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Abstract—This paper presents results from measurements
and calculations of the steady-state DC electric field and the
field-dependent conductivity in the two insulation materials
found in mass-impregnated HVDC cables: Cable mass (a
high-viscosity mineral oil) and paper that is impregnated with
that mass. An important assumption for the work was that
the relationship between the electric fields in the two materials
depends only on the relationship between their conductivities. It
was found that the conductivity of the mass is 2–5 times higher
than the conductivity of the impregnated paper during normal,
steady-state conditions in cables. Consequently, the electric field
in the impregnated paper is 2–5 times higher than the electric
field in the mass under such conditions.

Keywords—power cable insulation; oil filled cables; underwater
cables

I. INTRODUCTION

The electric insulation in mass-impregnated high voltage
direct current cables consists of approximately 2 cm wide and
0.09 mm thick paper strips that are helically wrapped around
the conductor of the cable. The pitch of the helices is chosen
so that a gap is left between adjacent windings. These gaps,
which are called “butt gaps” and are about 2 mm wide, permits
bending of the cable. Each layer of paper strips is staggered
with respect to the layer below, so that the butt gaps in the two
neighboring layers are not placed directly above each other.
The paper is impregnated with an high-viscosity impregnation
compound, the so-called called “mass”. The mass consists of
a mineral oil with thickeners and other additives. The mass
fills the internal, fibrous structure of the paper, as well as the
butt gaps and interfaces between the paper strips.

In the following, the impregnated paper is regarded as
a homogeneous material. The internal structure of cellulose
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Fig. 1. Model of mass-impregnated HVDC cable insulation. Approximate
dimensions. The sketch is not to scale.

fibers and mass inside the paper is neglected. Consequently,
the insulation is regarded as a composite of two materials:

• impregnated paper strips, i.e. cellulose fibers with mass in
between the fibers, in the following denoted just “paper”

• mass in the butt gaps between the paper strips
A sketch of the insulation is shown in Fig. 1.

As will be shown below, the electric field distribution in
the different materials of the insulation under steady-state DC
conditions are governed by the ratio between the conductivity
of the mass and the conductivity of the paper. This article
presents results from measurements of the conductivity in
paper and mass, and computations of corresponding electric
fields in geometries relevant to mass-impregnated HVDC
cables.

No attention is payed to the charging process of the di-
electric systems, where the electric field distribution is mainly
governed by the rate of change of the displacement field
instead of the conductivities, and where the currents are
different from the steady-state DC current. In the following,
the term current means steady-state DC current. Consequently,
current density means steady-state DC current density.

II. THEORY

A. Conductivity and Electric Field Distribution

1) Capacitor with One Dielectric Material: Here, a parallel
plate capacitor containing a single, homogeneous material of
thickness d and area A is considered. Any possible alteration
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of the conductivity in the vicinity of the electrodes due to
charge injection is assumed to be negligible, and edge effects
are neglected.

The electric field E in the dielectric when the capacitor is
subjected to a DC voltage U is then

E =U/d. (1)

The conductivity σ is

σ = J/E, (2)

where J is the steady-state current density in the dielectric.
2) Capacitor with Two Dielectric Materials: Now a parallel

plate capacitor of two homogeneous, dielectric materials is
considered. The materials are numbered 1 and 2, respectively.
The same assumptions as above are maintained. Furthermore,
it is assumed that there is no transition zone between the
materials, and that the materials are in perfect electrical contact
with each other. The thicknesses of material 1 and 2 are d1,2
and the conductivities σ1,2, respectively.

Equation (2) holds for each material separately, so that σ1 =
J1/E1 and σ2 = J2/E2. Since J1 = J2 at steady-state conditions,
we have

E1

E2
=

σ2

σ1
. (3)

The electric field in material 1 when the capacitor has been
subjected to a DC voltage U for a sufficiently long time for
steady-state DC conditions to occur, is then [1]

E1 =
Uσ2

d1σ2 +d2σ1
. (4)

Sometimes it is convenient to express (4) as

E1 =
Ē( d1

d2
+1)σ2

d1
d2

σ2 +σ1
(5)

where Ē =U/(d1 +d2) is the mean field strength.
The electric field E2 in the other material can be found by

swapping the indices 1 and 2 in (4), or by using the relation

E2 =
U −d1E1

d2
. (6)

B. Methods of Conductivity Measurements

1) Method 1—One Material: The conductivity of a material
may depend on the electric field in that material [2]. For a
material as in section II-A1, an empirical formula for σ(E)
can be found in this way:

1) Perform measurements of J at different values of U .
2) Use (1) and (2) to find E and σ .
3) Curve fit to obtain an empirical formula for σ(E).
2) Method 2—Two Materials in a Series Connection: In

case of a series connection of two materials as in section II-A2
where the field-dependent σ1(E1) for material 1 is known, we
can obtain an empirical formula for material 2 in this way:

1) Perform measurements of J at different values of U .
2) For each J, insert an already known formula for σ1(E1)

into (2) and solve for E1.

