
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f I

nf
or

m
at

io
n

Se
cu

ri
ty

 a
nd

C
om

m
un

ic
at

io
n

Te
ch

no
lo

gy

B
ac

he
lo

r’
s

pr
oj

ec
t

Magnus Bakke, Liang Zhu

Authentication in the Internet of
Things

Bachelor’s project in Information Technology with specialization
in Network administration
Supervisor: Stein Meisingseth

May 2019

Magnus Bakke, Liang Zhu

Authentication in the Internet of Things

Bachelor’s project in Information Technology with specialization in
Network administration
Supervisor: Stein Meisingseth
May 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Information Security and Communication Technology

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 1/43

AUTHENTICATION IN THE INTERNET OF THINGS

Prestudy report

Part of a Bachelor’s thesis
Presented to the Institute of computer technology and informatics

of the Norwegian University of Science and Technology
by Magnus Bakke & Liang Zhu

Submitted in partial fulfillment for Bachelor’s degree of
Informatics with specialization in network administration

during the year 2016–2019

1/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 2/43

Introduction
The internet of things (IoT) has been expected for many years, yet the technology,
infrastructure and standards that preferably should come with it are still in their infancy. The
newest protocols used for wireless communication in networks are considered secure, and it
is easy to get things – devices, often small and without much of a user interface, that serve
one or a few specific purposes, such as measuring temperature or cleaning floors –
connected to a home network. But such devices are often manufactured specifically for
home networks, rendering them incompatible with enterprise networks that typically do not
and should not use the “one shared password” solution that home networks usually do. If
these devices are to be connected to enterprise networks in a secure manner, the
manufacturers need to design their products with such capabilities, or we have to find a
solution that does not rely on the device’s specifications.

After our soon to be three year long period of studying Informatics with specialization in
network administration at the Norwegian University of Science and Technology, which
focuses heavily on projects in teams and team exercises, most have discovered that we
work better with some than we do with others. We – Magnus Bakke and Liang Zhu, the
authors of this prestudy – think we are an optimal match, and decided long ago that we
should work together when the time came to write our Bachelor’s thesis. Magnus is an
experienced programmer, and Liang has a talent for understanding, setting up and
configuring networks and network components. We saw an opportunity to combine our
strengths in one topic – a topic we find most interesting: Authentication in the internet of
things. This assignment was suggested by Uninett AS, the state-owned company
responsible for Norway’s National Research and Education Network, and revolves around
getting IoT devices connected to enterprise networks securely and, preferably, conveniently.
Their website is found at https://www.uninett.no/ .

This document outlines our prestudy and will summarize the issues we face, needs and
requirements, and our research into existing solutions. We will define goals for the projects,
functional and non-functional properties and requirements, milestones and key activities,
stakeholders and external conditions that might affect the process and/or outcomes of the
project, success criteria and risks. This information should be sufficient to analyze the
project’s financial feasibility, to define guidelines and standards for our process and
documentation, and to make a plan for how we will organize the project if we find that it is
feasible.

Background
WPA (Wi-Fi Protected Access, as originally defined in the IEEE 802.11 standard and later
amended in IEEE 802.11i-2004) is a family of protocols for wireless authentication and
security. There are two protocols in this family that are relevant today: WPA2-Personal and
WPA2-Enterprise.

The vast majority of modern home networks utilize WPA2-Personal, which involves the use
of pre-shared keys (PSKs), or passwords. When a guest arrives at a friend’s house and

2/43

https://www.uninett.no/

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 3/43

wants to connect to the wireless network, the guest is given the password, which is entered
on their device, and the guest is authenticated and connected by virtue of knowing the secret
key. Because of its ease of use and configuration, and its relatively good security in small
networks where all users can be trusted, this is a good solution for most home networks,
provided that the password is complex enough (to prevent dictionary or brute force attacks,
which enable an attacker to crack simple passwords) and the administrators/owners of the
network are careful in respect to whom the password is shared with.

As per WPA2 (WPA3 has been announced and is said to support end-to-end between each
device and the access point, even on open networks), this sharing of a “master password”
means that any user on the wireless network can easily decrypt and monitor the
communications of other users on the same network.

While WPA2-Personal uses PSKs, WPA2-Enterprise uses certificates or username/password
combinations for authentication, authorization and encryption of communications. These
credentials are unique to each user, and enterprise networks seldom have a master
password. Using WPA2-Personal in an enterprise network would pose a significant security
risk, with the risk increasing with every new user with access to the PSK; there is no good
way of knowing when the PSK has been shared with persons outside the company, and
there is no good way to trace activity back to a specific user (the only necessary piece of
identifying information is the MAC address, which is easily spoofed).

Problems and needs of the industry
Needless to say, any solution for getting IoT devices connected to an enterprise network
must first and foremost be secure. Conveniently, the WPA2-Enterprise standard allows us
(and is designed) to encrypt the communications of each connected user, making it
impossible for one user to monitor the communications of another. Inconveniently,
manufacturers typically do not design their IoT devices to support the WPA2-Enterprise
standard. In short, we cannot in any immediately obvious way connect IoT devices to an
enterprise network without using a single pre-shared key (PSK), or password. Using a single
PSK for all connected devices means that any person who wants to get an IoT device
connected to the network must possess this secret key (unless the network is open, which as
of now is out of the question if the network is to be considered secure). The fact that multiple
persons possess the secret key means that any one of them can monitor the
communications of all devices on the network. This is only secure if you can trust every
person who is given the secret key. This property is implied by the “Personal” suffix; it is
intended for home networks, and IoT devices are typically marketed to consumers for
personal use in order to make their homes “smarter.”

The scenario we are presented with by Uninett involves students and faculty members
bringing their own IoT devices to, for example, a campus. The student will expect to be able
to connect the device to the wireless network. The device allows the user to input a
password, but eduroam requires either a “username” (identity) and a password, or a
certificate, neither of which are supported.

3/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 4/43

Uninett needs a deployable system that presents a personal wireless network to the user
without the communications of the user’s device(s) on that network being exposed to anyone
but the user. The user should experience a personal wireless network through which they
can communicate over the internet. Finally, the activity undertaken by users on the network
must be traceable, meaning that communication must be associated with a user’s identity.

Existing solutions
Surprisingly, there are few solutions that tackle this specific problem, and those that do exist
are largely proprietary.

Multiple pre-shared keys

There are several variations of a technology that allows us to generate multiple PSKs for one
SSID. This technology has been given names such as multi-PSK or mPSK (Aruba), Dynamic
PSK or DPSK (Ruckus), Private PSK or PPSK (Aerohive) and User PSK or UPSK
(Riverbed). These proprietary technologies involve taking some action (such as clicking a
button, calling an API endpoint or filling out a form) in order to generate a new PSK which is
given to the user who wants to connect a new device. The generated PSK will be completely
new and unique. The user can use the newly generated PSK in the same way as they would
use a “master password,” but the communication between the device and the access point
will be encrypted using this specific PSK. Because no two users will possess the same PSK,
they cannot monitor each other’s communications.

This technology is used by SURF, an organization that offers ICT services for Dutch
education and research, much like Uninett does in Norway. An entry written by Sven de
Ridder on the organization’s blog describes using Aerohive’s PPSK technology for
connecting IoT devices to a wireless network.

If we are to use these technologies to solve the problem of connecting IoT devices to
enterprise networks securely, we must obtain the necessary software and hardware, possibly
through the trials sometimes offered for evaluation purposes.

Hotspots/connection sharing

Most modern phones allow the user to share their data with nearby devices. This is popularly
referred to as enabling a hotspot. Major operating systems for laptops and desktop
computers also support this functionality. The user may customize the name of the hotspot
and the password required for connection.

When a device connects to such a hotspot, the phone or computer forwards and receives
communication on the connected device’s behalf, which is encrypted between the
hotspot-enabled device and the connected device.

While we do not know of any large scale solutions utilizing this technology, this may be
considered an existing solution to IoT connectivity, as it allows a user on an enterprise

4/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 5/43

network to broadcast a private hotspot (with its own unique PSK) for their devices, which
may not support WPA2-Enterprise.

The challenge is to make a streamlined solution, which will most likely rely on dual-band
Wi-Fi adapters, some automation through scripting, and development of graphical user
interfaces, all contained within a distributable box, such as a Raspberry Pi.

Definitions

prestudy A study involving activities such as research, planning
and charting/analyzation of risks, possibilities,
necessities and stakeholders of a project

prestudy report A report summarizing the prestudy

PSK Pre-shared key; a password for a wireless network

purpose What we, the candidates, hope to achieve with the
project; effect goals ; not necessarily quantifiable

process goals Goals, usually quantifiable, pertaining to how the project
is executed

performance goals/targets In this context: Specific, quantifiable/measurable goals
pertaining to the properties of the final product, benefits
achieved, costs and similar

IoT Internet of things ; popular term for an internet that is – to
a high degree – populated by autonomous devices often
not controlled by a user, such as smart thermometers,
refrigerators, vacuum cleaners and sensors

eduroam World-wide roaming access service for research and
education

5/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 6/43

Table of contents
Introduction 2

Background 2
Problems and needs of the industry 3
Existing solutions 4

Multiple pre-shared keys 4
Hotspots/connection sharing 4

Definitions 5

Table of contents 6

Purpose and goals 8
Purpose and selection of goals 8
Process goals 8
Performance goals 8

Scope and progression of the project 10
Functional properties and requirements 10
Non-functional properties and requirements 10
Project milestones and key activities 10

Key activities 10
Milestones 12

Phases 13
The research phase 13
The design phase 13
The execution phase 14
The finalization phase 14

Progress plan 14
Gantt chart 15

Introduction to possible solutions 16
Multiple pre-shared keys 16

Requirements 17
Benefits and drawbacks 17

Pre-configured hotspot devices 18
Requirements 19
Benefits and drawbacks 19

Stakeholders, external conditions and regulatory frameworks 20
Stakeholder analysis 20
External conditions and regulatory frameworks 22

Success criteria 23
Common success criteria 23

6/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 7/43

Success criteria for the hotspot solution 23
Success criteria for the multi-PSK solution 23
Plan for effective communication 24

Risk analysis 25
Risks 25
Severity and likelihood of events 25

Risk threshold 25
Definitions of levels 28
Estimation of severity and likelihood of risks 29
Graphical representation 30

Risk management 30

Analysis of financial feasibility 32
Non-quantifiable benefits 32
Financial feasibility of the hotspot solution 32

Conclusion 33
Financial feasibility of the multi-PSK solution 34

Conclusion 35

Guidelines and standards 36
Documentation requirements 37
Quality control requirements 38
Controls and methodology 38

Methodology 39
Standards and principles 39
Controls 39

Project organization 39

Conclusion 40

Amendments 41

Bibliography 42

7/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 8/43

Purpose and goals

Purpose and selection of goals
We will define a set of goals for this project. The selection of these goals will be based on our
understanding of Uninett’s needs, as well as our best judgment. The selected goals should
reflect the project’s purpose or effect goals , which we state thusly:

● To give the reader of our reports a high degree of insight into the problems we face in
connecting IoT devices to enterprise networks securely

● To enable the reader to easily replicable our solutions
● To prepare the reader for the transition into a highly IoT-connected world in a

satisfactory way
● To reduce the reader’s costs and time spent on research on the topic

Furthermore, we will categorize our goals. We define the following two categories, in addition
to the stated purpose or effect goals:

Process goals Goals pertaining to the way we complete
the project, including timeliness,
attendance, and the quality and scope of
documentation.

Performance goals Goals pertaining to the properties of the
solution and/or report to be developed;
functionality, quality and deadlines. These
goals are defined by Uninett.

Process goals
The following is a combination of process goals defined by NTNU, Uninett and the
candidates:

● 500 (+/- 5%) hours spent per candidate
● Zero disputes/conflicts between the candidates
● No deviations from the progress plan exceeding three days
● Project completion at least three days before the deadline on May 20th
● Documentation of every major activity and decision

Performance goals
In addition to satisfying the requirements in regards to functional properties, we have set the
following performance goals:

● Achieve internet connectivity for IoT devices in less than two minutes

8/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 9/43

● Achieve an average upload and download speeds greater than 80% of those
normally achieved on Uninett’s network

● Experience no more than 120% the amount of drops to less than 20% of the average
download/upload speed compared to a non-IoT connection

9/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 10/43

Scope and progression of the project

Functional properties and requirements
As agreed upon by us and Uninett, the solution to be designed and prototyped shall have the
following functional properties:

● Users may bring their own IoT devices to the premises and achieve internet
connectivity

● The user responsible for abuse should be identifiable
● The communication between a device and the access point should be encrypted and

visible only the the user who connected the device

Furthermore – either in addition to or as a consequence of the functional properties – the
following requirements apply to the solution’s functionality:

● The solution must allow the user to authenticate using their institutional credentials
● Each user must be given a unique PSK
● PSKs must be generated automatically on demand

Additionally, we hope to achieve the following:

● Roaming between access points
● A custom dashboard for requesting PSKs

Non-functional properties and requirements
The following requirements also apply, and pertain to aspects of the solution that do not
directly relate to functionality and the way the solution behaves:

● The solution should be financially feasible
● The solution should not cause harmful interference
● The solution should not cause excessive administrative work
● The solution should not require significant changes to network architecture
● The solution needs not be ready for large-scale deployment, but it should be easy to

prepare for such deployment

Project milestones and key activities

Key activities
There are 9 key activities in this project:

1. Research
Researching existing technologies and possibilities, charting needs and problems, and laying
out the gathered information for purposes like planning and design is arguably the phase of

10/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 11/43

this project that will lead to the most severe consequences for later phases if done poorly.
Proper research must be made before we can comfortably begin to design solutions.

2. Prestudy and writing of the prestudy report
The prestudy is an activity that involves making plans, assessing risks, analyzing
stakeholders, and summarizing our research. The prestudy report is written as the prestudy
takes place, and summarizes our plans, conclusions and findings in a report format. This
document is the prestudy report.

3. Design and writing of the design report
Once the prestudy is complete, we will have a good idea of which solutions we will be going
forward with. These solutions need to be carefully designed. A thorough and good design will
be invaluable when the time comes to develop the solution and put it to the test. The design
will include UML and UX charts and diagrams, as well as mockups of user interfaces,
technical blueprints and similar. All documents and plans produced during this activity will be
included, explained and argued in a design report.

4. Prototyping
Once the designs are complete, they can be implemented in a working prototype. This
activity involves writing code, setting up any necessary network infrastructure, actualizing
user interfaces and similar. The process will be described in the execution report.

5. Testing and revision
Bugs and potential for improvement will be identified, and the prototypes will be changed
accordingly. The process will be described in the execution report.

6. Writing of the execution report
The execution report will be an extensive document describing the process of implementing
the designs, developing and testing prototypes, issues encountered, solutions, evaluations
and similar. The prestudy report, the design report and the execution report will be included
in the final report.

7. Writing of the final report
The final report will include the three existing reports, as well as a preface and conclusion.
This is an activity of shorter duration.

8. Planning for the presentation
A presentation marks the end of the project. This activity involves preparing demonstrations
of functionality, planning topics, rehearsing and similar.

9. Finalization
Once the necessities of the project are in place, we may decide to improve the formatting of
documents, make minor changes to user interfaces to improve aesthetics and user
friendliness, optimize code and similar. This activity does not constitute a critical success
criterion, and will only be carried out when and if all crucial documents and activities are
done.

11/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 12/43

Milestones

Based on these key activities, we can define the project’s milestones thusly:

1. Completion of research
When this milestone is reached, we intend to have conducted rudimentary tests of required
technology to guarantee that our initial plans will indeed be possible to design and execute.
We also hope to have eliminated as much uncertainty as possible, which will include
ensuring that we will have access to any proprietary technology necessary.

2. Completion of the prestudy
Once the research is completed, the gathered information must be summarized and
presented in a report format. The prestudy report will also provide an outlook for the
remainder of the project period with plans and analyses. This activity will be undertaken
partially in parallel with the initial research, and the prestudy report will become more
populated as more information is gathered. The completion and approval of this document
marks the end of this activity.

3. Completion of designs
When our solution is fully designed, we will have a clear picture of the road ahead. When this
milestone is reached, we anticipate to have eliminated almost all uncertainty; any flaw in our
plans should be made obvious by our diagrams and charts, and we should know exactly
what components are missing and what code needs to be written.

4. Completion of the design report
The design report should present our designs so that Uninett knows what to expect of our
final product. Readers of the report should also have a clear understanding of what the
solution will look like to the user.

5. Completion of prototypes
Working prototypes will be proof of the viability of our planned solutions. Bugs, shortcomings
and potential for improvement will become apparent, and Uninett will be able to try and
comment on the solution before improvements are made.

6. Completion of revisions
Once suggested improvements are made, bugs are fixed and all integration tests have
passed, the solution will be acceptable, the user experience should be pleasant, and the
product should be easy to deploy.

7. Completion of the execution report
The finalization of the execution report marks the end of the execution phase. It should give
the reader a clear understanding of the process of actualizing the designs, and should
demonstrate that the solution works as intended. It should also teach the reader how to
deploy the solution.

8. Completion of the final report
The final report is the last document to be written. It should give the reader a clear

12/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 13/43

understanding of every step of the project, from initial ideas and considerations, to the
design, development and deployment of a working solution.

9. Presentation
The presentation of the final product is the last of the project. The presentation should give
the audience a generalized idea of the processes that led to the final product, as well as an
overview of the properties of the product itself and the problems it solves.

Phases
We have divided the project period into four primary phases. These phase are: 1) The
research phase, 2) the design phase, 3) the execution phase, and 4) the finalization phase.

The research phase

The research phase includes the following activities:

● Research
● Prestudy
● Writing of the prestudy report

The goals of the research phase are to:

● Gain a deeper knowledge of the topic
● Gather information on existing solutions
● Chart necessities
● Develop ideas and find plausible solutions
● Gain an overview of dependencies
● Plan project phases
● Develop initial proof of concept
● Summarize findings, decisions and plans in a prestudy report

The design phase

The design phase includes the following activities:

● Design
● Writing of the design report

The goals of the design phase are to:

● Plan information flows
● Finalize proof of concept
● Plan software architecture
● Design graphical interface mockups
● Have a strong basis for execution/development

13/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 14/43

The execution phase

The execution phase involves the following activities:

● Development of prototypes
● Testing
● Writing of the execution report

The goals of the execution phase are to:

● Develop software in accordance with designed architecture
● Develop graphical interfaces
● Connect graphical interfaces with developed software
● Perform integration tests

The finalization phase

The finalization phase involves the following activities:

● Writing of the final report
● Planning for and holding the presentation

The goals of the finalization phase are to:

● Format documents according to the requirements for documentation as described in
this document

● Have manageable and efficient code
● Have aesthetically pleasing user interfaces
● Simplify the deployment process
● Be prepared for the presentation
● Leave a good impression and efficiently communicate the importance and efficiency

of the solution

Progress plan

We have made this illustration to show when we intend to reach the major milestones, and
which phase these milestones are part of. The milestone is meant to be reached at the
transition from one week to another, meaning that a milestone on week 7 should be
completed by midnight on the Sunday of week 6.

14/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 15/43

Gantt chart

Furthermore, we have made this Gantt chart to show when we intend to work on each key
activity:

Revisions may be made.

15/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 16/43

Introduction to possible solutions
Our research has revealed two possible solutions. When we speak of “the multi-PSK
solution” and “the hotspot solution,” these are

Multiple pre-shared keys
Our preferred solution involves end-to-end encryption using multiple pre-shared keys. The
generation of said keys could be done as shown in the below illustration.

The user inputs their credentials into a frontend – a web page that asks the user for their
Feide account’s username and password. If the credentials are accepted by Feide, an API 1

endpoint or method is called. This endpoint generates a new PSK, which is displayed on the
web page to the requesting user. The user may then use this PSK for their device(s).
Additional security measures, such as event logs, PSK expiration and limitations on the
number of devices allowed on a single PSK may be implemented.

1 "Feide | Sikker innlogging og datadeling i utdanning og forskning." https://www.feide.no/ . Secure
login and information sharing for education and research.

16/43

https://www.feide.no/

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 17/43

Requirements

This solution requires access to one of the mentioned providers’ proprietary software, as well
as a compatible access point. Optionally, we may use hostapd , a daemon for wireless
access point and authentication servers that supports MAC-specific PSKs, to simulate such
proprietary software.

In addition, the solution requires a backend – the service that allows you to generate a new
PSK (preferably provided by the AP controller software), a frontend that allows the user to
provide credentials, and Feide integration for validation of said credentials.

Benefits and drawbacks

This is a highly secure, practical and elegant approach, in our opinion. Depending on the
specifics of the implementation, it may allow the administrator to enable group PSKs –
passwords that work for more than one device. With group PSKs disabled or not configured,
one password would work for one device only. This makes the system highly flexible.

The main drawback is the cost of implementation, as the solution requires an upgrade of
existing access points (Uninett’s current APs do not support multiple PSKs). In addition, a
trial seems impossible to get from any provider of this technology: We have tried to contact
all of them, but none have responded to our inquiries

17/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 18/43

Pre-configured hotspot devices

The below illustration shows one possible flow when using hotspot devices for getting IoT
devices connected to eduroam.

18/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 19/43

Requirements

The development and testing of this solution requires at least one Raspberry Pi or Arduino
with two radio antennas. The dual antenna can be achieved with a supported Wi-Fi adapter,
such as the Asus USB-N10.

Benefits and drawbacks

This is a cheaper solution, and one with more predictable costs. The cost is at most the price
of a Raspberry Pi plus the cost of a compatible Wi-Fi adapter per user (not per device) who
wishes to bring IoT devices to the network. The solution would be relatively simple to
develop and deploy.

Raspberry Pi machines are known for their instability, however, and continuous operation
would almost certainly be problematic. In addition, a high number of “rogue” hotspots may be
undesirable. There is also a possibility of theft of or damage to the devices. The fact that the
software runs on the device, which is accessible to the user, makes it vulnerable to
exploitation in the form of wiping the drive and using it for other purposes.

19/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 20/43

Stakeholders, external conditions and regulatory
frameworks

Stakeholder analysis
This project has few critical stakeholders, and the stakeholders that do exist have clearly
defined success criteria and demands. We have identified the following project stakeholders.

We define internal stakeholders as those who are directly involved with the project, and
external stakeholders as those who are not.

The purpose of this stakeholder analysis is to identify and deal with the challenges (including
resistance to the project) possibly faced with each stakeholder. The analysis should also
enable us to better satisfy the stakeholders’ expectations.

Note that, because this project only involves developing a prototype and not a full scale
implementation, there is very little risk and resistance involved. A full-fledged implementation
might deal with resistance from certain employees against increased responsibilities, for
example, but that will not be relevant in our case. The scope of the project is to simply
develop a reference for further development and implementation.

20/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 21/43

This illustration places stakeholders on a matrix where the x-axis signifies the level of interest
in the reform, and the y-axis signifies the level of power the stakeholder has to influence the
project. The levels of interest and power for each stakeholder is chosen by us using our best
knowledge.

1. Candidates, 2. Advisor (NTNU), 3. Advisor (Uninett), 4. Uninett AS, 5. Users, 6. Administration, 7.
Regulatory bodies, 8. Legal entities

Different actions are typically taken for stakeholders in each of these categories:

Latents Keep satisfied

Apathetics Monitor

Promoters Manage closely

Defenders Keep informed

21/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 22/43

While the administration and users will not be affecting this project, we would like to develop
a solution that all stakeholders will support should the solution eventually be implemented at
scale. We will attempt to do this by minimizing or eliminating additional administrative work
and conducting user tests.

It is crucial that the solution is in compliance with regulations. Regulations that affect this
project dictate the minimum level of security and privacy that the solution should offer. We
will ensure compliance by verifying the proper encryption of traffic, by storing only strictly
necessary data about users’ behavior (and storing this data only for as long as it is needed
for the system to function), and securing the backend.

As for the high-power, high-interest stakeholders, we have planned to hold regular meetings
with them in order to make sure their needs are satisfied. They will have the opportunity to
influence the solution heavily. We are in close contact.

Advisor Stein Meisingseth from NTNU also takes part in these meetings, and we will make
sure his success criteria are met.

External conditions and regulatory frameworks
There are two categories of regulatory frameworks to consider in this project: 1) Legislation,
and 2) the policies of eduroam. The policies of eduroam are relevant only if the hotspot
solution is implemented, as the hotspots will act as a bridge between the user’s device and
eduroam. If the multi-PSK solution is implemented, the user’s devices are not connected to
eduroam, but rather a local network.

Legislation
The Norwegian Personal Data Act, the directive on the processing of personal data and the
directive on employers' access to email inboxes and other electronically stored material
regulate the extent to which we are allowed to store user data, as well as for how long and
what this data may be used for. No sensitive user data (such as social security numbers) will
be collected. In fact, only a register of which PSK or hotspot has been leased to which user is
necessary. Even this information will be deleted once it is no longer necessary.

The directives also regulate companies’ opportunity to view the personal data and
communications of employees and users. In principle, doing so must be strongly justified.
Ensuring the proper functioning of systems is one such justification. (Data seen by network
administrators in this context should not be shared with the employer.) It is necessary and
justified to allow network administrators to view a list of sessions/leases, so that they may be
terminated or diagnosed.

It is not justified to let network administrators view traffic. The solution developed should not
feature tools that make it easier to monitor the communications of users.

Eduroam policy
eduroam’s conditions of use is a short disclaimer of responsibility that does not make any
statements about the use of hotspots or multi-PSK technology. eduroam’s websites state that
eduroam providers should not make use of web portals — websites used for authentication

22/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 23/43

— because eduroam uses certificates, which are in themselves the strongest and least
vulnerable form of authentication. This is not part of their conditions of use, however; it
merely a statement saying that eduroam “does not use web portals.” This consideration will
be moot unless we proceed with the hotspot solution, as Feide uses a single sign-on page,
so we need not and cannot require that the user enters their Feide credentials on our own
frontend. In other words, if we require Feide authentication, which will be the case if we
proceed with the “multi-PSK” solution, these will never pass through our system. If we
require eduroam credentials, however, as will be the case if we proceed with the “hotspot”
solution, these must be entered on a local page running on the disconnected hotspot device.

Success criteria
The “hotspot” solution and the “multi-PSK” solution have different success criteria. We have
defined success criteria that apply to both, as well as success criteria that are unique to each
solution.

Common success criteria
The following success criteria apply to both the hotspot solution and the multi-PSK solution:

● The project is completed before May 20
● Users may successfully connect devices that do not support certificates to a wireless

network
● Abuse on the network should be traceable
● The communication between the access point and the device is encrypted with a key

known only to the device’s owner
● The PSKs generated must be sufficiently random so that they cannot be predicted
● The solution can be replicated by reading our reports

Success criteria for the hotspot solution
The following success criteria apply to the hotspot solution only:

● Once configured, the hotspot needs only be reset in order to ready it for the next user
● The user needs only enter their Feide credentials

Success criteria for the multi-PSK solution
The following success criteria apply to the multi-PSK solution only:

● The user does not need to know the device’s MAC address for access to be granted
● It must be possible to support different multi-PSK technology providers by simply

replacing a module/component of the solution
● It should be possible to generate PSKs through a customized frontend.

23/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 24/43

Plan for effective communication
To facilitate effective communication between stakeholders, we have devised the following
communication plan. It describes who is responsible for communicating which message to
which audience through which channel at what time/how frequently, and feedback channels.

24/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 25/43

Risk analysis
One goal of the prestudy is to minimize uncertainty. In order to do this, we must minimize
risks, and before we can minimize risks, we must define and quantify them. We define risk as
a quantity of severity times a quantity of likelihood . We will identify risks and assign values
for severity and likelihood to them (to the best of our ability). If a given risk is both severe and
likely enough, we will attempt to minimize the risk, which involves reducing the likelihood of
the event occurring, the severity of the consequences should it occur (harm reduction), or
both. Risks for which we cannot identify any means of mitigation have been left out of the
analysis.

Risks
After some discussion, we have identified the following risks:

● No multi-PSK provider willing to provide trial version/APs
● Prolonged absence due to disease or unforeseeable events
● Prolonged downtime in Uninett’s network
● Loss of data
● Conflict/disagreement between the candidates
● Delays due to overly ambitious designs
● Hardware failure/complications

Severity and likelihood of events

Risk threshold

Given the likelihood p of a risk, the severity s of a risk, and a threshold t , the following
equation outputs a value indicating whether preventative and harm reducing measures
should be taken (1) or not (0):

The area of a chart that should be marked as “dangerous” is given with

where t is the threshold.

The choice of values for severity and likelihood of events involves a fair bit of guesswork
unless there is historical data. In addition, how prone one is to a certain risk may vary
depending on your behavioral traits, equipment and other factors. In our situation, most of

25/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 26/43

these values must be based on our own experience. To account for the possibility of
optimistic values for likelihood and severity, we have also chosen a fairly low threshold value.

The threshold value must be set with the range of possible values for p and s . If p may range
from 0 to 10, and s may range from 0 to 5, the maximum possible value for the threshold is
ps , or 50:

The minimum possible value for the threshold is always 0 (all risks should be dealt with):

Because threshold value we choose depends on the number of levels for severity and
likelihood, we define our threshold as a percentage of the max(p) * max(s) . We will call this
value, which lies between 0 and 1, the adjusted threshold , as it adjusts for the number of
levels of severity and likelihood. If we define six levels of severity (0 to 5) and 11 levels of

26/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 27/43

likelihood (0 to 10), then an adjusted threshold of 50% would be converted to the following
non-adjusted threshold:

In this example, if the likelihood times the severity of an event is greater than or equal to 25,
measures should be taken to reduce the likelihood of the event occurring and/or to reduce
the harm should the event occur.

We have chosen an adjusted threshold of 20%.

27/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 28/43

We consider this an appropriate degree of preparedness for this project, as it will cover both
“thinkable” events with a high degree of severity, and highly likely events with little severity.

Definitions of levels
We define six levels of severity thusly:

Level Name Description

0 Negligible Events whose resulting damage is clearly visible and can
be corrected swiftly and easily

1 Nuisance inducing Events that may require diagnosis and/or repetition of tasks

2 Delaying Events that may cause minor delays or force us to
reconsider our plans

3 Concerning Events with the potential to cause significant delays and/or
minor loss of work

4 Dangerous Events with the potential to cause great delays and/or
significant loss of work

5 Critical Events that threaten to invalidate large portions of previous
work, setting us back weeks and threatening the project

Furthermore, we define 11 levels of likelihood:

Level Name Description

0 Negligible Events that almost certainly will not happen

1 Newsworthy Events that would be newsworthy

2 Highly unlikely Highly unexpected events

3 Improbable Unexpected events

4 Thinkable Events that would surprise us if they occurred

5 Plausible Events that would mildly surprise us if they occurred

6 Probable Events that would not surprise us if they occurred

7 Common Events that happen often, or that should be expected given
present circumstances

8 Highly likely Events that will probably happen at least once

9 To be expected Events that should be expected occasionally

10 Certain Events that will almost certainly happen frequently

28/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 29/43

Estimation of severity and likelihood of risks

We will attempt to estimate the likelihood and severity of the identified risks.

1. No multi-PSK provider willing to provide trial version/APs
If we are to develop the “optimal” solution, least one of the providers of multi-PSK technology
(namely Aerohive, Ruckus, Aruba and Riverbed) must be willing to lend us a compatible
access point and give us access to any necessary software. We have inquired (at the time of
writing, at least two weeks ago), but thus far, none has responded. Luckily, hostapd allows us
to set one or more PSK for a specific MAC address. It also allows us to set one or more
PSKs for “all” MAC addresses. This can be used to simulate these components, and we will
still be able to develop a proof of concept. Therefore, the severity of this event is lowered
significantly.

Based on these considerations, we give this risk a likelihood of 7 and a severity of 2.

2. Prolonged absence due to disease or unforeseeable events
Prolonged (>1 week) absence could cause delays. These delays would likely be significant,
but not critical. During our five semesters at NTNU, we have experienced prolonged absence
due to disease in our group on average approximately twice. These groups typically consist
of four or more members. We have rarely experienced sickness that prevents us from doing
work.

