ends of the guiding ropes 

were fixed in the ground with tension belts and adjusted in height with the wooden support system 

(figure 07). On the platform, the RTK-GPS was mounted direct above the ADCP sensor. The ADCP 

housing and the sensor were mounted onto moveable rods. So it was easy to adjust the height, to get 

the sensor only 2-3 cm into the water. Just enough to keep it under water during the measurement by 

having least drag from the water. This kept the measurement station extremely stable.  

This setup worked so well, that this platform was also used in a later campaign for ADV measurements. 

The platform had to be modified to mount two down looking and one side looking ADV (figure 08). The 

ADVs were mounted on vertical rods. These three rods were fixed in place in guide fillets at one side 

of the platform. Holes in the rods with a distance of 10 cm to each other and a screw through one of 

the holes stopped the bars in the wanted depth. The distance between rods on the platform were 

adjusted so the ADV measuring volumes were 0.5 m apart. Additionally, the rods with the probes were 

fixated with attached slanted rods connecting them to the downstream side of the platform. The 

fixation through the slanted bars helped to minimize the vibrations the probes experienced due to 

increasing drag with depth. Another mounting point with a cantilever connected to the ground 

reduced swinging from the platform itself.  
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Figure 7: Streampro© ADCP mounted on a platform for fixed boat measurements. RTK-GPS is mounted above the ADCP sensor. 

 

Figure 8: Field setup for ADV measurements. Three vertical rods, where the ADVs are attached to. Three slanted rods eliminate 
vibrations at the probe. Mounting platform with ADVs are additionally stabilized with a cantilever beam. 
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2.1.6. Stationary ADCP Measurements 
For stationary ADCP measurements the ADCP (Streampro©) was mounted on the platform (figure 07). 

The ADCP has a sampling rate of 1 Hz. The measurements were taken for a duration of minimum 600 

sec to ensure that enough data was collected to calculate a reliable average (Barua and Rahman, 1998; 

Guerrero and Lamberti, 2012; Muste et al., 2004a). This amount of data was reached after about 570 

sec by the approach of the normalized mean square error (NMSE) to 0 (figure 09). This is necessary to 

filter noise which is produced by vibrations of rolling, pitching and rotating of the ADCP.  

Further post processing is described in the respective chapters. Stabilizing  

 
Figure 9: Variability of average velocity over time 

 

2.1.7. Fixed ADV measurements 
Velocity and current measurements in Breivikelva were carried out with three synchronized ADVs. 

Each positon of the ADV probe has been measured with an RTK-GPS.  

The probes where connected via serial-USB adapter and an USB hub to the computer. This limited the 

data transfer. Therefore, the sampling frequency was at set 50 Hz, since higher sampling frequencies 

leaded to gaps in the data. The sampling period was three minutes, which resulted in datasets of 9000 

values for each probe and measurement.  

The goal was to measure complete transects with the ADVs. However, the current in the river created 

so much drag, that measurements were not possible. This was due to both safety reasons, and that is 

would have been impossible to stabilize the platform. Therefore, the transects are incomplete. It is for 

the same reason that measurement deeper than 1 meter below water level don’t exist.  

 

2.2. Post processing of point clouds 
The post processing of the point cloud has been a challenge. The first challenge has been vegetation. 

To avoid problems with the cover vegetation the TLS data have been cut at the soil horizon, which is 
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about 15 cm below the upper surface. The dimensions of the point clouds have been defined by a 

vertical cut at 2.8 m a. s. l. as the upper limit. The lower limit is the water line at that moment when 

the scan has been taken. The point clouds showed single points which have to be regarded as artefacts. 

These single points created during the scan have been removed by a density filter. The basis of the 

filter has been provided by Point Cloud Library (PCL 2013). The filter projected a sphere with the radius 

R around each point and counted the amount of points within this sphere. If there has been a certain 

amount of neighbour points N within this sphere, then it was defined as good point, otherwise it was 

regarded as outlier (Brodu and Lague 2012). The filter has been applied with radiuses R from 0.01 to 

0.15 m in steps by 0.015 m. The amount of neighbour points have been defined for N = [5 10 5 20 25]. 

Points with less than N neighbour points have been deleted. In this way for each point cloud, 50 filtered 

point clouds have been created. These point clouds have been plotted. Afterwards they have been 

visually inspected whether enough outliers have been removed and whether the point cloud was still 

coherent. The result was very different and no special pattern concerning the settings was visible. 

Vegetation and dead wood has been removed manually. This has been done first in the 2D view of 

ArcGIS© and 3D of ArcScene©.  

Further post processing has been done in Matlab©. For each patch, a mesh has been created with a 

cell size of 0.005 m. On this mesh, the point clouds have been projected and a digital elevation model 

(DEM) has been created. From this DEM the slope gradient in degree, has been calculated and plotted 

(figure 04). The slope gradient ∇F is defined by 

∇𝐹 =
𝜕𝐹

𝜕𝑥
𝑖̂ +

𝜕𝐹

𝜕𝑦
𝑗̂ 

Thus, the gradient in degree (Gdeg) has been calculated with  

𝐺𝑑𝑒𝑔 = atan (√(∇𝐹𝑥)2 + (∇𝐹𝑦)2) ∗
180

𝜋
 

 

2.3. Post Prosessing ADCP 
All ADCP measurements have been conducted with the Streampro© from RD-Instruments. The in-

house software, WinRiver, from RDI does not provide much post processing. WinRiver II allows to 

change environmental parameters, in case they have been forgotten or wrong during the setup of the 

measurement. Therefore, a Matlab script has been written in order to import raw data into 3d-

variables. After reprocessing with ASCI-mode enabled in WinRiver II (classic mode) Data contains raw 

data, header contains filename, date and columns output will be a 3d variable with each ping on the 

next level.  

Stationary measurements have been georeferenced with the GPS coordinates which were taken during 

measurement (Chapter 2.1.5). The further post processing in Matlab is described in more detail within 

the published papers.  
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3. Summary of Papers 
 
The research was planned to start with the geomorphological features to the hydraulic of the river. 

Therefore, the summary of the papers is presented in chronological order.  

3.1. (C) Markus Foerst, Nils Rüther, Felix Hahn, 2011: Evaluating erosion 

processes of a two layer river bank.  
This paper focuses on the numerical modelling of a river bank in the middle part of Norway, Trøndelag. 

The riverbank consists of two layers with different properties. This site has been chosen, since a layered 

riverbank is quite common along lowland rivers in Norway. The lower part is fine layered material, 

deposited during the retreat of the ice sheets, which covered Scandinavia during the last Ice Age. 

(Corner, 2006; Solberg et al., 2008). The layers have been analyzed for texture and shear stress. The 

riverbed was characterized by hollows and bars, which were covered by pebbles. These properties 

have been used in the Model CONCEPTS (CONservational Channel Evolution and Pollutant Transport 

System), which has been developed by Langendoen (2000a). This model was chosen due to a focus on 

soil texture, shear stress and erodibility within the soil layers. Additionally it allows different vertical 

soil layers within a riverbank. The intention was to model and evaluate stream-corridor restoration 

designs, especially to evaluate the long-term stability of stream corridors (Langendoen, 2000b). It is 

made to compute one-dimensional flow simulations of straight channels. The bathymetry has been 

smoothed out, since the model has difficulties to model river with bars and multiple channels. To verify 

the results from CONCEPTS the actual erosion has been measured with a Terrestrial Laser Scanner. The 

first scan were done in autumn 2010 and the second scan in spring 2011. This means, that there has 

been a thick layer of ice during the winter following with snow smelting and high discharge in spring 

2011. The laser scan measurements showed erosion all along the river bank (figure 10). The results 

showed, that the model strongly underestimated the erosion in this reach. The main reason for that is 

that CONCEPTS does not take into account the erosion due to freezing and thawing process (Bertrand, 

2009). Processes which play a huge role in Scandinavia, where ice covered rivers during winter season 

are common. One other reason might be the fact, that a smoothed riverbed neglects the fact that 

higher current in channels along the river bank occur and therefore the shear forces are 

underestimated. The outcome from this paper lead to two main conclusions for the ongoing work: 

First, comparison of erosion over winter time will be excluded and second this numerical model is not 

suitable for rivers in cold climates.  

 

Figure 10: Showing the erosion along the northern river bank of Forra river, which occurred between autumn 2010 and spring 
2011. Green is vegetation, yellow are stone blocks from erosion control and red is erosion. 
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3.2. (A) Markus Foerst, Nils Rüther, 2012: Post Processing Methods of Moving 

Boat ADCP Measurements Time Averaging vs. Distance Averaging.  

This paper describes a new method for post processing of Acoustic Doppler Current Profilers (ADCP) 

data. The most common use for ADCP instruments is the measurement of discharge. Thereby the 

instrument measures the water flow in different depth in the water column one time per second (1 Hz). 

The result is depth of the water, the flow velocity and the flow direction in the water body. From these 

information the discharge is calculated. Since these data also contain information about the flow 

structure it is possible to map the secondary flow in a river bend. The procedure for discharge 

measurement is to measure the same transect four times. In the beginning and the end of each 

transect, the measurement should be stationary for 10 to 15 seconds to get an estimate of the 

discharge at the edges. Additionally, the velocity of the moving ADCP is normally varying with the 

position along the transect. However, water flow in natural rivers can always be regarded as turbulent. 

This leads to the problem that point measurements along a transect will not reveal the general flow 

structure across the river (figure 11). Therefore, it is necessary to average single pings in order to 

remove outliers.  This paper describes different methods how to post process the measured data in 

order to get a picture of the averaged flow structure.  

 

Figure 11: Results of different post processing methods. A: distance averaging, B: time averaging, C: time averaging with 
moving window 50 % overlap, D: time averaging plotted against ping number. 

This new method made it possible to discover the outer secondary cell in a natural river. The 

investigated reach at Breivikelva has been measured by that method. There has been taken 72 

transects along three meanders. The complete set of results are shown in appendix B.  
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3.3. (D) Markus Foerst, Nils Rüther, 2012: Mean and Turbulent Flow Structures in 

Two Consecutive Meander Bends.  

This paper focuses on the flow structure, which became more visible due to the post processing 

method described in the preceding paper. All 72 transects, which have been measured with the ADCP, 

have been evaluated based on the existence of secondary flow, high velocity cell, and erosional 

channel in the bathymetry. Based on this, the behavior of the mean velocity cell and the secondary 

current has been described in relation to change in bathymetry along the reach. The location of change 

in flow is shown in figure 12. It shows that the high velocity cell, secondary current and the river 

channels don’t adapt simultaneously. Additionally, the paper shows also that it was possible to detect 

the secondary outer cell in a natural river. Comparison of the occurrence of the secondary outer cell 

and the high velocity cell suggested that the outer cell is more likely to appear, when the position of 

the high velocity cell is more towards the point bar. The most relevant transects have been presented 

in this paper. The complete set of transects along the reach is presented in appendix B.  

 

 

Figur 12: Changing of flow characteristics: 1) disintegration of secondary current (end of bend), 2) bathymetry – shift of 
channel (after inflection point), 3) movement of high velocity cell (after beginning of bend). 
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3.4. (B) Markus Foerst, Nils Rüther, 2018: Bank Retreat and Streambank 

Morphology of a Meandering River during Summer and Single Flood Events in 

Northern Norway. 

This paper combines the erosion measurements along the outer river bank with the terrestrial laser 

scanner and the flow measurements with the ADCP. The erosion has been measured over three years 

at the beginning and the end of each summer. The water level has been monitored continuously. The 

river had eight moderate high water events in between the scans of the river bank. During the 

measurement campaign in the second year, we had six moderate high water events in between the 

scans. During the third campaign, the river had one moderate high water event and one extreme high 

water event. It was possible to get a scan just before the first and the second high water event and 

directly after the second high water event. The significance of bank retreat has been statistically 

verified. In the first two years, both times, the results showed a bank retreat up to 0.5 meters. The 

analyses of the scans in the third year, showed little retreat during the first high water event and no 

significant change after the extreme high water event. A possible explanation came up by looking into 

the hydraulics. The formation and existence of an outer secondary cell has been observed and 

documented in a natural meandering river at bends with high curvature and relatively steep 

riverbanks. Based on the observations and calculations from Blanckaert (2004a) the secondary outer 

cell seems to have a dampening effect on river migration. This effect can be explained in three steps 

(figure 13) of erosion and sedimentation. First (I), one can observe a steepening of the riverbank, which 

leads to an appearance of the outer secondary cell. At the second step (II), bank material is falling from 

the top due to the dampening effect and is accumulating in front of the bank toe. This flattening leads 

to the decay of the outer secondary cell and the dampening effect disappears. During the third step 

(III), this accumulated material is eroded, returning the riverbank back to its vertical shape, restarting 

the cycle in step I. 

 

Figure 13: Schematic drawing of the three steps of the erosion process. Step I shows a steep riverbank, triggering the secondary 
outer cell. Step II falling material flattens the riverbank and destroys the secondary outer cell. Step III eroding the fallen 
material and creating a steep riverbank. 
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4. Conclusions  
 

This PhD has been planned and conducted as a field work. Two sites have been chosen as research 

objects. The first site, Forra, is an unregulated river but has partial erosion control and other 

constructions along its bank. It was chosen as it had a two-layered river bank, which is common for a 

lowland river in Norway. Hydraulic data was collected with an ADCP and the bathymetry was mapped 

with an RTK-GPS and ADCP. The cut bank was carefully mapped with a Terrestrial Laser Scanner two 

times for comparison. The first time in autumn 2010 and the second time in spring 2011. Additionally, 

the soil has been analyzed for its structure and stability. These data have been used as input to the 

channel evolution model “CONCEPTS”.  

The second site, Breivikselva, has been chosen as it is unregulated and the river course dynamic is not 

altered by any constructions. The change of the river bank has been measured seven times with a 

Terrestrial Laser Scanner over three years. The bathymetry has been mapped with an RTK-GPS and 

ADCP. The change of water level has been monitored by two water loggers, one upstream and one 

downstream of the research site. The structures in the flow have been measured by moving ADCP 

measurements at 72 transects. In addition, 102 stationary ADCP measurements along 21 of these 

transects were taken. For the analyses of these moving boat transects, a new post processing method 

has been developed in order to visualize details of the flow structure. From the stationary 

measurements, the shear stress at the riverbed has been calculated. The conclusions of this thesis can 

be summarized by the following: 

a) The secondary outer cell has been recognized by Bathurst (1977) in a natural river bend. This 

cell has been measured decades later by Blanckaert (2001b) in a flume in the laboratory. It has 

never been measured directly with an ADCP in nature. The developed method of distance 

averaged ADCP data, made it possible to visualize these flow structures.  

b) Besides the outer secondary cell, the course of the high velocity cell and the secondary current 

has been mapped along the meander bends. These structures are not conforming to the 

bathymetry of the river. Shear stress values showed an increase where erosion features are 

present and a decrease in areas where no erosion is recognized. This leads to the assumption 

that the flow structure is forming the river morphology, rather than that the river morphology 

is creating flow structures. 

c) Data analyses of change in river bank morphology and change of water level showed that 

single, rapid flood events have little influence on bank erosion in river bends.  

d) This can be explained by the existence of the secondary outer cell. As Blanckaert (2011) 

predicted, the secondary outer cell creates a protective layer between the high velocity cell 

and the river bank. When the secondary outer cell starts to decay, the high velocity cell moves 

outwards (Farhadi et al., 2018) and erodes material from the river bank. Data from this field 

work are therefore in agreement with the experimental data.  

e) The attempt to model river bank erosion in Norway with CONCEPT was in vain. The results 

showed that the amount of snow during winter has too many variables for a channel evolution 

model, which has been developed for warmer climates. 

f) In addition to the detailed flow data, a detailed digital terrain model has been created. These 

data can be used for calibration and developing numerical models. 
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g) Measuring river bank dynamics with laser scanning is time consuming and has its limits when 

a lot of vegetation exists. However, laser scanning creates the possibility to measure changes 

in morphology to under a centimeter in accuracy. 

This thesis does not answer all questions but has rather created additional islands of knowledge in the 

sea of uncertainty, from which others will continue to explore.  
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5. Recommendations and further research 
This PhD leaves room for further and more detailed investigation in the future. This chapter presents 

unpublished work (5.1 and 5.2) as well as ideas for further research by others. 

5.1. Further analysis of ADCP data 
In Foerst and Rüther (2012b), it has been shown that averaging ADCP data over distance yields in better 

results for flow structure analysis. The post processing method for Moving Boat ADCP measurements 

have been refined. For each transect it has been calculated the optimal averaging distance. This has 

been done by calculating standard deviation  for east and north vector for each transect. Both 

standard deviations have been added. This has been plotted for each distance averaged figure (14). 

Additionally the figures shows the amount of averaged pings for the respective averaging distance.  

 

Figure 14: Determination of optimal averaging distance. 

 

The minimum error for distance averaging has been calculated by 

𝑥 = √(𝜎𝑒𝑎𝑠𝑡
2 + 𝜎𝑛𝑜𝑟𝑡ℎ^2) 

The optimal averaging distance has been determined  

when  

x = minimum 

and  

amount of averaged pings > 6 
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Though, this approach might yield in a statistically optimal distance, it has not been used for the search 

for the secondary outer cell. Therefore, it is necessary to evaluate whether the averaging is appropriate 

to the flow structure one wishes to study. For this research, an average distance of 0.75 m has been 

used.  

