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1 Problem Description

As shown in [2], the network flow decision problem can be formulated as the following
Mixed-Integer Nonlinear Programming Problem:

max.
x,y

cTx

s.t. Aeq[x y]T = beq

A[x y]T ≤ b

hi(x) = 0, i = 1 . . . p

xlb ≤ x ≤ xub

x ∈ Rn, y ∈ {0, 1}m

(P1)

where x is a vector of continuous variables and y is a vector of binary decision variables.
Here, the structural constraints of the network, such as the mass balance equations, are
given by a polyhedron (linear constraints). The nonlinear equality constraints, hi(x) = 0,
represent the simulators and nonlinear maps of individual components in the network. This
can for instance be a pressure loss correlation over a pipeline or the nonlinear relation
between GOR and flow rates of a well. Note that each hi(x) is considered to be an unknown
and non-factorable function. Furthermore, to comply with all multi-phase simulators it is
reasonable to assume that only the function value of hi(x) can be evaluated and that no
derivative information is available.

When solving P1 each simulator must be called to evaluate the corresponding hi(x). In a
local search it is sufficient to evaluate hi(x) at each iteration, but if a deterministic global
search is attempted the full domain of the simulators must be sampled before optimizing.
The rationale is that to perform decisions in a global sense the optimization algorithm must
have at least one global bound on each hi(x).1

Problem P1 can be approximated by pre-sampling the nonlinear functions hi(x) and replac-
ing them with calls to an interpolation procedure. The optimization algorithm can then
work independently of the simulators – promoting speed at the cost of accuracy. If upper
and lower bounds on the interpolated functions are known the approximated problem can
be solved by a global optimizer. The resulting solution can then be used as the starting

1A Stochastic global optimization may not require bounds on the nonlinear functions, only their domains.
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point in a local search that utilizes the simulators directly and maintains feasibility of P1.
This is similar to the optimization procedure proposed in [1].

Previous studies [2, 3] show that linear interpolation is unsuited for optimization purposes
due to its non-smooth nature. It is therefore of interest to look for other interpolation
methods that may be suitable for an optimization approach like the one outlined above.

2 Assignments

The candidate is given the following assignments:

• Perform a brief literature study on global optimization of MINLP problems, convex
and non-convex. The study should be focused on sub topics relevant for solving the
network flow problem (e.g. Branch-and-Bound).

• Write a survey on interpolation methods for regular and irregular grids (scattered
data). The survey should include only interpolation methods that produce continu-
ous first-order derivatives. The closely related topic of efficient sampling techniques
should be covered, albeit to a lesser extent. Discuss applicability of sampling and
interpolation, as surrogates for nonfactorable (black-box) functions, in the context of
mathematical programming. Utilization of interpolation in global optimization, where
generation of upper and lower bounds are required, should be included in the discus-
sion. Interpolation methods of interest are to be compared in terms of suitability in
optimization and computational efficiency. The survey should produce an advisory
summery of the selected interpolation methods.

• Implement and perform a computational study of the suggested algorithm, with the
preferred interpolation method, on a network flow problem. The algorithm should be
compared against a local optimization approach in terms of speed and robustness.

References

[1] Clifford A. Meyer, Christodoulos A. Floudas, and Arnold Neumaier. Global optimization
with nonfactorable constraints. Ind. Eng. Chem. Res., 2002.

[2] Anders Sandnes. Final Year Project Report: Formulation and Optimization of a Network
Flow Problem with Sampled Nonlinearities. NTNU, 2012.

[3] Sheri S. Shamlou and Stine Ursin-Holm. Final Year Project Report: Comparative
Study of Optimization Solution Techniques – Applied to Petroleum Production Prob-
lems. NTNU, 2012.

2



Abstract

The tensor product B-spline is applied in global solution of approximated mixed in-
teger nonlinear programs, exploiting the special structure of the B-spline to create
convex relaxations in a Branch-and-Bound framework. The main application con-
sidered is the short-term oil production optimization problem, were one of the fun-
damental challenges is to replace the nonlinear simulator models with more con-
veniently manipulated approximations. Representing the network structure analyt-
ically allows for a decoupling of large simulator models into smaller, manageable
components that can be replaced individually. The suggested method is applied to
a real production case and a classic academic problem. The results presented are
of both theoretical and practical interest and indicate that the method has potential
and is worthy of further investigation.
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Sammendrag

Tensor produkt B-spline er anvendt i global løsning av tilnærmede ulineære heltall-
sprogrammer, hvor den spesielle strukturen i B-spline representasjonen er utyttet
til å lage konvekse relakseringer til bruk i et Branch-and-Bound rammeverk. Hov-
edapplikasjonen som utforskes er optimering av oljeproduksjon over en kort tid-
shorisont. En av hovedutfordringene her er å erstatte simulatorene som er brukt
til å modellere systemet med tilnærminger som er enklere å manipulere. Analytisk
representasjon av nettverkstrukturen åpner får å dekoble store simulatormodeller i
mindre, håndterbare komponenter som kan erstattes enkeltvis. Metoden er anvendt
på et virkelig produksjonsproblem og på et klassisk akademisk problem. Resultatene
er av både teoretisk og praktisk interesse, og antyder at metoden har potensial for
videre utvikling.
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Chapter 1

Introduction

As with everything else in life, oil production can be formulated as a really difficult
mathematical optimization problem. In this thesis we take a look at one particular
class of oil production problems, namely, the short-term production optimization
problem. This chapter will introduce the topic of oil production optimization and
go through the content of this thesis.

1.1 Background and Earlier Work

Optimization is performed at many levels in the oil production management hier-
archy. The different levels consider different aspects of the production problem and
the problems are defined over different time horizons [Foss, 2012]. The type of prob-
lem considered in this thesis is the optimization of flow through the production net-
work over a short time horizon. Short time will typically be days or weeks, depending
on the individual field.

Quickly summarized, oil is produced by drilling wells into a reservoir, connecting
the wells to pipelines, potentially connecting the pipelines together to form a large
pipe network, then have the pipelines rise up to the surface where the oil is received
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2 CHAPTER 1. INTRODUCTION

and processed before it is transported to its final destinations. Oil production opti-
mization is an attempt to optimize the flow of oil from the wells, through the pipe
network, and up to the topside facilities. In this thesis the discussion will assume
that optimize is synonymous with maximization of oil per time, but this is by no
means a requirement. It could also be to produce at a target rate while minimizing
the usage of gas lift resources or the wear caused by sand particles.

A significant amount of research has been dedicated to oil production optimization
over the past years. Several different approaches have been suggested and tested.
This thesis is concerned with one particular family of methods known as short-term
production optimization. These methods attempt to find the best production strat-
egy by only looking at the system state as it is right now in a intermediate time
scale, ignoring future changes and assuming steady state throughout the pipeline
network. With this simplification there are two major degrees of freedom that can
be optimized. The first is deciding on the routing configuration, which dictates how
the flows can move through the network. The second is how much a individual well
should produce. The production rate can be controlled by either choking the flow
back by closing a valve or boosting the flow by injecting gas to raise the flow po-
tential. The later being referred to as gas lift. The flow is pressure driven and the
relationship between flow, pressure and pressure drop is modelled in multi-phase
flow simulators. The input-output relationships of these simulators can be quite
complex and it is difficult for a solver to work directly with a black-box function like
this. A key step towards making the problem easier to solve is to break down the
large black-box representing the entire network into smaller pieces that represent
individual network components and then tie these together using explicit mass and
momentum balance constraints. Examples of such formulations can be found in
[Gunnerud et al., 2012] and [Kosmidis et al., 2005]. The next step is then to replace
the now small simulator components by a approximating functions, that captures
the essence of the simulator input-output relationship while allowing for more con-
trol in terms of extending the function domain and enforcing properties that are
beneficial for a numerical solver. This is done by sampling the simulator, creating
datasets covering the relevant variable values, and feeding the data to a interpola-
tion or approximation scheme. The simulator is then replaced by the approximation
in the actual problem formulation. The solution found by the solver is then taken
back to the original simulators and adjusted to account for approximation errors. A
optimization problem formulated this way is a network flow decision problem with
sampled nonlinearities, which also happens to be the title of this thesis. A broad
range of approximation methods has been tried and tested for solving this type of
problem, some successful others less so, and there is still uncertainty related to how
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the simulators should be replaced. The replacement strategy will typically depend
on the solution strategy (or the other way around). Different strategies lead to differ-
ent types of solutions and there is a natural trade-off between solution time, solution
quality and the solver complexity. Results from a selection of different algorithms
can be found [Gunnerud & Foss, 2010] and [Shamlou & Ursin-Holm, 2012].

This thesis will attempt to shed some new light on how the simulators can be re-
placed with both local and global optimization in mind.

1.2 Problem Assignment and Interpretation

This section will go through the problem description and give my interpretation of
the items involved. This will be the basis for the rest of the thesis.

The first problem assignment is:

Perform a brief literature study on global optimization of MINLP prob-
lems, convex and non-convex. The study should be focused on sub
topics relevant for solving the network flow problem (e.g. Branch-and-
Bound).

This is a standard literature study assignment that will be covered in the theory sec-
tions of this thesis. The topics that will be given attention are the ones that will put
the work done here into a broader theoretical context and aid the discussions later
in the thesis. The write up on these topics will for the most part be rather short. The
exception being convex relaxations, which will be introduced in some detail as it is
quite central for the entire thesis.

The second problem assignment is:

Write a survey on interpolation methods for regular and irregular grids
(scattered data). The survey should include only interpolation meth-
ods that produce continuous first-order derivatives. The closely related
topic of efficient sampling techniques should be covered, albeit to a
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lesser extent. Discuss applicability of sampling and interpolation, as
surrogates for nonfactorable (black-box) functions, in the context of math-
ematical programming. Utilization of interpolation in global optimiza-
tion, where generation of upper and lower bounds are required, should
be included in the discussion. Interpolation methods of interest are to
be compared in terms of suitability in optimization and computational
efficiency. The survey should produce an advisory summery of the se-
lected interpolation methods.

The motivation behind this assignment is that the problems of interest are described
by black-box simulators that act as oracles, meaning that we can only query for func-
tion values at points. This query procedure can be both time consuming and unpre-
dictable. Time consuming because it is a complex simulator that must be invoked.
Unpredictable because the simulators are only calibrated for a limited range of input
values and the numerical solvers may want to venture outside these regions while
iterating. It has therefore been established that it is desirable to replace the simula-
tors by approximations during the actual optimization steps. Various methods have
been applied here, but they tend fall in one of two categories: easy to implement
and difficult to solve, or tedious to implement and easy to solve. The ultimate goal
is thus to find a method that, hopefully, gets the best of both worlds.

The assignment calls for a survey on interpolation methods. Seeing that interpola-
tion is an amazingly diverse topic, it would not be possible to cover all individual
methods in detail. In this thesis I will attempt to address this assignment by first
introducing the general function approximation problem and point out the main
challenges. Then proceed with a look at the most common assumptions that can
be made and introduce the families of techniques that these assumptions lead to.
Focus will be on two extremes on the assumption scale, namely scattered and grid
structured data sets. Examples will be provided of the most relevant techniques to
illustrate their properties. The discussion will be kept in the light of oil production
optimization.

The assignment also calls for a discussion on sampling techniques. Two questions
are relevant here. The first is how the data samples are structured and this is covered
when discussing the various methods. The second question is when the samples are
generated. This is basically about whether all the samples are generated upfront,
before the optimization begins, or during the optimization, updating the approxi-
mation locally as the solver iterates. This will be discussed briefly in the context of
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local and global optimization.

The third problem assignment is:

Implement and perform a computational study of the suggested algo-
rithm, with the preferred interpolation method, on a network flow prob-
lem. The algorithm should be compared against a local optimization
approach in terms of speed and robustness.

This part of the thesis will test the most promising method form the previous assign-
ment and discuss it in terms of local and global optimization.

1.3 Structure of the Thesis

This thesis has 10 chapters, starting of with this introductory chapter which covers
earlier work, background and motivation. It then continuous with some theoretical
chapters, dealing with numerical optimization in Chapter 2, general function ap-
proximation in Chapter 3, specifics on the suggested interpolation method in Chap-
ter 4, and the network flow problem in Chapter 5. The branch and bound solver
developed and used in this thesis it then described in Chapter 6 and this serves as
the method chapter of the thesis. This is followed by two chapters presenting the
results; with Chapter 7 covering the function approximation results and Chapter 8
covering the optimization results. Finally, a discussion is given in Chapter 9 and a
conclusion in Chapter 10.
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Chapter 2

Numerical Optimization

Numerical optimization is the art of solving a certain type of mathematical program-
ming problem using a computer. This is different from solving them by hand, be-
cause a computer has a very limited set of mathematical operations at its disposal.
One of the few things it can do is to solve a set of linear equations Ax = b. A numer-
ical solver will typically generate and solve such equation sets until enough infor-
mation has been gathered to draw a conclusion. The time it takes for a computer to
solve a problem depends, roughly speaking, on two things: the size of the problems
and the number of problems. The ultimate goal obviously being to strike the per-
fect balance between the complexity of each problem and the number of problems.
Some solvers aim to take few, but significant steps, while others intend to use many
cheap steps instead. The best strategy is problem dependent. This chapter will go
through some of the basics of numerical optimization that will be useful for the dis-
cussions later. Most of the information given here can be found in both Numerical
Optimization by Nocedal and Wright[Nocedal & Wright, 2006] and in Convex Op-
timization by Boyd and Vandenberghe [Boyd & Vandenberghe, 2004], if not, other
sources will be provided.

7



8 CHAPTER 2. NUMERICAL OPTIMIZATION

2.1 Mathematical Formulation and Notation

In this thesis optimization problems will be stated as

minimize f (x)

subject to ci (x) ≤ 0, i ∈ I

ci (x) = 0, i ∈ E

xi ∈ Z, i ∈ Z

x ∈ X ,

(2.1)

with I , E and Z being sets of indices. In this formulation X is a vector space where
the optimization problem is defined and x is the optimization variable. In this thesis
X will always be a subset of Rn . The goal is to minimize the objective function f :
X 7→ R while satisfying the constraint functions ci : X 7→ R and the integer constraints
xi ∈ Z. A vector x ∈ X is called feasible if it satisfies all the constraints. The set of
feasible points is called the feasible region and is defined as

XF = {x |x ∈ X ∧ ci (x) ≤ 0, i ∈ I ∧ ci (x) = 0, i ∈ E ∧ xi ∈ Z, i ∈ Z }. (2.2)

A vector x is called infeasible if x ∉ XF . A vector x∗ ∈ X is called globally optimal if
f (x∗) ≤ f (x) for all x ∈ XF and locally optimal if f (x∗) ≤ f (x) for all x ∈ XN

⋂
XF

where XN is a neighbourhood of x∗. For the problem to be well defined the search
space X must be a subset of the domain of all functions involved in the constraints
and the objective, that is

X ⊆ dom f , X ⊆ domci , i ∈ E ∩ I . (2.3)

and will in all cases relevant cases be given as box constraints on the variables:

X = [
x1, x1

]× [
x2, x2

]×·· ·× [
xn , xn

]
, (2.4)

where xi is the lower bound and xi the upper bound describing the valid interval
for variable xi . This is often stated as x ≤ x ≤ x, with the inequalities interpreted
elementwise.

The problem in 2.1 is called a Mixed Integer Non-Linear Program (MINLP). In its
most general form it is a non-convex optimization problem. This typically means
it is hard to solve. A interesting and useful class of problems are the convex opti-
mization problem. Problem 2.1 is convex if the objective and all the inequality con-
straints are convex, the equality constraints are linear (affine) and no variables are
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integer constrained. In other words;

∇2 f i (x) ≥ 0, (2.5)

∇2ci (x) ≥ 0, i ∈ I , (2.6)

∇2ci (x) = 0, i ∈ E , (2.7)

Z =;. (2.8)

Informally speaking convex optimization is the optimization of a convex objective
function over a convex feasible region. Convex problems are nice, because they can
be solved fast and reliably. They are also nice because their solutions arrive accom-
panied by strong statements, such as, if the solution is locally optimal it is globally
optimal also. The same goes for infeasibility, if a problem appears to be locally in-
feasible, it is actually infeasible and the problem must either be discarded or refor-
mulated. These features makes the convex problems very attractive to solve. Two
special cases that are worth mentioning are the convex Quadratic Programs (QP)
and the Linear Programs (LP). A convex QP is a problem where all constraints are
linear functions and the objective is a convex quadratic function. If the objective
function is linear as well the problem is an LP. The rest of this chapter will assume
the objective function is convex. This can be done without loss of generality, because
a non-convex objective can always be changed into a linear objective by introducing
a new variable t and a constraint c(x) = f (x)− t ≤ 0 and minimizing t . This is known
as the epigraph form of a optimization problem.

There are two ways a optimization problem above could be presented to a solver.
One is the parameter description, which would give explicit descriptions of all func-
tions involved through a predefined parameter list (e.g. a matrix). The other is the
oracle , or black-box, description, which only provides the functions as subroutines
that can be evaluated accompanied by some additional information such as the do-
main and possibly properties like convexity. A parameter description can obviously
be changed into a oracle description, but a oracle cannot necessaries be represented
parametrically. In this thesis a central problem is to change a oracle description into
a parameter description by approximation of the oracle.
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2.2 Local Solution

Optimality Conditions for a Local Minimum

The easiest way to define optimality conditions is to assume the functions involved
are twice differentiable and that first and second derivative information is available
(or estimated). This can be used to establish local minimums through basic calcu-
lus techniques (e.g. vanishing gradient for stationary point, positive curvature for a
minimum) and solvers can be made to search for points with these properties. The
following will give a brief summary of the conditions used to determine if a point
is a local minimum. The first step towards these conditions is to introduce a vec-
tor λ= [λ1, . . . ,λn] (n equal to the number of constraints) and define the Lagrangian
function:

L (x,λ) = f (x)+ ∑
i∈I∪E

λi ci (x). (2.9)

The Lagrangian function is simply a way to incorporate the constraints into the cal-
culus arguments on vanishing gradients and curvature. It can then be shown that a
point x∗ is locally optimal if there exist a λ∗ such that

ci (x∗) ≤ 0 i ∈ I (2.10)

ci (x∗) = 0 i ∈ E (2.11)

λ∗ ≥ 0 i ∈ I (2.12)

λ∗ci (x∗) = 0 i ∈ I (2.13)

∇x L (x∗,λ∗) = 0. (2.14)

and
wT ∇2

xx L
(
x∗,λ∗)

w > 0, w ∈ XF ∩XN . (2.15)

It is also necessary to make some additional assumptions on the constraints to make
sure the equations actually have a well defined solution. These are known as con-
straint qualifications and the most famous here is the Linear Independence Con-
straint Qualification (LICQ) that requires the linearised active constraints to be lin-
early independent.

Equation 2.10-2.14 are the first-order necessary conditions and are often called the
Karush-Kuhn-Tucker (KKT) conditions. The first two are just the constraints and
only say that a optimal solution must be a feasible point. The third condition says
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the Lagrangian multipliers for the inequality constraints must be positive. Equality
constraints do not have this requirement since they could easily be multiplied by −1
without changing the feasible regions and thus gradient direction will not play the
same role in the final condition. The fourth condition says that only the inequality
constraints that are at their boundary can be allowed to play a role in the final con-
dition. With the third and fourth condition in place the final condition says: there
is no direction we can move that would reduce the objective function value without
also immediately taking us outside the feasible region. Equation 2.15 is the Second-
Order Sufficient Condition. It ensures that the curvature is positive in all feasible
directions.

If no assumption is made on differentiability the KKT conditions cannot be ap-
plied and it becomes harder to verify a possible solution. The number of reliable
solvers drops significantly when the problems are not differentiable and they are
typically sub-gradient schemes with slow convergence properties. These solvers are
avoided if possible. As an example, last years project attempted to use an interior
point solver, which assumes twice differentiable functions, to solve problems with
piecewise linear functions. This did not turn out so well and the results were unpre-
dictable. Instead of keeping the piecewise linear problem and change the solver to
a sub-gradient method, we chose to change the problem and keep the solver. Non-
differentiable problems will therefore not be discussed further in this thesis.

