
Security Testing of the Pacemaker
Ecosystem

Eivind Skjelmo Kristiansen
Anders Been Wilhelmsen

Master of Science in Communication Technology

Supervisor: Danilo Gligoroski, IIK
Co-supervisor: Marie Elisabeth Gaup Moe, SINTEF

Department of Information Security and Communication Technology

Submission date: June 2018

Norwegian University of Science and Technology

Title: Security Testing of the Pacemaker Ecosystem
Students: Anders Been Wilhelmsen and Eivind Skjelmo Kristiansen

Problem Description:

In today’s society, we are becoming more and more dependent on our own connected
devices. These new devices include not only heartbeat monitors for one’s exercise
needs, but also vital instruments supporting people’s well being. Devices such as
insulin pumps and pacemakers have become connected devices which in turn make
you, as person, literally connected to the internet. Making everything "smart" could
therefore, in the worst-case, have fatal consequences if there is a breach of security
for such devices.

In our thesis, the aim is to test the security of the Wireless Body Area Network and
medical implants. More specifically we will take a closer look at certain parts of an
implantable pacemaker ecosystem and its components, the Home Monitoring Unit
(HMU) as well as the programmer. HMUs are small computers that ‘talk’ with the
patient’s pacemaker to report back to the hospital with patient data and status. The
HMU is not used to control the functioning of the pacemaker. It is only used to
transmit data from the pacemaker. If a configuration change of the pacemaker is
needed, the patient has to go to a hospital where the pacemaker can be examined
and controlled over wireless communication by a larger unit called the programmer.

Because these units are in direct communications with the pacemaker, they pose
a potentially severe security risk if compromised. This is why we will test the
security of components that belong to the pacemaker ecosystem, in order to look
for vulnerabilities that may disclose patient information or pose a threat to patient
safety.

Moreover, we aim to do this using only Commercial off-the-shelf equipment for
tasks such as disk analysis, network traffic analysis and hardware hacking by for
instance connecting to debug ports and reverse engineering of software responsible
for communication.

Responsible professor: Danilo Gligoroski, IIK
Supervisor: Marie Elisabeth Gaup Moe, SINTEF

Abstract

In later years there has been an increased attention regarding the cyber-
security in ‘smart’ devices. With the rise of the Internet of Things it
is becoming popular to connect every ‘smart’ device to the internet,
including devices that are responsible for life-critical functions. As such,
we, as beings, are also connected to the internet. Over the past few years,
there has been an increase in attention especially regarding cybersecurity
risks in medical equipment, with companies being sued for performing
what is the industry standard practice regarding non-medical devices,
namely security testing. With the upcoming of new regulations both
in the European Union and the United States, it is important that
manufacturers of medical equipment can be trusted to comply with these
demands.

In our thesis, we take a deeper look into the state of the security of
medical implants with life-critical functions. More specifically, we take a
look at the devices inside what is referred to as the pacemaker ecosystem,
which includes a pacemaker, a pacemaker programmer and optionally a
Home Monitoring Unit. Our thesis aims to contribute to the environ-
ment of which the pacemaker ecosystem is a part of, meaning both the
development cycle of systems that interact with medical devices as well
as the environment in which they are utilized. Furthermore, our results
will be disclosed to the manufacturer of the equipment that has been
tested through the appropriate channels to comply with the principles of
Coordinated Vulnerability Disclosure.

Our research is part of a larger project on medical device security at
SINTEF led by our supervisor. Our findings provide a thorough evaluation
for this particular equipment and resources provided to us, and our results
include a platform from which others can continue our work. Furthermore,
we use our platform to uncover a large potential attack surface and disclose
vulnerabilities which cause concern for patient safety and data privacy.
Finally, we suggest countermeasures to the vulnerabilities we discovered,
and discuss the potential impact these vulnerabilities could cause. These
findings imply that the manufacturer does not comply with the new
directives coming from the governing bodies, which regulate these devices
in the market and will be mandatory to follow in the near future.

Sammendrag

I senere år har det vært økt oppmerksomhet rundt cybersikkerheten i
«smarte» enheter. Med fremveksten av tingenes internett blir det po-
pulært å koble alle smarte enheter til internett, inkludert enheter som
er ansvarlige for livskritiske funksjoner. Som sådan er vi, som mennes-
ker, også koblet til internett. I løpet av de siste årene har det vært økt
oppmerksomhet spesielt rundt cybersikkerhetsrisiko i medisinsk utstyr.
Selskaper blir saksøkt for å utføre sikkerhetstesting som er standard
praksis for ikke-medisinske enheter. Med kommende nye forskrifter både
i EU og USA, er det viktig at at man kan stole på at produsenter av
medisinsk utstyr oppfyller disse kravene.

I vår masteroppgave ser vi nærmere på tilstanden til sikkerheten til
medisinske implantater som har livskritiske funksjoner. Mer spesifikt un-
dersøker vi enhetene i det som er referert til som pacemakerøkosystemet,
som inkluderer en pacemaker, en pacemaker programmerer og eventuelt
en hjemmemonitoreringsenhet. Vår oppgave tar sikte på å bidra til mil-
jøet som pacemakerøkosystemet er en del av, noe som både inkluderer
utviklingssyklusen til systemer som kommuniserer med medisinske enhe-
ter, samt miljøet de benyttes i. Videre vil resultatene bli gitt gjennom
passende kanaler til produsenten av utstyret som er testet for å overholde
prinsippet om ansvarlig sårbarhetsformidling (Coordinated Vulnerability
Disclosure).

Vår forskning er en del av et større prosjekt for medisinsk utstyrssikkerhet
ved SINTEF, ledet av vår veileder. Våre funn gir en grundig vurdering
av dette utstyret med tilhørende ressurser, og resultatet inkluderer en
plattform som andre kan fortsette arbeidet med. Videre bruker vi vår
plattform for å avdekke en stor potensiell angrepsflate og sårbarheter
som skaper bekymring for pasientsikkerhet og datasikkerhet. Til slutt
foreslår vi tiltak mot sårbarhetene vi oppdaget, og diskuterer potensielle
konsekvenser av disse sårbarhetene. Disse funnene innebærer at produsen-
ten ikke overholder de nye direktivene som kommer fra styrende organer.
Disse vil være obligatoriske å følge i nær fremtid.

Preface

This Master’s Thesis is the final deliverable of the Master of Science
Degree in Communication Technology with specialization in Information
Security at the Department of Information Security and Communication
Technology, Norwegian University of Science and Technology (NTNU).

The research is a collaboration between NTNU and SINTEF. It is per-
formed by Anders Been Wilhelmsen and Eivind Skjelmo Kristiansen,
supervised by Marie Elisabeth Gaup Moe at SINTEF’s research division
SINTEF Digital and Danilo Gligoroski at the Department of Information
Security and Communication Technology, NTNU.

Acknowledgements

First of all, we would like to thank SINTEF for proposing an interesting
and challenging research project with hands-on testing of medical equip-
ment. Even more meaningful and inspiring to us, is the opportunity to
contribute to secure the informations system controlling patients’ heart
rhythm.

The doctors and pacemaker technicians interviewed deserve recognition
for their time and willingness to share knowledge of the information
system and its environment.

We are also grateful for the support and feedback from SINTEF employees
from presentations, over the lunch table, and around the coffee machine.
A special thanks to Terje Frøysa for helping us with using the SINTEF
lab for testing of hardware security.

Éireann Leverett deserves recognition for helping us with security testing
and attending a workshop at SINTEF. He has inspired us with his
knowledge on security and testing techniques which he has willingly
shared. We are very grateful for our numerous discussions and his
availability to us.

We would like to thank Danilo Gligoroski for being our responsible
professor on this project. Danilo has always held is office door open for
us, and has provided valuable feedback on the project report.

It is our pleasure to express gratitude to Marie Elisabeth Gaup Moe, our
supervisor at SINTEF. She has always shown interest for our work, con-
tributed with her knowledge of both devices in the pacemaker ecosystem
and its environment. She has helped acquiring equipment, lab access,
office space, and established contacts with key resources for the project.
She has also been a significant contributor in report quality assurance, re-
garding language, structure, and content. Marie has been an irreplaceable
asset for this project.

Lastly, we are extremely grateful for Stine Louise Brandal’s support.

Contents

List of Figures xi

List of Tables xiii

List of Acronyms xv

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Problem Description . 3
1.3 Research Scope . 4
1.4 Hypothesis Statement . 6
1.5 Research Question . 6
1.6 Summary of Contributions . 7
1.7 Structure Of Thesis . 7
1.8 Tools and Resources . 8

1.8.1 Hardware . 8
1.8.2 Software . 8
1.8.3 Files . 10

2 Method 13
2.1 Design Science . 13
2.2 Qualitative Interviews . 17

3 Related Literature 21
3.1 Background Theory . 21

3.1.1 Security Model . 21
3.1.2 Testing Techniques . 22

3.2 Security Testing of Ecosystem Devices 23
3.2.1 Pacemaker RF Protocol . 23
3.2.2 Home Monitoring Units . 25
3.2.3 Pacemaker Programmers . 27

3.3 Regulatory Concerns . 28
3.4 Summary . 32

vii

4 Results 33
4.1 Home Monitoring Units . 33

4.1.1 Comparison of HMU Boards 33
4.1.2 Testing of Debug Ports . 37

4.2 Pacemaker Programmer . 38
4.2.1 Pacemaker Programmer as a Virtual Machine 38
4.2.2 List of Files . 42
4.2.3 Commercial Software . 45
4.2.4 Proprietary Software . 50
4.2.5 Pacemaker Programmer Issues 53
4.2.6 ZIP Fuzzer . 65

4.3 Findings From Resources Related to the Programmer 68
4.3.1 Artifacts Retrieved From Exported Data 68
4.3.2 Files From Self-Extracting Installer 68

4.4 Findings From Interviews . 70
4.4.1 Roles at the Hospital . 71
4.4.2 Selection of Equipment . 71
4.4.3 Implantation Process . 71
4.4.4 Usage of the Programmer in Its Environment 71
4.4.5 Patient Data Deletion . 72
4.4.6 Patient Data Flow . 72
4.4.7 Internet Connectivity . 72
4.4.8 Patient Safety Concerning the Availability of the Programmer 72
4.4.9 Dangerous Configurations of a Pacemaker 73
4.4.10 Decision to Perform Surgery Based on Diagnostic Data . . . 73
4.4.11 Decision to Apply Cybersecurity Patches 73
4.4.12 Patient Safety Routines . 73

4.5 Summary . 74

5 Countermeasures 75
5.1 Software . 75

5.1.1 Operating System . 75
5.1.2 Commercial Software . 77
5.1.3 Cold Storage Encryption . 77
5.1.4 Anti-Reverse Engineering Efforts 78

5.2 Hardware . 78
5.2.1 Storage . 78

5.3 Authentication . 79
5.4 Theoretical Proposal . 80

6 Discussion 83
6.1 Validation Criteria for Security . 83

6.2 Artifacts and Context . 85
6.3 Connecting the Programmer to the Internet 86
6.4 Availability Requirement . 86
6.5 Implications for People and Procedures 86
6.6 Possible Attack Vectors . 87
6.7 Attack Scenarios . 88

6.7.1 Malicously Alter System Files 89
6.7.2 Maliciously Configure Pacemaker 89
6.7.3 Data Theft . 89

6.8 Disclosure Process . 90
6.9 Future Work . 90

6.9.1 Pacemaker Memory Dump 90
6.9.2 Biotronik pacemaker Radio Frequency Protocol 90
6.9.3 Home Monitoring Unit Retry 91
6.9.4 Continuing Fuzzing of ZIP Files and Their Contents 91
6.9.5 USB Hardware Interface Fuzzing 92
6.9.6 Third-Party and Commercial Software 92
6.9.7 Renamic Programmer . 92

7 Conclusion 93

References 95

Appendices
A List Files Code 101

A.1 Edited For Readability . 101
A.1.1 List Files of Windows XP 101
A.1.2 List Files and Signatures 108

A.2 Performance . 118

B Description of Drivers and Functions in Kithara Base Driver 119

C List of PDB Paths 123

D Chilkat ZIP Encryption Detection Script 127

E Chilkat C# ZIP Script 129

F JTAGulator UART Scan Data 133

G Interview Guide 137

List of Figures

1.1 The programmer used by a pacemaker technician in the hospital to
configure and read data from the pacemaker. 2

1.2 The Home Monitoring Unit (HMU) used by patients to monitor their
pacemakers and upload data to a cloud service or web server. 3

1.3 The Biotronik ICS3000 programmer at our disposal. 5
1.4 The Biotronik pacemaker at our disposal. 5
1.5 JTAGulator welcome screen. 9