 

5.2. Stationary paper: Flow characteristics in two consecutive meander bends of a 

low land river with focus on shear stresses by stationary ADCP measurements. 

(in prep.) 

 

5.2.1.  Introduction and Aims 
The understanding of erosion and sediment transport is important to understand the migration of a 

river in space and time (Couper et al., 2002). This migration process is a complex coaction between 

many different processes such as hydraulic (Abad et al., 2008; Afzalimehr and Rennie, 2009; Bathurst, 

1979), freezing and thawing (Bertrand, 2009; Couper et al., 2002; Lawler, 1993), stratigraphy 

(Langendoen, 2008), and pore water pressure (Fox et al., 2007; Luchi et al., 2011). The migration can 

be observed at different scales, such as bend, reach, or river scale (Couper et al., 2002; Kavvas, 1999; 

Kleinhans, 2010).  

Within the last decade the measurements methods of fluvial systems have significantly improved. 

Moving boat and stationary Acoustic Doppler Current Profiler (ADCP) measurements have been 

conducted in large rivers to understand the water flow and its influence in erosion and sediment 

transport (Guerrero and Lamberti, 2012; Sime et al., 2007; Szupiany et al., 2007; Thorne, 1981; Thorne 

and Hey, 1979; Thorne et al., 1985). The water flow is influenced by different and complex factors such 

as bathymetry, discharge variability, or submerged vegetation (Langendoen et al., 2005; Schnauder 

and Sukhodolov, 2012; Sukhodolov and Sukhodolova, 2010). Further, the water flow determines the 

shear stress (τ) (Biron et al., 2004). Shear stress is the force, which affects the particles. If the force is 

big enough, the particles break from the riverbed and get in suspension. Therefore, the water flow just 

above the riverbed, the shear layer, is a driving factor for erosion and river migration. Shear stress 

cannot be measured directly. However, the shear stress can be calculated from a variety of methods 

(Biron et al., 2004) such as reach average shear stress (Babaeyan-Koopaei et al., 2002), by log law of 

the wall (Rodríguez et al., 2013; Schlichting, 1979), turbulent kinetic energy (Kim et al., 2000) or with 

the Reynolds number (McLelland and Nicholas, 2000). Shear stress is the force, which attacks material 

and if the force it big enough, the material will be removed, called erosion. A result of erosion are 

scours due to local increase of energy (Ardies et al., 2002). Main focus on this has been within 

constructions where scouring can end in fatal results (Fisher et al., 2013). Therefore, the number of 

investigations of scouring in natural river systems has been limited. Some work has been done by 

(Wooldridge and Hickin, 2005) in braided rivers and in delta channels by (Beltaos et al., 2011; Eilertsen 

and Hansen, 2008).  

The aim of this paper is to investigate the shear stress, estimated by stationary ADCP measurements. 

Furthermore, the flow characteristics in two consecutive meander bends of a lowland river in northern 
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Norway in detail will be described and its influence on the geomorphology and scour development 

(Eilertsen and Hansen, 2008; Wooldridge and Hickin, 2005). This paper will also present further 

possibilities of moving boat ADCP measurements and stationary ADCP measurements and discussing 

this two methods for spatial scaling of the water flow (Couper et al., 2002). 

5.2.2. Research site and measuring instruments 
The river Breidvikelva is located in a glacial affected valley in northern Norway, Troms. This part of the 

river has no artificial embankment and high migration activity. The reach consists of three consecutive 

meander bends with a straight inflow (Foerst and Rüther, 2012a). The first bend has a radius of 

curvature (RC) of 110 m. The RC of the second and third bend are 60 m and 85 m respectively (table 

01). The sinuosity for second and third bend is 4.7. The second and third meander bend form meanders 

of high-amplitude (Abad and Garcia, 2009; Parker et al., 1983). The investigated reach has a length of 

1100 m and a slope of Sw=0.36 ‰. The location beyond the Arctic Circle within a mountainous area, 

combined with the proximity to the sea makes it behave like a mountain river (McKean and Tonina, 

2013), with sediments, expected for a low land river. The riverbed consists mainly of loose silt and 

sand. Cobbles appear in lower layers. They built the surface on some spots along the slip-off slope and 

upstream the first bend. The river cuts into a system of former alluvial terraces of different heights. 

The riverbanks show therefore different altitudes from 3 m a. s. l. up to 25 m a. s. l. Though the 

proximity to the ocean is given, no backwater effect from the tides has been observed. The lower 

banks, the left side and partly the right side of the river, are covered with vegetation: birches, scrubs 

and fern. The dead and living vegetation disrupt the water flow in these areas. Additionally have 

pockets developed along the erosion slope. The higher banks are located at the right side in the 

beginning of the first bend and all along the outer bend in the third bend. They consist of loose material 

without stabilizing vegetation. These riverbanks are strongly affected by erosion.  

The geometry has been recorded with a Topcon® RTK-GPS system. The submerged riverbed has been 

measured with the Sontek© M9 ADCP. In a first step, points in between the measured M9 ADCP 

transects have been created by interpolation. This was necessary to calculate the riverbed. In a second 

step, the GPS data have been added and the geomorphology has been calculated by linear 

interpolation. 

The water flow has been recorded with moving and stationary ADCP measurements. The ADCP used 

in this study for the measurement of the hydraulics is a Streampro© ADCP from RDInstruments. The 

basic functions of an Acoustic Doppler Current Profiler (ADCP) are described in various papers such as 

Muste et al. (Muste et al., 2004a), Szupiany (Szupiany et al., 2007), RDInstruments (RDInstruments, 

2011), and Shields Jr et al. (Shields Jr et al., 2003). The Streampro© ADCP has been equipped with a 

pitch and roll sensor as well as a compass to compensate all movements and to have a site wide 

orientation. The sample frequency, the so-called ‘ping’, has been about 1 Hz. Each ping gets velocity 

data over the depth and consists of up to 30 vertical measurement points (bins). The size of the bins 

has been between 3 and 6 cm in depth, depending on the maximal depth of the water level and the 

amount of valid bins.  
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Figure 155: Location of analyzed blocks and measured flow. 

 

Stationary measurements have been conducted with the Streampro© ADCP. The ADCP has been 

mounted on a platform, which was strained on a double cableway over the river (figure 07). 

Measurements have been done at 20 transects (sTr01 – sTr20) containing 5 to 8 measurement points, 

overall 131 stationary ADCP measurements. The distance between transects were in average about 10 

m and the distance between the stationary measurements 2 m. These measurements have been 
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conducted in the first and second bend and the transition between them (figure 15). This mounting 

made the system flexible enough to move the platform along the cables and move the complete 

mounting system to the next transect within a short time. Another advantage is that there is no 

disruption of the water flow or riverbed by mounting it on piles in the river. Additionally, the cableway 

has been stable enough to hold the transducer without movements. The position of the ADCP was 

determined with the Topcon© RTK-GPS system, mounted over the transducer on the platform. This 

RTK-GPS, which gives an absolute accuracy of less than 1 cm horizontally and 1.5 cm vertically. The 

GPS was programmed to record every 60 seconds the position. All records at one measurement point 

show the same coordinates clearly within the accuracy. Additional visual performed checks did not 

show any movements. The stationary ADCP setup can be regarded as stable and therefore no 

corrections for a swinging ADCP during the post processing are needed (Guerrero and Lamberti, 2012). 

On a single station, the water flow was recorded for at least 600 pings. The analyses of the normalized 

mean square error shows (figure 09), that this is enough time to eliminate single fluctuations for 

averaged flow characteristics (Barua and Rahman, 1998; Guerrero and Lamberti, 2012; Muste et al., 

2004a). 

5.2.3. Analysis and Results 

5.2.3.1. Bathymetry  
The bathymetry shows typical point bars and deposition banks in all three meander bends. The thalweg 

is about 1.1 m a. s. l. at the beginning of the reach and 0.7 at the end. Along the outer bend of all three 

meanders, the bathymetry shows 5 distinct scours. While in the first bend only 1 scour developed bend 

2 and 3 have each 2 scours (figure 16). They depth of the scours reach from -0.5 to 0.5 m a. s. l. The 

deepest scour is at the apex of the second bend. This is also the only scour, which lies at the apex. In 

the first bend, the scour appear near the inflection point to the second bend and in bend 3 the scours 

appear before and after the apex.  

The scour in the first bend begins after the apex of the bend and it takes course along the outer bend 

until the inflection point. There it has its maximum depth at 0.5 m a. s. l. It is weakly developed in 

comparison to the second bend, which has its maximum depth below -0.5 m a. s. l. In contrast to the 

upstream bend the scour of the second bend is stronger developed and begins after the apex. There 

the channel of the second bend begins in the apex and ends about 30 m after the apex, where the 

channel becomes shallower again. At the inflection point between the bends, the riverbed becomes 

symmetric with similar slope angles on both riverbanks.  

For each scour has been the scour/reach ratio (S/R) calculated (Eilertsen and Hansen, 2008). The S/R 

has been calculated for mean water level (WL) at this reach (Table 01).  Galay (1987) states that the 

S/R ratio should not exceed 2.5. This is valid for the mean WL. Similar results have been yielded from 

Eilertsen and Hansen (2008). This publication, however, shows differences in the depth of the thalweg. 

Since the thalweg in this reach shows a linear slope and the dune development is negligible in this 

calculation, the S/R is direct proportional to the scour depth. Comparing the RC with the scour depth, 

it becomes obvious that the deepest scours appear at the bends with the smallest RC. 
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Figure 166: Overview of scours. 

 

Table 1: Overview over scours (figure 16). 

Scour Number 1 2 3 4 5 

Scour depth under mean WL (m) 1,45 2,49 2,34 1,89 1,74 

Thalweg under mean WL (m) 1,15 1,15 1,15 1,15 1,15 

Scour/reach ratio mean WL 1,3 2,2 2,0 1,6 1,5 

RC 110 60 60 85 85 

 

5.2.3.2. Stationary Measurements 
The amount of collected data made it necessary to measure over a period of 3 week. This leads to 

alternating water levels during the measurement period. To keep the alternating effect on 

measurements as low as possible and since the focus has been on the outer bend no measurements 
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at the point bar side of the river bends have been conducted. For the analyses it was necessary to 

create blocks of consecutive transects with similar hydraulic conditions. The transects have been 

analyzed block wise (figure 15). Within each block, the hydraulic conditions (table 2) have been similar.  

Table 2: Water level at the moment of stationary measurements. 

Block 
Number 

Transects Water 
Level 

1 16, 17, 18 1.38 masl 

2 10, 11, 12, 13, 14 1.34 masl 

3 7, 8  1.41 masl 

4 3, 4, 5, 6 1.28 masl 

 

The shear stress (τ) has been calculated for the transects by extrapolating the vertical velocity profile 

to the bottom, using the log law of the wall (Dittrich, 1998; Eilertsen and Hansen, 2008; Rodríguez et 

al., 2013). The log law of the wall states, that the velocity shows a logarithmic gradient within the last 

20 % of the distance from the wall. For this reason, only those stations have been analyzed and 

compared, if at least 2 bins have been measured within this 20 % distance from the riverbed. Stationary 

measurements, where the blanking zone at the bottom was bigger than 20 % of the total depth, have 

been ignored for the calculation of the shear stress. The shear stress (τbed) has been calculated with 

the “log law of the wall” by 

𝜏𝑏𝑒𝑑 = 𝜌𝑢∗
2 = 𝜌 (

𝑢𝑏𝑒𝑑Κ

𝑙𝑛(
30𝑦

𝑘𝑠
)
)

2

 N m-2 

with karman constant (Κ) = 0.41, density (ρ) = 1000 kgm3, distance from river bed (y) , roughness (ks), 

and near bed velocity (ubed) (Schlichting, 1979). The roughness (ks) has been calculated by 

ks = 3*d90 

with  

𝑑90 = (
26

𝑆𝑡𝑟𝑖𝑐𝑘𝑙𝑒𝑟 𝑘
)

6

 

with Strickler k = 12.  

Block 1: The hydraulic at block 1 has been recorded by a water level of 1.38 m. a. s. l. This corresponds 

to a discharge of about 12 m3s-1.The bathymetry at the end of the first meander shows a steady, flat-

angled slope toward the erosion bar. A 50 m long channel has developed from stationary transect 16 

(sTr 16) downstream. The high velocity cell moves from the outer side (sTr 18) towards to the point 

bar (sTr 16). The secondary current is well-developed and clear visible (figure 15). The stations closest 

to the outer bank show much weaker secondary currents and a significant drop in water velocities. The 

magnitude of the secondary current decreases with the outflow of the bend. Short after the apex at 

transect 18 the average angle between the upper layer (black) and the lower layer (grey) has been 

11.3°, and had a value of 9.2° at transect 17 and 8.9° at transect 16. The shear stress (τ) at the outer 
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stations (transects 16 and 18) show values of 1.65 N m-2 and 0.2 N m-2 while towards the point bar the 

value is 2.72 N m-2 (figure 17). 

 

Figure 177: Calculated shear stress. 
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Block 2: These transects cover the transition between bend 1 and bend 2. At transect 14 it bathymetry 

gets steeper towards the erosion side and is the channel which developed downstream of block 1. It 

shows a wide high velocity cell, which stays on the right side. A shift to the left side begins in 

transect 10, just before the flow enters the second bend. At this time, the thalweg has already moved 

longer to the left, so that the high velocity cell is not aligned with the bathymetry. While the secondary 

current is still clear visible at the beginning of the transition (transect 14), it nearly disappears at the 

inflection point (transect 13) and remains very weak within this block. At transect 11 in this transition 

zone the shift occurs from a clockwise secondary current to the counter clockwise secondary current 

(figure 3). In this transect, stations 1 to 3 show a weak, but clear counter clockwise current, while the 

outer stations 4 to 5 still show residues in the current from the first bend.  Such a splitting is, however, 

not visible in the high velocity cell (figure 2). The shear stress (τ) has been calculated at the same 

position at transect 11 and transect 10. It increased from 0.9 N m-2 at transect 11 to 2.83 N m-2 at 

transect 10.  

Block 3: The water level has been at 1.48 m a. s. l. during these measurements. The bathymetry shows 

that the channel along the erosion bar is slightly wider as it is 25 m further downstream. The highest 

velocities have been measured above the deepest position of the transect. The secondary current is 

well developed in both transects. Transect 7, which lies further downstream the bend than transect 8, 

has a stronger secondary drift (figure 3). The average angle in transect 7 (α=12.3°) is about 1.5° more 

open as it is in transect 8 (α=10.7°). The shear stress (τ) has been calculated only at the stations 

upstream of the channel (τ=1.02 N m-2 and 0.57 N m-2) and in the beginning of the channel (τ=0.55 

N m-2 ) (figure 17).  

Block 4: The bathymetry in this block shows a more distinguished channel as it has been in bend 1. 

Downstream of transect 3 this channels deepen and get their maximum depth at the head of the bend. 

The mean velocity has it maximum above the thalweg in transects 4-6. In transect 3 the high velocity 

cell moved towards the point bar. The maximum velociy lies at between 0.45 and 0.49 ms-1 (figure 15). 

The secondary current exists, however, there is a change in the magnitude from transect 6 to 3. In 

figure 15 shows the transects 6 and 5 having  an average angle between surface and bottom direction 

of 7.1° and 7.65° while in transect 5 the angle reduces to 5.8° and is nearly disappeared in transect 3 

with only 2.3°. The outer position in transect 3 shows values which do not fit into the pattern of the 

transect. This is due to the location in an out washed pocket. The bed shear stress (τ) decreases from 

the point bar side to the outer bank. The exception is station 6 in transect 3, which is located directly 

upstream of the narrow, deep channel. At this position, shear stress (τ) increases again (figure 17).  

4. Discussion 

This paper analyses the flow structure with stationary ADCP measurements over a reach of 250 m 

which contains two consecutive meander bends. The river is not regulated and due to the landscape 

and catchment properties, the water level reacts quickly (Foerst and Rüther, 2012a). This made it 

impossible to monitor the flow under the same conditions for all measurements. The measurements 

have been classified into 4 blocks were the water level has been at the same level. Block 1 shows the 

outflow of the first meander, block 2 shows the crossover from the first to the second meander. Blocks 

3 and 4 show the first third of the second meander bend. The shear stress (τ) has been calculated with 

the logarithmic law of the wall.  
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The water cuts a channel in the riverbed. It reaches from the end of bend 1 along the transition zone 

over the inflection point. Another channel has been cut at the beginning of bend 2 and is considerable 

deep around the apex. Such scours have been reported before in natural rivers, e. g. Thompson (1986), 

or in flumes e. g. Rodríguez (2013). The high velocity cell before both cases has moved out of the 

thalweg toward the inner bank and is therefore not aligned with the channel. The high velocity crosses 

the river at the transition, while the thalweg continuous at the right side (block 2). An alignment of 

high velocity cell and thalweg happens after the inflection point. Before the flow enters the second 

bend, another channel is formed on the outer side. A similar phenomena, however, has been measured 

with the moving boat ADCP (Foerst and Rüther, 2012a) at this position. That the main flow is not 

aligned with the bathymetry has been described in flumes (Blanckaert, 2001b) and natural rivers 

(Sukhodolov, 2012b) before.   