Based on these considerations, we give this risk a likelihood of 5 and a severity of 2.

3. Prolonged downtime in Uninett’s network
We consider Uninett’s systems robust; networks are their specialty. Furthermore, our
development does not depend on their networks, as we will be using local area networks for
testing.

Based on these considerations, we give this risk a likelihood of 2 and a severity of 1.

4. Loss of data
Primarily for practical purposes, we mainly use cloud services for storage of data. We also
make sure we have multiple copies of any work. This gives us a high degree of protection
against loss of data. Should data be lost, however, it would have the potential to set us back
greatly.

Based on these considerations, we give this risk a likelihood of 2 and a severity of 4.

5. Conflict/disagreement between the candidates
We chose to work together on our dissertation because we are generally on the same page
about all major decisions. Both candidates welcome sound argumentation for an opposing
view, and are willing to change their position when presented with such sound arguments.
We find the event of conflict about significant aspects of the solution highly unlikely. If such
disagreements should occur, we would agree to let Uninett make the decision.

Based on these considerations, we give this risk a likelihood of 2 and a severity of 1.

29/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 30/43

6. Delays due to overly ambitious designs
We have a history of proposing overly ambitious designs and solutions which have caused
us to present unpolished products in previous projects. The deadline is rigid, and we have a
busy schedule ahead. Overly ambitious designs could, in the worst case, lead to failure.

Based on these considerations, we give this risk a likelihood of 7 and a severity of 4.

7. Hardware failure/complications
Our project relies on several pieces of hardware. Some of this hardware would be difficult to
replace in a timely manner. We have experienced hardware issues with computers lately. If
the computer in question breaks down, it could lead to significant delays. There is also a
possibility of hardware incompatibilities. In that case, finding and acquiring compatible
hardware may cause minor delays and extra expenses.

Based on these considerations, we give this risk a likelihood of 6 and a severity of 3.

Graphical representation

We have now assigned levels of severity and likelihood to all identified risks (for which there
is potential for mitigation). Plotting in the coordinates of our risks yields the following:

1) No multi-PSK provider willing to provide trial version/APs, 2) Prolonged absence due to disease or
unforeseeable events, 3) Prolonged downtime in Uninett’s network, 4) Loss of data, 5)
Conflict/disagreement between the candidates, 6) Delays due to overly ambitious designs, 7)
Hardware failure/complications

30/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 31/43

Risk management
There are four risks that need management: 1) No multi-PSK provider willing to provide trial
version/APs, 2) Prolonged absence due to disease or unforeseeable events, 6) Delays due
to overly ambitious designs, and 7) Hardware failure/complications.

No multi-PSK provider willing to provide trial version/APs
In order to reduce the likelihood of rejection, we will ask Uninett to request a trial and
necessary hardware on our behalf. Their organizational email address holds more weight
than ours.

In order to reduce the severity of this event, we will begin planning to use hostapd instead.
This way we will have a plan, even if we do not get access to proprietary technology, and we
will be able to develop an approximation that can easily be modified to operate against
proprietary technology instead.

Prolonged absence due to disease or unforeseeable events
Besides practicing good hygiene, the most efficient measure we can take in order to mitigate
this risk is to reduce the severity by planning for some absence. We have attempted to
exaggerate the time needed in each phase of the project period. Furthermore, we will
implement a routine consisting of summarizing and explaining what we have worked on and
what needs to be done at the end of every day, thus increasing the chances that the other
candidate will be able to fill both roles for a limited period of time.

Delays due to overly ambitious designs
In order to reduce the likelihood of this event, we will develop minimalistic designs that
implement only the strictly necessary functionality initially. If there is time, we may decide to
improve these designs at a later time. A high degree of minimalism will be added as a quality
control requirement.

Hardware failure/complications
Uninett is able to replace any hardware that fails except our computers. We will take care not
to store any single copy of data on our computers that will cause delays if lost. Additionally,
we will create a full system image backup for both computers, so that we can restore their
state.

In order to reduce the likelihood of hardware failure, we will handle hardware with care and
regularly tighten loose screws if we detect them by the sound they cause.

31/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 32/43

Analysis of financial feasibility
The two possible solutions are different financially. The cost of the “hotspot solution” depends
on the number of users that should be able to connect IoT devices simultaneously, while the
cost of the “multi-PSK solution” depends mainly on required coverage in a building. We will
be somewhat pessimistic in our approach in order to avoid surprises.

Non-quantifiable benefits
Non-quantifiable benefits are benefits that cannot be measured with any reasonable degree
of accuracy. We must assume that non-quantifiable benefits exist as there is a demand for
IoT support, but no reason for this demand based on quantifiable benefits is given by
Uninett. Some such benefits could potentially be made quantifiable if there was a list of offers
made by universities for this functionality, for example, but to our knowledge, no such list
exists at this point in time.

Non-quantifiable benefits could include the improved image of being on the cutting edge that
is achieved by being IoT-compatible. It could also include the improved opportunities for
research, convenience and automation. We are operating with rough estimates in this
analysis, and the deduced figures should be assumed to be wildly inaccurate given our lack
of definite data.

Financial feasibility of the hotspot solution
The hotspot solution comes with a significant increase in administrative work. This work is
related to the configuration, distribution and management of hotspot devices. We will
proceed with the assumption that one employee can manage approximately 500 hotspot
devices, and that each employee receives 400,000 NOK in annual wages. Furthermore, we
will operate with an expected lifespan of 3 years. We expect approximately 10% of existing
devices to break or disappear each year. The current lowest cost of a Raspberry Pi is 269
NOK and the cost of the compatible Asus USB-N10 Wi-Fi adapter is 114.40 NOK , both 2 3

excluding taxes and assuming there is no possibility of wholesale discounts. It is difficult to
predict the benefits of the systems, but we expect these benefits to diminish rapidly as
standards are implemented for IoT devices and new technology emerges, rendering this
solution obsolete. We estimate a halving of non-quantifiable benefit each year. We are
operating with a discount factor of 10%.

2 From Dustin:
https://www.dustin.no/product/5010909893/3-model-b-12ghz-64-bit-arm-1gb-ram-wifibt?ssel=false&ut
m_campaign=prisjakt&utm_source=prisjakt.no&utm_medium=pricecompare&utm_content=56371750
76 . Accessed on February 17, 2019.
3 From Multicom:
https://www.multicom.no/asus-usb-n10-nano-nettverksadapter-usb/cat-p/c/p7026696 . Accessed on
February 17, 2019.

32/43

https://www.dustin.no/product/5010909893/3-model-b-12ghz-64-bit-arm-1gb-ram-wifibt?ssel=false&utm_campaign=prisjakt&utm_source=prisjakt.no&utm_medium=pricecompare&utm_content=5637175076
https://www.dustin.no/product/5010909893/3-model-b-12ghz-64-bit-arm-1gb-ram-wifibt?ssel=false&utm_campaign=prisjakt&utm_source=prisjakt.no&utm_medium=pricecompare&utm_content=5637175076
https://www.dustin.no/product/5010909893/3-model-b-12ghz-64-bit-arm-1gb-ram-wifibt?ssel=false&utm_campaign=prisjakt&utm_source=prisjakt.no&utm_medium=pricecompare&utm_content=5637175076
https://www.multicom.no/asus-usb-n10-nano-nettverksadapter-usb/cat-p/c/p7026696

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 33/43

If we decide that at most 500 users should be able to connect IoT devices simultaneously,
the below figure shows the approximate cost and benefit:

If we decide that only about 50 users should be able to connect IoT devices simultaneously
(for research, for example), the results are different. We assume that existing staff will be
able to handle this additional administrative workload, and that these 50 users provide more
benefit than the average user. We will halve the non-quantifiable benefits.

Conclusion

The hotspot solution is probably not financially feasible for large scale deployment. For
small-scale research operations and similar, however, the costs are drastically reduced, and
much of the benefit is preserved. Our conclusion is that the hotspot solution is worthwhile to
implement for small-scale research operations (around 50 simultaneous users maximum) if
the multi-PSK solution cannot be implemented.

33/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 34/43

Financial feasibility of the multi-PSK solution

The most significant factor in the financial feasibility of the multi-PSK solution is the coverage
of IoT connectivity, which decides how many access points need to be installed or upgraded.
In order to be equally pessimistic about this solution, which we are otherwise fairly optimistic
about, we will assume that old access points have lost their entire market value and cannot
be sold in order to cover some of the cost. We will, however, assume that this solution has
longevity. It is theoretically a perfectly secure and efficient solution with minimal
administrative work required. The lifespan of an access point is somewhat pessimistically
assumed to be five years. We have chosen to use Aerohive’s prices in this analysis for two
reasons: 1) Aerohive has recently responded to our request to borrow access points and a
license key (see the Amendments section), and 2) Aerohive is used by Surfnet, the “Uninett
of the Netherlands.”

If our understanding is correct, all new Aerohive access points are compatible with their
PPSK (Aerohive’s name for their multi-PSK technology) technology. Sadly, Aerohive uses a
“call for pricing” model for the pricing of licenses. The price of a license also depends on the
number of access points to be supported and the duration of the license. Perpetual licenses
are also available. Because we cannot find any definite prices, we will have to make
estimations.

Product Price in NOK excluding taxes

Access point 1904 NOK 4

License for up to 2000 APs 15537 NOK 5

Additional (pessimism factor): Support and
renewal for 5 years, etc.

15000 NOK

We assume that very little training is required. Administrators only need to know how to
operate a simple dashboard and possible manually terminate sessions. Furthermore, we
assume that the non-quantifiable benefits decline only slightly with time, as we expect this
solution to be much more in line with future solutions than the hotspot solution. We believe
the solution will age well.

If we assume that 500 rooms should allow connection of IoT devices (and each room
requires its own access point), the following estimates apply:

4 From Atea’s e-shop:
https://www.atea.no/eshop/product/dell-emc-networking-aerohive-ap130/?prodid=3880978 . Accessed
on February 18, 2019.
5 “HiveManager NG Virtual Appliance can be easily deployed on a customer’s existing server
infrastructure at a total cost of $1799.” Aerohive press release from June 22, 2017. Available at:
https://www.aerohive.com/press_releases/aerohive-delivers-the-power-and-simplicity-of-cloud-network
ing-to-on-premises-environments/ . Accessed on February 18, 2019.

34/43

https://www.atea.no/eshop/product/dell-emc-networking-aerohive-ap130/?prodid=3880978
https://www.aerohive.com/press_releases/aerohive-delivers-the-power-and-simplicity-of-cloud-networking-to-on-premises-environments/
https://www.aerohive.com/press_releases/aerohive-delivers-the-power-and-simplicity-of-cloud-networking-to-on-premises-environments/

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 35/43

Increasing this to 2000 rooms results in larger initial losses, but also larger cumulative
benefits after a five year period. While we have multiplied the hardware costs by 4, we have
only multiplied the non-quantifiable benefits by 3.

Another thing to consider is the possibility of existing access points supporting multi-PSK
technology in the near future. In that case, the hardware costs would be non-existent, and
the following estimate is given:

35/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 36/43

Conclusion

The multi-PSK solution seems financially viable, and this is by far the most reasonable
solution both practically and financially, regardless of which of the three presented scenarios
apply. While it is a significant investment, this is approximately what large-scale IoT support
support costs today.

The spreadsheets are attached.

36/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 37/43

Guidelines and standards
In order to ensure the quality of our work, that our work is understood, and that the needs of
Uninett are met to the fullest degree possible, we have established the following guidelines
and standards.

Documentation requirements
Both candidates shall keep an individual timesheet, which shall state how many hours were
spent working on the project each day (unless zero hours were spent). A brief description of
the activities that were undertaken on the day shall accompany each entry. The number of
hours spent on the project each week shall be summarized and presented in a sensible
format.

A progress plan for the entire project period shall be delivered as soon as possible in a
shared folder to which the stakeholders have access.

Every Friday (or on Monday the following week at the latest), a progress plan for the coming
week shall be developed and placed in the shared folder. The progress plan shall state which
tasks are planned, show which tasks are planned for which days of the week, and indicate
which days will be spent in Uninett’s offices, and which will be spent elsewhere.

Every Friday (or on Monday the following week at the latest), a weekly report outlining the
activities of the week that has passed shall be delivered to the shared folder. The weekly
report shall give the reader insight into the candidates’ progress, problems and plans.

When meetings are held, one of the candidates shall be given the responsibility of writing
minutes of the meeting. The minutes of the previous meeting shall be approved by the
attenders. The minutes shall at a minimum include an agenda, which shall be published in
the shared folder prior to the meeting, as well as a summary of what was expressed at the
meeting, by whom. The minutes of the meeting shall be published in the shared folder as
soon as possible after the meeting.

A prestudy (this document) shall be prepared. The prestudy shall outline the candidates’
research on the topic, define goals, specify the scope and plans for progress,
communication, project organization, standards, guidelines and success criteria, analyze the
stakeholders, external conditions, relevant regulatory frameworks, the financial feasibility of
the project, risks (risk analysis and management plan), identify functional and non-functional
requirements of the solution, and list all sources used in a bibliography.

A design report shall be prepared. This report shall include complete designs, including user
experience, information flow, graphical design, functionality, and other specifications of all
essential parts of the solution to be developed, as well as give an account of the design
process.

Additionally, an execution report shall be prepared. This report shall explain the technical
details of how the solution is design, including any code, hardware configuration and

37/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 38/43

software used, and give an account of the execution process. It shall also include
explanations of how the systems are tested, the results of said testing, any improvements or
changes made, how the system is deployed and other relevant information.

Finally, a final report shall be prepared, which contains all the three reports described above,
as well as a preface and conclusion.

The following documents shall be written in English:

● The weekly reports
● The prestudy report (this document)
● The design report
● The execution report
● The final report
● Any documents attached to these documents

We consider these documents the most important ones, and their being written in English
ensures that they can be understood by the majority of potential readers. Other documents
may be written in Norwegian.

The following documents should preferably be formatted using LaTeX:

● The prestudy report (this document)
● The design report
● The execution report
● The final report

Quality control requirements
The prestudy report, the design report, the execution report and the final report should be
reviewed by Uninett, the NTNU representative (assistant professor Stein Meisingseth) and
the candidates before finalization and revised according to feedback. The candidates should
proofread the documents before submission.

When a document is revised, all other documents that may reference the revised document
should be checked, and the validity of the references should be verified. For example, if a
new illustration is added to the prestudy report, the design report and execution report should
be checked for references to illustrations in the prestudy report. These references should be
updated if they are no longer valid.

Unit tests should be written for code, and these tests should have decent coverage. When a
bug is discovered and fixed, a unit tests should be written that attempt to trigger that specific
bug. Integration test routines should also be defined and run regularly. Components that fail
these tests are not to be considered complete and must be completed before the product is
finalized.

In addition to tests, a focus group of at least three people should be asked to test the
systems. If they are unsuccessful in using the systems, they are not to be considered

38/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 39/43

complete. Any constructive feedback given during these trials should be implemented if
possible.

Controls and methodology

Methodology
We will use a Scrum style framework in our design and development process. Issues (epics,
stories, tasks and bugs) will be defined as they are identified and assigned in sprints. Issues
will fall under one of four stages: 1) open, 2) in progress, 3) review, and 4) done. These
issues may be tracked through Jira or with sticky notes, for example. There will be no Scrum
Master or Product Owner, however. The candidates share the responsibilities of the former,
and the candidates share the responsibilities of the latter with Uninett. Every day will begin
with a meeting that summarizes, prioritizes, assigns and identifies new issues.

Standards and principles

We wish to provide a platform-independent solution, meaning the solution should not in
principle care which operating system it is running on. This means that our code should be
highly modular, and platform- or product-specific code should be contained within an easily
replaceable module for improved compatibility and customizability. Furthermore, a
platform-independent programming language, such as Python, must be used, and
components and libraries depending on specific platforms should be avoided. Code should
also follow the “don’t repeat yourself” principle. We will strive for a high standard of code and
design.

Our code should be easy to interpret, and its security should be demonstrated, through
extensive use of comments and flowcharts.

Controls

The following controls shall be implemented:

● The proper encryption of packets shall be verified using packet sniffers and
documented.

● It shall be confirmed that the design is as minimal as possible while still providing
required functionality.

● It shall be confirmed that every iteration of the product is developed according to the
designs.

39/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 40/43

Project organization
This project is organized with the following roles:

Role Person(s)

Advisor (NTNU) Stein Meisingseth

Advisor (Uninett) Jørn Åne de Jong

Project managers Jørn Åne de Jong, Tom Ivar Myren, Otto Wittner

Sponsor Uninett AS

Document manager Magnus Bakke

Developers/candidates Magnus Bakke & Liang Zhu

Work on this project will primarily take place in Uninett’s offices. Additional work will take
place at the university and elsewhere.

The finished reports, code and other documentation will be submitted to the university at the
end of the project period.

40/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 41/43

Conclusion
The technology required to securely connect IoT devices that do not support authentication
using certificates exists, but it is fairly new and not extensively tested. Deploying either of the
two possible solutions at scale is a risk but, in the absence of IoT standards, it is a necessary
one if we are to be ready for the future of networking.

We are confident that we will be able to develop an elegant solution with a satisfactory level
of security. Security should be the primary concern in uncharted waters, and this is achieved
through proper encryption. The encryption standards used in modern wireless networks are
strong. The issue lies in the dependence on trust. We cannot simply transfer a trust-based
home network architecture to an enterprise environment. Therefore, we must extend this
architecture and turn it into a trustless system. The relatively simple invention of user-specific
pre-shared keys enables us to do just this. This is why we will focus our efforts on developing
a highly automated system based on multi-PSK technology in which users can freely and
securely connect any device that does not support certificate authentication and encryption.
Everything points to this being a great investment that will open new possibilities for
automation, convenience and research. The time is ripe.

With our thorough research of the topic and preliminary sketches for designs, we are now
looking forward to moving on to the design phase, in which we will plan our solution in great
detail.

41/43

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 42/43

Amendments

February 11, 2019 Aerohive responded positively to our request. This means that we
will almost certainly be able to design and execute the multi-PSK
solution. The risk of no multi-PSK technology provider being
willing to lend us access points and licenses has been virtually
eliminated.

February 20, 2019 Clarification: We have been using the terms “eduroam
credentials” and “Feide credentials” interchangeably because
students will have the same credentials on both services. We
made the distinction clearer, and better explained that the
multi-PSK solution does not make devices compatible with
eduroam.

March 25, 2019 Specified the cases in which it is necessary to have an
“authentication dashboard” with a field for the user’s password.

May 14, 2019 We found a new, lower price for the AP122 access point at 1195
NOK (tax-exclusive): https://www.dustin.no/product/5011072112/ .
This makes the multi-PSK solution even more financially feasible.

42/43

https://www.dustin.no/product/5011072112/emc-aerohive-ap122

5/20/2019 Prestudy report - Google Docs

https://docs.google.com/document/d/1YelJ3R_sA-dP8D_i0AWAwZz58E2x_-fzFAPrkBOYKZ0/edit# 43/43

Bibliography
de Ridder, S. (2017, June 8). How can you connect your devices safely and simply to your
WiFi network? - SURF Blog [Blog post]. Retrieved February 4, 2019, from
https://blog.surf.nl/en/how-can-you-connect-your-devices-safely-and-simply-to-your-wifi-netw
ork/

hostapd configuration file [Configuration file]. (n.d.). Retrieved February 10, 2019, from
https://w1.fi/cgit/hostap/plain/hostapd/hostapd.conf . Read: WPA/IEEE 802.11i configuration .

Norwegian legal system. (2018a, June 15). Lov om behandling av personopplysninger
(personopplysningsloven) [directive]. Retrieved February 17, 2019, from
https://lovdata.no/dokument/NL/lov/2018-06-15-38

Norwegian legal system. (2018b, July 2). Forskrift om arbeidsgivers innsyn i e-postkasse og
annet elektronisk lagret materiale [directive]. Retrieved February 17, 2019, from
https://lovdata.no/dokument/SF/forskrift/2018-07-02-1108

Norwegian legal system. (2018c, June 15). Forskrift om behandling av personopplysninger
[directive]. Retrieved February 17, 2019, from
https://lovdata.no/dokument/SF/forskrift/2018-06-15-876

GÈANT Association. (n.d.). Disclaimer – eduroam [disclaimer]. Retrieved February 17, 2019,
from https://www.eduroam.org/disclaimer/

Atlassian. (n.d.). Jira | Issue & Project Tracking Software | Atlassian. Retrieved February 17,
2019, from https://www.atlassian.com/software/jira

Peters, C. (2012, September 7). Code 3 Key Software Principles You Must Understand
[explanation of the ‘Don’t Repeat Yourself’ principle]. Retrieved February 17, 2019, from
https://code.tutsplus.com/tutorials/3-key-software-principles-you-must-understand--net-25161

43/43

https://blog.surf.nl/en/how-can-you-connect-your-devices-safely-and-simply-to-your-wifi-network/
https://blog.surf.nl/en/how-can-you-connect-your-devices-safely-and-simply-to-your-wifi-network/
https://w1.fi/cgit/hostap/plain/hostapd/hostapd.conf
https://lovdata.no/dokument/NL/lov/2018-06-15-38
https://lovdata.no/dokument/SF/forskrift/2018-07-02-1108
https://lovdata.no/dokument/SF/forskrift/2018-06-15-876
https://www.eduroam.org/disclaimer/
https://www.atlassian.com/software/jira
https://code.tutsplus.com/tutorials/3-key-software-principles-you-must-understand--net-25161

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 1/31

AUTHENTICATION IN THE INTERNET OF THINGS

Design report

Part of a Bachelor’s thesis
Presented to the Institute of computer technology and informatics

of the Norwegian University of Science and Technology
by Magnus Bakke & Liang Zhu

Submitted in partial fulfillment for Bachelor’s degree of
Informatics with specialization in network administration

during the year 2016–2019

1/31

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 2/31

Introduction
We, the candidates, are two students at the Norwegian University of Science and
Technology, where we study Informatics with specialization in network administration. In
connection with our Bachelor’s thesis, Uninett AS — the state-owned company responsible
for Norway’s network infrastructure in research and education — has requested that we
research and develop a solution for getting IoT devices connected to the internet in a secure
manner.

The project began with extensive research and planning, called the research stage. The
result of this stage is outlined in the prestudy report, which precedes this document. This
document describes, in detail, the result of the design stage , in which we make use of our
research in the design of a solution before these designs are actualized in the coming
execution stage.

Summary of requirements
A typical home has a wireless network secured using a password. In order to use the
wireless network, the user must possess the secret key (called the pre-shared key). This key
is used to encrypt and decrypt communications, and the ability to encrypt and decrypt
communication is used as authentication. When the user is authenticated by means of
possessing the secret key, they are authorized to use the network. This type of wireless
network is called a personal wireless network. Its security is based on trust and secrecy: The
password is shared only with people trusted by the network’s owner, and is otherwise kept
secret. Personal networks use the WPA2-Personal mode of the WPA2 encryption standard.

In an enterprise network with potentially hundreds of users, this system of trust and secrecy
collapses. A network secured with a key known to hundreds of people cannot be considered
secure at all. In addition, it is typically not desirable that one user of the wireless network is
able to monitor the communications of other users, which is very much the case in today’s
pre-WPA3 personal networks. Therefore, enterprise networks are secured using the 1

WPA2-Enterprise mode of the WPA2 standard, in which each user is given their own unique
identity, and communication is encrypted in a way that prevents other users from decrypting
it. This is achieved using digital certificates, an application of public-key cryptography. In
short, there is no master password; there are identities that cannot be forged, as they are
mathematically secured.

With the advent of the internet of things (IoT), in which small devices (often lacking user
interfaces and typically serving a singular, highly specific purpose such as measuring and
reporting on the temperature or humidity in a space), issues arise. IoT devices are typically
marketed to consumers for use in so-called smart houses. They are designed for personal
networks, and are not equipped with the functionality required for authentication in enterprise
networks. The world of master passwords is the only one they know.

1 Special consideration is given to the benefits of WPA3 versus WPA2 in the execution report.

2/31

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 3/31

Still, there is a demand for IoT devices in enterprise networks as well. The question is: How
can we connect IoT devices to an enterprise network in a way that can be considered
secure? We have hypothesized two possible solutions, one of which has been selected after
careful consideration.

Introduction to chosen of solution
The hotspot solution , which was always considered a backup solution, was based on the
idea of configuring small boxes containing computers without displays to act as hotspots for
IoT devices. The devices would be leased to users upon request, and the user would be able
to see a dashboard by connecting to the device’s IP address in a web browser. After the user
has inputted their eduroam credentials, the device would broadcast a hotspot with a
dynamically generated, strong and random PSK. The hotspot acts as a bridge between the
IoT device and eduroam.

This solution has several problems: Firstly, it comes with a lot of additional administrative
work: The hotspot devices must be reset to their “ready” state, distributed to users upon
request, and kept track of. Such hardware is prone to malfunction, wear and tear, and there
is no simple way of supporting roaming between hotspots (one hotspot belongs to one user),
meaning that the hotspot device must be carried around so that they are always nearby if the
connected devices are moved. This requires that the hotspot devices are battery-powered
and always remain charged. Lastly, the hotspots would either cause harmful interference with
existing wireless networks or drastically reduce the number of channels that existing access
points may be configured to use. We found that the solution is financially feasible if it is only
used by a small number of people, such as a few research teams, in isolated areas.

The multi-PSK solution takes a different approach entirely. Some modern access points
support multiple PSKs by virtue of advanced controller software. Given the right functionality,
this means that a user may be able to use a customized web dashboard to request a new
PSK for their devices. The PSK would be generated, and devices would be able to
communicate with wireless access points normally using the newly generated PSK. We have
found four hardware manufacturers that have implemented multi-PSK technology in some
form. These are Aerohive, Ruckus, Aruba (coming soon, according to representatives), and
Riverbed. There is also limited support in hostapd. We have requested access points and
software licenses from all four of these companies.

Aruba responded positively, but multi-PSK support is planned for the next version of Aruba’s
ClearPass at the time of writing. The release date of this next version is not known, and we
cannot risk waiting for it. Luckily, Aerohive has also responded positively, and we are now in
possession of two of their access points, which were generously sent to us by Aerohive. We
would like to thank both Aruba and Aerohive for taking an interest in our project. We have
verified that HiveManager — Aerohive’s cloud networking solution — allows us to develop a
custom dashboard, thanks to the support for automation using its API. We will refer to the
“multi-PSK solution” as the “PPSK solution” from now on. Private Pre-Shared Key (PPSK) is
Aerohive’s name for the technology. This is our chosen solution.

3/31

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 4/31

Reasoning for the choice of solution

By generating a unique PSK for each IoT device to be connected, we have corrected the
inherent incompatibility between IoT devices and enterprise networks, namely the reliance
on master passwords . The solution does not require any major changes to network
architecture, and problems with roaming, portability and harmful interference are also
non-existent. In the prestudy, we found that this solution was indeed financially feasible.

Scope of the document

This document deals only with the theoretical design of the chosen solution. A combination
of drawings, charts, mockups, textual descriptions, and logical reasoning constitute the
designs of the solution. The designs we develop will not be executed (implemented in a
working prototype) in this stage. Instead, we describe the system we intend to develop with a
degree of detail that reduces the development itself to a relatively manual task consisting of
writing the code, configuring hardware according to designs, testing and similar processes.
This is the goal of the document.

4/31

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 5/31

Contents
Introduction 2

Summary of requirements 2
Introduction to chosen of solution 3

Reasoning for the choice of solution 4
Scope of the document 4

Contents 5

Method and approach to design 7

Principles in design 7

Detailed designs & descriptions 9
Hardware 9
Software and frameworks 9
Programming and markup languages 9
Operating systems 9
Architecture 10

Frontend 10
Receiver 10
Authenticator 10
Ad hoc adapter 10
Illustration 11

OAuth 2.0 Authentication 12
User interfaces 12

Form validation 13
Backend code components 13

Basic explanation of Django REST framework 13
Introduction to types and concepts in RESTful APIs and Django REST framework
14

Description of components and architecture 15
Class diagram 18
Reasoning 18
Data templates 19

Frontend details and code components 19
Success and error handling 20

Flow 22
Database 24
Security measures 24

Expiration of old pre-shared keys 24
Generation of strong pre-shared keys 25
Obscurity 25

5/31

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 6/31

SSL 25
Hiding of secrets from Git repositories 26

Version control with Git 26
Testing 26
Summary 27
Deviations from the prestudy report 27

Conclusion 27

Amendments 28

Bibliography 29

6/31

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 7/31

Method and approach to design
As required by our own recommendations in the prestudy report, we used a customized
version of Scrum during the design process. In order to minimize slack, one candidate
designed a component of the solution while the other candidate made prototypes of the
same component. In other words, we have written preliminary drafts for the execution report
in parallel with the writing of this document. The development of the prototype components
has also affected the chosen design.

Principles in design
We choose to focus on five principles when designing our solution: 1) Reusability, 2)
modularity, 3) platform independence, 4) minimalism, and 5) the Don’t repeat yourself (DRY)
principle. Note that these principles are closely related and complement each other in our
case.

Reusability
As the term implies, reusability is measure of how readily and easily our solution and code
components can be reused in other situations. Naturally, we are developing a system for
getting IoT devices online and do not anticipate the solution being useful for other purposes.
Still, we want the solution to be just as valid for an institution in another part of the world as it
is for Uninett. Likewise, we wish to structure our code and components in such a way that
they can be used wherever the same or highly similar functionality is required.

Modularity
Modularity is the degree of the independence of each module from one another. In other
words, modular code is divided into modules that know very little about each other, and
therefore do not contain dependencies pertaining to the specific nature of other modules. It is
reasonable of one module to expect that another module has the required superficial
interface functions, but nothing more specific should be assumed.

In our case, for example, the authentication module will have a function that accepts
credentials, or any other data that is required by the specific solution, and returns a Boolean
value indicating whether or not authentication passed (or raises an exception if
authentication fails). This will be true in any environment. The authentication module will
make it known what information is required. The receiver module will not, however, assume
how this information is processed or anything else pertaining to the inner workings of the
authentication module. These modules are explained in the Architecture subchapter of the
Detailed designs & descriptions chapter.

A high degree of modularity allows us to customize each module to our needs while feeling
confident that other components of the solution will not break as a result. This also makes
the code easier to test and refactor.

Platform independence
Platform independence is a property of a solution that does not make assumptions about the

7/31

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 8/31

operating system it is running on or other variables in its environment, such as hardware
models. We do not want our solution to depend on a certain operating system, nor do we
want it to work only against the access points of a certain manufacturer.

Independence from the operating system is achieved by using a platform independent
programming language and framework (Python and Django REST framework in our case),
while independence from the manufacturer is achieved by the customizability of the ad hoc
adapter (as described in the Architecture subchapter). Independence from specific Identity
Providers such as Feide, and indeed from specific approaches to authentication such as
OAuth 2.0 or SAML 2.0, is similarly achieved through customizability of the authentication
module (also described in the Architecture subchapter).

Minimalism
In the prestudy, we identified the risk of overly ambitious designs: We have a history of
planning too ambitiously within given framework conditions, such as deadlines. We will
mitigate this risk by designing a minimal solution.

This involves leaving out functionality that is not strictly necessary, and instead plan for future
expansion. The solution will form a basis for further development. Options for future
development will be outlined in the execution report. We will attempt to maintain a high
degree of elegance in our code and architecture, but will not risk missing deadlines for the
sake of achieving this. Still, elegance is usually the simplest and fastest way to completion of
a project.

This principle also applies to user interfaces, which should only feature fields and options
that are strictly necessary. There will be no screen requiring that the user accepts terms of
use, for example. This is an example of a feature that may be required of a full-scale
deployment. Furthermore, we will not develop a dashboard for administration of registered
users. This is a component that a full-scale deployment should feature, and while it is within
our grasp, we estimate that there will not be sufficient time. The steps required to develop it
will be outlined in the execution report.