2.1 Design Science as an Information System Research Framework adapted
from Hevner for the pacemaker ecosystem. 15

2.2 End of Service (EOS) warning when interrogating the pacemaker. . . . 20

4.1 First Medtronic board with highlighted potential debug ports, some
connectors already soldered on by us. 34

4.2 Second Medtronic board with highlighted potential debug ports, some
connectors already soldered on by us. 34

4.3 First Biotronik board with highlighted potential debug ports. 35
4.4 Second Biotronik board with highlighted potential debug ports. 35
4.5 Guidant board with highlighted potential debug ports. 36
4.6 Screenshot of VM with the only software available on the physical pro-

grammer, a shell, file browser and a Biotronik testing tool. 42
4.7 ‘About Windows’ showing that the programmer is running Windows XP

with Service Pack 2. 44
4.8 Part of table created by the script to list interesting files 45
4.9 14-pin port for Redel P series adapter to connect the programming head 48
4.10 Attribute Editor running on our VM. 51
4.11 pestudio showing the header information of EgsMain.exe. 55
4.12 SysInternals Process Explorer properties page, without ASLR tab and

showing DEP being disabled. 56
4.13 Error box when booting to the C: partition after editing boot.ini. 58
4.14 Example of patient data which is presented to us in the programmer,

stored unencrypted on the disk. 60

xi

4.15 Portion of sub_463BC1A4 with the relevant function calls in assembly. 63
4.16 Output of the C sharp script in Appendix E. Pay attention to the

encryption mode and key length, lining up with the assembly code in
Figure 4.15. It also confirms the ZIP is encrypted, contrary to what the
python script told us earlier. 64

4.17 Showing 502 files, all with 402 as the name as well as one with a bogus
date, accepted and read by the pacemaker indicated by the 1004 number 66

4.18 After renaming one of the 502 files we can see the programmer no more
accepts reading the file successfully. 67

4.19 Mobile connectivity form user manual for the Renamic programmer with
version 1503.A/1 . 70

5.1 Pacemaker with outer components desoldered giving access to the under-
lying chips. 77

6.1 MICS RF details. 91

List of Tables

4.1 Summary of vulnerabilities found in commercial software. 50
4.2 Lifecycle deadlines downloaded from https://support.microsoft.com/en-us/

lifecycle/search on 11th of may 2018. 54
4.3 Attack vectors from results. 74

5.1 Countermeasures to mitigate attack vectors uncovered in results. 81

6.1 Possible attack vectors. 88

B.1 Descriptions of functions in Kithara . 121

xiii

https://support.microsoft.com/en-us/lifecycle/search
https://support.microsoft.com/en-us/lifecycle/search

List of Acronyms

AD Active Directory.

ASLR Address Space Layout Randomization.

CIA Confidentiality, Integrity and Availability.

COTS Commercial off-the-shelf.

CVSS Common Vulnerability Scoring System.

DEP Data Execution Prevention.

EEPROM Electrically Erasable Programmable Read-Only Memory.

EOS End of Service.

ER Emergency Room.

EU European Union.

FCC Federal Communications Commission.

FDA Food and Drug Administration.

GDPR General Data Protection Regulation.

HMU Home Monitoring Unit.

HSPA High Speed Packet Access.

ICD Implantable cardioverter-defibrillator.

IDA Interactive Disassembler.

IMD Implantable Medical Device.

xv

IMDRF International Medical Device Regulators Forum.

IS Information System.

IVDR In Vitro Diagnostic Medical Device Regulation.

JTAG Joint Test Action Group.

LFSR Linear Feedback Shift Register.

MDD Medical Device Directive.

MDR Medical Device Regulation.

MICS Medical Implant Communication Service.

NIST National Institute of Standards and Technology.

NTNU Norwegian University of Science and Technology.

OS Operating System.

PCB Printed Circuit Board.

PGH Programming Head.

PIC Position Independent Code.

POTS Plain Old Telephone Service.

RAM Random Access Memory.

RF Radio Frequency.

RSA Rivest–Shamir–Adleman.

SaMD Software as a Medical Device.

TLB Type Library Binary.

UART Universal Asynchronous Receiver-Transmitter.

UMTS Universal Mobile Telecommunications System.

USA United States of America.

USB Universal Serial Bus.

USRP Universal Software Radio Peripheral.

VM Virtual Machine.

XML Extensible Markup Language.

XOR Exclusive or.

Chapter1Introduction

1.1 Background and Motivation

People with certain heart conditions in today’s society are living longer and more com-
fortable due to Implantable Medical Devices (IMDs), like pacemakers and Implantable
cardioverter-defibrillators (ICDs)

A pacemaker is used to monitor the heartbeat and send electrical impulses that cause
the heart to contract. It is used to help patients with heart conditions maintain a
normal rhythm if they are having trouble with a low or irregular pulse. In the case
of an acute cardiac arrest, an ICD can also deliver high energy shocks to kickstart
the heart in addition to the pacing functionalities.

Modern pacemakers and ICDs are tiny computers with sensors that detect the
heartbeat and physical movement, a computer processor with advanced algorithms
that calculate and predict optimal pacing, a memory that stores configuration settings
and information about cardiac events, and wireless communication interfaces to allow
for remote configuration and monitoring of the device. An ICD is a bit larger than a
pacemaker, to accommodate a larger battery and a capacitor, but is still tiny enough
to be comfortably implanted under the skin, typically on the chest area, with one,
two or three wires called leads running inside a vein to the heart. Since the wireless
communication interfaces of both pacemakers and ICDs are similar, we will group
these two types of devices and refer to them as pacemakers for the remainder of this
thesis.

As a result of the variety of heart conditions and differences in pacing needs between
individual patients, there are multiple configuration options on a pacemaker. These
configurations are set by health professionals, typically a cardiologist or nurse with
specialized training as pacemaker technician, using a device called a pacemaker
programmer as illustrated in figure 1.1.

1

2 1. INTRODUCTION

Figure 1.1: The programmer used by a pacemaker technician in the hospital to
configure and read data from the pacemaker.

Pacemaker programmers, from here on out referred to as programmers1, are com-
puters with specialized software that can connect to the pacemaker over a wireless
communication interface. Primary uses include interrogating the pacemaker for
status information, including statistics of use and details of cardiac events that have
been recorded by the device. Also, a pacemaker technician can change or even reset
the pacemaker configuration using the programmer.

While the patient is outside the hospital, the pacemaker technician can monitor
pacemaker information remotely. This decreases the need for hospital visits, enables
the pacemaker technician to detect device issues or abnormal heart rates faster,
and provides patients with a sense of security [C+11, CWC+08, STW+07, LPL+12,
PLN+12]. Remote monitoring is made possible by using a Home Monitoring Unit
(HMU) which can interrogate the pacemaker for information and send it to a server
hosted by the vendor. This is illustrated in figure 1.2. The information is in turn
made available for the pacemaker technician through a website.

1Not to be confused with persons who write computer programs.

1.2. PROBLEM DESCRIPTION 3

Figure 1.2: The HMU used by patients to monitor their pacemakers and upload
data to a cloud service or web server.

Pacemakers, programmers, and HMUs are throughout this thesis referred to as the
pacemaker ecosystem.

To meet the regulations set by regulatory governing bodies such as the Food and
Drug Administration (FDA) and European Union (EU), products in the pacemaker
ecosystem have a long time-to-market. Ensuring that these devices do not malfunction
is a long and rigorous process. However, until recently, these regulations did not
take security risks and especially cybersecurity risks into account [Sch16]. Devices in
the pacemaker ecosystem created before these regulations included security risks are
more likely to include security vulnerabilities. This includes a significant number of
pacemakers, HMUs, and programmers that are in use today.

Subsequently our motivation for this topic is anchored in the simple fact that
vulnerabilities in the pacemaker ecosystems could be life-threatening.

1.2 Problem Description

Devices in the pacemaker ecosystem are using proprietary software and communicat-
ing over proprietary wireless communication protocols. This means that the software
controlling a patient’s heart and the software used by the pacemaker technician is
owned and held secret by the vendor. One consequence of this is a lack of interoper-
ability, causing hospitals to need one programmer from every vendor to be able to

4 1. INTRODUCTION

connect to all brands and models of pacemakers. Another consequence is that only
the vendor can white-box test the security of the software. Furthermore, there are
devices in use today that were manufactured before regulations took security risks
into account. These devices could have been verified as secure by an independent
source, but this is not public knowledge.

1.3 Research Scope

The pacemaker ecosystem has many possible attack surfaces as discussed in our pre-
thesis [WSK17]. Including the wireless communication protocol, possible JTAG/UART
debug ports in HMUs and the USB-port on the programmer. We chose early not to
focus on the pacemaker itself. The decision was made partly because we only had
one functional pacemaker at our disposal. Furthermore, knowing that the pacemaker
is a proprietary device with an unknown memory structure, we risked spending
much time having to learn hardware security and memory forensics. Considering our
background, we believed we could produce more tangible results focusing on other
parts of the pacemaker ecosystem.

We also chose not to focus on the wireless communication protocol. Also here, we do
not have a background in signal processing and therefore concluded it would yield
better results if we focused on other parts of the pacemaker ecosystem. Previous
studies have also worked on testing the wireless communication protocol, and it
seemed to us that we would need training and much time to be able to contribute in
this area.

Our initial aim was to identify debug ports on HMUs as described in section 3.2.2.
However, the direction changed after failed attempts addressed in section 4.1.2.
The focus shifted to an essential device in the pacemaker ecosystem – namely the
programmer.

Below is the one functioning programmer at our disposal, with a compatible pacemaker
which had battery left.

1.3. RESEARCH SCOPE 5

Figure 1.3: The Biotronik ICS3000 programmer at our disposal.

Figure 1.4: The Biotronik pacemaker at our disposal.

6 1. INTRODUCTION

As we saw from the pre-study, the programmer is a computer running special software.
This is the area of the pacemaker ecosystem that fits our background in information
security. Our preliminary knowledge of how the programmer is used has led us to
a number of critical questions that are not answered in related literature. There
are multiple attack surfaces: on the Operating System (OS) level, on the software
application layer, and on the programmer interfaces. If the programmer is not
connected to the internet, it raises the question of how and when security patching is
performed. On the other hand, if it is connected to the internet, what measures have
been taken to protect this remotely accessible attack surface? Possible functional
requirements may also affect the security of the device. Availability in life-critical
situations may affect how or if authentication is implemented. Backward compatibility
with legacy pacemakers could leave possible vulnerabilities unfixed. The ability for
any programmer to communicate with any pacemaker from the same vendor raises
the question how or if encryption and key management are handled. It would also
be interesting to unravel how the proprietary software works, which files it contains,
what commercial software is used and if executables are signed. The security of
the programmer is mostly uncharted territory. As we will discuss in chapter 3, the
few available analysis of programmers do not sufficiently verify the security of these
devices.

1.4 Hypothesis Statement

The programmer is indeed the key to the heart of a pacemaker patient, due to its
central role in accessing the data and configuration of the pacemaker. It is therefore
vital that it is secure.

We conjecture that the state of the security in programmers is unknown to the public
and that it is possible to study the state of the security in programmers. Specifically,
our hypothesis is:

The pacemaker programmer has vulnerabilities that make it insecure in its regular
environment.

1.5 Research Question

Based on our motivation, the targeted scope, and problem description we define
the following research objectives. The use of artifacts and context stems from our
chosen research method. Artifacts are ‘something created by people for some practical
purpose’, for instance software or a model [Wie14]. The context for these artifacts
is ‘the design, development, maintenance, and use of software and information
systems’ [Wie14].

1.6. SUMMARY OF CONTRIBUTIONS 7

RO.1 Describe artifacts in the pacemaker ecosystem

RO.2 Describe the context of artifacts in the pacemaker ecosystem

RO.3 Describe vulnerabilities in the pacemaker ecosystem and possible countermea-
sures.

These objectives are the basis for our research question:

RQ.1 What is the security of the programmer within the framework of the key princi-
ples of Information Security: Confidentiality, Integrity, and Availability (CIA).

1.6 Summary of Contributions

The main deliverables from this thesis are the knowledge of the state of the security in
programmers and the vulnerabilities that have been uncovered. While the mapping
of artifacts in the programmer is already knowledge held by the vendor, their
implications on the context are unknown to the public.

We have also created a platform from which future work can dive deeper into security
testing of programmers as described in section 6.9. The report answers RQ.1 and
addresses the stated research objectives where we describe multiple security issues
with the programmer. Security criteria for programmers are suggested, and rele-
vant stakeholders will be informed following principles of Coordinated Vulnerability
Disclosure.

1.7 Structure Of Thesis

The remainder of the thesis is structured as follows.

Chapter 2 explains Design Science and justifies why it was chosen as the methodol-
ogy for this research. It also introduces and argue for the use of qualitative
interviews for data collection in the design science framework.

Chapter 3 presents background theory and related literature of security research
in the pacemaker ecosystem. This chapter also presents regulatory concerns.

Chapter 4 outlines our results concering the HMU and programmer, and explains
how they can be reproduced.

Chapter 5 proposes countermeasures to remedy our findings. It also includes a
theoretical proposal for a more secure programmer.