5.2.4. Conclusion 
In this study, the bathymetry has been measured with RTK GPS and ADCP. The water flow has been 

measured with stationary ADCP. The amount of averaged data (570 pings) makes the stationary 

measurements less susceptible to outliers. From the stationary measurements the shear stress has 

been calculated with the log law of the wall. In addition the flow at each measurement station has 

been plotted.  

The water flow is aligned with the bathymetry (transect 18 and 17) and creates low shear stress 

(τ=0.2 N m-2) at the outer station in transect 18). In transect 16 the main water flow leaves the thalweg 

and the shear stress (τ=1.65 N m-2 at the outer station in transect 16) increases. The same happens 

later before bend 2 at transect 11 and transect 10. The highest shear stresses occur where the 

bathymetry deepens (s0 < sbed).  

The flow structure showed all expected features, such as high velocity cell and secondary current. It 

was not possible to visualize the secondary outer cell. For smaller flow structures such as the outer cell 

circulation (Blanckaert, 2004a; Thorne, 1981) a spatial resolution of minimum half of the expected 

structure is necessary. This is the advantage of moving boat measurements, as described in chapter 

3.2. and 3.3. The stationary ADCP measurements confirm the observations from the moving boat ADCP 

measurements, that the bathymetry, high velocity cell, and secondary current are not aligned during 

the transition between two meander bends (Foerst and Rüther, 2012a). 

Two observations were made. Firstly, the features of the flow, secondary current and high velocity cell 

are not always aligned with the bathymetry. Secondly, the shear stress is lowest when the flow is 

aligned with the bathymetry and vice versa. This leads to the assumption that the bathymetry is rather 

a result of the flow conditions, rather than the flow is a result of the bathymetry. 

 

5.3. ADV measurements 

It has been shown that ADV measurements in natural rivers are limited due to the sensitivity to 

movements. While Schnauder and Sukhodolov (2012) did measurements in a narrow river, it was 

possible to use a fixed bridge. As this work shows, the effort on already slightly larger rivers is much 

higher. Nevertheless, the higher sampling frequency and the much smaller sampling volume yields in 

much more detailed information about turbulence.  Focusing in the future on areas close to the river 

bank will give a better understanding of which processes occur in boundary layers. 
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5.4. Ground Water Connections 

Part of the objective of this thesis was to supervise a bachelor student regarding ground water flow 

towards these meanders. This work neglected this topic, even it is known as another, important feature 

for sediment transport (Eekhout et al., 2013; van Balen, 2008). It would also have gone beyond the 

scope of this thesis. However, groundwater seeping into the riverbank is a major factor to destabilize 

a riverbank.  
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ABSTRACT:  The present study presents data of a strongly erosive reach in a river in central Norway. It 

gives insight in the erosional behavior of river bank sediments which consist of two different layers of 

typical fjord valley infillings (Hansen et al., 2009). The river, Forra, in the east of Trondheim, Norway, is 

a meandering river with relicts of infrastructural buildings. The side-slope of the riverbank is partly 

protected by trees and anthropogenic positioned rocks. The investigated part of the side- slope adjoins 

over most of its length to farmland. The investigated reach is located after a geometrical contraction due 

to bridge piers and characterized by severe bank erosion.  At this location, the side erosion rate reaches 

0.5 - 1 ma-1. The erosion processes at this site are very complex and a combination of freezing and 

thawing triggered erosion, bank mass failure and seepage erosion. The geological setup of the riverbank is 

divided into two different layers. The lower layer consists of laminated clay and is the aquiferous layer. 

The upper part consists of cobbles with gravel and sandy infillings.  

The overall goal of the present study is to investigate the role of different parameters, such as grain size, 

moisture, temperature and the influences of different hydraulic conditions, contributing to bank erosion 

and mass failure. The secondary goal of the study is to evaluate in how far the one-dimensional (1D) 

numerical software CONCEPTS (CONservational Channel Evolution and Pollutant Transport System) 

(Langendoen, 2000) can be used for bank failures within such complex erosion processes. For typical and 

extreme combinations of discharges and water levels, the stream bank erosion rate was computed for 

scenarios with different stratigraphic compositions and vegetation covers, i.e. cropland or natural 

woodlands along the riverbank.  

CONCEPTS was built in the National Sedimentation Laboratory at Agricultural Research Service of the 

US Department of Agriculture. The model assumes the flow in stream systems to be one-dimensional 

along the centerline of the channel. It computes the flow as a function of time simultaneously at a series 

of cross sections along the stream using the Saint Venant equations. Sediment-transport rates are a 

function of flow hydraulics, bed composition, and upstream sediment supply. The numerical model 

calculates total-load sediment-transport rates by size fraction from a mass conservation law, and taking 

into account the differing processes governing entrainment. For cohesive bed material, erosion rate is 

calculated following an excess shear-stress approach. The deposition rate is based on local shear stress 

and particle fall velocity.  

The computed bank retreat rates were compared to bank retreat observations based on field 

observations, DEMs gained from laser scanning and air photos. The simulated results showed that bank 

failures due to gravity seem to play a significant role mainly for dedicated combinations of stratigraphic 

setups. However, CONCEPTS has limitations with freezing and thawing processes, which leads to an 

underestimation of bank failures. 
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1 INTRODUCTION 

 

Areas which are used for agricultural use are rare in Norway and mainly limited to floodplains. In a 

natural river the riverbed meanders within a valley and riverbank failure is a common event throughout 

all natural riverbeds. The erosion and sedimentation processes are balanced. However the human 

interference usually destroys the balance by changing the river flow sealing the riverbank e. g. building 

bridges. In this case there might be an extraordinary amount of erosion, which leads to loss of fertile soil 

and if the erosion process continues in similar velocity the nearby road will also be spilled away within 

the next future. Processes which lead to bank failure are different. Thorne (1981) distinguishes between 

two basic processes of bank erosion. One is dominated by mass failure due to gravity and the other is 

mainly driven by fluvial erosion process. Most investigations have been conducted based on shear stress, 

which attacks the soil and sediment at the river bank. Exceeds the shear stress (τ) from the river the 

critical shear stress (τc) of the riverbank, fluvial erosion takes place. However, there are various factors 

influencing erosion and finally bank failure. There are freezing and thawing (Bertrand, 2009), 

groundwater pressure (Fox et al., 2007), texture and stratigraphy of the riverbank (Teixeira and Misra, 

1997; Thorne, 1981; Wakindiki, 2002), and vegetation (Langendoen et al., 2005; Pollen-Bankhead, 2009; 

Simon et al., 2006).  

This study presents preliminary results of an ongoing project which has recently started. This project is 

focused on bank erosion in meandering rivers and the overall goal is to quantify the amount of sediments 

eroded either by hydraulic processes or by the climate. CONCEPTS (CONservational Channel Evolution 

and Pollutant Transport System) has been developed to model bank retreat and bank failure in a channel. 

Its main application is in streams which have been anthropogenic altered. CONCEPTS is based on 

hydraulics and channel morphology. It calculates a 1D flow through a straight channel. In the literature 

this model is used for narrow stream channels were the height – width ratio > 0.04 (Fox et al., 2007). 

Further validation of the model have been done in climate zones were the mean temperature is always 

above 0° C and therefore no storage of the water and no freezing and thawing effect takes place. The 

focus in this study will be to model a stream channel with a height – width ratio < 0.02. 

 

2 DESCRIPTION OF THE STUDY AREA 

 

The research area is called Forraselva and is located about 40 km  east of Trondheim, Norway (figure 

1). Most parts of the riverbank are protected according to future use of waterpower. The water flow, 

however is not yet regulated and shows natural variations. The climate is a Dfc after Köppen-Geiger with 

a main precipitation from July until December. The yearly average is about 900 mm. During winter most 

of the precipitation occurs as snow and therefore water is held back until snowmelt around March to April. 

This leads to two water high stands; one in spring during snowmelt and one in autumn during the higher 

precipitation. While the discharge during spring flood is steadily high, the discharge oscillates during the 

autumn. The lowest discharge is in August with an average of .4 m
3
s

-1
. 

The valley infilling is a typical Norwegian fjord valley infilling with changing layers of clay, silt and 

sediments of coarser compositions described by (Corner, 2006; Solberg et al., 2008). Along the research 

site the river cuts into marine-glaciomarine sediments which are covered by fluvial-deltaic sediments. The 

lower layer (marine-glaciomarine sediment) consists of clay layers interlaced by fine silt layers. The 

upper layer (fluvial-deltaic) consists of much coarser material ranging from fine sand up to cobbles. The 

amount of the clay and silt fraction is negligible. The covering soil layer is a 30 cm thick anthric horizon 

(Ap horizon) which is cultivated with crops. The riverbed consists of pebbles with a diameter of between 

10 and 25 cm. Pebbles up to 50 cm occur sporadically. The riverbed shows no movement.  

150 m upstream a geometrical contraction due to bridge piers narrows the river. Behind the bridge piers 

is farmland adjacent to the river. Along the upper half the farmland is protected by vegetation. The 

unprotected riverbank between vegetation and artificially placed blocks downstream the riverbank 

experiences severe erosion over a distance of about 150 m. The susceptible part of the riverbank is at the 

transition from a right turn of the river into a left turn. However, since the turn to the left of the studied 

riverbank is protected by rocks and therefore not naturally developed the water flow hits the riverbank 

with more energy as it would in a natural developed meandering river system. 
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Figure 1  Study area in Nord-Trøndelag, Norway (source www.norgeibilder.no) 

 

2 METHODS 

 

2.1 Sampling 

 

Discharge has been monitored by NVE (Norges vassdrags- og energidirektorat) about 10 km upstream. 

The water level has been measured at the bridge piers with a global water logger WL 16. Precipitation has 

been measured by a weather station (ID IUNDEFIN65) about 3 km west of Fornes. Shear stress 

measurements in the layers have been conducted with a vane shear stress meter H-60 with standard vane 

(20 x 40 mm).  

Samples were taken at different places to insure that the layers are homogeneous along the site. The 

samples were sieved down to 2 mm grain size. Sieving showed that there were nearly no grains. 

Afterwards samples were air dried and then 10 g were taken for further processing. Each sample was 

wetted with H2O and 35 % hydrogen peroxide solution (H2O2) was added. The samples were cleaned of 

organic matter by putting them into a water bath at 50° C. This treatment was necessary since fine roots in 

sample 1 and 11 were left after sieving and should be removed for better results. In preparation for grain 

size analysis samples were dissolved in H2O and 50 ml of sodium hexametaphosphate (NaPO3)6. This 

solution was shaken for at least twelve hours at 160 rpm. For the texture analyses the laser diffractometry 

was chosen due to better reproducibility (Beuselinck, 1998). For the analyses a Coulter LS 230 was used 

with a particle size analysis range from 0.04 µm to 2000 µm. Three runs, each 120 sec for each sample 

were done using the Fraunhofer optical model.  

The water velocities have been measured with an ADCP (StreamPro from Teledyn). It was stationary 

installed about 1 meter from the riverbank. The velocities during beginning of snowmelt were between 

1.2 and 1.6 ms
-1

. The moving bed test which can be performed with StreamPro ADCP is a measurement 

of the riverbed and its sediment movement. This has to be done to determine if it is possible to use the 

bottom track function to measure the distance the ADCP has moved during measurements. On the other 

hand is it possible to measure if actual erosion takes place under the present hydraulic conditions.  

 

2.2 Cross sections and terrestrial laser scanning 

 

The cross sections were recorded with a differential GPS. The riverbanks were scanned with a laser 
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scanner (GSL 1000 from Topcon). In 2010 the first scan was done with about 80,000 and in 2011 with 

more than 1,000,000 scan points. Three target points have been positioned. The target points were the 

same in each year to insure a perfect overlying of the two scans. The post processing has been done in the 

first step with ScanMaster software from Topcon. Afterwards data have been imported into ESRI ArcGIS. 

The slope inclination and the volumina difference (figure 4 and 5) were calculated with the 3D analyst of 

ArcGIS.  

 

2.3 Modeling with CONCEPTS 

 

The model CONCEPTS (CONservational Channel Evolution and Pollutant Transport System) was 

chosen due to a focus on soil texture, shear stress and erodibility within the soil layers. Additionally it 

allows different vertical soil layers within a riverbank. The intention was to model and evaluate 

stream-corridor restoration designs, especially to evaluate the long-term stability of stream corridors 

(Langendoen, 2000). It is made to compute one-dimensional channel flow simulations. The reach is 

relatively straight in comparison to other reaches modeled with CONCEPTS before. This is an advantage, 

since CONCEPTS is limited to straight channels. Further limitation is the morphology of the cross 

sections, which are not allowed to have a second descent away from the thalweg. That means, that 

hollows, pools, bars, and secondary channels within the riverbank and the floodplain cannot be calculated. 

The single points in the cross sections have been manually removed in order to receive cross sections of 

the river with increasing riverbanks away from the thalweg.  

The discharge has been the hourly discharge measured by NVE. This data series was used during the 

same time interval of the laser scans. The manning value was chosen from Chow (1959). The shear 

strength was directly measured with a shear vane meter.  

 

3 RESULTS AND DISCUSSIONS 

 

3.1 Riverbank and hydraulic 

 

All samples for grain size analyses showed the same texture within the same layer (figure 3). This result 

fits into the fjord fill stratigraphy (Corner, 2006). The lower layer represents the laminated 

glaciomarine/marine sedimentation and the upper layer the river delta foreset. Grain sizes between sand 

and medium gravel are missing and grain sizes bigger than medium gravel have been ignored. Grain 

sizes > 62 mm (coarse gravel) have been present. To insure, that these grain sizes are not influenced by 

the hydraulic the moving bed test has been conducted with the ADCP. This test makes sure, that the river 

bed is stable under the actual flow conditions. The velocity profile (figure 2) shows maximum velocities 

of about 1.6 ms
-1

 and 1.5 ms
-1

 close to the river bed. Taken into account, that the ADCP has a blanking 

zone of about 12-15 cm to the bottom, where no measurements are possible, the velocity at the gravel 

riverbed will be less than 1 ms
-1

.The moving bed test has been positive for the river bed, which is armored 

by the same cobbles as in the upper layer abundant. However, these cobbles will not be influenced by 

flow velocities of less than 1 ms
-1

 as they will occur at the bank due to the bank movement test. The 

cobbles which built the skeleton of the coarse layer have a volume of 90 %. This outweighs the cohesion 

of the layer. For the estimation of the manning value the cobbles have been taken into account (Chow, 

1959). The measured critical shear stress has been averaged for each layer. The difference between the 

upper and lower part in the clay layer has been about the double shear stress. The sand layer showed more 

homogeneous values. 
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Figure 2  Velocity profile about 1 m from riverbank over gravel riverbed. Velocity is averaged over 10 min 

recording. 
 

Table 1  Critical shear stress values measured in the field (averaged) 
 

 

 

 
 

Figure 3  Grain size distributions in the upper and lower layer as used in CONCEPTS 
 

3.2 Laser scan 

 

Visual inspections at Forraselva gave a first idea, about erosion rates and processes. During wintertime 

soil and groundwater is frozen which keeps the riverbank stable. Spots exposed directly to the sun show 

also little gravitational erosion. After snowmelt near-vertical tension cracks about 30 cm deep and 2 to 10 

cm wide appeared along the upper part of the riverbank. Similar observations have been made by Simon 

(2000). At Forraselva the tracks on the field are still very obvious. And if we assume that the distance 

from the field edge to the widest extent the farmer risks to drive with his tractor we can assume a bank 

retreat of nearly 1 meter within the last 6 month during winter. These observations are consistent with 

laser scan measurements.  

 Upper part averaged  Lower part averaged  Used  

Lower layer 77 kPa 37 kPa 57 kPa 

Upper layer 34 kPa 42 kPa 38 kPa 
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Figure 4  Comparison slope angel along the reach taken with terrestrial laser scanning 

 

 

After snowmelt in spring 2011 the riverbank looked very different from autumn 2010. Most of the 

erosion took place during spring. This can be seen in figure 4 were the laser scan has been taken short 

after snowmelt in 2011. Along the site two steep steps are developed. These are consistent with the two 

sediment layers. At the west end of the riverbank is the lower layer not visible as a step. This is due to the 

development of a pool, where the lower layer is further eroded as the upper layer. The riverbank 

experiences an undercut at this position. The riverbank from 2010 does not show the second step. Lose 

material from the upper layer fell and accumulated on the lower layer. In between the gravel sand, smaller 

gravel accumulates and the nearly vertical river bank gets a lower angle. This covers the lower layer with 

another sediment layer. In the beginning the cobbles from the upper layer help to trap the sand fraction. 

Whenever the water level rises over the fresh deposited sediment, the finer material is washed away and 

the bigger cobbles stay at the lower part. These cobbles will be removed with the next retreat of the clay 

layer.  