Don’t repeat yourself
Don’t repeat yourself (DRY) is a principle of software design that is meant to reduce both the
quantity of code required and the occurrence of repetition. This helps to reduce the
complexity of the software solution and increase its maintainability. Following this principle
involves identifying where similar functionality is required and refactoring it so that the
functionality is only declared once, but available in both or all places where it is needed. This
eliminates the need to maintain two identical or nearly identical components when fixing
bugs, for example. The Django REST framework already follows this principle to a high
degree. It is our responsibility to make sure the principle is followed throughout our own code
as well.

8/31

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 9/31

Detailed designs & descriptions
This chapter includes designs for all planned aspects of the solution. We have attempted to
order the descriptions of the solution’s components in a way that minimizes the need to know
details not yet described.

Hardware
Our solution requires at least one access point that supports PPSK. Aerohive has generously
sent us two, which also allows us to verify that one PSK allows us to connect to different
APs, and that roaming works as expected.

The controller software (HiveManager) will run in “the cloud” (on Aerohive’s servers), as we
do not have a plan that allows us to download a HiveOS image. Therefore, we do not need
any hardware for this purpose. Our own servers will be virtualized, so we do not require any
additional hardware for this either.

Software and frameworks
Our backend will be built using Django REST framework on account of its versatility and
security. Django REST framework prevents us from having to “reinvent the wheel” — it
allows us to program API endpoints belonging to certain URLs in views . With a custom view
class, we will be able to program our receiver component (as is described initially in the
Architecture subchapter) with minimal code repetition. Furthermore, it has seamless SQL
integration that performs a lot of optimizations for us and makes database queries more
readable.

Programming and markup languages
Django REST framework is a framework for backends written in Python, and the entirety of
our backend will be written in Python. Our frontend will consist of HTML5 and CSS3, with
JavaScript populating the user interface, sending requests and receiving responses
asynchronously. We have planned for the frontend to be entirely customizable, and our
solution will not make assumptions about it or its constituents, nor will it serve the frontend
using templates.

Operating systems
We want our solution to be free, including the specifics of the environment. This means that
we must not rely on an operating system that requires a paid license. Therefore, our solution
will run on a Linux distribution, and our code will be written in Python, as stated. Python is
one of many open programming languages, but it is one that we have experience with, and it
is compatible with our choice of software.

9/31

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 10/31

We will not specify operating systems further, as we may find that one Linux distribution
works better than others for our purposes. This exploration is a task for the execution stage.

Architecture
The solution will consist of four main components: 1) The frontend, 2) the receiver, 3) the
authenticator, and 4) the ad hoc adapter. The latter three are components of the backend.
These components are described below.

Frontend

The frontend will be a page reachable from within the network that features a form with fields
for the required information, such as options for how the PSK should be delivered. The
information provided by the user is sent to the receiver (over HTTPS) for validation. If the
validation passes, the newly generated PSK is displayed to the user.

Receiver

The receiver receives PSK requests and credentials, prompts the authenticator to validate
the credentials (which may consist of a username and password, some other secret, or
nothing at all, depending on the implementation), and forwards the PSK request to the ad
hoc adapter if authentication passes. This component is not replaceable, and the logic
performed by the receiver should in principle be the same in all situations.

Authenticator

We want to build a solution that does not depend on Feide. In other words, we want this
system to be compatible with any Identity Provider. Because different systems may use
different authentication methods, we need a replaceable authentication module. In our case,
the user must first use Feide’s single sign-on (SSO), and the authenticator will simply verify
that the user is authenticated. In another scenario, the authenticator may not perform any
logic (if there is no authentication requirement, for example), but return true no matter the
case. Custom authenticators will inherit their attributes and methods from an abstract class
(a class meant to be inherited) for overriding. This abstract class is described in the Code
components chapter.

Ad hoc adapter

Ad hoc means “for this” in Latin. Because we want the solution to be adaptable and not
reliant on a specific manufacturer of access points, for example, we need another
replaceable module. The ad hoc adapter will be a code component that tailors a PSK request
for the a specific network management system, such as HiveManager. This is needed
because each such system may use different methods for generating PSKs. One may use
an API endpoint which can be easily called, while another (such as hostapd) may use a
configuration file and needs to be restarted for the changes take effect. This custom logic is

10/31

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 11/31

performed in the ad hoc adapter, which will inherit an abstract adapter class that tells the ad
hoc adapter which methods must be implemented. This class is described in the Code
components chapter.

Illustration

The following illustration shows the cooperation between the various modules. The symbol in
the middle of a component signifies the type or format of data it accepts coming in. The
symbol in the cyan area to the right signifies the type or format of data it accepts coming
back from the next module in the chain and/or what type or format of data it will return to the
module before it in the chain. An arrow signifies a conversion from one type or format to
another.

11/31

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 12/31

In this example, the controller expects PSK requests with a “circle” format. Therefore, the ad
hoc adapter converts the native “square” format to a “circle” format. The circle format may
also symbolize that the controller expects a certain routine to be performed, such as the
changing of a configuration file. In that case, the ad hoc adapter interprets the square data
and performs the necessary circle operations on the configuration file. Once the PSK has
been generated, the new PSK may or may not be returned to the ad hoc adapter. The circle
format may then represent the need for the ad hoc adapter to investigate a log file on the
controller device, for example, or extract a key in the returned JSON format. This uncertainty
is what the ad hoc adapter deals with. The extracted PSK is then returned to the receiver in
the native square format. The frontend finally converts the response from the receiver to a
string that is displayed on the user interface, if this is the desired behavior.

12/31

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 13/31

Note that “circle” and “square” have no real meaning, but are meant to illustrate the fact that
not all controllers will return the newly generated PSK in the way the receiver expects.

OAuth 2.0 Authentication
Our solution will require that the user authenticates using Feide, which merged with
Dataporten in October, 2018. We may use the names Dataporten and Feide interchangeably.
Feide is an Identity Provider (and we are the Service Provider) that supports OAuth 2.0, a
widely used protocol for authorization.

Service Providers with Feide integration require that the user authenticates using Feide’s
SSO page (unless other means of authentication exist). This means that we cannot accept
Feide credentials in the authentication_data field of the request and simply query Feide’s
servers. As a Service Provider, we are not allowed to be in possession of the user’s secret
password. Our authenticator must verify that the user is authenticated without receiving the
credentials. This can be achieved using sessions, which are supported in Django by default.
We will use a database for storing sessions.

This means that our Feide-specific solution will require additional views that handle, among
other things, the verification that the client supports and accepts the storing of cookies, and
the receiving and storing of user attributes from Feide’s systems.

A more detailed description of how OAuth 2.0 is used by Feide can be found in their
documentation at https://docs.feide.no/developer_oauth/ (retrieved on March 20th, 2019).

User interfaces

The backend requires several pieces of information from the user. Some of these pieces of
information, however, do not require an input field, as they will be provided by Feide once the
user is authenticated. What we require that the user specifies is their preferred email
address, a descriptive name for the device to be connected, and a choice regarding whether
the newly generated PSK should be delivered by email or not.

As for choice of graphical design and color, we have opted for a minimalistic, two-color page
for simplicity and due to personal preferences. The user interface may be customized, so
long as the required fields (as expected by the backend) are present.

Here, the user’s first name is Ola, which is one piece of information given to us by Feide after
the user has signed in using their SSO.

13/31

https://docs.feide.no/developer_oauth/

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 14/31

Form validation

While the backend will contain methods for data validation, it is generally a good idea to
perform validation on the frontend as well. Frontend validation cannot be trusted, as the user
can bypass it easily by making changes to the markup and scripts that are loaded into
memory on the client’s side, but it gives the user immediate feedback on the fields without
having to wait for a request to fail. It also prevents needless traffic from reaching the server.

The consistency of validation on the frontend with the backend’s validation must be ensured
for each implementation of the solution. If we were to expand the scope of the project, we
could devise a solution where the programmer defines validation criteria on the backend,
which are then fetched by the frontend and injected into HTML form elements. This would be
an endeavor for the future and will not be featured in our solution.

Backend code components

In this subchapter, we describe designs for the various components and modules of the
system with the highest degree of detail possible at this stage.

Basic explanation of Django REST framework
Without going into too much detail, it is helpful to have an idea of how Django REST
framework works. This is a Python framework that is perfect for backends. It allows us to
specify any number of URLs, and each URL points to a certain view . A view is either a class
or a function that handles HTTP requests. For example, a GET request to the URL
hostname/users/ may return a list of users in the system, and a POST request to the
same URL may create a new user. The logic is performed by the URL’s view. The framework
handles much more than this, and includes concepts such as authentication backends, user

14/31

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 15/31

management, permission requirements and more, but for our purposes, most of this
functionality will be optional and may be implemented if required in a given implementation.

Introduction to types and concepts in RESTful APIs and Django REST framework

In order to clarify the description of components and architecture, we will briefly describe
some types and concepts that are central to RESTful APIs and the Django REST framework.

RESTful API
REST stands for Representational State Transfer. A RESTful API is an API (application
programming interface) that lets a user or programmer interact with the service using HTTP
requests such as GET, POST, or DELETE. APIs are commonly used by programs, such as a
web page or an app (the frontend) to get, create or edit objects that exist in the backend,
which can only be reached and interacted with through precisely defined and strictly
controlled “openings” called endpoints.

Endpoints
An API endpoint is the end of the communication channel that faces the user or programmer.
In other words, a user or programmer — usually by means of interacting with a frontend
application — may send an HTTP request to an endpoint and receive a response. A specific
API endpoint is typically reached through a specific URL or collection of similar URLs.

View
In Django REST framework, a view is a class or function that handles HTTP requests,
usually for a specific, single endpoint. A response is returned to the client after handling.

Request
The Request class is a Django REST framework class that represents an HTTP request.
Because of Django’s native handling of requests, there is no need to convert the raw request
data to a Request instance ourselves. We may safely expect the Request object to be sent
as an argument to our view (if these views are subclasses of the built-in APIView class).

Response
Once a view has finished processing a request, it is typically expected to return a Response
object. A Response may include custom data, as well as an HTTP status code. HTTP status
codes include 200 OK, 404 NOT FOUND, 400 BAD REQUEST, and many more . The 2

Response object is converted from Django REST framework’s representation to a HTTP
response and sent to the client that made the original request. This concludes the life cycle
of the request (though it may pass through additional middleware , a concept we will not
explain here).

2 An up-to-date list of HTTP status codes can be found at:
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes (retrieved on March 6, 2019).

15/31

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 16/31

Description of components and architecture

Our general solution requires three abstract (meaning they are meant to be inherited and
cannot be used as is) classes: An Authenticator class, an AdHocAdapter class, and an
IoTConnectView class.

Authenticator
This class will contain the methods that determine if the user is allowed to proceed.
This can be determined by the credentials passed (if any) to it, or by verifying a token,
for example. In our case, the class that extends this abstract class will verify that the
user is authenticated with Feide. The class will contain two functions: 1)
is_authorized , and 2) authenticate .

Both functions are expected to return a Boolean (true or false) value, where false
indicates that authentication failed, and true indicates that it passed. The former,
is_authorized , is meant to be overridden (implemented by the child class). If it is
not overridden by the child class, an exception will be raised. The overridden function
should perform the check itself and return true if it passes, or false if it fails.

The latter function, authenticate , is not meant to be overridden. It calls the
get_validated_data as described below (in ValidatorMixin), sends the validated
data to the is_authorized function, and returns the resulting Boolean value.

AdHocAdapter
This class handles the custom logic required to generate the PSK. It, too, will contain
two primary functions: 1) perform_generation , and 2) generate_psk .

The former, perform_generation , is meant to be overridden. If it is not overridden,
an exception will be raised. The function is expected to return a Response object. In
other words, the logic in this function, when overridden, determines the response that
is returned to the client after the request.

The latter, generate_psk , is not meant to be overridden. The function first calls the
get_validated_data function (again, as described below, in ValidatorMixin), then
calls the perform_generation function, passing the validated data as an
argument. The result of perform_generation (a Response object) is returned.

IotConnectView
This is the class that will handle requests for new PSKs. The class will inherit Django
REST framework’s APIView class, which implements numerous handy functions and
attributes, so that we need not.

The primary functions of the IotConnectView are: 1) dispatch , 2) post , and 3)
process . In addition, it will declare two mandatory (meaning their value cannot be
None — known as null or nothing in other programming languages) class attributes:
1) ad_hoc_adapter , and 2) authenticator . As the names imply, the
ad_hoc_adapter attribute is expected to be an instance of a class (or the class
itself, depending on decisions made in the execution stage) that inherits the abstract

16/31

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 17/31

AdHocAdapter class. Likewise, the authenticator attribute is expected to be an
instance of a class or the class itself that inherits the abstract Authenticator class.

The dispatch function is a function that is implemented by APIView. In other words,
IotConnectView will override APIView’s dispatch function. The dispatch function
is called when a request is received, and its purpose is to find the appropriate
function of the view to call (the function that handles requests of this HTTP method).
IotConnectView’s dispatch function will first validate the attributes of the class
according to the following rules: 1) ad_hoc_adapter cannot be None, 2)
authenticator cannot be None, and 3) the instance that is the value of the
authenticator attribute must have a method called authenticate . We will not
require that our abstract Authenticator class is used by the authenticator, but we do
require that whatever class is used for the authenticator instance has a function
named authenticate . Furthermore, the dispatch method will validate the HTTP
request, ensuring that the required authentication_data and
generation_options are present. If this validation fails, an exception will be
raised. Otherwise, the request will be forwarded to the method handler. This method
is not meant to be overridden further.

We will let the programmer decide which HTTP method should be used for the
generation of PSKs, but it will default to POST, and we will assume that POST is used
in this description. If the HTTP method of the request is POST, the dispatch
method of APIView will find a function in the class named post and use it as the
handler for the request. If the programmer or user attempts to send a GET request,
for example, a 405 Method Not Allowed response will be returned. If the request
method is POST, the post method will be called. The post method will call the
authenticate method of the authenticator, and the generate_psk method of the
ad hoc generator. It will raise an exception upon failure, or pass the response
generated by generate_psk to the process function upon success. The post
function is not meant to be overridden.

The process function may optionally be overridden by the programmer. This
function is expected to return a response, and will return the response passed to it
(as created by generate_psk) by default. This is the last step in the request’s life
cycle, where the programmer is allowed to create any database entries required of
their implementation, or whatever else is required.

The AdHocAdapter class and the Authenticator class both have some functionality in
common. Luckily, Python classes can inherit multiple base classes. Classes with a small set
of members that may be required of multiple other classes are typically called mixins . We will
use one such mixin, which we will call ValidatorMixin . This way, we can adhere to the don’t
repeat yourself (DRY) principle.

ValidatorMixin
This mixin will have two methods: 1) validate_data , and 2)
get_validated_data .

17/31

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 18/31

The former, validate_data , is meant to be overridden. If it is not overridden by the
child class, an exception will be raised. This function will receive the authentication
data or the generation options (which are sent in the request data) and validated.
Validation may include ensuring that all fields required of the specific implementation
(such as a Feide+HiveManager implementation) are present in this data. If validation
fails, an exception should be raised. The function should return the validated data,
which may differ from the input data.

The latter, get_validated_data , is not meant to be overridden. This function will
call validate_data , and then perform whatever mandatory validation is necessary,
such as checking that the validated is actually returned.

Because our solution is specific to Feide and Aerohive’s HiveManager/PPSK, we must
design a few more classes. We will call these classes HiveManagerAdapter ,
FeideAuthenticator , ConnectView , and DataportenRedirectView . HiveManagerAdapter will
inherit AdHocAdapter , FeideAuthenticator will inherit Authenticator , and ConnectView will
inherit IotConnectView . DataportenRedirectView will inherit the built in APIView class. These
names have been chosen somewhat arbitrarily, but they adhere to the conventions we are
used to. The logic required to customize the solution to a Feide+HiveManager solution will be
contained solely within these classes.

HiveManagerAdapter
As required by the AdHocAdapter class and ValidatorMixin, this class must implement
two methods: 1) validate_data , and 2) perform_generation . The former will
ensure that the data required by HiveManager’s API is present or calculable, and the
latter will call HiveManager’s API endpoint for generating PSKs, and return an
appropriate response.

FeideAuthenticator
As required by the Authenticator class and ValidatorMixin, this class must implement
two methods: 1) validate_data , and 2) is_authorized . The former will ensure
that the data required by Feide’s API is present or calculable, and the latter will call
Feide’s API endpoint for validating Feide credentials, and return a Boolean value
indicating whether or not the authentication was successful.

ConnectView
As required by the IotConnectView, this class will simply set the value of the
ad_hoc_adapter to an instance of HiveManagerAdapter, and the value of the
authenticator attribute to an instance of FeideAuthenticator.

DataportenRedirectView
Because OAuth 2.0 requires that we provide a redirect URI to which the
authenticating user is redirected after authentication has succeeded, we will add
another view that finalizes the authorization. Here, a code supplied by Feide will be
used to retrieve an access token that we can use to get data about the user, such as
their name. After retrieving the access token, the view will create a session for the
user and store the access token there. After the user has been redirected to the
frontend, where they have to fill out a short form before requesting a PSK, the

18/31

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 19/31

authenticator will be able to find this session and validate the access token before
generating the PSK.

Besides defining the URLs of these views and customizing the user interface, this is all that
is required of a custom solution.

Class diagram

The relationship between these classes is illustrated by this UML class diagram. Dashed
lines signify the implementation of the ValidatorMixin mixin (often called interfaces in
programming languages where a class may only inherit from a single base class). Solid lines
with closed, white arrowheads signify inheritance, and solid lines with open arrowheads
signify direct associations (in this case meaning that there are references to instances of the
associated type within instances of the class that the arrow is coming from). We have not
included method parameters and their expected types at this time. If a dashed line exists in a
class, the members above it are attributes and members below it are methods.

19/31

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 20/31

Reasoning

This relatively simple architecture eliminates the need for repetition of code and leaves the
programmer with only three classes needing to be overridden for a complete, customized
solution. Each of these three components have different purposes, and therefore should be
contained within separate components. It utilizes the tried and true architecture of Django
REST framework as well, with the view class acting as the receiver of a request.

Django REST framework’s APIView class features the built-in authentication_classes and
permission_classes fields. We have decided not to make the authenticator an authentication
or permission class as we will not be using the built-in user management functionality. If the
programmer wishes to implement this solution into a system that features user management
(including a users table in the database), they may optionally use these fields in the same
way as they are used elsewhere in their system. Our system has no concept of a user , and
all users will either be anonymous users or superusers.

We believe this architecture will be relatively easy for us to develop and simple for the
programmer to implement while providing a great degree of flexibility.

Data templates

The receiver will expect the data sent from the frontend to be a dictionary containing two
keys: 1) ‘authentication_data’, and 2) ‘generation_options’. The receiver does not care about
the structure of the data of these keys, but forwards the value of the ‘authentication_data’
key to the authentication module for validation, and the value of the ‘generation_options’ key
to the adapter for validation. If validation fails, a 400 Bad Request response is returned to the
client. If authentication fails, a 403 Forbidden response is returned.

Deserializers are classes that are used to create objects. A user deserializer, for example,
could feature fields such as email , username , first_name and last_name , and each of these
fields may be marked as being required or not. By passing the data received to a deserializer
and checking if the deserializer considers the data valid, we will have achieved a more
elegant form of validation than the alternative, which is to implement a series of statements
that verify the presence of specific fields and values in the data. We will consider
implementing validation through deserializers if there is time.

Frontend details and code components
The frontend will feature the design as shown under the User interfaces subchapter. When
the user is redirected here after authentication with Feide, their name will be sent along as a
query string. In other words, the name of the user will be visible in the URL as such:
hostname/index.html?name=Ola . This value can be retrieved using JavaScript and
used in the welcome message that is displayed above the form.

20/31

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 21/31

When the user has filled in the fields of the form and clicked the button to request a PSK, the
data in the form’s input fields will be structured according to the backend’s expected format
thusly:

data = {
‘authentication_data’: {...},
‘generation_options’: {

‘email’: [user’s email address],
‘device_type’: [descriptive name of the device],
‘deliver_by_email’: [true or false]

}
}

We do not plan for authentication_data to contain any data, as the user’s session will
contain their verifiable access token.

The request will be sent using Ajax (short for asynchronous JavaScript and XML)
asynchronously, and the generated PSK or any error messages will be retrieved without a
redirect or refreshing the page. The returned data will then be shown appropriately on the
page, and this, too, will be done using JavaScript.

In summary, there are three code components of the frontend: 1) A script to populate the
page with data from query strings upon arrival, 2) a script to send the POST request
asynchronously, and 3) a script or function that updates the page with the response from the
POST request.

Success and error handling

Upon the successful generation of a new PSK, the new PSK will be displayed thusly:

If the generation was not successful, the result will depend on which exception occurred. We
have identified several possible reasons for failure, and we have placed these in one of two
categories: 1) Exceptions caused by user error, and 2) exceptions caused by internal errors.

21/31

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 22/31

The latter category is not expected and would be caused by improper or inconsistent
validation, or an issue with the multi-PSK provider or Identity Provider.

These are the identified exceptions caused by user error:

Unauthorized
The user may click the submit button after prolonged absence from the computer has
rendered their authentication invalidated. The standard response to such exceptions is the
401 Unauthorized status code, and the response will usually include instructions on how to
authenticate in its headers. Because we are using an asynchronous call, we must add the
logic required to redirect the user to Feide’s SSO page. After the user has re-authenticated,
they will be redirected back to the frontend, where they may try again.

Forbidden
The 403 Forbidden status code is usually returned when a user attempts to access a
resource or perform an action that they are not authorized to access or perform. In this
prototype, a user will be authorized as long as they have a Feide account, and being unable
to authenticate using Feide will be handled by Feide, and not our application.

Still, HiveManager somewhat confusingly returns a 403 Forbidden status code when
attempting to generate a new PSK and passing an already used username. HiveManager
also has a somewhat confusing and undocumented way of determining which field in its user
model constitutes the unique identifier. For example, if an email address is passed but no
username, the email address will be the identifier. If a full name is present, but no email
address or username, the full name will be used as the identifier. If the username is present,
it will be the identifier.

Because we wish to allow one user to create any number of PSKs at this time, we have
found it necessary to append the date and time to their username to avoid such conflicts.
Still, we may limit the number of PSKs a user is allowed to create in a given timespan. This
could be done simply by rounding the date and time to the closest 10 minutes, for example.
In that case, user identifier conflicts could easily happen if the user generated new PSKs too
frequently. If we decide to limit the number of PSKs a user may generate in this way, we will
display a message to the user that they must wait before creating a new PSK.

These are the possible exceptions caused by an unexpected internal error we could identify:

ValidationError
The ValidationError class is an exception class in Django that, if raised during the life cycle of
a request, will return a 400 Bad Request response by default. If the classes in our solution
are set up correctly, this would only occur if required fields are missing from the request.
Required fields would only be missing from a request if the frontend’s validation was
inconsistent or lacking. The user should be alerted of missing information before the request
is sent.

If we decide to use deserializers as validators, the deserializer class we choose might give
us some information about which fields are missing or not within parameters. We will look

22/31

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 23/31

into the possibility of letting the user know exactly which fields failed the validation but, if this
is not possible, we will simply ask the user to double-check their input.

Unknown error
Any exception raised during a request that is not handled by Django’s default error handler
will result in a 500 Internal Server Error. This is the final catch-all for unhandled exceptions.
We cannot allow the user to know what went wrong (by enabling debugging), as this poses a
security risk. Instead, we will let the user know that something went wrong and that they
should alert an administrator.

23/31

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 24/31

Flow

This flowchart shows the intended steps in the process of generating a PSK:

The user first attempts to connect to the /connect/ URL. This view expects the request
method to be POST, but a user visiting a URL using their browser results in a GET request.

24/31

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 25/31

The view will know to redirect the user to Dataporten for authentication if the request method
is GET.

If authentication on Dataporten’s SSO page is unsuccessful, the SSO page will alert the user,
and no redirect will occur. Otherwise, the user will be redirected to a URL on our backend
that ends with /complete/dataporten/, as specified in Dataporten’s documentation. This
redirect will come with some information about the user, such as their name.

The view that handles this redirect will store the user’s data in a session before redirecting
the user to the frontend, where the form is presented for the user to populate with further
required information. The frontend performs its own validation and will inform the user if any
fields are invalid. If the data entered by the user into the form’s fields is valid, the frontend
sends a POST request to the backend’s /connect/ view.

The backend verifies that the user is indeed authenticated. If the user is not authenticated,
they are not authorized, and a 401 Unauthorized response is returned. If they are
authenticated, they are authorized, and the request is validated on the backend for good
measure. If validation fails, an appropriate error message is returned to the requesting
frontend and displayed on it. If validation passes, the PSK is generated and returned to the
frontend, where it is displayed. This marks the end of the process.

Database
Databases are used extensively by most Django projects. Even if we don’t plan on having
any models (classes with corresponding database tables, such as users, articles or species),
we need a database for various reasons. These reasons include the possibility of third-party
libraries requiring database tables, migrations (incremental changes to the structure of
database tables), and sessions. We will be using sessions in our custom solution.

The two viable options are PostgreSQL and SQLite. SQLite does not support concurrency.
We will be using PostgreSQL for our database.

Security measures
Because sensitive information is communicated in this system, security is the top priority. In
fact, security should be have a higher priority than functionality and indeed having a working
solution. In addition to following standard safety precautions, such as disabling debug mode
on the Production branch, we will implement the following security measures.

Expiration of old pre-shared keys

The ability to expire old pre-shared keys depends on the controller component of the system.
If the controller software allows the administrator to specify a duration, this duration should
be set by the ad hoc adapter module and may optionally depend on custom data sent from
the frontend. If the controller software does not support setting a duration upon the creation
of the new PSK, then a periodic task must run that deletes keys with a certain age. The latter

25/31

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 26/31

solution may require that PSKs are stored in a database, which lowers security because
anyone with access to the database will be able to decrypt communication between devices
using the PSK and the access point. The question of whether or not this feature should be
implemented is a complex one whose answer depends on the circumstances. The storing of
PSKs in a log or database should optionally be handled by the ad hoc adapter, and a
periodic task that calls a expire_keys() may be created. The method expire_keys()
should, if implemented, be overridable, and any logic required to delete old PSKs should be
placed there. We will make further decisions regarding this in the execution stage.

Generation of strong pre-shared keys

It is crucial that dynamically generated pre-shared keys are not predictable. Random value
generators typically use the exact time and date (including highly insignificant units of
measurement such as microseconds) as their seed (an input value that results in a certain
output value) unless a seed is specified. Version 3.6 and newer of the Python standard
library include the secrets module. The function secrets.token_urlsafe() of generates
random strings that are considered sufficiently unpredictable. Because the exact time is
presumably at least part of the seed for this generator, any information stored about the
creation of the PSK should not include any unit of measurement of time less significant than
the second. Additionally, a wait function with a pseudo-random duration may optionally be
called after each PSK request in order to reduce the susceptibility to brute force attacks, and
to make sure that packet sniffers cannot easily predict the exact time that the PSK generator
is called by looking at the timestamp of PSK request packets.

The absence of units of measurement of time less significant than seconds must be ensured
by the programmer developing the ad hoc adapter. We cannot easily enforce such a policy
without drastically expanding the scope of the project.

Furthermore, HiveManager does not require that we specify a PSK when generating one. A
random PSK is generated by default, and we are not sure if HiveManager allows us to
generate a PSK ourselves in the first place. We will rely on HiveManager’s random value
generator. In other words, the randomness of generated passwords must also be ensured by
the programmer. A short pause will be implemented in the abstract ad hoc adapter class. We
may decide to make this pause optional.

Obscurity

Security through obscurity is the reliance on hiding sensitive features and information as a
means of achieving security. This is generally considered bad practice, for good reasons. By
designing a secure solution before obscuring these theoretically secured features, however,
we are — to some degree — securing our system against vulnerabilities that we are
unaware of and would not think to secure in the first place. It is not uncommon to hide the
URL of admin pages, for example.

The Django admin site is commonly found at host/admin/ , but this may be changed for any
project by the programmer. An attacker who wishes to break into the system will easily find
the admin site. We will place the admin site elsewhere. The URL will act as a password of

26/31

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 27/31

sorts, and it should only be known by those who will be managing this system. Changing the
location of the admin dashboard does not give any increased degree of security if its location
is known to the public, which it will be if our public Git (https://git-scm.com/) repository
reveals the location. Therefore, this measure should be implemented by the individual
programmer if it is considered desirable.

SSL

Because authentication credentials and secret keys will be transmitted over the internet, it is
crucial that communications between the client and the backend be encrypted. We will
enforce HTTPS by redirecting HTTP to HTTPS. This is achieved by changing several
settings in a Django project and must be done as part of the implementation process by the
programmer. We will include these steps in an installation guide that we will be attached to
the execution report.

Hiding of secrets from Git repositories

Django projects have secrets in their settings, and our solution will contain many more
secrets than a standard, newly created Django project. These settings exist in python files,
and there is no separation between secret settings and non-secret settings. Because we
need most non-secret settings to be consistent across all branches, we will implement a
settings structure (using Git’s list of ignored files) that confines secret settings in local,
Git-ignored files that inherit other settings from a non-secret base settings file. These secret
files must be kept consistent across branches manually if necessary.

Secrets cannot be pushed to a public Git repository, nor to a private repository that is made
public, even if they are removed at a later date. This is because the addition and removal of
the secret will be recorded in the commit history. It is possible to purge GitHub’s servers of all
mentions of the secret, but once a secret has reached a public Git repository, it must be
considered compromised. This settings hierarchy prevents us from ever having to publish
secrets to our Git repository, and the base settings file can be published safely.

Version control with Git
Git is a system for version control. We will use Git for all our code and markup. Our
backend’s Git repository will have a Development branch (the master branch), a Testing
branch, and a Production branch. Commits are first pushed to a feature branch, which is a
branch created specifically for the development of a feature, a bug fix or similar. Once work is
completed on the feature, a pull request is created, requesting that the feature branch be
merged into the Development branch. Before this can be done, reviews and tests must pass.
When the Development branch is in a satisfactory state, we may merge the Development
branch into the Testing branch. After we have performed a satisfactory amount of testing
against the Testing branch, we may merge the Testing branch into the Production branch.
This flow helps us ensure that the Production branch is always in a working state.

27/31

https://git-scm.com/

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 28/31

Testing

Before the Development branch can be merged into the Testing branch, all unit tests must
pass. Unit tests are pieces of code that perform some action in the system and make
assertions regarding the result of the action. If the actual result differs from the expected
result, the unit test does not pass. We will configure our project to automatically run unit tests
using CircleCI upon every new commit to the Development branch. If any of the tests fail, the
commit cannot be merged into the Testing branch.

Summary
Our solution will consist of a frontend and a backend. These will exist on separate virtual
servers.

The backend will be built using Django REST framework, and will consist of several main
components: The receiver (a view), a redirect view (the landing point after Feide
authentication, redirecting the user to the frontend), an authentication (responsible for
checking that the user is authorized to generate PSKs), and an ad hoc adapter (responsible
for the generation of the PSK itself). The frontend will consist of simple, CSS-styled HTML
and JavaScript (responsible for making asynchronous requests).

In this document, we have outlined plans for testing, version control, increased security, data
formats, class hierarchies, the flow of information, hardware and software specifications, and
more. These plans are a crucial step in the project and will prepare us when the time comes
finally to develop the solution.

Deviations from the prestudy report
In the prestudy report, we declared a goal of having finalized the design report by the end of
week 11. It is not the beginning of week 13. This means that we are behind schedule, and
could not satisfy the process goal of experiencing no deviations from the progress plan
exceeding 3 days.

Furthermore, the prestudy report declared that a web dashboard would be necessary for
authentication. While a web dashboard is necessary, it is not necessary for authentication
purposes, as Dataporten’s SSO serves this purpose. It would have been necessary if we
proceeded with the “hotspot” solution. We have amended the prestudy report.

28/31

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 29/31

Conclusion
We are now closer to having a secure, scalable and simple solution for the problem at hand:
The secure onboarding of IoT devices that only support WPA2-Personal. We are very excited
to have been enabled to take this design approach, thanks to the involvement of Aerohive.