8 1. INTRODUCTION

Chapter 6 discusses validation criteria for security and review artifacts and their
context in a broader perspective. The chapter evaluates connecting the pro-
grammer to the internet, and availability as a requirement. Consequences for
people and procedures are discussed, and possible attack vectors and attack
scenarios are presented. We argue for the choice of disclosure process before
outlining future work.

Chapter 7 concludes the thesis.

1.8 Tools and Resources

In this section, we describe the tools, equipment, and resources used and obtained to
improve readability throughout our thesis. Extracting these descriptions simplifies
the complexity of the following text, and clarifies what work that has been done.
Some prerequisites for the master thesis, which are preliminary results by a pacemaker
security project initiated by Dr. Moe, were made available to us.

It is also important to clarify this is not the entire toolkit at our disposal. It is a
description of the most necessary tools and resources which might not be known to
the reader.

1.8.1 Hardware

JTAGulator

In order to probe and test potential debug ports, one must see if a specific pin acts
as expected when guessing what signal it is sending. This process is tedious, and as
such, we purchased the JTAGulator[rf]. In short, it automates testing the connected
pins, saving time as a reverse engineer.

1.8.2 Software

Hex-Rays IDA Pro

Interactive Disassembler (IDA) Pro is a disassembler and debugger, a program
which can pick apart compiled code for reverse engineers to perform code analysis
and vulnerability research efficiently. In our project, we use IDA Pro as a tool to
understand the libraries of commercial software as well as attempting to understand
the binaries created by Biotronik. Since IDA Pro is commercial software, we have
only used it for static analysis which is possible with the free version of IDA Pro,
available for download at their homepage. As such, our work with IDA should be
reproducible without a license.

1.8. TOOLS AND RESOURCES 9

VirtualBox

VirtualBox is a freely available program used to create Virtual Machines (VMs).
It emulates hardware, making the VM believe it is a normal computer. Using one
specific program that is free is important for reproducibility. Although there is a
usage of VMware as well, the functionality needed can be performed with the free
trial before exporting it in a format that VirtualBox can understand.

dd2vmdk

For converting a disk image to a usable VM disk, an open sourced tool found on
GitHub is used. The tool is free and provides us with the necessary conversion to
create a VM from our disk image. It was written by the Github user labgeek, with
his contact email being vm0x0d@gmail.com.

minicom

To connect our USB-port to a serial device which is responsible for talking with our
JTAGulator, we use the free software minicom which is available as a package for
Linux systems.

Figure 1.5: JTAGulator welcome screen.

guestmount

A disk image stored in the dd format can be mounted with the mount command in
Linux. To safely mount a virtual disk image, a .vmdk file, a special program called
guestmount was used on Linux. This has to do with the format of virtual machine
disks, which is out of scope for this thesis. It is available as a package for Debian by
installing libguestfs-tools.

10 1. INTRODUCTION

Hivex

Once inside the file system of a virtual machine, we would like to edit specific
parameters, such as registry hives. Registry hives are databases used by the Windows
system for storing specific settings, and they cannot be edited by Linux trivially
since the format is proprietary. Therefore we have to use a special program to edit
them on Linux. Hivex was created by reverse engineering the format of how these
registry hives are created, to be able to read and write to them. To gain control over
the programmer we chose to edit the registry files.

SignTool

SignTool is a tool by Microsoft to sign and verify signatures of files in Windows.
SignTool can be executed from the Developer Command Prompt for Visual Stu-
dio 2017 using the command signtool.exe. Running SignTool in verbose mode
with command signtool.exe verify /v <filename> displays more details of a
signature verification, such as who signed the files as shown below.

Verifying : G:\ Bio\ Execute \ Tools \ InstImageCD .exe
Hash of file (sha1): 6093 FA3E9CFB5682BEF03D7AC194032F0FD95A86
SignTool Error : A certification chain processed , but terminated in a root

certificate which is not trusted by the trust provider .

Signing Certificate Chain :
Issued to: BIOTRONIK Issuing CA
Issued by: BIOTRONIK Root CA
Expires : Sat Sep 22 01:36:52 2018
SHA1 hash: 19 BB38EB3977BB9BA9221DFA0DBA2B3D5980835A

Issued to: Biotronik Programmer
Issued by: BIOTRONIK Issuing CA
Expires : Sat Jun 30 08:53:06 2018
SHA1 hash: 5 CEEA49F231E6FA17B9E51A9B40E267D8789B7DA

File is not timestamped .

Listing 1.1: Output of signtool.exe in verbose mode for the executable
InstImageCD.exe signed by Biotronik.

1.8.3 Files

Disk Image

Acquired by another member of the pacemaker security project, we have at our
disposal a virtual disk image of the contents of the hard drive in our physical
programmer.

1.8. TOOLS AND RESOURCES 11

Patient data

As part of this project, we have access to patient data exported from a programmer
belonging to a hospital in the Netherlands. This data has been made available to our
research with the consent of the patient, namely our supervisor for this thesis, Dr.
Moe. We have access to a pacemaker memory dump in two different versions. Firstly,
an encrypted version from a data export from the programmer in the Netherlands,
and a redacted version of the same memory dump, but unencrypted. Throughout
the thesis, we refer to the encrypted pacemaker memory dump simply as the memory
dump, or Random Access Memory (RAM) file.

Biotronik Programmer Software Installers

Software updates for the programmer are available on the Biotronik webpages. The
project members have acquired these over time, and accumulate a significant amount
of large installer executables. Considering the newer versions from 2015 onwards
allegedly has remote update capability, understanding how a software update is
performed is also an important part of RO.2.

Chapter2Method

2.1 Design Science

An Information System (IS) is defined as ‘a group of components that interact to
produce information’, with the five components being hardware, software, data,
procedures, and people [Kro08]. The programmer contains hardware, software,
and data. Combined with the procedures of people that are interacting with the
programmer in its regular environment, it constitutes an IS. IS research is mainly
divided into two paradigms, Behavioral Science and Design Science [CGH09].

Behavioral Science focuses on developing and verifying theories to understand and
explain phenomena [BG82, MS95]. This alone does not cover the needs of RQ.1,
since we do not seek to describe a situation that is observed to exist.

Design Science is another much-used method in IS research [VAMPR04]. The
methodology defines artifacts and context. Artifacts could be methods or soft-
ware. Hevner describes artifacts as constructs (vocabulary and symbols), models
(abstractions and representations), methods (algorithms and practices) and instan-
tiations (implemented and prototype systems) [VAMPR04]. Context is the design,
development, maintenance, and use of software and information systems [Wie14].

March and Smith identify build and evaluate as two iterative processes produced
by Design Science research [MS95]. It is illustrated in figure 2.1 as a loop between
building new artifacts and evaluating how they affect the environment. Wieringa
argues that ‘Design Science is the design and investigation of artifacts in context’
and that an artifact should be evaluated in the context they are designed for [Wie14].

As a consequence of being a proprietary system, the artifacts and context of the
programmer are to a large extent unknown. This is one of the critical reasons why
Design Science relates to the needs of RQ.1. As we unravel artifacts from RO.1,
it is crucial that we can describe how these artifacts affect the context they are

13

14 2. METHOD

in, as stated in RO.2. In addition to addressing our need to investigate artifacts
in context, Design Science applies to the design of constructs, models, methods,
and instantiations to fulfill RO.1 and RO.2. These artifacts can be categorized as
instrument design goals since they aid us in answering knowledge questions. Finding
vulnerabilities and countermeasures in RO.3 further relies on the knowledge from
investigating artifacts in their context, and is a higher-level design goal that can be
categorized as an artifact design goal. Designing artifacts that change the context
can also affect the environment, namely people and procedures. However, affecting
people and procedures means that we cannot ignore Behavioral Science.

While the goal of Behavioral Science is the truth, the goal of Design Science is
utility [VAMPR04]. Lee argues that truth and utility are inseparable [Lee00]. An
IS can be divided into a behavioral and technological subsystem that transforms
each other in that the phenomena that Behavioral Science describes affects the
technological subsystem and vice versa. This separates IS research from technology
disciplines and behavioral disciplines, and implies that IS researchers need to master
both the technological and the behavioral.

Hevner introduced a framework for IS research, illustrated in figure 2.1, which
combine the behavioral science and the design science paradigms.

2.1. DESIGN SCIENCE 15

Figure 2.1: Design Science as an Information System Research Framework adapted
from Hevner for the pacemaker ecosystem.

The Framework is driven by the motive of improving the environment by introducing
new artifacts. The object as stated in RO.3 is to find vulnerabilities that can affect
the environment. These should, in turn, result in countermeasures that will improve
the environment. One necessity for RO.3 are the artifacts designed to fulfill RO.1
and RO.2, which indirectly helps to improve the environment.

Furthermore, it is necessary to justify how our research differentiates from routine
design, which is the application of existing knowledge from the knowledge base.
Failing to test the state of the security in the programmer uniquely and innovatively,
more effective or more efficient, would indicate that we have performed routine design.
A clear differentiator between routine design and design research is that is that the
research contributes to the knowledge base. Artifacts in context of the programmer is
unknown to the public and would be a contribution to the knowledge base. Validation
criteria for security in the programmer are process-oriented in recent regulations, and
a discussion of these criteria would be another contribution. Knowledge of possible
vulnerabilities may also contribute to the design of more secure pacemaker ecosystems,
as well as affecting procedures and decisions of patients, pacemaker technicians, and
doctors. Furthermore, the utility of different methods and techniques in our research
would be a contribution.

16 2. METHOD

Given that Design Science is a problem-solving process, what problem are we trying
to solve to answer RQ.1? If a problem can be defined as the difference between a
goal state and the current state of a system, then we can define the problem as the
goal state of the system to be secure, and the current state to be unknown. Revealing
the security state of the programmer would be the problem.

Design Science however, addresses what are referred to as wicked problems [VAMPR04].
Originally, wicked problems where characterized by ten features identified by Rittel
and Webber, with the common factor that wicked problems do not have a clear
solution [RW73]. Tame problems are in contrast characterized by the clear knowledge
of the mission and if the problem is solved. Farrell & Hooker brings nuances to the
wicked and tame distinction of problems and reduces the ten wickedness-making
features to three conditions [FH13]. Finitude, complexity, and normativity. We use
these to argue that RQ.1 is a wicked problem.

Finitude implies that resources are finite and insufficient for an optimal solution.
With a restriction on time, it is not feasible to describe all artifacts in RO.1. Thus,
RO.3 is based on a subset of all artifacts. RQ.1 is therefore based on an incomplete
knowledge of the programmer, which should not qualify for an optimal solution.
Moreover, there might always exist better solutions to mitigate vulnerabilities.

Complexity implies that processes are difficult to predict, which aggravates the limits
imposed by finite resources. The process of discovering the series of actions that
constitute a vulnerability is inherently reliant on creativity and trial-and-error since
there are a substantial number of possible combinations. Furthermore, viewing the
IS as the transformation of a behavioral and technological subsystem as suggested
by Lee increases the solution space. We argue that this underpins the complexity of
the programmer and that RQ.1 therefore adheres to the condition of complexity.

Normativity describes how human values and norms require compromise to permit a
practicable problem resolution. Normative constraints ofRQ.1 is highly dependent on
the values and norms in the programmers regular environment. Although normative
constraints may be unknown, it is reasonable that vendors, doctors, and patients
have values and norms that require compromises for a practical solution.

We argue that RO.3 is a wicked problem, in that it adheres to the three conditions
stated by Farrell & Hooker. Besides, the solution is dependent on human cognitive
abilities such as creativity and teamwork to find vulnerabilities and countermeasures.
Furthermore, it is not clear whether the problem is completely solved, whether the
security state of the programmer is indeed revealed. There could be undiscovered
vulnerabilities or more efficient countermeasures.

It is also necessary to advocate for the relevance of our study. Answering RQ.1 is not

2.2. QUALITATIVE INTERVIEWS 17

only a question of mitigating possible technical vulnerabilities. It may also affect how
vendors work with security in product design, testing during the products lifetime,
patching and distribution of patches. Professor Fu at the University of Michigan
has been working with manufacturers of devices in the pacemaker ecosystem after
demonstrating it was possible to hack an implantable heart defibrillator and deliver
a fatal shock in 2008. His claims about improving the security is that ‘[..] many
manufacturers are still playing to catch up’ and that a small minority were ‘ignoring
or downplaying the security risks’ [fTDM]. Another indication of the potential for
improvement came from Karen Sandler. She is the executive director of the Software
Freedom Conservancy and has contributed to excemption for medical device security
research in the Digital Millennium Copyright Act (DMCA). A blog post describes
her safety concerns regarding her new pacemaker after the publication of multiple
pacemaker vulnerabilities coincided with receiving actual threats to her well being.

As exploit after exploit were published I was sound in the knowledge
that at the very least, my device would be safe from remote attack. This
became less hypothetical as I (like many other women on the Internet
as I have come to understand) have received actual threats to my safety
and well being [San17].