 

 
 

Figure 5  Erosion and sedimentation changes (Red: erosion, yellow: minimal erosion, green: 

accumulation/vegetation) 

 

 

The scanned surface of the year 2011 was subtracted from the scanned surface of 2010 using the ESRI 

ArcGIS tool CutFill to define spots of erosion and sedimentation (figure 5). The red areas show erosion, 

while the green areas show accumulation which in this case is an error due to the vegetation that had not 

been removed from the point cloud. The developed pool at the west end is missing, due to the water, 

which does not allow collecting scan points. Yellow and orange parts show only minimal erosion. This 

might be a bias due to the accuracy of the laser scanner, since the blocks downstream should not 

experience any measurable erosion. The developed pool at the west end of the erosion site is not shown in 

this figure. Limitations during the scanning and post processing were missing data in the 2011 scan due to 

a higher water level. The result is the white area on the lower border between the red and the yellow part. 
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3.3 Modeling with CONCEPTS 

 

The goal of using CONCEPTS was to model the bank retreat of a developed fjord valley river. Therefore 

some adaptations of the input data were necessary.  

 

 
 

Figure 6  Bathymetry of Forraselva, channels are developed in the west part, bars are developed in the middle and 

east part of the reach, 4flow from east to west. 

 

 

Soil texture was used as input data as described above. Hydraulic data have been taken as inflow from a 

time series from NVE. The cross sections were taken from the DGPS data and manually adapt to the 

requirements of CONCEPTS. Figure 6 shows that in this reach bars develop at the east end and in the 

middle part. Further a pool in the SW is part of the reach.  

Other input data were set to standard, as they have been in the default setup from the model and used in 

other simulations by the author (LANGENDOEN, 2000). CONCEPTS did not give any sufficient results 

with these input data. The annual sediment output has been less than 1 m
3
. Following reasons for this will 

be discussed. 

1. Soil or sediment: The riverbank consists of two layers of sediment, disregarding the 30 cm of anthric 

horizon. CONCEPTS seems to calculate with properties of soil. Soil has a certain structure which is one 

property to distinguish between soil and sediment. Other regions where CONCEPTS is used are covered 

with huge layers of paleosols. Due to the inherent structure and often organic content of soil, the behavior 

should be different as in a sediment layer with theoretically the same texture. This cannot be a reason for 

the total underestimation of the erosion, but might be worth further tests and calibrations. 

2. Cold climate and frozen rivers. During winter season in this climate precipitation is stored in form of 

snow and ice on the ground. Additionally even larger rivers freeze and this leads to a change from an open 

to a closed channel system. The water does not flow with a free surface during winter and still some 

weeks during snowmelt. The consequence is a change in hydraulic and therefore also a change of shear 

stress which interact with the riverbank. Since there are no measurements when exactly the huge retreat 

downstream happened it is not possible to give estimation whether this is possible to calculate with 

CONCEPTS. This would be possible if it happens after the river is totally ice free. Another possibility is 

that accumulating ice sheets scour into the riverbank. This explanation seems reasonable since direct 

above the artificial bank enforcement the erosion is biggest. Ice sheets would accumulate at this position 

and the friction along the riverbank would be biggest.  

3. Loose material which accumulates on the lower layer is not taken into account. Material from the 

upper layer falls down during the year. The slope of the upper layer is normally very steep (figure 4). This 
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material will not be transported until the water level rises. If the water level over a longer period is low, it 

is possible that the accumulation of this material gains an amount that this protects the lower layer. This 

overlying sediment will be transported by the river with a delay. This is a problem which is partly known 

and described by Fox et al. (2007) and unlike in steeper river gauges, where lose material is directly 

washed away. 

4. Available input parameter. CONCEPTS can be used with hundreds of input parameter. Most of them 

do not apply for this reach, such as tributaries and artificial structures. Others can be measured directly in 

the field such as critical shear stress, texture, discharge and others can be obtained from literature such as 

Manning values. Nevertheless there are more input data possible such as cohesion and suction angle. For 

the latter ones standard values were used, either default values of the program or taken from other 

examples.  

5. Geometry. The geometry of the cross section does not allow bars and pools. Therefore it was 

necessary to remove these bathymetry features. This show, that CONCEPTS will have problems with 

further developed riverbeds where pools and bars are a common feature. Narrow channels as they occur 

in semi arid areas are more active in terms of erosion and have not developed a stable river bed (Foerst et 

al. 2008).  

 

4 CONCLUSIONS AND OUTLOOK 

 

In this study, the soil erosion rate has been measured for a riverbank consisting of two postglacial 

sediment layers. These layers show totally different properties. While the upper layer consists of very 

coarse and coarse material, the lower layer consists of clay with very thin layers of silt.  

The laser scans show clear erosion. The main erosion took place at the downstream part of the reach. A 

pool has developed where the water flow divides into further downstream and backflow.  

The use of CONCEPTS has some limits. First, the relatively wide river with pools and bars has a 

different geometry as it can be used in CONSEPTS. Second, the sediment accumulation on top of the clay 

layer, which is not directly influenced by the water flow, is not taken into account by CONCEPTS. 

Similar results have been gained by Simon et al. (2000) while investigating behavior of bank failure due 

to prolonged rainfall. Third, the accumulation of snow and the snowmelt is difficult to simulate. Though it 

is possible to adapt the amount of discharge, the problem of totally frozen rivers was not sufficiently 

solved. Taken into account, that CONCEPTS is not designed for cold climates, but at least for different 

layers, it is still limited to simulate fjord valley fills. This is due to the fact, that the layers change rapidly 

and often show very different textures (Corner, 2006). 

Further work will be done during the next two seasons. The riverbank will be scanned in shorter 

intervals, especially before and after precipitation events, to get a better understanding of the impact of 

groundwater, rainfall, snow melt, ice sheets and water level on erosion.  
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Abstract 
The development of ADCPs made it possible to extend their use from discharge and bathymetry 

measurements to measurements of water flow. This paper focuses on post processing methods: This 

paper compares three possible averaging methods for moving boat ADCP measurements: Time 

averaging, time averaging with moving window, and distance averaging. Time averaging with moving 

window, at the moment the most common method, shows rather smooth data, which are useful for 

model calibration. The distance averaging methods show more detail within the flow structure. In 

this way it was possible to detect and visualize secondary currents and the smaller outer bend 

circulation triggered by the secondary current.  

Introduction and Aims 
Acoustic Doppler Current Profilers (ADCP) have been used in first place to measure water discharge. 

Over the years of development the measurement method became effective and reliable, and 

therefore economical to use. In addition, when measuring the water flow with an ADCP, the 

bathymetry for each measurement is recorded. For basic understanding of ADCP measurements are 

described by Gunawan, Sterling, & Knight (2010), Muste et al. (2004), RDInstruments (2011), and 

Simpson (2001).  Nowadays, scientists use the possibility to receive the raw data including the 

velocity vector for each cell. This makes the ADCPs a useful tool to analyse the velocity pattern and 

turbulence characteristics in rivers. Flow structure measurements usually are conducted by 

stationary ADCP measurements (Nystrom et al., 2007) or with Acoustic Doppler Velocimeters (ADV) 

(Abad et al., 2008). Latter one is more costly and more time consuming. ADCP measurements with a 

moving boat, however, make it easy to obtain a huge set of data along a cross section to measure 

velocities and flow directions. This method can also be used for measuring flow structures, such as 

main flow areas (Baranya et al., 2008). The disadvantage though is it was not possible to detect 

small flow structures by moving boat ADCP measurements. The purpose of this paper is to show, 

that it is possible to measure water flow with a much higher resolution using distance averaging post 

processing instead of time averaging post processing. Thus the data of 72 transects from a lowland 

river (Breivikseidet, W34 445098 7727911) in northern Norway have been analysed and post 

processed with a distance averaging method and a time averaging method. The reach is between20 

and 30 m wide and its discharge between 9 and 20 m3s-1. In this study two transects from two 

consecutive meander bends will be compared. More detail about this case study is published in 

Foerst and Rüther (2012). 



Post processing Methods for ADCP Data 

Data collection 

The ADCP sends an ultrasound ping with a frequency between 1 and 0.8 Hz while it is moving 

perpendicular to the thalweg. Each ping collects data about the depth, the water flow within a 

certain cell, and the movement of the vessel. While measuring, the velocity of the vessel must not 

exceed the velocity of the water; recommended is that the vessel moves with the speed of half the 

water velocity perpendicular to the main water direction (Muste et al., 2004; RDInstruments, 2011; 

Yorke and Oberg, 2002). This leads to different distances between single pings and therefore to 

different results depending on the post processing method. Further, it is necessary to record 

stationary at the beginning and end of the movement for 10 to 20 pings. This is necessary to get 

reliable interpolating for the discharge. In this study two transects from two consecutive meander 

bends will be compared. Figure 2 displays transect 23 and transect 64 on the left and right side, 

respectively. Transect 23 is from a right bend with the erosion bank on the left side and transect 64 

shows a transect from the consecutive left bend with the erosion bank on the right side. The 

difference in velocity and geometry are due to different post processing methods.  

Post processing – transects 

The ADCP was mounted on a trimaran connected by a rope to a mobile cableway (Foerst and Rüther, 

2012). In this way it was possible to collect data in different positions within a short time span. For 

each transect four measurements have been conducted. The direction and position of the moving 

boat were determined by bottom track and a digital compass inbuilt in the ADCP housing. The 

cableway made sure that the moving vessel measures along the same transect each time without any 

noteworthy divergence from the course.  

 

Figure 1: Boat course recorded (solid) and after projection (dashed); distance in m. 

First the technical problem of slightly downstream bowed course had to be removed. This was done 

by projecting the course and the water velocity vector in each bin on an imaginary straight line 

between the two suspension points from the cable way (figure 01). In the same way each velocity 

vector has been projected onto this plane from the taken transect. The bend at the west bank 

(erosion bank) is a technical issue, which occurs since the suspention point needed to be mounted 

significant higher than the suspention point at the east bank.  

Post processing velocities – distance averaging 

Distance averaging is based on the thought that pings within a certain area have to be averaged. 

Since it can be assumed that all four movements are on the same course it is possible to average 

across all movements. In this case the distance has been determined by 0.75 m; a value, which gave 



in the best overall results based on 72 transects. Criteria behind this evaluation have been a 

minimum of 4 pings within each 0.75 m and a minimum standard deviation (σmin) for both, standard 

deviation for the north velocity component (σNvel) and standard deviation for the east velocity 

component (σEvel) between 0.5 and 1.25 cm (equation 1) . Thereby it has been avoided that the 

averaging distance becomes too big, which would result in too few data to interpret. The vertical 

velocity component has not been taken into account. 

𝜎𝑚𝑖𝑛 = √𝜎𝑁𝑣𝑒𝑙
2 +  𝜎𝐸𝑣𝑒𝑙

2  

Equation 1: Definition for optimized σ 

The bathymetry shows a clear slip-off slope at the right bank (transect 23), and a distinguished 

erosion bank at the left side (transect 23); transect 64 the other way round. This is due to the 

geographical location in a right turn (transect 23) and left turn (transect 64).  

The main velocity is in the middle of the river and decreases to the banks. The velocity is nearly 

0 ms-1 at the erosion bank. Transect 23 shows one distinct high velocity cell, while in transect 64 the 

high velocity region is split into two. In transect 23 the high velocity cell is concentrated around one 

spot. Transect 64 has it more diffuse over a wider distance. The water flow shows a very well 

developed secondary current in transect 23, which goes along the bottom in point bar direction and 

moves from the point bar along the water surface. In transect 64, the secondary current exists, 

however, it is far weaker developed. In both transects the outer cell region (Blanckaert, 2004; Thorne 

and Hey, 1979) is visible and in the figure enlarged.  

The velocity vectors give a homogenous picture. Exceptions are the flow structure vectors at the 

riverbed. These show velocities which are not realistic and are regarded as outliers. 

Post processing velocities – time averaging 

Time averaging is also known as ping averaging. This means that consecutive pings are averaged. This 

can be done by averaging a certain amount of pings together or by a moving window with a certain 

percentage overlap. The average of consecutive pings results in distinctive columns. Therefore it 

shows the average over this time span. An averaging across the movements is not sensible, since the 

amount of pings is usually different between the single movements. Therefore figure 2 B-D shows 

movement 3 from transect 23 and movement 2 from transect 64. These have been chosen, because 

they were most similar to the distance averaging plot.  

Three different post processing and visualisation methods for time averaging are shown in figure 2. 

The chosen transects have been averaged over 6 pings (figure 2 B). This is similar to the average of 

the distance averaging method described above, except that only one movement is averaged rather 

than all four. There is no noteworthy difference in the bathymetry. Exceptional the left bank in 

transect 23. It looks like that there is the beginning of a horizontal ledge at the erosion bank, which 

does not exist. This phenomenon gets clearer in figure 2 D and is caused by the first and last 

stationary taken pings. In transect 23 the high velocity cell is overestimated. The contrast between 

low and high velocities is a bit higher than in the distance averaged transect. Transect 64 shows the 

opposite. The area of high velocity is smaller and the colour distribution looks smoother. The vectors 

for perpendicular flow show a less clear structure than before. Though in transect 23 the secondary 

flow is still recognizable, the outer region circulation is not detectable. In transect 64 have the 



vectors a higher magnitude and show similar results as by distance averaging. Though the outer 

region circulation is hardly recognizable, it is still visible. The unrealistic vectors close to the riverbed 

are more abundant and not limited to the riverbed, but reach up to the water surface. 

 

Figure 2: Flow structure by distance averaging (A), time averaging (B), time averaging with 

moving window 50 % overlap (C), and time averaging plotted against ping number (D). 

Vectors show a ratio z:h of 1:10 

 

Figure 2 C shows the same data averaged with a moving window. The window size has been 6 pings 

as before, but with an additional overlap of 50 %. This results in seemingly more data. The difference 

to the averaging before is, that data get smoother. The bathymetry shows round edges where 

sharper edges were before. This smoothing leads also to a reduced contrast in the main velocity plot. 



The vectors for the perpendicular flow are similar to figure 2 B. The smoothing effect is hardly 

influencing the vectors. It rather has the opposite effect. The vectors along the water surface in 

transect 64 are not as constant as they are in figure 2 B. 

The transects in figure 2 D show the same method than figure 2 B. However, they have been plotted 

on a time scale (1 ping = 1.2 s). Plotted against time, the geometry will be compressed in the middle 

of the transect, where the vessel moved faster and stretched at the slower moving parts near the 

river banks. This is similar to the raw data which are visualized with the manufacturer software. At 

the left riverbank the indicated floodplain does not exist and is an artefact from the measurement 

method, where it is necessary to keep the vessel for 10 to 20 pings to get a reliable interpolation of 

the riverbank for the discharge. 

Discussion 
1. Transects: The divergence of the course at the right side of the river is caused by measurement 

errors and that the start and end position at the left side has been defined as fix position. This was to 

make calculations easier, since the ADCP was not equipped with a GPS system. The raw data show no 

indicator for bed movement, which would be an unusual bend along the course. Further the vessel 

was forced to stay on its course. Therefore it can be assumed, that all transects are on the same 

position within the cableway margins. This assumption is reinforced by the low divergence of 2 

transect from the same direction. The average divergence is less than 30 cm, which lies within the 

movement tolerance of the cable way.  

2. Bathymetry: It is not really apparent, that the smoother bathymetry with the moving window 

method gives better results. The bigger issue is the wrong geometry in areas where the vessel is 

moving back due to local turbulences or necessary low moving velocities. 

3. Velocities: The mean velocities are overestimated in the first transect and underestimated in the 

second one by time averaging. The most likely reason is, that for the distance averaging more data 

has been available and for the time averaging only about 25 % of these data has been able to be 

considered. Therefore the over- and underestimation is based on lacking possibilities to average 

more data. Using a moving window smooth’s data, this might be useful if data measured compared 

with data modelled. 

4. Perpendicular flow: Time averaging shows worse data when it comes to flow structures. One 

reason that the moving window has little effect on the vectors might be that the weight has been on 

the direction rather than the actual magnitude. The fact that the outer cell region is recognizable in 

transect 64 through all 4 methods, is probably based on the lower overall velocity in this transect, 

which leads to less turbulent water flow. It is clear that the more turbulent the flow is, the more data 

are necessary at the same position to compensate fluctuations. 

5. Plotting: Visualizing the data with a time plot results in a horizontal deformation. This can be useful 

when to many data would be plotted within a short distance. Otherwise, the deformation is difficult 

to evaluate, since the deformation can be different for each ping. This depends on the vessel 

movement during the measurement. The more homogenous the movement has been the more 

homogeneous is the time/distance ratio. This assumes first, that the water velocity is homogenous 

along the measured cross section and that it is possible to move the vessel in a homogenous speed.  



Conclusion 
The velocity of the vessel during the measurement is normally not constant. This is due to the 

adaption of the vessel speed on the water speed. Further the manual dragging of the vessel over the 

river leads normally to different velocities.  

The practical limitation of similar moving speed across a transect is also given by the river size. In a 

river as big as the Danube (Baranya et al., 2008) it is not necessary to lower the vessel speed 

extremely when approaching the riverbank. Additionally, the error at the first and last meter may not 

count much for a wider cross section like e.g. 600 m. Time averaging seems acceptable with large 

rivers or to get an overview over the water velocities. The moving window method is an acceptable 

choice for comparison with model data. However, time averaging has its limitation in areas with low 

water velocity and rivers with a high velocity gradient along the cross section. The other limitation is 

that it is usually not possible that movements along the same cross section can combined together. 