In this document, we have planned our solution in as much detail as is realistically possible
and viable. There is undoubtedly an infinite number of valid approaches, and we believe that
our design pattern is one of them. With a highly customizable solution, we believe that this
solution will satisfy a broad range of requirements.

This document marks the end of the design stage. We will now be moving on to the
execution stage, in which the goal is to implement these designs in a fully working solution.

29/31

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 30/31

Amendments

Date Details

May 7, 2019 The arrows signifying extensions and interface realizations in the
UML diagram showing the planned architecture of the backend
were pointing in the wrong direction. They were flipped.

30/31

5/20/2019 Design report - Google Docs

https://docs.google.com/document/d/1t5af_ZyBUwSiXz087zeNaATGtEJqKxXHfxjXUj7gmQg/edit# 31/31

Bibliography
Home - Django REST framework. (n.d.-b). Retrieved March 25, 2019, from
https://www.django-rest-framework.org/

Aerohive Networks. (n.d.). DATA SHEET: AP122 [AP122 specifications (PDF)]. Retrieved
March 25, 2019, from
https://www.aerohive.com/wp-content/uploads/Aerohive_Datasheet_AP122.pdf

Aerohive Networks. (n.d.-b). Aerohive Networks Inc API [API documentation (requires
account)]. Retrieved March 25, 2019, from
https://developer.aerohive.com/docs/api-documentation

UNINETT / Feide. (n.d.). Feide documentation [Feide documentation]. Retrieved March 25,
2019, from https://docs.feide.no/

IETF OAuth Working Group. (n.d.). OAuth 2.0 — OAuth [Documentation]. Retrieved March
25, 2019, from https://oauth.net/2/

31/31

https://www.django-rest-framework.org/
https://www.aerohive.com/wp-content/uploads/Aerohive_Datasheet_AP122.pdf
https://developer.aerohive.com/docs/api-documentation
https://docs.feide.no/
https://oauth.net/2/

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 1/101

AUTHENTICATION IN THE INTERNET OF THINGS

Execution report

Part of a Bachelor’s thesis
Presented to the Institute of computer technology and informatics

of the Norwegian University of Science and Technology
by Magnus Bakke & Liang Zhu

Submitted in partial fulfillment for Bachelor’s degree of
Informatics with specialization in network administration

during the year 2016–2019

1/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 2/101

Introduction
This project began when we, the candidates, approached Uninett AS — the state-owned
company responsible for IT services for research and education in Norway — to inquire
about the subject of authentication in the internet of things (IoT). We hoped to be able to
write our Bachelor’s thesis on this topic, and both Uninett and our supervisor (Stein
Meisingseth) at the Norwegian University of Science and Technology (NTNU) accepted the
proposal.

The task given to us by Uninett specifically asked us to research possible solutions for
secure authentication of IoT devices that do not support the secure WPA2-Enterprise
standard. Furthermore, we were asked to select a possible solution and put it to the test.

The search for solutions began in the initial research stage, which yielded two main solutions
and a few specific variations of these. The clearly superior solution, as outlined in the
research report, involves technology commonly referred to as multi-PSK, Private PSK, or
other variations thereof. If we were to select this solution for execution and testing, we would
have to borrow access points that support this technology, or settle for the much less
practical solution offered by hostapd (which requires restarting the service every time a PSK
is created). Aerohive Networks is among the few providers of this technology, and they kindly
sent us two access points for testing. Having the necessary hardware, we could begin
designing a solution in the design stage.

The design stage produced the design report, which gave detailed plans for most aspects of
the solution. Upon its completion, we would enter the most exciting stage of the project: The
execution stage.

The execution stage began with enthusiasm and eagerness. We promptly began developing
prototypes for both the backend and frontend. We soon found that we were abandoning our
own requirement of using Scrum, which in turn made it difficult to measure progress and
estimate the remaining workload. We soon adopted the methodology we had used in the
design stage.

In general, we prioritized the more pressing and substantial issues, such as the development
of the receiver component (as described in the design report) of the backend and the form
and request sending functionality of the frontend. These issues were mostly completed with
great efficiency and speed.

Issues started to arise when it was time to move our code and static content to servers for
the testing and production environments. We spent nearly a week trying to get a working
Apache installation. None of the numerous guides we sifted through would be applicable to
us on account of the diversity of Linux environments. When we finally embraced the newer
solution named Caddy, we got everything up and running within a couple of days.

Another issue involved difficulties with Cross-Origin Resource Sharing (CORS) in conjunction
with asynchronous requests sent with JavaScript from some browsers. We quickly found a
workaround for this.

2/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 3/101

The majority of our available hours in the execution stage have been spent working on this
report, which — alongside the other reports — is part of what is undeniably the most
important aspect of the product. While the solution we have prototyped serves as a proof of
concept, the reports summarize our research and findings on the viability, advantages and
disadvantages for different possible solutions.

Summary of the problem
A personal wireless network is typically secured using WPA2-Personal. This involves setting
a password that is required by any user of the network for access. This password is called
the pre-shared key (PSK), as it is shared with those whom are trusted by the network’s
owner. In other words, a guest in someone else’s home needs the host to give them
knowledge of the PSK before they are able to connect to the wireless network.

The PSK is used as the encryption key. This means that anyone who does not have the PSK
will be unable to decrypt the communications between the access point and the user. It also
means that anyone who does possess the PSK will be able to monitor other users on the
network. This is unacceptable in enterprise settings with many users. A PSK cannot be
considered secret and secure when shared among dozens or hundreds of employees, and
not every employee can be trusted to not monitor other users’ communications.

The solution is the WPA2-Enterprise standard, which uses public-key cryptography.
Public-key cryptography involves a pair of keys: The public key and the private key. The
public key can be used to encrypt messages (such as dynamically generated PSKs) that
only those who possess the corresponding private key may decrypt. This concept can also
be reversed, so that the public key is used to decrypt a message that was encrypted using a
secret, private key. In this way, users can create signatures that cannot be forged. Thus,
there is no need for further authentication. This is the scheme used by most enterprises.

Problems arise when manufacturers of IoT devices neglect the enterprise world and market
their products for personal use. Many IoT devices do not support WPA2-Enterprise, and so
require a “master password” to be inputted.

The best existing solution to the problem of lacking WPA2-Enterprise support in IoT devices
involves dynamically creating new PSKs upon request. A user may bring an IoT device to
their institution’s offices, request a unique PSK for their device, and use that PSK as the
master password. With PPSK, as Aerohive has named this technology, we can create any
number of PSKs dynamically, and the communication between the access point and the
device is encrypted using the unique PSK. This does not require that each device
communicates on a different SSID.

While we now have access to this technology, we must still develop a web application that
handles requests for new PSKs, forwards them to the HiveManager API, and returns the
PSK to be displayed on a user interface. The complete solution, including the frontend,
backend, security measures and much more, was designed in the design stage.

3/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 4/101

Summary of designs
The designed solution consists of a frontend (the pages that the user interacts with using
their browser), a backend (code running on a server that performs logic “behind the scenes”),
the environment, which includes third-party services like Dataporten/Feide and HiveManager,
the ways in which these components will communicate, and more.

The frontend is best summarized using a picture of the design:

Please note that Uninett has decided that the email address associated with the user’s Feide
account should be used instead. Therefore, there will be no input field for the user’s
preferred email address.

This page can be accessed at a memorable URL in the user’s browser. After filling out the
form, the user clicks the button. This leads to the frontend sending a request with the form
data to the backend, which itself constructs a request. This request is sent to HiveManager’s
API, which returns a newly generated PSK. This PSK is returned to the frontend, which
displays it thusly (though in Norwegian):

4/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 5/101

The backend is designed to be versatile and customizable. This means that it will not make
assumptions about its environment, such as which identity provider (in our case,
Dataporten/Feide) or PPSK provider (in our case, HiveManager) is used. This will be
achieved with the designed class hierarchy and design pattern.

Scope and purpose of the document
This document will give an account of how the designs from the design stage were executed
and realized as a working solution. Unimportant details will not be included. Unimportant
details are those that are not required of the designed solution, such as the purchasing of
domain names, the creation of virtual machines, or the backing up of data. The execution of
stylistic choices through HTML and CSS will also not be described in detail.

Finally, the document will describe how the product was tested and the results of these tests.
We will also propose further developments that are beyond the scope of this project, as well
as discuss the viability, future, and longevity of the technology.

After reading the document, the reader should understand how such a solution can be
developed and deployed. The document serves as a guide as well as an account of the
activities undertaken in the execution stage. It should also provide outlooks for the benefits,
shortcomings and future of the technology.

5/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 6/101

Contents
Introduction 2

Summary of the problem 3
Summary of designs 4
Scope and purpose of the document 5

Contents 6

Definitions 8

Setup of Django 9
Installation 9
Code editor 10
Project structure 10

Apps and URLs 10
Other packages 13

Setup of Git 14
Branches 14

Branch protection rules 15
Hiding secrets and localizing settings 16
CodeFactor 17

Setup of environment 20
Servers 20

Installation and configuration of Caddy and gunicorn 21
Databases 24
Run configurations 25
Setup of access points and HiveManager 28
Dataporten 34

Backend code components 36
Abstract classes 36

ValidatorMixin 36
Authenticator 37
AdHocAdapter 38
IotConnectView 39
Utilities 48

Final classes and utilities 49
Views 49

DataportenRedirectView 49
ConnectView 51

FeideAuthenticator 52
HiveManagerAdapter 53
Utilities 57

Frontend components 59

6/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 7/101

Markup and styles 59
Brief description of HTML 59
CSS 59

Responsive content 60
Accessibility 61

JavaScript 62
Initial 63
Validation 65
POST request 66
Visual feedback 68
Displaying of PSK 69

Testing and verification 72
Unit tests 72

API tests 74
Class tests 76
Resulting changes 76

Manual testing procedures 76
Verification of proper SSL encryption 77
Testing of encryption between client and access point 78
Testing of roaming 78
Testing of traceability 78
Integration tests 79

GDPR compliance 84

Discussion 85
Future possibilities 85

Admin dashboard 85
User dashboard 86
Custom emails 86
Device type restrictions 86
Serializers as validators 87
WPA3 87

Feasibility 87

Amendment: Admin dashboard 89

Deviations from the design report 99
Unnecessary security feature 99
Email input field 99
Exception cases 99
Checking of support for cookies 100

Conclusion 100

Bibliography 101

7/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 8/101

Definitions

method A procedure. 1

function A method that returns a value.

frontend The part of the service that the user interacts with directly.

backend The part of the service that the frontend communicates with; the part
of the service that performs the logic, given that the logic is
performed on a remote server that is not usually interacted with
directly.

1 A method that does not belong to a class is usually called a procedure. In this paper, we will not
distinguish between procedures and methods. In PyCharm, these three terms are used
interchangeably.

8/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 9/101

Setup of Django

Installation
Our backend was built using Django REST framework, a Python framework for building
RESTful APIs. Django REST framework is an extension of Django. We will refer to the
collection of Django and Django REST framework as Django .

In order to install Django, we installed a package installer, namely pip . On the production
server, we installed pip with the following command:

$ apt install python3-pip

This installs pip3, which enables us to install Django:

$ pip3 install django installs Django;
$ pip3 install djangorestframework installs the Django REST framework.

It is often the case that the testing, staging and production server require different sets of
packages to be installed. At the same time, we may work on different projects with wildly
different package requirements on the same computer. Therefore, we need a tool that
bundles packages into environments that we can switch between. virtualenv is such a tool.
With it, we can create a virtual environment that we install packages in. If we want to switch
out one set of packages for another, we can simply deactivate that virtual environment and
activate another. We installed virtualenv using pip:

$ pip3 install virtualenv

We created a user for our application. This user was given the permissions required to
restart relevant services. We named this user iotconnect . In its home directory, we created a
new directory called iotconnect . We also created a virtual environment here named venv :

$ virtualenv /home/iotconnect/venv

We activated this virtual environment using the following command:

$ source /home/iotconnect/venv/bin/activate

We started a new Django project in the iotconnect directory using the following command:

$ django-admin startproject iotconnect /home/iotconnect/iotconnect

Using Git, we pushed this initial state to a Git repository, which we can pull from after it has
been updated. The testing server uses the same directory and user hierarchy.

9/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 10/101

Code editor
We edited the project’s code using the code editor PyCharm by JetBrains. JetBrains offers a
free license for students. It is well integrated with Git and provides several useful Git
features, such as local code history.

Project structure
We set up our Django project structure in a way that will look familiar to those with
experience with working in Django. The structure can be seen in this project explorer:

Apps and URLs

In Django, apps are, simply put, collections of modules (Python files). In the project explorer
(see the previous page), you can see several directories. These directories contain an
__init__.py file (which are usually empty), making them Python packages instead of
directories. Packages can be imported in Python code.

What makes a Python package an app, in short, is the presence of a declaration of a
subclass of the built in AppConfig class within that package. We added the connect app,
which consists of the connect package. In its apps.py file, this class declaration can be
found:

from django.apps import AppConfig

10/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 11/101

class ConnectConfig(AppConfig):
name = 'connect'

We made this app an installed app by adding it in the base settings file’s INSTALLED_APPS
list:

INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'django.contrib.postgres',
'rest_framework',

Third-party apps
'corsheaders',

Project apps
'connect.apps.ConnectConfig',

]

This settings file is explained further in the Hiding secrets and localizing settings subchapter.

Within the connect app’s hierarchy, you will also see a file named urls.py :

This file contains two URLs, or paths:

urlpatterns = [
path('', ConnectView.as_view(), name='connect'),
path('complete/dataporten/',

DataportenRedirectView.as_view(),
name='dataporten-redirect'),

]

The path function takes, in our case, three arguments.

The first argument is the relative path to the endpoint. Notice the second path:
“complete/dataporten/”. This is a path that is relative to the base of the app. We will give this

11/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 12/101

app a prefix (“connect/”) promptly, thus making the second path
“host:port/connect/complete/dataporten/” and the first path simply “host:port/connect/”.

The second argument is a class — specifically the view class that will handle requests sent
to this URL. We will explain these view classes in detail later.

The third argument is the name of this endpoint. This is useful if we want to find the URL of a
specific endpoint without knowing the complete path of it. URLs sometimes change, and it
would be an inconvenience to have to know every endpoint’s path at all times. We can find
the URL of an endpoint using the reverse(name) function, which we will be using in unit
tests.

We have installed the connect app and declared a couple of URLs, but we still need to tell
Django where these URLs are located and, indeed, whether or not we want to use them. In
the package uninett_api , we have created a file called url_config.py .

These are its contents:

from django.contrib import admin
from django.urls import path, include

urlpatterns = [

Project app urls
path('connect/', include('connect.urls')),
Developer tools
path('admin/', admin.site.urls),

]

Here, we again use the path function to create URLs. The second one, admin/ , is the path
to the Django admin dashboard. We will touch on this subject later. The interesting path here
is the connect/ URL.

Here, we declare the variable urlpatterns to equal a list containing the admin dashboard URL
and a collection of URLs under the connect/ URL. The include function accepts a
collection of URLs. In other words, we are declaring that we want the two URLs declared in
connect.urls to exist within the “ connect/… ” URL namespace. We could keep adding prefixes
in this way for as long as we like, but this will suffice in our case.

Finally, we must investigate the project’s settings, which are located in the file
uninett_api.settings.base . Here, we will find this line:

ROOT_URLCONF = 'uninett_api.url_config'

12/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 13/101

Here, we tell Django (assuming we choose to use uninett_api.settings.base for our settings,
which we partially will) that the URLs we wish to implement in our project can be found in the
file where we declared the connect/ namespace and included the URLs declared in
connect.urls .

Other packages

While both the iotconnect package and the uninett_api package can be found at the same
level in the hierarchy as the connect app, these two packages are not apps. They do not
declare any app URLs or final (not abstract) view classes of their own, and do not contain an
AppConfig.

The iotconnect package contains the abstract classes to be used by any implementation of
this solution. Abstract classes are classes that are meant to be inherited from and not used
directly.

We could have chosen to move all of these classes and utilities into the connect app, but the
connect app declares logic that is specific to both HiveManager and Dataporten. Therefore,
we separate the general code components from the platform specific code within the connect
app. In other words, the connect app is specific to Uninett’s environment, while iotconnect ,
which is the general solution, is not.

The uninett_api package, though separated from the connect app, is indeed specific to
Uninett’s environment. It contains the settings for the project as well as its URL configuration.

13/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 14/101

However, because a Django project may eventually implement any number of apps, it is not
wise to combine these two packages into one. We do not want the connect app to be an
integral part of the Django project. We simply want it to be an extension that can be disabled,
enabled, changed or replaced at will. In the future, Uninett may install an app for user
management, for example, or a live chat. Those apps would likely also come with URLs and
endpoints that are included in the URL configuration.

Setup of Git

Branches
We have decided to set up a flow consisting of three main branches: 1) The development
branch (master), 2) a testing branch, and 3) a production branch. The rules for these
branches are described in the design report. In summary, we will push to feature branches
which are merged into the development branch once all tests have passed and the code has
been reviewed. The development branch is merged into the testing branch once we have
reached what we deem as a release-worthy state. We perform manual testing on the testing
branch until we are satisfied with the quality of the code. The testing branch is then finally
merged into the production branch, which is pulled on the production server. This is the
version that users will be interacting with.

In order to create these branches, we first check out (switch to the version of) the master
branch, which currently consists of an “empty” (default state) Django project:

$ git checkout master

We make sure we have the latest version:

$ git pull

We create a new local branch based on the current (master) branch:

$ git checkout -b testing

We push the branch to the remote:

14/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 15/101

$ git push origin testing

The testing branch can be seen on GitHub:

We will do the same for the production branch.

Branch protection rules

Branch protection rules are rules that are set in GitHub in order to protect the integrity and
quality of branches. We want to protect our development branch (the master branch) from
erroneous and poor code.

We navigated to the GitHub repository using a web browser and switched to the Settings tab:

We switched to the Branches menu:

15/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 16/101

We clicked the Add rule button:

We chose to apply this rule to the master branch:

Here, we checked the option to require pull request reviews before merging. This means that
the other developer must read and approve the pull request before it is merged into the
master branch. If the developer spots poor code, changes can be requested. We set the
required number of approving reviews to 1.

We also checked the Require status checks to pass before merging option. Status checks
are typically third-party programs that perform some kind of check and prevent one from
merging a pull request if these checks fail. We have not implemented such checks at this
moment, but plan on using CodeFactor checks. We checked the Require branches to be up
to date before merging option. This option has the following explanation on GitHub: “This
ensures pull requests targeting a matching branch have been tested with the latest code.
This setting will not take effect unless at least one status check is enabled.”

We will not implement status checking for the testing branch or the production branch, as we
will not push code directly to these branches. All code will follow the flow from the master
branch through the testing branch before ending up in the production branch.

Hiding secrets and localizing settings
Django projects store settings in special settings files. As explained in the design report, our
Git repository is public and therefore cannot contain secret keys. These secrets must exist
locally only and never be pushed to the remote Git repository. This is achieved using the
.gitignore file generated by Git, which is a document that tells Git which files should not be
included in commits or be regarded as a change that requires a commit.

Typically, cache files and settings pertaining to personal preferences are ignored, as we do
not want to enforce one set of preferences for all developers, and we do not want a small
change in a cache file to be regarded as a change to the project itself, or indeed to waste
storage space and tidiness on such files. But it is also great for keeping secrets local.

Notice that settings we do not want to publish have a leading underscore in the file name:

16/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 17/101

The ignoring of these settings files is handled by the .gitignore file seen at the bottom of the
image above. These are the interesting lines within it:

/settings/_.py
!*/settings/__init__.py

The first line says to ignore all files with a leading underscore and ending in .py . The second
line says that we should not ignore the __init__.py file within this directory, even though its
name begins with an underscore. This file is required if we want Python to treat these
modules as part of a package, which we do.

You will find references to _secrets.py and _locals.py in our project. If someone wants to
clone the repository, they must add these files locally on all computers running the project.
This is explained in the README of our repository. 2

The _test.py file contains settings that only apply to this developer’s environment. One
example of such settings is the name, username and password the be used when Django
attempts to connect to the local testing database, which is running on the developer’s
computer. These variables are user specific. This file also disables certain security
mechanisms that are not needed when testing locally. This includes disabling HTTPS and
enabling debug mode (extra information returned on exceptions).

This _test.py file imports all its settings from the base.py file, which is shared among all
developers (notice it has no leading underscore). It then overwrites some settings specified
in that base file.

Leading underscores where chosen because they are used in Python to make a member
appear protected or private. We use the word appear because there is no such thing as a
truly private member in Python. Importantly, they are also allowed in file names.

CodeFactor
In the design report, we stated that we plan on implementing CircleCI, a status check for Git
repositories that has the ability to automatically run unit tests for us. A pull request would be
required to pass these tests before merging. However, we discovered that setting up CircleCI

2 README is a file named README.md that is displayed initially at the front page of a repository on
GitHub and other Git platforms. Ours is available at https://github.com/Uninett/IoTConnect-BackEnd .

17/101

https://github.com/Uninett/IoTConnect-BackEnd

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 18/101

would be a much too lengthy process compared to the scope of this project. We have very
few unit tests and do not frequently push new commits. Therefore, we have decided to save
ourselves some time by not implementing CircleCI. Instead, we will add the CodeFactor
status check, which checks the syntax and quality of code with minimal setup. We will run the
few unit tests we have manually before every pull request.

In order to add CodeFactor to our project, we simply need to sign up at codefactor.io and add
the repository:

In the settings for this project on codefactor.io, we enabled the Duplicate checker tool:

Pylint and Bandit are enabled by default. After this, all pull requests will be evaluated by
CodeFactor, which looks for issues such as unused variables and imports, missing newlines
at the end of files, syntax errors and similar. A passing CodeFactor status check looks like
this:

18/101

https://www.codefactor.io/

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 19/101

A failed CodeFactor status check looks like this:

If a status check fails, the programmer must address the identified issues, or is not allowed to
merge the pull request. Furthermore, the other developer must give an approving review of
the changes within the pull request before it can be merged.

19/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 20/101

Setup of environment
By environment, we mean components that the backend or frontend will interact with, and
that are not part of the backend or frontend projects.

Servers
Our testing and production servers are running on virtual machines set up on request by
Jørn Åne de Jong at Uninett. We initially had problems getting the Django project to work on
these servers due to having used features of Python that are only available in version 3.6.
Notable examples include using f-string , a way of formatting strings thusly:

version: str = “3.6”
f”This only works in version {version} or greater.”

In Python 3.6 and newer, the above code produces the string “This only works in version 3.6
or greater.” Additionally, the type hinting used on the version variable (the type of the variable
is declared after the colon) is only supported in Python 3.6 and newer. The initially installed
version of Debian, however, uses an earlier version of Python. We upgraded our servers’
operating systems to a newer version of Debian.

While this got us further, and we managed to get the server to respond back, we needed to
install Apache HTTP Server and mod_wsgi alongside Django. Apache HTTP Server,
commonly called Apache, is open-source web server software that simplifies the process of
securing the user’s communications with our application using SSL. For Django to be
compatible with Apache, we also need mod_wsgi, which is a server module that implements
a WSGI interface for Python-based web applications. In simpler terms, there are many
Python frameworks for web applications out there, and if they are all to be supported by any
web server, there must exist an interface between the two that limits the web server’s need
to be familiar with the individual framework — in our case, Django. That interface is WSGI
(Web Server Gateway Interface), which is provided by mod_wsgi.

This path would lead to still further problems. mod_wsgi needs to be built using the same
version of Python as we are using in our project, namely Python 3.6. We downloaded the
latest version of mod_wsgi from pypi.org (https://pypi.org/project/mod_wsgi/), extracted it and
attempted to build it using the make utility after configuring . This, as it turns out, requires the 3

apache-dev package, which again had its prerequisites. We also noticed that, after having
moved the Git repository from one location to another, the virtual environment we had
created for our project’s dependencies was pointing at the old, now non-existent location,
thus leading to issues with missing packages.

3 A guide can be found at
https://medium.com/@garethjohnson_52722/serve-python-3-7-with-mod-wsgi-on-ubuntu-16-d9c7ab79
e03a (written by Gareth Johnson on February 6, 2018; retrieved on April 10, 2019).

20/101

https://pypi.org/project/mod_wsgi/
https://medium.com/@garethjohnson_52722/serve-python-3-7-with-mod-wsgi-on-ubuntu-16-d9c7ab79e03a
https://medium.com/@garethjohnson_52722/serve-python-3-7-with-mod-wsgi-on-ubuntu-16-d9c7ab79e03a

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 21/101

After spending two days fixing problems like these and more emerging after every fix, we
decided that the only remaining options were to either use a Windows server instead, or
re-install Linux (preferably Ubuntu). Additionally, we found a more modern alternative to
Apache called Caddy. As the website states (https://caddyserver.com/) as of April 19, 2019:
“Caddy is the HTTP/2 web server with automatic HTTPS.”

For the purpose of installing Caddy, we chose to use Ubuntu Server 18.04 LTS. In order to
have more control over our virtual machines, we also chose to use Amazon Web Services
instead of virtual machines provided by Uninett.

Installation and configuration of Caddy and gunicorn

Caddy is not itself compatible with WSGI. We achieve compatibility by using gunicorn — a
WSGI HTTP server, and by proxying requests from Caddy to gunicorn. gunicorn also
enables easy load balancing.

We largely followed a guide (Tuomi, 2018), but deviated from this guide in a few ways.

Caddy can be downloaded at https://caddyserver.com/download , where we selected Linux
64-bit as the operating system and added the CORS plugin. We installed gunicorn using Pip:

source /home/iotconnect/venv/bin/activate
pip3 install gunicorn

The guide explains how to create systemd services for both Caddy and the Django
application, but the exact launch command that is used to launch Caddy does not work when
called directly by the service (specifically, we were unable to specify the location of the
Caddy configuration file, which is /etc/Caddyfile). We created a script located in
/home/iotconnect/iotconnect called _runcaddy.sh , which will be executed by a service.

The first service, iotconnect.service , has the following contents:

[Unit]
Description=IoTConnect Django
After=network.target

[Service]
PIDFile=/run/iotconnect/pid
User=iotconnect
Group=iotconnect
LimitNOFILE=64000
WorkingDirectory=/home/iotconnect/iotconnect
ExecStart=/bin/bash /home/iotconnect/iotconnect/_runserver.sh
Restart=on-failure

[Install]
WantedBy=multi-user.target

21/101

https://caddyserver.com/
https://caddyserver.com/download

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 22/101

The _runserver.sh script, which is referenced in the above service, contains the following:

#!/bin/bash

Define backend directory
DIR="/home/iotconnect/iotconnect"

Navigate to the backend directory
cd DIR

Activate the virtual environment
source ../venv/bin/activate

Install packages
pip install -r requirements.txt

Migrate database to latest state
python manage.py migrate --settings=uninett_api.settings._testing

Start Django with Gunicorn
gunicorn wsgi --bind 127.0.0.1:8000 -w 4 --env \
DJANGO_SETTINGS_MODULE=uninett_api.settings._testing

The gunicorn command’s --env option allows us to set the environment variable
DJANGO_SETTINGS_MODULE , which tells the server where it can find the settings file for
the application. For the production server, this path would be
uninett_api.settings._production . Files with leading underscores are ignored by Git,
according to our custom configuration. The -w parameter lets us specify the number of
workers. Here, we launch four workers running separate instances of the application for load
balancing. The wsgi argument is the relative path to the wsgi.py file, which is found at
/home/iotconnect/iotconnect/wsgi.py .

The _runcaddy.sh script, which we run using another systemd service, contains the following:

ulimit -n 8192
caddy -conf "/etc/Caddyfile" -ca \
"https://acme-staging-v02.api.letsencrypt.org/directory"

The ulimit command limits resource use for users, and the value after the -n key specifies the
maximum number of open file descriptors. We increase this to 8192, as suggested by Caddy
when running it with anything less. We specify the location of the Caddy configuration file:
/etc/Caddyfile . Lastly, we use Let’s Encrypt as our certificate authority. Let’s Encrypt issues
certificates to pretty much anyone. We use the acme-staging-v02 sub-domain for this. This
will lead to browsers warning the user that the page is not secure, even though the
communication is encrypted. But Let’s Encrypt’s production API (acme-v02 without the
staging part) has strict rate limits that will lead to a ban of several days if exceeded. With the
staging sub-domain, we can request certificates without worrying about such rate limits.
Using the production API on the production server will mean that the site is trusted by most

22/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 23/101

newer versions of browsers and operating systems. Optionally, we could use a certificate
issued by Amazon Web Services (generated using AWS’ Certificate Manager), but that
would require that we installed the Route 53 (AWS’ DNS) plugin for Caddy, which would be a
good idea in hindsight, but not worth the trouble. A certificate issued by Uninett is the better
option for future development.

The caddy service has the following configuration:

[Unit]
Description=IoTConnect Caddy
After=network.target

[Service]
PIDFile=/run/caddy/pid
User=iotconnect
Group=iotconnect
RuntimeDirectory=/home/iotconnect
LimitNOFILE=64000
ExecStart=/bin/bash /home/iotconnect/iotconnect/_runcaddy.sh
ExecReload=/bin/kill -s HUP $MAINPID
ExecStop=/bin/kill -s TERM $MAINPID
CapabilityBoundingSet=CAP_NET_BIND_SERVICE
AmbientCapabilities=CAP_NET_BIND_SERVICE
NoNewPrivileges=true

[Install]
WantedBy=multi-user.target

We create a third script that takes care of stopping (if necessary) and starting these two
services. We called this script _start.sh :

systemctl stop iotconnect
systemctl stop caddy
systemctl start iotconnect
systemctl start caddy

Finally, the Caddy configuration file, /etc/Caddyfile , has the following contents:

api.magnusbakke.com {
log /home/iotconnect/logs/caddy.log
errors /home/iotconnect/logs/caddy.log

proxy / 127.0.0.1:8000 {

 transparent
}

}
magnusbakke.com {

log /home/iotconnect/logs/caddy.log
errors /home/iotconnect/logs/caddy.log
root /home/iotconnect/frontend

}

23/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 24/101

The log file was created manually by us.

At this point, it is worth mentioning that Magnus registered a domain name
(magnusbakke.com), which he chose to use instead of the long, complex domain and
sub-domain provided by AWS. The production server’s domain name, audiopolis.info, is also
registered by Magnus. This is not an important detail, and we will not give an account of how
we registered domain names and used them for this purpose.

In this configuration file, we have defined a “main” domain, and a sub-domain: api . The api
sub-domain is handled by the Django app, while magnusbakke.com serves the static
frontend files (styled HTML documents with JavaScript). Requests to the api sub-domain are
proxied to gunicorn, which is serving the Django application at 127.0.0.1:8000. Static files
(the frontend) are served normally, and these are located in /home/iotconnect/frontend . Both
are configured to write log entries to stdout (standard output) and error information to stderr
(standard error).

Both shell scripts have been made executable using chmod .

We run the application thusly:

cd /home/iotconnect/iotconnect
./_start.sh

Databases
Each server needs a database, including development computers. We have installed
PostgreSQL on all servers. On Linux, this is done using the command: sudo apt-get
install postgresql . All servers, except development computers, are running Linux. On
Windows, it is installed using a Windows installer . 4

Once the database software is installed, we must create a database on each server. Each
database should have unique passwords. The password for the database is set in a local
settings file that must be created for each server. Postgres was already installed on our
development computers running Windows.

We can enter the SQL Shell (psql) by switching to the postgres user, using su -
postgres , and starting psql using the psql command.

Databases are created using CREATE DATABASE [name]; . We named the database on
testing iot_testing , and the production database was named iotconnect_production .

We also altered the postgres database role, giving it a password that is known to the Django
application. This is the password we specify in the Django settings in order to gain access to
the database:

ALTER ROLE postgres password '[redacted]';

4 Available at https://www.enterprisedb.com/downloads/postgres-postgresql-downloads#windows .

24/101

https://www.enterprisedb.com/downloads/postgres-postgresql-downloads#windows

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 25/101

These passwords were stored in Django settings files called _testing.py and _production.py
respectively. On development computers, the settings file may be called whatever the
programmer likes, but we have chosen to call them _test.py . All these settings files are
ignored by Git, so the passwords are never exposed to the public. Furthermore, all these
settings files extend the base settings, which are exposed to the public, as they contain no
secret information.