In her search for a pacemaker without wireless access, she was met by a Biotronik
representative who stated ‘Our devices are hack proof’. A statement which underpins
Professor Fu’s claim that some manufacturers are downplaying security risks. Fur-
thermore, there is a study of cybersecurity firmware upgrades indicating a potential
for improvement in the patching process, which found that pacemaker dependent
patients are less likely to receive the security patch and that other factors such as
age and sex affected the likelhood of receiving the update [SVE+18].

These indicators for potential of improvement shows that our study is highly relevant.

2.2 Qualitative Interviews

We have chosen to use qualitative interviews as a method for gathering data and
hypothesis building in conjunction with the Design Science Framework as depicted in
figure 2.1. Qualitative interviews can also be used to uncover normative constraints
in the programmer’s regular environment. Knowledge of normative constraints are
prerequisites for suggesting practical countermeasures that require compromises
with values and norms. Viewing the IS as a transformation of a technological and
behavioral subsystem, as suggested by Lee, also underpins how qualitative interviews
relate to RQ.1 with regards to the behavioral [Lee00].

18 2. METHOD

The sample has been chosen using the key informant sampling technique, which is
set apart from other techniques by sampling candidates with expert knowledge of
the domain in question [Mar96]. The selection of candidates is made by the head of
a cardiovascular clinic and included in total six doctors and pacemaker technicians
working with pacemaker patients on a daily basis. When asked to participate, they
were informed of the study’s background and purpose, what their participation
involves, how we process the information, that participation is voluntary, and that
the study has been reported to the Data Protection Official for Research at the
Norwegian Centre for Research Data. Data were collected between 11th and 16th of
may 2018 with one interview per informant and a contact time of around 60 minutes.

Tremblay describes five criteria for the ‘ideal’ key informant, which we will use to
justify our sample [Tre57]. Since only the first criteria can be answered before the
interviews, we will also argue with results from chapter 4.

Role in community implies that the informants’ formal role should expose them
to the kind of information sought by the researcher. Our informants are exposed
to the programmers regular environment which relates to RQ.1. They also have
insights into how different roles interact with the programmer and which processes
are involved, which helps us describe the context of artifacts in RO.2. Furthermore,
it is reasonable to assume that they have insights of normative constraints that may
be unknown to us.

Knowledge means that in addition to having access to the information desired, the
informant has absorbed the information meaningfully. As uncovered by the interviews,
doctors and pacemaker technicians have gone through extensive theoretical and
practical training. This is a clear indication that the informants have absorbed the
significance of the desired information.

Willingness means that the informant should be willing to communicate their knowl-
edge to the interviewer and to cooperate as fully as possible. The informants have
signed a consent to participate in the study. A concent, however, does not imply
willingness. Some interviews had to be rescheduled due to, e.g., implantations and
lab work which we interpreted as prioritization of their work rather than lack of
willingness. Other informants questioned the necessity of interviews, claiming they
had no new knowledge after the interviews of other informants. We interpret this as
a sign of data saturation and also prioritization of work, rather than unwillingness.

Communicability suggests that informants should be able to communicate their
knowledge in a manner that is intelligible to the interviewer. While medical terms and
descriptions of heart anatomy can be ambiguous to us, a more correct understanding
was obtained by asking follow-up questions about their meaning. Otherwise, we
are reasonably familiar with technical terms regarding devices in the pacemaker

2.2. QUALITATIVE INTERVIEWS 19

ecosystem, and as such the informants were able to communicate in a manner that
was understandable for us.

Impartiality describes how key informants should be objective and unbiased, and
that any relevant biases should be known to the interviewer. It is reasonable to
assume that our key informants are biased to the clinic where they work, and by
possible agreements between the clinic and vendors. Doctors are also biased by ethical
rules, which in Norway is stated by the Norwegian Medical Association [ftNMA].
Furthermore, we noticed during the interviews that some candidates were aware of
others being interviewed, and it is, therefore, reasonable to assume that they might
have been biased by each other. Additionally, the fact that we asked questions related
to security and data privacy combined with representing a study from two scientific
institutions may have affected the informants.

While not being ‘ideal’ key informants with regards to impartiality, it is apparent
that they to a large degree conforms with Tremblay’s five criteria.

When justifying a sample size for qualitative interviews, it is necessary to address
the concept of data saturation. It involves bringing new participants continually
into the study until the data set is complete, indicated by data replication or
redundancy [MCPF13]. However, we only have a limited number of key informants
from one clinic. One possibility would be to reach out to other clinics, but this would
require more time and resources. Failing to reach data saturation impacts the quality
of the research and hinder content validity [Bow08].

Patton explains that ‘Sample size depends on what you want to know, the purpose of
the inquiry, what’s at stake, what will be useful, what will have credibility, and what
can be done with available time and resources’ [Pat90]. We are using key informants
because they are believed to have the most knowledge of the programmers regular
environment, which is a relatively narrow domain. The information gathered is used
for hypothesis building, and as such we are not drawing generalized conclusions based
on this research method. The information is further triangulated with documentation
and our findings for validation. Charmaz has criticized researchers for using the
criterion of saturation to justify very small samples with thin data [Cha11]. We
argue that using the key informant sampling technique for hypothesis building in a
narrow domain justifies the small sample.

Using the key informant sampling technique, we were able to gather data that relates
to the needs of RQ.1 for insights in the programmers regular environment. The
method also meets the needs of RO.2 since it gives insights into how different roles
interact with the programmer, processes involved and allows us to explore further
aspects that interview objects find relevant concerning security.

20 2. METHOD

One limitation of our current equipment is that it is not possible to configure our
working pacemaker. When the battery level of the pacemaker is almost depleted, the
device enters a state called End of Service (EOS), as displayed in Figure 2.2. In this
state, the pacemaker can be diagnosed using the programmer, but it is no longer
possible to alter the configuration of the device.

Figure 2.2: EOS warning when interrogating the pacemaker.

This can be remedied by interviewing pacemaker technicians, and doctors, whose
knowledge of how a pacemaker can be configured enables us to identify risks to
patient safety. Insights into the configuration possibilities and how doctors evaluate
the subsequent consequence relates to how a vulnerability can affect patients well
being. It is also relevant for discussing what the security level of a programmer
should be.

Chapter3Related Literature

Before diving into the material, it is important to note that it is little publicly known
documentation, analyses, and papers on the field of medical device security regarding
the pacemaker ecosystem. As such each piece is described in great detail, providing
a thorough understanding of the current state of the art.

3.1 Background Theory

3.1.1 Security Model

We start by describing a security model. The most commonly used is CIA (confi-
dentiality, integrity, and availability). CIA is commonly extended also to include
non-repudiation, authenticity, and accountability defined below [Lys15].

Confidentiality ensures that information is disclosed only to those with
permission to access it. One example is the encryption of patient data.

Integrity ensures that data has not been manipulated accidentally or by
unauthorized people. One example is the signature of files.

Availability ensures that data or services are continuously available to legiti-
mate users.

Non-repudiation ensures that it is possible to prove that an action or trans-
action was performed by a specific individual so that the action is undeniable.
One example is logging of who performed what action on the programmer.

Authenticity ensures the origin of data and correct identification of the sender.
One example is that data is signed before being imported by the programmer.

Accountability ensures that an entity can be held accountable since the action
can be traced to the responsible. One example is that a doctor cannot deny
configuring a pacemaker.

21

22 3. RELATED LITERATURE

Throughout our thesis, we will address these principles accordingly to the impact of
our results, countermeasures, and discussion chapter.

3.1.2 Testing Techniques

There are two main approaches to security testing, namely black-box testing and
white-box testing.

Black-box testing is based on testing the system from a user perspective,
without special privileges or insight beyond what is publicly known. This
resembles a real attack scenario where an adversary is trying to compromise
a system. This approach highlights real security vulnerabilities instead of
hypothetical ones and is highly dependent on the skills of the tester. Another
disadvantage is that there might exist vulnerabilities that are not discovered.

White-box testing is based on using special privileges and knowledge of the
source code to look for security vulnerabilities. This is time-consuming and
requires detailed insights of the system. However, multiple techniques can be
applied, such as static code analysis, automated penetration testing tools and
manual penetration testing tools.

Since the pacemaker ecosystem is proprietary, the knowledge of its software and
hardware components are kept secret by the vendors. Therefore the black-box testing
approach is most applicable to this thesis. However, as stated in section 1.5, our
research objectives are not to exploit artifacts but to gain knowledge of artifacts
and their contexts to describe vulnerabilities. On this basis, we argue that the
application of techniques and methods from the knowledge base in the context of
Design Science is the best way of building artifacts as instrument design goals and
evaluating artifacts in their context to gain insights.

These methods and techniques include reverse engineering binaries, creating com-
mands and automated scripts to list files and libraries used in executables, and
information gathering to understand context. The common factors are that they
rely on trial-and-error and creativity to produce results. These factors match our
attempts to solve the wicked problem of RQ.1 since trial-and-error has the features
of being problem-specific, solution-oriented and non-optimal. Problem-specific means
that there is no attempt to generalize the solution, solution-oriented implies that it
only searches for a solution and not why the solution works, and non-optimal means
that trial-and-error tries to find one solution, not the best or all solutions.

3.2. SECURITY TESTING OF ECOSYSTEM DEVICES 23

3.2 Security Testing of Ecosystem Devices

3.2.1 Pacemaker RF Protocol

One of the first papers to touch upon the topic of pacemaker security and privacy
directly is Halperin et al. [HHBR+08]. In particular, they take a look at the first gen-
eration of pacemakers which has wireless communication capabilities introduced into
the U.S. market starting in 2003. Observations done in the paper was performed on
the model Medtronic Maximo DR VVE-DDDR #7278 [Data]. From a motivational
point of view, the team conducting the testing stemmed from a diverse selection of
fields, including personnel actively using the equipment to engineers in both electrical
engineering and computer science.

By using the CIA security model for classifying the contributions they can quantify
their findings as well as providing important examples of attacks and prototype
defense mechanisms. Their choice of method was to rely on COTS equipment that is
within the budget of a simple malicious adversary, not necessarily a state actor or
organized criminals. Since their findings are based on a single device, their paper act
as a catalyst for a larger investigation by the security industry to assess the various
devices in the ecosystem.

Regarding passive attacks, using only an oscilloscope they were able to identify and
store traces of communication between the programmer and the ICD itself. From
there, using known text strings, they were able to identify the modulation and phase
of the signal. To obtain these transmissions they used a Universal Software Radio
Peripheral (USRP). From here they built an eavesdropper capable of intercepting
patient data such as name, date of birth, medical ID number and historical data from
several centimeters. As for active attacks, by boosting their signal, they managed to
perform several replay attacks from centimeters of distance, being able to change the
operating mode of the ICD, change its clock, change the patient name, and inducing
fibrillation.

As such Halperin et al. managed to both compromise patient privacy and pacemaker
integrity. As for confidentiality, there was never any encryption scheme in place.
An important detail to note is that they did not disclose details regarding their
constructed attacks which is usually standard practice in security testing, where
most do follow Coordinated Vulnerability Disclosure in accordance with ISO/IEC
29147:2014 [ISO14]. Another important point is that they highlight the fact encryp-
tion over RF has been implemented before, as a countermeasure to their attacks.
One obvious drawback would be the power usage, which is why they have proposed
a zero-power key exchange in order to safely introduce encryption over the air at a
minimal cost.

24 3. RELATED LITERATURE

In more recent times, another study written by Marin et al. [MSG+16] tests the
security of the RF protocol of the same kind of ICD equipment, but for the second
generation of pacemakers that have new capabilities such as long-range communica-
tion. Longer range communication opens up for more possible attacks and is vital to
secure as well. By long range communication, we talk about two to five meters of
range, without any specialized equipment that may boost the signal. In a similar
fashion to Halperin et al., they also use COTS equipment to perform their attacks,
again underlining the fact you do not need to be an entity with a large amount of
funds or equipment to compromise these devices.

Again, as is the case with these analyses, there is no access to the source code
of how the protocol was set up, so they test using a black box approach. They argue
this is more laborsome, yet more realistic due to the fact not everyone having access
to open up a device to pick apart its firmware. Following a similar fashion to Halperin
et al. they managed to identify the symbol rate, modulation and frequency, although
here they simply pointed to the Federal Communications Commission (FCC) search
page instead of listing the model and make of the ICDs analyzed. They have notified
the vendors of the equipment, but have not publicly mentioned in the article which
vendor they have been testing the equipment of and reported the vulnerabilities to.

One of the more interesting findings compared to the previous paper is that the
symbol seems to have some obfuscation in place, namely an XOR function which
picks up its key from a Linear Feedback Shift Register (LFSR). In conclusion, they
came to the fact that all ten ICDs analyzed used this encoding scheme coupled with
the XOR. This is the first time any obfuscation scheme has been found in the RF
protocol between the pacemaker and the programmer. Further on they defined a
state model for the energy states to adequately address how to activate the pacemaker
for it to be in a state in which it is vulnerable to attacks. As for an active attack,
by keeping the device in interrogation mode, they argue this would then drain the
battery, or extend the window to perform other malicious activity. To illustrate that
these attacks could be done relatively cheap by an adversary, they suggested building
a backpack with all necessary equipment to stalk a possible target.

