
THIS IS JUST AN OF EXAMPLE 
RESEARCH 
OAuth 2.0 & OpenID Connect 
https://aaronparecki.com/oauth-2-simplified/ 
Discussion on why Implicit Flow and Resource Owner Password Credentials Grant are bad: 
https://www.ory.sh/oauth2-for-mobile-app-spa-browser 
 

Roller 

Klient - app som trenger tilgang til bruker sine ressurser. 
Ressursserver - serveren med ressursene til brukeren. Gir bare tilgang til ressurser hvis det 
presenteres en access token. 
Autoriseringsserver - server som sjekker om klient har lov fra bruker til å motta access token 
og sender en access token til klient hvis klient har tillatelse. Kan f.eks. gjøres ved å vise en side 
der bruker kan gi sin tillatelse/godkjenning(typ sånn som google gjør ved innlogging fra ny 
enhet). Kan ofte være lagt på samme server som ressursserver. 
Bruker - “Eieren” av ressursene(i dette tilfellet en ansatt på sykehus). Bruker må gi sin tillatelse 
til Klient og bruke sitt passord og brukernavn for tilgang til en access token. 
Ressurser - Klient har tilgang til f.eks. Pasientlister, rutiner, behandlingsmåte etc.  

Klient-ID og hemmelighet 
Når vi registrerer appen vår med autoriseringsserveren (“the service”) får vi en klient-ID. 
Klient-IDen er offentlig og brukes til å bygge login-URLer. Man får vanligvis en 
klient-hemmelighet, men denne kan visst ikke holdes hemmelig på native-apps , og da bruker 1

man den ikke. 
 

1 "OAuth 2 Simplified • Aaron Parecki." https://aaronparecki.com/oauth-2-simplified/. Accessed 24 Jan. 
2019. 

https://aaronparecki.com/oauth-2-simplified/
https://www.ory.sh/oauth2-for-mobile-app-spa-browser
https://aaronparecki.com/oauth-2-simplified/


Authorization vs. Authentication 

What is authorization? 

 
The card authorizes your access to the resource (your hotel room) 

Authorization 
Authorization grant - representerer bruker sin autorisasjon om at klient har tilgang til ressurser. 
Finnes 4 typer: 

● Authorization Code 
○ Brukes av selve appen på vegne av seg selv (ikke brukeren) til å få 

oppdateringer og generelle stats om brukerne av appen 
● Implicit 
● Resource owner password credentials 

○ Bruker sitt passord og brukernavn brukes som authorization grant av klient og 
sendes til autoriseringsserver for tilgang til en access token. Det betyr at klient 
har tilgang til bruker sitt passord og brukernavn.  

● Client credentials 
Access token -  
Access tokens are used as bearer tokens. A bearer token means that the bearer can access 
authorized resources without further identification. Because of this, it’s important that bearer 
tokens are protected. If I can somehow get ahold of and “bear” your access token, I can 
masquerade as you. 
 



These tokens usually have a short lifespan (dictated by its expiration) for improved security. 
That is, when the access token expires, the user must authenticate again to get a new access 
token limiting the exposure of the fact that it’s a bearer token.  2

 
 
Refresh token  
Refresh tokens are used to obtain new access tokens. Typically, refresh tokens will be 
long-lived while access tokens are short-lived. This allows for long-lived sessions that can be 
killed if necessary.  3

● A special token used to get new access tokens 
● Requested along with the access token in the initial step 
● Usually requires scope: offline_access 
● Usually not issued to Javascript clients 

○ Due to security concerns and because we don’t expect the Javascript apps to 
need access after the user stops using them actively 
 

Exchange refresh token for Access Token: 

 
Response includes new access token (and possibly also a new refresh token, not defined by the 
spec) Assume that if you do get a new refresh token, use that. 

 
 
 

Possible OAuth2.0 login flows 
OpenId and openId Connect are slightly different. OpenID Connect is a newer version and 
easier to use. OpenID is a layer on top of oauth  These flows are OAuth2.0 flows. 4

2 "Identity, Claims, & Tokens – An OpenID Connect Primer, Part 1 of 3 ...." 25 Jul. 2017, 
https://developer.okta.com/blog/2017/07/25/oidc-primer-part-1. Accessed 26 Feb. 2019. 
3 "Identity, Claims, & Tokens – An OpenID Connect Primer, Part 1 of 3 ...." 25 Jul. 2017, 
https://developer.okta.com/blog/2017/07/25/oidc-primer-part-1. Accessed 26 Feb. 2019. 
4 "OpenID Connect." https://openid.net/connect/. Åpnet 26 feb.. 2019. 

https://developer.okta.com/blog/2017/07/25/oidc-primer-part-1
https://developer.okta.com/blog/2017/07/25/oidc-primer-part-1
https://openid.net/connect/


“Flows” are openid connect and “grants” are basic oauth.  This is just a way of saying that oauth 5

only handles authorization, not authentication, which we use oauth for.  
Front channel: Data sent via browser 
Back channel: Data sent directly to/from app 

Password Grant (OAuth 2.0 Client Credentials Grant) 
App has to ask the user for the user’s password. Also gives you an access token as an end 
result. 