Run configurations
Run/debug configurations are configurations for how a Django server should be run. Each
server or development computer will use a different run configuration. The most notable
difference between each server’s run configuration is the path to the settings file used.

On development computers, we created the run configuration Test . The Test configuration’s
environment variables look like this:

The local, Git-ignored _test.py settings file, which is pointed at by the value of these two
environment variables, contains the following:

SECRET_KEY = [redacted]
DEBUG = True
DATABASES = {

'default': {
 'ENGINE': 'django.db.backends.postgresql',
 'USER': 'postgres',
 'NAME': 'iot_development',
 'HOST': 'localhost',
 'PASSWORD': [redacted],
 'PORT': '5432'
}

}
SECURE_SSL_REDIRECT = False
SESSION_COOKIE_SECURE = False
CSRF_COOKIE_SECURE = False

Dataporten
SOCIAL_AUTH_DATAPORTEN_FEIDE_SSL_PROTOCOL = False

Testing variables

25/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 26/101

FRONTEND_URL = 'http://iot-backend-tst.labs.uninett.no'
BACKEND_URL = 'http://127.0.0.1:8000'

When running the server using this run configuration, we are able to debug our code locally.
API requests are made to 127.0.0.1:8000 from a frontend branch that is configured to make
calls to 127.0.0.1:8000 instead of the remote production server.

We set up a similar settings file for the testing server (_testing.py), but enabled the security
settings related to HTTPS. Each of these servers will have a different value for the
DATAPORTEN_URL variable in their _secrets.py settings file, because each environment
(development, testing and production) has a corresponding Dataporten application with a
different sign-on URL.

On the production server, we created a run configuration that increases security further by
disabling the DEBUG setting. This setting, if left enabled, will print secret information to the
user upon exceptions. The _secrets.py settings files of the testing and production server
were also altered to use the Testing application and Production application on Dataporten
respectively.

It should be mentioned that run configurations are a concept within the code editor, which
does not exist on the testing and production servers. In the case of those servers, by run
configuration , we mean a command that runs the server using specified settings and flags,
such as (in its simplest form):

django-admin runserver --settings=uninett_api.settings._production

Constructing and executing such commands is essentially what different run configurations
do. On the testing and production servers, gunicorn serves the application, which is launched
using a different command, as shown in the Installation and configuration of Caddy and
gunicorn sub-chapter.

This overview shows the main differences between the run configurations and local settings
on different environments (secrets have been redacted):

Environment Setting Value

Development DATAPORTEN_CLIENT_ID 857348bd-71b3-443f-be5d-f7bd4421668f

 DATABASES (HOST) localhost

 SECURE_SSL_REDIRECT 5 False

 CSRF_COOKIE_SECURE 6 False

 SESSION_COOKIE_SECUR
E 7

False

 FRONTEND_URL http://iot-backend-tst.labs.uninett.no

5 https://docs.djangoproject.com/en/2.2/ref/settings/#secure-ssl-redirect
6 https://docs.djangoproject.com/en/2.2/ref/settings/#csrf-cookie-secure
7 https://docs.djangoproject.com/en/2.2/ref/settings/#session-cookie-secure

26/101

https://docs.djangoproject.com/en/2.2/ref/settings/#secure-ssl-redirect
https://docs.djangoproject.com/en/2.2/ref/settings/#csrf-cookie-secure
https://docs.djangoproject.com/en/2.2/ref/settings/#session-cookie-secure

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 27/101

 BACKEND_URL http://127.0.0.1:8000

 DEBUG 8 True

 ALLOWED_HOSTS 9 []

Testing DATAPORTEN_CLIENT_ID 065fa621-50f7-43a5-b370-ebacb3064c7e

 DATABASES (HOST) localhost

 SECURE_SSL_REDIRECT True

 CSRF_COOKIE_SECURE True

 SESSION_COOKIE_SECUR
E

True

 FRONTEND_URL https://magnusbakke.com

 BACKEND_URL https://api.magnusbakke.com

 DEBUG True

 ALLOWED_HOSTS [‘127.0.0.1’, ‘localhost’,
‘api.magnusbakke.com’, ‘magnusbakke.com’]

Production DATAPORTEN_CLIENT_ID f2115e09-f47a-4a2f-bd66-f7c9530d7f06

 DATABASES (HOST) localhost

 SECURE_SSL_REDIRECT True

 CSRF_COOKIE_SECURE True

 SESSION_COOKIE_SECUR
E

True

 FRONTEND_URL https://audiopolis.info

 BACKEND_URL https://api.audiopolis.info

 DEBUG False

 ALLOWED_HOSTS [‘127.0.0.1’, ‘localhost’, ‘api.audiopolis.info’,
‘audiopolis.info’]

The location of the database is the same for all environments, but only when seen from the
perspective of each server. The database is always running locally.

In summary, run configurations are local settings that are not pushed to the Git repository.
They determine how the server is run. Each run configuration may specify different Django
settings files, which in turn may specify different databases, security settings and more. We
created different run configurations for each environment that dictate which database is

8 https://docs.djangoproject.com/en/2.2/ref/settings/#debug
9 https://docs.djangoproject.com/en/2.2/ref/settings/#allowed-hosts

27/101

https://docs.djangoproject.com/en/2.2/ref/settings/#debug
https://docs.djangoproject.com/en/2.2/ref/settings/#allowed-hosts

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 28/101

used, where the frontend is located, which Dataporten application the user should
authenticate for, and more.

Setup of access points and HiveManager
We received two units of Aerohive’s AP122, as shown here:

Additionally, Aerohive sent us a license key for HiveManager, and we followed their
instructions for creating user accounts.

When configuring access points using HiveManager, it is advised that we first configure a
network policy. This is done in HiveManager by signing in and navigating to CONFIGURE →
NETWORK POLICIES :

28/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 29/101

Here, we found a button labeled ADD NETWORK POLICY . When clicking it, we were
presented with a form in which we gave the policy a name and a description. We also
unchecked the Switches and Routing policy types, leaving Wireless enabled:

When saving this policy, we are taken to the next tab, which is labeled Wireless Networks .
We are presented with a button labeled ADD :

We chose the option shown below. It is our understanding that the Guest Access Network
option provides a list of templates, none of which are adequate for our purposes.

We gave the new network the SSID and broadcast name IoT-roam , and left the Broadcast
SSID Using options at their default values, as these suit our needs:

29/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 30/101

We were presented with five options for the type of authentication to be used: 1) Enterprise ,
2) Personal , 3) Private Pre-Shared Key , 4) WEP , and 5) Open . We chose number three:
Private Pre-Shared Key .

The only option we changed from its default value was the maximum number of clients
allowed per PSK, which we changed to 1:

This means that only one client may use a given PSK at any time. We are not able to limit
the number of MAC address bindings allowed per PSK, as we are using the cloud-based
management system. We do not have a license for a local instance.

On the same page, we are given the option to add a user group. Users in this user group will
be allowed to access this network. This is the user group we will be adding users to using the
API.

30/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 31/101

We named the user group IoT and gave it the following password settings:

Under Expiration Settings , we specified that generated passwords should never expire:

This is a setting that should be discussed.

Finally, we specified the following delivery settings:

The Email field is pointing to a template we created in HiveManager. We will describe the
creation of this template shortly. After saving the user group, it appears in the list overview:

We created a custom template for the email that will be sent to the user when a PSK has
been generated. Templates can be created by navigating to CONFIGURE → COMMON
OBJECTS → BASIC → Notification Templates :

31/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 32/101

Here, we added a template by clicking the ADD button. We specified the following options:

32/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 33/101

The Icon URL points to an NTNU logo , which has been uploaded to imgur.com. When a 10

PSK is delivered by email, the email looks like this:

Please note that there may be inconsistencies in the appearance of this email in this report,
as we have made changes. The above image shows the final version of the template.

Before a working configuration was achieved, we also had to add the access points. By
adding their serial numbers of the access points, they will be automatically configured. We
navigated to MONITOR → DEVICES :

Here, we added a new device using the Quick Add Devices option:

We entered the serial number of both access points (separated by a comma). We have
redacted these serial numbers:

10 Retrieved from https://innsida.ntnu.no/logo-og-maler .

33/101

https://innsida.ntnu.no/logo-og-maler

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 34/101

We chose the IoT-roam policy under Add policy :

Finally, we clicked ADD DEVICES . This concludes the configuration of HiveManager and the
access points.

Dataporten
Dataporten’s dashboard (https://dashboard.dataporten.no) allows users to register
applications for Dataporten/Feide authentication support. We signed in using our own Feide
credentials and registered three applications.

We need one Dataporten application for each environment: Development, testing and
production. This is because of the use of redirect URIs in OAuth 2.0. The redirect URI is the
URI the user is redirected to after successful authentication with the identity provider. In our
case, this is the view at host/connect/ . In the development environment, the host is
127.0.0.1:8000. On testing, it is magnusbakke.com. On production, it audiopolis.info.

Each application is given its own client ID and secret key, which is part of the reason we
need to keep the settings within _secrets.py local on the backend, even if the repository was
private: Each environment will have different secrets.

There are three pieces of user data we need in our application: 1) The user’s email address,
2) the user’s name, and 3) the user’s Feide username. We added these scopes in the
permissions menu of the Dataporten dashboard, and removed the scopes we do not need:

34/101

https://dashboard.dataporten.no/

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 35/101

35/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 36/101

Backend code components
We developed our code components in close approximation to the designs laid out in the
design report. As expected, the actual implementation called for a few additional methods.
We will now walk you through the code that constitutes the classes involved in this project.
When displaying code, we have lowered the font size in certain places in order to make the
entirety of the code more readable. We have also used some syntactic freedom for the same
purpose.

We feel that it is necessary to describe the logic being performed in great detail, as this logic
is the heart of the solution. It is responsible for its security and the majority of its functionality.

Abstract classes
These abstract classes can be found in the iotconnect package. They are meant to be
inherited from and have their methods overridden by platform specific code.

ValidatorMixin

ValidatorMixin is a mixin we wrote for use in both the Authenticator class and the
AdHocAdapter class. Mixins are classes that are inherited from along with the base class. In
Python, a class that does not inherit from any other class will actually inherit from object , the
base type that all classes must inherit from. It is worth mentioning that there is no such thing
as the base class when inheriting from multiple base classes, such as a base class and a
mixin. The distinction is made by the developer, and which base class becomes the mixin
depends on the purpose and scope of each base class.

ValidatorMixin consists of the following code:

class ValidatorMixin:
def validate_data(self, data, **kwargs) -> dict:

 raise NotImplementedError("Override validate_data")

def get_validated_data(self, data, **kwargs):
 validated_data = self.validate_data(data, **kwargs)
 if validated_data is None:
 raise ValueError("validate_data should return the

validated data")
 return validated_data

The class contains two functions. The first, validate_data , accepts some data to validate
and an unknown set of keyword arguments . Keyword arguments are received in the form of
a dictionary with keys and values, and can either be passed into the function using such a
dictionary, or by specifying the name of the argument, followed by an equals sign, followed
by the value, like so:

36/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 37/101

return some_function(argument1, argument2, keyword1=some_value,
keyword2=some_other_value)

We do not presume to know exactly what options and flags the programmer may want to
accept and process within these functions. Therefore, we make room for keyword arguments
in addition to the mandatory data argument.

If called, validate_data will throw an exception — specifically a NotImplementedError —
which is raised (and not handled). This makes sure that the class is not used as is by the
programmer. If the programmer attempts to use a standalone ValidatorMixin object, an error
will occur when validate_data is called. The purpose of the class is to be implemented in
another class, which is supposed to override the method (write its own version of it that
actually performs validation).

The second function, get_validated_data , calls the first function and verifies that some
validated data was returned. If nothing was returned, the implementation of
validate_data is wrong; other classes expect the data passed in to be validated and
returned if valid. This is crucial. Therefore, a ValueError is thrown if no data is returned. This
is the very reason why there are two functions. One function ensures that the other returned
something. validate_data is will not be called directly. The only location where
validate_data is called is from within get_validated_data . The other classes in our
solution exclusively call get_validated_data .

To summarize, subclasses of both AdHocAdapter and Authenticator are expected to have
the function get_validated_data . Because we 1) do not want to repeat ourselves, and 2)
cannot trust that the programmer remembers to return the validated data after validating, we
created a mixin that is implemented by Authenticator and AdHocAdapter. This mixin requires
that the programmer of subclasses of Authenticator or AdHocAdapter overrides the
validate_data function and returns the validated data. This class exists solely to make
the task of developing a custom solution easier.

Authenticator

This is a simple abstract class consisting of the following code:

class Authenticator(ValidatorMixin):
request = None

def is_authorized(self, validated_data) -> bool:

 raise NotImplementedError("Override is_authorized")

def authenticate(self, authentication_data, **kwargs):
 validated_data = self.get_validated_data(

authentication_data,
**kwargs)

 return self.is_authorized(validated_data)

37/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 38/101

Notice that the class inherits from ValidatorMixin. This means that the class in fact has four
— not two — methods (besides those implemented by the object type). These are
get_validated_data , validate_data , is_authorized , and authenticate . Notice
that we have not overridden validate_data , as is required by ValidatorMixin. This is
because Authenticator is also an abstract class that is not meant to exist as a standalone
instance. If we did override validate_data here, the programmer would never be told that
they need to override it themselves.

The Authenticator class has two unique functions: is_authorized and authenticate .
The first, is_authorized , is meant to be overridden, as can be deduced by the raising of a
NotImplementedError should the function be called on an instance of Authenticator, or on a
subclass of Authenticator that does not override the function. This function is supposed to
contain the logic that determines whether or not the user should be allowed to proceed to
generate a PSK. In our case, this logic will consist of checking if the user has authenticated
using Dataporten’s single sign-on page.

The second function, authenticate , first calls the get_validated_data function of the
ValidatorMixin and stores it in a variable. Here, you can see the importance of the validated
data actually being returned. If the authentication data (credentials, for example) was
validated but not returned, then is_authorized would receive an empty variable
(NoneType), and it would be unable to determine whether or not the user should be allowed
to generate a PSK. Without the raising of an exception, the programmer would have a hard
figuring out why the solution isn’t working.time

authenticate is not meant to be overridden.

Additionally, the class has a request attribute, which is set by a different class when a
request arrives at the backend. This makes the original request available if necessary for
authorization.

AdHocAdapter

This abstract class is equally simple. This is the code it consists of:

class AdHocAdapter(ValidatorMixin):
request = None

def perform_generation(self, validated_data) -> Response:

 raise NotImplementedError("Override perform_generation")

def generate_psk(self, generation_options, **kwargs):
 validated_data = self.get_validated_data(

generation_options, **kwargs)
 return self.perform_generation(validated_data)

38/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 39/101

This class also implements the ValidatorMixin, thus giving it four functions (excluding those
implemented by the object type): Those declared within ValidatorMixin, and those declared
within this class.

Similarly to Authenticator’s validate_data , this class has an abstract
perform_generation function, which must be overridden. It accepts the validated data
returned by the authenticator. This method is supposed to perform the custom logic required
to generate the PSK, which in our case means calling an API endpoint of HiveManager.

Additionally, it has a generate_psk function, which is not meant to be overridden. It gets
the validated data by calling the get_validated_data function of ValidatorMixin, which it
then passes to the perform_generation function as an argument. In this way, the
validated data is accessible to the programmer from within the overridden
perform_generation function.

This class also has a request attribute for the same reasons as the Authenticator class.
perform_generation is expected to return a Response (Django REST framework’s built
in response class) object, as is indicated by the “ -> Response ”. This is not a hard rule.
Different implementations of Django may use different response classes. Therefore, we do
not enforce this rule programmatically, but the code editor should display a warning to the
programmer if they return an object that is not a Response object. This is the response that
is returned to the user, and it might, for example, contain the PSK itself (if this is desirable).

IotConnectView
IotConnectView is by far the most extensive class in this project. This is the base class for
views that receive PSK requests, call the Authenticator and generate the PSK. Views that
inherit from this class act as the receiver component in our designs.

In the following code, we have collapsed the functions, thus hiding their logic. We will first
provide an overview of the class attributes before looking at each function (declared using
the keyword def) in detail separately.

class IotConnectView(APIView):
ad_hoc_adapter: AdHocAdapter = None
authenticator: Authenticator = None
requires_authentication: bool = True
authentication_data = None
generation_options = None
permission_classes = []
generation_method = IotRequestMethod.POST
authentication_failed_redirect_uri = None

def _validate_attributes(self): …

@staticmethod
def _validate_request(request): …

39/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 40/101

def _handler(self, request, **kwargs): …

def dispatch(self, request, *args, **kwargs): …

The class inherits from Django REST framework’s built in APIView class, which is thoroughly
described in the documentation . 11

The first two class attributes, ad_hoc_adapter and authenticator , are meant to be set
by the programmer when writing a custom view. As indicated by the type hints, these are
expected to be instances of subclasses of AdHocAdapter and Authenticator.

The third attribute, requires_authentication , defaults to True, but can be set to False
by the programmer to explicitly tell the solution to ignore the absence of an authenticator. If
set to True, the code within _validate_attributes will not raise an exception if
authenticator is None.

authentication_data and generation_options hold the values of the
authentication_data and generation_options keys in the request (which are mandatory) once
they have been extracted from the request data. These variables are not used directly in this
class, but may be useful to the programmer developing a custom solution.

permission_classes is an attribute in the APIView base class. It is expected to be a list
of permission classes, which are classes that perform checks and determine if the user
should be allowed to perform the request or not. Because we want our solution to work with
existing solutions that implement their own permission classes, we have decided not to make
Authenticator a permission class. By default, IotConnectView subclasses will not perform any
permission checking. This can changed by the programmer in a custom solution by explicitly
setting these permission classes.

generation_method is expected to be a value of the IotRequestMethod enumeration. An
enumeration, or enum , is a finite set of possible choices. The possible choices here are
‘GET’, ‘POST’, ‘PUT’ and ‘PATCH’, which are all HTTP method names. A request coming in
can use any of these (and a few more) methods, and if the method of the incoming request
equals the value of this variable, the request will be regarded as a PSK request, and the built
in handler will be called. The variable defaults to IotRequestMethod.POST . The programmer
should not write a method called post if the value of this variable is also POST . This goes for
all HTTP methods. This will become clearer after having gone through the logic in the
various methods.

Finally, authentication_failed_redirect_uri can optionally be set in order to
redirect the user if authentication fails. This will not be used in our case, but may be useful
for a different custom solution.

Moving on to the functions in this class, let us say that the order in which they are declared is
not important. The order shown above does not necessarily reflect the order in which they
are declared in the source code. While we would choose a declaration order that puts the
“private” methods (with a leading underscore in the name) at the bottom and the rest in the

11 Available at https://www.django-rest-framework.org/api-guide/views/ .

40/101

https://www.django-rest-framework.org/api-guide/views/

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 41/101

order in which they are called, we chose the order seen above for this paper because it
allows us to explain what a certain method does before it is called by another function.

The first function, _validate_attributes , accepts no arguments. The self argument is
automatically passed when calling instance methods (as opposed to class methods or static
methods), and is a reference to the object that the function is called on. The self object
allows us to access the attributes and other methods of the object.

This is what the _validate_attributes function looks like:

def _validate_attributes(self):
 if not self.ad_hoc_adapter:
 raise AttributeError("The attribute 'ad_hoc_adapter'

must be set.")
 if not self.authenticator and self.requires_authentication:
 raise AttributeError("The attribute 'authenticator' must

be set if 'requires_authentication'
is True.")

 if not hasattr(self.ad_hoc_adapter, 'generate_psk'):
 raise AttributeError("The ad hoc adapter used should

inherit the AdHocAdapter and
implement all abstract methods.")

 if self.authenticator and not hasattr(self.authenticator,
'authenticate'):

 raise AttributeError("The authenticator used should
inherit the Authenticator class and
implement all abstract methods.")

When called, the function performs a series of checks that determine whether or not to throw
an exception. When an exception is thrown, it means an error occurred. Such errors must be
handled by the calling code (or any code farther down the call stack), or they will disrupt the
expected behavior of the program. Such disruptions are made visible to the programmer, so
that they know it occurred and can do something about it. An unhandled exception causes
the subroutine to break, so the following code will not be executed.

This function first asserts that the ad_hoc_adapter attribute is set on the view. This is the
component that generates the PSK and is therefore an integral, mandatory attribute that
must be set. If it is not set, an AttributeError will be thrown with the following message: "The
attribute 'ad_hoc_adapter' must be set."

If it is set, it will check if the authenticator attribute is set. If it is not set, and the view’s
requires_authentication attribute is also True, an exception will be thrown with the
following message: "The attribute 'authenticator' must be set if 'requires_authentication' is
True." Not all solutions will require any form of authentication. Therefore, we must check if
the view is configured to not require authentication.

Next, the function checks if the ad_hoc_adapter object has an attribute called
generate_psk . The source code later expects that the ad hoc adapter has a method called

41/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 42/101

generate_psk . The attribute is presumed to be callable (it could in theory be anything from a
callable function to a number). If it is not callable, an exception will be raised once the code
attempts to call it as if it was a function.

Finally, the function checks if the authenticator attribute is set. As you will recall, we
already did this check, but keep in mind that there is a scenario in which the authenticator
will not be set (namely if it is not set and requires_authentication is also False).
Therefore, we again have to check if it is set. If it is set, the function checks if the
authenticator has an attribute named authenticate , as the existence of such a method is later
expected. If it does not have said method, an exception is thrown with the following
message: "The authenticator used should inherit the Authenticator class and implement all
abstract methods."

As mentioned in the design report, we do not wish to enforce the usage of the AdHocAdapter
class or the Authenticator class, as long as whatever custom class used instead has these
required functions. Therefore, we do not explicitly check if the values of these attributes are
instances of subclasses of these classes.

The _validate_request method is a static method. Static methods are methods whose
logic does not depend on any instance attributes, which may vary depending on which
instance of a class you inspect. Static methods perform the same logic no matter which
instance they are called on. You will notice that the function never accesses the self
argument, and that the function indeed does not accept such an attribute:

@staticmethod
def _validate_request(request):
 try:
 authentication_data = request.data['authentication_data']
 except KeyError:
 raise ValidationError("authentication_data is required.")

 try:
 generation_options = request.data['generation_options']

except KeyError:
 raise ValidationError("generation_options is required.")

 return authentication_data, generation_options

@staticmethod is a decorator . In Python, decorators are placed just before a function or
class declaration with a leading ampersand (@). Decorators, simply put, are functions that
wrap other functions. Without going into further detail, we can simply say that the
@staticmethod decorator tells the function that the first argument (which is usually called
self in instance methods) is in fact not an instance of the class. The function would still work
if we removed the decorator and added an initial self parameter but, as we never access
instance attributes or methods inside this function, it would be redundant, and PyCharm —
the code editor used in this project — would display a notice saying “this method may be
static.”

42/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 43/101

The function expects an object. The parameter is named request . There are several request
classes out there, and we do not make any requirements of this object except for the support
of the methods and attributes called and accessed.

First, the function attempts to retrieve the value of the authentication_data key in the request
data. The data attribute of the request is a dictionary. Dictionaries have keys with values,
and the values of given key/value pair is retrieved using brackets containing the key. If
accessed in this way, a KeyError will be thrown if the key is not present in the dictionary. If
so, the function throws a more fitting ValidationError with a message that explains what is
required of the request data. Unless handled (which our code does not), Django will handle
the exception by returning a Bad Request response with the provided message to the user.

The exact same check if made for the expected generation_options key.

If both keys are present, the two values are returned. In Python, we are allowed to return
multiple values in this way, because separating objects with a comma automatically
constructs a tuple (a list of constant length) for us.

The _handler method deals with some of the methods described thus far.

def _handler(self, request, **kwargs):
 # Ensure the presence of required data fields
 self.authentication_data, self.generation_options = \

self._validate_request(request)

 # Call the authenticator and return a Forbidden response if

authentication fails
 if self.requires_authentication:
 if not self.authenticator.authenticate(

self.authentication_data,
**kwargs

):
 if self.authentication_failed_redirect_uri is not None:
 return redirect(

self.authentication_failed_redirect_uri
)

 return Response(status=status.HTTP_403_FORBIDDEN)
 # Generate the PSK
 response = self.ad_hoc_adapter.generate_psk(self.generation_options,

 **kwargs)
 return response

Please note that backslashes (\) are used when a statement is too long for a single line. The
statement is continued on the next line.

The function accepts a request argument and an arbitrary number of keyword arguments .
These are contained within the **kwargs argument, which are not used in our solution, but
may be used in other custom solutions.

First, the function calls the _validate_request function and stores the two returned
values in equally named instance attributes. In other words, it is given two dictionaries from

43/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 44/101

_validate_request , which it then stores in the authentication_data and
generation_options attributes of the self object (the instance of this class that the
method was called on). Instance attributes (self.something) may be accessed by other
functions at a later time. If any exception was thrown (possibly a ValidationError), the
exception will be raised (as it is not handled using a try/except clause), the execution of the
method will stop, and a Bad Request response will be returned.

Next, the method checks if authentication is required (as determined by
requires_authentication). If so, it calls the authenticate method of the
authenticator, passing the request and keyword arguments to it. If authenticate returned
False, the method checks if authentication_failed_redirect_uri is set. If so, a
redirect response is returned, redirecting the user to that URI. Otherwise, a Forbidden
response is returned.

If authenticate returned True, the generate_psk method of the ad hoc adapter is
called. Again, the request and keyword arguments are passed to it. generate_psk is
expected to return a response, which is finally returned by this function.

Finally, the dispatch function must be addressed. dispatch is a function that is declared
in the APIView base class. We have overridden it, meaning that our version of the function
will be called instead when using the IotConnectView class. This function is called once a
URL has been resolved (meaning the appropriate view handling the URL has been found). It
is responsible for finding the appropriate method handler within the view, setting some initial
attributes and similar. This is what it looks like:

def dispatch(self, request, *args, **kwargs):
 """
 Overridden to validate request data and call the

authenticator and PSK generator’s methods.
 """
 # Set attributes and initialize request (as done in the base method)
 self.args = args
 self.kwargs = kwargs
 request = self.initialize_request(request, *args, **kwargs)
 self.request = request
 self.headers = self.default_response_headers

 # Ensure that required view attributes are set
 self._validate_attributes()

Set the request attribute on the authenticator
 if self.authenticator:
 self.authenticator.request = request

Set the request attribute on the adapter
 self.ad_hoc_adapter.request = request

 setattr(self, str(self.generation_method.value), self._handler)

 try:
 # Get the handler
 handler = getattr(self, request.method.lower(),

44/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 45/101

self.http_method_not_allowed)
 # Call super's initial
 self.initial(request, *args, **kwargs)
 # Get the response
 response = handler(request, *args, **kwargs)
 except Exception as exc:
 response = self.handle_exception(exc)

 self.response = self.finalize_response(request, response, *args,

 **kwargs)
 return self.response

This function is largely similar to the overridden method in the base class, but performs some
additional checking. Please note that the text encapsulated by three quotation marks on
each side is called a docstring , and is used as an explainer for programmers. It does not
affect the logic within the function. We should also mention that lines with a leading # are
comments, which also do not affect the logic.

First, some instance attributes (namely args and kwargs) are set. This is done in the base
method. We will not explain these attributes as we will not use them.

Next, the request is converted into an instance of Django REST framework’s Request class,
which is also done by a method in the base class called initialize_request . This
converted request object is stored in the view’s request attribute. The default response
headers are then set. This is also taken from the base class, and we will not go into further
detail.

After this initial setting of attributes, the function calls the _validate_attributes
function. This function, as you may recall, ensures that the required attributes (namely
ad_hoc_adapter and possibly authenticator) are set.

Next, provided that the authenticator attribute is set, the authenticator’s request
attribute is set with the REST framework Request instance. The same is done for the ad hoc
adapter. This makes the request easily accessible to these instances in case they are
necessary in a custom solution.

The following requires some explanation:

setattr(self, str(self.generation_method.value), self._handler)

Python is a highly dynamic language that allows us to set attributes that do not exist yet. The
default value of generation_method is IotRequestMethod.POST , which has a
corresponding string value of “post”. While the self object (this view) does not have an
attribute/method named post , we can give it an attribute named post . setattr accepts three
arguments: 1) The object that should be given an attribute, 2) the name of the attribute
(which may or may not already exist), and 3) the value of the attribute. Attribute values can
also be callable methods.

Here, assuming the programmer has not changed the default value of
self.generation_method , the statement causes the current view to be given a new

45/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 46/101

attribute named post with a value of the callable method _handler , which we have already
described. The result is that we may now do the following:

response = self.post(some_argument)

If we did not need our views to support more than a single HTTP method, we could simply
call the handler right now and return its value, but we need to support at least two different
HTTP methods (POST and GET). The reasoning here will become clearer by the end of this
chapter.

The following code also needs a more thorough explanation:

try:
Get the handler
handler = getattr(self, request.method.lower(),

 self.http_method_not_allowed)
Call super's initial
self.initial(request, *args, **kwargs)
Get the response
response = handler(request, *args, **kwargs)

except Exception as exc:
response = self.handle_exception(exc)

In the try clause, we use setattr ’s soul mate, getattr , in order to get an attribute. We
cannot know in advance whether or not a subclass has a method named get or patch (both
valid HTTP methods), for example, and we also don’t know in advance which HTTP method
will be used. Therefore, we need to access the attribute (which may or may not exist) using a
dynamic method.

If we assume that the request’s method is POST and that the value of the
generation_method is IotRequestMethod.POST , that means (thanks to setattr) that
this getattr(self, request.method.lower()) will return the value of the post
attribute, which was set to be the _ handler method. If the request method is GET , however,
getattr(self, request.method.lower()) may throw an exception, because this
class has no get attribute. It is possible that a subclass has declared a get attribute, and in
that case, the statement will return that method.

We do not want to throw an exception when an unsupported HTTP method is used. The
standard response is a 405 Method Not Allowed response. Luckily, getattr lets us set a
default return value in case the attribute does not exist, and the base class, APIView, has a
method that returns such a response. We will use this method as the default return value.

Let us assume that the value of the generation_method attribute is
IotRequestMethod.POST , and that the subclass (which inherits from this class) has
defined a get method, then we can give a few examples of what will be returned given
various HTTP methods:

46/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 47/101

request.method.lower() getattr(self, request.method,
self.http_method_not_allowed)

“post” self._handler

“get” self.get (declared in subclass)

“patch” self.http_method_not_allowed

“put” self.http_method_not_allowed

“delete” self.http_method_not_allowed

All of these return values are valid handlers.

Next, the initial method of APIView is called. This method performs some logic that is not
relevant to our solution, but will be in most cases. Among other things, it checks if the user
has permissions to use the endpoint using Django’s built in permission system.

We now certainly have a handler. This handler may or may not be
http_method_not_allowed . Whatever the case, as a last step in the try clause, the
function calls the handler and passes the request plus any arguments and keyword
arguments into it. The returned value is expected to be a response.

If any exception was thrown during any of these steps, the except clause will be triggered.
This is the broadest possible except clause:

except Exception as exc: …

Its broadness comes from the fact Exception is the most basic exception class, and all other
exceptions are descendants of it. In other words, all possible exceptions are caught by this
clause.

The except clause calls the handle_exception method of APIView, passing the exception
object. If Django has some default way of handling the exception, an appropriate response
(with an appropriate HTTP status code, such as 500 Bad Request) will be returned. If Django
has no default way of handling the exception, the exception will be re-raised (and not
handled).

Finally, after the try/except clause, the finalize_response method of APIView is called.
We will not go into detail about its logic, but this method may optionally be overridden by the
programmer if some final modifications must be done to the response object before it is
returned to the user, for example. The returned object of this function is the final response,
and is stored in the self.response attribute before being returned to the user.