Local Solvers

Local solvers attempt to find a point where the KKT conditions are satisfied. The
difficulty of this task will naturally depend on how many of the KKT-conditions that
must be considered. The easiest scenario is when there are no constraints. A classic
example of unconstrained optimization problem is the minimization of a sum of
squared error terms. This is known as the least squares problem

minimize ∥ Ax −b ∥2
(2.16)

and its solution can be found by taking the pseudo-inverse of A and computing x
as x = A†b. This is about as easy as it gets in the numerical optimization world,
since its solution can be found after a single set of linear equations. The next step is
to extend this procedure to account for constraints. The easiest constraints to deal
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with would be linear equality constraints, because they can be removed by a change
of variables and running the unconstrained procedure in the null space of the con-
straints. Adding linear inequalities is significantly worse, since they cannot be re-
moved by elimination and as stated in the KKT conditions, only active inequalities
(the inequality is equal to zero) can be used in the optimality argument. This causes
problems and there are various ways to deal with it. One solution is to simply guess
which inequalities that would hold and treat these as if they were equalities while
ignoring the rest. The modified problem is then dealt with as equality constrained
QP problems. Iterations are preformed to find the correct active set. This is known
as active set methods and they are very popular for QP problems. If the objective and
constraints are non-linear it gets even worse and a classic approach is to introduce
yet another layer of iterations by first creating approximations of the constraints and
objective using derivative information and solve these approximated problems to
create the steps. This leads to methods such as Sequential Quadratic Programming
(SQP). A slightly different angle of attack is to work on the KKT equations directly.
This is done by introducing slack variables on the inequalities and weight the slack
in the objective functions. The modified system is then solved as if it was a large
unconstrained or equality constrained problem by minimizing the error in the KKT
system. These methods are know as Interior Point Methods. It is such a method that
is used to solve problems in this thesis.

2.3 Global Solution

This section will go through some central aspects of global optimization, but first
introduce some useful lower bound problems, namely, the Dual Problem and the
Relaxed Problem.

The Dual Problem

A special lower bound problem is produced by taking the infimum over x of the La-
grangian function,

g (λ) = inf
x

L (x,λ) = inf
x

(
f (x)+ ∑

i∈I∪E
λi ci (x)

)
, (2.17)
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in combination with the third component of the KKT conditions

λ≥ 0, i ∈ I . (2.18)

For any fixed λ this infimum will produce a value that is less than or equal to that
the optimal solution of the original problem. This can be seen by realizing that a
valid point for the infimum is at the optimal solution x∗ and since this point has to
be feasible we get ∑

i∈I∪E
λi ci (x) ≤ 0 (2.19)

because of equation 2.18 and the way the constraints are defined. This gives g a
value equal to the optimal solution pluss a negative number. If the infimum occurs
anywhere else than at the optimal solution, the result is simply even lower than this
option. Thus for any valid λ the expression in 2.17 will produce a lower bound on
the global minimum. Many of these lower bounds will however simply end up being
−∞, so it would be desirable to know the largest possible lower bound that can be
produced this way. This is formulated as a new optimization problem

minimize − g (λ)

subject to λ≥ 0, i ∈ I .
(2.20)

Finally, the feasible region is restricted to points where g take on a finite value. This
is done by introducing the set

F = {λ|g (λ) >−∞} (2.21)

and augmenting the problem to become

minimize − g (λ)

subject to λ≥ 0, i ∈ I

λ ∈ F.

(2.22)

This is know as the dual problem and has many useful properties that can be ex-
ploited by the numerical solver. When discussing duality the original problem is
referred to as the primal problem. The difference between the primal and dual solu-
tion is called the duality gap. If the problem is convex (and some constraint qualifier
holds, for instance Slaters condition) the duality gap is zero. This means the solu-
tion of the primal and dual are the same. For LP problems the dual problem can be
found analytically and it is also an LP. It is often beneficial to solve the dual instead
of the primal, because of the hot-start possibilities of the dual problem. Analytical
manipulation of the dual is however limited to problems using a parameter repre-
sentation. For oracle representations the Primal-Dual interior point method is an
example of an algorithm that incorporates duality in the solution procedure.
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The Relaxed Problem

For non-convex problems the dual problem is not sufficient. It is not computation-
ally efficient and the duality gap is non-zero, so other methods must be used to pro-
duce lower bounds. This is done by creating a relaxation of the original problem.
There are a myriad of ways to produce such relaxed problems and the only rule that
really applies is that the solution to the relaxed problem must be a lower bound on
the solution to the original problem. It would also be desirable that the relaxed prob-
lem is significantly easier to solve than the original problem, which typically means
it has to be convex. It is therefore often called a convex relaxation.

An intuitive way to create a relaxed problem is to go through the constraints one by
one and deal with the non-convex inequalities and the non-linear equalities indi-
vidually. The most trivial way to deal with a constraint is to simply remove it. This is
usually not that useful, but for the integer restrictions xi ∈ Z this is actually the best
way to create a relaxation. However, in most continuous cases this will not suffice
and the constraint is either replaced by a new set of constraints or modified so it be-
comes convex. There are multiple ways to formulate these relaxations. Here some
of the general relaxation strategies will be explained using the constraint

c(x) = a0 +a1x +·· ·+axi x j +·· ·+ f (x) = 0 (2.23)

as an example. This constraint is made up of a series of terms of varying complexity.
The constant term a0 and the linear term a1x are trivial since they don’t contribute
to non-convexity and can be ignored. The bilinear term xi x j and the generic term
f (x) however will have to be relaxed. This can be done by for instance introducing
new variables to replace the non-linear terms:

c(x) = a0 +a1x +·· ·+az1 +·· ·+ z2 = 0 (2.24)

and then create new convex constraints to place restrictions on these new variables.
There are various ways to produce these new constraints. The ideal situation is if
the relaxed term has a special structure for which an explicit convex relaxation is
known. The bilinear term is an example of such a term and the relaxation is given by
four linear constraints that can be proven to be the tightest possible relaxation (it is
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equivalent to the convex hull of the points on the surface). They are given by:

z1 ≥ xi x j +x j xi −xi x j (2.25)

z1 ≥ xi x j +x j xi −xi x j (2.26)

z1 ≤ xi x j +x j xi −xi x j (2.27)

z1 ≤ xi x j +x j xi −xi x j . (2.28)

where xi and xi are the domain bounds [Androulakis et al., 1995]. This relaxation
is illustrated in figure 2.1. Similar replacements are known for a variety of fractional
and monomial terms. The number of new constraints will naturally increase with
the complexity of the replaced term. For instance, a trilinear term xi x j xk can be
replaced by a new variable with eight linear constraint associated with it.

If the replaced term has a general structure without any redeeming properties the
typical relaxation strategy is to augment it by overpowering terms. In the example
constraint this is the f (x) term. The relaxation is done by first pretending the new
variable is simply equal to the replaced term

z2 = f (x), (2.29)

then split this into the equivalent inequalities

z2 ≥ f (x) (2.30)

z2 ≤ f (x) (2.31)

and augment these inequalities with new terms

z2 ≥ f (x)+ g1(x) (2.32)

z2 ≤ f (x)− g2(x). (2.33)

The augmentation terms are always positive inside the variable bounds, which means
they can only increase the feasible region when applied this way. These constraints
will be convex if f (x)+ g1(x) is concave and f (x)− g2(x) is convex. This is happens
when

∇2 (− f (x)− g1(x)
)≥ 0 (2.34)

∇2 (
f (x)− g2(x)

)≥ 0. (2.35)

Quadratic terms are often suggested as augmentations because of their simplicity
during the derivation, since it basically boils down to adding large values along the



16 CHAPTER 2. NUMERICAL OPTIMIZATION

diagonal of the Hessian matrix. In this case the augmentation term is given by

g (x) =
n∑

j=1
α j (x j −x j )(x j −x j ) (2.36)

and each term in this sum is a quadratic that crosses zero at the upper and lower
bound for the corresponding variable. This approach is taken in the αBB algorithm,
which is thoroughly described in [Adjiman et al., 2000]. The drawback with this
method is the fact that the relaxation can potentially be quite loose. Another prob-
lem is to find suitable values for αi , which should be as small as possible, ideally
equal to half of the most negative eigenvalue of the Hessian. This value can however
be difficult to find (since the cases where an analytical expression for this value is
know, it is likely that a good relaxation is know as well) and must often be approx-
imated, which can be quite computationally demanding [Adjiman et al., 2000]. An
illustration of the difference between the quadratic augmentation strategy and the
exact replacement for the bilinear term is given in figure 2.1.

When all the constraints have been dealt with using these methods the new problem
will be a convex relaxation that can be used to produce a lower bound on the original
problem.

Optimality Conditions for a Global Minimum

Local solutions could be identified by local information and there was a well defined
set of conditions that had to be satisfied. Finding a global minimum requires a global
perspective, but there is no global equivalent to the KKT-conditions from section 2.2.
Finding the global solution is therefore done by finding a local solution and then
proving that even if there are other local solutions to the problem, non of them can
have a objective value lower than the one suggested. One way to do this is to take
the original optimization space X and divide it into n smaller sub-spaces Xi so

Xi ⊆ X , i = 1, . . . ,n (2.37)

and

X =
n⋃

i=1
Xi . (2.38)
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Figure 2.1: Cross section of the bilinear function y = x1x2 = f (x) at x1 = x2 defined
over [0,1]× [0,1], together with the nonlinear αBB relaxation from equations 2.32-
2.33 and the linear exact relaxation from equations 2.25-2.28. All three upper bounds
intersect at x1 = x2 and are therefore displayed on top of each other (in the same way
they all cross each other at x1x2 = 0.5, just viewed from a different angle).
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The original problem is now restricted to these sub-spaces by rewriting problem 2.1
to

minimize f (x)

subject to ci (x) ≤ 0, i ∈ I

ci (x) = 0, i ∈ E

xi ∈ Z, i ∈ Z

x ∈ Xi

(2.39)

and have corresponding convex lower bound problems created with the same do-
main reductions, using for instance the relaxation techniques mentioned in the pre-
vious section. These local problems are solved to get a local solution and a lower
bound inside each sub-space. We define fi to be the objective function value re-
turned from solving sub-problem i to a local solution x∗

i ∈ Xi . If no feasible solution
is found, fi =∞. This does not imply that the problem is actually infeasible inside
Xi , only that the solver converged to a point of local infeasibility and stopped there.
The solution to a lower bound sub-problem is denoted f̄i and if no feasible solution
is found to the lower bound problem we have f̄i = ∞. If f̄i = ∞, then there is no
feasible point inside Xi for the original problem. A global solution x∗ = x∗

i can now
be identified by using the lowest lower bound as a global lower bound,

f̄ = min{ f̄1, . . . , f̄n}, (2.40)

and the best local solution as the suggested global solution,

f ∗ = min{ f ∗
1 , . . . , f ∗

n }, (2.41)

and having
f ∗ ≤ f̄ . (2.42)

For this to be possible, it must be required that the lower bound problems becomes
tighter and closer to the original problem when the size of the solution space is re-
duced. In some situations this can be guaranteed to happen with a finite number
of partitions, while in others it will theoretically happen at n = ∞. It is therefore
common to relax the condition in 2.42 to

f ∗ = fi ≤ f̄ +ε (2.43)

and label the solution as ε-suboptimal. If the problem is convex, this entire proce-
dure is trivial since the dual problem can be used as a lower bound certificate on
the solution since it is guaranteed to give the same solution as the original (primal)
problem. For non-convex problems it is an entirely different story and it can easily
end up begin computationally unreasonable to verify the global solution.
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Global Solvers

Just at local solvers can be constructed by adding layers of iterations on top of each
other, each layer solving a simpler problem that the one above, a global solver is con-
structed by adding yet another layer of iterations. These iterations will be to solve a
sequence of optimization problems to local solutions using the local solvers. These
sub-problems serves two purposes. One is to generate a decreasing sequence of lo-
cal solutions. The other is to generate a sequence of non-decreasing lower bounds.
The global solvers differ in how they produce these sub-problems, but tree struc-
tured search methods seems to dominate. A well known method is the Branch-and-
Bound framework. The branch and bound algorithm progress has a three structure
and iterations are referred to as nodes in the tree. It is the leaf nodes in the Branch-
and-Bound three that play the key role in the algorithm, all other nodes are not re-
ally of interest since they must have been completely processed before their child
nodes were produced and their information content turned out to be insufficient.
Combined the child nodes will always contain all information from the parent (and
hopefully some new information too). Each node is related to a sub-space Xi ⊆ X ,
with the root node having Xr = X . Given a parent node with sub-space Xp with m
child nodes with sub-spaces Xc, j , j = 1, . . . ,m, the following will hold:

Xp =
m⋃

j=1
Xc, j . (2.44)

Enumerating the leaf nodes from left to right with l = 1, . . . ,n will then give

X =
n⋃

l=1
Xl (2.45)

because of the property in equation 2.44. The global lower bound from equation
2.40 is made of the lower bounds on the leaf nodes. The algorithm will continue to
divide a promising leaf node into two or more child nodes (which then becomes new
leafs) until equation 2.43 is satisfied or some other termination criteria is fulfilled
(e.g. reached maximum number of iterations). Different variations on the branch
and bound is available and they differ in the types of problems they accept. A selec-
tion of these will be briefly introduced in the following paragraphs.

A special class of MINLP problems are the problems where the only source of non-
convexity is the integer restrictions. That is, if the integer requirement is dropped,
the problem becomes convex. These are referred to as convex MINLPs. Solvers such



20 CHAPTER 2. NUMERICAL OPTIMIZATION

as COIN-ORs BONMIN is made for such problems [Bonami et al., 2008]. The con-
vex MINLPs are special because they are trivial to relax, and the solvers for these
problems are able to find global solution while working solely with a oracle descrip-
tion of the problem. If all the functions involved are linear this problems becomes a
Mixed Integer Linear Program(MILP), which has several tailored algorithms related
to it [Grossmann, 2002].

Another class of MINLP problems is the problems with special structure, that is,
they are formulated using only special terms that the solver expects. These terms
typically have known relaxations that can be exploited efficiently. The advantage
of restricting the terms that can be used to build functions is that the problem can
be stated explicitly in a parametric representation. The polyhedral branch and cut
implemented in BARON is a solver tailored for problems with a special structure
[Tawarmalani & Sahinidis, 2005].

A slightly broader class of problems are those where general terms are allowed, but
under the assumption that it is possible to generate bounds on the second deriva-
tives (or Hessian eigenvalues) for the non-convex terms. The α-Branch-and-Bound
is an algorithm aimed at these kinds of problems and it will overpower the non-
convexities of general structure with augmenting terms as discussed in the previous
section [Adjiman et al., 2000].

The final class of MINLPs that will be mentioned is the collection of all remaining
problems that don’t possess any redeeming properties. These cover non-factorable
functions and black-box descriptions were few assumptions can be made. The solu-
tion in this case is to approximate the problem by a slightly better behaved problem
whose solution will be close to the original problem. Two strategies are dominant
here. The first is to sample the functions upfront, create an approximation and then
ignore the original function for the rest of the optimization. A prime example of
such a scheme is piecewise linearisation, which creates linear interpolating func-
tions on the data and use binary variables to switch between the linear pieces. A
constraint structure known as special ordered set is used to aid this procedure. This
leads to a MILP formulation, which can then be solved using the dedicated MILP
solvers. The drawback here is that the number of variables will grow quickly with
function domain dimensions and they can quickly become too large to solve. Piece-
wise linearisation was applied to the oil production problem in [Gunnerud & Foss,
2010]. Other, less know, methods based on upfront sampling is the smooth blend-
ing scheme with a know underestimator discussed in [Meyer et al., 2002] and the
B-spline hypervolume scheme in [Park, 2012]. The latter only considering uncon-
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strained optimization. This is similar to the approach that will be used in this the-
sis. The other type of sampling strategy is to sample during the optimization steps
to locally refine the approximation as the solver iterates. These methods seem to
dominate on problems where the function evaluations are extremely expensive (e.g.
20 hour car crash simulations), making it impossible to sample the entire domain
upfront. An overview of such methods, and their pitfalls, is given in [Jones, 2001].
Many of these are based on Kriging or Thin-plate Spline approximation schemes,
which can be derived as stochastic models. Correlations and uncertainties are used
as a base for the decisions made by the solver. This is sometimes called Bayesian
Optimization, see [Jones et al., 1998] for details.

2.4 Chapter Summary

A local solution to a optimization problem can be established based on a local argu-
ments without making too many assumption about the problem. A global solution
on the other hand is more difficult to verify. A central part of proving a global so-
lution is to construct lower bounds on the objective function value. The difficulty
of creating these bounds will depend on the problem structure. Specific problem
structures can be dealt with efficiently by tailored algorithms, while more general
problems may not be reasonable to solve. The most difficult type of problem (of
those mentioned here) would be the MINLP where the nonlinearities are given as
oracle functions where no favourable assumptions can be made. These will typically
be dealt with by approximation techniques. The oil production problem belong in
this category.
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Chapter 3

Approximation of Functions

The title of this thesis is Solving a Network Flow Decision Problem with Sampled
Nonlinearities. This chapter will shed some light on the sampled nonlinearities part.
The goal is to establish how nonlinearities should be sampled and how the sam-
ples should be used to construct a reasonable replacement for the original function.
Function approximation is a surprisingly diverse topic and it can be studied with
pure theoretical interest or as a means to solve practical problems. The practical as-
pect is the main motivator for this thesis and the material will be presented with this
in mind. Function approximation is easily related to the optimization topics in the
previous chapter and this chapter will try to follow the tone set there. For the the-
oretically inclined, the book Best Approximation in Inner Product Spaces [Deutsch,
2001] provides a very solid—and very abstract—mathematical treatment of the gen-
eral approximation problem, but that level cannot be followed here. Most of the in-
formation given here is taken from Curve and Surface Fitting, An Introduction [Lan-
caster & Salkauskas, 1988] and A Practical Guide to Splines [De Boor, 1978].

The function approximation problem arise when we have a function f that we wish
to manipulate or evaluate but for some reason do not have a convenient way to in-
teract with. In our situation this function is a model of reality, given as a complex
simulator, that is supposed to be part of a optimization problem. It is, however,
cumbersome to have the solver interacting directly with the simulator, which is why
we seek to replace it by an analytical approximation f̂ .

23
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3.1 The Fundamentals of Function Approximation

Problem Formulation

In this chapter f : X 7→ R will represent the function to be approximated. It is as-
sumed to be continuous, that is f ∈C (C being the space of continuous functions).
The domain of f has dimension d and the codomain dimension 1 (d is occasionally
used to denote metric functions, but the distinction will be clear from the context).
In the optimization setting the variables are assumed to be restricted to a box con-
strained space and it is important that all functions involved are well defined inside
this region. Because of this we will assume that the function domain is described by
such a box, or atleast can be restricted to one, and the notation

X = [
x1, x1

]×·· ·× [
xd , xd

]
, (3.1)

which was introduced in chapter 2, is used to describe this box domain. Apart from
this, our knowledge of f is limited to a set of m samples given as pairs

(
yi , xi

)
where

f (xi ) = yi . The set of xi s is referred to as the data sites. The function f̂ : X 7→ R will
be the approximation of f and it will take the form

f̂ =
n∑

i=1
ci bi (x) (3.2)

where bi : X 7→ R are called basis functions and ci coefficients. A basis function is
said to have global support if it is supported over the entire domain X and compact
(local) support if its support only covers a subset of X .

Formally we may state the approximation problem by letting S and Ŝ be function
spaces such that Ŝ ⊆ S ⊆ C and defining d : S ×S 7→ R to be a metric on this space.
The task is then to find the closest point f̂ ∈ Ŝ to the point f ∈ S. This can be stated
in various ways, but seeing that the theme of this thesis is optimization we will state
is as a optimization problem by writing

minimize d( f , f̂ )

subject to f̂ ∈ Ŝ.
(3.3)

A approximation is said to be convergent if the approximation converges to the sam-
pled function as the number of samples increases. Formally this is stated by letting
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f̂n be the approximation based on n samples and having

lim
n→∞ f̂n = f . (3.4)

A approximation is said to be shape preserving if it captures certain properties of the
data set. This typically means that if the underlying function is positive ( f (x) ≥ 0),
monotone (∇ f (x) ≥ 0) or convex (∇2 f (x) ≥ 0), then the approximation has the same
property. For our discussions shape preservation is in it self not that important,
as long as the approximations does not introduce artificial oscillations in between
the samples. Shape preservation is typically enforced via constraints on the coef-
ficients. For instance if the basis functions span a space of nth order polynomials,
this space will, generally, contain both convex and non-convex functions. Putting
restrictions on the coefficients makes it possible to ensure that the solution to the
approximation problem lies within a subspace that only contains convex polynomi-
als [Magnani et al., 2005]. Other ways to introduce shape preservation is to estimate
gradients at the data sites, based on the neighbouring data points, and add these to
the coefficient constraints.