 6

 

5 "When To Use Which (OAuth2) Grants and (OIDC) Flows – Robert ...." 21 mai. 2017, 
https://medium.com/@robert.broeckelmann/when-to-use-which-oauth2-grants-and-oidc-flows-ec
6a5c00d864. Åpnet 26 feb.. 2019. 
6 "CNPDX June: OAuth all the things! | Meetup." 20 Jun. 2018, 
https://www.meetup.com/Cloud-Native-PDX/events/251445604/. Accessed 20 Feb. 2019. 

https://medium.com/@robert.broeckelmann/when-to-use-which-oauth2-grants-and-oidc-flows-ec6a5c00d864
https://medium.com/@robert.broeckelmann/when-to-use-which-oauth2-grants-and-oidc-flows-ec6a5c00d864
https://www.meetup.com/Cloud-Native-PDX/events/251445604/


Implicit Flow (OAuth 2.0 Implicit Grant) 

 

When to use Implicit Flow? 
“More okay to use with OpenID Connect, not with OAuth2”. Source: 
https://www.youtube.com/watch?v=wA4kqKFua2Q 
https://oauth.net/2/grant-types/implicit/ 
 
https://brockallen.com/2019/01/03/the-state-of-the-implicit-flow-in-oauth2/ 
 

https://oauth.net/2/grant-types/implicit/
https://brockallen.com/2019/01/03/the-state-of-the-implicit-flow-in-oauth2/


OAuth2.0 Authorization Code Grant 

response_type=code (with scope != openid) 

 
 
“Authorization code flow on the other hand only returns a so called authorization code via the 
unauthenticated front channel, and requires client authentication using client id and secret (or 
some other mechanism) to retrieve the actual tokens (including a refresh token) via the back 
channel. This mechanism was originally designed for server-based applications only, since 
storing client secrets on a client device is questionable without the right security mechanisms in 
place.” Source: 
https://leastprivilege.com/2014/10/10/openid-connect-hybrid-flow-and-identityserver-v3/ 
Leastprivilege is the creator of Identityserver3, which we are using 
https://github.com/identityserver  
 
Redirect URI 
 While redirect URIs using localhost (i.e., 
   "http://localhost:{port}/{path}") function similarly to loopback IP 
   redirects described in Section 7.3, the use of localhost is NOT 
   RECOMMENDED.  Specifying a redirect URI with the loopback IP literal 
   rather than localhost avoids inadvertently listening on network 
   interfaces other than the loopback interface.  It is also less 
   susceptible to client-side firewalls and misconfigured host name 

https://leastprivilege.com/2014/10/10/openid-connect-hybrid-flow-and-identityserver-v3/
https://github.com/identityserver


   resolution on the user's device.  7

 
If an attacker can manipulate the redirect URL before the user reaches the authorization server, 
they could cause the server to redirect the user to a malicious server which would send the 
authorization code to the attacker. For public clients without a client_secret, all that is needed is 
the client_id and authorization code to obtain an access token. If an attacker can obtain an 
authorization code, they could then exchange it for an access token for public clients.  8

This is avoided by having the redirect_uri stored in the server beforehand. 
 
Acces token returned are in Fragment in stead of Query String (after #) 

● Why? 
 

 
Source: https://www.youtube.com/watch?v=wA4kqKFua2Q 
 
Other requirements for the redirect URI/URL: 

● Registered redirect URLs may contain query string parameters, but must not 
contain anything in the fragment.  9

● Note that for native and mobile apps, the platform may allow a developer to 
register a URL scheme such as myapp:// which can then be used in the redirect 
URL. This means the authorization server should allow arbitrary URL schemes to 
be registered in order to support registering redirect URLs for native apps. 

● The server should reject any authorization requests with redirect URLs that are 
not an exact match of a registered URL. 

7 "RFC 8252 - OAuth 2.0 for Native Apps - IETF Tools." https://tools.ietf.org/html/rfc8252. Accessed 26 
Feb. 2019. 
8 "Redirect URL Registration - OAuth 2.0 Servers." 17 Aug. 2016, 
https://www.oauth.com/oauth2-servers/redirect-uris/redirect-uri-registration/. Accessed 26 Feb. 2019. 
9 "Redirect URL Registration - OAuth 2.0 Servers." 17 Aug. 2016, 
https://www.oauth.com/oauth2-servers/redirect-uris/redirect-uri-registration/. Accessed 18 Feb. 2019. 

https://www.youtube.com/watch?v=wA4kqKFua2Q
https://www.oauth.com/oauth2-servers/redirect-uris/redirect-uri-validation/
https://tools.ietf.org/html/rfc8252
https://www.oauth.com/oauth2-servers/redirect-uris/redirect-uri-registration/
https://www.oauth.com/oauth2-servers/redirect-uris/redirect-uri-registration/


● If a client wishes to include request-specific data in the redirect URL, it can 
instead use the “state” parameter to store data that will be included after the user 
is redirected. It can either encode the data in the state parameter itself, or use 
the state parameter as a session ID to store the state on the server. 