47/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 48/101

Utilities
The iotconnect package contains a package called utilities , which contains four modules:

The first module, enums.py , contains the declaration of the IotRequestMethod.POST
enumeration:

from enum import Enum

class IotRequestMethod(Enum):
GET = 'get'
POST = 'post'
PUT = 'put'
PATCH = 'patch'

Notice that we left out several HTTP methods. We did this simply because using the
DELETE or OPTIONS method, for example, for generating PSKs would be ridiculous.

Enumerations are used when we want to limit the freedom of choice in some situation. Here,
we want the programmer to pick one of these four HTTP methods to be used for generating
PSKs. The default is IotRequestMethod.POST , because the POST method is typically
used for creating new objects based on some input data, which is the case in our solution. A
custom solution that does not require any authentication data or generation options would
probably use the GET method instead, as it seems to the user as if they are simply retrieving
a password.

The contents of mixins.py , which only contains the declaration of the ValidatorMixin class,
has already been described.

The contents of permissions.py is irrelevant to our solution. It contains the declaration of the
default permission class (as specified in the base settings file). All our views specifically set
the permission_classes attribute using an empty list, rendering the default permission
class (which raises an exception saying that permissions are not set) irrelevant.

The test_classes.py module contains a test class that simplifies the process of writing unit
tests. We will go into further detail about this class in the Testing and verification chapter.

48/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 49/101

Final classes and utilities

Views
The Feide+HiveManager solution incorporates two final view classes: 1) The
DataportenRedirectView class, and 2) the ConnectView class.

In the file url_config.py , as we have already, includes the following declaration:

urlpatterns = [
Project app urls
path('connect/', include('connect.urls')),

Developer tools
path('admin/', admin.site.urls),

]

The ‘connect.urls’ string points to the urls.py file in the connect app, which contains the
following:

urlpatterns = [
 path('', ConnectView.as_view(), name='connect'),
 path('complete/dataporten/', DataportenRedirectView.as_view(),

 name='dataporten-redirect'),
]

Together, this means that we have two URLs (excluding the admin site): hostname/connect/
and hostname/connect/complete/dataporten/ . The former points to an instance of
ConnectView, and the latter points to an instance of DataportenRedirectView. The end of the
former — /complete/dataporten/ — is presumably required by the python-dataporten-auth
package, which we originally attempted to use before concluding that it is not necessary in
this case.

DataportenRedirectView

The DataportenRedirectView is the callback that the user is redirected to after successful
authentication with Feide/Dataporten. When the user is redirected, a code is sent as a query
string (hostname/connect/complete/dataporten/?code=[something]). This code is the key our
application needs in order to retrieve an access token from Dataporten, which in turn may be
used to retrieve personal information about the user who just authenticated themselves.

The get function makes use of a few utilities, such as and , which will be explained at the
end of this subchapter.

class DataportenRedirectView(APIView):
permission_classes = []

def get(self, request, **_kwargs):

49/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 50/101

 code = request.query_params.get('code', None)

if not code:
 raise ValueError("code was not supplied")

access_token = get_access_token(code)
 user_data = get_user_data(access_token)
 request.session['access_token'] = access_token
 request.session['user_data'] = user_data

if not request.session.session_key:
 request.session.save()

session_key = request.session.session_key
 name = get_first_name(user_data)

query_strings = {'session_key': session_key, 'name': name}
 encoded = urllib.parse.urlencode(query_strings)
 return redirect(f"{FRONTEND_URL}?{encoded}")

Briefly summarized, the view retrieves the code from the query_params dictionary, which is
an attribute of the incoming request. If the code was found, an exception is raised. This is an
unexpected error that might occur if a user manually visits this URL, or if the identity provider
is malfunctioning.

If a code is found, the access token for this user is retrieved. This is done by the
get_access_token utility, which will be explained at the end of this subchapter. The access
token is then used to retrieve the user’s personal information using the get_user_data
utility. Specifically, the data that is retrieved is the data that is added to the application’s
scope using the Dataporten dashboard, as shown in the Dataporten chapter.

The access token and the user’s data are stored in the user’s session. Sessions are handled
automatically by Django and are stored in the postgres database that was installed on the
server.

There is a possibility — perhaps a bug — that causes the session to not be saved when
written to (as it should be automatically when setting dictionary keys and values), which
means that the Session object has no primary key, meaning it does not exist in the database.
If so, we call its save method to automatically save it to the database, giving it a primary key.

The first name of the user is extracted using the get_first_name utility (to be explained).
This value will be used on the frontend as a greeting to the user. Because we have had
issues with Cross-Origin Resource Sharing (CORS) when sending requests using Ajax in
certain browsers, the user’s session cannot be found automatically during the POST request.
Therefore, we must also send the session key as a query string to the frontend, so that it can
be sent back to the backend. That way, the backend can find the user’s session key at a later
time.

These query strings are URL encoded and appended to the frontend URL (which is locally
defined on each server in the _locals.py file), and the user is redirected.

50/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 51/101

The class inherits from Django’s built-in APIView class. This authentication scheme should
not be presumed used in every solution, and the specifics of the implementation may vary, so
we have not written an abstract class for this purpose.

ConnectView

The ConnectView is the view that handles requests from the frontend. It inherits from the
abstract IotConnectView class. You will see that all logic contained in this view is specific to
the Feide+HiveManager implementation.

Keep in mind that we expect the get function is not the handler for PSK requests. The
frontend redirects the user to this view (thus resulting in a GET request) if they are found to
not be authenticated yet. Also, if a user should happen to visit the /connect/ URL using their
browser, we want to redirect them to Feide if they are not authenticated, or the frontend if
they are. That is the purpose of this function. The handler that is used when a user requests
a new PSK (which is a POST request, and not a GET request) is defined in the base class,
IotConnectView, which has already been explained.

The class consists of the following:

class ConnectView(IotConnectView):
authenticator = FeideAuthenticator()
ad_hoc_adapter = HiveManagerAdapter()
Default is True. Added for clarity.
requires_authentication = True
permission_classes = []

def get(self, request, **_kwargs):
 session = request.session
 access_token = session.get('access_token', None)
 authenticated = False

if access_token:
 authenticated = self.authenticator.is_authorized(

{'access_token': access_token}
)

 if authenticated:
user_data = session.get('user_data', [])
query_strings = {'session_key': session._session_key,

 'name': get_first_name(user_data)}
encoded = urllib.parse.urlencode(query_strings)
url = f"{FRONTEND_URL}?{encoded}"

 else:
query_strings = {'client_id': DATAPORTEN_KEY,

 'response_type': 'code'}
encoded = urllib.parse.urlencode(query_strings)
url = f"https://auth.dataporten.no/oauth/

 authorization?{encoded}"

return redirect(to=url)

51/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 52/101

The first step when inheriting from IotConnectView is to define which class should be used
as the authenticator, and which should be used for the ad hoc adapter. Recall that an
exception will be thrown if these attributes are missing. In addition, we choose to require
authentication, because we do not wish to let the user generate a PSK for the wireless
network if they cannot authenticate themselves using Feide. Besides requiring
authentication, we do not wish to impose any permission requirements, and so set the
permission_classes attribute to an empty list.

The get function first attempts to get the access token from the user’s session. This will be
found if the user is already authenticated. If the access token was found, the value of
authenticated , which defaults to False, will be determined by the authenticator’s
is_authorized function. The access token is used as the authentication data.

If the user is found to be authenticated, the user data is gotten from the session as well, and
the user is redirected to the frontend (in the same way as they are in the
DataportenRedirectView class).

FeideAuthenticator

The FeideAuthenticator is the final Authenticator class that verifies that the user is
authenticated using Feide. If the user is not found to be authenticated, a PSK will not be
created.

class FeideAuthenticator(Authenticator):
def validate_data(self, data, **kwargs):

 # Convert to JSON
 data = json.loads(data)
 if self.request.method.upper() != 'GET' and \

not data.get('session_key', None):
 # session_key is required when posting, because sessions

will not work when posting using XmlHttpRequests.
 raise ValidationError({'session_key': 'session_key is

 required'})
 return data

def is_authorized(self, validated_data):
 request = self.request

 # When the method is GET, we do not expect the authentication

data to be sent. Handle this case.
 if request.method.upper() == 'GET':
 session = request.session
 else:
 # The method is not GET.
 session_key = validated_data['session_key']
 try:
 # Get the session.
 session = Session.objects.get(

pk=session_key
).get_decoded()

52/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 53/101

 except Session.DoesNotExist:
 # The session key is invalid. Require

authentication.
 return False

 # Try to get the access token from the session.
 access_token = session.get('access_token', None)
 if access_token:
 # Try to get the user data from the session.
 session_data = request.session.get('user_data', None)
 # If an access token exists in the session, try to get

user data from Feide.
 feide_data = get_user_data(access_token=access_token)
 # Validate
 return self._validate_user_data(session_data, feide_data)

access_token is not stored in session.
 return False

@staticmethod
def _validate_user_data(session_data, feide_data):
 return session_data and feide_data and \

feide_data == session_data

The validate_data function fulfills the ValidatorMixin’s method requirements. It first
converts the data into JSON. Then, if the request method is not GET, it checks if the data
contains a value for session_key , which is required due to our problems with CORS when
using Ajax in certain browsers. If the session key is not included, an exception is thrown.
This function is called by the base class and passed on to the is_authorized function.

is_authorized is called in ConnectView’s get function, meaning that the request method
may be GET. If so, we can get the session from the request, meaning we do not need the
authenticatoin data (which will not be sent with an ordinary GET request). If the request
method is not GET, we can expect the session key to exist in the validated data, as is
ensured by the validate_data method. We use this key to get the session from the
database instead.

Once we have the session, we get the user data from Feide. If the data stored in the session
differs from that returned by Feide, as validated by the static _validate_user_data
function, the user is not deemed to be the same person, and is therefore not authorized to
generate PSKs using this identity. This is not an expected case, but may occur if the user
data has changed. In that case, we require the updated user data. If the two sets of data are
equal, the user is authorized.

HiveManagerAdapter

The HiveManagerAdapter class is slightly more lengthy, so we will go through its methods
one by one. These are its methods and class attributes:

class HiveManagerAdapter(AdHocAdapter):

53/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 54/101

group_id = 339207927204382

def validate_data(self, data, **kwargs): …

def perform_generation(self, validated_data): …

@staticmethod
def _get_response_data(response): …

@staticmethod
def _get_generation_data(feide_username: str, group_id: int,

 full_name: str, organization_name: str,
 policy: str, device_type: str,
 deliver_by_email: bool, email: str): …

The group_id attribute is required by HiveManager’s API.

The first function, validate_data , fulfills the ValidatorMixin’s method requirements. It
converts the data into JSON and ensures that a series of required key/value pairs are
present in the data. The required keys are deliver_by_email and device_type . After making
these assertions (which result in a ValidationError if they are false), the value for the
deliver_by_email key is converted into a Boolean value (True or False) if it is sent as a string,
for good measure.

def validate_data(self, data, **kwargs):
data = json.loads(data)
if data.get('deliver_by_email', None) is None:

raise ValidationError("deliver_by_email is required")
if not data.get('device_type', None):
 raise ValidationError("device_type is required")

Formatting
if isinstance(data['deliver_by_email'], str):

data['deliver_by_email'] = data['deliver_by_email'].upper() \
== 'TRUE'

return data

The perform_generation method overrides the base method. This is the function
responsible for generating the PSK and returning a response optionally containing it. The
url variable is the fixed URL for HiveManager’s API endpoint responsible for creating PSKs.
The OWNER_ID variable is defined in _secrets.py , which is locally defined but synchronized
across servers, so that our secrets are not revealed on GitHub. The authentication_data
variable can surely be found in the request data, as this has been validated in
IotConnectView’s dispatch method. We can also be sure that the authentication_data is
a dictionary containing a session_key key, as was ensured by the authenticator’s validation.
We get the session from the database instead of the request for reasons already explained
relating to CORS.

54/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 55/101

The kwargs variable is declared as a dictionary with many keys and values required by
HiveManager’s API. When that variable is passed as an argument to a function accepting
keyword arguments, the dictionary’s key/value pairs are unpacked as if they had been
provided thusly:

do_something(keyword1=some_value, keyword2=some_other_value)

These values are given to the _get_generation_data function, which will be explained
shortly, and data that is formatted in the way that HiveManager’s API expects it is returned.
This data is sent to the API endpoint using secret authentication headers (also defined in
_secrets.py). The response from HiveManager’s API is formatted in a way that the frontend
expects and returned as a response.

def perform_generation(self, validated_data):
url = "https://cloud-ie.aerohive.com/xapi/v1/identity/

credentials"
params = {'ownerId': OWNER_ID}
auth_data = self.request.data['authentication_data']
session_key = json.loads(auth_data)['session_key']
session = Session.objects.get(pk=session_key).get_decoded()

kwargs = {

'feide_username': session['user_data']['userid_sec'][0],
 'group_id': self.group_id,
 'full_name': session['user_data']['name'],
 'organization_name': 'Uninett',
 'policy': 'PERSONAL',
 'device_type': validated_data['device_type'],
 'deliver_by_email': validated_data['deliver_by_email'],

'email': session['user_data']['email']
}
data = self._get_generation_data(**kwargs)

response = requests.post(url=url, params=params,

 data=json.dumps(data), headers=HEADERS)
data, status_code = self._get_response_data(response)

return Response(data=data, status=status_code)

The _get_generation_data method accepts several keyword arguments. The first thing it
does is extract the Feide username from the username found in the user data in the session.
The session data’s username takes the following form: feide:username@institution.tld . We
are interested in the username part, as there is a maximum length restriction in HiveManager
that prevents us from using the complete string.

Most of the keys that HiveManager requires of our request are simply set. Some of the key
names are misleading, however, because we are storing different information in these fields
than is intended by HiveManager. For our purposes, we are not interested in the separation
of first and last name, so we store both in the firstName key. We have a free lastName field
and store the Feide username here for easy searching in HiveManager. HiveManager also

55/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 56/101

requires that usernames are unique, while we want one user to be able to connect any
number of devices. Therefore, we add the current date and time (down to the second) behind
the username. In this way we are able to search for users based on their Feide username
(which is stored in the lastName field) while still allowing a single user to connect multiple
devices. We hope that Aerohive will revise these restrictions and offer more freedom.

@staticmethod
def _get_generation_data(feide_username: str, group_id, full_name,

 organization_name, policy, device_type,
 deliver_by_email, email):

feide_username = feide_username.strip('feide:').split('@')[0]
 now = datetime.datetime.now()

hive_user_name = f"{feide_username}:
{now.replace(microsecond=0).strftime('%y%m%d%H%M%S)}"

 return {
 "deliverMethod": "NO_DELIVERY" if not deliver_by_email else

 "EMAIL",
 "firstName": f"{full_name}",
 "groupId": group_id,
 "lastName": feide_username,
 "email": email,
 "organization": organization_name,
 "policy": policy,
 "userName": hive_user_name,
 "purpose": device_type
 }

Finally, the _get_response_data function checks the status code of the response returned
from HiveManager for equality to HTTP 403 FORBIDDEN . If so, it probably means that the
username is already taken. We ensured that the username would be unique if one second
has passed since the last request. This could be an indication that the user has accidentally
sent multiple requests somehow, or that there is an attempt to mass produce PSKs. A more
thorough way to deal with this is recommended for future developments.

If the status code is not 403 FORBIDDEN , we assume that the status is 200 OK . Based on
this assumption, we convert the response data to JSON and extract the password, which is
returned by HiveManager upon success. If this extraction fails, it means our assumption was
wrong. We cannot blame the user if this is a case of a bad request, because it means our
validation was not thorough enough. Therefore, we return a 500 INTERNAL SERVER
ERROR response. If everything went according to plan, however, the data will be the
generated PSK, and the status code will be 201 CREATED , which is the standard response
when creating objects using POST.

@staticmethod
def _get_response_data(response):

if response.status_code == status.HTTP_403_FORBIDDEN:
data = {'error': 'Could not generate PSK because the user has

already created one this second'}
 return data, response.status_code

56/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 57/101

try:

data = json.loads(response.content)['data']['password']
status_code = status.HTTP_201_CREATED

except TypeError:
data = {'error': 'Could not generate PSK due to an unknown

error with the multi-PSK service'}
 status_code = status.HTTP_500_INTERNAL_SERVER_ERROR

return data, status_code

Utilities

The last pieces of backend code are the utilities, which are located in the utils module of the
connect app. There are three utilities (helper functions) here: get_access_token ,
get_user_data , and get_first_name .

The first function, get_access_token , looks like this:

def get_access_token(code):
url = 'https://auth.dataporten.no/oauth/token'
payload = {'grant_type': 'authorization_code',

 'code': code,
 'client_id': DATAPORTEN_KEY,
 'client_secret': DATAPORTEN_SECRET,
 'redirect_uri': f"{BACKEND_URL}/connect/

 complete/dataporten/"}

response = requests.post(url=url, data=payload,
 headers=DATAPORTEN_HEADERS)

access_token = json.loads(response.content)['access_token']

return access_token

The goal of the function is to retrieve an access code from Dataporten, which can be used to
retrieve user data. It accepts a code, which is sent along the redirect by Dataporten after
successful authentication. The URL for retrieving OAuth access tokens from Dataporten is
declared at the top.

The function constructs a payload to be sent with a POST request. In this payload, we
specify that we wish to use the authorization code scheme. There are alternatives, but we
found this scheme the simplest. We supply the code, as well as the following local settings:
The application’s Dataporten client ID, the application’s secret key, and the redirect URI,
which is already defined in the Dataporten dashboard. The redirect URI must match the
previously given redirect URI in order for the request to be accepted.

57/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 58/101

The payload is sent to Dataporten, and the response is gotten. We retrieve the access token
from this response by converting it to a JSON dictionary and using square brackets to
retrieve the value of the access_token key. This key is returned.

The second function, get_user_data , accepts an access token. Its goal is to retrieve the
user’s data using the access token, which is stored in the user’s session. Dataporten’s
endpoint URL for retrieving user data is declared at the top:

def get_user_data(access_token):
url = 'https://auth.dataporten.no/userinfo'
headers = {'Authorization': f'Bearer {access_token}'}

response = requests.get(url=url, headers=headers)
content = json.loads(response.content)
return content.get('user', None)

We construct an authorization header that uses the access token as a bearer token. We
send a GET request to the Dataporten endpoint with this header, and the user’s data is
returned. We construct a JSON dictionary of the response and retrieve the value of the user
key.

The final utility, get_first_name , accepts user data and returns a best guess for the user’s
first name:

def get_first_name(user_data):
name = user_data.get('name', 'bruker')
return name.split(' ')[0]

This is done by first extracting the value of the name key from the user data. name is one of
the scopes we added to our Dataporten application. The name is then split at every
occurrence of a space, turning it into an array of words. We return the first word, as we
assume that the first word in a full name is the first name. There are likely better solutions
that should be considered in the future.

58/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 59/101

Frontend components
The frontend is an important part of our solution. While it can be customized in any desirable
way, there must be a frontend of some sort. We chose a simple form with a submit button.
Because we do not want the user to experience redirects after filling in the form and clicking
the button, we send an asynchronous request using JavaScript. We let the user know that
the request is being sent by showing a “spinning wheel” before the newly generated PSK is
displayed, or any eventual error message.

There are two main components of the frontend: 1) The markup and styles, and 2) the code
sending requests to the backend, validating data, showing and hiding content, etc.

We will not go into great detail regarding markup and styling, as these are independent of the
core technology. We chose this design in the design stage because of its simplicity, and
because we made a conscious decision to not be overly ambitious in the research stage.

Markup and styles
The markup (in our case written in HTML, which stands for HyperText Markup Language) of
a page gives instructions about the page’s contents and structure, while the style (in our
case, CSS) gives instructions regarding the appearance of those elements. Both are usually
necessary for a complete page.

The frontend is available at https://github.com/Uninett/IoTConnect-FrontEnd .

Brief description of HTML

The HTML document, index.html , includes, among other things:

● The “main form”: A container with an input for a description of the device and a check
box for specifying whether or not the PSK should be sent by email,

● a “loader” that is animated using CSS (hidden initially), and
● an “alert box” that is hidden initially.

CSS

Cascading style sheets (CSS) is the styling language that is used almost everywhere on the
web. It supports inheritance, meaning that an element may inherit some styles from its
parent element while having some unique styles of its own.

Styles are usually stored in files with the .css extension and linked in the <head> tag of the
HTML document thusly:

<link rel="stylesheet" href="[path to stylesheet]">

59/101

https://github.com/Uninett/IoTConnect-FrontEnd

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 60/101

In the HTML document, we assign classes and IDs to elements. Classes, IDs and tags can
all be styled using CSS.

We have linked two style sheets. The first, styles.css , is our own style sheet at 172 lines. The
second, styles_check.css , is a collection of styles found at W3Schools that enables us to
draw custom styles for checkboxes. 12

We will not explain the structure or contents of our style sheets. Suffice it to say that we have
attempted to make the style sheet as brief as possible through the utilization of inheritance.
The complete style sheets can be found in our frontend’s Git repository, which is hosted on
GitHub. 13

Responsive content

The frontend’s HTML elements are relatively large. Some displays, especially mobile
screens, are too small to display the full 845 pixel width of the form container. Therefore, we
have added the following CSS property to the style of the form container:

max-width: 100%;

This ensures that the container may only cover 100% of the full width of the page.

Additionally, we must decrease the font size of the welcome header as the display’s width
decreases. This is done using media queries, which are new in CSS3. Media queries allow
us to use different styles for elements based on the size of the display, for example.

These styles dictate the font size of the welcome header, which as an element of type <h1>:

h1 {
…
font-size: 60px;
…

}

@media only screen and (max-width: 844px) {

h1 {
 font-size: 45px;

}
}

@media only screen and (max-width: 600px) {

h1 {
 font-size: 35px;

}
}

12 The styles were found at https://www.w3schools.com/howto/howto_css_custom_checkbox.asp .
Retrieved on April 29, 2019.
13 Available at https://github.com/Uninett/IoTConnect-FrontEnd .

60/101

https://www.w3schools.com/howto/howto_css_custom_checkbox.asp
https://github.com/Uninett/IoTConnect-FrontEnd

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 61/101

The first style provides a default font size for the header. The second style takes effect only
when the width of the display is 844 pixels or less, and reduces the font size from 60 pixels to
45 pixels. The final style takes effect when the width of the display is 600 pixels or less, and
reduces the font size further to only 35 pixels. The result on a small screen is that the
container shrinks to fit 100% of the viewport if the viewport’s width is less than 845 pixels,
which is the width of the container, instead of extending beyond the edge of the viewport:

Please note that the unit em is preferably used for text. An argument for using pixels instead
is that it gives us greater control of the final look of the page. An argument for using the em
until is that it makes it easier for the visually impaired to scale text up or down. This is a
header with a much larger than normal font size. Therefore, we do not anticipate a need to
scale it up further. The em unit can also be used to achieve something similar to media
queries, but with a gradual scaling.

Accessibility

All websites should be accessible to the visually impaired. Screen readers — assistive
technology (AT) used by the visually impaired to provide a speech-based representation of
websites and navigation — make use of HTML tags and properties that are often forgotten
by those who do not need them. One of these properties is the lang property of the <html>
tag, which declares the language of the page. In our case, this is Norwegian, so our <html>
tag looks like this:

<html lang="no">

61/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 62/101

Furthermore, screen readers work best when the page’s HTML is semantically written. When
code or markup is semantic, it means that its components and structure are easily
recognized by looking at the names, types and order of elements. For example, these two
elements achieve roughly the same effect:

Example 1:
<h1 style=”font-size: 60pt;”>Welcome, user</h1>

Example 2:
<div style=”font-size: 60pt;”>Welcome, user</div>

The main difference is that the latter is not semantic. There is no expectation that a <div>
element acts as a header, while the <h1> tag is designed for the most important headers.
<h2> is designed for sub-headers of the <h1> chapter, and so on. Therefore, we used an
<h1> element for our header.

Likewise, our submit button could easily have been a <div> element. Instead, we use the
<button> element, as it is recognized as a clickable button by screen readers. The toggle
“button” (show/hide password) is an <a> element, which is also expected to be clickable, as
it is used for links. The same principle is applied to all inputs and elements that the user can
interact with. It should be mentioned that the visually impaired should not have to click the
show/hide password button, as this simply changes how the string within a text field is
displayed, and not the actual value of the string, which is readily available to screen readers
inspecting the HTML source.

JavaScript
JavaScript is a Turing complete programming language for client-side scripting (usually) in
the browser. It allows us to programmatically alter the contents of the page, perform arbitrary
computations, send requests asynchronously, and more. We have used JavaScript for these
purposes, including some validation, asynchronous requests and response handling, and
hiding, showing and altering page elements and their contents.

Please note that, in most cases, the elements of the HTML are available as global variables
due to these lines:

var descriptionInput = document.getElementById("description");
var deliverByEmailInput = document.getElementById("send-email");
var submitButton = document.getElementById("sendBtn");
var pskTextField = document.getElementById("psk");
var showPskButton = document.getElementById("showPsk");
var form = document.getElementById("outerForm");
var loader = document.getElementById("loader");
var pskScreen = document.getElementById("pskScreen");

This is an optimization that was put in place so that engine does not need to look through the
document repeatedly for the same element. We know that the ID of elements will never

62/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 63/101

change in our document. An element would normally be retrieved using
document.getElementById , but we will simply refer to these variables.

Initial

When the page is loaded, a script — initial.js — is run. The script is placed at the bottom of
the body, ensuring that the HTML elements are declared before it is executed.

// Get username from URL parameters
var username = getUrlVars()['name'];

if (username == null) {
 // HTTP redirect
 window.location.href = backendUrl + "/connect/";
};

// Set welcome text
var welcomeHeader = document.getElementById("welcomeText");
welcomeHeader.innerHTML = "Velkommen, " +
decodeURIComponent(username);

// Add event listeners to input elements
var inputs = document.getElementsByTagName("input");
for (i = 0; i < inputs.length; i++) {
 inputs[i].addEventListener("keyup", function(event) {
 if (event.keyCode === 13) {
 event.preventDefault();
 document.getElementById("sendBtn").click();
 }
 });
}

First, the script gets the name query string from the URL. If it does not exist, the user is
redirected to the backend for authentication. If the name is found (as it will be if the user 14

was redirected by the backend), the welcome header’s text is changed to “Welcome,
[name]”.

Next, the script finds all elements declared with the <input> tag. Such elements are used
for text fields, buttons, drop-down lists, and other typical input elements that the user can
interact with without the use of custom code. The script then iterates through the list of input
elements and adds an event listener to each one. An event listener is a function that is called
when an event occurs. Here, we are adding an event listener to the keyup event, which
happens when a key has been pressed and becomes unpressed. We assign a lambda
function (a function that is not immediately executed, but passed as an argument) as the

14 We would prefer that the user is presented with a white screen before redirection. Instead, they see
the frontend with the following message: “Welcome, undefined”. We have concluded that we do not
have time to make this change.

63/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 64/101

event listener. JavaScript allows us to declare lambda functions directly in this manner,
meaning that we do not need to declare it elsewhere and provide its name. We are declaring
a nameless lambda function.

Once triggered, the event listener will check the event’s keyCode property, which we expect
the keyup event object to have. If the keyCode property of the event is 13, it means the key
in question is the enter key.

In other words, this code is triggered when the user has focused on one of the inputs on the
page and pressed the enter key. The user would expect the action of pressing the enter key
to equate to clicking the submit button (whose ID is “sendBtn”), so we click it
programmatically.

We decided to use this loop because we initially had an additional input field; we also had an
email field. If more input fields are added in the future, we do not have to explicitly add this
event handler to the keyup event.

Additionally (and independently of the above), we expect a query string named name to be
present in the URL. This query string is added in the redirect by the backend. The
welcomeHeader element is an <h1> (primary header) element that says, “Welcome,
[name]”. The user’s name must be extracted from the URL, and the <h1> element’s inner
HTML must be replaced with a new welcome message including that name.

We included a function that extracts the query strings from the URL in the links in the <head>
element of the HTML document, meaning it is available at this point:

function getUrlVars()
{

var vars = [], hash;
var hashes =

window.location.href.slice(
window.location.href.indexOf('?') + 1

).split('&');
for(var i = 0; i < hashes.length; i++)
{

 hash = hashes[i].split('=');
 vars.push(hash[0]);
 vars[hash[0]] = hash[1];

}
return vars;

}

We found this script at
http://jquery-howto.blogspot.com/2009/09/get-url-parameters-values-with-jquery.html . It was
written by Snipplr user Roshambo (https://snipplr.com/users/Roshambo/).

It returns a dictionary containing all (in our case two) query parameter names as keys and
their corresponding values. We extract the value for the name key from this dictionary using

64/101

http://jquery-howto.blogspot.com/2009/09/get-url-parameters-values-with-jquery.html
https://snipplr.com/users/Roshambo/

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 65/101

square brackets before changing the welcome header’s inner HTML (the HTML or plain text
that appears between the opening and closing of the element).

Validation

Before the user is allowed to send the form data to the backend for processing, we validate
their input data using JavaScript and HTML5. This saves the user time and prevents
frustration, and it spares our servers from requests that are bound to result in failure. In our
case, there is only one field that may contain invalid input, namely the description field. We
require that the description is at least one character long, and at most 50 characters long.

The first line of defence against incorrect form data is HTML5’s validation functionality. We
placed the 50 character limit in the HTML:

<input type="text" class="formInput" id="description"
name="description" onkeyup="setDescriptionColors()" maxlength="50">

There is no native minlength attribute. It is possible to use a regex pattern for this purpose,
but we do not want to check for validity of input data before the user has changed the value
of the input field or clicked the submit button, because we do not want the field to appear
incorrect before the user has been given a chance to enter a value. We perform this
validation in JavaScript.

Notice that we have assigned a handler to the onkeyup event. This handler is the
setDescriptionColors function:

function setDescriptionColors() {
 if (!descriptionIsValid()) {
 descriptionInput.style.border = "1px solid red";
 submitButton.disabled = true;
 }
 else {
 descriptionInput.style.border= "1px solid white";
 submitButton.disabled = false;
 }
}

This function calls the following function to test the validity of the description field’s input
data:

function descriptionIsValid() {
 // Check if the inputted description is valid
 return (descriptionInput.value.length >= 1);
}

The first function sets changes input element’s border color to red and disables the submit
button if the input is invalid. If the input is valid, these changes are reverted. The second

65/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 66/101

function simply returns true if the description is at least one character long, and false
otherwise.

We use onkeyup instead of onkeydown here because handling onkeydown would produce a
red border (which is how we signify invalid input data) when a key is first pressed, even
though the value would be valid. This is because the character is only added to the input
element’s value after the key has been pressed. Instead, the field will be given a red border if
the user erases their initial input, and the user will be unable to click the submit button.

POST request

When the user has entered a valid description for their device and clicked the submit button
or pressed the enter key, a request is sent to the backend using this code:

function sendData() {
 loading();
 // Get query strings
 var url_vars = getUrlVars();

 // Authentication data
 var session_key = url_vars['session_key'];

 // Generation options
 var description = descriptionInput.value;
 var deliver_by_email = deliverByEmailInput.checked;

 // Request data
 var authentication_data = {
 "session_key" : session_key
 };
 var generation_options = {
 "device_type" : description,
 "deliver_by_email" : deliver_by_email,
 };
 var data = {
 authentication_data: JSON.stringify(authentication_data),
 generation_options: JSON.stringify(generation_options)
 };

 // Create request
 var xhr = new XMLHttpRequest();
 xhr.open('POST', backendUrl + "/connect/", true);
 xhr.setRequestHeader('Content-Type', 'application/json');
 xhr.withCredentials = true;

 // Handle request responses
 if (xhr.status === 201) {
 // Created (success)
 showPskScreen(xhr.responseText);
 }

66/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 67/101

 else if (xhr.status == 401) {
 // Unauthorized
 window.location.href = backendUrl + "/connect/";
 }
 else if (xhr.status == 500) {
 // Internal server error
 showAlert('Det har oppstått en uventet feil. Vennligst prøv

igjen.');
 showFormScreen();
 }
 else if (xhr.status == 400) {
 // Bad request
 showAlert('Noe er galt. Vennligst bekreft at e-postadressen er

riktig.');
 showFormScreen();
 }
 else if (xhr.status == 403) {
 // Forbidden (too fast)
 showAlert('Du etterspør passord for hyppig. Vennligst prøv igjen

senere.');
 showFormScreen();
 }
 else if (xhr.status == 408 || xhr.status == 404 || xhr.status == 503) {
 // Timed out, not found, or unavailable (HiveManager or Dataporten

 // not responding)
 showAlert('Tjenesten er midlertidig utilgjengelig.');
 showFormScreen();
 }

 // Handle request error
 xhr.onerror = function() {
 alert('Unexpected error. Please check your browser.');
 };

 // Send the request
 xhr.send(JSON.stringify(data));
}

The function constructs an XmlHttpRequest containing the required authentication data and
generation options, as retrieved from the form and query strings. When declaring the
XmlHttpRequest object, we also pass a function that handles the response. The code that
handles the various response status codes is not executed before the request is fully
processed.