Summarizing their privacy attacks they bear great similarity to the results by Halperin
et al., proving that since 2008 no great effort has been made in trying to secure
patient data. Again they managed to intercept and read serial numbers, patient
name or patient health data if an active session is eavesdropped. In addition to
eavesdropping, they also managed to spoof messages and perform replay attacks.
Although adversaries might not know the entire format and specification for the
protocol, due to there being no replay protection one can send arbitrary commands
to the ICD.

3.2. SECURITY TESTING OF ECOSYSTEM DEVICES 25

In 2016, a report published by Muddy Waters [Blo16] shed light upon the security
testing performed by MedSec LLC. It was later independently verified and repli-
cated by Bishop Fox [Liv16]. On attacking through the RF interface they took a
different approach compared to the previous papers. Their report concerns devices
manufactured and designed by the company formerly known as St.Jude Medical,
now Abbott. By compromising the HMU they then managed to, due to re-use of the
hardware specifications inside the device between the programmer and their HMU,
reprogram it to be able to issue commands that normally would only be done from a
programmer to the pacemaker they had in possession.

They then argue that, following this series of exploits, the attack could potentially
be upgraded to a large-scale attack, given one compromises either the network that
consists of the HMUs or other means, which was redacted from the report. Further-
more, they reason the attack through the HMU could be performed with a range
up to ten feet, or three meters, using software defined radios. In addition, they
argue that with COTS equipment they could extend that range up to 14 meters,
and in special cases for the well-equipped adversary a theoretical limit of 30 meters.
Using the access to the HMU they now had their radio already set up, replicating
attacks as stated by MedSec LLC. They were able to deliver multiple types of shocks,
including false emergency shocks, to the ICD as well as disabling therapeutic functions.

They verified these shocks had really been given by reading the programmer log,
reporting shocks above 845 volts. Concerning the communications protocol, and in
contrast to the other two papers regarding the radio frequency protocol, they found
a seemingly backdoor code for executing commands. Normally, their communication
protocol attempted to validate commands from the programmer to the pacemaker
using a 3-byte value calculated using RSA, but truncating such a value to 3 bytes
provide little to no security with today’s computing power. Even then, a unique
value always ensured the command was valid. This backdoor value was redacted
from the final report. Worse yet, there was no need to replicate the code as they
could use the already existing unprotected code from the programmer to perform the
3-byte calculation. Ultimately, combining all these attacks, Bishop Fox agreed that
first disabling the therapeutic functions, then performing shocks that could cause
cardiac arrest, could lead to a life-threatening situation in which the ICD would not
be able to recover the heart functions of a patient.

3.2.2 Home Monitoring Units

Continuing to the security of the devices themselves that the pacemakers commu-
nicate with, namely the HMU patients bring with them home to send telemetry
data back to the doctor. Previously, we presented the security testing by Bishop
Fox provided to prove the claims by MedSec LLC brought forth by Muddy Waters

26 3. RELATED LITERATURE

against Abbott. To reuse the hardware as an antenna for the attacks performed
on the radio frequency domain, they had to compromise and obtain root access to
the device. Following the specific instructions given by MedSec LLC, they were
able to connect to certain debug ports called Joint Test Action Group (JTAG), and
Universal Asynchronous Receiver-Transmitter (UART) granting full access to the
device as root, bypassing any operating system access control.

An important distinction is to note that JTAG is a far more primitive yet powerful
protocol, and that if enabled it rarely does not provide full access. UART on the
other hand can be configured only to provide debug output during, for instance,
the boot procedure. This was the case with the Merlin@Home, so the access was
only granted on the JTAG interface. From there, on MedSec LLCs instructions they
managed to reprogram the device to present a standard Linux root shell on the
UART port. Furthermore, they also dumped the unprotected, unencrypted firmware
through the JTAG firmware making it available for a complete analysis which could
lead to further vulnerabilities being uncovered.

Both attacks which were asked to be reproduced were also done via the Merlin@Home
HMU. Not only did Abbott specifically state it was not possible from an HMU in
the first place, but that it certainly was not possible to do so without one either.
Both statements were proven false, as they replicated both a battery drain attack
done under very realistic circumstances: Simulating a human body with flesh, done
from a set distance over time, consistently being able to interrogate and drain the
battery and a crash attack. The crash attack might be misleading in name, as it does
not crash the pacemaker. Instead, it hinders, in some of the attack paths described
by MedSec LLC, interrogation between a pacemaker and a programmer. After an
unnumbered amount of attempts, the pacemaker will communicate again, but the
settings will not be correct as a change in cardiac pacing was observed after the
attempted crash attacks. As for the duration it was unresponsive to interrogations,
approximately ten days passed before Bishop Fox was able to interrogate with a
programmer head again.

Last May 2017, Whitescope released a security evaluation of the ecosystem archi-
tecture as a whole [RB17]. By purchasing from public auction sites, Whitescope
managed to acquire a total of four vendor subsystems for analysis. Again, it is
important to note that Whitescope explicitly leaves out the vendors, such that their
results could be disclosed publicly without risking patient health. While not strictly
a vulnerability, using COTS chips with readily available datasheets on the internet
makes these devices easier for a reverse engineer to work with.

MedSec LLC and Bishop Fox pointed out the same, saying the use of COTS chips
could greatly speed up or make it a lot easier for reverse engineers [Liv16, p. 14]. As

3.2. SECURITY TESTING OF ECOSYSTEM DEVICES 27

with the case of Bishop Fox, they found accessible debug interfaces in the form of
JTAG and UART on all four vendors, gaining them access to all boxes directly with
root privileges. Also discovered by them was the lack of obfuscation, lack of debug
symbols, and lack of attempts to slow down a reverse engineer in general for all four
vendors.

Moving on to memory access protection, there is no functionality in place to protect
the memory range from being intentionally corrupted or overwritten by an adversary,
meaning one could alter the functionality of the devices. To make matters worse, they
also hardcoded credentials and infrastructure details from the network these HMUs
connect to deliver data safely home. While some of these HMUs still connect to the
Plain Old Telephone Service (POTS), most of the modern ones today have moved
over to 2G or 3G based communication. Still, worldwide many of these devices are
still on the old network meaning one can potentially map the authentication network
of each vendor where these details are available. In the same manner, but allegedly
not with the same explicit detail and instructions, they also reason an attacker with
access could continuously interrogate the programmer, effectively launching a battery
drain attack. Furthermore, once again without being specific about which vendor,
they claim firmware updates are not validated before being installed, resulting in the
possibility of a man-in-the-middle attack to intercept and replace the update with a
malicious one. This would require quite some effort to do, yet is entirely feasible due
to the negligence of the matter. In the same manner, they claim that the software is
also not digitally signed, and have no keys stored securely to ensure integrity and
authenticity of code running on the HMUs.

3.2.3 Pacemaker Programmers

Continuing on the testing done by Bishop Fox, we shift the focus to the unit most
central to our thesis, the programmer. Again we would like to underline that this is
one of the few official reports with a specific vendor ecosystem, namely Abbott. From
their report, it becomes clear few or no security measures were taken in hardening the
security of the programmer. Indeed, there has not been implemented any necessary
access control on the device such as an encrypted hard drive which would prevent
them from modifying the system to obtain a root shell for the device. In the court
case, this is described by Muddy Waters as gross negligence of security. Meaning, two
very similar approaches were done for obtaining privileged access for the programmer
as well as the HMU.

Moving back to the Whitescope paper, as mentioned they got hold of four different
vendors programmers for analysis. Again, as was the case with the HMUs, they also
found debug ports attached to some of the programmers. Once again they discovered
JTAG ports and could obtain access to the entire system. Furthermore, perhaps the

28 3. RELATED LITERATURE

most shocking, was their analysis of third-party libraries in which they discovered
vulnerabilities from 642 for what they label as vendor four, up to 3715 for vendor
two. These are by no means all exploitable or rated as critical, but it shows that
there are old libraries in use in critical components responsible for vital functions for
patients.

Another similar discovery across all unmentioned vendors was the lack of disk
encryption for the removable hard disks inside the programmers, making exfiltration
and analysis of the software a lot easier for a reverse engineer. Following up, some
of the vendors also had patient data stored unencrypted on the hard disks of the
programmers, meaning sensitive data about patient status, logs of their visits, and
personal information such as phone numbers and social security numbers were easily
accessible to the ones in possession of a disk. Another issue, which might not be
regarded as an issue in the eyes of hospital staff or the vendors, is of authentication
and availability of the programmer itself and the act of performing programming to a
pacemaker. One could argue the issue is to have the machine as available as possible
for emergency situations, yet if it lacks basic authentication, as is the case with these
unnamed vendors, anyone with any programmer can interrogate and potentially
reprogram a pacemaker without any need of a password, secret key or physical smart
card. As such, the security of the system is not adequate.

In conclusion, they have discovered many problems that should technically speaking
be easy to implement a solution for, yet might compromise availability.

Overall, a clear statement from vendors patching these vulnerabilities has only been
done in the case of the court case with Abbott, where two security advisories were
released. First, an update that partially fixed the vulnerabilities, then a second
patch to follow up released this year in April [ICa, ICb]. Apart from this case, the
other reports do not have any advisories or firmware patch notes related to them
that indicate cybersecurity vulnerabilities have been fixed. As such it is difficult to
conclude whether or not these unspecified vulnerabilities have been addressed at all.

3.3 Regulatory Concerns

Switching topic from the security analyses, Dr. Kevin Fu has written a paper
highlighting the lack of security awareness in developing medical devices suited for
the technological world of the 21st century, while all focus has been on safety [Fu15].
Where previously medical equipment has been mostly analog, today the trend towards
digitalization increases the complexity in a way which breeds insecurity, the paper
says. Furthermore, it addresses the state technology enters when compromised,
namely unpredictable. As seen clearly in the case of the HMU, Abbott could not, for
instance, imagine that the same hardware would be possible to re-use as an attack

3.3. REGULATORY CONCERNS 29

vector towards the pacemaker itself. Another explicitly mentioned fact here, which
has not been previously mentioned, is the example of using an old operating system
such as Windows XP. While not covered in this paper because it happened afterwards,
we would like to bring attention to the fact that outdated systems are quite common
in today’s society, as evident by the wannacry incident of May 2017 [New]. During the
crisis, computer systems inside hospitals in the United Kingdom were compromised
and held ransom, putting lives in danger. As such, hackers and security professionals
are regarded as collectors of this so-called technical debt which the paper discusses.
Before continuing towards FDAs new regulations it briefly touches upon some of the
history of medical devices that have been compromised, not necessarily pacemakers
and ICDs. More specifically it mentions Halperin et al., which we have covered in
detail previously.

By far, the most important point to bring forth from this paper regarding the state of
medical device security was that FDA for the first time include pre-market guidance
on cybersecurity as well as the first advisory on avoiding a product as a cause of a
cybersecurity risk for an insulin infusion pump. Finally, it also references a guideline
to be released by the FDA regarding postmarket security testing of medical devices,
and this paper is where our attention will go next.

Probably the most important point to highlight from the postmarket guidelines [Sch16]
is the practice of Coordinated Vulnerability Disclosure, meaning to notify vendors of
their potential security risks, follow up until it is fixed before publicly disclosing the
vulnerability. The FDA has recognized ISO/IEC 29147:2014 Information Technology –
Security Techniques – Vulnerability Disclosure as a useful resource for manufacturers.

In the guidance paper, FDA writes:

FDA recognizes that medical device cybersecurity is a shared responsibility
among stakeholders including healthcare facilities, patients, providers and
manufacturers of medical devices [Sch16].

While this is true, the largest responsibility is that of manufacturers and hospitals,
the ones directly responsible for handling and using the equipment. Since one cannot
ensure a device is completely secure for the foreseeable future, it is essential that
manufacturers follow certain guidelines for how to tackle issues such as discovered
vulnerabilities and how to respond to them. Like in many other regular applications,
one has to verify and validate the update process for software for critical systems.
One must also use threat modeling to highlight how one shall maintain the security
of the device, and at the same time ensure the safety is still intact. Different risks
can cause different types of severity in devices, making threat modeling an essential

30 3. RELATED LITERATURE

tool for companies risk management strategies. After this, one should then have a
plan to:

protect, respond and recover from the cybersecurity risk [Sch16].

In addition FDA underlines the importance that cybersecurity risks may compromise
safety as well, making them inherently critical to fix.