When using time averaging it is highly important to improve the quality during measurements. First 

by moving the vessel in with a constant speed, second by moving as slow as possible to collect as 

many data within a short distance as possible. Further problems occur at places with low water 

velocity or mixing layers. In cases the vessel changes the direction (figure 1) the result of the post 

processing might lead to wrong interpretation of the data. 

Using the distance averaging method the data on the one hand become more reliable, since all data 

from a transect can be averaged. On the other hand side single pings which are spatial adjacent are 

combined rather than chronological consecutive pings. This leads to possibilities that the flow 

structure can be visualized with a higher resolution as it is possible with time averaging. Regarding 

the comparison of transect 23 and transect 64 the distance averaging method gains on strength 

when the flow becomes more turbulent.  

Literature 
Abad, J.D., Rhoads, B.L., Guneralp, I., and Garcia, M.H., 2008, Flow structure at different stages in a 

meander-bend with bendway weirs: Journal of Hydraulic Engineering-Asce, v. 134, p. 1052-
1063. 

Baranya, S., Goda, L., Józsa, J., and Rákóczi, L., 2008, Complex hydro- and sediment dynamics survey 
of two critical reaches on the Hungarian part of river Danube: IOP Conference Series: Earth 
and Environmental Science, v. 4, p. 012038. 

Blanckaert, K., 2004, Secondary flow in sharp open-channel bends: Journal of Fluid Mechanics, p. 
353-380. 

Foerst, M., and Rüther, N., 2012, Mean and Turbulent Flow Structures in two Consectutive Meander 
Bends, IAHR Europe, Proceeding 2012, Volume in press: Munich, Germany. 

Gunawan, B., Sterling, M., and Knight, D.W., 2010, Using an acoustic Doppler current profiler in a 
small river: Water and Environment Journal, v. 24, p. 147-158. 

Muste, M., Yu, K., and Spasojevic, M., 2004, Practical aspects of ADCP data use for quantification of 
mean river flow characteristics; Part I: moving-vessel measurements: Flow Measurement and 
Instrumentation, v. 15, p. 1-16. 

Nystrom, E.A., Rehmann, C.R., and Oberg, K.A., 2007, Evaluation of Mean Velocity and Turbulence 
Measurements with ADCPs: Journal of Hydraulic Engineering, v. 133, p. 1310-1318. 

RDInstruments, 2011, Acoustic Doppler Current Profiler Principles of Operation A Practical Primer: 
Poway, CA, USA. 

Simpson, M.R., 2001, Discharge Measurements Using a Broad-Band Acoustic Doppler Current Profiler  
Thorne, C.R., and Hey, R.D., 1979, Direct measurements of secondary currents at a river inflexion 

point [8]: Nature, v. 280, p. 226-228. 



Yorke, T.H., and Oberg, K.A., 2002, Measuring river velocity and discharge with acoustic Doppler 
profilers: Flow Measurement and Instrumentation, v. 13, p. 191-195. 

 

 





PAPER III





MEAN AND TURBULENT FLOW STRUCTURES IN TWO CONSECUTIVE MEANDER BENDS 

Markus Foerst1 & Nils Rüther1 

1Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology, Norway, 

S.P.Andersensvei 5, 7491 Trondheim 

E-mail: markus.foerst@ntnu.no 

 

Abstract 

Soil erosion along riverbanks has been an important issue 
due to economic and ecological damage. One cause for 
erosion is natural river migration. A natural meandering 
river in northern Norway (Troms) has been subject for this 
investigation. The first bend is a 90 degrees turn after a 
straight reach. The following two bends turn each 180 
degrees. Focus lies on the abundance of secondary currents 
and its influence on natural erosion processes within the 
first two bends. The river is non-regulated and is not 
exposed to scour protection on the river banks. It developed 
consecutive meander bends in Holocene fjord sediments. 
The meander bends are strong curved and show an 
upstream orientation. Climatic conditions cause an annual 
water high stand in spring. The hydraulic measurements 
have been conducted with a moving Acoustic Doppler 
Current Profiler (ADCP) along cross sections perpendicular 
to the main flow. The flow measurements were conducted 
in 72 cross sections with 8 crossing for each cross section. 
This density of measurements results in a detailed 
description of the mean flow in the meander bends. In 
addition, the secondary flow in the outer bank has been 
quantified with set of highly dense fixed position ADCP 
measurements. 
The investigation shows that the flow is highly influenced 
by the macro roughness elements of the banks, i.e. trees, 
submerged trunks and relatively small coherent local scours 
in the bank. Different flow pattern were analyzed and 
grouped based on statistical similarity measurement. 
Results show that the flow pattern in the subsequent 
meander is more susceptible to changes in water level than 
the first one where the water has a rather straight inflow. 
The impact angle dips steeper into the second outer bank 
the higher the water level is. During snowmelt Breidvikelva 
shows a rather constant high water level which is 1.8 to 2.0 
times above the water level during summer. A decrease of 
the occurrence and strength of secondary flow has been 
observed during lower water levels. Preliminary results 
show a stable pattern of the water flow though the water 
level alternates. Mayor changes occur in the water velocity. 

 

Introduction 

The use of Acoustic Doppler Current Profiler (ADCP) 
measurements in rivers has recently become more common 
in river surveying. Not only had the discharge measurement 
become easier and more comfortable (Muste, Yu, & 
Spasojevic, 2004), the ability to measure currents in 
different depths simultaneously without the bias of the 
instrument itself, makes it a valuable tool to get insight in 
flow regimes. Additionally, velocity and current 
measurements became possible due to the raw data output 
which most user software allows (Baranya, Goda, Józsa, & 
Rákóczi, 2008; Nystrom, Rehmann, & Oberg, 2007). 
Velocities and turbulence measurements have been 
conducted in artificial flumes (Nystrom, et al., 2007). Flow 
structure in a river, whether it is turbulent or laminar flow 
influences the sediment erosion, transport, and 
sedimentation. In river bends the secondary current is 
responsible for sediment transport from the erosion bank to 
the inner bank.  The secondary current and the outer bend 
region have been investigated at the inflow of a river bend 
by Thorne & Hey (1979) and Thorne et al. (1985). Nanson 
(2010) investigated the flow structure in six separated 
meander bends. Blanckaert (2001, 2004) described the 
behavior of the secondary current and the outer bend region 
in a laboratory flume. Missing in the literature however, is 
the flow structure within connected river bends. The 
purpose of this paper is to investigate and compare the flow 
structures in two consecutive meander bends. The focus lies 
on the flow characteristics such as the mean velocities and 
secondary current (Thorne & Hey, 1979), outer bend region 
(Bathurst, 1977; Blanckaert, 2004) and the behavior of 
these characteristic in the changeover in between two 
meanders of a natural free meandering river. 

Research Area 

The river Breidvikelva is located in a glacial affected valley 
in northern Norway, Troms. The catchment covers an area 
of 163.7 km2 with an altitude from 0 to 1400 m a. s. l.  
(NVE, 2012) and is sensitive to changes in the water input. 
The high latitude (69° 40” north) and the high mountains 
keep the snow until summer. This leads to a rhythmic 



alteration of the water level during the end of snowmelt 
season. Long time radiation in a low angle melt snow even 
on the north exposed slopes of the surrounding mountains. 
This leads to a delayed slight rise in water level on a 24 h 
rhythm. 

 

Figure 1: Map of investigated reach at Breivikselva. Flow is 
from W to E.   

The reach consists of three consecutive meander bends with 
a straight inflow (figure 1). The investigated reach has a 
length of 1100 m and 0.40 m difference in altitude. The 
riverbed consists mainly of silt and sand. In lower layers 
cobbles appear and built the surface on some spots along 
the slip-off slope. The river cuts into former terraces of 
different heights. The river banks show therefore different 
altitudes from 2 m a. s. l. up to 25 m a. s. l. The lower 
banks, the left side and partly the right side of the river, are 
covered with vegetation: birches, scrubs and fern. The dead 
and living vegetation disrupt the water flow in these areas 
and might cause forming of pockets along the erosion 
slope. The higher banks are located at the right side in the 
beginning of the first bend and all along the third bend. 
They show loose material and are strongly affected by 
erosion. In these areas the water flow is disrupted only by 
very few trees, which fell into the water, neither did pockets 
develop.  

 

Figure 2: a) View from transect 72 (right side) upstream: 
high bank with hardly vegetation disturbing the flow. b) 
view from transect 26 (right to left): low bank with dense 
vegetation, developed pocket, and dead wood. 

Methods  

Water level has been monitored with two water loggers. 
One located at the beginning and one at the end of the 
reach. The water loggers have been calibrated with a 
differential GPS. For calculating the water level at the 
measured transect, a linear slope has been assumed. All 72 
transects have been taken by a four beam ADCP, 
StreamPro from RDI. Restrictions of ADCP measurement 
based on its technical limitations are blanking zones. These 
occur direct under the water surface because of ringing and 
flow disturbance caused by the submerged transducer 
(Nystrom, et al., 2007; RDInstruments, 2011). Further, the 
beams of StreamPro ADCP are directed in an angle of 20° 
from the vertically. Due to this type of construction occur 
blanking zones close to steep riverbanks. At the outer bank 
the accordant beam hits the wall while the other three get 
still data from the flow. This is known as sidelobe 
interference. The degree of interference along the geometry 
depends on beam and bin size setup. This effect is much 
less at a low transversal bed gradient. Measurements at the 
inner bank are more limited by the upper blanking zone 
beneath the vessel. These built in restrictions are described 
in various technical papers of which some of them are 
Gunawan, Sterling, & Knight (2010), Muste, et al. (2004), 
RDInstruments (2011), and  Simpson (2001). 
The ADCP was mounted on a trimaran connected by a rope 
to a mobile cableway. In this way it was possible to collect 
data in different positions within a short time span 
(figure 3). The direction and position of the moving boat 



were determined by bottom track and a digital compass 
inbuilt in the ADCP housing.  

 

Figure 3: Mounting of mobile cable way for StreamPro 
ADCP, transect 06, right bank. 

The StreamPro is designed to measure the geometry of the 
riverbed and the water velocity and direction. These data 
are necessary for the usual use of discharge measurements. 
For the data collection water mode WM12 with long range 
feature has been used. WM12 uses a sequence of sub-pings, 
which are averaged to one ping. However, the data derived 
from the compass are sampled only for one ping, which 
consists of sub-pings. This bias can be neglected since the 
pings have been averaged further and the sizes of the flow 
structures which are to be identified are still larger as the 
measureable bin size and the boat movement. For each 
transect the ADCP was dragged two times in each direction 
over the river. Thus for each transect the data of four 
measurement have been available.  
These profiles have been processed by averaging to get 
reliable data sets for further interpretation. Each ping has a 
timestamp and an ongoing number. The time interval 
between timestamps is equal about 0.7 Hz at WM 12. The 
position has been measured by bottom track, which gives 
for each ping a new position relative to the previous one. 
Thus, since the movement of the vessel is usually not 
steady and at positions with low water velocities and thus 
even lower vessel velocities, a time/ping based averaging 
will result in distortions. This might be negligible when the 
ADCP is mounted on a motor driven vessel and rivers with 
much higher discharge and the focus lies on water  
velocities (Baranya, et al., 2008). In this study the water 
velocities were below 1.5 ms-1 and even below 0.2 ms-1 
along the riverbanks. To get reasonable results in the three-
dimensional velocity field, which could be allocated to 
definite and equal sections along transects, the data have 
been averaged over distance rather than time.  
The crux with this method is to find an appropriate 
averaging distance (AD). Small AD which would result in 
insufficient data in the deeper parts of the transects, due to 

faster movement of the vessel. Averaging over larger AD 
would smooth the data too much, so that sensible 
interpretation would be difficult or even impossible. In 
figure 4 four AD are applied to the data. The figure shows 
the bathymetry and the mean water velocity in ms-1.The 
vectors show the direction of the water flow perpendicular 
to the transect plane with a 1:10 vertical:horizontal ratio. 
The main flow patterns become clearer with increasing the 
AD. At the same time the details in the flow pattern 
disappear. 

 

Figure 4: Transect 21 averaged with 25, 75, 125, and 200 
cm columns over distance. 

After carefully manually reviewing different AD from 25 
up to 200 cm, the analysis and interpretation of the data is 
based on a 75 cm distance averaging. The averaged values 
are depth (bathymetry) and the velocity components in each 
direction (E, N, and U).  
The perpendicular current is projected on the plane from the 
taken transect. This is not always exact perpendicular to the 
downstream direction as it is more detailed explained in 
Lane, Bradbrook, Richards, Biron, & Roy (2000), but it is 
in its accuracy more than sufficient for the goal of this 
paper. 
The transects which have been chosen and compared are 
based on the relative water level change. Since the water 
level degreases downstream the water level needed to be 
compensated by the slope. Figure 5 shows the absolute 
water level (rhombuses) at time of measurement, the 
measured discharge (triangles), and the relative water level 
to first measurement (squares). The precipitation and 
snowmelt, which still occurs in the middle of the year from 
the valley slopes, has significant influence in the discharge. 
Therefore it is necessary to interpret transects at same water 
flow conditions. For this, consecutive transects, which have 
been measured during stable water level conditions, were 
chosen. A standard water gradient has been defined based 
on the water level data measured during the first transect. 
This was necessary to estimate the water level change 
within two transects by taking the river gradient into 
account (figure 5). The relative water level is the result of 
subtracting the actual water level during the measurement 



from the defined standard gradient. In this way the data 
have been analyzed to identify groups of transects with 
similar hydraulic conditions. Transects 44-51 and 61-72 
show stable conditions, while Transects 18-23 show a 
relative water level rise followed by a water level fall. 

 

Figure 5: Hydraulic conditions during measurements. The 
discharge in m3s-1, water level in and relative water level in 
all 72 transects.  

Transects 18 to 23 represent the inflow part into the second 
meander (Thorne, et al., 1985), while transects 44 to 51 
represent the outflow of the second meander and the apex 
between the second and third meander. Transect 61 to 70 
represent the outflow of the third meander. The locations of 
all transects are shown in figure 1. 

Results  

1. Bathymetry 

The geometry of the cross section shows in the bends a 
steep slope along the erosional bank and a continuous low 
angle slope towards the point bar. Clear exceptions are 
transects 44-47, and 66-68, where a deeper channel has 
formed with a distinctive basal angle. In both cases this 
occurred at the outflow of the meander bend, a few meters 
before the bed transforms into a more rectangular shape 
(transect 49 and 70 respective). This bathymetry has been 
described by Kurvenkolk (1986). However, it is absent at 
the outflow of the first meander.  
The transvers in the bathymetry from the right bend to the 
consecutive left bend happens at the end of the straight 
transvers part, immediately before the left bend begins. The 
developed channel  of the right turning meander is still 
downstream (transect 48) of the inflection point (transect 
46) present, long after the outflow of the meander bend 
(transect 43). This results in an abrupt change of the erosion 
bank within a short distance. A similar abrupt change 
occurs from the first (left) to the second (right) meander. 
Therefore, the bathymetry is not synchronous with the 
geometry of the meanders. Otherwise the change of the 
point bar would be symmetrical to the inflection point. A 
downstream distortion, however, confirms that the 
bathymetry is strongly influenced by the water flow.  

 

2. Water mean velocity 

The measured mean velocities within a transect show low 
velocities at the edges and an area of high velocities in the 
middle of the transect.  
Given the deepest point in a transect as reference it happens 
that most of the high velocity cells occur shifted towards 
the point bar side. This coincides with the literature 
(Blanckaert, 2004; Nanson, 2010; Thorne & Hey, 1979). 
However, some transects show a shift of this cell to the 
outer bank and a bouncing back. This happens three times 
in transect 11, 21, and 56. Including the less intensive 
bouncing of the cell, which means that the high velocity 
cell does not cross the lowest point in the profile cross 
section, this happens four times in the second meander 
(transect 21-22, 24, 26-27, and 39-43) and two times in the 
last one (47-49 and 55-64) Similar behavior has been 
described in flume experiments (Blanckaert, 2001) and in 
natural rives (Kurvenkolk, 1986; Sukhodolov, 2012).  
The high velocity cell in transects 18-20 and 47-51 appears 
much closer to the point bar than in other transects and 
moves with each transect towards the outer bank. This 
phenomenon is only observed during the inflow of the 
second and third meander. The transect 61-64 at the 
outflow of the last bend show two high velocity cells within 
the transect. These cells develop already in transect 59 and 
60. A similar, but weaker pattern has been measured at the 
outflow of the first meander. Therefore, this seems not to be 
a local effect. The pattern persists even at significant 
different water levels, cp. transects 60 to 61 (figure 5). 

3. Secondary current 

The ADCP measurements show secondary flow in all 
meander bends. At the inflow into the second bend (transect 
18-23) the successive development of the secondary cell is 
quite clearly. These currents disintegrate already at the 
outflow of this bend (transects 44-51) – thus long before the 
bathymetry or the mean velocity would indicate the 
transition to the next meander. Similar pattern can be 
observed at the outflow of the third meander (transects 61-
70). 
The outer cell (Bathurst, 1977; Blanckaert, 2004) was 
measured one time in transect 23 at the inflow, one around 
the apex (transect 61), and one at the outflow (transect 64). 
In these transects the outer cell region is enlarged in figure 
6. In all three spots the outer cell region was measured at 
transects without or very little vegetation or dead wood in 
the water.  