We also add an error handler, which occurs when non-standard errors occur, such as the
browser refusing to send the request.

Most handlers, as you see, display a message to the user and shows the initial form (so that
the “spinning wheel” is not spinning forever). The handler for the 201 (CREATED) status
code, however, calls showPskScreen , which will be described shortly. The handler for the

67/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 68/101

401 (UNAUTHORIZED) status code redirects the user to the /connect/ endpoint, which is
expected to redirect the user to Dataporten’s single sign-on page for authentication.

The conditions are ordered by how likely we believe they will occur, placing the most likely
first. This minimizes the average number of conditions that need to be checked before the
appropriate condition is found.

Visual feedback

The sendData function initially calls the loading function before sending the data and
processing the response. The loading function is responsible for replacing the current
content on the page with a spinning wheel , indicating that a process is running that must
finish. This is the function:

function loading() {
 form.style.display = "none";
 loader.style.display = "block"
 pskScreen.style.display = "none";
}

form is the element containing the input elements. loader is an element that is animated
using CSS transitions (representing the “spinning wheel”). The form is hidden along with the
“PSK screen” (which is expected to eventually display the returned PSK), and the loader
element is displayed by changing its display property from its initial “none” state to the default
“block” state.

If the response fails, or the response’s status code is not 201 (CREATED), an alert may be
displayed by calling the showAlert function:

function showAlert(msg) {
 alertMsg.innerText = msg;
 alertBox.style.display = "block";
 nbAlerts++;
 setTimeout(hideAlert, 15000);
}

The function accepts a message to be displayed. There is a label element whose ID is
alertMsg . The function replaces this label’s inner text with the message. The label exists
within a container whose ID is alertBox . This container is initially hidden. The function
displays it by changing its display property to “block” instead of the initial “none”.

Next, it increments a global integer, nbAlerts . Its purpose will become apparent promptly.
Finally, it creates a timer with a duration of 15 seconds, after which the hideAlert function
is called:

function hideAlert() {
 nbAlerts--;
 // Only hide if this is the last alert

68/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 69/101

 if (nbAlerts == 0) {
 alertBox.style.display = "none";
 }
}

This function decrements the counter, after which its value may be zero or positive. If the
value is positive, it means that a second alert has been triggered before the 15 seconds have
elapsed. In that case, we should not hide the element, because each alert should be
displayed for 15 seconds before being hidden. Disregarding this would result in the second
alert being displayed for less than 15 seconds.

If the value is zero, it means that this is the last alert triggered (15 seconds ago), and the
element is hidden.

An alert looks like this:

It can be immediately closed by clicking the X icon.

We followed a tutorial by W3Schools in order to create this alert system. The tutorial can be
found at https://www.w3schools.com/howto/howto_js_alert.asp .

Displaying of PSK

When the backend has given its response to the request, several status codes are possible,
as is shown in the POST request sub-chapter. If the status code is 201 (CREATED), a
function named showPskScreen is called, and the response text is passed as an argument.
This response text is the PSK. This is the showPskScreen :

function showPskScreen(password) {
 form.style.display = "none";
 loader.style.display = "none"
 pskScreen.style.display = "block";
 pskTextField.value = password.replace(/['"]+/g, '');
 // Clear the password after 5 minutes
 setTimeout(clearPsk, 300000);
}

First, it hides the form element (which contains the input fields) by settings its display
property to “none”. This should also hide it from screen readers. It does the same to the
loader element, which is currently spinning. The class pskScreen is assigned to an element

69/101

https://www.w3schools.com/howto/howto_js_alert.asp

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 70/101

whose display property is currently “none”. We give it the default block display instead,
showing it to the user.

Next, the element whose class is pskTextField , which is a text field that has been disabled
(meaning the user cannot change its text), is given the value of the PSK. Giving a text field a
value means changing the text within it. Before the PSK is assigned to its value, we remove
any quotation marks surrounding. Due to how the XmlHttpRequest class expects returned
data, this must be done. The response is returned as JSON, while plain text is expected.
This causes the quotation marks of the JSON to be present in the string. We found that this
is the simplest way of dealing with this given limited time.

Finally, we create a timer using setTimeout . The timer will run for 300000 milliseconds,
which is equal to five minutes. Once this time has elapsed, the clearPsk function will be
called. The clearPsk function simply replaced the value of the pskTextField element to
“expired”. This is done so that the password is not visible to unauthorized persons if the
computer is left unattended.

This is the result:

The show password button is an <a> element whose onclick event is handled by the function
togglePsk :

function togglePsk() {
 // Show/hide the password
 if (pskTextField.type === "password") {
 pskTextField.type = "text";
 showPskButton.innerHTML = "Skjul passord";
 } else {
 pskTextField.type = "password";
 showPskButton.innerHTML = "Vis passord";
 }
}

There are two possible cases: 1) The element’s type is “password”, or 2) the element’s type
is not “password”. In the former case, the type is set to be “text”, and the inner HTML of the
<a> element is set to “Hide password” (in Norwegian). In the latter case, the type is set to be
“password”, and the inner HTML of the <a> element is set to “Show password”.

70/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 71/101

When the type of an input field is “password”, the characters are automatically displayed as
dots, as seen in the screenshot on the previous page. Therefore, the effect of clicking the
“Show password” button is that the characters are revealed or concealed by changing the
type of the element. This is the revealed state after five minutes, at which point the PSK is
replaced for safety:

71/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 72/101

Testing and verification
Testing has been performed throughout the project. Once we were near finalization, we
performed more thorough testing and found a handful of issues. Testing consisted of unit
tests and manual testing procedures.

Unit tests
Unit tests are procedures that are executed with an expectation of results. In other words, a
unit test performs some actions and makes assertions about the result of those actions. If
any assertion is incorrect, an exception is raised and the test has failed.

Our unit tests mainly assert the responses of our endpoints. A response is gotten by sending
a request to these views. These requests are not sent through a network, but constructed
programmatically, allowing us to pretend like they are real requests received in a production
environment. We will call such tests API tests .

Additionally, the iotconnect package contains a few tests that test the view classes
themselves without sending requests. We will call these tests class tests .

First, let us provide an overview of the IotConnectTestCase class, which provides a few
helpful functions. We have collapsed the functions in this class and will describe some of
them in greater detail:

class IotConnectTestCase(APITestCase):
url = ''

def get(self, query_params=None): …

def post(self, data=None, **kwargs): …

def patch(self, data=None, **kwargs): …

def delete(self, query_params=None): …

def assert_status_code(self, response, status_code: status): …

def assert_redirect(self, response, redirect_pattern: str = None): …

@staticmethod
def _get_extra_headers(): …

First, let it be said that our unit tests will inherit from this class, meaning that the methods
shown above are available to all unit tests. The names of the methods should give a clue as
to what the individual method’s purpose is.

get , post , patch , and delete simulate requests to an endpoint. The get method
simulates a GET request, for example. The HTTP methods POST and PATCH are typically

72/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 73/101

accompanied by a body, while GET and DELETE do not. Therefore, post and patch accept
a data argument, which will constitute the request’s body. Here goes, for example, the
authentication data and generation options. A GET request, while not sending any data, may
yet affect the outcome of the request by changing the value of query parameters. Query
parameters, as has been explained previously, take the form of a keyword and a value in the
URL, for example: example.com?key1=value1&key2=value2 . This can be used for filtering
the results of the GET request, for example. Meanwhile, a POST request typically contains
data describing an object to be created. This data may take the form of a dictionary
containing keys and values. For a user, this data may look something like this:

data = {
‘first_name’: ‘Ola’,
‘last_name’: ‘Nordmann’

}

This dictionary is encoded into a string before it is decoded back into a dictionary at the
backend for further interpretation.

That should be sufficient to explain the purpose of the get , post , patch , and delete
methods. We did not find it necessary to add helper functions for other methods, such as
OPTIONS, PUT or HEAD. Our reasoning should become apparent soon. First, a look at the
patch method, which greatly resembles the other three request method helpers:

def patch(self, data=None, **kwargs):
 data = json.dumps(data)
 response = self.client.patch(self.url, data,

 content_type='application/json',
 **self._get_extra_headers(),
 **kwargs)
 return response

First, it converts the data into a string, as is done before the data is transmitted. It will
automatically be decoded by Django upon arrival. Next, it uses the client attribute (and
instance of a Django built-in class that inherits from RequestFactory, another built-in class) of
the built-in APITestCase class to create a PATCH request headed for the self.url attribute
(which is set in the unit test, as you will see) with the content type of application/json and the
header returned by the _get_extra_headers function:

@staticmethod
def _get_extra_headers():
 return {'HTTP_ACCEPT': f'application/json'}

The response returned by the view is finally returned. A unit test may, for example, assert
that the method PATCH is not supported by the view.

As mentioned, the passing or failing of unit tests typically depends on the assertions made
by the test. At the end of a unit test, it may be asserted that the response’s status code is
equal to 200 (which signifies the HTTP 200 OK response). Sometimes, assertions are so
complex or frequent that a function should exist to aid us in making the assertions with less

73/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 74/101

code, in the spirit of the Don’t Repeat Yourself (DRY) principle. Therefore, we added the
assert_status_code and assert_redirect methods. The former accepts a response and
an expected status code as arguments and makes a simple assertion:

def assert_status_code(self, response, status_code: status):
 self.assertEqual(status_code, response.status_code)

Please note that assertEqual is a method of the APITestCase class, which
IotConnectTestCase inherits from. It raises an exception if the assertion is false, i.e the first
and second arguments are not equal. Here, we assert that the expected status code and the
response’s actual status code are equal. If not, an exception is raised, and the test fails.:

The latter, assert_redirect , asserts that the response is redirecting us to some URL.
Additionally, it lets us make assertions about the URL to which we are redirected:

def assert_redirect(self, response, redirect_pattern: str = None):
 self.assertTrue(isinstance(response, HttpResponseRedirect))

 if redirect_pattern:
 self.assertIsNotNone(re.match(redirect_pattern, response.url))

First, it asserts that the response is an instance of HttpResponseRedirect, a built-in class for
redirect responses. Next, if the programmer supplied a pattern, it asserts that the pattern
supplied matches the redirect URL.

The match function of the re interface returns None if the supplied pattern does not match
the supplied target string. Otherwise, it returns one or more matches, and information about
the location of those matches. We are interested in finding out if there is a match between
the supplied redirect pattern and the actual redirect URL of the response, and therefore
assert that the return value of match is not None.

API tests

Our API tests are located in the connect app — specifically in the test_api.py module of the
tests package of the connect app. There are two test classes here: 1) ConnectViewTest, and
2) DataportenRedirectViewTest. As the names imply, these test classes test the two
endpoints included in our custom solution.

Before we list the individual unit tests within these classes, let us describe one test case that
asserts the status code of the response, and one test case that asserts the redirect URL of
the response:

def test_post__nonsensical_session_key__forbidden(self):
data = {

 'authentication_data': {'session_key': 'some_data'},
 'generation_options': self._get_valid_generation_options()
 }
 response = self.post(data)
 self.assert_status_code(response,

74/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 75/101

status_code=status.HTTP_403_FORBIDDEN)

Notice the name of the method. Each part is separated by two underscores. The first part
states which HTTP method is tested. It is important that the test’s name begins with test , so
that it is recognized as a test by the code editor. The middle part, if any, names the state that
should give the expected result. In this case, a nonsensical session key is expected to give
the result that is named in the last part of the name: A HTTP 403 FORBIDDEN response.

First, it constructs some data to be sent in the request’s body. This data consists of
authentication data containing a nonsensical session key, as well as some valid generation
options.

The response is gotten using the post helper method before we assert, using the
assert_status_code helper method, that the response’s status code is 403. This is
because nonsensical authentication data will result in unsuccessful authentication.

It should also be mentioned that the URL of the post method is known because of this
built-in function, which is run before every test:

def setUp(self):
 self.url = reverse('connect')

You may recall that we named our endpoints when declaring the views. The endpoint
handled by ConnectView was named connect . The reverse function finds the URL of a
view based on the URL’s name.

The _get_valid_generation_options function simply returns the following data:

{
‘deliver_by_email’: True,
‘device_type’: ‘Refrigerator’

}

These are all our API tests:

def test_patch__method_not_allowed(self): …

def test_delete__method_not_allowed(self): …

def test_get__not_authenticated__redirected_to_dataporten(self): …

def test_post__no_data__bad_request(self): …

def test_post__some_data_but_not_required_data__bad_request(self): …

def test_post__auth_data_but_not_generation_options__bad_request(self): …

def test_post__nonsensical_authentication_data__bad_request(self): …

def test_post__nonsensical_session_key__forbidden(self): …

75/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 76/101

The methods tested, the initial states and the expected result should be apparent from the
method names.

Class tests

Unlike the API tests, the class tests make assertions against the classes found in the core
solution, and not the custom views. Therefore, they are found in the test_view_classes.py
module of the test package of the iotconnect package. They also do not inherit from the
IotConnectTestCase class, as they do not make use of any of the helper methods and are
not API tests.

We do not see the necessity of describing the logic of these tests, as feel that a list of
methods will suffice. These are the class tests:

def test_class__view_set_up_without_adapter__attribute_error(self): …

def test_class__view_set_up_without_authenticator_and_authentication_is \
_required__attribute_error(self):

def test_class__view_set_up_without_authenticator_and_authentication_is \
_not_required__not_attribute_error(self):

These tests all passed and so did not result in any changes.

Resulting changes

Some tests did not pass initially. The failure of these tests resulted in changes to our source
code. 15

Briefly summarized, these changes included:

● Adding a custom middleware class that handles the custom NoDataportenCodeError
exception,

● Raising of this custom exception instead of ValueError,
● Changes to exception messages, and
● Raising ValidationError if the request data is None.

Manual testing procedures
Unit tests should not and often cannot test states that depend on the environment. We want
the unit tests committed to our Git repository to succeed regardless of the environment. Yet,
there are tests that need to be performed that do depend on the environment. For testing
such aspects of the solution, we have devised a short series of manual testing procedures.

15 These changes can be seen in this commit:
https://github.com/Uninett/IoTConnect-BackEnd/commit/01882930500e2dffb7ab20e360ea46004dd3e
939

76/101

https://github.com/Uninett/IoTConnect-BackEnd/commit/01882930500e2dffb7ab20e360ea46004dd3e939
https://github.com/Uninett/IoTConnect-BackEnd/commit/01882930500e2dffb7ab20e360ea46004dd3e939

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 77/101

Verification of proper SSL encryption

When entering the frontend of the testing environment (using Firefox), this padlock appears:

If we click on the padlock, we see the following:

The is expected. This is because the staging environment of Let’s Encrypt is not trusted by
the browser. If we click the rightwards arrow, then more information , we can see that the
connection is indeed encrypted:

The production server uses the production environment of Let’s Encrypt’s API for certificate
requests, and therefore does not display the same warning:

These are both expected results; Caddy is built for “automatic HTTPS”, which involves
supplying a certificate authority, such as Let’s Encrypt, and doing minimal configuration.
Furthermore, the Django applications on the testing and production servers are configured to
enforce HTTPS, which means that the service will not work if a secure connection cannot be
established.

77/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 78/101

Testing of encryption between client and access point

In order to monitor Wi-Fi traffic for the purposes of this test, we need an compatible “WiFi
sniffer” interface . We are not currently in possession of such an interface and are unable to 16

obtain one in reasonable time and at a reasonable expense. Therefore, we are unable to
perform this test. We do, however, most definitely expect different PSKs to result in different
hashes, rendering sniffing impossible.

Testing of roaming

In order to verify that we are able to roam between access points, we powered up both
access points. A computer was connected to IoT-roam . We verified that we had access to
the internet. Next, one of the access points were switched off. We verified that we still had
access to the internet. Next, the access point that was switched off was switched on. We
waited for the access point to boot. Finally, the second access point was switched off. We
verified that we still had access to the internet.

Ergo, we are able to roam between access points.

Testing of traceability

The detection of abuse on a network is a task for network components such as network/host
intrusion detection systems (NIDS and HIDS). If an IP address on the network is found to be
exerting malicious behaviors, it is crucial that the owner of the IP address can be found.

In HiveManager, there is a magnifying glass icon at the very top of the page:

When clicking the icon, a search field appears.

We will pretend like the IP address of Magnus has been found to be exerting malicious
behavior, and will attempt to find his identity by searching for the IP address. The matching
clients appear automatically underneath the search field:

Clicking on the result yields an exhaustive overview. Here is an excerpt:

16 See this example:
https://www.amazon.com/OpenPcap-Sniffer-Wireless-Capture-Alternative/dp/B07JCJJHS4

78/101

https://www.amazon.com/OpenPcap-Sniffer-Wireless-Capture-Alternative/dp/B07JCJJHS4

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 79/101

Furthermore, if we click on the username, we are given an overview that includes details
about the user’s location and behavior:

This would be useful if we had created a floor plan, which we have not.

This test shows that users are traceable when using IoT-roam.

Integration tests

Integration tests are testing procedures that do not test individual units, but rather multiple
units put together. While a unit test may pass, the same functionality that is tested within it
might fail in a realistic context. Therefore, we perform integration tests, which involve actually
using the product.

The primary integration test involves these steps:

79/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 80/101

1) Clear cookies and cache
2) Visit the testing frontend
3) Await redirection to Dataporten
4) Enter credentials
5) Await redirection to frontend
6) Enter a device description
7) Choose delivery by email
8) Click submit
9) Await the PSK on the frontend
10) Show the PSK
11) Find the email containing the PSK
12) Verify that the PSK field reads “expired” after five minutes

If all these steps succeed, the integration test is considered successful.

Here is a summary of the current result (as of May 3rd, 2019) of this integration test:

After clearing cookies and cache in Google Chrome, we visit the testing server at
magnusbakke.com.

We expect a security warning due to the use of Let’s Encrypt’s staging environment:

We ignore this warning and continue. As expected, we are redirected to Dataporten. We
enter our credentials:

80/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 81/101

We expect to be redirected to the frontend:

We enter a device description and keep the checkbox checked:

81/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 82/101

When clicking the button, we expect a “spinning wheel” to appear:

The graphic shown in the above picture depicts a section of the perimeter of a circle that is
rotating at a constant pace. After this is done spinning (meaning the request has been
processed and a response has been returned), we expect the following:

After clicking the “Show password” button on the right, we expect the new PSK to be
displayed:

82/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 83/101

When clicking the button again, we expect the password to be hidden:

We expect an email to have arrived in the inbox of the email address associated with our
Feide account:

Finally, we expect the password to read “expired” after five minutes:

83/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 84/101

We also perform variations of this test where, for example, we do not clear cookies and
cache in the first step, do not choose delivery by email, or use different browsers.

No amount of testing will ensure the perpetual functioning of every aspect of the solution. It is
therefore highly recommended that automatic error reporting is implemented using
third-party solutions such as Sentry (https://sentry.io).

GDPR compliance
Our solution uses session keys to identify users. Because session keys are used to find the
user’s data (including their name, email address and Feide username), this is covered by the
General Data Protection Regulation (GDPR):

(30): “Natural persons may be associated with online identifiers […] such as internet protocol
addresses, cookie identifiers or other identifiers […]. This may leave traces which, in
particular when combined with unique identifiers and other information received by the
servers, may be used to create profiles of the natural persons and identify them.”

The requirement is that the user gives consent. When authenticating using Dataporten, the
user will see a list of exactly what data is given to us, and the user may decline. Therefore,
we consider the website GDPR compliant.

84/101

https://docs.sentry.io/error-reporting/quickstart/?platform=python

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 85/101

Discussion
This technology certainly brings interesting possibilities to the table. If we want to onboard
IoT devices, the options are limited, and this solution to the problem is by far the best we
have found.

We ask that the reader’s imagination not be limited by the limitations of our proof of concept.
Given a slightly larger team, more time and resources, a full-fledged solution suited for
large-scale deployment is fully achievable.

On the other hand, emerging technologies may render this solution obsolete. This is by no
means a certainty in the near future, but an “open” WPA3 network with a captive web portal
for authentication may possible be feasible. The remaining problem is that IoT devices
cannot navigate captive web portals. WPA3, however, promises a simpler solution for
devices with no display. We will see if this is feasible when the technology is ready, and
whether or not the process becomes simpler or more complicated.

In this chapter, we will discuss the feasibility and future possibilities of the PPSK solution of
which we have demonstrated a simple prototype.

The contents of this discussion will be summarized in the final report. We concluded that it is
expedient to place the main discussion in this report, as we wish to limit the length of the final
report.

Future possibilities
While we are satisfied with our product given the limited time and manpower of this project,
there is much more we would want to do with this concept. Most such developments could
be done simply and with significant returns.

First and foremost:

Admin dashboard

Let us examine the pieces of information we have available. We have:

● The Feide identity of the user
● Their PSK
● A name for the user’s device(s)

HiveManager has an API endpoint for deleting users/PSKs.

This means that we could create these database tables for users , devices , and registrations
of devices by users . The model for the latter, which represents the one-to-many or
many-to-many association between devices and users, would hold the generated PSK.

85/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 86/101

This is all that is needed for a basic dashboard that shows which users have onboarded
which devices. Furthermore, this dashboard could easily allow the administrator to perform
actions against devices or users, such as deleting all devices by a user, or deleting a single
device.

The state of the database could be checked by the authenticator. For example, we may use
these database entries to determine if a user should be allowed to register another device.
There may, for instance, be a restriction of 10 devices per user, which is not currently
possible in our solution (because HiveManager sees one PSK as one user).

The creation of these database entries can easily be performed if the finalize_response
method is overridden in a view inheriting from IotConnectView, or from within the
perform_generation method of the custom ad hoc adapter.

A good place to start is admin site of any Django project. By default, this site is found at
host/admin/ . The Django admin site can be customized greatly. We can add custom actions
here that can be selected from a drop-down list and executed with a button, for example.

User dashboard

Such a dashboard could in fact be made available to the user. Only the devices belonging to
the user would be visible to the user, naturally. This would allow the user to remove devices
in order to make room for new ones, change the description of devices, or reset the device’s
password, deleting the old one.

Custom emails

Another simply implemented improvement is to always tell HiveManager to not send the PSK
by email to the user. Instead, our backend could send an email from our own mail server.
This can also be implemented in the ad hoc adapter’s perform_generation method.

As of now, the email containing the PSK is sent by Aerohive’s servers and is only slightly
customizable through HiveManager.

Device type restrictions

At a Uninett workshop we attended near the beginning of this project, representatives from
Aruba talked about their product for Network Access Control and more called ClearPass.
According to the representatives, their technology is capable of identifying the type of
devices based on the contents of exchanged DHCP packets.

This technology would allow us to automatically approve or reject connections on the IoT
network based on whether or not we believe the device to be compatible with eduroam
(meaning it supports WPA2-Enterprise).

Another possible solution to this problem is to maintain a list of approved devices. In this
case, the user would be asked to select the appropriate device. The MAC address of the
connecting device could be compared to known MAC addresses of devices of this type, and

86/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 87/101

the truthfulness of the device type specification could be verified. This option may incur
additional expenses and administrative work and requires a predictable MAC address
pattern.

Serializers as validators

A more immediate improvement can be done to the Django project: Instead of
programmatically checking for the presence of required values in the request (be it the
authentication data or the generation options), it is possible to use serializers for this
purpose. Serializers have the added benefit of easy type checking. Instead of implementing
the function validate_data , we could make serializer a class attribute of
ValidatorMixin. The serializer could look like this:

class GenerationOptionsValidator(serializers.Serializer):
device_description = serializers.CharField(required=True,

 max_length=50,
 min_length=1)

send_via_email = serializers.BooleanField(default=False)

The validity of the data may be checked, and a ValidationError may be automatically thrown
if the data is not valid, using some_serializer.is_valid(raise_exception=True) .

WPA3

The coming WPA3 standard, which replaces WPA2, has a significant improvement in the
security of personal and IoT networks. Its Simultaneous Authentication of Equals
authentication protocol prevents two users from monitoring each other’s traffic, even if they
share the same Wi-Fi password. Combined with some other security mechanism that
prevents users from accessing the network if they cannot provide Feide credentials, this
technology may be able to achieve the same effect as PPSK — without the big investment.
Furthermore, WPA3 promises to “simplify the process of configuring security for devices that
have limited or no display interface” (Wi-Fi Alliance, 2018). This is worth researching as a
separate project, as it may quickly render current multi-PSK/PPSK technology obsolete.

Feasibility

When dealing with enterprise networks, there is such a thing as something being too
convenient sometimes. There is already a global network designed for research and
education: eduroam. It was designed and is being managed by experts for security and
reliability. It is greatly preferred that eduroam is used when it can be used. Sadly, because
eduroam is based on authentication using digital certificates, not all devices can currently
connect to it, and there is currently a need for this technology.

The convenience of our solution, however, means that a student is perhaps more likely to
simply generate a few Wi-Fi passwords for their phones, tables and laptops. This is not the
intention of our proposed solution; no one is better for it.

87/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 88/101

Without the immediate access to proprietary technology capable of categorizing connected
devices based on their MAC address (as mentioned in the previous chapter), there may still
be a solution that does not make the solution downright inconvenient.

In a typical educational institution, for instance, students should not be able to freely
generate PSKs. Instead, educators at the faculty should be able to generate the necessary
number of personal onboarding links, which are then handed out to students. Onboarding
links take the form of a random, secret string, such as:
https://example.com/connect/NAiZ5iY0cY . These links can be handled by a common
endpoint in Django using regular expressions. For example will the following…

path("?P<invitation_code>^[a-zA-Z0-9]*/$", ConnectView, name='connect')

… handle all possible combinations of alphanumeric strings. The actual string used would be
checked against a database of pre-generated strings, and upon the first usage, it would be
deleted from the database so that it is no longer valid. This can be done as simply as so:

from django.shortcuts import get_object_or_404

code = get_object_or_404(klass=InvitationCode, secret_code=invitation_code)
code.delete()

Additional invitations can be requested by individuals using a form, or by asking their faculty.

Any variation of this concept will likely be more feasible than the current solution, at least
until solutions utilizing WPA3’s Simultaneous Authentication of Equals are available.

It should also be mentioned that the system should be placed on a server that is only
reachable from within the institution’s private network (or using a VPN) before it is deployed.
This way, abuse of the service (before the device is connected using the returned PSK) can
be traced.

Before the user is allowed to request a PSK, they should be required to agree to a list of
terms and policies. This agreement should be verifiable, meaning the date of the agreement,
the user agreeing to the terms, and the version of the terms agreed to, should be stored in a
database. This way, the terms need not be agreed to every time the user uses the service,
but only when a new version of the terms is deployed.

In our opinion, the content of these terms should include the following at a minimum:

● The service may only be used to connect the user’s own devices (or devices owned
partially by the user in cases where the user is part of a team), and not devices
belonging to others.

● Devices that support authentication using digital certificates, such as phones, tablets,
and computers, should be connected using the standard means.

● The password issued should not be shared with anyone. The user should
acknowledge that the password is considered an identifier, and any abuse carried out
by devices connected using the password will be assumed to have originated from
the user.

88/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 89/101

The ideal situation is that manufacturers of IoT devices realize that there is a market in
enterprise networks and thus implement support for such networks. Even devices lacking
displays could theoretically implement a mechanism for importing certificates, though it
would be recommended that separate certificates be created for the devices belonging to a
user. This way, an unattended IoT device with poor design in terms of security does not
compromise the digital identity of the owner.

Amendment: Admin dashboard
This amendment was written on May 11, 2019.

While we discussed this feature in the Discussion chapter, we thought it was a shame to
finalize the project without giving a concrete example of the proposed admin dashboard.
Such an admin dashboard, in our mind, has the following two primary purposes: 1) Provide
an overview of Feide users and their onboarded devices, and 2) allow administrators to
delete or disable devices without directly interacting with HiveManager.

In order to achieve this, we created two models : 1) FeideIdentity, and 2) 17

DeviceRegistration. The former represents Feide accounts, as the name would suggest. The
latter represents PSK requests that have been successfully processed.

FeideIdentity looks like this:

class FeideIdentity(models.Model):
feide_user_id = models.CharField(
 unique=True,
 verbose_name="Feide ID",
 db_index=True,
 max_length=50,
)

name = models.CharField(
 max_length=50,
 verbose_name="name",
 db_index=True,
 blank=True,
)

email = models.EmailField(
 unique=True,
 blank=True,
)

17 In Django, models are classes whose instances represent actual database entries. The model’s
attributes dictate the table’s columns, while specific instances correspond to rows. Models are a very
powerful and versatile feature of Django.

89/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 90/101

class Meta:
 verbose_name_plural = "Feide identities"

def __str__(self):
 return self.feide_user_id + f" ({self.name})"

Its table contains three rows: 1) feide_user_id , 2) name , and 3) email . The values for
these fields are retrieved from Dataporten. The meta class definition and the overriding of the
__str__ function affect how table rows will be displayed in the admin dashboard.

This is the DeviceRegistration model:

class DeviceRegistration(models.Model):
tracker = FieldTracker(fields=['enabled'])

feide_id = models.ForeignKey(
 FeideIdentity,
 on_delete=models.CASCADE,
 related_name='device_registrations',
 verbose_name="Feide identity",
)

hive_manager_id = models.CharField(
 max_length=80,
 verbose_name="HiveManager identity",
)

device_description = models.CharField(
 max_length=100,
 verbose_name="device description",
)

psk = models.CharField(
 max_length=20,
 verbose_name="PSK",
)

created_at = models.DateTimeField(
 auto_now_add=True,
 verbose_name="created at",
 db_index=True,
)

enabled = models.BooleanField(
 default=True,
 verbose_name="enabled"
)

def __str__(self):

 return f"{self.feide_id.__str__()}: {self.device_description}"

90/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 91/101

def save(self, force_insert=False, force_update=False, using=None,
 update_fields=None):

 delete = self.tracker.has_changed('enabled') \
and not self.enabled

 ret = super().save(force_insert, force_update, using,
 update_fields)

 if delete:
 self.delete_from_hive_manager()

return ret

def delete_from_hive_manager(self):
 url = "https://cloud-ie.aerohive.com/xapi/

 v1/identity/credentials"
 get_params = {'ownerId': OWNER_ID,

 'ids': [],
 'userName': self.hive_manager_id}

 hive_manager_user = attempt_json_loads(
requests.get(url=url, params=get_params, headers=HEADERS

)._content)['data'][0]
 real_id = hive_manager_user['id']

 post_params = {'ownerId': OWNER_ID, 'ids': [real_id]}
 response = requests.delete(url=url, params=post_params,

 headers=HEADERS)

 if not response.status_code == 200:
 raise ValueError("HiveManager did not return a 200 OK

 response")

It declares a tracker , which keeps track of changes to field values. Specifically, we are
interested in whether the value of enabled changes over time. The reasoning will become
apparent.

In addition to a series of fields, it declares a foreign key to the FeideIdentity model. The
argument passed to the on_delete parameter dictates what should happen to the
DeviceRegistration when the FeideIdentity it is related to is deleted. CASCADE dictates that
the DeviceRegistration should also be deleted. The value of related_name dictates how a
reverse lookup is performed. By setting it to “device_registrations”, we are able to find all the
related DeviceRegistration objects using the device_registrations attribute that is
created for the FeideIdentity model.