Not only do vulnerabilities need to be addressed, but they also need to be graded in
terms of exploitability. FDA suggests a tool which has been through several revisions
and is considered one of the industry standards: the Common Vulnerability Scoring
System version 3.0, or CVSS v3.0 for short. Through a plethora of numerical ratings,
one gets an output of a weighted score which totals the severity of a vulnerability
and its exploit potential. As mentioned, there must also be an evaluation of both
the severity of patient harm and the risk of patient harm. CVSS v3.0 only assesses
the technical parts of a vulnerability, it does not, in this case, apply to a patient
relationship with a certain device.

Therefore the FDA has set up some guidelines which have been presented in their
paper. For patient severity, they propose a matrix which ranks exploitability versus
how controllable the risk might be. As such they separate greatly on uncontrolled
and controlled risk to the safety of patients. Uncontrolled risk must follow certain
actions as quickly as possible, and are described in the paper. Controlled risk, on
the other hand, seems not to be in a state where manufacturers are bound to follow
certain steps, but rather encouraged to practice so-called good ‘cyber-hygiene’. They
define controlled risk for patient safety where the risk is low and acceptable due to
the nature of the report.

We would also like to address the newest initiative released by the FDA in April,
namely their Digital Health Software Precertification Program [Adm]. In relation to
our project, their pilot phase is limited to so-called SaMD, Software as a Medical
Device, defined by the International Medical Device Regulators Forum (IMDRF) as

[...] software intended to be used for one or more medical purposes
that perform these purposes without being part of a hardware medical
device [Gro].

More specifically one of the excellence principles is ‘Cybersecurity Responsibility’,
how committed the vendor is to cybersecurity by proactively addressing them through
engagement with stakeholders and peers [Adm, p. 6]. Followingly, device vendors
in part of this program can become part of vendors that meet certain standards

3.3. REGULATORY CONCERNS 31

which would improve their safety and trust from the society. Right now the standard
is still in its infancy and the FDA encourages vendors to both answer questions
and propose new useful ones to further build a solid foundation for the regulatory
body to issue this certificate of excellence. Committed to this program, there is
one company with investments in bioelectronics and with the knowledge to create
miniature devices which can be implantable. Reported in the media, Verily Life
Sciences, formerly known as Google’s life sciences, are to develop small electronics
which can be implanted that can improve human health [Hir]. Other than this there
are no pacemaker ecosystem vendors currently part of the new FDA program.

While not covered in Dr. Kevin Fu’s paper, EU has adopted two new regulations
on medical devices, MDR 2017/745 and IVDR 2017/746, that will apply in spring
2020 and spring 2022 respectively. They strengthen the post-market surveillance
requirements for manufacturers. Article 83 requires all manufacturers to have a post-
market surveillance system in place proportionate to the risk class and type of device,
and to use the data gathered ‘for the identification of options to improve the usability,
performance, and safety of the device’. Furthermore, it requires manufacturers to
implement appropriate measures if a need for preventive or corrective action or both
are found.

Annex 1 of MDR 2017/745 states that

All known and foreseeable risks, and any undesirable side-effects shall be
minimized and be acceptable when weighed against the evaluated benefits
to the patient or user arising from the achieved performance of the device
during normal conditions of use [Cou14].

However, medical devices marketed in EU today do not need to meet these regulations.
They are regulated by the Medical Device Directive (MDD) 2007/47/EC. Dr. Martin
McHugh noted that the last major revision of this standard was made at a time
far different from the one we are now in, concerning cybersecurity. Moreover, he
continues by urging medical device manufacturers to follow the work of research
groups and keep up with industry best practices to protect their devices [Tan].

Norway has a Code of Conduct for information security in the healthcare sector,
referenced to as ‘the Code’, which includes suppliers of programmers [fHA]. Following
the Code ensures compliance with requirements for information security as provided
by Norwegian legislation. The Code specifically targets confidentiality. Stating that
only authorized personnel should get access to health and personal information,
authorized users should have access in accordance with selected principles, and that
access should be logged. For integrity, it states that security measures are to be
taken to stop people or technology from changing information without authorization.

32 3. RELATED LITERATURE

3.4 Summary

In this chapter we have looked at related literature, their findings and methods
for compromising the security of medical devices, as defined by our security model.
Inspired by the approach used by Halperin et al., our paper will also focus more on
one specific device and vendor examining the security of the programmer we have
in possession from Biotronik. Furthermore, we have presented security measures
required to comply with different regulations, which is a prerequisite to discuss if a
device is in compliance with regulations.

Chapter4Results

In this chapter we present our results of what we have achieved in relation to our
research objectives defined in section 1.5. We present our platform for which work by
other members of the project can continue from, test the security of the programmer,
and discover a vulnerability which compromises patient data confidentiality. We also
present artifacts gathered for the system and provide context to artifacts usage and
the programmers regular environment.

4.1 Home Monitoring Units

4.1.1 Comparison of HMU Boards

Motherboards or simply boards, are Printed Circuit Board (PCB) connecting elec-
tronical components.

When opening our HMUs we can attempt to locate debug ports. By inspecting
the boards for areas where there are no connectors soldered on, we can attempt to
connect to them with our equipment. Therefore, we present below what we believe
could be potential debug ports.

33

34 4. RESULTS

Figure 4.1: First Medtronic board with highlighted potential debug ports, some
connectors already soldered on by us.

Figure 4.2: Second Medtronic board with highlighted potential debug ports, some
connectors already soldered on by us.

4.1. HOME MONITORING UNITS 35

Figure 4.3: First Biotronik board with highlighted potential debug ports.

Figure 4.4: Second Biotronik board with highlighted potential debug ports.

36 4. RESULTS

Figure 4.5: Guidant board with highlighted potential debug ports.

4.1. HOME MONITORING UNITS 37

Anti hardware reverse engineering efforts As depicted here, we can see there
has not been done much effort to hide potential debug ports, giving us clear-cut useful
candidates for testing purposes. For Medtronic, it looks as if the ports are merely left
open, but unmarked. On the Biotronik ones they look to be more hidden, yet still,
have quite a few candidates. Finally, for Guidant, there are multiple possibilities
regarding ports, but they seem slightly smaller than the others.

4.1.2 Testing of Debug Ports

In order to work efficiently we used our JTAGulator in the testing process. In the
same manner as Whitescope, we attempted to find both JTAG and UART interfaces.
Below is the step-by-step process to set up the JTAGulator in order to perform the
testing.

1. Find the correct serial device

2. Configure minicom to turn off Hardware Flow Control and set the device to
/dev/ttyUSB0 since we are using a micro USB cable to connect

3. Connect to the board with minicom -o -c on

4. Connect the cables to test pins soldered on and start the jtagulating process of
identifying pins

5. Follow the steps listed below

Loop to test debug ports using the JTAGulator:

1. Setting the voltage appropriately. If you don’t know it, guess.

2. Turning on the board you wish to test

3. Connect to the pins you want to identify

4. Fire up minicom as described

5. Start running the tests using commands from the jtagulator

6. Read output

7. If no ports are found, go to step 3.

8. If you found ports, you are done.

38 4. RESULTS

Our first test runs against the Medtronic board gave us connectivity, but the data
received was all noise or garbage. Even though we tried to rule out an error on
our side by creating new cables, soldering to different pins, and making sure it was
not the laptop in use that caused the garbage data, we also swapped to an entirely
different Medtronic board. Again, the same kind of garbage appeared. The output
data can be found in Appendix F. Resultingly we decided not to chase down this
path any further, considering we already spent quite some time without any results
coming to fruition. Therefore we moved on to the programmer, assigning this unit
our primary focus.

4.2 Pacemaker Programmer

4.2.1 Pacemaker Programmer as a Virtual Machine

Purpose

Before reading these steps, do note that we have created a virtual machine in the
OVF (Open Virtualization Format) and exported with all the features below enabled
and working. The file is now a part of the project repository.

Creating a virtual machine for the programmer is a vital instrument design goal to
answer RO.1 and RO.2 for a couple of reasons. Firstly, these programmers are not
easy to acquire, and when acquired for a significant amount of money, it makes it
even more important not to brick the device when one is working on vulnerability
research or testing exploitation methods. Recovering from failure on a locked down
physical machine is a lot more difficult than having a virtual environment where one
is in full control of the parameters. Furthermore, for a research project involving
several people an important objective is to have a common point of view to reliably
share information. As such this virtual machine provides the perfect platform to
further build upon. Therefore, using only the disk image that was already available
to us at the start of this project, we have been able to create a working virtual
programmer.

Below follows a list of prerequisites needed and a brief list of steps in order to get a
VM to boot with the disk image as a hard drive directly, to allow reproduction of
our results.

Reproduction Steps

Prerequisites

1. VMware Workstation 12.x

2. VirtualBox 5.x

4.2. PACEMAKER PROGRAMMER 39

3. Virtualbox Oracle VM VirtualBox Extension Pack matching the version number
for your VirtualBox installation

4. dd2vdmk tool from github [lab]

Steps for a Baseline Virtual Machine

1. Create a new Virtual Machine inside VMware Workstation 12.x.

2. Select appropriate settings for your virtual machines, living up to the minimum
specifications required by Windows XP.

3. Create a vmdk file using the dd2vdmk tool to select as the virtual hard drive
for the VM.

4. Start the virtual machine in VMware, and when asked, select yes to upgrade
the vmdk format.

5. The VM should now have booted.

6. For a smoother experience, please import the VM into VirtualBox instead.

From this step, you should now have a working VM, although no functional (or
barely) mouse, graphics driver, shared folders or networking. From here you need to
modify the disk image itself. Before we start modifying the disk image, we decided
it is a good idea to clone the VM that has been made to get a VM that is entirely
detached from the original disk image. As such, you now have an independent
working VM that has no dependency on the disk image, since the disk image, when
attached directly to the VM, modifies the file in place. Having a cloned disk rids you
of this dependency, and makes it exportable as well. From there, a couple of things
needs to be installed and done. For us to get anything installed such as VirtualBox
guest tools we need to obtain control over the system. Since the hard drive is not
encrypted, we can modify its contents to do what we want. Therefore, with as little
intrusion as possible, following the below steps grants you access to a command
prompt inside the virtual machine from which you will perform a number of steps to
get a much more comfortable environment to work in. The next list of prerequisites
is a supplement to the previous one.

Prerequisites

1. hivex [Jona]

2. guestmount [Jonb]

3. A text editor of your choice

40 4. RESULTS

Steps for an Enhanced Virtual Machine

1. Clone your virtual machine in side VirtualBox to create a separate vmdk that
has no relation to the original disk image.

2. With the VM off, mount the D: partition of the vmdk using guestmount:
sudo guestmount -a <path to .vmdk> -m /dev/sda2:/:remove_hiberfile, \
rw,ntfs-3g --rw <mountpoint>

3. As root, navigate to WINDOWS\system32\config and open the registry hive
SOFTWARE with the following command: hivexsh -w SOFTWARE
Navigate to the following folder: SOFTWARE\Microsoft\Windows\CurrentVersion\Run.
You should now see the following output if you run lsval:

SOFTWARE \ Microsoft \ Windows \ CurrentVersion \Run > lsval
" Autostart "="d:\\ bio \\ execute \\ instimaged .exe"
" tsharc "="D:\\ Program Files \\ tsharc \\ hwincal .exe -usecustom "
" CHIPSStart "=" CHPSTART .EXE"
" IgfxTray "="D:\\ WINDOWS \\ system32 \\ igfxtray .exe"
" HotKeysCmds "="D:\\ WINDOWS \\ system32 \\ hkcmd .exe"
" BluetoothAuthenticationAgent "=" rundll32 .exe bthprops .cpl ,,

BluetoothAuthenticationAgent "

4. Perform the following steps to overwrite the programs to be run at boot with
a command prompt:

SOFTWARE \ Microsoft \ Windows \ CurrentVersion \Run > setval 1
key > Shell
value > string :C:\ Windows \ system32 \cmd.exe
SOFTWARE \ Microsoft \ Windows \ CurrentVersion \Run > lsval
" Shell "="C:\\ Windows \\ system32 \\ cmd.exe"
SOFTWARE \ Microsoft \ Windows \ CurrentVersion \Run > commit
SOFTWARE \ Microsoft \ Windows \ CurrentVersion \Run > q

5. Perform sudo guestunmount <mountpoint> and boot your virtual machine.
You should be able to alt-tab to a command prompt.

6. Once in the command prompt, type explorer.exe to open the file browser.
From here, you install the guest addition tools for VirtualBox and restart.

7. Upon reboot, select the proper screen resolution through explorer.exe and
by typing Control Panel in the navigator bar.

8. Open up device manager through cmd by typing devmgmt.msc and install the
driver for the unknown USB device with a question mark on it. The driver you
are looking for will be a
Standard OpenHCD USB Host Controller. Reboot. USB drives should now
work when passed to the virtual machine.

4.2. PACEMAKER PROGRAMMER 41

9. To get shared folders working, share a folder in VirtualBox the usual way. It
will not appear automatically, but by typing \\vboxsvr in the navigator bar
you should see it listed.