 
For native clients: 

●  Depending on the platform, native apps can either claim a URL pattern, or 
register a custom URL scheme that will launch the application. For example, an 
iOS application may register a custom protocol such as myapp:// and then use a 
redirect_uri of myapp://callback 

● App-Claimed https URL Redirection (Android App Links /iOS Universal 10

Links) 
○ Some platforms, (Android, and iOS (9 and later)), allow the app to override 

specific URL patterns to launch the native application instead of a web 
browser. For example, an application could register 
https://app.example.com/auth and whenever the web browser attempts to 
redirect to that URL, the operating system launches the native app 
instead. 

○ If the operating system does support claiming URLs, this method should 
be used. This allows the identity of the native application to be guaranteed 
by the operating system. If the operating system does not support this, 
then the app will have to use a custom URL scheme instead.  11

○ Have to trust in whoever manages the URL registration, to make sure 
nobody hijacks your app’s URL. 

● Custom URL Scheme (Android deep links , iOS ??) 12

○ Most mobile and desktop operating systems allow apps to register a 
custom URL scheme that will launch the app when a URL with that 
scheme is visited from the system browser. 

○ Using this method, the native app starts the OAuth flow as normal, by 
launching the system browser with the standard authorization code 
parameters. The only difference is that the redirect URL will be a URL with 
the app’s custom scheme 

○ When the authorization server sends the Location header intending to 
redirect the user to myapp://callback#token=...., the phone will launch the 

10 "Handling Android App Links | Android Developers." https://developer.android.com/training/app-links/. 
Accessed 19 Feb. 2019. 
11 "Redirect URLs for Native Apps - OAuth 2.0 Servers." 17 Aug. 2016, 
https://www.oauth.com/oauth2-servers/redirect-uris/redirect-uris-native-apps/. Accessed 18 Feb. 2019. 
12 "Create Deep Links to App Content | Android Developers." 
https://developer.android.com/training/app-links/deep-linking. Accessed 19 Feb. 2019. 

https://developer.android.com/training/app-links/
https://www.oauth.com/oauth2-servers/redirect-uris/redirect-uris-native-apps/
https://developer.android.com/training/app-links/deep-linking


application and the app will be able to resume the authorization process, 
parsing the access token from the URL and storing it internally. 

● Custom URL Scheme Namespaces 
○ Since there is no centralized method of registering URL schemes, apps 

have to do their best to choose URL schemes that won’t conflict with each 
other. 

○ Follow a certain pattern 
○ Malicious apps could set their URL schemes to conflict on purpose. 

Sikkerhetshensyn 
“The OAuth 2.0 implicit grant authorization flow (defined in 
   Section 4.2 of OAuth 2.0 [RFC6749]) generally works with the practice 
   of performing the authorization request in the browser and receiving 
   the authorization response via URI-based inter-app communication. 
   However, as the implicit flow cannot be protected by PKCE [RFC7636] 
   (which is required in Section 8.1), the use of the Implicit Flow with 
   native apps is NOT RECOMMENDED.”  13

 
PKCE  14

Ved andre flows enn implisitt vil autoriseringsserveren sende klienten en autoriseringskode som 
klient skal bruke senere for å få tak i en accesstoken. PKCE er laget for å hindre at en annen 
part får tak i autoriseringskoden fra autoriseringsserveren. What PKCE (not) protect against: 
https://web-in-security.blogspot.com/2017/01/pkce-what-cannot-be-protected.html  
 
For every authorization request done by a client a code-verifier must be generated. This may 
just be a random string. The client then makes a secure hash of the verifier and sends the hash 
and hashfunction with the authorization request(this should be sent over a secure TLS 
connection). When the client later requests the accesstoken from the authorizationserver the 
code-verifier(original, plain string) is sent with the authorization code. Now the 
authorizationserver can run the code-verifier through the same hashfunction used by the client 
and compare the resulting hash with the hash from the initial request. If these don’t match is 
likely the request for the token was sent by someone else.  
 
If a secure hashfunction is used it will be practically impossible to make a forgery even if the 
attacker has access to the hash. The code-verifier must be kept secret. 
 
Autoriseringsserveren 

13 "RFC 8252 - OAuth 2.0 for Native Apps - IETF Tools." https://tools.ietf.org/html/rfc8252. Accessed 20 
Feb. 2019. 
14 "RFC 7636 - Proof Key for Code Exchange by OAuth ... - IETF Tools." https://tools.ietf.org/html/rfc7636. 
Accessed 20 Feb. 2019. 

https://tools.ietf.org/html/rfc8252#section-4.2
https://tools.ietf.org/html/rfc8252#section-4.2
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc8252#section-8.1
https://tools.ietf.org/html/rfc8252#section-8.1
https://web-in-security.blogspot.com/2017/01/pkce-what-cannot-be-protected.html
https://tools.ietf.org/html/rfc8252
https://tools.ietf.org/html/rfc7636


Kan være lurt å kreve at serveren sjekker package-names og/eller bundle ID’s for appen som 
ber om tilgang. 