It may not actually be possible, or reasonable, to compute the solution to the prob-
lem in 3.3. In our case the function f is unknown, so computing the distance d( f , f̂ )
might not be possible. In fact, the only information we have at our disposal is a set of
samples

(
yi , xi

)
, where yi = f (xi ), so the best we can achieve is to minimize a metric

on the distances yi − f̂ (xi ), for instance by using the sum of squares,

d( f , f̂ ) =
n∑

i=1

(
f (xi )− f̂ (xi )

)2 =
n∑

i=1

(
yi − f̂ (xi )

)2
. (3.5)

As an example: given a dataset with m = 10 samples of a function f : R 7→ R, let Ŝ be
the space of polynomials of order three. A basis for Ŝ has n = 3 functions and can for
instance be given as

bk (x) = xk−1, k = 1,2,3. (3.6)

The problem in 3.3 can now be written as

minimize ∥ B̄c − y ∥2 (3.7)
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with

B̄ =

 b1(x1) . . . bn(x1)
...

. . .
...

b1(xm) . . . bn(xm)

=


1 x1 x2

1
1 x2 x2

2
...

1 x10 x2
10

 , (3.8)

c = [
c1, . . . , cn

]T
, (3.9)

y = [
y1, . . . , ym

]T
. (3.10)

This is the same as the least squares problem in equation 2.16, which is convex and
was labelled as "easy" to solve. This is fortunate, since all schemes of interest will
have their coefficients produced this way. There will however be differences in how
the B̄ matrix is structured, ranging from completely filled dense matrices to the triv-
ial identity matrix. For the special case where d( f , f̂ ) = 0, the approximation is said
to interpolate the data, otherwise it is smoothing the data. There are an infinite num-
ber of possible functions f̂ that are able to reduce the metric in 3.5 to zero and there-
fore the solution may not be unique. This means that the selection of subspace Ŝ
must be done carefully to avoid uniqueness issues.

3.2 Dataset Structure and Basis Construction

In the previous chapter the efficiency of a numerical solver could be related to how
much the solver assumed about the optimization problem. More assumptions leads
to better tailored solvers. The function approximation equivalent is the assumptions
made on the data samples and how the basis functions will be tailored to these as-
sumptions. The more assumptions that is made on the data structure the better the
basis functions will be at constructing pleasing surfaces for the data.

For this thesis exact interpolation is set as a goal, but it should not be taken for
granted that this is the best option. If the simulators have logical statements or un-
reliable computations for certain variable ranges, it may be better to allow some
smoothing of the data. The discussion in chapter 9 will attempt to address the issue.
The discussion in the remainder of this section will be based on the assumption that
the approximating function should interpolate the data samples. To achieve inter-
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polation the coefficients in equation 3.9 must be found by solving

Bc = y (3.11)

were B is generated from the basis functions and data samples. In this thesis B will
be equal to B̄ from equation 3.8, but it could contain all types of information, such
as derivatives if that is available. Since equation 3.11 must have an exact solution (as
opposed to the least squares solution in the smoothing case), B must be invertible.
This will put some restrictions on the combination of basis functions and data sites.
In the univariate case it is fairly easy to make B invertible and the only issue is to
strike a balance between having enough data to construct a good enough approx-
imation and being able to generate and handle the amount of data efficiently. For
multivariate functions sampling has more complexity to it. In this case it is not only
the distance between individual points that must be chosen, but the positioning as
well. A small example (modified from [Lancaster & Salkauskas, 1988]) of how this
can cause problems can be made with the bilinear interpolation of four data points.
The four basis functions are

b1(x) = 1 (3.12)

b2(x) = x1 (3.13)

b3(x) = x2 (3.14)

b4(x) = x1x2. (3.15)

Let the data samples be taken at the corners of a square: (0,0), (1,0), (0,1) and (1,1).
With these data sites, equation 3.11 is given with

B =


1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1

 . (3.16)

This can be solved trivially. However, if the data site pattern is tilted 45◦ to make a
diamond shape it does not work out so well. Taking the samples at (−1,0), (0,−1),
(1,0) and (0,1) the left hand side is changed to

B =


1 −1 0 0
1 0 −1 0
1 1 0 0
1 0 1 0

 , (3.17)
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which clearly cannot be solved unless y1 + y3 = y2 + y4. The matrix B only has rank
3. If the B matrix is studied as the samples are rotated from the square pattern to
the diamond pattern one would notice that the matrix condition number would go
from good to bad to singular as the rotation goes from 0◦ to 45◦. For a scheme to
be successful it must avoid these situations, either by assuming a specific structure
to the data sites that suits the basis functions or by adapting the basis to the data
sites. The following sections will go through some of the sampling strategies and the
types of approximation schemes they typically lead to. Three types of sampling will
be mentioned here: scattered, cross-section and grid. They are illustrated in figure
3.1. The distinction between these are only relevant in the multivariate case, as they
are all equal when limited to one dimension.

Scattered Data Sites

Scattered data has full freedom in all directions when choosing data sites. This is the
most difficult data to deal with and existence of a solution to 3.11 is a major issue.
There are two dominating ways to deal with the existence issue. One is to avoid the
computation by setting the coefficients be equal to the data values. The other is to
triangulate the data sites and design an interpolation scheme inside the triangles.

Fixing the coefficients to ci = yi is obviously restrictive and leaves limited choices
for the basis functions. The first observation is that for such a scheme to be interpo-
lating the basis functions must satisfy

bi (x j ) =
{

1, i = j

0, i 6= j .
(3.18)

These basis functions are often built around a distance function(metric) and the
upside is that they do not directly rely on how other data samples are positioned,
which makes it perfect for scattered interpolation. The downside is that they are
often non-smooth or look "bad". Typical example of a non-smooth scheme would
be Nearest Neighbour which divides the function domain into patches Pi and gives
one patch to each data sample and the patches have the property that a patch Pi

contain the points that are closer to xi than any other data sample. With this the
basis functions are just

bi (x) =
{

1, if x ∈ Pi

0, otherwise .
(3.19)
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Figure 3.1: Three different sampling methods with varying degree of freedom. Scat-
tered is completely free to choose data sites. Cross section is free to chose data sites
along certain lines (the lines could been taken diagonally). Grid has no choice, since
all data samples must lie on the intersections in a imagined grid that is stretched
over the function domain.
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In the univariate case this would produce a function that looks like a series of steps.
The smoother schemes of this type are often referred to as Inverse Distance Weight-
ing or Interpolating Moving Average. These are based on weighting functions built
around the inverse of a metric function. The most basic example here is Shepard’s
Interpolation where the weights are given as

wi (x) = 1

d(x, xi )p , (3.20)

where p is a chosen parameter that will influence the function properties. The in-
terpolation scheme is then given as

f̂ (x) =
∑n

i=1 yi wi (x)∑n
j=1 w j (x)

=
n∑

i=1
yi bi (x), bi (x) = wi (x)∑n

j=1 w j (x)
(3.21)

The idea is fairly simple, but the results are often surprisingly disappointing. An il-
lustration of Shepard’s method is given in Figure 3.2 with two different values of p.
There are plenty of variations on this method. A more involved scheme that made
use of derivative information in the weighting process was applied successfully in a
global optimization context in [Meyer et al., 2002] It must be said that this scheme
also produces "wobbly" surfaces, but not as bad as the ones seen in Figure 3.2. It is
not without reason that these schemes never get suggested as candidates for inter-
polation in the univariate case. They are just not that good. Their strength lies in the
simplicity and the minimal amount of assumptions made.

An alternative to the distance based schemes is to triangulate the data sites and fo-
cus on one triangle at the time. The triangles are mapped to a standard triangle
where all the work is done (much like mapping any interval on the real line to [0,1]
for simpler analysis). A set of basis functions can be tailored to the standard tri-
angle so an interpolating solution is guaranteed to exist (since the geometry of the
relevant data sites are now known and located at the corners of the triangle). When
computations are done, the answers are mapped back to the original triangle and
used. Methods based on these techniques are know as Finite Element Methods and
are most common in two or three dimensional space. They do, to my knowledge,
not scale that gracefully and as a consequence the sufficiently smooth Finite Ele-
ment methods are restricted to functions of few dimensions, but in these dimen-
sions they seem to perform well. Finite Elements are not restricted to triangles, any
pattern that is able to tessellate the function domain would do, but the more exotic
geometries may require more structure in the data sites.
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Figure 3.2: Shepard’s interpolation with p = 1 and p = 2.
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Figure 3.3: Cross-section of finite element interpolation with cubic elements.
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Other alternatives for scattered data approximation worth mentioning are radial ba-
sis function methods and Kriging. Radial basis functions are functions that peak at
some point and gets smoothed out as the distance to the point is increased. This is
similar to the weighing schemes, except that the radial basis functions do not take
other points into account, and the basis coefficients must be computed. Thin-plate
spline is a method based on this technique. Kriging is a stochastic model that seems
to be used mostly in geostatistical communities. These methods do, as far as I can
understand, not interpolate the datasets in the general multivariate case.

Cross-section Data Sites

The methods based on sampling cross-sections of the function domain typically
comes up in engineering practices that deals with the construction of metal struc-
tures like car bodies and ships. Here it is natural to deal with cross-sections of the
structure and then leave it to a interpolation scheme to fill in the gaps between these
cross-sections. The idea is to create mono-variable interpolating functions along
each cross-section and then blend these together. This type of interpolation is re-
ferred to as Blending Methods. This blending procedure would in the general case
be subject to the same difficulties as the scattered schemes, but when the cross-
sections are chosen in a neat pattern as in Figure 3.1 it is fairly easy to create a con-
trolled blend of only the functions closest to the point being evaluated.

These schemes can get quite involved when the number of dimensions is increased
and during the literature study for this thesis they only came up explicitly stated in
the two dimensional case. They were however not pursued very far and I cannot see
any reason for why they should not generalize to higher dimensions.

Grid Data Sites

Grid, sometimes also referred to as mesh, is a sample structure where the data sites
are neatly laid out in a grid formation and there is no freedom involved. Formally
it is described by letting ti = {ti ,1, ti ,2, . . . , ti ,ni } be a ordered set with ni elements for
each i = 1,2, . . . ,d (that is, one set for each variable xi ). These sets have the property
that ti , j < ti , j+1, i = 1,2, . . . ,ni − 1 and ti , j ∈

[
xi , xi

]
, i = 1,2, . . . ,ni . This is basically

taking ni different values inside the boundaries of the variable. Using ti to create a
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new set by applying the Cartesian product to each set in turn we get

T = t1 × t2 ×·· ·× td . (3.22)

A data set is said to have a grid structure if there exists such a set T that is equal
to the set of data sites. The grid based basis functions seem to outperform all other
schemes in the situations where they can be applied. A nice feature of the grid based
schemes is that they have a notation that "scales" with the domain dimension, mak-
ing them quite convenient to work with once this notation has been established. The
idea here is to create mono-variable basis functions that could have been used to in-
terpolate along a lattice in the grid, but instead use them to create new multivariate
basis functions by multiplying them together in a pattern similar to the construction
of the grid. These methods are called Tensor Product Methods. They are constructed
by first considering the grid components ti = {ti ,1, ti ,2, . . . , ti ,ni } which dictates where
the samples are located regarding variable xi . A set of univariate basis functions
bi , j (xi ), j = 1, . . . ,ni are constructed and this basis have the ability to interpolate at
the data sites in ti . Let this set be labelled

bi = {bi ,1, . . . ,bi ,ni }. (3.23)

With one such set of univariate basis functions for each variable the multivariate
basis is given as the tensor product of these:

b =
d⊗

i=1
bi . (3.24)

Reusing the example with bilinear interpolation of the four data samples positioned
as a square: (0,0), (1,0), (0,1) and (1,1). This is a grid structure with

t1 = {t1,1, t1,2} = {0,1} (3.25)

and
t2 = {t2,1, t2,2} = {0,1} (3.26)

which would give data sites at

t1 × t2 = {(t1,1, t2,1), (t1,1, t2,2), (t1,2, t2,1), (t1,2, t2,2)} = {(0, 0) , (1, 0) , (0, 1) , (1, 1)}.
(3.27)

With two data sites in each direction, simple linear functions will do as univariate
basis functions:

b1 = {1, x1} (3.28)
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b2 = {1, x2}. (3.29)

This gives the tensor product basis

b =
2⊗

j=1
b j = b1 ⊗b2 = {1∗1, 1∗x2, x1 ∗1, x1 ∗x2}, (3.30)

which simplifies to
b = {1, x2, x1, x1x2}. (3.31)

This is recognized as the same basis suggested by equations 3.12-3.15. The tensor
product schemes scales well with dimension as it is only a matter of deriving suffi-
cient univariate basis functions for all dimensions and them applying equation 3.24.
The multivariate basis functions will inherit the smoothness of the univariate func-
tions.

The tensor product schemes are usually based on piecewise polynomial functions,
but there are no actual restrictions here. With cubic piecewise polynomials the ten-
sor product scheme could be made to produce the same cross section as the finite
element method in figure 3.3.

Choice of Basis Functions

So far the discussion has been about various ways to make the basis functions and
data sites co-operate nicely and not so much about what the individual basis func-
tions should look like. The central question here is whether the basis should consist
solely of polynomial terms or not. Schemes that chose to introduce non-polynomial
terms usually does so because they want to replicate certain shapes or effects that
can be described by fewer symbols if terms with logarithms or exponentials are al-
lowed. This happens in some of the statistics based schemes and some weighting
and radial basis schemes. In most cases however it is low order polynomial that
dominate the basis function construction. Part of the reason being that computers
cannot really work with anything else than polynomials anyway and all other terms
will have to be approximated by a polynomial based expression. As an example take
the two sets of univariate basis functions

A = {x0, x1, . . . , xn} (3.32)

and
B = {x0, x1, . . . , xn−1,ex } (3.33)
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and n +1 samples in the interval [0,1]:

xi ∈ {0,
1

n
,

2

n
, . . . ,

n −1

n
,1}. (3.34)

The matrix B̄ from equation 3.8 is formed for each set and labelled B̄ A and B̄B .
The rank of these matrices as n goes from 2 to 30 is visualized in figure 3.4. When
the number of samples become large enough the basis with ex will lose rank since
the representation of this function is based on the monomials xk ,k = 1, . . . ,n −1(or
atleast numerically indistinguishable from these terms), thus making it linearly de-
pendent on the other terms. In theory this should not happen, but in practice it
does. It can also be seen that when the number of samples is increased even further
the pure monomial basis will also lose rank. This is because the numerical preci-
sion is unable to capture the numbers produced by such high powers, so eventually
0 ≈ ( 1

n

)n
and the matrix will lose rank when evaluated numerically. The matrix B̄B

is know as the Vandermonde matrix and is know to be ill conditioned. Fortunately
one does not have to deal with the Vandermonde matrix when constructing interpo-
lating polynomials. For instance if the basis is changed to the Lagrange polynomial
basis,

bi (x) =
n∏

j=1
ai ( j ), ai ( j ) =


x −x j

xi −x j
, i 6= j

1, i = j
, (3.35)

the coefficients can be computed trivially, since B̄ becomes the identity matrix (the
basis has the property in equation 3.18). These are just two ways of representing
the same space, one using a trivial basis with difficult coefficient computation and
the other using a difficult basis with trivial coefficient computation. There are many
other famous basis constructs for a space of polynomials and the best choice de-
pends on the task at hand. However, regardless of representation, high order poly-
nomials do not possess the best approximation properties and often go by the name
of oscillating polynomials in the interpolation context. Figure 3.5 illustrates why
this is. This is known as the Runge phenomenon. The oscillatory polynomials will
not generally converge to the underlying function as the number of samples are in-
creased. There are ways to mitigate the Runge phenomenon, for instance sampling
at smaller intervals towards the end points.

The basis function discussed so far has been based on globally supported terms.
This has turned out to scale poorly. The alternative is to define locally supported
functions, where the local pieces have lower complexity, typically low order polyno-
mials. These are known as piecewise polynomials. The piecewise polynomials have
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Figure 3.4: Comparison of the rank of B̄ from equation 3.8 for three different sets
of basis functions when evaluated numerically for an increasing number of samples
in the interval [0,1]. Global monomials given as B̄ A , global monomials with one
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much better convergence properties, but it comes at the price of increased com-
plexity in the basis construction. The idea is simple; the function domain will be
divided into box-shaped regions and each region is assigned a polynomial. The dif-
ficult part is to make smooth transitions between the regions. It is common to use
cubic polynomials inside the regions because this gives enough flexibility to make
the transitions twice differentiable while keeping the complexity as low as possible.
The basis functions could for instance be written as

bi , j (x) =
{

x j , if x ∈ Pi

0, otherwise .
(3.36)

where the P j s are the regions that tessellate the domain. The univariate interpola-
tion scheme could then be found as

f̂ (x) =
M∑

i=1

k∑
j=0

ai , j bi , j (x) (3.37)

were M is the number of regions and k is the order of the polynomials. With a bit of
re-indexing this could be cast into the familiar shape

f̂ (x) =
M∗k∑
i=1

ai bi (x). (3.38)

The B̄ matrix for piecewise polynomials is well behaved because it is block diago-
nal(one block for each local piece) where each block has the same rank, thus the
rank of the complete matrix grows gracefully without causing too much trouble. It
can be seen in figure 3.4 labelled as B̄C .

Piecewise polynomial basis functions have great approximating power. They can be
made to be convergent if used sensibly.

3.3 Discussion

As stated in chapter 2, the numerical solvers of interest assumes the functions in-
volved are twice continuously differentiable. The approximation scheme must there-
fore have this property. Of the schemes mentioned in the sections above, only the
tensor product schemes and the inverse distance weighting schemes seem to allow
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for sufficient smoothness in the general multivariate case without growing overly
complex. Seeing that the scattered schemes produce surfaces that are unnecessar-
ily "wobbly" and the tensor schemes don’t, it is not really a difficult choice to make,
considering that the sampling structure can be chosen freely. For most simulators
it would even be easier to generate a grid based data sets anyway. It should how-
ever be pointed out that both scattered and grid interpolation schemes are found
in the global optimization literature. Scattered interpolation methods using a Shep-
ard’s type of interpolation was used in [Meyer et al., 2002] with some success, but it
was concluded that the required number of samples grew too quickly with dimen-
sion. The scheme had a suggested sampling algorithm that was based on refining
a grid structure until the approximation error was tolerable. Even if the suggested
scheme used a grid layout to generate data, the actual interpolation method could,
to my understanding, have accepted scattered data, but it would have complicated
the tuning of the schemes internal parameters. This is however not the most inter-
esting part. The main lesson to be learned here is that the number of data samples
does grow exponentially with dimension if the samples are taken with a grid struc-
ture with the same resolution in all variables. This will obviously reach a limit where
the computational load becomes too high. Assuming that the function dimension
cannot be reduced, the only ways of lowering the number of samples is either to in-
crease the threshold of approximation error or to increase the approximating power
of the interpolation scheme. Of all the interpolation methods that have been seen
throughout the literature study of this thesis, the piecewise polynomials seem to be
a clear winner when it comes to approximative power. Combine this with the gen-
erally attractive properties of the tensor product schemes and the resulting func-
tion is quite an interpolating powerhouse. Tensor product piecewise polynomials
are called splines. Splines was used in unconstrained global optimization in [Park,
2012] with success, using a representation known as B-spline form.