3) For each E1, use (6) to find E2.
4) For each E2, use (2) to find σ2.
5) Curve fit to obtain an empirical formula for σ(E2).

If σ1(E1) is not field-dependent, the solution of (2) in step 2)
is trivial, and steps 2) through 4) can for each J be replaced
by the formula

σ2 =
Jσ1d2

σ1U − Jd1
. (7)

On the other hand, if σ1(E1) is field-dependent, (2) can be
more difficult to solve. However, if σ1(E1) is an exponential
relation

σ1(E1) = aexp(bE1) (8)

where a and b are constants, the solution of (2) is

E1 =
W0(z)

b
, (9)

where W0 is the principal branch of the Lambert W function
[3], and its argument z = Jb/a. Then, steps 2) through 4) can
for each J instead be replaced by the formula

σ2 =
d2bJ

bU −d1W0(z)
. (10)

III. EXPERIMENTAL METHOD

Cable paper sheets of nominal thickness 90 µm were dried
in vacuum at 100–120 ◦C for minimum 48 hours. Mass
was degassed by circulating in another vacuum chamber at
approx. 100 ◦C for at least 4 hours. The degassed mass was
transferred through a piping system to the vacuum chamber
containing the paper sheets. The mass completely covered the
paper sheets before the paper-containing chamber was opened
and the electrode arrangement was put in place around the
sample. Then the chamber was quickly closed and flushed
with dry nitrogen before the whole arrangement was left for
the temperature to stabilize. The temperatures used for mea-
surements were 22 ◦C and 50 ◦C. Voltages up to U = 35kV
were used, giving mean field strengths up to Ē = 25.7kV/mm.

Three types of samples were used:
• “Paper sample”:

A stack of four or five paper sheets.
• “Series connection sample”:

A stack of four paper sheets with a mass-filled gap of
1 mm in the middle of the stack.

• “Mass sample”:
An 1 mm section of mass, without any paper.

The stack thickness was assumed to be the nominal thickness
of one sheet multiplied with the number of sheets in the
stack. The mass samples and the gap in the series connection
samples were made by using a polytetrafluoroethylene spacer.
The samples and the electrode arrangement were surrounded
by mass. The electrodes were circular and made of brass. They
were connected to a DC source (Fug HCN 140 - 35 000) and
a picoamperemeter (Keithley 6485), as well as equipment for
protecting and controlling the circuit. A sketch of the electrode
arrangement and the circuit is shown in Fig. 2.



Fig. 2. Cross-sectional sketch of the electrode arrangement used for measuring
series connection of paper and mass. The figure is not to scale.

The current was measured at least until the rate of change
was less than 7 % per hour for the paper samples and the
series connection samples, and 7 % per 1000 s for the mass
samples.

The field-dependent conductivity σp(Ep) of paper was mea-
sured using Method 1 with the paper samples. Subsequently,
the field-dependent conductivity σm(Em) of mass was mea-
sured with both methods from section II-B in two different
ways: Method 1 with the mass samples, and Method 2 with
the series connection samples (with σp(Ep) from Method 1 as
input to the computations).

When σp(Ep) and σm(Em) were found, Ep and Em were
estimated for geometries and mean field strengths relevant
to HVDC cables. Instead of using (4), which was difficult
or impossible to use because of the field-dependence of the
conductivities, the finite element method (FEM) was used. The
FEM software Comsol Multiphysics 5.3 was used to create
an one-dimensional model of paper and mass in a series
connection. The software was set to solve (2) together with
E =−∇V and ∇ ·J = 0, where V is the electric potential. The
different field-dependencies of σp(Ep) and σm(Em) were taken
into account. This yielded values for the conductivities and the
fields for different values of dp, dm, and Ē.

IV. RESULTS

A. Method 1—Paper Samples and Mass Samples

Fig. 3 shows the measured conductivity in paper sam-
ples and mass samples at 50 ◦C, obtained with the method
described in section II-B1. The results for mass had poor
repeatability compared with that of the paper. It was not
possible to measure the mass samples at higher field strengths
than 7 kV/mm because the DC source and picoamperemeter
showed signs of electrical breakdown in the sample. For field
strengths up to 7 kV/mm, the highest σm was 20 times higher
than the lowest σp, and the lowest σm was 2 times higher than
the highest σp.

The sample of five paper sheets was measured at 22 ◦C and
50 ◦C with field strengths from 11 to 56 kV/mm, still using the
method described in section II-B1. Curve fitting those results
to σp(Ep) = aexp(bEp) gave a = 1.49×10−16 S/m and b =
3.02×10−8 m/V for 22 ◦C, and a = 4.72×10−15 S/m and
b = 3.03×10−8 m/V for 50 ◦C.

Fig. 3. Conductivity in mass samples and paper samples at 50 ◦C. Equation 2
was used.

Fig. 4. Conductivity of mass in the series connection sample at 22 ◦C. The
solid line shows σp(Ep) = aexp(bEp) with a = 7.81×10−15 S/m and b =
3.00×10−8 m/V, which was used for computing Em.