Combining Implicit and Code grant? 
This is possible in OAuth2.0 

response_type=code token (with scope != openid) 

 
If an Access Token is returned from both the Authorization Endpoint and from the Token 
Endpoint, which is the case for the response_type values code token and code id_token token, 
their values MAY be the same or they MAY be different. Note that different Access Tokens 
might be returned be due to the different security characteristics of the two endpoints 
and the lifetimes and the access to resources granted by them might also be different.  15

 
But why would one use this? Stackoverflow users are baffled.  16

 
We do not recommend that an Access Token obtained when response_type=code token or 
code token or code id_token token be used to call APIs.  17

15 "Diagrams of All The OpenID Connect Flows – Takahiko ... - Medium." 30 Oct. 2017, 
https://medium.com/@darutk/diagrams-of-all-the-openid-connect-flows-6968e3990660. Accessed 5 Mar. 
2019. 
16 "Usage of response_type="code token" in OAuth 2? - Stack Overflow." 6 Nov. 2014, 
https://stackoverflow.com/questions/26744079/usage-of-response-type-code-token-in-oauth-2. 
Accessed 5 Mar. 2019. 
17 "How to Implement the Hybrid Flow - Auth0." https://auth0.com/docs/api-auth/tutorials/hybrid-flow. 
Accessed 5 Mar. 2019. 

https://medium.com/@darutk/diagrams-of-all-the-openid-connect-flows-6968e3990660
https://stackoverflow.com/questions/26744079/usage-of-response-type-code-token-in-oauth-2
https://auth0.com/docs/api-auth/tutorials/hybrid-flow


 

OpenID Connect 

“OpenID Connect (henceforth OIDC), runs on top of OAuth 2.0. 
 
OAuth 2.0 leaves a lot of details up to implementers. For instance, it supports scopes, 
but scope names are not specified. It supports access tokens, but the format of those 
tokens are not specified. With OIDC, a number of specific scope names are defined that 
each produce different results. OIDC has both access tokens and ID tokens. An ID 
token must be JSON web token (JWT). Since the specification dictates the token 
format, it makes it easier to work with tokens across implementations. 
 
Typically, you kick off an OIDC interaction by hitting an /authorization endpoint with an 
HTTP GET. A number of query parameters indicate what you can expect to get back 
after authenticating and what you’ll have access to (authorization). 
 
Often, you’ll need to hit a /token endpoint with an HTTP POST to get tokens which are 
used for further interactions. 
 
OIDC also has an /introspect endpoint for verifying a token, a /userinfo endpoint for 
getting identity information about the user.”  18

OAuth 2.0 Authentication Servers implementing OpenID Connect are also referred to as 
OpenID Providers (OPs). OAuth 2.0 Clients using OpenID Connect are also referred to 
as Relying Parties (RPs). 

 

When to use OpenID Connect? 

● In OAuth there is no standard way of getting the user’s information (email, name) 
● OpenID Connect: 

○ Adds ID token 

18 "Identity, Claims, & Tokens – An OpenID Connect Primer, Part 1 of 3 ...." 25 Jul. 2017, 
https://developer.okta.com/blog/2017/07/25/oidc-primer-part-1. Accessed 26 Feb. 2019. 

https://developer.okta.com/blog/2017/07/25/oidc-primer-part-1


■ JSON Web Token about the user, “scrambled”, needs to be 
decoded to be human readable  

○ Adds userinfo endpoint (If ID token does not provide enough info) 
■ Use access token for this call, not ID token 

○ Adds standard set of scopes and other standardization  

 

Without OpenID Connect: 

 

With OpenID Connect: 



 

More on OAuth2 and where we got the pictures from: 
https://www.youtube.com/watch?v=996OiexHze0 

OpenID Connect Tokens 
There are three types of tokens in OIDC: id_token, access_token and 
refresh_token. 
 

ID Tokens 

An id_token is a JWT (JSON Web Token), per the OIDC Specification. This means 
that: 

● identity information about the user is encoded right into the token and 
● the token can be definitively verified to prove that it hasn’t been tampered with. 

There’s a set of rules in the specification for validating an id_token. Among the claims 
encoded in the id_token is an expiration (exp), which must be honored as part of the 
validation process. Additionally, the signature section of JWT is used in concert with a 
key to validate that the entire JWT has not been tampered with in any way.  19

19 "Identity, Claims, & Tokens – An OpenID Connect Primer, Part 1 of 3 ...." 25 Jul. 2017, 
https://developer.okta.com/blog/2017/07/25/oidc-primer-part-1. Accessed 26 Feb. 2019. 

https://www.youtube.com/watch?v=996OiexHze0
https://tools.ietf.org/html/rfc7519
http://openid.net/specs/openid-connect-core-1_0.html#TokenResponse
http://openid.net/specs/openid-connect-core-1_0.html#IDTokenValidation
https://developer.okta.com/blog/2017/07/25/oidc-primer-part-1


JWT 

In 2015, the JWT spec was released. The includes provisions for cryptographically 
signed JWTs (called JWSs). A signed JWT is particularly useful in application 
development because you can have a high degree of confidence that the information 
encoded into the JWT has not been tampered with. By verifying the JWT within the 
application, you can avoid another round trip to an API service. OIDC formalizes the 
role of JWT in mandating that ID Tokens be JWTs. 