Having singled out splines as the most promising technique, the next question is
how should the coefficients be computed. The choices are related to what kind of
data should be used and what kind of influence should the data have. We only have
function values, so the first question is rather easy, but in the case where derivative
information is available, it would be beneficial to add this to the equation sets as
well. The next question is about influence. With locally supported basis functions it
is possible to have the coefficients computed only based on the data samples inside
the support of each individual function. Global influence will make all samples af-
fect all basis functions. Global influence will result in a global set of equations, but
it would also make it easier to maintain smoothness where the pieces are joined to-
gether. Local influence will make the computations easier since it can be reduced to
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many small sets of equations rather than one large. The drawback being that special
care must be taken to match the local pieces together with sufficient smoothness.
This is typically done by estimating a gradient at the boundary between two pieces
and include this in the computations on both sides. Piecewise polynomials where
derivatives are used to match independent pieces together are called Hermite poly-
nomials. In this thesis a simple global influence scheme was selected, because it
is the easiest method to deal with in multiple dimensions and the more complex
methods could not really be justified. Details on the computation will be given in
Chapter 4. The computations used are not shape preserving. There are methods to
make splines shape preserving, but these where not studied in detail in this thesis.
It might be interesting to note that in [Neamtu, 1991] it was concluded that a local
method cannot be guaranteed to preserve the convexity of a convex data set.

Representing splines can be done in various ways and any polynomial basis could
be used for this task. Some choices are however better that others and the B-spline
form will be used here, since it has a solid literature behind it and it has a structure
that can be exploited when creating convex relaxations.

In addition to neat approximation features, splines also posses other features that
can be exploited in the branch and bound setting. Since their basis functions have
local support, some of the basis functions will be left unsupported as the algorithm
iterates. This means that parts of the basis can be removed when a node is divided
into new child nodes, which simplifies the approximating function, making compu-
tations faster. Exactly how this will be used is explained in chapter 6.

3.4 Chapter Summary

A selection of approximation methods has been presented. The tensor product piece-
wise polynomial has been singled out as the most promising method. It requires the
data sets to be structured with a grid layout, but this is acceptable since the simula-
tors being used can generate data in this format. The scattered interpolation tech-
niques did not hold up as good as the tensor product methods and will be left as a
last resort if the available data for some reason fails to have the necessary structure.
Scattered interpolation could then be used to re-sample the data to fill in the missing
pieces and then apply a tensor product scheme. The selected spline representation
is the B-spline form and this will be explained in detail in chapter 4.
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Chapter 4

The B-spline

Having concluded in Chapter 3 that a tensor product scheme with piecewise poly-
nomials seems to be the best alternative, the next step is to find a suitable basis for
this space. The naive monomial basis is not useful for most applications apart from
being easy to describe. This chapter will introduce the B-spline, which is convenient
representation of piecewise polynomial functions. The B-spline has a solid litera-
ture related to it and quite a few neat algorithms and features that can be exploited
in global optimization. This chapter will go through the anatomy of a B-spline and
it is assumed that the goal is to interpolate a set of data with a grid structure as it is
described in section 3.2. A lot of well know ground will be covered here and several
works could be used as a reference for most of the topics. This thesis has relied on
the famous book by DeBoor [De Boor, 1978] and the slightly more up to date writ-
ings of Schumaker [Schumaker, 2007]. During the literature study the initial source
of B-spline information was a book draft by Lyche and Mørken [Lyche & Morken,
2004] and this is, in my opinion, the most user friendly introduction to the topic in a
self study setting. However, Schumakers book currently has the broader scope and
will be the default source of information. Additional references will be given when
necessary.

Reading the B-spline literature I came across a few different ways to represent B-
splines. The differences stem from whether the indexing used represents the degree
or the order of the polynomials. This can be quite confusing when switching be-
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tween different sources on information. So to clear up the possible confusion, in
this thesis the order will be used to generate indexes. Order is equal to the degree
plus one. That is, a linear polynomial is degree 1 and order 2, and a cubic polyno-
mial is degree 3 and order 4.

4.1 The Knot Sequence

A knot is the point where two polynomial pieces are tied together. The knot se-
quence is a partitioning of the function domain and will be used to generate the
basis functions. One knot sequence is required for each function variable, e.g. if the
function is f : Rd 7→ R, d knot sequences is required. A knot sequence consists of
n j +k j numbers, where n j is the number of univariate functions and k j is the order
of the univariate functions for the variable x j . The knot sequence for x j is denoted

T j = {t j ,i }
n j +k j

i=1 . (4.1)

In the case of a one dimensional function domain the subscripts j can be removed,
leaving only

T = {ti }n+k
i=1 , (4.2)

and we will use this as the default notation, only including the multivariate sub-
scripts when they are needed. For a knot sequence to be acceptable its elements
must satisfy

ti−1 ≤ ti < ti+k ∀ i ∈ {1, . . . ,n j }. (4.3)

This basically means that the knot sequence must be increasing and that the same
value only can be repeated up to k times. A second property which is nice, but not
necessary, is that the first k elements are equal and the last k elements are equal.
Such a knot sequence is called regular and it gives the basis functions some nice
properties that will be mentioned in the next section. The knot sequence can be
chosen quite freely, but some choices are safer than others. For interpolation pur-
poses it is common to let the knot sequence reflect the data sample sites. Let

τ= {τ1, . . . ,τn+k } (4.4)

be the one of the grid partitions (grids were explained in section 3.2). To make the
knot sequence from equation 4.2 regular, it would have t1 = t2 = ·· · = tk = τ1 and
tn+1 = ·· · = tn+k = τn . For the values in between these k first and last points various
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strategies exist and they depend on the order of the polynomials involved (because
the order dictates the number of repetitions of the first and last value). If the order is
two (piecewise linear basis functions) the knot sequence is of length n+2 and since
the first and last value is repeated twice, the knot sequence can simply be taken as
identical to the grid values with the first and last repeated once:

ti =


τ1, if i = 1

τn , if i = n +2

τi−1, otherwise.

(4.5)

If the basis functions are fourth order, the knot sequence needs n +4 elements and
the first and last value is repeated four times each. If each value in between should
be used as in the linear case this would give n+6 elements in the sequence, hence all
data sites cannot be present if a regular sequence is desired. It is therefore common
to skip the second sample from both sides (τ2 and τn−1) and then proceed as in the
linear case. This gives

ti =


τ1, if i = 1,2,3,4

τn , if i = n +1,n +2,n +3,n +4

τi−2, otherwise.

(4.6)

If the polynomial order is an odd number (e.g. quadratic polynomials), this type
of approach would create asymmetry, so instead the knots would be taken to lie
in between all the grid values. In the general case the knot sequence is typically
generated so the knots are evenly spaced out among the data samples to make sure
there is a match between the number of supported basis functions and the number
of samples in all regions. In this thesis all approximations are done using cubic B-
splines with knot sequences generated by equation 4.6.

The knot sequences suggested above is by no means the only useful alternative. If,
for instance, a Hermite interpolation scheme is desired it would be necessary to re-
peat all knot values twice. This is to allow for enough flexibility to specify both func-
tion value and function derivative at each data sample. In this thesis only function
values are considered so the simple regular sequences will suffice.
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4.2 The Basis Functions

Starting with the one dimensional case and a knot sequence T as defined in equa-
tion 4.2. This knot sequence specifies n basis functions B k

i (x), i = 1, . . . ,n. The super-
script k being the polynomial order of the basis function. Using the approximating
function syntax from chapter 3, the final B-spline function defined this way is

y =
n∑

i=1
ci B k

i (x) =
n∑

i=1
ci bi (x) (4.7)

The basis functions are defined by the Cox-de Boor recursion

B k
i = x − ti

ti+k−1 − ti
B k−1

i (x)+ ti+k −x

ti+k − ti+1
B k−1

i+1 (x),

B 1
i (x) =

{
1, if ti ≤ x < ti+1

0, otherwise
.

This means a basis function of order k is given by a normalized convex combina-
tion of two basis functions of order k −1. Basis functions have support inside half
open intervals because of the way B 1

i is defined. It is desirable to close the last
of these intervals so the complete function has support inside the closed interval[
x, x

]= [t1, tn+1]. This can for instance be done by defining the basis function values
at B k

i (ub) as the limit

B k
i (x) = lim

x→x
B k

i (x). (4.8)

This is surprisingly often not mentioned in the literature and is just something to
be aware of. The reason probably being that it is quite annoying to keep bringing
up this special case in every discussion, so from now on it will just be assumed that
special care is taken at the last interval to make sure the function is properly defined
inside the closed box domain.

The basis defined above is sometimes referred to as a normalized B-spline basis and
it has the property that

0 ≤ B k
i (x) ≤ 1 ∀x ∈ [

x, x
]

. (4.9)

Without normalization the values would depend on the positioning of the knots in-
volved in the recursion. When a regular knot sequence is assumed the basis func-
tions become a partition of unity, which means that they always sum to one:

n∑
i=1

B k
i (x) = 1 ∀x ∈ [

x, x
]

(4.10)
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The basis functions have local support. For any i the basis function B k
i (x) is nonzero

only for x ∈ [ti , ti+k ). As a consequence of this, at most k basis functions will be
nonzero at any time and equation 4.10 can be restricted to only the nonzero func-
tions

I∑
i=I−k

B k
i (x) = 1 ∀x ∈ [tI , tI+1) (4.11)

for any given interval [tI , tI+1).

An interesting aspect of the B-spline basis functions is that each function covers
multiple polynomial pieces, and the functions overlap each other. A kth order ba-
sis function is stretched over k pieces and up to k basis functions will be non-zero
in the same interval. To get familiar with the basis functions, their development is
illustrated up to the forth order in figure 4.1 using the knot sequence

t = [t1 t2 t3 t4 t5] = [1 2 3 4 5] , (4.12)

which contains the number of knots needed to produce a single cubic basis func-
tion. In addition to one cubic basis function this knot vector defines four constant,
three linear and two quadratic basis functions, all which are used during the con-
struction of the cubic function. The overlapping of basis functions is illustrated in
figure 4.2. This has the interesting effect that each piece in the piecewise polyno-
mial is not described by k monomials of increasing order with support limited to
the interval, but by k polynomials of order k with support covering multiple inter-
vals. This is good because is makes it easy to guarantee smooth transitions between
the intervals (but one could also argue that it is bad because it makes the scheme
quite difficult to grasp at first glance). There are four degrees of freedom inside the
interval(one coefficient for each basis function), but the basis functions are defined
over more than one interval. This means that the basis coefficients will affect neigh-
bouring intervals as well and causes a chain reaction that makes all coefficients de-
pendant on each other and they must therefore be computed by a global (banded)
set of equations if the knot sequence has the layout suggested in the previous sec-
tion.

In the multivariate case the basis functions are created by first constructing sets of
univariate basis functions using the procedure described above and then take the
tensor product of these sets to produce the multivariate basis. This is done by letting

b j = {B
k j

j ,1(x j ), . . . , B
k j

j ,n j
(x j )} j = 1, . . . ,d (4.13)
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Figure 4.1: Four B-spline basis functions of increasing order defined on the knot
sequence in equation 4.12. As the order increases the basis functions gets smoother
and stretched over an increasing number of partitions.
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Figure 4.2: Four cubic basis functions, all active inside the interval [4,5). The parts
of each function inside this interval is coloured black, the rest gray. The four pieces
inside the interval makes up all the individual pieces of a single basis function.
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be the sets of univariate functions and create the multivariate basis by tensor prod-
uct:

b = b1 ⊗b2 ⊗·· ·⊗bd =
d⊗

i=1
b j . (4.14)

The elements of b can now be used as any other basis:

y =
n∑

i=1
ci bi (x). (4.15)

Here, n is the final number of basis functions and is given by

n =
d∏

j=1
n j . (4.16)

The final form of the basis is

bi (x) = B k1
i1,1(x1)B k2

i2,2(x2) . . .B kd
id ,d (xd ) (4.17)

and can be described either by the one dimensional index i or the d-dimensional in-
dex [i1, i2, . . . , id ]. Using multiple sums and the multidimensional indexing the ten-
sor product B-spline can be written as

y =
n1∑

i1=1

n2∑
i2=1

· · ·
nd∑

id=1
ci1,i2,...,id B k1

i1,1(x1)B k2
i2,2(x2) . . .B kd

id ,d (xd ). (4.18)

4.3 Parametric Curve Representation

The function f (x) = y represent pairs (x, y) by calculating y as a function of x, (x, y) =
(x, f (x)). The same pairs can be represented by parametric curve by introducing a
new variable t and compute x and y as functions of t . The pairs can then be written
as (x, y) = (x(t ), y(t )). For a B-spline

y =
n∑

i=1
ci bi (x) (4.19)

the parametric curve functions are

y(t ) =
n∑

i=1
ci bi (t ) (4.20)
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and

x(t ) =
n∑

i=1
t∗i bi (t ). (4.21)

These expressions both use the same basis functions as the original B-spline func-
tion. In addition, y(t ) is also using the original coefficients, which means this is
simply the original function just using a new variable. The coefficients for x(t ) are
computed so x(t ) = t . The complete parametric representation is given by pairing
the two sets of coefficients as ci = (t∗i ,ci ) and write

(x, y) =
n∑

i=1
ci bi (t ). (4.22)

Because of the properties from equation 4.9 and 4.10, the pair (x, y) is a convex com-
bination of the points ci and thus completely contained inside the convex hull of
these. This will be useful when creating convex relaxations and will be discussed
further in chapter 6.

4.4 Control Points

The coefficients in the B-spline are often called control points in the B-spline litera-
ture. The distinction between coefficients and control points is a bit blurry. It seems
that the term control point is used when the surface is described as a parametric
curve. In this thesis the term coefficient will be used when referring to the ci in a
function representation (equation 4.19) and the term control point when referring
to the ci in the parametric representation (equation 4.22) and they are related by

ci =
[
t∗T

i ,ci
]T

. (4.23)

The t∗i s are vectors with the same dimension as the function domain,

t∗i =
[

t∗i ,1, . . . , t∗i ,d

]T
, (4.24)

where the components are completely determined by the knot sequences,

t∗i , j =
ti , j+1 +·· ·+ ti , j+k−1

k −1
. (4.25)
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This is sometimes referred to as knot averages. The coefficients ci are found by a set
of equations in the same way it was described in chapter 3. Using the simple, regular
knot sequences described above, the coefficients are given by

B̄c = y (4.26)

where the components are built using equation 3.8, 3.9 and 3.10. The t∗i can be
found using the same set of equation, but replacing the right hand side with the
matrix

X = [
x1, x2, . . . , xn

]T
, (4.27)

which is built similarly to the vector y except by using the xi component of the data
samples rather than the yi component (this would produce the same values as equa-
tion 4.25). The cubic spline with knots and coefficients found this way is know as the
natural spline. They are the interpolating function with smallest second derivative,
in the sense that they minimize the integral of the square of the second derivative
[Lyche & Morken, 2004].

When a knot sequence has k equal knots, tI = ·· · = tI+k−1 = a, the basis function
whose support begins at a will evaluate to one at a. That is, B k

I (a) = 1 and all other
basis function will be zero. In addition to this, the t∗I from equation 4.25 will be
equal to a. This means the function interpolates one of its control points at the
points where a knot is repeated k times. With regular knot sequences this means the
surface interpolates the control points at the boundary of the function support.

4.5 B-spline Derivatives

The smoothness of a B-spline is governed by the order of the basis functions and the
multiplicity of the elements in the knot sequences. If m is the number of times a
value x occurs in the knot sequence, then the B-spline is differentiable k −m times
at x. Given a univariate k-th order B-spline the r -th derivative is given by a new B-
spline with basis functions of order k − r ; defined on the same knot sequence, but
excluding the r first and last knots:

d r

d xr y =
n∑

i=r
c(r )

i B k−r
i (x), (4.28)
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with the control points c(r )
i defined by:

c( j )
i =

(m − j +1)
c

( j−1)
i −c

( j−1)
i−1(

ti+k− j+1−ti
) , if

(
ti+k− j+1 − ti

)> 0

0, otherwise
(4.29)

c(0)
i = ci . (4.30)

For multivariate B-splines the derivatives are computed by the same scheme applied
to one variable at the time fixing all other indexes in turn.

4.6 Knot Insertion

Knot insertion is a way to refine the existing knot sequence by adding new knots
to it—and by that adding new basis functions to the B-spline. This will not alter
the function, only its representation. The piecewise polynomial is the same, but
represented in a new basis which spans a larger space and has the original space as
a subspace. When inserting a new knot, the control points near the new knot has to
be recalculated. This recalculation has the neat property that the adjusted control
points will be closer to the function surface. How the control points converge to
the surface is discussed in [Cohen & Schumaker, 1985]. The distance between the
control points and the surface is related to the distance between the knots and the
second derivatives.

There are several algorithms available for knot insertion and they have various pros
and cons. The interested reader is referred to [Lyche et al., 1985] for a comparison of
the most common algorithms. For this project the Boehm knot insertion scheme is
used because of its simplicity. Given a knot sequence T and a new knot value t̂ such
that tI < t̂ ≤ tI+1, the new knot sequence T̂ will have elements given as

t̂i =


ti , if i ≤ I

t̂ , if i = I +1

ti−1, if i > I +1

(4.31)

which is basically just inserting the new value in sorted order. The new control
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points are then calculated as

ĉi =


ci , if i ≤ I −k +1

t̂−ti
ti+k−1−ti

ci +
(
1− t̂−ti

ti+k−1−ti

)
ci−1, if I −k +2 ≤ i ≤ I

ci−1, if I +1 ≤ i

(4.32)

For more details about the Boehm scheme see [Boehm, 1980]. For the multivariate
case the univariate procedure is applied in each dimension by fixing the indexes of
the other variables in turn.

4.7 Convex B-splines

As with all polynomials there is no trivial test that will tell whether a general B-spline
is convex or not. Unfortunately no efficient convexity test was found for general
multivariate B-splines during the literature study. The ones suggested are very re-
strictive and generate a lot of false negatives. In one or two dimensions there are
some criteria that are sufficient to prove convexity and some of these are "asymp-
totically necessary", meaning that they aim to generate a set of inequalities that has
to be satisfied, and the number of inequalities can be increased to reduce the num-
ber of false negatives towards zero.

The problem with the B-spline convexity tests are that the second derivatives that
make up the Hessian are represented by a set of B-splines, all using sightly differ-
ent basis functions and they are not directly comparable. In the one dimensional
case with cubic splines the Hessian is simply a piecewise linear spline and it is trivial
to argue for convexity by inspecting the coefficients and see that they are all non-
negative. In the two dimensional case the articles found on the subject attempts
to rewrite the equations to a form where the Hessian components can be related to
each other, see for instance [Floater, 1993] for details on this procedure. But, as said,
no general B-spline method was found that seemed worth perusing further with the
limited time available. It would, of course, be possible to apply more general meth-
ods to test for convexity as a last resort.



4.8. IMPLEMENTATION 55

4.8 Implementation

Tensor product B-spline functions has been implemented in C++ and is now consid-
ered a part of the code project that was developed as part of my project last semester.
The implementation includes all functionality needed to read data from a specified
file, construct a suitable set of knot sequences and compute the control points for
a natural tensor B-spline automatically. The B-spline objects can evaluate function
values and derivatives. Knot insertion is done with the Boehm algorithm mentioned
above. The B-spline part of the code project consist of approximately 1000 lines of
code. The B-spline implementation has been tested for linear and cubic basis func-
tions with the knot sequence layouts described in section 4.1.

It should be mentioned that initially the plan was to find a open source library for
tensor produce B-splines and just use this directly. However, after spending quite
some time searching for such codes without finding anything that supported the
desired functionality, it was concluded that it would be easier to just implement it
ourself.

4.9 Chapter Summary

The tensor product B-spline approximation methods has been introduced. It is
based around piecewise polynomials and is represented by well behaved basis func-
tions. The tensor product B-spline has all the approximating power and flexibility
needed to approximate the black-box functions in our problem. This comes at the
price of assuming a strict grid structure on the data sets, which, for the time being,
is a price we are willing to pay.

Basic B-spline functionality was successfully implemented in C++. It seems to per-
form well in terms of representing the underlying functions, but it should be noted
that the natural B-spline is not shape preserving and will not remain strictly posi-
tive even if all data samples are positive, as will become evident when looking at the
results of some of the test problems. In this thesis this is not really going to cause
any headache, since the interesting part here is really just to see if it is possible to
use B-splines in a global optimization setting. Putting shape preserving properties
on the coefficients could be done afterwards if that is desired. Chapter 7 will show
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some results on B-splines paired with simulator data.