The save method of a model is called when an instance is created or updated (unless it is
updated or bulk-created using a QuerySet, but that is beyond the scope of this document).
This save method checks if the registration has been disabled by consulting with the field
tracker. If so, the delete_from_hive_manager method is called.

delete_from_hive_manager works similarly to the HiveManagerAdapter class, but
performs two requests (neither of which is a POST request). The first request queries
HiveManager in order to get a “list” of identities matching the username. Because we add a

91/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 92/101

timestamp to the username, we can be confident that it is unique; only one result will be
found. We retrieve the id value of this result. We need this value in order to delete the user.

Keep in mind that a user in this context really means a registered device in HiveManager.

Next, a DELETE request is sent to the same endpoint. The id of the user is provided in the
query parameters. This results in the user being deleted from HiveManager, rendering the
user’s PSK invalid.

These models were defined in the models module of the connect app.

The creation of these models results in a database state change. Such changes are kept
track of using what is called migrations in Django. These are files with instructions on exactly
how the database should be altered to be run in sequence. These migrations can be found in
the migrations package of the connect app.

Django features built-in templates and frameworks specifically for admin dashboards that
simplify administrative tasks. Therefore, we only need to perform minimal customization of
the admin dashboard. We decide which models should be featured on the dashboard by
creating model admin classes and registering them. This is how we did it:

In a module named admin.py in the connect app, we first added the following class:

@admin.register(FeideIdentity)
class FeideIdentityAdmin(admin.ModelAdmin):

list_display = ['feide_user_id', 'name']
search_fields = ['feide_user_id', 'name']

@staticmethod
def disable_all_devices(_instance, _request, queryset):
 for feide_identity in queryset:
 for device_registration in \

feide_identity.device_registrations.all():
 if device_registration.enabled:
 device_registration.enabled = False
 device_registration.save()

actions = ('disable_all_devices',)

The @admin.register decorator tells Django that we wish to add this model admin to the
dashboard. The argument, FeideIdentity , tells Django that this model admin will be used
to manage the FeideIdentity table.

The dashboard allows us to see objects in a list, or individually in a more detailed manner.
The list_display attribute says which attributes should be displayed in the list. The
search_fields attribute says which fields should be searchable.

We defined a disable_all_devices method, which (as all Django admin actions)
accepts, among other things, a queryset. This queryset is a representation of an SQL query

92/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 93/101

which will be lazily executed (meaning it will be executed when the results are accessed for
the first time). This queryset contains all the rows that were selected before this action was
executed. For each FeideIdentity that was selected, we iterate through the related
DeviceRegistrations. If the DeviceRegistration is not already disabled, we disable it and save
it. When saving it, we trigger the delete_from_hive_manager method as described.

We add this action to the dashboard by setting the actions attribute, including the method.

The admin dashboard can be accessed, by default, at hostname.tld/admin/ . In our case, it is
located at api.environmentname.tld/admin/ . We sign in using a superuser, which we created
using the following command:

python manage.py createsuperuser
--settings=uninett_api.settings._environment

This is the login screen:

Here is a section of the page we are presented with after authorization:

Please ignore the presence of Device registrations for now.

Clicking on Feide identities , we can see the following:

93/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 94/101

The Feide identity was redacted before the screenshot was made. If we click on the entry, we
can also see the user’s email address as well.

If we select rows and choose an action of the Action list, we can perform the following
actions:

Both will have the same effect (due to a signal receiver that handles the deletion of objects,
which will be explained shortly), but the Disable all devices option does not delete any
objects: It only marks them as disabled.

94/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 95/101

Before we continue, we should explain the following:

● How the identity was created,
● How we added the Device registration model admin, and
● How the deletion of these objects is handled.

As mentioned in the Future possibilities subchapter of Discussion , the creation of any
necessary database objects can be performed in the finalize_response method of
ConnectView. We have overridden this method thusly:

def finalize_response(self, request, response, *args, **kwargs):
 if response.status_code == status.HTTP_201_CREATED:
 hive_manager_id = response.data['username']
 response.data = response.data['psk']
 session = Session.objects.get(

pk=self.authentication_data['session_key']
).get_decoded()

 user_data = get_user_data(
access_token=session['access_token']

)
 name = user_data['name']
 email = user_data['email']
 feide_username = user_data['userid_sec'][0]

 feide_identity, _created = FeideIdentity.objects.get_or_create(

feide_user_id=feide_username
)

 if feide_identity.name != name \
or feide_identity.email != email:

 feide_identity.name = name
 feide_identity.email = email
 feide_identity.save()

 device_description = self.generation_options['device_type']
 psk = response.data
 DeviceRegistration.objects.create(

feide_id=feide_identity,
device_description=device_description,
psk=psk,
hive_manager_id=hive_manager_id

)

 return super().finalize_response(request, response,

 *args, **kwargs)

It should be mentioned at this point that we had the HiveManagerAdapter return a response
in the following format:

{
“psk”: “xxxxxxxx”,
“username”: “username: yymmddhhMMss”

95/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 96/101

}

This is in place of the previous response format (containing only the PSK):

“xxxxxxxx”

The method only performs any logic if the response’s status code is 201 CREATED. We do
not wish to create DeviceRegistration objects if the device was not successfully registered.
First, it extracts the username value of the response data before replacing the response data
with only the PSK. In this way, we have retrieved the HiveManager username without altering
the final response.

Next, it gets the user data from the user’s session. We are interested in the user’s name,
email address and Feide identity. These will be stored in a FeideIdentity object.

The following statement creates a new FeideIdentity with the provided feide_user_id
value unless it already exists (we do not want to create duplicate identities):

feide_identity, _created = FeideIdentity.objects.get_or_create(
feide_user_id=feide_username

)

We do not care whether or not the identity already exists.

If this identity’s stored user data differs from the data just retrieved from Dataporten, we
update the identity with the recently retrieved data.

Next, we get the device description from the generation_options (which was gotten from
the request in the dispatch method). We get the PSK from the response object. These
values will be used to populate the fields of a new DeviceRegistration object. We now have
all the required information for this object:

● The FeideIdentity object (for the foreign key),
● the device description (from the generation options),
● the PSK (from the response data),
● the HiveManager username (extracted from the adapter response), and
● the timestamp of creation (now).

The timestamp will be automatically set.

We create the DeviceRegistration object thusly:

DeviceRegistration.objects.create(
feide_id=feide_identity,
device_description=device_description,
psk=psk,
hive_manager_id=hive_manager_id

)

96/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 97/101

Finally, the modified response (containing only the PSK as expected by the frontend) is
returned.

In summary, this function is called every time a user successfully generates a PSK. It creates
an identity for them in the database (unless it already exists) and creates a
DeviceRegistration object that represents their device and the details about its creation.

The DeviceRegistration model is managed using the following model admin:

@admin.register(DeviceRegistration)
class DeviceRegistrationAdmin(admin.ModelAdmin):

list_display = ['created_at', 'feide_id', 'get_name',
 'get_feide_user_id', 'device_description', 'enabled']

list_select_related = True
list_filter = ['enabled']
search_fields = ['feide_id', 'feide_id__name',

 'feide_id__feide_user_id']

@staticmethod
def disable(_instance, _request, queryset):

 for device_registration in queryset:
 if device_registration.enabled:
 device_registration.enabled = False
 device_registration.save()

actions = ('disable',)

@staticmethod
def get_name(obj):

 return obj.feide_id.name

@staticmethod
def get_feide_user_id(obj):

 return obj.feide_id.feide_user_id

We will only summarize what it does.

The list_display attribute accepts not only database column names, but also function
names. Because we wish to display values of a related object (the FeideIdentity), we must
add the get_name and get_feide_user_id functions, which first retrieve the related
FeideIdentity object before returning that object’s name or feide_user_id values.

We also wish to allow the administrator to filter the results based on whether or not the
device is disabled:

list_filter = ['enabled']

The disable method, which is added as an action, iterates through the selected
DeviceRegistration objects and disables them before saving them. This deletes their
HiveManager entries, rendering the PSKs unusable.

97/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 98/101

Here, we can see a list of devices that we are about to delete:

After the action has been executed, the devices are no longer enabled:

Finally, we must handle the deletion of objects. It should be a universal truth that, if a
DeviceRegistration does not exist, the corresponding PSK should no longer be valid.
Therefore, we need to catch the deletion event of these objects and call the
delete_from_hive_manager method before the objects are deleted from the database.
This can be achieved using signals.

Django implements many signals, but we are only interested in handling the pre_delete
signal. In a signals package, we created a receivers.py module. This module is imported in
the connect app’s AppConfig:

class ConnectConfig(AppConfig):
name = 'connect'

def ready(self):

 from connect.signals.receivers import . # noqa

The # noqa comment simply instructs the editor and any code inspection software to ignore
the occurrence of an unused import statement, as it serves the purpose of making the
receivers accessible.

In this module, the following receiver is defined:

@receiver(pre_delete, sender=DeviceRegistration)
def deleting_device_registration(instance: DeviceRegistration, **_kwargs):

instance.delete_from_hive_manager()

98/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 99/101

This method is called before a DeviceRegistration object is deleted from the database. Note
that there is no need to make a receiver for FeideIdentity on account of the use of the
CASCADE scheme, which ensures that all DeviceRegistrations pointing to the deleted
FeideIdentity is also deleted.

Deviations from the design report

Unnecessary security feature
We considered adding an optional random waiting period before the PSK is generated. This
would make sense if the the timestamp of the request could be used to guess the PSK with
reasonable accuracy, as would be the case if the random number generator used to
generate PSKs was seeded with the current time (often a default setting for random number
generators). However, because of the naturally unpredictable delay when sending requests
from the frontend to the backend, and from the backend to HiveManager, it should not be
possible to do this. We also trust that HiveManager uses a highly secure random number
generator.

Email input field

The frontend designs featured an input field for the user’s email address. Uninett has asked
that we do not allow the user to specify an email address. Instead, we use the email address
associated with the Feide user.

Exception cases
The design report proposed that we should handle the following errors:

● 400 BAD REQUEST
● 401 UNAUTHORIZED
● 403 FORBIDDEN
● 500 INTERNAL SERVER ERROR

In addition to these, we must handle the following:

Case or status code Meaning Resolution

408 The request timed out. May occur
if the server has crashed or is
down.

Display an appropriate
message.

404 Not found. May occur if the Django
application is down.

Display an appropriate
message.

503 Service unavailable. Returned if Display an appropriate

99/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 100/101

HiveManager or Dataporten is not
responding.

message.

Unknown browser
problem

The browser probably does not
support CORS.

Ask the user to try a different
browser.

Reachability of the server

In the design report, it was mentioned that the frontend will be reachable from within the
network. It is, in fact, reachable on the open internet, because we migrated to Amazon Web
Server instances. This was more convenient for testing purposes, and gave us greater
control over the servers.

Checking of support for cookies
The design report postulated that “... our Feide-specific solution will require additional views
that handle, among other things, the verification that the client supports and accepts the
storing of cookies.” Because we pass the session key using query strings instead of using
the conventional means of storing and retrieving sessions, this is no longer a requirement.

Conclusion
After our research into possible solutions to the issue of connecting IoT devices to wireless
networks securely, we have developed designs for a prototype which we have now
developed into a working proof of concept. The results show that the solution is indeed
viable, assuming the necessary alterations and additional functionality are included in the
final implementation. The technology has been largely unproblematic.

During the execution stage, both candidates found themselves occupied with education and
work, meaning every other Monday, most Wednesdays and nearly every weekend were
spent working on the project. Work was done before, during and after staying in Uninett’s
offices. This is a considerable workload that should not be taken lightly, especially in
conjunction with employment. We hope that it has produced a satisfactory result that is
helpful to Uninett and whomever else it may concern. Nevertheless, we have found a new
appreciation for the importance of coordination, thoroughness and embracing new and
emerging technologies.

The conclusion of this report marks the end of the execution stage. The three reports
produced thus far will be accompanied by a final report that reflects on the entirety of the
project and summarizes various aspects of the planned solution and the actual solution
developed.

100/101

5/20/2019 Execution report - Google Docs

https://docs.google.com/document/d/1eWByPvschZANAhc9mZ6uooKdzcJ2EyTZBtGPDiNSqIw/edit# 101/101

Bibliography
Tuomi, J. (2018, October 9). Getting a React + Django App to Production on DigitalOcean
with Travis, Caddy and Gunicorn. Retrieved April 19, 2019, from
https://medium.com/@jans.tuomi/getting-a-react-django-app-to-production-on-digitalocean-wi
th-travis-caddy-and-gunicorn-5c397383fcd5?fbclid=IwAR0PXHp3Iph0VWYH3iJ6ep6HN_u0q
WQcYwoZzGxxOxQXBhsQ5uQbJr6Crok

Wi-Fi Alliance. (2018, January 8). Wi-Fi Alliance® introduces security enhancements | Wi-Fi
Alliance. Retrieved April 25, 2019, from
https://www.wi-fi.org/news-events/newsroom/wi-fi-alliance-introduces-security-enhancements

Aruba Networks. (n.d.). Secure Access with Aruba ClearPass: BYOD Network Security
Solutions [Product page]. Retrieved May 5, 2019, from
https://www.arubanetworks.com/products/security/network-access-control/secure-access/

European Parliament. (2016, April 27). REGULATION (EU) 2016/679 OF THE EUROPEAN
PARLIAMENT AND OF THE COUNCIL (General Data Protection Regulation). Retrieved May
7, 2019, from
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679

101/101

https://medium.com/@jans.tuomi/getting-a-react-django-app-to-production-on-digitalocean-with-travis-caddy-and-gunicorn-5c397383fcd5?fbclid=IwAR0PXHp3Iph0VWYH3iJ6ep6HN_u0qWQcYwoZzGxxOxQXBhsQ5uQbJr6Crok
https://medium.com/@jans.tuomi/getting-a-react-django-app-to-production-on-digitalocean-with-travis-caddy-and-gunicorn-5c397383fcd5?fbclid=IwAR0PXHp3Iph0VWYH3iJ6ep6HN_u0qWQcYwoZzGxxOxQXBhsQ5uQbJr6Crok
https://medium.com/@jans.tuomi/getting-a-react-django-app-to-production-on-digitalocean-with-travis-caddy-and-gunicorn-5c397383fcd5?fbclid=IwAR0PXHp3Iph0VWYH3iJ6ep6HN_u0qWQcYwoZzGxxOxQXBhsQ5uQbJr6Crok
https://medium.com/@jans.tuomi/getting-a-react-django-app-to-production-on-digitalocean-with-travis-caddy-and-gunicorn-5c397383fcd5?fbclid=IwAR0PXHp3Iph0VWYH3iJ6ep6HN_u0qWQcYwoZzGxxOxQXBhsQ5uQbJr6Crok
https://www.wi-fi.org/news-events/newsroom/wi-fi-alliance-introduces-security-enhancements
https://www.wi-fi.org/news-events/newsroom/wi-fi-alliance-introduces-security-enhancements
https://www.arubanetworks.com/products/security/network-access-control/secure-access/
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679

5/20/2019 Final report - Google Docs

https://docs.google.com/document/d/1C7zX1_R04dfSRcNYbCMo1GCUQH3sI_gJDVtWa_NdATY/edit# 1/11

AUTHENTICATION IN THE INTERNET OF THINGS

Final report

Part of a Bachelor’s thesis
Presented to the Institute of computer technology and informatics

of the Norwegian University of Science and Technology
by Magnus Bakke & Liang Zhu

Submitted in partial fulfillment for Bachelor’s degree of
Informatics with specialization in network administration

during the year 2016–2019

1/11

5/20/2019 Final report - Google Docs

https://docs.google.com/document/d/1C7zX1_R04dfSRcNYbCMo1GCUQH3sI_gJDVtWa_NdATY/edit# 2/11

Preface
We, the authors — Magnus Bakke and Liang Zhu — are students of the Norwegian
University of Science and Technology (NTNU), where we study Informatics with
specialization in systems administration. We are pleased to present this final report, which
marks the end of the finalization stage and indeed this Bachelor’s thesis. After 19 weeks of
working on our thesis, we have learned more in such a short amount of time than ever
before. We could not have hoped for a more relevant and exciting assignment.

This document succeeds three previous reports: The research report, the design report, and
the execution report. We recommend reading these documents in the stated order if you
have not already and the contents of this document interests you.

We hope our hard work will be useful.

Acknowledgements
We would like to thank to acknowledge all those who have helped and supported us.

First and foremost, we would like to extend our gratitude to Uninett AS — especially Jørn
Åne de Jong, Tom Ivar Myren and Otto Wittner — for approving our request to write our
thesis on their assignment Authentication in the Internet of Things , and for giving us
guidance, direction and office space throughout the project period.

Stein Meisingseth of NTNU has been an excellent supervisor who has provided structure,
encouragement and advice that we have benefited greatly from.

We would like to sincerely thank Aerohive Networks for taking an interest in our project and
lending us integral hardware. Special thanks go to Jonas Mellander of Aerohive Networks for
a highly informative demonstration of HiveManager, and to Fanny Carlson for responding to
and approving our request, and for coordinating our communications with Aerohive.

We are grateful for the interest taken in our project by Anders Lagerqvist and Tore Henriksen
of Aruba.

Finally, we would like to thank Vidar Kværnø Stokke for his interest in our project, and for
providing us with hardware for testing.

2/11

5/20/2019 Final report - Google Docs

https://docs.google.com/document/d/1C7zX1_R04dfSRcNYbCMo1GCUQH3sI_gJDVtWa_NdATY/edit# 3/11

Contents
Preface 2

Acknowledgements 2

Contents 3

Case summary 4

Method 5

Execution 7

Future developments 10

3/11

5/20/2019 Final report - Google Docs

https://docs.google.com/document/d/1C7zX1_R04dfSRcNYbCMo1GCUQH3sI_gJDVtWa_NdATY/edit# 4/11

Case summary
Demand for IoT devices in enterprise settings is on the rise. Therefore, Uninett AS posted an
assignment named Authentication in the Internet of Things . This assignment caught our
attention as an opportunity to learn about the security problems of IoT and how they might be
solved. Uninett approved our application.

Uninett AS is the state-owned company that provides Norwegian universities, university
colleges and research institutions with internet access and various IT services. We were
supervised by Systems Developer Jørn Åne de Jong of Uninett, and University Lecturer
Stein Meisingseth of the Norwegian University of Science and Technology. Senior Advisor
Tom Ivar Myren and Otto Wittner of Uninett were also heavily involved in the project.

Before going into further detail, we must illuminate the problem. We make the distinction
between personal networks and enterprise wireless networks.

Personal networks are typically used in homes, as well as in many restaurants, cafés and
similar establishments. When connecting to a personal network, the owner of the device to
be connected asks the owner of the wireless network for the password. If the owner of the
network trusts the guest, the password is shared and the guest may connect his or her
devices. This Wi-Fi mode is called WPA2-Enterprise.

A consequence of how Wi-Fi works (and must work) is that this password, or pre-shared key
(PSK), acts as the encryption key for communications, meaning that anyone in possession of
the PSK is able to decrypt the communications of others using the same network. In larger
enterprise settings, this model of trust collapses. In an organization with dozens or more
employees, for example, we cannot assume that the PSK will not be shared with
unauthorized persons, and we cannot know the intentions of each individual. Instead, such
networks should use the WPA2-Enterprise mode. WPA2-Enterprise uses public-key
cryptography for authentication and initial encryption and communication. Using this
encryption scheme, a unique, dynamically generated encryption key can be communicated,
and this key can be used for further communication. This ensures that no user is able to
monitor another user’s communications. This also acts as a strong authentication scheme.

The problem is rooted in the fact that IoT devices typically do not support WPA2-Enterprise.
They often only allow the user to supply a password and preferred SSID. The consequence
is that a wireless network containing IoT devices cannot use the secure WPA2-Enterprise
mode of WPA2.

The assignment asked us to investigate options for authentication infrastructure in IoT
applications. This involves conducting a survey of available solutions and technologies and,
if possible, identifying and analyzing solutions that are suitable for deployment and use in the
Norwegian academic network. The assignment calls for the development of a proof of
concept. Finally, the feasibility of the proposed solution should be analyzed.

4/11

5/20/2019 Final report - Google Docs

https://docs.google.com/document/d/1C7zX1_R04dfSRcNYbCMo1GCUQH3sI_gJDVtWa_NdATY/edit# 5/11

Method
We prepared several standards, guidelines and goals to aid us in producing a result of
satisfactory quality within the given limitations.

It was decided that we should hold a meeting roughly every weeks. These biweekly meetings
each produced meeting minutes, which will be presented to the stakeholders. The meetings
were an integral part of our method as the attendees often provided valuable feedback,
advice and opinions which would influence subsequent decisions.

Furthermore, it was decided that a summary of activities should be written for each day of
work. These summaries were included in weekly reports, which have been presented to the
stakeholders.

A progress plan for the week was developed at the beginning of each week. These plans
dictated which activities would be conducted during the week.

For the purpose of giving ourselves a better overview of the work that has been done and
still remains to be done, we decided to require that we use a modified version of Scrum. As
the work on tasks progressed, sticky notes representing the tasks were moved to their
appropriate category (open , in progress , review , or done).

We planned four stages for the project: 1) The research stage, 2) the design stage, 3) the
execution stage, and 4) the finalization stage. These stages produced the following
documents respectively:

1. The prestudy report
2. The design report
3. The execution report
4. The final report

We defined goals and a purpose for each stage in the prestudy report. Briefly summarized,
the purpose of each stage was declared thusly:

Stage Purpose

The research stage To conduct a survey of existing technologies, analyze existing
technologies, propose a best suited solution, minimize risk,
analyze financial feasibility, prepare the candidates for subsequent
stages, guide decisions on whether or not to continue down the
current path, and produce the prestudy report.

The design stage To develop detailed plans and designs for how a proof of concept
should be developed, look and feel; to identify and correct
problematic designs, highlight potential security issues that need to
be addressed, and produce the design report.

The execution stage To develop the proof of concept according to designs; to test,

5/11

5/20/2019 Final report - Google Docs

https://docs.google.com/document/d/1C7zX1_R04dfSRcNYbCMo1GCUQH3sI_gJDVtWa_NdATY/edit# 6/11

optimize, and extend the developed proof of concept according to
goals and requirements, and to produce the execution report.

The finalization stage To make any necessary amendments to previous reports, ensure
correct formatting, prepare documents for submission, evaluate
our achievements compared to goals and requirements defined in
the research stage, and to summarize these findings, as well as
the entirety of the project (briefly), in the final report.

The information collected in the research stage exists solely on the internet. Sources for
information and statements that are not common knowledge and accepted facts have been
cited. Sources were found with the help of search engines, and relevant sources were
compiled for later usage.

The prestudy report included a risk analysis, which affected the scope of the subsequent
stages. Specifically, it reduced the scope in order to minimize the risk of overly ambitious
designs.

The hours spent working on the project was recorded in a spreadsheet for each candidate.
Hours were grouped by date, and each date was accompanied by a short description of the
nature of the activities. These spreadsheets will be presented to the University.

An agreement between Uninett AS, the candidates, and NTNU was prepared and signed by
these acting parties. This agreement specified how the product and reports may be used by
Uninett, the students, NTNU and external stakeholders.

The candidates divided work amongst themselves based on whom is more qualified to
complete the task. In general, the candidates would agree on which tasks must be
completed (according to the progress plan and Scrum board), and each candidate would
complete one task each simultaneously. Guidance was provided by the other candidate
when needed.

6/11

5/20/2019 Final report - Google Docs

https://docs.google.com/document/d/1C7zX1_R04dfSRcNYbCMo1GCUQH3sI_gJDVtWa_NdATY/edit# 7/11

Execution
Throughout the three first stages of the project, we researched, designed and developed
what we perceive to be the optimal possible solution.

We set up a testing server and a production server running Ubuntu 18.04 LTS for the proof of
concept. On these servers, we installed Caddy and gunicorn. Caddy serves HTTP requests,
and gunicorn proxies these requests to a Django REST framework project, which we will
refer to as the backend. Caddy also serves a static HTML document with JavaScript that we
will refer to as the frontend.

The solution is summarized thusly:

When users visit the frontend, they are redirected to Dataporten, our Identity Provider, for
authentication on their Single Sign-On (SSO) page, unless they are already authenticated.
After authenticating on the SSO, the user is redirected to the backend, where data about the
Dataporten/Feide account is stored in the user’s session. This data includes the user’s
name, email address, and a unique Feide identifier. The user is then redirected back to the
frontend. This time, the user is found to be authenticated, the form containing input fields for
the device description and a checkbox for the option of email delivery is shown. When the
user has filled out the form, and validation has passed, the user may click a button to get a
new PSK for the IoT wireless network.

The backend, which was built using the Python framework Django REST framework, accepts
HTTP requests from the frontend, or rather from the user’s web browser. The backend
expects the request to contain authentication data (a session key) and generation options
(including a description of the device to be connected, as well as a Boolean value indicating
whether or not the user wants the PSK to be delivered by email).

The authentication data (session key) is used to retrieve the user data from the user’s
session. Dataporten is queried to verify that the authentication is not expired.

After successful authentication, the generation options data in the request body is formatted
and sent to HiveManager’s API, which generates a new PSK and returns it to the backend.
This PSK, along with the Feide user data, is stored in a FeideIdentity object in the database.
A DeviceRegistration object is created as well, and the PSK and generation options is stored
in it. The Feide identity that registered the device is also recorded here. This allows
administrators to view registered identities and associated devices in what we call the
administrative dashboard, which allows the administrator to disable some or all devices of
any user.

The PSK is returned to the frontend and displayed to the user. If the user selected the email
delivery option, the PSK is also delivered via email.

The development of this proof of concept required extensive research, planning and testing.
In the research stage (which produced the prestudy report), we developed the following
progress plan:

7/11

5/20/2019 Final report - Google Docs

https://docs.google.com/document/d/1C7zX1_R04dfSRcNYbCMo1GCUQH3sI_gJDVtWa_NdATY/edit# 8/11

This progress plan has mostly been followed. However, the prestudy report also included a
goal that stated that there should be no deviations from the progress plan exceeding three
days.

This report is being written in week 20. In other words, there is a four week discrepancy
between the progress plan and the actual process. A similar delay is recorded for the
execution report. These delays were caused by unexpected difficulties.

Another goal stated that the project should be completed at least three days before the
deadline of May 20th. At the time of writing, the date reads May 19th. We would like to stress
that these goals are ideals, and not critical to the success of the project, unlike the functional
and non-functional requirements.

Except for these two process goals, the remaining process goals were met. These are the
remaining process goals:

● 500 (+/- 5%) hours spent per candidate
● Zero disputes/conflicts between the candidates
● Documentation of every major activity and decision

Both candidates are well within the 500 (+/- 5%) hour requirement. We have experienced
zero disputes or conflicts; we have experienced harmony in direction, activities, decisions
and goals. Every major decision has been documented in the research, design and
execution reports, as well as meeting minutes and weekly reports.

8/11

5/20/2019 Final report - Google Docs

https://docs.google.com/document/d/1C7zX1_R04dfSRcNYbCMo1GCUQH3sI_gJDVtWa_NdATY/edit# 9/11

Regarding the performance goals, these were met as well:

● Achieve internet connectivity for IoT devices in less than two minutes
● Achieve an average upload and download speeds greater than 80% of those

normally achieved on Uninett’s network
● Experience no more than 120% the amount of drops to less than 20% of the average

download/upload speed compared to a non-IoT connection

It is worth mentioning that the latter two goals were not tested continuously. Speedtests were
performed twice. Because we did not proceed with the “hotspot solution”, which was
proposed as an alternative in the prestudy report, we did not anticipate noticeable
degradation in performance. We frequently generated PSKs and connected devices in less
than 30 seconds.

The prestudy report also included a risk analysis, which concluded that we should maintain a
high degree of minimalism in order to mitigate the risk of overly ambitious designs. As a
result, we have been able to complete the proof of concept within the time frame of the
project. We have sacrificed many proposed functions and use cases (as described in the
Future developments chapter) in order to develop a minimum viable product. We believe that
demonstrating the feasibility of the solution is more important than approaching a solution
that is truly ready for full scale deployment. Perhaps as a result of our risk analysis, we have
not encountered any emergencies.

The following (all) functional requirements have been met:

● Users may bring their own IoT devices to the premises and achieve internet
connectivity

● The user responsible for abuse should be identifiable
● The communication between a device and the access point should be encrypted and

visible only the the user who connected the device
● The solution must allow the user to authenticate using their institutional credentials
● Each user must be given a unique PSK
● PSKs must be generated automatically on demand
● Roaming between access points
● A custom dashboard for requesting PSKs

Additionally, the following (all) non-functional requirements have been met:

● The solution should be financially feasible
● The solution should not cause harmful interference
● The solution should not cause excessive administrative work
● The solution should not require significant changes to network architecture
● The solution needs not be ready for large-scale deployment, but it should be easy to

prepare for such deployment

The prestudy report stated that the reports should preferably be formatted using LaTeX. We
did not find time for this. This was not a critical requirement.

9/11

5/20/2019 Final report - Google Docs

https://docs.google.com/document/d/1C7zX1_R04dfSRcNYbCMo1GCUQH3sI_gJDVtWa_NdATY/edit# 10/11

In summary, we developed almost exactly the planned solution. The only deviations from the
initial plans pertain to process goals. Due to unexpected problems — especially the
configuration of Apache (which we later abandoned in favor of Caddy) — resulted in
significant delays. Therefore, we were unable to achieve the ideal goal of delays of no more
than three days.

Future developments
In the execution report, we discussed several possible developments that could make the
solution better suited for large scale deployment.

First and foremost, we propose extended functionality for the administrative dashboard.
Currently, administrators can sign in to the admin dashboard and view registered users and
devices. A minor change to the admin class (please see the execution report for more
details) would provide a better overview of which devices are registered by which users.
Furthermore, it would be beneficial to record and maintain the updated IP address of the
device at all times, so that the owner of a device found to exhibit malicious behavior could be
identified without using HiveManager.

By recording the identities and devices of a user, the authenticator could inspect the
database when deciding whether or not the user should be authorized to generate a PSK.
One condition that could be required is that the user has fewer than ten devices, for
example.

The execution report also recommended that a dashboard be developed for users as well, so
that they can view and manage their own devices. In conjunction with a limitation on the
number of PSKs a user may generate, the user may remove existing devices to make room
for new ones. This gives the user an incentive to remove unused PSKs.

The recording of identities and device associations also enables us to delete PSKs
associated with past students or employees who are no longer affiliated with the
organization.

It would be desirable to implement restrictions regarding which devices are allowed to be
connected to the IoT network. Aruba implements technology that they claim is capable of
identifying the type of connected devices. The possibility of using this technology to restrict
which devices may be connected to the IoT network should be investigated. This is desirable
because the proof of concept makes it convenient to choose the IoT network instead of
eduroam.

The execution report also recommended using a different email server. Currently, the PSK (if
delivered by email) is sent from HiveManager. It is beneficial to separate the PSK provider
from the user entirely; the user should not be aware of which service is being used. This
decoupling allows us to switch providers without users noticing, and also allows us to
customize emails fully, and to send the email containing the PSK from an institutional email
address instead of one owned by Aerohive.

10/11

5/20/2019 Final report - Google Docs

https://docs.google.com/document/d/1C7zX1_R04dfSRcNYbCMo1GCUQH3sI_gJDVtWa_NdATY/edit# 11/11

Lastly, we recommend investigating possible solutions based on WPA3. If traceability is not a
priority, WPA3 can provide end-to-end encryption that ensures the confidentiality of
communications, even on “open” networks.

11/11

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f I

nf
or

m
at

io
n

Se
cu

ri
ty

 a
nd

C
om

m
un

ic
at

io
n

Te
ch

no
lo

gy

B
ac

he
lo

r’
s

pr
oj

ec
t

Magnus Bakke, Liang Zhu

Authentication in the Internet of
Things

Bachelor’s project in Information Technology with specialization
in Network administration
Supervisor: Stein Meisingseth

May 2019