ID Token verification 
ID tokens are sensitive and can be misused if intercepted. You must ensure that these 
tokens are handled securely by transmitting them only over HTTPS and only via POST 
data or within request headers. If you store them on your server, you must also store 
them securely. 
 
One thing that makes ID tokens useful is that fact that you can pass them around 
different components of your app. These components can use an ID token as a 
lightweight authentication mechanism authenticating the app and the user. But before 
you can use the information in the ID token or rely on it as an assertion that the user has 
authenticated, you must validate it.  20

OpenID Connect Flows 

 

"response_type" 

value 

Flow 

code  Authorization Code 

Flow 

id_token  Implicit Flow 

id_token token  Implicit Flow 

code id_token  Hybrid Flow 

code token  Hybrid Flow 

20 "OpenID Connect | Google Identity Platform | Google Developers." 20 Dec. 2018, 
https://developers.google.com/identity/protocols/OpenIDConnect. Accessed 27 Feb. 2019. 

https://tools.ietf.org/html/rfc7519
https://developers.google.com/identity/protocols/OpenIDConnect


code id_token token  Hybrid Flow  
21

 

Authorization Code, Implicit, and Hybrid. These flows are controlled by the 
response_type query parameter in the /authorization request. When thinking of 
which flow to use, consider front-channel vs. back-channel requirements. Front-channel 
refers to a user-agent (such as a Single-Page-Application or mobile app) interacting 
directly with the OpenID provider (OP). The implicit flow is a good choice when 
front-channel communication is required. Back-channel refers to a middle-tier client 
(below presentation layer, above data layer, such as Spring Boot or Express) interacting 
with the OP. The authorization code flow is a good choice when back-channel 
communication is required.  22

OpenID Connect implements authentication as an extension to the OAuth 2.0 
authorization process. Use of this extension is requested by Clients by including the 
openid scope value in the Authorization Request. Information about the authentication 
performed is returned in a JSON Web Token (JWT) [JWT] called an ID Token 
(see Section 2).  23

21 "Final: OpenID Connect Core 1.0 incorporating errata set 1." 8 Nov. 2014, 
https://openid.net/specs/openid-connect-core-1_0.html. Accessed 5 Mar. 2019. 
22 "Identity, Claims, & Tokens – An OpenID Connect Primer, Part 1 of 3 ...." 25 Jul. 2017, 
https://developer.okta.com/blog/2017/07/25/oidc-primer-part-1. Accessed 26 Feb. 2019. 
23 "Final: OpenID Connect Core 1.0 incorporating errata set 1." 8 Nov. 2014, 
https://openid.net/specs/openid-connect-core-1_0.html. Accessed 5 Mar. 2019. 

https://openid.net/specs/openid-connect-core-1_0.html#JWT
https://openid.net/specs/openid-connect-core-1_0.html#IDToken
https://openid.net/specs/openid-connect-core-1_0.html
https://developer.okta.com/blog/2017/07/25/oidc-primer-part-1
https://openid.net/specs/openid-connect-core-1_0.html


OpenID Connect Authorization Code Flow 

This is a suitable approach when you have a middleware client connected to an OIDC 
OP and don’t (necessarily) want tokens to ever come back to an end-user application, 
such as a browser. It also means the end-user application never needs to know a secret 
key.  24

response_type=code (with scope=openid): 

 25

 
Authorization Code flow uses response_type=code. After successful authentication, 
the response will contain a code value. This code can later be exchanged for an 
access_token and an id_token (Hang in for now, we’ll talk about tokens in more 
depth later on.) This flow is useful where you have “middleware” as part of the 
architecture. The middleware has a client id and client secret, which is 
required to exchange the code for tokens by hitting the /token endpoint. These tokens 
can then be returned to the end-user application, such as a browser, without the 
browser ever having to know the client secret. This flow allows for long-lived 

24 "OIDC in Action – An OpenID Connect Primer, Part 2 ... - Okta Developer." 25 Jul. 2017, 
https://developer.okta.com/blog/2017/07/25/oidc-primer-part-2. Accessed 26 Feb. 2019. 
25 "Diagrams of All The OpenID Connect Flows – Takahiko ... - Medium." 30 Oct. 2017, 
https://medium.com/@darutk/diagrams-of-all-the-openid-connect-flows-6968e3990660. Accessed 26 Feb. 
2019. 

https://developer.okta.com/blog/2017/07/25/oidc-primer-part-2
https://medium.com/@darutk/diagrams-of-all-the-openid-connect-flows-6968e3990660


sessions through the use of refresh tokens. The only purpose of refresh tokens 
is to obtain new access tokens to extend a user session.  26

 
That code can now be exchanged for an id_token and an access_token by the 
middle tier - a Spring Boot application, in this case. This middle tier will validate the 
state we sent in the authorize request earlier and make a /token request using the 
Client Secret to mint an access_token and id_token for the user.  27

OpenID Connect Implicit Flow 
This is a suitable approach when working with a client (such as a Single Page 
Application or mobile application) that you want to interact with the OIDC OP directly.  28

 

response_type=id_token token 

 
 