Chapter 5

Flow Network Optimization

This chapter will go through the basics of flow network optimization from a oil pro-
duction point of view. First the classic flow network problem will be introduced.
Then this will be gradually augmented until we arrive at the oil production prob-
lem. The final model is supposed to be a sufficient but simple representation of oil
and gas flow networks. The model scope begins were fluid flows leaves the oil-well
accompanied by a certain pressure and ends when the flow reaches the separator
level top side. Between the wells and separators we find a network of pipelines and
connections. It is this we refer to as the flow network. Models for the oil produc-
tion problem has been developed in several papers, see for instance [Kosmidis et al.,
2005] or [Gunnerud & Foss, 2010].

There are many variables that will affect how fluids travel through the network. The
goal here is to develop a model that allows us to decide how to maximize the amount
of oil that is able to pass though the network over a short future time horizon. To
achieve this maximization it is necessary to model mass transfers through the sys-
tem, and the model is thus based around the first principle of mass conservation.
The mass balance equations developed are of the simplest kind and no phase tran-
sitions are allowed. The driving force for mass transfer is pressure, so a momentum
balance is therefore required as well. All other effects (e.g. temperature and energy
balance) are neglected and assumed to be constant at this point. All modelling is
done assuming standardized conditions for flow rates (15◦C and 101.325kPa).

57
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The system is viewed in a intermediate time scale were non of the system compo-
nents display any dynamic behaviour. The reservoirs and separators appear as con-
stant based on the time scale argument that they have a large capacity relative to
the flow rates and will therefore not exhibit any detectable changes over short time
periods. The pipes and manifolds are assumed to be at "steady state" based on the
time scale argument that they have small capacities relative to the mass transfer per
time unit, and will there for quickly reach equilibrium and display event dynamics.

5.1 Introduction to Flow Networks

The Classic Flow Network Problem

The classic case of flow network optimization is a famous problem where the goal
is to find the maximum flow from a source to a sink node when all the connections
between them have capacity constraints. An example of a flow network is given in
figure 5.1. Formally the classic flow network problem is stated as: let N = (V ,E) be
a network graph with edges E and vertices V . Let s ∈ V be the source and t ∈ V
be the sink. All edges (u, v) ∈ E has a non-negative capacity cu|v and if the nodes
u and v are not connected we have cu|v = 0. The flow fu|v across an edge must be
less than the capacity of the edge. Flows have directions, which means fu|v =− fv |u .
Flow must be conserved trough the network, which means the flow in and out of all
vertices must be equal. The only exception being the sink and source nodes. This is
stated as ∑

v∈V
fu|v = 0 ∀u ∈V /{s, t } (5.1)

and is referred to as the mass balance equations. The goal is to maximize the flow
through the network, which for instance can be measured as the flow entering the
sink, ∑

u∈V
fu|t . (5.2)
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Figure 5.1: A small flow network with six vertices and seven edges.

The problem can now be stated as

maximize
∑

u∈V
fu|t

subject to fu|v ≤ cu|v ∀(u, v) ∈ E

fu|v =− fv |u ∀(u, v) ∈ E∑
v∈V

fu|v = 0 ∀u ∈V /{s, t },

(5.3)

which could be cast into the standard optimization problem. It would turn out to be
an LP problem. There are algorithms tailored to solve this problem in polynomial
time by exploiting the specific problem structure, an example being Edmonds-Karp
[Cormen et al., 2009].

Unfortunately the oil production problems does not simplify all the way down to this
classic case. It does for instance include routing decisions and non-linear pressure-
flow relations. Since the final problem cannot be solved using a solver that assumes
a single source and sink in the graph, the formulation will be extended to allow mul-
tiple source and sink vertices (this is technically not necessary, but is simplifies the
rest of the modelling procedure). Labelling the set of source vertices as Vs ⊂ V and
the set of sink vertices as Vt ⊂V , the mass balance is reformulated to∑

v∈V
fu|v = 0 ∀u ∈V /Vs ∩Vt (5.4)

and the objective to ∑
t∈Vt

∑
v∈V

f (v, t ). (5.5)
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We will also take the liberty to remove the skew-symmetric flows ( fu|v =− fv |u), since
our solver will not need those. The negative flows are only used to state the mass
balances as a single sum for each node. Introducing the sets VU (u) and VD (u) which
are sets representing the vertices that are connected to the vertex u upstream and
downstream respectively. They are defined by

VD (u) = {v |v ∈V ∧ cu|v > 0}, (5.6)

VU (u) = {v |v ∈V ∧ cv |u > 0}. (5.7)

With these sets, the mass balance can be rewritten to∑
v∈VU (u)

fu|v −
∑

u∈VD (u)
fu|v = 0 ∀u ∈V /Vs ∩Vt . (5.8)

This intuitively reads: the sum of upstream flows must be equal to the sum of down-
stream flows. We now arrive at at slightly modified optimization problem that is
equivalent to the original flow network problem, but on a format more suitable for
our solver methods:

minimize − ∑
v∈Vt

∑
u∈V

fu|v

subject to fu|v ≤ cu|v ∀(u, v) ∈ E∑
v∈VU (u)

fv |u − ∑
v∈VD (u)

fu|v = 0 ∀u ∈V /Vs ∩Vt .

(5.9)

The Flow Network Decision Problem

In the classic formulation of the flow network problem there is no restrictions on
how the flow is distributed among the edges. In the decision problem an edged has
to be selected before it can have a non-zero flow. The selection is denoted su|v and
this is equal to one if the edge (u, v) is chosen and zero if not. Flow is now restricted
by

fu|v ≤ cu|v su|v , (5.10)

which says that an edge must both have a non-zero capacity and be selected before
the flow can be non-zero. There are restrictions on the selection procedure. Some
choices can be mutually exclusive. In our case this mutual exclusion is that for ver-
tices with multiple leaving edges, only one can be selected. That is,∑

v∈VD (u)
su|v ≤ 1, u ∈V. (5.11)
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A valid combination of selections is one that turns the flow network into a tree (or
forest) structure with flows flowing from the leaf nodes towards the root node(s).
The flow network decision problem could be cast into a MILP-problem where the
goal is to find the tree structure within the flow network that provides the maximum
flow. This is still not sufficient to describe the oil production problem. The last step
is to introduce a driving force that drives the flow from the source and towards the
sink. This driving force is in our case unfortunately non-linear.

The Potential Driven Flow Network Decision Problem

Adding a driving force to the flow problem is done by introducing a non-negative
potential at each vertex. The potential at vertex u is labelled pu . Each edge is as-
signed a function ∆pu|v

(
fu|v

)
that dictates how much potential is lost over an edge

as a function of the flow rate. The potential must be conserved so the loss over an
edge must be equal to the difference in potential at the vertices it is connected to.
This is written as

pu −pv =∆pu|v
(

fu|v
)

. (5.12)

The conservation is only relevant when the edge is selected making the final equa-
tion

(
pu −pv −∆pu|v

(
fu|v

))
su|v = 0, ∀(u, v) ∈ E . (5.13)

The potential at a source can either be fixed or related to the leaving flow. Here it will
be modelled so the leaving flow is a function of the source potential by introducing a
function fu(pu) for each source. A flow can only be non-zero if the edge is selected,
so this function must be multiplied by the corresponding selection variable,

fu|v = fu(pu)su|v ∀v ∈VD (u), u ∈Vs . (5.14)
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To summarize, the complete problem in now given as

minimize − ∑
v∈Vt

∑
u∈V

fu|v

subject to fu|v ≤ cu|v su|v ∀(u, v) ∈ E∑
v∈VU (u)

fv |u − ∑
v∈VD (u)

fu|v = 0 ∀u ∈V /Vs ∩Vt

fu|v = fu(pu)su|v ∀v ∈VD (u), u ∈Vs(
pu −pv −∆pu|v

(
fu|v

))
su|v = 0 ∀(u, v) ∈ E∑

v∈VD (u)
su|v ≤ 1 u ∈V.

(5.15)

This problem will serve as a frame for the oil production problem that is formulated
in the next section.

5.2 Oil Production Flow Networks

This section will formulate the oil production problem using the nonlinear flow net-
work framework. This will be done using the Marlim test case as an example. The
Marlim problem is visualized in figure 5.2. It is a case with twelve wells and two
riser pipelines. Six wells are topside wells, which means they are connected directly
to the separator. The other six are subsea wells and they are connected to a man-
ifold. This manifold has the ability to route each well individually to one of two
riser pipelines. This model was used by fellow students Stine Ursin-Holm and Sheri
Shamlou in their project last semester and the solution to this problem is known
[Shamlou & Ursin-Holm, 2012]. This thesis will use the same model and data sets.

Before the actual modelling begins, it should be pointed out that the network flow
problem as it is described in the previous section defines a lot of unnecessary vari-
ables and constraints. Each vertex is theoretically connected to all other vertices, but
only a sparse subset of these connections will have non-zero capacities. This means
that many equations will end up as trivial 0 = 0 constraints and many variables will
be forced to be constants. These are obviously ignored when the problem is solved.
The reason the problem is formulated this way is that it is really difficult to suffi-
ciently describe all possible sparse topologies without introducing a lot of different
index sets to cover all the special cases.
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Figure 5.2: The Marlim flow network. There are 12 wells , 2 pipelines and 1 separator.
The graph has 15 vertices and 20 edges. The six left hand side wells are the topside
wells and they are connected directly to the separator. The six right hand side wells
are the subsea wells and they are connected to a manifold and the manifold is con-
nected to two riser pipelines. The manifold has been divided into two vertices, one
for each pipeline. Each subsea well is connected to both manifold vertices, but only
one of these connections can be selected at a time.
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Model Topology

The flow network problem is based around a graph representation of the topology.
The topology of the Marlim field is given in figure 5.2. The graph has 15 vertices and
20 edges. Of these, 18 edges have routing and two have pressure drop equations.

In addition to the notation introduced in the previous section, it will be useful to
have a set containing only the edges connected to a source vertex and a set contain-
ing only the edges connected to a sink vertex. Starting with the source edges, denote
the set by Es and let it be given by

Es = {(u, v) | (u, v) ∈ E ∧ u ∈Vs }. (5.16)

The sink edges are denoted by Et and is given by

Et = {(u, v) | (u, v) ∈ E ∧ v ∈Vt }. (5.17)

Mass Balance and Flow Equation

The mass balance is for the most part identical to the one stated in the framework
above. The changes made here is to introduce multiphase flow and gas lift and to
simplify the relationships between flow and pressure at the wells.

The fluid flowing in the oil production network is made up of several different phases.
In the Marlim model the phases are oil, gas and water, which are labelled qo , q g and
q w respectively. They are related to the network edge flows by

fu|v =
[

qo
u|v , q g

u|v , q w
u|v

]T
. (5.18)

In the flow network all flows fu|v are non-negative and this serves as the lower bound
on the variables in the optimization problem. The edge capacity cu|v will be the up-
per bound. The actual values for the capacities are taken as the maximum values in-
dicated by the simulator data sets. If no such maximum exists, the bound is set high
enough to not interfere with the solution while still being as low as possible (only to
limit the optimization search space). It should be noted that the riser pipelines in
the Marlim case have a non-zero lower bound on their flow rates.
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In the model above the flow rate leaving a source was given as a function of pres-
sure. In the oil production case it is possible to inject additional gas into the well to

increase the flow. The gas lift rate for well u is q g l
u . The pressure-flow relationship is

augmented to include the gas lift,

fu|v = fu

(
pu , q g l

u

)
su|v , ∀ (u, v) ∈ Es . (5.19)

The gas and water rates are linear in the oil rate, so this expression can be separated
to three simplified equations. These equations are

qo
u|v = f o

u

(
pu , q g l

u

)
su|v ∀ (u, v) ∈ Es , (5.20)

q g
u|v =

(
kg

u qo
u|v + g g l

u

)
su|v ∀ (u, v) ∈ Es , (5.21)

q w
u|v =

(
kw

u qo
u|v

)
su|v ∀ (u, v) ∈ Es , (5.22)

where kg
s and kw

s are given constants for each well. Multiplying the water equation
with the selection variable is redundant since the oil flow will always be zero when
the selection variable is zero. For the gas equation is it required because the gas lift
is possibly non-zero, as it is shared among all routing alternatives.

There is a limit on the total gas lift capacity. Denoting this limit by CGL , the limitation
written as ∑

(u,v)∈Es

q g l
u su|v ≤CGL . (5.23)

This formulation will in our case include some gas lift variables twice, but atleast
one of these will be multiplied by zero. The reason for this formulation is that some
wells have a non-zero lower bound on their gas lift usage, meaning that if the well
is on it must also use a certain amount of gas lift to function properly. If the well is
turned of, the optimization variable will remain non-zero, but by multiplying with
the selection variable it will not be penalised in the constraint above.

For the Marlim case these are also limitations on the total gas and water production
at the separator level. Let CW be the water capacity and CG be the gas capacity. The
restrictions are then given as ∑

(u,v)∈Et

q g
u|v ≤CG (5.24)

for the gas production and ∑
(u,v)∈Et

q w
u|v ≤CW (5.25)
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for the water production.

In the original flow problem the objective is to maximize all flow, since it only op-
erates on single phase flows. The oil production problem has three different phases
and only one is interesting to maximize. The objective is altered slightly to accom-
modate this, ∑

(u,v)∈Et

qo
u|v . (5.26)

Routing Options

The decisions problem stated above had the ability to turn all edges on and off. In
the oil production case only a few of these choices actually makes sense. In the
Marlim case only the edges that are connected to a well has valid routing options.
All other edges will have their selection fixed to 1. This is done by setting both the
upper and lower variable bound to 1. A variable that is restricted to only one value
is treated as a constant in the optimization problem.

As the Branch-and-Bound solver iterates, the other selection variables will even-
tually be fixed in the same manner, but then to either 0 or 1 depending on the
branch. In the Marlim case there are 18 on-off selections. The six topside wells
have two possible settings each and the six subsea wells have four possible settings
each. This gives a total of 2646 = 218 = 262144 different routing combinations. Only
2636 = 46656 of these are actually routing feasible, the others failing to satisfy equa-
tion 5.11. Since the pipelines are modelled to require a minimum flow rate, many of
these combinations will also end up being infeasible. In all there are 38528 feasible
routing combinations.

Momentum Balance

The momentum balance is almost the same as the driving force equations outlined
in section 5.1. The difference is that the edges connected to a well do not have pres-
sure drop as a function of flow, but given as a non-negative choke variable. This
choke variable is basically there to allow for additional pressure drop if this is de-
sired.
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For the pipeline edges we keep the original pressure drop equation:(
pu −pv −∆pu|v

(
fu|v

))
su|v = 0, ∀ (u, v) ∈ E/Es . (5.27)

For the source edges the original equation is altered slightly. A choke variable ∆pc
u|v

is introduced and it takes the place of the original pressure drop term,(
pu −pv −∆pc

u|v
)

su|v = 0, ∀ (u, v) ∈ Es , (5.28)

combined with the non-negativity restriction ∆pc
u|v ≥ 0.

For the source vertices, bounds on the pressure variables are taken equal to the vari-
able range used in the data sets. For the other vertices the bounds are taken to be
the lowest lower bound and highest upper bound from the sources.

Simulators and Approximations

The nonlinear flow-pressure relationships for the wells and pipelines are given by
simulators. Data sets from the simulators are provided, but the simulators them-
selves have not been available. The data sets are used to create interpolating tensor
product B-splines that will replace the simulator functions in the problem formula-
tion. A selection of approximation results is given in Chapter 7.

The well data is given in a 12×12 grid structure. The variable ranges vary with the
individual wells. The size of these data sets are small enough to be comfortably dealt
with. No reduction of sample size was attempted, but for some wells it would have
been possible to remove almost half of the samples since the function surfaces have
large areas with almost no curvature. Some wells are able to produce at zero flow,
but most wells have a non-zero minimum flow rate they must produce at if the well
is active. Some wells also have a non-zero minimum gas lift usage that is required if
the well is active.

The pipeline data is given in a 30×30×30 grid structure. Both pipelines using the
same data sites. These data sets contain 27000 samples. This is not impossible to
manage, but it is definitely a noticeable preprocessing job when the amount of data
reach these numbers. Some samples were removed to see the effect this had on the
approximations. This did not degrade the approximation significantly in the regions
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of interest. The final data sets used a 18×18×18 subset of the original data set, but
additional samples could easily have been removed if we where willing to sacrifice
some accuracy in the regions with large second derivatives (this is typically on the
boarder of the function domain where the simulator produces some oscillating re-
sults that are impossible to capture without all the samples).

5.3 Chapter Summary

The complete oil production model was derived by gradually augmenting and ad-
justing the classic optimization problem of maximizing network flow. The Marlim
case is used as a test problem for this thesis. The model and problem components
are summarized below. The index sets used are summarized in table 5.1 for quick
reference.

minimize − ∑
(u,v)∈Et

qo
u|v

subject to fu|v ≤ cu|v su|v ∀(u, v) ∈ E∑
v∈VU (u)

fv |u − ∑
v∈VD (u)

fu|v = 0 ∀u ∈V /Vs ∩Vt

qo
u|v = f o

u

(
pu , q g l

u

)
su|v ∀ (u, v) ∈ Es ,

q g
u|v =

(
kg

u qo
u|v + g g l

u

)
su|v ∀ (u, v) ∈ Es ,

q w
u|v =

(
kw

u qo
u|v

)
su|v ∀ (u, v) ∈ Es ,(

pu −pv −∆pc
u|v

)
su|v = 0, ∀ (u, v) ∈ Es(

pu −pv −∆pu|v
(

fu|v
))

su|v = 0 ∀(u, v) ∈ E/Es∑
v∈VD (u)

su|v ≤ 1 u ∈V

∑
(u,v)∈Es

q g l
u su|v ≤CGL∑

(u,v)∈Et

q g
u|v ≤CG∑

(u,v)∈Et

q w
u|v ≤CW .

(5.29)
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Description Symbol Definition
All edges E -
All vertices V -
Vertices connected to u downstream VD (u) {v |v ∈V ∧ cu|v > 0}
Vertices connected to u upstream VU (u) {v |v ∈V ∧ cu|v > 0}
Source vertices Vs {v |v ∈V ∧VU (u) =;}
Sink vertices Vt {v |v ∈V ∧VD (u) =;}
All edges leaving a source Es {(u, v)|(u, v) ∈ E ∧u ∈Vs }
All edges entering a sink Et {(u, v)|(u, v) ∈ E ∧ v ∈Vt }

Table 5.1: Index sets used in the Marlim model formulation. The topology graph is
given in figure 5.2.

In order, the constraints represent: flows restricted by selection, mass balance at all
internal vertices, oil-, gas- water- and momentum relations for each well, momen-
tum equation for each pipeline, routing restrictions, gas lift capacity, gas production
capacity and water production capacity.
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Chapter 6

B-spline Branch and Bound

The idea behind the Branch-and-Bound was explained in Chapter 2 and this chap-
ter will go into the details of the algorithm that was implemented and used for this
thesis. The algorithm will accept problems on the form

minimize cT x

subject to ci (x) ≤ 0, i ∈ I

ci (x) = 0, i ∈ E

xi ∈ Z, i ∈ Z

x ∈ X .

(6.1)

It is assumed that the problem has a linear objective. If the problem does not have
a linear objective, it must be rewritten to the epigraph formulation by introducing
a new variable and a new constraint as explained in Chapter 2. Assuming a convex
objective like this is only to simplify the convex relaxation process, since only con-
straints have to be considered in the implementation. All functions are assumed to
be twice differentiable. Affine functions are represented using matrices and vectors.
Non-linear functions are either represented by special terms, such as bilinear, or by
tensor product B-splines. The solver is a fairly standard branch and bound imple-
mentations, and the only unique element is the B-spline representation, which is a
approximation technique that allows us to transfer the problems from a black-box
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(oracle) description to a parameter description that can be manipulated and relaxed
conveniently.