Conclusion  

This study has been conducted to investigate the flow 
pattern in consecutive meander bends. Therefore 72 
transects have been measured with an ADCP and analyzed.



 
Figure 6: Left side: Transects 19, 21, 23, 44, 46, 48, and 51; 
Vectors show a ratio z:h of 1:10. 

 
Right side: Transects 61 and 64, 65, 66, 67, 68, and 70. 



In the literature flow measurement with ADCPs have been 
described at very small rivers (Gunawan, et al., 2010; 
Nanson, 2010), in big rivers such as Danube (Baranya, et 
al., 2008) or in the laboratory flume (Blanckaert, 2004; 
Nystrom, et al., 2007). Further literature describes only 
single bends in natural rivers, or consecutive bends in 
laboratory flumes without the natural variation (Abad & 
Garcia, 2009). In this way this project will fill the two gaps 
in literature. A) by investigating a medium size low land 
river and B) by monitoring a natural reach along three 
meander bends.  
The results show that in all meanders within this reach most 
patterns occur in a similar way: distortion of the 
bathymetry, movement of the high velocity cell, and 
secondary current.  
Three features which typically occur in meander bends 
have been described in this paper:  

1. Channel at the erosional bank.  
2. High velocity cell above the channel.  
3. Occurrence of a clear secondary current and its 

outer cell.  
In case of the transition from one meander bend to the next 
these properties adapted not simultaneously. The 
disintegration of the secondary current begins already in the 
outflow of the bend (transect 44), the bathymetry changes 
after the inflection point (transect 51), and finally the high 
velocity cell crosses the side (transect 54).  
These preliminary results also suggest that the change in 
water level does have a high influence on the strength of the 
water flow and the mean velocity, but only little influence 
on its pattern. The secondary current and the high velocity 
cell behaved similar in the in- and outflows of the meander 
and the flow pattern showed continuity in consecutive 
transects though the water level changed significantly. 
Further show the sequence of transects no significant 
interruptions of the flow structure though the discharge 
alternated significant between the measurements. Further 
suggest the data, that the outer cell region is sensitive to 
external disturbance such as vegetation. There was no 
evidence that the outer cell occurs where vegetation or dead 
wood was present. 
The delay in the high water flow cell in respect to the 
geometry should cause higher shear stress and therefore 
erode the riverbed in these areas. The flow in this area is 
less influenced by the bathymetry rather than by the 
meander curvature. Therefore, further data have been taken 
by stationary measurements along the outflow of the first 
and the inflow of the second meander.  
These data will be analyzed with respect to shear stress and 
its influence on bed load and erosion. A more detailed 
insight in the development of secondary current and the 
outer cell region will be yield by ADV measurements 
during the next field campaign. However, since the 

measurements have been just a snapshot of the flow. It will 
be necessary to monitor the change of water flow during 
different water levels.  
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Abstract: In recent years, advanced methods for measuring riverbank migration have been used to 

understand the process of river planform evolution. However, the role of the so-called outer 

secondary cell in the hydraulic pattern in bank erosion remains unclear. For this purpose, a natural 

river meander with high curvature bends and steep riverbanks was chosen to quantify bank 

migration by high-resolution terrestrial laser scanning of three patches along two river bends in four 

time intervals. The first two time intervals were seasonal, from spring to autumn, and with relatively 

few water level changes, whereas the third and fourth time intervals were short, just before and 

after single flood peak events. The yielded point clouds were filtered and digital elevation models 

(DEMs) were created. These DEMs were used to analyze bank retreat, riverbank morphology, and 

slope gradient changes in order to understand the role of the outer secondary cell in these processes. 

In addition, it is shown that storm events causing short peaks in river discharge are less important 

for river migration than longer-lasting medium discharge. 

Keywords: outer cell; river migration; meander; erosion; meandering; outer secondary cell; ADCP; 

terrestrial laser scanner 

 

1. Introduction 

Riverbank migration has been investigated for decades and many approaches have been used 

to understand the process. These approaches can be divided into studies, for example, by scale, 

spatial resolution, and temporal resolution. Studies on large meandering rivers have been conducted 

by, for example, Parker et al. [1–3]. On the other hand, Schnauder and Sukhodolov have been working 

on river migration in small meandering rivers in Germany [4]. At the lower end of the scale, 

investigations of fluvial morphological processes on small-scale models in the laboratory have been 

conducted [5–9]. Finally, more sophisticated numerical models have appeared [10–12] in recent years. 

In the last decade, measurement methods have been developed to estimate the sediment balance 

over short time scales [13]. One of these methods is erosion pins, and Lawler developed the most 

sophisticated ones [14]. These are able to measure and log sediment changes. However, they are 

intrusive [14–19] and their spatial resolution is within square decimeters. The use of light detection 

and ranging (LiDAR) in airborne surveys over large areas has been applied recently [20]. However, 

its application is limited when surveying vertical or near-vertical structures. This limitation can be 

overcome by using terrestrial LiDAR (terrestrial laser scanning, TLS). As a nonintrusive method, it 

avoids the physical impact of the measurement device at the investigated ground. Additionally, it 

collects a large amount of measurement points. The horizontal setup direction of the laser beam 

makes it perfect for riverbank surveys with a slope gradient higher than 45°. This setup results in a 
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dataset with a much higher resolution compared to, for example, the abovementioned erosion pins 

[21–25], and hence more detailed insight into the sediment balance of a riverbank [26]. This high 

resolution is necessary to measure small changes in riverbank morphology between flood events that 

occur within a short time interval. The investigated patches are small and have a very high point 

cloud density with a resolution beyond photogrammetry [27]. In addition, the analysis of laser scan 

time intervals gives insight into the processes of river migration that occur at a riverbank [23,28]. The 

limitation of TLS, however, is the lack of ongoing monitoring and the small area it is able to cover 

with high resolution.  

A further phenomenon, the outer secondary cell, which was discovered and described for the 

first time by Thorne and Hey and Thorne et al. [29,30] some decades ago, recently came into focus 

again. Blanckaert recreated the conditions for the outer secondary cell in a flume [6,31]. Blanckaert 

and Graf explained a change in the downstream momentum due to a change in curvature [32]. 

Further investigation followed to analyze the outer secondary cell changes under different curvatures 

and depth-to-width aspect ratios [6,33–35]. However, the influence of an active riverbank was not a 

subject of their study. Foerst and Rüther investigated the hydraulics in the same river as this study 

by measuring the secondary flow direction along 72 transects [36,37]. At transects, where the outer 

riverbank was nearly vertical, they measured the outer secondary cell in a natural river directly. 

Thorne and Hey assumed that the outer secondary cell is a trigger for erosion at the outer bank [29]. 

However, Blanckaert and Graf described the outer secondary cell as forming a protective zone 

between the main secondary cell and the riverbank [32].  

Mainly two kinds of erosion are described in the literature for river migration. The first is so-

called erosion by fluvial entrainment [38]. This can be from groundwater seeping into the river, so-

called seepage erosion, or from shear between the river and its channel, so-called fluvial erosion [10]. 

The other kind is mass failure or cantilever failure due to gravity [39–42]. The first erosion type 

happens slowly and continuously, while the second one occurs suddenly after the riverbank has been 

destabilized.  

For this study, a medium-size river in the northern part of Norway was chosen to fill the gap 

between large-scale and small-scale investigations. The investigated parts of the riverbank were 

chosen to avoid influence by riparian vegetation. This paper investigates erosion by fluvial erosion 

in microscale and analyzes bank retreat and the shape of the streambank on a long-term (summer) 

and short-term (single flood event) basis with a terrestrial laser scanner as the high-resolution 

measurement method. The special focus herein is the role of the so-called outer secondary cell and 

its effect on fluvial erosion. This paper contributes to a better understanding of the role of the outer 

secondary cell in the interaction of river hydraulics and riverbanks by looking into the processes of 

bank retreat at microscale. 

2. Materials and Methods  

2.1. Study Site 

The surveyed river, Breivikelva, is a lowland river in the northern part of Norway (Figure 1). 

The area was strongly affected by the last ice age, and a fluvial terrace system has since developed 

[38]. The chosen riverbanks for this study belong to the lowest terrace level, which is about 1–2 m 

above water level. The catchment covers an area of 164 km2 with an altitude from 0 to 1400 m a.s.l. 

[43]. The investigated reach ends about 4.5 km before it discharges into the fjord. It is not influenced 

by tidal water changes. The river has a width-to-depth (W/D) ratio of 17, an average bed slope just 

less than 2%, and a sinuosity of around 3. The investigated reach is about 1100 m long and has an 

average energy slope of 0.4‰. The discharges measured within the study period vary between 

8.7 m3s−1 in autumn and 24.3 m3s−1 in spring. The catchment of the study reach, 164 km2, is relatively 

small; 58% lies over the tree line, while 0.7% of the area is covered by lakes. Consequently, the water 

level changes are strongly sensitive to rainfall events and snow melt due to temperature changes. 
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Figure 1. The investigated lowland river bend is located in the northern part of Norway. The flow is 

indicated by blue arrows. Investigated patches are shown at their locations. The locations of water 

level loggers are shown as WL01 upstream and WL02 downstream. 

A meandering river can be divided into different sections along the bend: upstream of the bend 

apex, at the bend apex, and downstream of the bend apex [30]. Figure 1 shows the locations of the 

patches. They are all located at the outer side of the river bend. One is located downstream of the 

apex (patch 01) and two are located upstream of the apex (patches 02 and 03). 

The river migrates through a valley filled with glaciofluvial sediments deposited since the end 

of the last ice age [39,40]. These deposits are thin undulating layers of sand and silt along the 

riverbank. A soil layer on top of the bank is thin and contributes little to stabilize the riverbank. The 

migration of the river through these deposits causes the formation of riverbanks up to 20 m high at 

the most downstream part of the investigated reach. The riverbed consists of both fine sand and 

coarse gravel. Throughout the study reach, downstream fining can be observed. In the upstream part 
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of the reach, the riverbed is armored so that gravels and cobbles dominate. Passing farther 

downstream, the armor layer disappears gradually and the riverbed consists of fine sand moving in 

ripples and dunes. The vegetation on the riverbanks consists of birch trees and vegetation patches 

(grass and moss), which fall and slide down the riverbank.  

Following these parameters, the river can generally be classified after Rosgen to be an F-type 

river, which is described as an entrenched meandering riffle/pool channel on low gradients with a 

high width/depth ratio (study case: slope Sw = 0.36‰, W/D > 20). Specifically, it is an F4 river, since 

the bed material consists of sand and gravel [41]. According to Rosgen, an F4-type river has very high 

streambank erosion potential, but the influence of vegetation is only moderate. These criteria favor 

erosion by fluvial entrainment.  

2.2. Data Acquisition  

Several measurements were taken to investigate the bank erosion process at the study site. First, 

water level changes were recorded at the upstream and downstream ends of the reach (Figure 1). 

They were measured during May and August in 2011, June and October in 2012, and June and July 

in 2013. The fluctuation of water level showed a dependency on the amount of snow in the catchment. 

During spring and early summer, the water level rose with the course of the sun and the remaining 

snow in the mountains. This shows a certain influence of the amount of snow in the catchment on the 

hydraulics in the reach. 

During 2011 and 2012, the measured water level fluctuated between 1.1 and 1.8 m a.s.l. 

downstream and 1.5 and 2.2 m a.s.l. upstream.  

In spring 2013, the water level logger recorded one high-water event (2.3 m a.s.l.) after some 

days of rainfall from 23 to 27 June and a flood event at night from 3 to 4 July (Figure 2) at 2.55 m a.s.l. 

after heavy rain. The latter shows a rise in water level of about 60 cm within 4 h. The average 

discharge of the river during this three-season ongoing measurement campaign was about 9 m3s−1 at 

a water level of 1.4 m a.s.l. 

 

Figure 2. Water level during the third campaign as measured by the water loggers placed upstream 

and downstream. 

Bathymetry was measured with a single beam echo sounder on an acoustic Doppler current 

profiler (ADCP) from Sontek (M9). The ADCP was directly coupled to a TopCon RTK-GPS (Real 

Time Kinetic GPS) system. Foerst and Rüther described the campaign and the results in detail [37]. 

The bathymetry of the two meanders shows the typical pattern of the riverbed for flow through 

strongly curved and steeply sloped channels. As displayed in Figure 1, a steep outer bank and a mild 
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gradient toward the inner bank characterize the profile of the cross section. Passing the end of the 

first meander bend, the riverbed flattens and becomes more symmetrical when the so-called 

crossover is passed. At the beginning of the second bend, a steep bank develops on the left side of the 

river. Analogous to the first river bend, a scour at the outer bank forms, causing a steep bank with a 

mild gradient toward the point bar.  

In several field campaigns, the riverbank was scanned at six places along the outer banks to 

investigate longer-term and short-term processes. A TopCon GLS-1000 laser scanner with 

ScanMaster© software was used to conduct the scanning. The scanner was mounted on a tripod 1.5 

m over the ground. The GLS-1000 operated with a Class 1 laser at 1535 nm. The accuracy of our 

measurement distance at <150 m was 4 mm under optimal conditions, which could be influenced by 

atmospheric conditions and the reflectivity of the scanned surface. The GLS-1000 was also equipped 

with a dual-axis compensator. Each outer bank was scanned from three scan positions in order to 

make sure that the parts lying in the shadow of one scan angle were covered by the other angles from 

the other positions. The scan distance was between 40 and 80 m. The three scan positions were 

combined by overlaying at least four georeferenced tie points. The target points were the same for 

each scan series and had to be removed between the scans. Therefore, a measurement error up to 

0.010 m in the horizontal direction and 0.020 min the vertical direction had to be taken into account. 

This target-based registration is the standard procedure (Schürch et al., 2011). The mean error 

calculated by the ScanMaster© software was between 0.002 and 0.009 m, showing the high precision 

of the measurement method [42]. The georeferencing of the target point was done with a TopCon 

RTK-GPS system. The RTK correction came from a base station positioned on a known fixed point in 

the study area.  

In 2011, these patches were scanned in May and June. Within this period, six rain events causing 

the water level to fluctuate strongly were recorded. In 2012, the same patches were scanned in June 

and October. During this period, the river discharge was strongly influenced by eight short rain 

events. During the field campaign in 2013, the periods between the three scans were shorter 

compared to the two previous ones. In total, three scans were taken with 10 days between the 

measurements. As can be seen in Figure 2, the hydrograph recorded in this period shows only one 

significant peak.  

Additionally, in the investigated reach, a comprehensive dataset was taken, consisting of 

velocity and discharge measurements. Over 70 transects were measured with an ADCP under 

different hydraulic conditions. The analysis of the data gave valuable insight into the hydraulic 

conditions and the cross-sectional shapes prevailing at different flow stages and regimes (e.g., rather 

specific helical flow features in combination with steep riverbanks) [6]. These hydraulic features were 

observed independent of the prevailing flow stage. A detailed overview of these data is given in 

Foerst and Rüther [36]. 

2.3. Limitation of Method 

The accuracy of the laser scan itself according to TopCon is a maximum at 4 mm from 1 to 150 

m; this lies clearly within the measurement distance during this survey. The very low error during 

the overlay of the different scan angles confirms this assumption. Schürch et al. showed in their study 

that the uncertainty rises with the complexity of the scanned landscape [42]. In this study, the scanned 

area is a nearly vertical riverbank. Therefore, it can be assumed that the data within one scan of the 

described patches are highly reliable. However, the GPS accuracy is between 0.008 and 0.013 m in the 

horizontal and between 0.012 and 0.017 m in the vertical direction. Experience has shown that GPS 

data are very constant within a dataset. That means that the offset for one set of measured target 

points is the same as long as the GPS system has reception from the satellites without long 

interruptions. This was again confirmed by the low mean error calculated during the scan overlay. 

The GPS error might be avoided if it is possible to leave the targets at the same position. This was not 

possible due to the limited number of targets that were available. Another drawback is that the TLS 

scans were taken during different water levels (Table 1). The scans were therefore limited to the water 

surface and it was not possible to compare the total amount of sediment loss. 
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Table 1. Overview of scans and water level changes. 

Scan Date of Scan Water Level m a.s.l.   