Implicit flow uses response_type=id_token token or 
response_type=id_token. After successful authentication, the response will contain 

26 "Identity, Claims, & Tokens – An OpenID Connect Primer, Part 1 of 3 ...." 25 Jul. 2017, 
https://developer.okta.com/blog/2017/07/25/oidc-primer-part-1. Accessed 26 Feb. 2019. 
27 "OIDC in Action – An OpenID Connect Primer, Part 2 ... - Okta Developer." 25 Jul. 2017, 
https://developer.okta.com/blog/2017/07/25/oidc-primer-part-2. Accessed 26 Feb. 2019. 
28 "OIDC in Action – An OpenID Connect Primer, Part 2 ... - Okta Developer." 25 Jul. 2017, 
https://developer.okta.com/blog/2017/07/25/oidc-primer-part-2. Accessed 26 Feb. 2019. 

https://developer.okta.com/blog/2017/07/25/oidc-primer-part-1
https://developer.okta.com/blog/2017/07/25/oidc-primer-part-2
https://developer.okta.com/blog/2017/07/25/oidc-primer-part-2


an id_token and an access_token in the first case or just an id_token in the 
second case. This flow is useful when you have an app speaking directly to a backend 
to obtain tokens with no middleware. It does not support long-lived sessions.  29

 
The application can now verify the id_token locally. Use the /introspect endpoint 
to verify the access_token. It can also use the access_token as a bearer token to 
hit protected resources, such as the /userinfo endpoint.  30

OpenID Connect Hybrid Flow 
The Hybrid Flow is an OpenID Connect (OIDC) grant that enables use cases where 
your application can immediately use an ID token to access information about the user 
while obtaining an authorization code that can be exchanged for an Access Token 
(therefore gaining access to protected resources for an extended period of time).  31

 
Hybrid flow (as the name indicates) is a combination of the above two. It allows to 
request a combination of identity token, access token and code via the front channel 
using either a fragment encoded redirect (native and JS based clients) or a form post 
(server-based web applications). This enables e.g. scenarios where your client app can 
make immediate use of an identity token to get access to the user’s identity but also 
retrieve an authorization code that that can be used (e.g. by a back end service) to 
request a refresh token and thus gaining long lived access to resources.   32

 
This is a suitable approach when you want your end-user application to have immediate 
access to short-lived tokens – such as the id_token for identity information, and also 
want to use a backend service to exchange the authorization code for longer-lived 
tokens using refresh tokens.  33

 
Leastprivilege is the creator of Identityserver3, which we are using 
https://github.com/identityserver  
 

29 "Identity, Claims, & Tokens – An OpenID Connect Primer, Part 1 of 3 ...." 25 Jul. 2017, 
https://developer.okta.com/blog/2017/07/25/oidc-primer-part-1. Accessed 26 Feb. 2019. 
30 "OIDC in Action – An OpenID Connect Primer, Part 2 ... - Okta Developer." 25 Jul. 2017, 
https://developer.okta.com/blog/2017/07/25/oidc-primer-part-2. Accessed 26 Feb. 2019. 
31 "How to Implement the Hybrid Flow - Auth0." https://auth0.com/docs/api-auth/tutorials/hybrid-flow. 
Accessed 27 Feb. 2019. 
32 "OpenID Connect Hybrid Flow and IdentityServer v3 | leastprivilege.com." 10 okt.. 2014, 
https://leastprivilege.com/2014/10/10/openid-connect-hybrid-flow-and-identityserver-v3/. Åpnet 26 feb.. 
2019. 
33 "OIDC in Action – An OpenID Connect Primer, Part 2 ... - Okta Developer." 25 Jul. 2017, 
https://developer.okta.com/blog/2017/07/25/oidc-primer-part-2. Accessed 26 Feb. 2019. 

https://auth0.com/docs/api-auth/grant/hybrid
https://github.com/identityserver
https://developer.okta.com/blog/2017/07/25/oidc-primer-part-1
https://developer.okta.com/blog/2017/07/25/oidc-primer-part-2
https://auth0.com/docs/api-auth/tutorials/hybrid-flow
https://leastprivilege.com/2014/10/10/openid-connect-hybrid-flow-and-identityserver-v3/
https://developer.okta.com/blog/2017/07/25/oidc-primer-part-2


When an access token is issued together with an ID token from the authorization 
endpoint, the hash value of the access token calculated in a certain way has to be 
embedded in the ID token. So, be careful when you implement this flow.  See “3.2.2.10 34

ID Token” in OpenID Connect Core 1.0 

response_type=code id_token (OUR Hybrid Flow) 

 
When receiving ID Tokens from both endpoints, their overlapping fields must match. 
 