6.1 Description of the Algorithm

Pseudo code for the Branch-and-Bound framework is given in algorithm 1. Recall
from Chapter 2 that the Branch-and-Bound progress can be interpreted as a tree
structure. The algorithm maintains a global best solution f ∗ and a global lower
bound f̄ and iterates until these are acceptably close to each other. Each iteration
will first select a leaf node to process and find a lower bound f̄i on the objective
value for this node. If the lower bound is worse than the best known solution, the
node is simply removed from the list of interesting nodes and this branch of the tree
is considered completed. If the lower bound is better that the best known solution,
a local solution f ∗

i is found. If f ∗
i coincide with f̄i this branch of the has converged

and no further exploration is required, otherwise the node is divided into two child
nodes and the child nodes are placed in the list of leafs that needs to be processed.
The key steps in the algorithm are explained in the following sections.

Select Leaf Node

Various heuristics exist for choosing the next leaf node to be processed. Classic
three-traversing methods like Depth-First and Breadth-First are among the simplest
methods. Other methods are variations of a Best-First type of scheme where "best"
is measured by some property on the parent node e.g. lowest lower bound or lowest
upper bound. Heuristic testing is not the topic for this thesis, so a simple best-first
selection scheme is used based on the parent lower bound. This should give a steady
progress for the lower bound iterates, without requiring too complicated implemen-
tations.
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Algorithm 1 Branch-and-Bound Algorithm

Set f ∗ ←∞
Set f̄ ←−∞
Set leaf node indices I ← 1
repeat

Ni ← select leaf node
f̄i ← solve lower bound problem for Ni

if f̄i > f ∗ then
Fathom Ni

else
f ∗

i ← solve upper bound problem for Ni

if f ∗
i < f ∗ then
f ∗ ← fi

end if
if f ∗

i ≤ f̄i +ε then
Fathom Ni

else
Branch and add child nodes to leaf node indices

end if
end if
I ← I /{i }
Set f̄ ← min{ f̄i , i ∈ I }

until f ∗ ≤ f̄ +ε
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Solve Lower Bound Problem

The lower bound problem at node Ni is given by

minimize f (x)

subject to c̄ i
j (x) ≤ 0, j ∈ I

c̄ i
j (x) = 0, j ∈ E

x ∈ Xi .

(6.2)

It is produced by creating relaxed versions of all the non-linear constraints and re-
moving the integer constraints. All B-spline constraints are relaxed, since the al-
gorithm currently don’t check whether a B-spline inequality is convex or not. This
is obviously a weakness in the algorithm, and will hurt the convergence, but due to
limited time such features were ignored. The consequences of this is discussed later.
Of the nonlinear functions with special structure, only bilinear terms have been used
in this thesis. They are treated using the best possible relaxation, which was given
in Chapter 2. B-spline constraints are relaxed using the convex hull of the control
points. This is explained in Section 6.2. Other constraints are either linear or have
special structure. The only special structure term used in this thesis is the bilinear
terms in the network flow model. Bilinear terms are relaxed using the constraints
from equations 2.25-2.28. It is interesting to note that if the bilinear term had been
represented as a second order B-spline using a sample at each corner of the variable
bounds, then the B-spline would be a perfect approximation (bilinear basis repre-
senting a bilinear function) and the relaxation of this B-spline would be identical to
the exact relaxation. This is because the B-spline would interpolate the four control
points and the relaxation is the convex hull of these. It would therefore be possible
to achieve the same performance using only B-splines.
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Solve Upper Bound Problem

The upper bound problem at node Ni is given by

minimize f (x)

subject to c i
j (x) ≤ 0, j ∈ I

c i
j (x) = 0, j ∈ E

x j = k i
j , j ∈ Z

x ∈ Xi .

(6.3)

It is produced by fixing the integer variables to a integer inside the problem domain,
making them constants instead of variables in the problem. These constants could
be chosen in various ways and many of these choices could easily lead to infeasible
problems. In this implementation they are set based on the lower bound solution.
When solving a oil production problem it would obviously be possible to exploit
the routing structure of the flow network when selecting these constants, but such
heuristics will not be explored here.

Branching

The main problem here to find a suitable rule for selecting the branching variable.
The branching rules used in this implementation are rather simple. Integer vari-
ables are given priority and the variable violating the integer constraint the most
is chosen among these. When no integer variables are left, the branching process
moves on to the continuous variables. Among the continuous variables, the vari-
able with the largest distance between the upper and lower bound is chosen. This
is not a very sophisticated branching strategy and there are other strategies could
have been applied. The motivation for using this strategy is that it is simple and pre-
dictable, which allows for a easier analysis of the results later. This is because the
quality of the B-spline relaxation is closely connected to the distance between the
knots in the knot sequences and this distance is directly linked to the variable range
(this is illustrated in the next section).
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6.2 Convex Relaxation of B-spline Constraints

Recall from Chapter 4 that a surface described by B-splines could be written as the
parametric curve

(x, y) =
n∑

i=1
ci bi (t ) (6.4)

and that the basis functions have the properties

1 =
n∑

i=1
bi (t ) (6.5)

and
0 ≤ bi (x) ≤ 1. (6.6)

The pairs (y, x) is a convex combination of the control points ci and will be con-
tained inside the convex hull of these points. A convex relaxation can be made by
allowing all convex combinations of ci . This can be done by introducing n new vari-
ables zi , i = 0, . . . ,n to replace the basis functions in all three of the equations above.
This gives the constraint

(y, x) =
n∑

i=1
ci zi . (6.7)

In the original problem the B-spline basis has the property that they sum to one and
are always non-negative, but these are not explicitly stated in the problem. In the
relaxation it is necessary to include these as the constraints

1 =
n∑

i=1
zi (6.8)

and
zi ∈ [0,1] , i = 1, . . . ,n. (6.9)

It would also be possible to compute the convex hull of the control points as a sim-
plex and express this as a set of linear inequalities in x and y , thus avoiding the
introduction of new variables, but this comes at the cost of a significantly larger set
of constraints. The algorithm implemented here will use the method with new vari-
ables. The convex hull of a B-spline is illustrated in figure 6.1. For the relaxation to
be useful it must be a reasonably good approximation of the actual convex hull of
the surface and it must also converge to the actual convex hull as the variable range
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is reduced by branching. This is to make sure local solutions and the lower bounds
eventually converge to each other. When parts of the domain of a B-spline is re-
moved by splitting a variable range, some of the basis functions will be unsupported
inside the new range. This is because the basis functions have local support. For the
univariate basis functions the support is given by half open intervals:

supB k
i (x) = [ti , ti+k ) . (6.10)

For a basis function to remain relevant it must have

supB k
i ∩ [

x, x
] 6= ;. (6.11)

Illustrating this, let the monovariable B-spline be given as

y =
n∑

i=1
ci B k

i (x) (6.12)

with knot sequence
T = {t1, t2, . . . , tn+k }. (6.13)

If the lower bound is increased from x = t1 to x∗ ∈ [tI , tI+1) the basis functions with
index lower than i − k will become unsupported and the B-spline sum can be re-
stricted to

y =
n∑

i=i−k
ci B k

i (x). (6.14)

The relaxation of this expression will contain fewer control points than the original
relaxation, and should thus shrink. But, this will not converge, since no matter how
small the interval gets there will always be four nonzero basis functions inside it and
the convex relaxation will therefore never get better that these four control points
if the original control points are used. This is illustrated in figure 6.2. To guarantee
proper convergence, the B-spline will be updated when the domain size is reduced
by making use of knot insertion. Knots will be inserted to make sure the knot se-
quence remains regular, which means that up to k new knots will be added at the
value where the domain was cut. By keeping the knot sequence regular it is ensured
that the B-spline will interpolate the control points at the domain boundaries. This
is shown in figure 6.3. In addition to keeping the knot sequence regular it will also
be kept at a minimum number of knots by inserting additional single knots between
the existing knots. This is referred to as knot refinement. With these strategies in
place for updating the B-spline the development of the convex relaxation between
parent and child nodes can be seen in figure 6.4.
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Figure 6.1: A B-spline and the convex hull of its control points. The distance between
the curve and the control points is increased when the second derivative of the curve
is large.
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Figure 6.2: The child node relaxations after a cut at x = 0.5 when the B-spline rep-
resentations remains unchanged after the cut. The relaxation is improved, but not
significantly due to the fact that there will be a overlap of k control points which
must be included in both child nodes. This makes the relaxations unable to interpo-
late at the endpoints and will eventually halt the convergence completely.
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Figure 6.3: The child node relaxations after a cut at x = 0.5 when the B-spline rep-
resentations are updated in the child nodes to have regular knot sequences. This
allows relaxations to interpolate at the endpoints and there is no overlap of control
points between the two child nodes.
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Figure 6.4: The child node relaxations after a cut at x = 0.5 when the B-spline rep-
resentations are updated in the child nodes to have regular knot sequences and the
knot sequences are refined to contain a minimum number of knots . The refinement
improves the convex hull by drawing all the affected control points closer to the ac-
tual surface, but it is not always necessary and in this case only child node A actually
benefits from the refinement. The benefit of the refinement is correlated with the
magnitude of the second derivatives of the function and the distance between the
knots in the original sequence.
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In the multivariate case the regularization and refinement process is applied to all
points in the grid by iterating trough and fixing the indexes of the unaffected vari-
ables while the changes are made as in the monovariable case. The complete do-
main restriction and update procedure is given in algorithm 2.

Algorithm 2 B-spline Domain Reduction and Knot Refinement

Split box domain for variable xi at s and refine corresponding knot sequence Ti .
The new domain is either

[
xi , s

]
or

[
s, xi

]
.

Require: s ∈ (
xi , xi

)
repeat

Insert s in Ti using Boehms knot insertion algorithm
until s occurs k times in Ti

Remove unsupported basis functions
repeat

ti ← first index of largest interval in Ti

τ← (ti + ti+1)/2
Insert τ in Ti using Boehms knot insertion algorithm

until Number of knots in Ti is equal the number of desired knots

6.3 Implementation Details

The algorithm is implemented in C++ and is a continuation of the code project that
was started last semester. The complete code project is now roughly 10 000 lines
of code, of which about 8000 have been relevant for this thesis. The code is written
by Bjarne Grimstad (co-supervisor for the thesis) and myself, the work being split
fairly even between the two of us. The local solver framework developed during the
previous semester was kept mostly unchanged and has now been extended to be-
come a Branch-and-Bound based global solver. This solver supports a selection of
nonlinearities with special structure and general nonlinearities represented as ten-
sor product B-splines. My contributions to the code-project during this thesis is
mainly related to the B-spline functionality while Bjarne Grimstad has done most of
the branch and bound code, but we have both been involved with all project com-
ponents at some point.

The focus for the implementation has been to produce a solver that can illustrate the
suggested algorithm and computational speed has only been a secondary goal. The



6.4. CHAPTER SUMMARY 83

code it therefore quite slow, mostly due to inefficient data structure manipulation.
Because of this the discussion later will be focused on the solver progress at each
iteration and not so much on the actual solution times.

Numerical Solver

The solver used in the Branch-and-Bound implementation is COIN-ORs open source
interior point solver Ipopt. It is intended for large scale sparse non-linear optimiza-
tion [Wächter & Biegler, 2005]. It works on a oracle description of the problem that
can be asked for function values and potentially derivatives and the Hessian of the
Lagrangian function. With the setting used here, Ipopt supplied with the derivatives
and estimates the Hessian.

Ipopt is ran using mostly the standard settings suggested by the examples in the
user manual [Wächter et al., 2009]. The only significant change to the settings is
that the bound_relax_factor is set to 0. This is done because the B-spline functions
are only supported inside the variable bounds, so it cannot tolerate that the solver
relaxes these bounds and then evaluates outside the function support. This might
introduce some convergence issues and in hindsight the B-spline support should
have been extended slightly beyond the actual samples as a work-around to this
problem.

6.4 Chapter Summary

A fairly standard Branch-and-Bound framework has been implemented. The unique
feature being the support for B-spline approximation of general nonlinear func-
tions. A relaxation strategy for B-spline constraints has been suggested. This strat-
egy will be tested on a academic problem and on a oil production problem. The
results of these test are given in Chapter 7 and discussed in Chapter 9.
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Chapter 7

Approximation Results

This chapter will attempt to visualize the approximations produced by the tensor
product B-spline. Since it is difficult to convey multidimensional surfaces in a two
dimensional format the figures presented here will be plots of cross sections of the
function surfaces where all except one variable has been fixed for each plot. Chapter
5 introduced the Marlim case which is used for all flow network related tests in this
thesis. The case came with a collection of data sets generated by simulator models.
These data sets will be used to to illustrate the most important properties of the
suggested B-spline interpolation technique. The selected plots will attempt to cover
the situations where the approximation is successful and the situations where it is
likely to fail.

7.1 Approximating Marlim Well Data

The test case has twelve wells. Each well has a nonlinear relationship between pres-
sure, gas lift allocation and oil flow rate, where the oil flow rate is found as a function
of pressure and gas lift. This relationship is modelled by simulators and the simu-
lators have been sampled to produce data sets for each well. The given datasets are
grids with twelve points in each dimension. The area covered by the samples vary
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with each set. The data sets consist of only 144 data samples and all samples are
used to create the approximations.

The figures presented in this section are made by fixing the gas lift allocation vari-
able to each value it takes in the sample grid before evaluating the function over the
pressure range. The actual amount of gas lift is not indicated since this would just
clutter the figures, but, for clarity, the plots with higher production are the ones with
a higher gas lift allocation. In addition to the B-spline approximation, a piecewise
linear interpolation is given to make it easier to compare the shape of the B-spline
surface to the shape of the data set.

Most of the production curves were easily approximated and gave nice spline sur-
faces. Figure 7.1 illustrates the most common behaviour. This type of surface was
seen in most of the high production wells. The top five plots in this figure are almost
identical. At a certain point the effect of additional gas lift diminish and the surface
is easy to approximate. It would not have been a problem to remove some of the
samples in this region and still provide solid approximations. In general the trend is
that the approximation get more difficult with decreasing gas lift and oil rates. The
sample density must therefore be higher in the regions with low flow rates. The data
set for this well does not go all the way down to zero flow rate, which is why there are
no real difficulties here.

For some of the wells with low production potential the data sets were less favourable
and the lack of shape preservation in the approximation becomes apparent. Figure
7.2 gives an example of this. The problem is that the flow suddenly dies and the point
where it dies changes with the amount of gas lift used. With the data provided it is
not possible to tell if the surface should even be continuous at the point where this
happens. Since the natural spline will attempt to minimize the second derivative it
will oscillate in the neighbourhood of these abrupt changes. The worst behaviour
among all the wells is given in figure 7.3 and here a different coefficient calculation
is shown in addition to the natural spline. The alternative interpolation is a cubic
hermite spline with the derivatives computed in a shape preserving manner. The
shape preserving spline produces a pleasing surface without any oscillations.
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Figure 7.1: Cross sections of a well production curve. The cross sections are taken
with the allocated gas lift fixed to each lattice in the sample grid. This is one of the
wells with high production potential and the data sets for these wells are easy to
approximate since the flow is stable over the entire grid.
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Figure 7.2: Cross sections of a well production curve. The cross sections are taken
with the allocated gas lift fixed to each lattice in the sample grid. This is one of the
wells with a lower production potential and these data sets are difficult to approxi-
mate near the regions where the flow dies.
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Figure 7.3: Cross sections of a well production curve. The cross sections are taken
with the allocated gas lift fixed to each lattice in the sample grid. In this example the
natural spline is compared to a shape preserving spline. It is clear that they are iden-
tical when the data is well behaved and that the shape preserving spline is superior
when the underlying function exhibits step-like behaviour.
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7.2 Approximating Marlim Pipeline Data

The test case has two pipelines. Each pipeline has a nonlinear relationship between
pressure drop, gas, water and oil flow rate, where the pressure drop is calculated as a
function of the flow rates. For both pipelines the data set is given as a 30×30×30 grid
of which a 18×18×18 subset is used in the approximation. The samples are taken
as every other sample except at the edges of the grid where additional samples are
taken.

The figures presented in this sections are made by fixing the oil rate and the water
rate to values in the sample grid before evaluating the function over the gas rate
range. Each figure illustrate a single oil rate combined with a selection of water rates.

The pipeline functions are for the most part well behaved. Figure 7.4 illustrates the
type of behaviour that dominates the part of the domain where the gas and liquid
rates are fairly balanced. This is the part of the domain where the achievable flow
rates are found. It can be seen that the plots are close to convex with respect to the
gas rate and monotone in the liquid rates. This is fortunate for the solvers and is
one of the reasons why they tend to find good solutions to the problem if given a
reasonable starting point.

In the part of the domain where the gas rate dominate the liquid rates the data sam-
ples are less favourable. Figure 7.5 illustrates the typical behaviour in this region.
The oil rate is fixed to one of the lowest values in the grid and the water rate ranges
from the lowest to the highest water rate in the grid. When the water rate is high it
is able to make up for the low oil rate and the surface is fine. But, as the water rate
drops, the computation begins to falter and the surface seem to exhibit step like be-
haviour. The surface gets worse with higher gas-to-liquid ratios until it seems to get
caught in a safety net that provides a reasonable computation for the most extreme
cases. The natural spline is unable to capture the shape of the surface in this region,
since it attempts to avoid steps as much as possible. The inability to recreate the
surface is amplified by the fact that some of the samples are left out when creating
the approximation.
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Figure 7.4: Cross-sections of a pipeline pressure drop function. The oil rate is fixed
at 2200

[
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]
for all plots. The water rate is fixed at different values for the indi-

vidual plots. Gas rate is the free variable. This selection of plots captures the region
of the pressure drop function where the total liquid rate is high.



92 CHAPTER 7. APPROXIMATION RESULTS

0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

140

160

180

200

220

Gas rate, 1000[m3/day]

P
re
ss
u
re

D
ro
p
,
[k
g
f
/
cm

2
]

 

 

B-spline, Water Rate = 40 [m3/day]
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Figure 7.5: Cross-sections of a pipeline pressure drop function. The oil rate fixed at
200
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]
for all plots. The water rate is fixed at different values for the individ-

ual plots. Gas rate is the free variable. This selection of plots captures the region of
the pressure drop function where the total liquid rate is low.
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7.3 Chapter Summary

The suggested B-spline seems to provide pleasing approximations in the regions
where the simulators are smooth, but it will introduce oscillations when the data
have step like behaviour. A small example of how shape preservation can be applied
to combat this problem was provided. The discussion of these results will be given
in Chapter 9.
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Chapter 8

Optimization Results

This chapter will present the optimization results of this thesis. The problems inves-
tigated are aimed at revealing some of the strengths and weaknesses of the B-spline
method, with focus being on the suggested relaxation strategy. The results will also
attempt to shed some light on the possibilities of solving oil production problems to
a global solution. The results will be generated using the Marlim test case that was
introduced in Chapter 5 and a more academic test problem based on the Rosen-
brock function.

8.1 The Rosenbrock Problem

Problem Formulation

The Rosenbrock function is a classic test function in unconstrained optimization.
The n-dimensional version of the Rosenbrock function is

g (x1, . . . , xn) =
n−1∑
i=1

(1−xi )2 +100
(
xi+1 −x2

i

)2
. (8.1)
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We will use an epigraph formulation of the unconstrained problem, except using an
equality constraint. This is done by introducing a new variable xn+1 and pairing this
with the Rosenbrock function to form the constraint function

c1(x) = g (x1, . . . , xn)−xn+1 = 0 (8.2)

and writing the objective function as

f (x) = xn+1. (8.3)

This problem is equivalent to the unconstrained problem. To complete the problem
formulation in equation 2.1 we define the index sets to be E = {1}, I =;, Z =; and
limit the search space X to be

X = [0,2]×·· ·× [0,2]× [0,200] . (8.4)

Each dimension is sampled with the same partition, using seven uniformly spaced
points. These are the used to produce cubic tensor product B-spline approximations
ĝ , which are used in the actual optimization. The final problem formulation is:

minimize xn+1

subject to ĝ (x1, . . . , xn)−xn+1 = 0

x ∈ X .

(8.5)

The Rosenbrock problem is solved with n = 2, n = 3, n = 4 and n = 5.