  Min Max Mean σ Scan Flood Events Comment 

01 May 2011 
1.67 2.38 2.02 0.28 

1.84   Initial state 

02 July 2011 1.64 8 After eight moderate high-water events 

03 June 2012 
1.35 2.16 1.95 0.16 

1.58   Initial state 

04 October 2012 1.26 6 After six moderate high-water events 

05 19 June 2013 
1.72 

1.72 

2.25 

2.5 

1.99 

1.90 

0.13 

0.15 

2.01   Initial state 

06 28 June 2013 1.81 1 After one moderate high-water event over five days 

07 6 July 2013 1.71 1 After one extreme high-water event 

2.4. Data Postprocessing 

2.4.1. Point Density Filtering and Digital Elevation Model (DEM) 

This study focused on three positions along the first and second bends. These positions (patches 

01–03) are shown in the plane view of Figure 1. The first patch was located at the end of the first river 

bend and the second and third patches were at the second river bend between inflow and apex. The 

patches were chosen because the heights of the riverbank have been the same and are located at the 

lowest level of the terrace system. Over the last three years, no considerable vegetation growth could 

be observed. The dimensions of the point clouds were defined by a vertical cut at 2.8 m a.s.l. as the 

upper limit. The lower limit was the water line at the moment when the scan was taken (Table 1). The 

point clouds showed single points, which have to be regarded as artifacts. These single points created 

during the scan were removed by a density filter. The basis of the filter was provided by the Point 

Cloud Library (PCL, 2013). The filter projected a sphere with radius R around each point and counted 

the number of points within this sphere. If there were a certain number of neighboring points N 

within this sphere, then it was defined as a good point; otherwise, it was regarded as an outlier 

[43,44]. The filter was applied with radius R from 0.01 to 0.15 m in steps of 0.015 m. The number of 

neighboring points was defined for N = (5, 10, 5, 20, 25). Points with fewer than N neighbor points 

were deleted. In this way, for each point cloud, 50 filtered point clouds were created, and these point 

clouds were plotted. Afterward, they were visually inspected for whether enough outliers were 

removed and whether the point cloud was still coherent. The result was very different and no special 

pattern concerning the settings was visible. The final parameters used for the filtering are displayed 

in Table 2. Vegetation and dead wood, which blocked the view in front of the riverbank during the 

laser scans, were removed manually, first in the 2D view of ArcGIS© and then in the 3D view of 

ArcScene©.  

Table 2. Results of filtering of terrestrial laser scanning (TLS) point clouds. 

 Scan Date of Scan  Filter 

Parameter 

Points 

Before 

Filtering 

Points 

After 

Filtering 

Points 

After 

Manual 

Cleaning 

Water Level m 

a.s.l.  

    R N    Min Max Scan 

P
a

tc
h

 0
1 

01 May 2011 
2011 

0.055 15 79,735 60,252 59,151 
1.67 2.38 

1.84 

02 July 2011 0.025 5 52,678 36,305 35,618 1.64 

03 June 2012 
2012 

0.040 5 124,040 113,854 113,415 
1.35 2.16 

1.58 

04 October 2012 0.055 10 180,588 168,735 1,164,403 1.26 

05 19 June 2013 

2013 

0.040 5 286,670 270,056 269,707     2.01 

06 28 June 2013 0.025 5 379,610 351,198 339,921 1.72 2.25 1.81 

07 6 July 13 0.040 5 566,067 549,132 523,337 1.72 2.5 1.71 

P
a

tc
h

 0
2 01 May 2011 

2011 
0.040 15 94,658 91,164 91,145 

1.67 2.38 
1.76 

02 July 2011 0.040 5 26,579 23,992 23,949 1.72 

03 June 2012 
2012 

0.025 5 588,731 496,815 494,000 
1.35 2.16 

1.65 

04 October 2012 0.025 10 121,261 108,654 107,977 1.40 
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05 19 June 2013 

2013 

0.040 10 886,871 824,974 818,160    1.60 

06 28 June 2013 0.040 10 147,365 130,180 129,223 1.72 2.25 1.77 

07 6 July 2013 0.025 10 445,743 430,526 425,447 1.72 2.5 1.76 

P
a

tc
h

 0
3 

01 May 2011 
2011 

0.040 5 41,569 26,706 26,665 
1.67 2.38 

2.03 

02 July 2011 0.040 10 27,570 20,741 20,741 1.73 

03 June 2012 
2012 

0.025 5 621,165 609,966 607,381 
1.35 2.16 

1.67 

04 October 2012 0.025 10 164,582 124,335 124,335 1.25 

05 19 June 2013 

2013 

0.040 10 907,733 887,744 887,409     1.60 

06 28 June 2013 0.040 15 109,946 99,567 98,975 1.72 2.25 1.80 

07 6 July 2013 0.040 20 297,441 242,797 239,662 1.72 2.5 1.71 

2.4.2. Statistical Methods 

For analysis of the DEM, patches 02 and 03 were virtually rotated so that the orientation was the 

same as patch 01, north-south. In this way, each row from the DEM displays the vertical extension 

and each column the horizontal extension. The vertical mean slope gradient and horizontal mean 

gradient were calculated by calculating the mean for each row and each column of the grid. In order 

to investigate the significance of slope change within a measurement period, the data were 

statistically verified. The slope gradient for each patch within a measurement period was compared, 

with the aim of verifying that the gradient between the scans was significantly different. To decide 

which statistical method was appropriate, the data needed to be tested for normal distribution. 

Therefore, the slope gradient for each patch was tested for normality with the Kolmogorov–Smirnov 

test. Since the slope gradient data were not normally distributed, the Kruskal–Wallis test was used to 

verify the significant difference between the slope gradients (Table 3).  

2.4.3. Bank Retreat 

The bank retreat was converted to a mass balance of sediments at the riverbank and was defined 

as the horizontal difference perpendicular to the shore line between successive scans. For this 

purpose, a DEM with a grid size of 0.05 m was created for each scan. The bank retreat was defined as 

the smallest distance between one point in the first scan and the surface to the consecutive scan; 

otherwise, there would be an overestimation of the retreat [17]. To estimate the bank retreat, for each 

grid cell, the horizontal distance to each grid cell was calculated at the same elevation a.s.l. of the 

successive scan. Then, the smallest value was used to define the retreat at each point. To avoid false 

data at positions where gaps in the point cloud existed, the maximum horizontal distance was set at 

0.5 m. These grid cells, which had no corresponding grid cells within this distance in the second cell, 

were discarded. Finally, the total mass balance was calculated, and the volume change is given in m3 

per horizontal square meter.  

2.4.4. Slope Angle 

From the filtered point cloud, a mesh was created with a cell size of 0.005 m. On this mesh, the 

point clouds were projected and a DEM was created. From this DEM, the slope gradient in degrees 

was calculated. The slope gradient ∇F is defined by 

�� =
��

��
�^ +

��

��
�^  

where i^ and j^ are standard unit vectors for the horizontal x and y coordinates. 

Thus, the gradient in degrees (Gdeg) was calculated with  

���� = ���� (�(���)� + (���)�)  ×
���

�
 . 

For the change in slope angle along the width of each patch, a mean vertical slope gradient 

(MVSG) was calculated. The MVSG is the average slope angle for each column in the grid of the DEM 
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and the average slope at a given position along the riverbank. For the average slope angle, the mean 

value of all slope angles within the DEM was calculated. 
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3. Results 

Riverbank Changes 

Figure 3 shows the horizontal bank retreat at patch 02 between the scans over three years from 

a bird’s-eye perspective in meters. The blue arrow indicates the direction of water flow. Positive 

numbers (red shades) mean retreat/erosion and negative numbers (blue shades) mean 

advance/sedimentation.  

Scans 01 and 02 in Figure 3 showed changes from May to July 2011. Between these scans, the 

water level alternated between 1.67 and 2.38 m, with eight peaks during that period. The mean water 

level was at 2.02 m a.s.l. Erosion took place nearly the whole way along the riverbank. The bank was 

stable or experienced a little sedimentation only during the first meter upstream. The erosion 

increased downstream. The average erosion was 0.31 m3/m2 (Table 3) and the slope angle changed 

from 52° to 40°. 

 

Figure 3. Horizontal bank retreat for patch 02 between scans. 

Table 3. Change of riverbank. MVSG, mean vertical slope gradient, and significance of change with 

* p < 0.05 significant, ** p < 0.01 highly significant and *** p < 0.001 highly significant.  

 Scan Date of Scan 
Average  

Slope Angle 
Volume Change Significance of Change 

    Net 
m3/m2 =  

Meter Retreat 
MVSG 

P
a

tc
h

 0
1 01 May 2011 31.3°   

*** 
  

02 July 2011 32.7° 4.24 0.17   

03 June 2012 32.5° 8.70 0.34 
p = 0.098 

  

04 October 2012 34.2° 5.26 0.19   
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05 19 June 2013 39.9° 8.86 0.42 
*** 

  

06 28 June 2013 38.5° 3.99 0.11 
p = 0.446 

07 6 July 2013 39.3° 2.97 0.09   
P

a
tc

h
 0

2 

01 May 2011 52.0°   
*** 

 

02 July 2011 40.0° 1.14 0.31  

03 June 2012 43.9° 1.60 0.28 
*** 

 

04 October 2012 38.2° 1.33 0.21  

05 19 June 2013 51.5° 1.49 0.18 
*** 

 

06 28 June 2013 47.9° 0.11 0.01 
*** 

07 6 July 2013 49.2° 0.55 0.05  

P
a

tc
h

 0
3 

01 May 2011 56.4°     
*** 

  

02 July 2011 44.6° 1.53 0.28   

03 June 2012 47.4° 3.27 0.40 
*** 

  

04 October 2012 42.8° 0.82 0.11   

05 19 June 2013 50.4° −1.07 −0.17 
*** 

  

06 28 June 2013 47.3° 0.48 0.08 
*** 

07 6 July 2013 48.2° 0.81 0.10   

Scans 03 and 04 showed changes from June to October 2012. The water level alternated between 

1.35 and 2.16 m with six peaks during that period. The mean water level was 1.95 m a.s.l. The highest 

erosion rates were in the middle part. The upper part along the patch did not experience erosion. The 

average slope angle changed from 43.9° to 38.2° and the average erosion was 0.21 m3/m2. 

Scans 05 and 06 showed changes between 19 and 28 June 2013. During this period, there was 

only one high-water event with a duration of five days and two distinctive peaks (Figure 2). The 

water level alternated between 1.72 and 2.25 m a.s.l., with a mean water level at 1.99 m a.s.l. The patch 

showed little erosion. The average erosion was 0.01 m3/m2 and the average slope angle changed from 

51.5° to 47.9°. 

Scans 06 and 07 showed changes between 28 June and 6 July 2013. During this period, the highest 

flood event during the three-year field study occurred. The water level alternated between 1.4 and 

1.5 m a.s.l. before and after the high peak and reached its maximum at 2.5 m a.s.l., while the mean 

water level was 1.9 m a.s.l. The patch showed hardly any erosion, except a narrow strip just above 

the water line. The color distribution shows increased erosion downstream. The average erosion was 

0.05 m3/m2 and the average slope angle changed from 47.9° to 49.2°. 

Table 3 compares all patches. The volume change showed similar patterns at all three patches. 

As seen in patch 02, the main erosion happened during lower water levels over a long time, three 

months in 2011 and four months in 2012. Little erosion happened during high-water events, as these 

happened twice in 2013. Patch 01 experienced 0.17 and 0.19 m3/m2 during the summer in 2011 and 

2012, while in 2013, only 0.11 m3/m2 of erosion happened during one high-water event over five days 

and as little as 0.9 m3/m2 during a short, severe high-water event at the end of the campaign. Patch 03 

showed similar erosion behavior, with 0.28 and 0.11 m3/m2 retreat during summer 2011 and 2012, and 

only 0.08 and 0.10 m3/m2. However, the difference between the long-term and short-term events is 

not as clear as with patches 01 and 02; it shows less erosion after the short-term high-water event.  

Thus, the retreat for each patch was not dependent on the size of the patch and was therefore 

comparable to each other.  

Figure 4a–f shows the riverbank evolution from the side by showing a transect at the center part 

of each patch. Red lines show the riverbank in the beginning of the season and blue lines show the 

riverbank at the end of the season. As described previously, there were no changes during the flood 

events in 2013. Therefore, the cross sections for 2013 are not considered at this point. Table 3 shows 

the corresponding average slope angles. 

Patch 01 showed an irregular slope in 2011 (Figure 4a). The upper part was slightly convex, and 

in the middle part, a step appeared. At the lower part, it had a 45° slope. Looking at the changes over 

time, it seems that the center of this patch advanced.  
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Figure 4. Cross sections of all three patches for the first and second measurement campaigns. Red 

lines show cross sections in the beginning of a campaign and blue lines show cross sections at the end. 

Changes for patch 01 are shown in a and b, changes in patch 02 are shown in c and d, and changes in 

patch 03 are shown in e and f. The first letters (a, c, and e) represent 2011 and the letters b, d, and f 

represent 2012.  

The year after (Figure 4b), patch 01 was characterized by an overhanging block and a mild 

downward slope. Looking at the changes over time, one can observe two major changes. One is that 

the overhang eroded partly and deposited just below. The other one is that in the lower third of the 

slope, material eroded and moved farther down the slope, while no changes were recorded in the 

middle part of the slope.  

Patch 02 (Figure 4c) showed two different slope lines. The slope line from May was nearly 

vertical in the upper part, and after a breakpoint, the slope flattened. The slope line from July 2011 

was not as steep in the upper part and flattened even more in the lower half. It had two distinctive 

steps, one just below the upper edge, and the second one at 2.1 m a.s.l. marking the change to the 

lower half. Patch 02 showed a clear bank retreat between May and July 2011.  

In June 2012 (Figure 4d), the slope line changed. The upper part was nearly vertical at the top 

and had a straight slope with an angle below 45° at the beginning of the measurement in June. The 

scan in October the same year showed a retreat below the top and had a concave slope toward the 

water line. The patch had no erosion at the top part, but showed clear bank retreat just below.  

Patch 03 had a nearly vertical upper part and a less steep part farther down. The slope from May 

2011 flattened downward, though the point where the flattening started was not clearly visible. On 

the other hand, the slope line from July showed a distinct break point at 2.1 m a.s.l. and flattened to 

an angle smaller than 45°. Patch 03 showed a stable steep part, while bank retreat occurred in the part 

below the break point. 

In June 2012 (Figure 4f), the upper part had a convex, nearly vertical slope at the top and a 

straight slope with an angle below 45° at the beginning of the measurement in June. The scan from 

October in the same year showed a retreat at the upper part, where the convex slope changed to a 

straight slope. In the lower part, the straight slope changed to a convex slope. The transition points 

from convex to straight in June and from straight to convex in October were the same. Near the water 

surface, the slope from October became vertical. This patch showed in the upper part of the bank as 

retreat, in the middle part as sedimentation, and in the lowest part as retreat again.  
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For a better understanding of the mass distribution, the slope gradient was averaged in the 

vertical direction (Figure 5). The MVSG (Figure 5), plotted for each season and patch, describes the 

change of slope angle along the patch.  

 

Figure 5. Change of mean vertical slope gradient for all patches during the study. 

Patch 01 showed a steepening of the slope in the middle part from May to July 2011, while the 

edges did not change. In 2012, the June and October scans showed similar MVSGs along the patch. 

The analysis of the short-term scanning in 2013 showed an increase of MVSG at the middle part from 

the first to the second scan. The change from the second scan to the third scan after the main flood 

event showed an increase of the slope angle downstream and a decrease upstream. The edges kept 

stable and did not show any change in slope angle during 2013.  

The change of MVSG at patch 02 was not homogeneous over the width of the patch. It showed 

a general flattening between May and July 2011. In some small sections, around 1-m wide, no change 

of MVSG occurred at all, and in other sections, the change was more than 20°. The downstream edge 

showed a much steeper angle in July than in May. The following year, the slope became flatter equally 

over the length of the patch. However, the change of MVSG was much smaller, with a maximum 

around 10°. An exception was the upstream edge, where the slope got much steeper, from 45° to 

nearly vertical, while the downstream edge was stable. The short-term monitoring of patch 02 in 2013 

showed a rather stable slope at the first quarter along the patch. The second middle part showed a 

flattening of the slope after the first flood event and a steepening after the main flood event. The slope 

after the main flood event was similar to the slope in the beginning of 2013. 

Patch 03 for the first scan in 2011 showed a steep slope downstream (~60°). This changed 

upstream when the slope was below ~40°. During the second scan, the slope was unchanged 
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downstream but flattened over the whole length until it had about the same angle at the upstream 

part as in the beginning. The following season showed a similar pattern. In June, the slope angle was 

much steeper downstream (~80° to 70°) and decreased upstream. The second scan showed steeper 

angles just in the beginning on the downstream side. After that, the slope was stable around 30°. The 

changes in 2013 were smaller. Between the first and second scans in 2013, patch 03 flattened in the 

downstream and middle sections, while it got steeper upstream. The change from the second scan to 

the third scan after the flood event showed steeper sections up- and downstream but hardly any 

changes in the middle part. 

4. Discussion 

This study focused on three patches located along the outside of two consecutive river bends. A 

retreat of the riverbank toward the outer side of the upper edge was measured at all three patches. 

The results show that the erosion rate was different at the three patches. Kleinhans discusses many 

interacting factors, such as vegetation, sediment, and climate, among others, that influence erodibility 

and, thereby, river channel formation. In the following, the results from this study are discussed in 

order to understand the reasons for the erosion and deposition patterns from the hydraulic point of 

view[44] .  

The following discussion is divided into two parts. The first part discusses the results of the first 

two observation intervals and the three locations, and the second part discusses the changes during 

the third and fourth intervals, which were significantly shorter.  

Considering Figure 4 and Table 3, it can be seen that all three patches behaved according to the 

general understanding of bank erosion or retreat in meander bends. Looking at the details, one can 

see different erosional behavior for the different patches. Patches 02 and 03 behaved similarly but in 

a significantly different way compared to patch 01. 