When an authorization code is issued together with an ID token from the authorization endpoint, 
the hash value of the authorization code calculated in a certain way has to be embedded in the 
ID token.  35

 

34 "Diagrams of All The OpenID Connect Flows – Takahiko ... - Medium." 30 Oct. 2017, 
https://medium.com/@darutk/diagrams-of-all-the-openid-connect-flows-6968e3990660. Accessed 26 Feb. 
2019. 
35 "Diagrams of All The OpenID Connect Flows – Takahiko ... - Medium." 30 Oct. 2017, 
https://medium.com/@darutk/diagrams-of-all-the-openid-connect-flows-6968e3990660. Accessed 26 Feb. 
2019. 

https://openid.net/specs/openid-connect-core-1_0.html#ImplicitIDToken
https://openid.net/specs/openid-connect-core-1_0.html#ImplicitIDToken
https://medium.com/@darutk/diagrams-of-all-the-openid-connect-flows-6968e3990660
https://medium.com/@darutk/diagrams-of-all-the-openid-connect-flows-6968e3990660


response_type=code token (with scope = openid) (Hybrid Flow) 

 
Vi skal ha ID token, så vi bruker denne. 

response_type=code id_token token (Hybrid flow) 

 



The Access Code step 
When using the Hybrid Flow, Token Requests are made in the same manner as for 

the Authorization Code Flow, as defined in Section 3.1.3.1 of the OpenID Connect 

spec. 

Section 3.1.3.1: 
A Client makes a Token Request by presenting its Authorization Grant (in the form 

of an Authorization Code) to the Token Endpoint using the grant_type  value 

authorization_code , as described in Section 4.1.3 of OAuth 2.0 [RFC6749]. 

 

Section 4.1.3 of OAuth 2.0 

The client makes a request to the token endpoint by sending the 

   following parameters using the "application/x-www-form-urlencoded" 

   format per Appendix B with a character encoding of UTF-8 in the HTTP 

   request entity-body: 

 

   grant_type 

         REQUIRED.  Value MUST be set to "authorization_code". 

 

   code 

         REQUIRED.  The authorization code received from the 

         authorization server. 

 

   redirect_uri 

         REQUIRED, if the "redirect_uri" parameter was included in the 

         authorization request as described in Section 4.1.1, and their 

         values MUST be identical. 

 

   client_id 

         REQUIRED, if the client is not authenticating with the 

         authorization server as described in Section 3.2.1. 
 

   If the client type is confidential or the client was issued client 

   credentials (or assigned other authentication requirements), the 

   client MUST authenticate with the authorization server as described 

   in Section 3.2.1. 
 

For example, the client makes the following HTTP request using TLS 

   (with extra line breaks for display purposes only): 

 

     POST /token HTTP/1.1 

     Host: server.example.com 

     Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW 

     Content-Type: application/x-www-form-urlencoded 

 

https://openid.net/specs/openid-connect-core-1_0.html#TokenRequest
https://openid.net/specs/openid-connect-core-1_0.html#TokenRequest
https://openid.net/specs/openid-connect-core-1_0.html#RFC6749
https://openid.net/specs/openid-connect-core-1_0.html#RFC6749
https://tools.ietf.org/html/rfc6749#appendix-B
https://tools.ietf.org/html/rfc6749#appendix-B
https://tools.ietf.org/html/rfc6749#section-4.1.1
https://tools.ietf.org/html/rfc6749#section-4.1.1
https://tools.ietf.org/html/rfc6749#section-3.2.1
https://tools.ietf.org/html/rfc6749#section-3.2.1
https://tools.ietf.org/html/rfc6749#section-3.2.1
https://tools.ietf.org/html/rfc6749#section-3.2.1


     grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA 

     &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb 

 

 

OAuth2.0 3.2.1.  Client Authentication 

Confidential clients or other clients issued client credentials MUST 

   authenticate with the authorization server as described in 

   Section 2.3 when making requests to the token endpoint. 

A client MAY use the "client_id" request parameter to identify itself 

   when sending requests to the token endpoint.  In the 

   "authorization_code" "grant_type" request to the token endpoint, an 

   unauthenticated client MUST send its "client_id" to prevent itself 

   from inadvertently accepting a code intended for a client with a 

   different "client_id".  This protects the client from substitution of 

   the authentication code.  (It provides no additional security for the 

   protected resource.) 

OAuth2.0 2.3.  Client Authentication 

 

   If the client type is confidential, the client and authorization 

   server establish a client authentication method suitable for the 

   security requirements of the authorization server.  The authorization 

   server MAY accept any form of client authentication meeting its 

   security requirements. 

 

   Confidential clients are typically issued (or establish) a set of 

   client credentials used for authenticating with the authorization 

   server (e.g., password, public/private key pair). 

 

   The authorization server MAY establish a client authentication method 

   with public clients.  However, the authorization server MUST NOT rely 

   on public client authentication for the purpose of identifying the 

   client. 