Recall from Chapter 6 that increasing the number of knots in the sequence will draw
the control points closer to the function surface and improve the convex relaxation,
but it will also introduce more variables in the relaxed problem. The Rosenbrock
function was sampled with 7 points in each dimension, which means the initial B-
spline will have 7+4 = 11 knots in each knot sequence. The algorithm is set to refine
the knot sequences until the number of knots in each sequence reaches a predefined
target. The problems are solved with the target number ranging from 11 to 23 for
n = 2,3,4. For n = 5 the problem is only solved with the target knots up to 17. The
symbol k will be used to represent the target number of knots. Just to clarify; all
B-splines are first computed using the same 7 knots per sequence, then the splines
that have a higher target number will refine their knot sequences until they reach
the that number.
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Tests and Results

The problem is solved to the global solution using the Branch-and-Bound algorithm
described in Chapter 6 for the four different problem sizes listed above. The al-
gorithm convergence is set to a 0.1 absolute difference between upper and lower
bound . This is quite high, but the point here is to see how the algorithm behaves
and this becomes clear regardless of how close the lower bound actually gets the op-
timal point. It should be noted that for the Rosenbrock problem the global solution
is always found in the first iteration, so the only challenge for the solver is to prove
that the solution is the global solution by generating sufficiently good lower bounds.
It should also be noted that the global solution is not 0, but a value slightly below
zero, because the approximation is not shape preserving.

The distance between the control points and the function surface was related to the
distance between the knots in the knot sequence. Figures 8.1-8.4 attempt to illus-
trate the effect of halving the distance between the knots by showing the develop-
ment of the global lower bound as the algorithm iterates for a selection of target
knot numbers (one figure for each value of n). The target numbers visualised are 11,
15 and 23 (except for n = 5), because they will achieve this halving of the distances
when the splines are cubic. To see this, remember that the first and last k knots are
equal. This mean a knot sequence with 11 points has 3 knots between the endpoints.
This makes four non-zero intervals. Increasing the number of knots to 15 allows one
additional knot inside all these intervals. Increasing the number to 23 will divide all
the intervals again. Remember also that the initial knot sequence did not necessar-
ily have uniform distance between the intervals. With this in mind, looking at, for
instance, the lower bounds created at the first iteration in each test run, it seems that
going from 11 to 15 knots per sequence roughly cuts the lower bound in half. Going
from 15 to 23 knots roughly cuts the lower bound in half again. There are of course
other factors influencing the bounds also. These figures also illustrates the effect of
the branching and how the relaxations develops as the algorithm iterates. The shape
of the plots in these figures are almost identical, it is only the scaling of the axis that
change when increasing the dimension.

The fact that methods based on sampling upfront will scale poorly with number of
samples and dimension was brought up in Chapter 2. Figures 8.5-8.8 attempts to
illustrate this. These figures show the number of iterations used to solve the prob-
lem and the average time spent per iteration, for all combination of n and k. Again
with one figure for each value of n. These are all generated with the same number
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of samples, but with different number of knots. The number of samples only dic-
tates the minimum number of knots that is required in the original problem. Due
to the local support of the basis functions, the method is not required to have a tar-
get number of knots equal to or higher than the size of the grid. A lower number
simply means that the algorithm must perform a certain number of cuts before the
refinement will begin. The method therefore scales with the minimum number of
knots. These figure show that the time spent processing a node in the Branch-and-
Bound tree grows with both the number of knots and the dimension. The growth
is exponential, with the number of knots per sequence as base and the dimension
as exponent. The exponential growth with dimension is apparent when comparing
the figures to each other. Looking at the individual figures in possible to recognise
the polynomial grown when the dimension is fixed and the number of knots is in-
creased. The figures also illustrates how the necessary number of iterations to solve
the problems decreases with the number of knots used in the refinement.
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Figure 8.1: Development of the upper bound (UB) and lower bound (LB) for the
Rosenbrock problem with n = 2. Lower bound shown for three different target num-
bers. Global solution is found as upper bound in the root node for all cases.
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Figure 8.2: Development of the upper bound (UB) and lower bound (LB) for the
Rosenbrock problem with n = 3. Lower bound shown for three different target num-
bers. Global solution is found as upper bound in the root node for all cases.
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Figure 8.3: Development of the upper bound (UB) and lower bound (LB) for the
Rosenbrock problem with n = 4.Lower bound shown for three different target num-
bers. Global solution is found as upper bound in the root node for all cases.
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Figure 8.4: Development of the upper bound (UB) and lower bound (LB) for the
Rosenbrock problem with n = 5. Lower bound shown for three different target num-
bers. Global solution is found as upper bound in the root node for all cases.
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Figure 8.5: The number of iterations and the average time per iteration when solving
the Rosenbrock problem with n = 2, using different targets for the number of knots.
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Figure 8.6: The number of iterations and the average time per iteration when solving
the Rosenbrock problem with n = 3, using different targets for the number of knots.
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Figure 8.7: The number of iterations and the average time per iteration when solving
the Rosenbrock problem with n = 4, using different targets for the number of knots.
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Figure 8.8: The number of iterations and the average time per iteration when solving
the Rosenbrock problem with n = 5, using different targets for the number of knots.
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8.2 The Marlim Flow Network

Problem Formulation

The Marlim problem formulation was given in Chapter 5. Some minor adjustments
are made to the formulation. The bilinear terms that are part of large sums, e.g.

c j (x) =
n∑

i=1
xi yi , (8.6)

are rewritten to a sum of new variables

c j (x) =
n∑

i=1
zi , (8.7)

combined with the simple bilinear constraints

ck (x) = xi yi − zi = 0, i = 1, . . . ,n. (8.8)

This is only done to make the implementation of the problem relaxations easier and
will not play any significant role. The final problem has 154 variables(of which 18
are integer restricted), 112 equality constraints and 28 inequality constraints. There
are 14 nonlinear equalities, one for each well and one for each pipeline. Remember
that the objective is stated as a minimization of the negative of the oil flow.

The global solution to the problem is know to be in the region of -5838—obviously
varying slightly with the approximation methods used—and it is restricted by sepa-
rator pressure, water production and gas lift capacity[Shamlou & Ursin-Holm, 2012].

Tests and Results

The main results here are generated by first solving a single lower bound problem
for all feasible routing combinations and then solving all the routing combinations
with a lower bound lower than −5000 to a global solution. Before any numbers are
stated, it should be noted that with the way the model is formulated there are multi-
ple ways for some wells to not produce. This happens for wells whose pressure-flow
characteristic go all the way down to zero flow rate, since they are then able to have
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zero flow rate independent of the routing variable. This is the case for some of less
productive wells that are not allowed to flow at the optimal solution (for instance
because they produce a lot of water and the optimal solution is restricted by wa-
ter capacity). This basically means that multiple routing combinations will lead the
same production profile. The best solution can be found with 12 different routing
combinations.

As stated in Chapter 5 there are 38528 feasible routing options. All the feasible rout-
ing options where fixed in turn and a single lower bound problem solved. These
problems were solved using Ipopt in the same way the Branch-and-Bound solver
would when solving a lower bound sub-problem. The purpose of this is to gain
some insight in how difficult the combinatorial part of this problem is. The results
are collected in the histogram in figure 8.9, which illustrates how many routing com-
binations that have lower bounds in each interval. For comparison the same set of
lower bound problems was solved using the relaxations that would arise with the
piecewise linear approximation. The results are given in figure 8.10. This relaxation
is interesting because it is the tightest possible lower bounds that can be created for
any interpolating function using the Marlim data sets, because it is given as the con-
vex hull of the data samples. This relaxation therefore serves as a nice benchmark
for what it would be possible to achieve for any relaxation method.

With the suggested B-spline relaxation there are 19488 routing combinations with a
lower bound better than −5000, these were solved to a global solution. Out of these
problems a total of 8732 combination had a global solution better than −5000. The
global solutions were found using the Branch-and-Bound solver described in Chap-
ter 6 with an error tolerance of 5%. The solver is initialized with a starting point
equal to the lower bound on the variables, which in general is an infeasible point.
The distribution of solutions better than -5000 are illustrated in Figure 8.11. There
are 411 solutions within 1% of the best solution and 863 solutions within 2% of the
best solution (remember that many of these have the same production profile). On
average the global solution is found after 8 iterations, but 15 problems failed to con-
verge within 500 iterations (the maximum number of iterations). If the error toler-
ance had been lowered, the average number of iterations would have been increased
dramatically. The distribution of iterations are given in Figure 8.13.

A different representation of the solutions to the best routing combinations is given
in Figure 8.12. This figure illustrates how many routing combinations that are able
to produce atleast the amount x for all x lower than -5000. This is interesting be-
cause it gives some insight to how likely it would be for a black-box search to find
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solutions within a certain limit of the global best solution (the derivative free black-
box algorithm used in [Shamlou & Ursin-Holm, 2012] terminated with a solution of
-4947).

The best routing combination was found to have a global solution of -5834. There
are 8663 routing combinations with a initial lower bound better than the global
solution using the B-spline relaxation. With the piecewise linear relaxation only
2578 routing combinations had an initial lower bound better than the global so-
lution. This makes the number of solutions that needs further investigation 3.36
times higher with the B-spline relaxation. On average, the B-spline relaxation gives
a lower bound that is 8% lower than the corresponding piecewise linear bound. The
B-spline relaxation would be able to improve its performance if the target number
of knots were raised, but this would also increase the solution times.

8.3 Chapter Summary

Two test problems have been investigated to gather information about how the sug-
gested approximation scheme fares in terms of global optimization. The focus has
been on the properties of the suggested relaxation method. The trade-off between
a tight relaxation and the solution time of the relaxed problem was illustrated us-
ing the Rosenbrock problem. This problem also illustrated the progress of the lower
bound improvements as the solver iterates. Interesting properties of the oil produc-
tion problem was revealed by creating initial lower bounds on all routing combi-
nation by fixing them in turn and solving a single lower bound problem. This gave
some insight to just how complicated the oil production problem can be when aim-
ing for a global solution, by showing how sensitive it is to relaxation quality and by
showing how many routing combinations that will look promising before starting
spatial branching. The routing combinations with a lower bound better that -5000
was investigated further and solve to a global solution within that routing regime.
The results will be discussed in the next chapter.
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Figure 8.9: Histogram of the lower bounds for all feasible routing combinations us-
ing the cubic B-spline relaxation. Lower bounds are created by fixing the routing
variables and solving a single lower bound problem. Histogram bin intervals are set
to 100. A total of 38528 routing combinations are feasible, of which 8663 have a lower
bound better than the global solution of the flow problem.
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Figure 8.10: Histogram of the lower bounds for all feasible routing combinations
using the piecewise linear relaxation. Lower bounds are created by fixing the routing
variables and solving a single lower bound problem. Histogram bin intervals are set
to 100. Only 2578 lower bounds are better than the global solution.
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Figure 8.11: Histogram showing the distribution of global solutions better than 5000.
The solutions were created by solving all routing combinations with a lower bound
better than 5000 to a global solution. Histogram bin intervals are set to 1% of the
best solution, which is 58. This means the first bin contains all solutions within 1%
of the global best and the second all solutions between 1% and 2%, and so on.
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Figure 8.12: Illustration of how many routing combinations that are able to achieve
a solution of x.
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Figure 8.13: Histogram of the number of iterations used to solve the routing com-
binations with a initial lower bound to a global solution. The bin interval is 2. The
figure goes up to 30 iterations, but there were 11 problems that used more than this.
These are not shown in this figure as they are so sparsely scattered they would not
be visible in the plot. Of the 19488 problems 15 did not converge within the limit of
500 iterations.



Chapter 9

Discussion

This chapter will discuss the results presented in Chapter 7 and Chapter 8. The first
part of the discussion is about the B-spline as a simulator replacement. The second
part is about how the approximation and its relaxation performed in optimization.
The third part is about the oil production problem. Suggestions for further work will
be given at the end of each part.

9.1 Approximating with B-splines

The suggested approximation method is the tensor product B-spline, with coeffi-
cients computed based only on function values in a way that minimizes the second
derivatives of the surface.

B-spline from a User Perspective

The B-spline is incredibly flexible. And once familiar with it, it turns out to be quite
elegant. There is however a bit of a learning curve associated with it and the the-

115



116 CHAPTER 9. DISCUSSION

ory behind it is not easily accessible. This is, of course, just my own opinion, but I
have seen quite a few other thesis and reports that have searched for approximation
techniques and concluded that piecewise polynomials are simply to complex and
"beyond the scope". This is naturally because these methods are not emphasised
in many field. They are, for instance, not mentioned in any standard curriculum
at the Department of Engineering Cybernetics. However in communities that deal
with computer-aided design, 3D modelling or computer graphics the B-spline and
similar techniques are common (it is these communities that have driven much of
the research on splines).

Since one of the main goals for this thesis was to find an approximation method
that was both sufficiently smooth and easy to use, it is obviously a concern that the
suggested method can, atleast in some fields, be considered as difficult. Luckily, the
B-spline turns out to be easy to use, it is just difficult to implement. The reason being
that all the necessary data structures can be generated automatically by information
contained in the data set, which means that the users will not have to interact with
the knot sequences or recursively defined basis functions or the tensor product op-
erator unless they are looking for really specific behaviour. And, if the user is looking
for really specific behaviour, the B-spline is probably the easiest way to get it.

During the implementation phase of this thesis I was unable to find solid open
source codes supporting tensor product B-spline with the kind of functionality that
was needed here. It seems that much of the software is either restricted to one di-
mensional interpolation or aimed at 3D modelling. MATLAB supports a variety of
piecewise polynomial functionality and does actually include most of the B-spline
functionality used in this thesis, but the interface to these B-spline objects are, in my
opinion, a bit convoluted. The functionality needed was therefore implemented in
C++ from scratch. This was quite time consuming—but also quite rewarding—and
it is understandable why B-splines are often regarded as too complex to be applied
in a single project when no easily interfaced software package is available. The code
developed here will be used in future projects and it therefore seems like a reason-
able time investment.

Bottom line here is that the B-spline can be difficult to understand and implement,
but once implemented it is just as easy to use as any other approximation technique.
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Sample Structure and Scaling Issues

The only significant draw back with the suggested method is its reliance on the data
sample structure to guarantee the existence of an interpolating function. The data
samples must be taken in a grid formation. Most simulators of interest can gener-
ate such data, if not, other interpolation techniques can be used to bring the data
into this form. The problem with the grid structure is not the creation of the data
sets. The main disadvantage with the grid structure is that it is not possible to lo-
cally refine the approximation by adding individual samples, since this breaks the
grid structure. Take for instance a grid in 4 dimensions with 10 partitions in each
dimension. This grid will produce 104 = 10000 samples. If we wish to add a single
sample to this set and the sample falls between all the grid lattices, then the grid
partitions grow to 11 in each dimension. This gives 114 = 14641 samples. Adding yet
another point gives 124 = 20736 samples in the grid. A grid based sample structure
grows extremely fast. This is because the refinement procedure must update the en-
tire grid. The cost of refining a grid grows exponentially with the domain dimension
and this effectively restrict the application of grid based methods to functions in few
variables.

The data sets that have been approximated in this thesis have all been well within
the limits of what it is reasonable to deal with. The largest data sets belonging to
the pipeline pressure drop functions. These pipelines have however been simplified
to not take the inlet or outlet pressure into account. It would normally require one
of these to perform the computations and the dimension of the domain would be
increased by one. If, in addition, the flow had to be separated into additional phases,
the grid sampling could quickly become too demanding.

Approximating Simulator Data

The suggested approximation requires a grid structure on the data sets and it was
assumed this would be fine, since most simulator tools have the ability to produce
such data sets. However, when taking a closer look at the provided data it is revealed
that the simulators do not always produce nice and predictable behaviour over the
entire grid. Both pipeline and well functions suffer from this problem. The short
version of the story is simply that the optimization problem is formulated over a box-
shaped region, while the simulators are tuned to match the reasonable operating
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range, which is a smaller, cone shaped region.

For most of the wells the flow-pressure relations were nice, predictable surfaces. The
only problematic regions were close to the boundary of what the the well was able to
produce before the flow dies. Most of the data sets were kept well within the regions
of stable flow and the approximations of these were good. Figure 7.1 illustrates a
typical example of this. The wells that caused problems were those that allowed
production at very low flow rates, since these data sets covered the regions where
the flow eventually dies. The rate where the flow dies is highly dependant on the
amount of gas lift used. An examples of such a well is seen in Figure 7.2. The function
surface looks like a cliff, with the cliff edge running diagonally across the domain.
Such behaviour will not be reconstructed by the natural spline. A possible solution
to this problem would be to use a shape preserving spline computation as illustrated
in Figure 7.3. This clearly captures the behaviour better, but it comes at the price
of a more complicated B-spline construction. The problematic regions are for the
most part outside the interesting operational range, so it does not actually impact
the optimal solution, only the solution time, for reasons that will be discussed later.

The two pipelines are very similar and they both have the same problems. The typi-
cal pipeline behaviour was illustrated in Figure 7.4 and Figure 7.5. The first showing
the surface shape that is dominant over most of the feasible operational range of
the domain and the latter showing the how the surface develops when the gas rates
starts to dominate the liquid rates. This behaviour is not surprising. The simulators
are tuned for a reasonable balance between gas and liquid, so when it is evaluated
outside the intended variable range, the results are unpredictable. It can be seen
that as the liquid rate gets lower and lower the pressure computation falters more
and more, until it seems to get caught in a safety net that provides a reasonable
computation for all flow compositions outside a certain limit. The surface occa-
sionally exhibit step-like behaviour in these regions. As mentioned in Chapter 5, not
all samples where used in the pipeline approximations. For the regions that behave
nicely, it is barely noticeable when a sample is left out. The effect of removing a sam-
ple is greater in the unpredictable areas. Take for instance the steps seen in Figure
7.5 for the plot with a water rate of 320m3/d , it is obvious that when the step occur
at a removed sample it is impossible to recreate it. Since there is no clear pattern
to these steps it would be difficult to remove samples if the approximation had to
capture these steps perfectly. The fact that the simulators exhibit such non-smooth
behaviour is one of the reasons why letting a numerical solver evaluate the simula-
tors directly is so difficult.
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For both wells and pipelines we have seen that there are parts of the function do-
mains that fall outside the reasonable operational conditions and the the simulator
values can be unpredictable or just unfavourable in these regions. Without spend-
ing too much time dwelling on why these values are the way they are, it would not
be surprising if some of this behaviour is induced by logic inside the simulator. This
logic can cause sudden changes in the function behaviour. The suggested scheme is
not able to capture such changes, but it could be modified to do so if that is desired.
It should be noted that the shape preserving schemes require twice the amount of
flexibility in each direction to be able to match both estimated derivatives and func-
tion values. This would have the same computational effect as doubling the size of
the grid partitions, which, as discussed in the previous section, has quite dramatic
effect on the size of the final data structures.

Since the only approximation problems seem to lie outside the regions that are in-
teresting for the actual problem solutions, a possible solution is to not require in-
terpolation of all data samples. An possible solution could be a smoothing B-spline
that has the data sites weighted according to the simulator accuracy in each region.
This would allow for a approximating function that interpolates at the "core" of the
data sets and smooths out the wrinkles found at the boundaries, producing an over-
all neater shape to work with during the optimization without actually sacrificing
any accuracy in the relevant regions of the function domain.

Further Work

The suggested method seems to work fine in the regions were the simulators work
fine. The problems begin when the data samples begin to oscillate or have steps,
because then the natural spline will amplify these effects. It would therefore be in-
teresting to look at approximations that do not require interpolation of all the data
points. A type of weighted smoothing B-spline would probably be a good candidate
for future work.
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9.2 Optimizing with B-splines

The B-spline is used in optimization to replace difficult nonlinearities. The replace-
ments are generated upfront. The following sections will address some of the inter-
esting topics concerning this strategy.

On Approximated Problems

The method in question is an approximation based solution method. The motiva-
tion for bringing in a approximation of a function is that it allows us to specify the
representation of this function exactly the way we want it. This makes it easier to
manipulate the function and to ensure that is satisfies the properties assumed by
the solver, e.g. twice differentiable. The method suggested in this thesis have much
in common with the piecewise linearisation method. The problem with these types
of methods is they get computationally demanding when the number of samples
needed to approximate the problem grows large. The method investigated here at-
tempts to address this by applying the tensor product B-spline, which is a powerful
approximation scheme that will be able to achieve the same approximation quality
using fewer samples. This will hopefully increase the number of problems that can
be approximated.