Finally to get basic network functionality to work with a static IP, perform the
following steps:

1. Download the driver pack PRO2K3XP_32.exe from [Int] and extract it to a
folder.

2. Copy this folder over to the VM through the shared folder system previously
set up.

3. Change the adapter to Intel (R) PRO/1000MT Network Connection in Vir-
tualBox, reboot the VM.

4. Manually point the driver installation for the network adapter in devmgmt.exe
to the folder which contains the correct driver in the folders you uploaded in
step 1.

5. Reboot when prompted, then open the Control Panel on reboot and open
Network Connections. It might take some time before the adapter appears
properly.

6. Right-click the connection, select properties and configure a static IP address
inside your host-only configured virtual network from VirtualBox.

These steps are the ones that should be followed in order to reproduce the VM we
have created and exported for further use in this research project.

VM as Platform for Further Work

Getting a fully functional virtualized programmer is a key contribution of our work
that allows other researchers to build upon our results in the larger project. Full
control of a virtual copy of the programmer opens new paths that can be explored.
Figure 4.6 is a screenshot of the VM. On the top-left is the only software available to
doctors and pacemaker technicians, but there are now new possibilities with internet
connectivity, shared folders with the host machine, and an interactive shell providing
access to system utilities, the file system and software of our choice.

42 4. RESULTS

Figure 4.6: Screenshot of VM with the only software available on the physical
programmer, a shell, file browser and a Biotronik testing tool.

4.2.2 List of Files

Listing files on the disk is an instrument design goal to answer RO.1. Creating an
overview of the file structure also gives insights to RO.2. This was addressed with
the scripts in Appendix A that parses a disk image for files, verifies file signatures,
calculates their hash value and stores the information in a LATEX table with the file
path and comments.

Reproduction Steps

Prerequisites

1. VirtualBox 5.x

2. Windows 7

4.2. PACEMAKER PROGRAMMER 43

3. Visual Studio 2017

4. Disk image ICS3k.001

Setup for Script

1. Create a new Virtual Machine in VirtualBox 5.x with Windows 7

2. Install Visual Studio 2017

3. Find location of signtool.exe and add the folder to path variable with
set PATH="C:\Program Files\Microsoft SDKs\Windows\v7.1\Bin";%PATH%

4. Install Python 2.7 and add it to path variable

5. Install pip and add it to path variable

6. Install dependencies for script with pip install -r requirements.txt

7. Download and install Microsofts CAPICOM SDK v. 2.1.0.2. Copy capicom.dll
from \Program Files\Microsoft CAPICOM 2.1.0.2 SDK\Lib\X86
to \Windows\System32 and execute REGSVR32 capicom.dll from a command
prompt with administrator rights.

Mount Disk Image in VirtualBox

1. Convert ICS3k.001 to VDI file with command
VBoxManage convertdd ICS3k.001 ICS3kVDI.vdi --format VDI --variant Fixed

2. Mount disk as a drive in VirtualBox

3. Change permissions on all files on mounted drive with command
icacls "G:" /grant IEUser:G /T in Windows 7. Granting user IEUser read,
write and execute permissions recursively on mounted G: drive.

Interesting Files

To filter out files that are likely not to be of interest from the total of 14067 files
on both partitions, the script excludes files that match the hash value or file path
and name with that of a standard Windows XP installation. To achieve this, we
have a custom script for Windows XP edited for readability in Appendix A.1 listing
A.1. The programmer uses Windows XP with Service Pack 2 as shown in figure 4.7.
Therefore, the mapping of files is performed after a clean installation of Windows
XP with Service Pack 2.

44 4. RESULTS

Figure 4.7: ‘About Windows’ showing that the programmer is running Windows
XP with Service Pack 2.

Filtering out default file paths and file names exclude only 325 files (2,6 %) on the D:
partition and 421 files (28,3 %) on the C: partition. Filtering on file hashes, however,
filter out 6952 files (55,3 %) on the D: partition and 171 (11,5 %) files on the C:
partition. In total this approach filters out 55,9 % of files which are reasonable to
believe as default system files for Windows XP.

SignTool

SignTool addresses RO.1 by verifying which files are signed and not. It is used by
the script, and results of verification for each interesting file are added to the table
as shown in figure 4.8.

4.2. PACEMAKER PROGRAMMER 45

Figure 4.8: Part of table created by the script to list interesting files

It appears from the list of files that many files are unsigned. Consequently, there are
no procedures to verify the integrity of these unsigned files. Launching EGSStart.exe
instantiates EgsMain.exe which is the only software visible for doctors and pacemaker
technicians. This is central file that is unsigned, thereby lacking integrity protection.

Log Files of Programmer Usage

Finally, there are also stored log files of every action and button press done for each
session on the programmer in XML format in D:\Bio\Execute\Log. We did not
find a way to view these in the programmer software, but accessed them through the
filebrowser in the VM.

4.2.3 Commercial Software

Description of commercial software and proprietary software stored and used by
the programmer addresses RO.1. Understanding what function they have and
what they do also addresses RO.2. Further insights of their capabilities and known
vulnerabilities are relevant for RO.3.

Kithara

Kithara is a proprietary Real-Time System for Windows which ‘creates its own
protected area, that is independent and unrestricted by the operating system’ [Soff].
The programmer is running version 6.03d which is old considering that the oldest
entry in Kitharas changelog is from 2009 with version 9. The timestamp for the date
modified from is 2002 and the Kithara DLL-files also indicates that it is from 2002
with the string ‘Copyright 1996-2002’.

How it is Used
Kithara is the last line of loaded drivers in the boot log at Windows\ntblog.txt
on the C: drive. There are drivers named the Kithara base driver, I/O accelerator,

46 4. RESULTS

Hardware toolkit and Timer toolkit. The file
WINDOWS\zzz_anderung_rs232_neu\0 RPT_aend_nach_inst_rs232.HTM contains an
‘Installation Report: (two-phase mode)’ from 2009, with overview of added and deleted
files and registry edits. It is generated by InCtrl5 which is an installation logger
for Windows. One of the files changed is the base driver for Kithara. There is an
installer file ksetup.exe and an executable that apparently loads Kithara drivers
named kloader.exe in the folder WINDOWS\system32. The folder is also where the
drivers kbase6.dll, kioa6.dll, khdw6.dll and ktmr6.dll reside.

Information Gathering
The Kithara web page http://kithara.de can be viewed as it was presented in 2002
using the The Internet Archive, a free service providing access to digital artifacts.
The Internet Archive also confirms that version 6 was available in 2002.

The functions of the base driver running on the programmer were extracted by
reverse engineering using IDA Pro, and are listed in Appendix B. A description of
the Kithara modules installed is also there. Besides, we retrieved a handbook for
developing with Kithara version 7.

Adobe Acrobat Reader

The programmer is running Adobe Acrobat Reader version 5.0.

Registry keys for Adobe Acrobat Reader are located in
HKEY_LOCAL_MACHINE\SOFTWARE\Adobe\Acrobat Reader\5.0
and HKEY_LOCAL_MACHINE\SOFTWARE\Adobe\Acrobat Reader\5.0\AdobeViewer.
The registry key TrustedMode is set to True(1). TrustedMode is a mechanism to
prevent malicious PDF documents from launching arbitrary executable files or write
to system directories or the Windows Registry.

However, this version of Adobe Acrobat Reader has 27 known vulnerabilities, where
19 are rated as critical [Cora]. All critical vulnerabilities require no authentication,
allows remote access and involves low or medium complexity. 13 allows arbitrary
code execution, five might allow arbitrary code execution, and one has an unknown
impact.

Also, eight available Metasploit modules exploit a subset of the critical vulnerabilities.

Chilkat

Chilkat is the software used to compress and encrypt patient data. It uses ChilkatZip2.dll
version 12.1.1.0, which has a vulnerability rated medium severity according to CVSS
v3.0 that allows remote attackers to create or overwrite arbitrary files. This could
then be leveraged for code execution. There exists an exploit in Metasploit, for a

4.2. PACEMAKER PROGRAMMER 47

newer version of the ChilkatZip2.dll library, that has been tested on Windows XP
Professional with Service Pack 2 [Corb]. Testing the exploit code on the virtual
programmer resulted in the rewriting of a chosen file, confirming it also works on
this build of Windows XP Embedded.

Renesas

Renesas is a manufacturer of microcontrollers and semiconductors. There are entries
in the registry at location
HKEY_LOCAL_MACHINE\SOFTWARE\Renesas\Renesas Flash Development Toolkit
with references to version 4.03.001 which was released in 2008. Searching for it under
the documentation section at the Renesas home page lists a PDF with the title
Flash Development Toolkit Revised to V 4.03 Release 01 which matches the
version number from the registry entry.

The description of Flash Development Toolkit reads: ‘Renesas Flash Development
Toolkit is the dedicated flash programming software for Renesas flash microcomputers,
which offers sophisticated and easy-to-use Graphical User Interface’ [Cord].

There are hints that Renesas is used to connect the programmer to a Renesas Flash
device customized by Biotronik.

The readme file in
D:\Program Files\Renesas\FDT4.03\kernels\ProtB\7144\Renesas\1_0_00
reads:

SH /7144F, 7145F
Kernel Version 1.0.00.000

This kernel is built by the following tool - chain .

SH SERIES C/C++ Compiler Ver. 6.0A
SH SERIES C/C++ Standard Library Generator Ver. 1.0A
SH SERIES CROSS ASSEMBLER Ver. 5.0B
Renesas Optimizing Linkage Editor Ver. 7.0

SH SERIES seems to reference the SuperH RISC engine family, which is a reduced
instruction set implemented by microcontrollers and microprocessors for embedded
systems. Under ‘Tools Administration’ and ‘Communication Tools’ it is possible to
generate an HTML-file of tool information with much detailed information. The
HTML-file shows that the path variable EGS_root is connected to the folder D:\Bio.
We recognize EgsMain.exe as the primary software used by the programmer, and
the Bio-folder to contain software and tools specific to Biotronik.

Other clues underpin this that Renesas is used to connect the programmer to a
Renesas Flash Device.

48 4. RESULTS

1. The Flash Development Toolkit documentation reveals that it supports serial
and USB communication.

2. The file TD.exe has the option ‘connect to device’.

3. Renesas has a baud rate setting in the registry.

4. Under "Tools Administration" and "Communication Tools" there is an E1USBDrv.Dll
version 3.00.00.00, GenericSerial.DLL version 1.6.0.0.

The location of the Renesas Flash device is unknown. However, the Programming
Head (PGH) is connected to a special 14-pin port depicted in figure 4.9 with a
cable labeled with USB, which links it to the clues mentioned above. However, the
use of commands from ftd2xx.dll belonging to Renesas in the Biotronik testing
tool attrib_edit.exe described below underpins that it can be used to change the
firmware of a pacemaker device. As such, the Renesas Flash Device might be on the
pacemaker itself.

Figure 4.9: 14-pin port for Redel P series adapter to connect the programming
head

Anycom

The programmer is using a Bluetooth driver from ANYCOM with version 2.0.0.26.
The ICS 3000 technical manual describes an accessory Bluetooth USB flash drive
which can be connected to printers compatible with a generic HP driver for wire-

4.2. PACEMAKER PROGRAMMER 49

less printing. Using the The Internet Archive we can see from ANYCOMs home-
page in 2004 that the CF-2001 Printer Card which is supported by the Bluetooth
driver is a recommended Bluetooth adapter by Hewlett-Packard. The readme-file
in D:\Program Files\ANYCOM\ANYCOM Blue Card states that the driver supports
LAN Access and Dial-Up Networking profiles in the Bluetooth 1.1 specification and
hardware such as the CF-2001 printer card.

Internet Explorer

drivercheck.exe lists an entry for Internet Explorer referencing the file shdocvw.dll
of version 6.0.2900.2180. The file is the DLL for Internet Explorer which has 209
known vulnerabilities, where 171 are rated as critical [Cora]. These could simplify
exploitation by leveraging Internet Explorer vulnerabilities to achieve arbitrary code
execution.

MS XML

Microsoft XML Core Services is a set of services that allow applications written
in JScript, VBScript, and Microsoft development tools to build Windows-native
XML-based applications. The programmer has version 4.20.9818.0 installed, which
has nine known vulnerabilities, where four are rated as critical and allows remote
attackers to execute arbitrary code [Corc].

Furthermore, MS XML support for SP 2 expired in April 2010 [Micb].

VC7 Runtime lib

Msvcr71.dll, Mscvr71d.dll, and Atl71.dll are distributed with an application built
with Microsoft Visual C++ .NET 2003 with the Microsoft .NET Framework 1.1,
and dates back to 2003. This indicates that software is built with .NET Framework
1.1. However, this does not mean that the programmer has the vulnerabilities in the
.NET framework, and there are to our knowledge no known vulnerabilities in these
runtime DLL-files with version 7.10.3077.0.