Fig. 5. Conductivity of mass in the series connection sample at 50 ◦C. The
solid line shows σp(Ep) = aexp(bEp) with a = 1.87×10−16 S/m and b =
2.63×10−8 m/V, which was used for computing Em.

B. Method 2—Series Connection Samples

Fig. 4 and 5 show results from measurements of σm in
series connection samples at 22 ◦C and 50 ◦C, respectively.
These results were obtained by using σp(Ep) = aexp(bEp)
as presented above, together with the procedure described in
section II-B2. Note that σp was not measured with this method,
but was used as input to the computation of Em and σm.

Fig. 6 shows computations of the ratio Em/Ep in series
couplings of paper and mass with with various mean field
strengths and ratios of dp/dm. In the series coupling samples,
dp/dm was 4/11. In cables, dp/dm depends on how many paper
strips there are between butt gaps in the radial direction. The
computations were done with Comsol Multiphysics.



Fig. 6. Em/Ep as functions of mean electric field strength Ē for various ratios
of total paper thickness to mass thickness (dp/dm). In the series connection
samples, dp/dm was 4/11.

V. DISCUSSION

For E ≤ 7kV/mm at 50 ◦C, results from measurements
of σm with Method 1 are in the range from 3.2×10−14 to
1.6×10−13. This is 2–20 times higher than σp obtained with
the same method at the same field strengths. Note that this
comparison of σp(Ep) and σm(Em) is done with Ep = Em. The
dispersion in σm is pronounced, and there is no clear trend for
σm as a function of Em.

Method 2 at the same temperature gave lower and approxi-
mately constant values for σm(Em) for the same range of Em.
The lower values could possibly be due to less effective change
of polarity of charge carriers in the mass at the mass–paper
interfaces in the series coupling samples than at the mass–
brass interfaces in the mass samples. If charge carriers change
polarity without being trapped when meeting an interface, they
can start going in the opposite direction and continue to con-
tribute to the current. It should be noted that although the mass
gap was designed to be between the paper sheets, the upper
and lower paper stacks had a tendency to attract each other. In
some of the experiments much of the mass may therefore have
been between a paper stack and the brass electrode, instead
of between the upper and lower paper stack. Nevertheless, the
mass samples had no mass–paper interfaces, whereas the series
connection samples had at least one mass–paper interface. In
a cable, the butt gaps are surrounded by paper, and the series
connection samples resemble this situation better than the mass
samples do. Electrical breakdown was not a problem in the
series coupling samples.

At approximately 10 kV/mm, where Method 1 did not
work, σm started to increase.

Method 2 gave similar results at 22 ◦C as at 50 ◦C, but
σp and σm at 22 ◦C were less than 5 % of the corresponding
values for 50 ◦C (Fig. 4), and the highest value of σm at 22 ◦C
was obtained at the lowest field strength. Due to limitations of
the DC voltage source, Em in the series connection samples did
not exceed 14.5 kV/mm at 22 ◦C and 10.8 kV/mm at 50 ◦C.
Below these field strengths, the ratio σm/σp never exceeded
20. Both at 22 ◦C and 50 ◦C, σm(Em) starts to increase with
Em at approximately 10 kV/mm. Extrapolations based on the
slopes of σm(Em) for both temperatures suggest that at higher
field strengths than obtained in the present work, the ratio

σm/σp would be larger. Also here, the comparison of σp(Ep)
and σm(Em) is done with Ep = Em.

Up to now we have compared σm(Em) with σp(Ep) where
Em = Ep. This is not the situation in a real capacitor or a real
cable, where Ep/Em = σm/σp. Since σm > σp, we have Ep >
Em. This means that σp(Ep) has to be evaluated at a higher
field strength than σm(Em), and the field-dependencies of the
conductivities have a restraining effect on the ratio Ep/Em.
Typical mean field strengths in HVDC cable insulation during
steady-state conditions are in the range of 10–40 kV/mm [2].
The results presented in Fig. 6 shows that the ratio Ep/Em
is expected to be between 2 and 5 in such cases. Therefore,
extrapolations of Em as mentioned above appear not to be
necessary for calculation of the local electric fields in mass-
impregnated HVDC cables.

Fig. 6 was made under the assumption that neither of the
conductivities depend on the thickness of the dielectric. It
follows from the same assumption and (5) that the curves in
Fig. 6 would not change if dp and dm were changed, as long
as the ratio between those parameters were kept constant. It is
known that the size of the oil gap can influence the apparent
conductivity in liquid dielectrics [4]. This suggests that the
effect of dp and dm need to be investigated.

VI. CONCLUSION

The ratio σm(Em)/σp(Ep), where Em and Ep are the actual
electric fields in the respective materials during operation of
mass-impregnated HVDC cables, were found to be between
2 and 5 for mean electric field strengths normally present at
steady-state conditions in such cables. Consequently, Ep/Em
is also between 2 and 5 at the same conditions.
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