To achieve satisfying performance from a approximation based solver, it is neces-
sary to have some knowledge of the functions involved. This is mainly to be able
to find a reasonable sample resolution. Too few samples and the problem becomes
irrelevant. Too many and it becomes impossible to solve. It is essential to strike a
balance between these two extremes if the methods are to be successful. The prob-
lem of interest in this thesis has been the oil production problem and the nonlinear-
ities here attempt to describe pressure-flow relationships. These functions are fairly
predictable and an experienced engineer (which admittedly excludes me) would be
able to predict in which areas the function is likely to change dramatically and in-
crease the sample density in these regions. The unfortunate situation here is that
areas where the sample density should be increased runs diagonally across the do-
main. With a grid structure, refining diagonally is equivalent to refining everywhere.
This could actually be a problem and a possible solution would be to perform a
change of coordinates, going from a oil rate and gas rate system to a oil rate and gas-
to-oil ratio system, since a fixed gas-to-oil ratio would run diagonally in the original
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coordinate system.

A solution to the approximated problem cannot be guaranteed to also be a solution
in the original problem, but assuming the the approximated functions are reason-
able replacements the solution is likely to be close. The approximate solution will
therefore make for a solid starting point if the original problem is solved afterwards.
This can be seen as "adjusting" the approximate solution to fit the original problem
and is a useful way to verify the solution. For instance for the Rosenbrock problem
presented in Chapter 8 the approximated problem had a solution that was slightly
negative and the optimal point was noticeably different from the known solution to
the original problem. This is because the Rosenbrock problem was constructed with
too few samples to let the natural spline capture the shape of the surface. It there-
fore introduced some oscillations between samples (similar to those seen in Figure
7.2 for the well curves) and the solution ends up being moved. It would however still
have made a solid starting point for a adjustment using the original problem. With
the Marlim case the approximated functions are unavailable, so it is not possible to
verify these results properly, but they are similar to the results found in [Shamlou &
Ursin-Holm, 2012].

On Upfront Sampling

The method investigated here is based on generating all the samples before the opti-
mization begins. The samples are generates in a grid structure. As discussed earlier,
there us a limit on the dimension of the functions that can be dealt with this way, be-
cause of the exponential growth of the data sets. In non-convex global optimization
there will be a similar limit, because the computational effort grows exponentially
with the function dimension here also. If it is reasonable to solve the problem with
a global solver, it is probably also reasonable to sample the function upfront. In lo-
cal optimization the situation is a bit different. These functions are not restricted by
function dimension in the same way. The upfront sampling procedure will therefore
be the main source of limitations in this case. A local solver will most likely not ex-
plore the entire function domain and since it does not need to generate the global
lower bounds either, much of the work done in the upfront sampling stage will be
unnecessary. This strategy is therefore less suited for local optimization, because
of all the necessary work that is going into the sampling stage. Most local solvers
would be happy to work directly on a black-box representation, so the approxima-
tion methods are applied for a different reason in local optimization. A common
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reason being that the black-box function is cumbersome to include in the optimiza-
tion problem or that it is time consuming to evaluate. This is however problems
specific issues that are difficult to judge on a general basis.

The alternative to upfront sampling is to continuously update the approximation
during the solver iterates. In local optimization this would be possible to implement
without having to change the solver, but in global optimization this would end up
being a different class of methods entirely. These were briefly introduced in Chapter
2 as Bayesian optimization, but they have not been a major topic in this thesis. I have
no real experience with these methods, but to my knowledge they have not been
applied in global optimization of problems with size similar to the oil production
problem.

B-spline Paired with a Local Solver

The B-spline seems to perform nicely when paired with the interior point algorithm.
The progress at each iteration seems healthy, which indicates that the solver receives
correct and useful derivative information and that the scheme in general is doing its
job. This was of course expected, since the B-spline was set up to be twice differ-
entiable, but it would still be possible to generate troublesome and sharp corners if
the coefficients had be computed differently. For instance with an aggressive shape
preserving scheme, some of the step like behaviour of the data would produce large
second derivatives which would most likely cause trouble. The natural splines used
here produces an interpolating function with a overall small second derivative and
it should in this regard be the easiest interpolation function to deal with in terms of
generating good search directions (because the surface will change direction as slow
as possible).

Computationally the B-spline evaluation is quite cheap due to the compact support
of its basis functions. It is also quite easy to differentiate, making it possible to supply
the solver with both the Jacobian and the Hessian if that is desired.

The only real issue with the B-spline as it was implemented in this thesis is the fact
that the B-spline support was made to match the data sets exactly, making the func-
tion drop to zero immediately outside the variable bounds. It turned out that the
solver (Ipopt) often took the liberty to relax the variable bounds by a small value at
some of its computational steps. This caused trouble, because the function would
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then be discontinuous at the bounds. The problem was fixed by applying a satura-
tion function to the variables before evaluating the B-spline. This made the surface
continuous, but not differentiable at the boundary. In addition to this, Ipopt was
forced to not relax the variable bounds by adjusting the settings. This fixed most of
the issues, but it is not an ideal solution and it should be addressed, by for instance
extending the B-spline support slightly beyond the values in the data set.

Convex Relaxation of B-spline Constraints

One of the main reasons for choosing B-splines as the way of representing piece-
wise polynomials was the possibility of exploiting its special structure to generate
convex relaxations. The convex relaxation is given as the convex hull of the control
points. The difference between the convex hull of the control points and the con-
vex hull of the function surface is related to the distance between the knots in the
knot sequences and the second derivatives of the function. It is interesting to note
that using the natural spline is beneficial here because it attempts to minimize the
second derivative, but this is of course not a key point. The main tool for improving
the relaxation was the knot refinement procedure. The effect of refining the knot
sequences can be seen in Figures 8.1-8.4. Looking at the first iterations for the dif-
ferent levels of refinement it is clear that there is an improvement in the relaxations
when additional knots are used. When the distances in the knot sequence is cut in
half, the lower bound also seems to be cut in half. There are of course other effects
influencing the relaxation, but it gives an indication on what can be expected when
the knot sequence is refined.

The improvement associated with the refinement process will be subject to dimin-
ishing returns if measured by absolute value and remain fairly constant if measured
relative to the distance between the knots. The unfortunate effect here is that the
number of new knots that must be added to cut all the knot intervals in half will
double each time. Since the computational effort grows fast with the number of
knots, this additional refinement is only reasonable up to a certain point. In the ex-
periments done in this thesis it seems that the benefit of adding new knots quickly
dies out. This was attempted illustrated in Figures 8.5-8.8, where the number of iter-
ations needed to solve a problem and the time spent per iteration given as functions
of the number of knots used per knot sequence. It is clear that the impact of adding
new knots dies out, while the computational time explodes. This is especially no-
ticeable for the problems with higher dimensions. The overall message here is that
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the number of knots should be kept low and instead solve additional problems.

The way the relaxation is implemented here, all control points are used in the relax-
ation. There are ways to avoid this. Often only a subset of the control points will
actually be needed to define the convex hull. See for instance the convex hull in
Figure 6.4 for child A. Only three of the 13 points are needed to describe the convex
hull. If this simplex is constructed the relaxation would get away with only adding
three linear constraints as opposed to adding 13 new variables. This would be good
when the convex hull could be reused for several iterations, as the initial cost of
computing it would be spread out over many iterations. This happens when there
are many constraints using different variables, because then most functions will not
be affected when branching on a variable. There is however the possibility that all
the control points will be needed to describe the convex hull. This is the case with
child B in Figure 6.4. When this happens it is likely that the constraint is close to
convex (or concave) and if a test was in place to detect this it would not be necessary
to use a replacement based relaxation anyway.

Overall the relaxation strategy provides a good convex relaxation. It is comfort-
ing to know that with increasing refinement of the knot sequence the relaxation is
asymptotically perfect, but unfortunately it is not computationally feasible to per-
form such extensive refinements. The main source of convergence is therefore left
to the branching, which will end up having the same effect by using the same num-
ber of knots per sequence, but applied to a shorter interval each iteration. It must of
course be noted that more conventional relaxation methods, such as the quadratic
augmentation strategy, could still be applied to B-splines. The B-spline relaxation
suggested here is simply an alternative and it seems to show great potential.

Properties of the Global Solver

Figures 8.1-8.4 illustrates how the lower bounds converged towards the global solu-
tion as the solver iterated. The general trend among all test runs here was that the
lower bound converged, but the improvement per iteration seemed to die out. This
is not unexpected and the reasoning behind this is the same effect that was men-
tioned in the previous section with knot refinement. Improving the lower bound by
a fixed amount will require more and more effort the closer it gets to the global so-
lution. This is unfortunate and not easily dealt with. The ideal solution would be to
have a convexity test that was able to tell it the function is locally convex (or concave)
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and exploit this in the relaxation.

The suggested algorithm seems fairly robust, but there is only a limited amount of
data to back this up. There is some comfort in the fact that the relaxed problems
are LP problems, which is a well known type of problem and there are solvers that
can deal with these easily. In [Tawarmalani & Sahinidis, 2005] it is argued that LP
relaxations are highly favourable because of this. It is also advantageous that the
B-spline algorithms are almost entirely based on convex combinations. This makes
the knot insertion resilient to numerical errors that could potentially arise from re-
peated manipulation of the data structures during the branching procedure. This
numerical robustness is in fact one of the reasons why B-splines are popular in gen-
eral.

The algorithm displayed the expected development in all the test problems solved,
with the exception of the 15 oil production cases with fixed routing that failed to
converge. These seem to have triggered either a bug or very unfavourable behaviour
in the solver. It was observed that in these situation Ipopt was sometimes unable to
converge for the upper bound problem. It is therefore not unlikely that the problem
is related to the poor approximation in the regions with low flow rates combined
with an unfortunate routing combination. If only low potential wells such as the
one seen in Figure 7.2 is routed to a pipeline and the solver is given an unfortunate
starting point in the low flow rate region, it may be difficult to find the search direc-
tion that would lead out of this region (remember that the pipelines have a non-zero
minimum flow rate, so this region in not necessarily feasible). It is therefore likely
that these convergence problems are, at least partially, due to the oscillations intro-
duced by the natural spline, since they make the surface gradients constantly change
direction.

The computational times were rather high for all test problems. The reason is par-
tially because of a slow implementation, but also because the solver choices were
sub-optimal. It would most likely have been better to use a SQP solver for the upper
bound problem due to the hot-start potential of these solvers. For the lower bound
problem the solution times would have been improved dramatically if a dedicated
LP solver had been used, for instance one that would exploit the dual problem which
is common in Branch-and-Bound implementations. The solving sub-problems is
however not the only time consuming element in the Branch-and-Bound algorithm.
Creating and maintaining the convex relaxations contribute to a significant potion
of the computational time and the main time sink here is the knot refinement algo-
rithm. The algorithm used here is one of the simplest knot refinement alternatives,
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so additional speed up would be possible here as well. There is however no way
around the fact that creating convex relaxations for functions of general structure is
expensive, regardless of relaxation strategy.

Further Work

The suggested relaxation method is in dire need of some supporting heuristics to
ease the computational load. Some suggestions have been made above, but there
are many possibilities to explore. It is also necessary to find a test for convexity of
B-splines that scales reasonably with dimension. As mentioned in Chapter 4 no sat-
isfying test was found during the literature study of this thesis.

9.3 Short-term Oil Production Optimization

Questions specifically related to the oil production problem will be addressed in this
section. The problem solved in this thesis was the Marlim test case. There are two
main challenges in the oil production problem. One is the combinatorial problem
that arise from the routing options. The other it the non-convex NLP that arise from
the flow-pressure relations. In this thesis the focus has been on the NLP part of
this problem, but the two are obviously linked. The overall goal is to solve the en-
tire problem to a global solution. One of the difficulties is that the combinatorial
problem is extremely large, so large that a brute force attack is not really a realistic
solution method. It is therefore important to have a relaxation method that is tight
enough to weed out many combinations at the same time. The discussion will there-
fore start with the lower bound problem and some of the issues discovered here,
before moving on to the global solution and the value of finding the globally best
operational state.

The Lower Bound Problem

The lower bound problem is crucial to the success of a global solver. The purpose
of a lower bound is to hopefully rule out many of the possible combinations at the
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same time. With the oil production problem however, this turned out to be more
difficult than initially assumed. The relaxed problems roughly fall into three cate-
gories. The first category is problems with a routing combination that is simply in-
feasible because it attempts to route a single well to multiple pipelines at the same
time. These can trivially be discarded. The second category is problems with a rout-
ing combination where too many of the wells are shut off (typically more than half).
These are also quite easily discarded as sub-optimal, since the sum of maximum
flow out of the active wells are unable to beat the best solution. They are therefore
discarded regardless of how good or bad the relaxations are. The final type of prob-
lem are the ones where enough wells are active to produce a respectable amount
and they are distributed reasonably among the routing alternatives. It is for these
problems that the quality of the pressure constraint relaxations becomes important.

It was seen that with the suggested relaxation a total of 8663 routing combinations
had a relaxed solution better than the global solution. The distribution of these
where given in Figure 8.9. Notice how the density of relaxed solutions seem to have
a peak around -6000, which is just below the actual global solution of -5834. This
is one of the reasons why the number of relaxed solutions that would need further
investigation is so high. If the relaxation had just been a few percent better, the
number would have dropped significantly. This was illustrated by using the tight-
est possible relaxation of the data sets. The results of this was given in Figure 8.10.
As can be seen here, the peak has now been shifted to -5500, which is just above
the global solution. The consequence is the the suggested method would have over
three times as many candidate solutions that would need further investigation than
the piecewise linear formulation, even though the relaxations only differ by 8% on
average.

The suggested relaxation method is sensitive to the second derivatives of the func-
tion. Parts of the data sets have a series of step like changes, as was discussed earlier.
These steps contribute to make the second derivative of the approximation unnec-
essarily large. In the case of the pipelines, these areas are also the only regions where
the function is significantly non-convex. The convex hull of the piecewise linear ap-
proximation is not affected by these steps, but the B-spline control points will be
driven far away from the function surface in these areas. This will worsen the over-
all relaxation and generate looser bounds. This could possibly be improved by ap-
plying some of the remedies suggested in the approximation discussion. Another
possibility would be to improve the relaxation by additional refinement of the knot
sequences, but this will quickly get expensive since the knot sequences are already
quite large.
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The Global Solution

The global solution of the problem was found and it was the same as it has always
been for this test case, so the number itself is not the interesting part. The inter-
esting part is the fact that there are so many routing combinations that are almost
equally good. The distribution of achievable production for the best routing combi-
nations was given in Figure 8.11. Within 1% of the global solution we find over 400
other routing combinations and within 2% there are more than 800 combinations.
Remember though, that many of these combinations led to the same production
profile.

With so many similar solutions and so many relaxations that look promising, find-
ing the global solution will require significant effort. A general MINLP will always
be difficult, but there are problem instances that are more forgiving than others. It
turns out the the oil production problem cannot be expected to be one of these.
Solving this problem is therefore likely to take quite some time, no matter how good
the relaxations are. However, hope may lie in the fact that the constraints are tied
together by a specific structure and parallel to the writing of this thesis fellow stu-
dents students Sheri Shamlou and Stine Ursin-Holm are writing their Master Thesis
on Branch-and-Bound heuristics for this exact problem. This will hopefully lead to
some tailored heuristics that can be combined with the methods discussed here and
produce a solver that is dedicated to short-term production optimization.

When the routing is fixed, the algorithm is able to find the global solution quite fast.
Figure 8.13 illustrated the number of iterations required. For most of the problems
the optimal solution within a routing regime was confirmed in less than 15 itera-
tions. This is in itself quite good. Being able to, for instance, confirm the optimality
of the gas lift allocation within a routing configuration is valuable. Admittedly the
convergence tolerance was set a bit high and if the tolerance is lowered the num-
ber of iterations required will grow fast. This is because there are many variables
that would potentially need branching to improve the relaxations enough and as
seen in the Rosenbrock case, the number of iterations it takes to reduce the error
by a fixed amount grows fast as the error gets smaller. Regardless of error tolerance,
the method is able to quickly identify good solutions within a routing configuration.
Another important fact here is that among the 19488 investigated routing combi-
nations, the algorithm found a solution unassisted in all but 15 cases. Of course it
remains to see if this statistic holds for other production fields too, but it is definitely
a good start.
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The fact that there are so many local solutions with a production close to the global
solution makes the global solution less attractive. This is because re-routing a well
is not free, and generally it is desirable to only make a few routing changes. If the
global solution calls for a significant number of changes, but the second best and
almost identical solution only requires a few, it is likely that the solution with less re-
routing would be implemented. This motivates a problem statement the takes the
current routing configuration into account. It would for instance be possible to for-
mulate a problem the seeks the best one or two re-routing choices. This would also
be a smaller combinatorial challenge, which could potentially make the global solu-
tion feasible to attain within a short time. When the new routing strategy has been
successfully implemented, the problem could be repeated if desired. This would
lead to a series of re-routing suggestion that eventually leads to a routing combi-
nation where it is impossible to improve the production further without making
drastic changes to the configuration. The entire process would resemble the way
a local solver iterates, gradually finding better and better solutions until there are
no promising steps left to take. In such a scenario it would be beneficial to take the
absolute best steps each time. The suggested solver method would be able to do
this.

The global solver will be significantly slower than a local solution strategy, simply
because of the extra branching required (due to the difficulty of creating solid lower
bounds). It will however be more reliable in terms of finding a solution at all, for
instance within a fixed routing configuration, and the global solver is less dependant
on the input provided by the user (such as the initial point).

Further Work

Investigating the benefits of using a more refined relaxation would be interesting,
because the current relaxation produces a significant amount of lower bounds that
are just barely better that the global solution. The most important point for further
work is however probably to apply the methods to other test cases to see if the phe-
nomena observed in the Marlim case apply in general.
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9.4 Chapter Summary

The tensor product B-spline approximations were satisfying for the most part, but its
lack of shape preservation was revealed in the regions where the data sets displayed
step like behaviour. In these regions the natural spline will begin to oscillate as an
attempt to minimize the second derivative. Possible ways to address this has been
suggested, with a weighted smoothing being my own favourite.

In the optimization setting the B-spine performed well. There are no issues that can
be directly tied to the B-spline in the local optimization case. In the global optimiza-
tion case the suggested relaxation schemes seems to work, but the improvements to
the convex relaxations as subject to diminishing returns, which leads to a need for
additional support heuristics for the algorithm to be satisfying.

The replacement strategy based on sampling and replacement upfront has a limit on
the dimensions it is feasible to work with, due to the exponential growth of samples
that must be created. This is not a major issue in the global optimization case, as
the same exponential growth is found there also, but for local optimization this is a
major problem.

The oil production problem was solved, but it is reavealed that the combinatorial
part of the problem is difficult because there are many local solutions with very sim-
ilar objective values, which means the algorithm has to branch a significant number
of time for each alternative before it can draw conclusions.



Chapter 10

Conclusion

This thesis has investigated approximated MINLPs, with the oil production problem
as the main application. The approximation method was tensor product B-splines
and it have been evaluated in terms of its ability to approximate the relevant types
of data sets and its performance in local and global optimization.

The B-spline method provides a suitable replacements for the simulators. The only
issues discovered were related to fact that the simulator data is not reliable, nor rel-
evant, in parts of the function domain. These areas turned out to be a liability for
both the approximation quality and the optimization progress. It is therefore recom-
mended to avoid interpolation over the entire domain and use a weighted smooth-
ing scheme instead to find the B-spline coefficients. A downside with the method
is that sampling in a grid structure is computationally expensive when the domain
dimension of the approximated function is large.

The B-spline method is sufficiently smooth and cooperates well with the interior
point solver used in this thesis and it seems suitable as a function replacement in
local optimization. In global optimization the methods has a special structure that
can be exploited to generate convex relaxations and the solver implemented was
successful in doing so. The relaxation technique did however display poor conver-
gence and requires some additional support heuristics to be efficient.
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A oil production problem was investigated by applying the above-mentioned method.
The results revealed that this particular case is difficult to solve globally because
there are so many routing combinations with objective values close to the global
optimum. This makes it difficult to discard solutions based on the relaxed problem
and the combinatorial challenge becomes significant. With a fixed routing combi-
nation the suggested solver is able to find the best operating state within a reason-
able amount of time and it seems to be able to do so reliably.
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