 

And this is where OAuth2.0 stops. What about this?: 
Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW 
Lucky for us, we found this guidance from Oracle: 
“This request must authenticate using HTTP basic. Use your app’s Client Id as the 
username and its Client Secret as the password. The format is client_id:client_secret. 
Encode the string with base-64 encoding, and you can pass it as an authentication 
header. The system does not support passing Client Id and Client Secret parameters in 

https://tools.ietf.org/html/rfc6749#section-3.2.1
https://tools.ietf.org/html/rfc6749#section-2.3
https://tools.ietf.org/html/rfc6749#section-2.3
https://tools.ietf.org/html/rfc6749#section-2.3


the JSON body, and, unlike basic authentication elsewhere, you should not include your 
site name.”  36

 

Other OpenID Connect flows 
There are two other flows not covered here: Client Credentials Flow and Resource 
Owner Password Credentials. These are both defined in the OAuth 2.0 spec and, as 
such, are supported by OIDC. Here, we’re focusing on flows that require an external 
authentication provider, such as Okta or Google, and not the alternative methods that 
these flows support.  37

 

Recommended flow for native mobile app: 

 
Authorization code flow with PKCE 

● Recommended: Use AppAuth, BUT, we can’t have dependencies so, no. 
● Proof Code For Key Exchange (PKCE) 

○ “On the fly client secret” (Source: OAuth all the Things! What is OAuth 2.0?) 
● Store tokens in protected device storage 
● Use ID token to know who the user is 
● Attach access token to outgoing API requests 

Source: https://www.youtube.com/watch?v=996OiexHze0 

36 "Authenticate Using OAuth 2.0 - Oracle Docs." 
https://docs.oracle.com/cloud/latest/marketingcs_gs/OMCAB/Developers/GettingStarted/Authentication/a
uthenticate-using-oauth.htm. Accessed 5 Mar. 2019. 
37 "OIDC in Action – An OpenID Connect Primer, Part 2 ... - Okta Developer." 25 Jul. 2017, 
https://developer.okta.com/blog/2017/07/25/oidc-primer-part-2. Accessed 26 Feb. 2019. 

https://tools.ietf.org/html/rfc6749#section-4.4
https://tools.ietf.org/html/rfc6749#section-4.3
https://tools.ietf.org/html/rfc6749#section-4.3
https://www.youtube.com/watch?v=996OiexHze0
https://docs.oracle.com/cloud/latest/marketingcs_gs/OMCAB/Developers/GettingStarted/Authentication/authenticate-using-oauth.htm
https://docs.oracle.com/cloud/latest/marketingcs_gs/OMCAB/Developers/GettingStarted/Authentication/authenticate-using-oauth.htm
https://developer.okta.com/blog/2017/07/25/oidc-primer-part-2


 
How this works in practice: 

 

 

 
When the native application then exchanges the code for the access token (Step 8 above), it will 
include the code_verifier string on that call.  38

38 "Enhancing OAuth Security for Mobile Applications with PKCE – OpenID." 26 May. 2015, 
https://openid.net/2015/05/26/enhancing-oauth-security-for-mobile-applications-with-pkse/. Accessed 22 
Feb. 2019. 

https://openid.net/2015/05/26/enhancing-oauth-security-for-mobile-applications-with-pkse/


 

 
 
Doing this without PKCE: 
http://www.thread-safe.com/2014/05/the-correct-use-of-state-parameter-in.html 
Mentioned here (newest unpublished OAuth2 security RFC): 
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-11#section-2.1.1 
Possibly: 
https://rograce.github.io/openid-connect-documentation/explore_auth_code_flow 
https://developer.okta.com/authentication-guide/implementing-authentication/auth-code-pkce 
 
https://docs.microsoft.com/en-us/azure/active-directory/develop/v1-protocols-openid-connect-co
de 
 
“Oauth 2.0 for native apps”, RFC 
https://tools.ietf.org/html/rfc8252 
 
Diskusjon rundt SSO 
Del 1, OAuth2 

http://www.thread-safe.com/2014/05/the-correct-use-of-state-parameter-in.html
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-11#section-2.1.1
https://rograce.github.io/openid-connect-documentation/explore_auth_code_flow
https://developer.okta.com/authentication-guide/implementing-authentication/auth-code-pkce
https://docs.microsoft.com/en-us/azure/active-directory/develop/v1-protocols-openid-connect-code
https://docs.microsoft.com/en-us/azure/active-directory/develop/v1-protocols-openid-connect-code
https://tools.ietf.org/html/rfc8252


https://medium.com/@adrianmihaila/single-sign-on-across-multiple-applications-part-i-93fb0616
ddc8 
Del 2: 
OAuth2 + OpenID Connect (Gir info om den som sender requests) 
https://medium.com/@adrianmihaila/single-sign-on-across-multiple-applications-part-ii-a8a48e4
a7c11 
 
OpenID Connect Core Spec: https://openid.net/specs/openid-connect-core-1_0.htm 
How Google does OpenID: https://developers.google.com/identity/protocols/OpenIDConnect 
OAuth Playground: https://www.oauth.com/playground/index.html 
 
 
 

https://medium.com/@adrianmihaila/single-sign-on-across-multiple-applications-part-i-93fb0616ddc8
https://medium.com/@adrianmihaila/single-sign-on-across-multiple-applications-part-i-93fb0616ddc8
https://medium.com/@adrianmihaila/single-sign-on-across-multiple-applications-part-ii-a8a48e4a7c11
https://medium.com/@adrianmihaila/single-sign-on-across-multiple-applications-part-ii-a8a48e4a7c11
https://openid.net/specs/openid-connect-core-1_0.htm
https://developers.google.com/identity/protocols/OpenIDConnect
https://www.oauth.com/playground/index.html