Patch 01 was located downstream of the apex in the most upstream bend. As can be seen in 

Figure 1, this bend had the lowest curvature compared to the other bends in this reach. Following 

Table 3, one can see that the average horizontal retreat of patch 01 was 0.17 m. This fell within the 

range of the measured values of the whole dataset. However, looking at Figure 4, this number seems 

contradictory to the obvious advance. One possible explanation for this behavior is that a block at 

this location started to rotate and had not yet failed.  

Figure 4b illustrates the results of the measurement at the same patch the following year, during 

the period from June to October. The data from June show a significant overhang at the crest of the 

riverbank and accumulated material at the bottom of the slope. The data from October, represented 

by the blue line in Figure 4b, indicate that the crest partly collapsed and the material deposited in the 

upper half of the slope. In addition, one can see that the accumulated material shown in the data of 

June was eroded.  

The observed changes at the upper part of the slope during the campaign in 2011 as well as those 

during the campaign of 2012 can be classified as failure due to gravity, which is described in detail 

by Langendoen [8,25,28].  

Following Figure 1, patches 02 and 03 were located in the second bend, which had significantly 

higher curvature compared to the first bend, where patch 01 was located. Patches 02 and 03 were 

situated just upstream of the apex of the second bend, with approximately 10 m in between.  

The observed erosion process over time is characterized by three steps. First, one can observe a 

steepening of the riverbank (step I). At the second step (II), bank material falls from the top and 

accumulates in front of the bank toe. During the third step (III), this accumulated material is eroded, 

returning the riverbank back to its vertical shape, restarting the cycle in step I. Looking at Figure 4, it 

is now possible to identify when the measured changes occurred during the three steps. The changes 

in Figure 4c–e happened right after step II, where accumulated material starts to erode, while Figure 

4f shows step II, where eroded bank material accumulates at the bank toe. In this context, the 

discussion is continued as to whether or not the outer secondary cell had a stabilizing effect on the 

riverbank. Experiments in the laboratory and field measurements have shown that as long as the 

riverbank is steep, outer secondary cells form [6,32,36,37]. Steep riverbanks are observed in step I of 
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the described process, which leads to the assumption that the outer secondary cell, which dampens 

the boundary shear stress, prevents the riverbank from further erosion. The dampening of the 

boundary shear stress will then also lead to material originating from the riverbank accumulating at 

the bank toe, as described in step II of the process. At the end of step II, the deposited material has 

flattened the riverbank, and the outer secondary cell will disappear, so that the increased boundary 

shear stress will initialize erosion (step III). This is schematically illustrated in Figure 6.  

 

Figure 6. Schematic drawing of the three steps of the erosion process. 

As can be seen from Figure 4, patches 02 and 03 behaved differently in the second time interval. 

This seems to be a contradiction, since they followed the same steps of the erosion process. A possible 

explanation can be that the location of the erosion process is dependent on the water level. Different 

discharge leads to a different water level and different hydraulic conditions. It is known from the 

literature that different hydraulic conditions lead to a relocation of the high-velocity cell as well as 

the strength level of the secondary current [45–47]. Therefore, the different behavior of patches 02 

and 03 at the same measurement time interval was observed.  

As a second part of the discussion, the analysis of changes during the third and fourth intervals 

is as follows. Compared to the first two observation intervals discussed above, the third and fourth 

are relatively short. As described in the previous section, the measured riverbank changes during 

these short observation intervals were not significant. However, the measured water levels recorded 

the maximum value within the total study time. The stable riverbank can be explained by the fact 

that the above-described process of the three steps was interrupted by the falling water level so that 

neither erosion nor deposition occurred. According to the hypothesis above, the outer secondary cell 

dampened the boundary shear stress so that no material could be eroded (step I), and the short period 

of high water level prevented new material from depositing (step II). 

5. Conclusions 

This study focused on the erosional process and changes in the geomorphology of a riverbank 

triggered by river hydraulics. Herein, the riverbank of a lowland medium-size river was scanned 

with a terrestrial laser scanner in order to analyze the changes of bank geometry over time. The 

yielded point clouds were postprocessed by filtering for outliers, both automatically and manually. 

Based on these filtered data, the bank retreat and slope gradient were calculated. The Kruskal–Wallis 

test statistically tested the changes of the mean vertical slope gradient. It was possible to show which 

changes were highly statistically significant. This test proved to be a valuable tool to analyze point 

clouds for its difference in horizontal and vertical shapes. These results give insight into riverbank 

migration processes within an alternating water level over two summer seasons as well as migration 

processes within two short peak events. Hence, the sediment transport became clear.  

The results lead to the following conclusions: 

1. In the laboratory-observed phenomenon, the formation and existence of an outer secondary cell 

dampened the shear stress close to the riverbanks, and a possible consequence was observed 

and documented in a natural meandering river at bends with high curvature and relatively steep 
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riverbanks. The dampening of the erosive behavior was documented by subsequent terrestrial 

laser scans of three patches along the riverbank.  

2. This phenomenon could explain the stable riverbanks in short-peak events.  

3. The location of the erosion process was dependent on the water level. Therefore, different 

erosional behaviors along one riverbank were observed simultaneously.  

Author Contributions: M.F. and N.R. planned the fieldwork. The final research site was chosen by M.F. The 

laser scans were done by master’s students under supervision by M.F. Point clouds were filtered with a script 

written by Aljoscha Sander. M.F. analyzed the data and verified them statistically. M.F. wrote the manuscript 

and N.R. reviewed it before submitting. 

Funding: This research received no external funding. 

Acknowledgments: We would like to thank Felix Hahn and Christian Mörtl, who carried out their master’s and 

bachelor’s studies, respectively, in the framework of this study. They contributed significantly to the success of 

this study. Their help during data acquisition and in handling the challenging logistics of the fieldwork is highly 

appreciated. A huge thank you also to Aljoscha Sander, who wrote a script for filtering of point clouds, which 

we were allowed to use. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Parker, G. Stability of the channel of the Minnesota River near State Bridge No. 93, Minnesota.; University 

of Minnesota: Minneapolis, MN, USA, 1982. 

2. Parker, G.; Diplas, P.; Akiyama, J. Meander bends of high amplitude. J. Hydraul. Eng. 1983, 109, 1323–1337. 

3. Parker, G.; Shimizu, Y.; Wilkerson, G.V.; Eke, E.C.; Abad, J.D.; Lauer, J.W.; Paola, C.; Dietrich, W.E.; Voller, 

V.R. A new framework for modeling the migration of meandering rivers. Earth Surf. Proc. Land 2011, 36, 

70–86, doi:10.1002/esp.2113. 

4. Schnauder, I.; Sukhodolov, A.N. Flow in a tightly curving meander bend: Effects of seasonal changes in 

aquatic macrophyte cover. Earth Surf. Proc. Land 2012, 37, 1142–1157. 

5. Abad, J.D.; Garcia, M.H. Bed Morphology in Kinoshita Meandering Channels: Experiments and Numerical 

Simulations. In Proceedings of the 5th IAHR-Symposium on River, Coastal and Estuarine 

Morphodynamics, Enschede, The Netherlands, 17–21 September 2007; pp. 869–875. 

6. Blanckaert, K. Secondary flow in sharp open-channel bends. J. Fluid Mech. 2004, 498, 353–380. 

7. Daly, E.R.; Miller, R.B.; Fox, G.A. Modeling streambank erosion and failure along protected and 

unprotected composite streambanks. Adv. Water Resour. 2015, 81, 114–127, 

doi:10.1016/j.advwatres.2015.01.004. 

8. Langendoen, E.J.; Simon, A.; Alonso, C.V. Modeling channel instabilities and mitigation strategies in 

eastern Nebraska. Build. Partnersh. 2000, doi:10.1061/40517(2000)337 

9. Farhadi, A.; Sindelar, C.; Tritthart, M.; Glas, M.; Blanckaert, K.; Habersack, H. An investigation on the outer 

bank cell of secondary flow in channel bends. J. Hydro-Environ. Res. 2018, 18, 1–11, 

doi:10.1016/j.jher.2017.10.004. 

10. Klavon, K.; Fox, G.; Guertault, L.; Langendoen, E.; Enlow, H.; Miller, R.; Khanal, A. Evaluating a process-

based model for use in streambank stabilization: Insights on the Bank Stability and Toe Erosion Model 

(BSTEM). Earth Surf. Proc. Land 2017, 42, 191–213, doi:doi:10.1002/esp.4073. 

11. Gu, L.; Zhang, S.; He, L.; Chen, D.; Blanckaert, K.; Ottevanger, W.; Zhang, Y. Modeling Flow Pattern and 

Evolution of Meandering Channels with a Nonlinear Model. Water 2016, 8, 418. 

12. Bosa, S.; Petti, M.; Pascolo, S. Numerical Modelling of Cohesive Bank Migration. Water 2018, 10, 961. 

13. Thomas, S. Review of methods to measure short time scale sediment accumulation. Mar. Geol. 2004, 207, 

95–114. 

14. Lawler, D.M. Application of a novel automatic erosion and deposition monitoring system at a channel bank 

site on the tidal River Trent, U.K. Estuar. Coast. Shelf Sci. 2001, 53, 237–247. 

15. Couper, P.; Stott, T.; Maddock, I. Insights into river bank erosion processes derived from analysis of 

negative erosion-pin recordings: Observations from three recent UK studies. Earth Surf. Proc. Land 2002, 27, 

59–79, doi:10.1002/esp.285. 

16. Erlingsson, U. A sensor for measuring erosion and deposition. J. Sediment. Petrol. 1991, 61, 620–623. 



Hydrology 2018, 5, 68 16 of 17 

 

17. Haigh, M.J. The use of erosion pins in the study of slope evolution. Br. Geomorphol. Res. Group Tech. Bull. 

1977, 18, 31–49. 

18. Lawler, D.M. Advances in the continuous monitoring of erosion and deposition dynamics: Developments 

and applications of the new PEEP-3T system. Geomorphology 2008, 93, 17–39, 

doi:10.1016/j.geomorph.2006.12.016. 

19. Thorne, C.R. Field measurements of rates of bank erosion and bank material strength. In Proceedings of 

the IAHS Florence, Florence, Italy, 22–26 June 1981; pp. 503–512. 

20. Milan, D.J.; Heritage, G.L.; Large, A.R.G.; Entwistle, N.S. Mapping hydraulic biotopes using terrestrial laser 

scan data of water surface properties. Earth Surf. Proc. Land 2010, 35, 918–931, doi:10.1002/esp.1948. 

21. Day, S.S.; Gran, K.B.; Belmont, P.; Wawrzyniec, T. Measuring bluff erosion part 1: Terrestrial laser scanning 

methods for change detection. Earth Surf. Proc. Land 2013, 38, 1055–1067. 

22. Day, S.S.; Gran, K.B.; Belmont, P.; Wawrzyniec, T. Measuring bluff erosion part 2: Pairing aerial 

photographs and terrestrial laser scanning to create a watershed scale sediment budget. Earth Surf. Proc. 

Land 2013, 38, 1068–1082. 

23. O’Neal, M.A.; Pizzuto, J.E. The rates and spatial patterns of annual riverbank erosion revealed through 

terrestrial laser-scanner surveys of the South River, Virginia. Earth Surf. Proc. Land 2011, 36, 695–701, 

doi:10.1002/esp.2098. 

24. Resop, J.P.; Hession, W.C. Terrestrial laser scanning for monitoring streambank retreat: Comparison with 

traditional surveying techniques. J. Hydraul. Eng. 2010, 136, 794–798, doi:10.1061/(asce)hy.1943-

7900.0000233. 

25. Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for uncertainty in DEMs from repeat 

topographic surveys: Improved sediment budgets. Earth Surf. Proc. Land 2010, 35, 136–156, 

doi:10.1002/esp.1886. 

26. Nasermoaddeli, M.H.; Pasche, E. Application of terrestrial 3D laser scanner in quantification of the 

riverbank erosion and deposition. In Proceedings of the International Conference on fluvial Hydraulics, 

Cesme-Ismir,Turkey, 3–5 September 2008; p. 10. 

27. Brasington, J.; Vericat, D.; Rychkov, I. Modeling river bed morphology, roughness, and surface 

sedimentology using high resolution terrestrial laser scanning. Water Resour. Res. 2012, 48, 11. 

28. Jaboyedoff, M.; Demers, D.; Locat, J.; Locat, A.; Locat, P.; Oppikofer, T.; Robitaille, D.; Turmel, D. Use of 

terrestrial laser scanning for the characterization of retrogressive landslides in sensitive clay and rotational 

landslides in river banks. Can. Geotech. J. 2009, 46, 1379–1390. 

29. Thorne, C.R.; Hey, R.D. Direct measurements of secondary currents at a river inflexion point. Nature 1979, 

280, 226–228. 

30. Thorne, C.R.; Zevenbergen, L.W.; Pitlick, J.C.; Rais, S.; Bradley, J.B.; Julien, P.Y. Direct measurements of 

secondary currents in a meandering sand-bed river. Nature 1985, 315, 746–747. 

31. Blanckaert, K. Mean flow and turbulence in open-channel bend. J. Hydraul. Eng. 2001, 127, 835–847. 

32. Blanckaert, K.; and Graf, W.H. Momentum transport in sharp open-channel bends. J. Hydraul. Eng. 2004, 

130, 186–198. 

33. Blanckaert, K. Hydrodynamic processes in sharp meander bends and their morphological implications. J. 

Geophys. Res. Earth Surf. 2011, 116, doi:10.1029/2010JF001806. 

34. Ottewanger, W.; Blanckaert, K.; Uijttewaal, W.S.J. A parameter study on bank shear stresses in curved open 

channel flow by means of large-eddy simulation. RCEM Proc. 2011, 1917–1927. 

35. Van Balen, W.; Uijttewaal, W.S.J.; Blanckaert, K. Large-eddy simulation of a mildly curved open-channel 

flow. J. Fluid Mech. 2009, 630, 413–442, doi:10.1017/S0022112009007277. 

36. Foerst, M.; Rüther, N. Post Processing Methods of Moving Boat ADCP Measurements: Time Averaging vs. 

Distance Averaging. In 14. Treffen junger WissenschaftlerInnen an Wasserbauinstituten. Beiträge zum 

JuWi-Treffen am 25. und 26. Juni 2012 an der Technischen Universität München; TU Munich: Munich, 

Germany, 2012; p. 216. 

37. Foerst, M.; Rüther, N. Mean and Turbulent Flow Structures in two Consectutive Meander Bends. In 

Proceedings of the IAHR Europe 2012, Munich, Germany, 27–29 June 2012. 

38. Langendoen, E.J.; Simon, A. Stream Channel Evolution of Little Salt Creek and North Branch West Papillion 

Creek, Eastern Nebraska; National Sedimentation Laboratory: Oxford, MS, USA, 2000. 



Hydrology 2018, 5, 68 17 of 17 

 

39. Istanbulluoglu, E.; Bras, R.L.; Flores-Cervantes, H.; Tucker, G.E. Implications of bank failures and fluvial 

erosion for gully development: Field observations and modeling. J. Geophys. Res. Earth Surf. 2005, 110, 

doi:10.1029/2004JF000145. 

40. Langendoen, E.J. CONCEPTS-Conservational Channel Evolution and Pollutant Transport System. In 

Guidline NSL Technical Report, Laboratory, U.-A.N.S.: Oxford, MS, USA, 2000; p. 180. 

41. Langendoen, E.J. Modeling the Evolution of Incised Streams. II: Streambank Erosion. J. Hydraul. Eng. 2008, 

134, 905. 

42. Patsinghasanee, S.; Kimura, I.; Shimizu, Y.; Nabi, M. Experiments and modelling of cantilever failures for 

cohesive riverbanks. J. Hydraul. Res. 2018, 56, 76–95, doi:10.1080/00221686.2017.1300194. 

43. NVE. NEVINA. Availabe online: nevina.nve.no (accessed on 1 July 2012). 

44. Kleinhans, M.G. Sorting out river channel patterns. Prog. Phys. Geogr. 2010, 34, 287–326. 

45. Abad, J.D.; Rhoads, B.L.; Guneralp, I.; Garcia, M.H. Flow structure at different stages in a meander-bend 

with bendway weirs. J. Hydraul. Eng. 2008, 134, 1052–1063, doi:10.1061/(asce)0733-9429(2008)134:8(1052). 

46. Kasvi, E.; Alho, P.; Lotsari, E.; Wang, Y.; Kukko, A.; Hyyppä, H.; Hyyppä, J. Two-dimensional and three-

dimensional computational models in hydrodynamic and morphodynamic reconstructions of a river bend: 

Sensitivity and functionality. Hydrol. Process 2015, 29, 1604–1629, doi:10.1002/hyp.10277. 

47. Nanson, R.A. Flow fields in tightly curving meander bends of low width-depth ratio. Earth Surf. Proc. Land 

2010, 35, 119–135, doi:10.1002/esp.1878. 

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 



 



- 80 - 

7.2. Appendix B: Transects 

 

 





Map over transects along the reach 

 

 



Hydraulic conditions during measurment of each transect 

 



Following the flow structure for each transect. 
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