Pdf955

Pdf955 is a software to create PDF files and is likely used to create PDFs when
exporting data from the programmer. The file pdfsave.exe is run when exporting
patient data as PDF, which can be viewed with a process monitor.

tshark

Tshark is the touch driver for the screen and is referenced in InstImageCD.log.

50 4. RESULTS

Windows XP Components

One interesting file is the w100b-sp2-Drive C.log in the C:\Windows folder, which
lists all components included when building the original Windows XP Embedded
image in 2006. These components are possible to cross-check with vulnerability
databases to find vulnerabilities in Windows XP. However, without being connected
to the network, our attack surface of interest is the USB interface targeting the
import function in EgsMain.exe. Examining vulnerabilities in Windows XP compo-
nents could explain the gap between the number of vulnerabilities found by us and
Whitescope in what we believe is a Biotronik programmer. However, this would be
time-consuming and we therefore decided not to investigate this further to prioritize
other interesting paths.

Summary of Vulnerabilities in Commercial Software

The following table summarizes known vulnerabilities in commercial software found
on the programmer. The most severe vulnerabilities in the Common Vulnerability
Scoring System (CVSS) v3.0 standard are rated critical, with a vulnerability score
from nine to ten out of ten. This imply a high score on metrics such as impact
on CIA, the remediation level of a solution, and if user interaction is needed for
exploitation.

Table 4.1: Summary of vulnerabilities found in commercial soft-
ware.

Software Version Vulnerabilities Critical
vulnerabilities

Adobe Acrobat Reader 5.0 27 19
Chilkat Zip ActiveX
control

12.1.1.0 1 0

Renesas 4.03 0 0
Anycom 2.0.0.26 0 0
Internet Explorer 6 209 171
MS XML 4.20.9818.0 9 4
Windows XP Embedded SP2 Not investigated Not investigated
Total 246 194

4.2.4 Proprietary Software

Also present on the programmer at D:\Bio\Execute\Tools is what looks to be a
folder with internal testing tools. All of these tools do not seem to be mandatory for

4.2. PACEMAKER PROGRAMMER 51

having the programmer perform its diagnostic features. As such, they are interesting
binaries that may tell us more about the development environment of the programmer.

PGH

PGH seems to be the software used by the proprietary Programming Head (PGH).
The PCB inside the PGH has has PGH2000 engraved.

AttribEdit

While the buttons and the program interface is in German, it is capable of editing
attributes. More specifically it seems from the title of the program it has the
capability of editing memory attributes of pacemakers or their firmware. If one clicks
the ‘open file’ dialog one is asked for an EEPROM file, most likely the ones that are
flashed onto the pacemakers. The executable includes a subset of method calls in
the file ftd2xx.dll, which belongs to Renesas discussed above.

Most likely this is an internal testing tool for pacemaker firmware updates. Further-
more, it can be argued that it is simply present on the programmer for the reason
that it is convenient for a Biotronik engineer who knows how the system works,
instead of having a dedicated debug unit which they may have to carry around.

Figure 4.10: Attribute Editor running on our VM.

52 4. RESULTS

Bremse

Bremse, meaning ‘brake’ in German, is quite confusing at first sight. When running,
it seems to occupy 100% of the CPU indicated by the performance graph of process
explorer in red, meaning it is CPU usage in kernel mode. If one pulls the scrollbar to
the right, the graph turns green instead. Green color means the sum of kernel and
user mode execution in process explorer. Judging from this basic dynamic analysis,
we can guess this is a CPU stress testing tool.

DevListenProject

DevListenProject is not very useful to run, as it most likely is a tool for listening
to devices, which could be pacemakers, or maybe the PGH. Without being able to
run this program inside a proper programmer, we can only guess based on the static
analysis. It may look like it listens for telemetry data, which could be telemetry
sent back and forth between pacemakers and programmers in order to verify correct
functionality.

DIS_Test

Since the program crashes while being run inside the VM, judging from the static
analysis, the acronym DIS_Test stands for Device Interface System Tester, meaning
yet another debug tool for device testing. There are also numerous references to
the PGH. Finally, there are also strings inside the binary that indicate functionality,
such as
Select one of the object listed below to initialize the PGH device:. An-
other interesting path to attack the wireless RF protocol could be to reverse engineer
these binaries responsible for testing, instead of a black-box approach. This is further
elaborated in chapter 6.

DriverCheck

As briefly mentioned, this program lists and checks for software versions being their
correct version, or whether certain system parameters exists, like registry keys. As
such it is a handy tool to document what tools are in use or not for our programmer,
and especially version numbers.

IcsDebugLog

Additionally to these testing tools, they have a dedicated testing tool for EgsMain.exe,
which as mentioned before is the application that acts as the main software running on
the programmer. It logs exceptions, what libraries are loaded as well as processes and
threads spawned. It stores the log file at D:\Bio\Execute\Log\ICSDebugLog.log.

4.2. PACEMAKER PROGRAMMER 53

InstImageCD

While not entirely clear in its purpose, judging from the log file it also leaves inside
the Log folder, it seems to be related to updating software via CD. If executed by
us in the VM, the log file returns with ‘No CD-code entered!’, implying one needs
a special code to be able to update the programmer before the next entry says
‘Cancelled by user’.

UseCheckUtil

Relating back to DriverCheck, it seems this tool also does some checks. More
specifically it has a help text when running without parameters, so the functionality
here might be the actual functions used in DriverCheck which performs the checks
that produce the list, as this program seem to provide us with system details regarding
version numbers. Both this and DriverCheck use the file called control.bcu which
has the format for the different function calls the program supports. Overall, they
produce the same error messages in different formats, as such one could argue this
possibly is a wrapper or older version of DriverCheck, or the other way around.

4.2.5 Pacemaker Programmer Issues

In this section, we present issues which aim to answer RQ.1 by addressing security
protection mechanisms as well as artifacts which relate to the security model described
in subsection 3.1.1.

Authentication

In most cases, computers have some form of authentication in place. Our pacemaker
programmer does not have any form of authentication mechanism implemented,
meaning anyone with access to the device has full control to perform arbitrary
actions. Without any authentication in place, it becomes impossible to provide
non-repudiation or accountability.

Windows XP Embedded

Our programmer was purchased from eBay in late 2015. Specifically, we have a
version of Biotronik’s programmer called ‘ICS 3000’. A newer release, called ‘Renamic’
exists as well. Its operating system, as depicted in the previous section is Windows
XP Embedded with Service Pack 2, which in itself is a security risk due to it being
old with known vulnerabilities and out of support.

54 4. RESULTS

Table 4.2: Lifecycle deadlines downloaded from https://support.
microsoft.com/en-us/lifecycle/search on 11th of may 2018.

Products Released Lifecycle Start
Date

Mainstream
Support End
Date

Extended
Support
End Date

Service
Pack
Support
End Date

Microsoft Windows
XP Embedded Service
Pack 1

10/22/2002 Not Applicable Not
Applicable

4/10/2007

Microsoft Windows
XP Embedded Service
Pack 2

1/18/2005 Not Applicable Not
Applicable

1/11/2011

Furthermore, during our visit to a cardiovascular clinic in Norway, we witnessed the
startup procedure of their Renamic programmer. Judging from the behavior of the
boot procedure it also seemed to have Windows XP Embedded installed. Even if it
would be the latest service pack, their extended support for the Windows Embedded
platform stopped on 12th January 2016 [Mas], meaning the Renamic programmer
would also be outside this window and at risk of having known vulnerabilities that
will not be patched by Microsoft.

System and Binary Security Measures

For all computer systems, there are certain measures one can make to prevent or
substantially increase the difficulty of vulnerabilities from being exploited even if
they exist in the current software version. Firstly, there is Address Space Layout
Randomization (ASLR). ASLR helps prevent attackers from predicting addresses,
effectively either making sure the attack needs to leak memory addresses somehow or
brute force it, if the operating system is not randomizing with enough entropy, or the
address space is too small, i.e., 32-bit, which is the case here. Another problem with
Windows XP is that it may or may not support system-wide ASLR at all. Followingly,
binaries themselves can also have ASLR enabled. Among other security features,
this value can be read from the file header. Further randomization is possible with
Position Independent Code (PIC). Instead of the program having its executable parts
at a fixed base address, which also can be found in the headers of the binary, it will
be random too. Thirdly, one must also strive not to allow execution of data located
in the data section of the program. In Windows, this is done by employing Data
Execution Prevention (DEP).

https://support.microsoft.com/en-us/lifecycle/search
https://support.microsoft.com/en-us/lifecycle/search

4.2. PACEMAKER PROGRAMMER 55

In our programmer, we can use tools to check some security features of the system
such as DEP, while others can be checked with tools directly on the binaries. For
checking the binary itself, we used ‘pestudio’ [Win], and for being able to look at
the system security properties on the running VM, we used Microsoft SysInternals
Process Explorer [Mice].

Evident by the screenshots below, there is no ‘ASLR’ tab in the properties page for
the EgsMain.exe, meaning it is disabled for this system. Furthermore, you can see
the status of ‘DEP’ being disabled. Also, in the screenshot from pestudio it states
the file ignores DEP and ASLR, has no integrity checks and has a static ImageBase
address, meaning PIC is not enabled either.

Figure 4.11: pestudio showing the header information of EgsMain.exe.

56 4. RESULTS

Figure 4.12: SysInternals Process Explorer properties page, without ASLR tab
and showing DEP being disabled.

Conclusively the system does not have any of these protection mechanisms in place,
meaning once someone potentially has found a vulnerability in any software running
on the machine, exploitation could potentially be trivial compared to modern systems
where these mechanisms are enabled.

Hard Drive Encryption

As mentioned in both MedSec, Bishop Fox and Whitescope, hard drives for both Ab-
bott Medical and the four unnamed vendors were not encrypted [RB17, p. 17] [Liv16,
p. 27]. This is also the case with our Biotronik programmer. Evident by the disk

4.2. PACEMAKER PROGRAMMER 57

image, we can identify the partitions of each drive, and we are never prompted for
a password input when we mount it. As a result, we are able to create our VM
without going through the hurdle of breaking disk encryption or dumping the disk of
a running machine which can lead to an incomplete state and corrupted data. Not
only does it ease the creation of our VM, but it also means we can identify the files
on the disk image in great detail, whether or not they are signed or if confidential
information is stored securely, as documented further below. Such a process would
be a lot more difficult if the programmer also uses some form of internal storage
compared to a removable medium such as a 3.5” hard drive.

ICS3k . 0 0 1 : DOS/MBR boot s e c t o r MS−MBR 9M german at o f f s e t 0x10+0xFF "
Ung\201 l t i g e P a r t i t i o n s t a b e l l e " at o f f s e t 0x12b " Fehler beim Laden
des Bet r i ebs sys tems " at o f f s e t 0x151 " Betr i ebssystem f e h l t " , d i sk

s i g n a t u r e 0 x6bd9de3f ; p a r t i t i o n 1 : ID=0x7 , ac t ive , s t a r t −
CHS (0 x0 , 1 , 1) , end−CHS (0 x3 f f , 2 5 4 , 6 3) , s t a r t s e c t o r 63 , 36869112
s e c t o r s ; p a r t i t i o n 2 : ID=0x7 , s t a r t −CHS (0 x3 f f , 0 , 1) , end−CHS (0
x3 f f , 2 5 4 , 6 3) , s t a r t s e c t o r 36869175 , 41254920 s e c t o r s

Listing 4.1: Output of the file command on a Linux system, presenting us the boot
sector info in German.

Disk ICS3k . 0 0 1 : 37 .3 GiB , 40007761920 bytes , 78140160 s e c t o r s
Units : s e c t o r s o f 1 ∗ 512 = 512 bytes
Sector s i z e (l o g i c a l / p h y s i c a l) : 512 bytes / 512 bytes
I /O s i z e (minimum/ optimal) : 512 bytes / 512 bytes
D i s k l a b e l type : dos
Disk i d e n t i f i e r : 0 x6bd9de3f

Device Boot Star t End S e c t o r s S i z e Id Type
ICS3k .001 p1 ∗ 63 36869174 36869112 17 .6G 7 HPFS/NTFS/exFAT
ICS3k .001 p2 36869175 78124094 41254920 19 .7G 7 HPFS/NTFS/exFAT

Listing 4.2: Output of the fdisk -l command on the ICS3k.001 disk image, reading
both partitions as NTFS.

Each partition has a specific purpose. When the system was left untouched, it boots
to the second partition, which contains the Bio folder with all the software for the
programmer functionality. The first partition, which we were able to boot to via
changing the boot.ini file seems to be some sort of recovery partition in case a software
update fails or similar. We are presented with the following prompt asking us to
revert to a previous software version or retry the one we have allegedly attempted
when we boot to the C: partition.

58 4. RESULTS

Figure 4.13: Error box when booting to the C: partition after editing boot.ini.

Another point to make is that when trying to understanding the difference between
the two partitions, the fact both were bootable caused confusion. For clarity, if one
wishes to edit the registry or other files, be sure to mount the proper partition as
mentioned when creating the VM, namely partition 2, sda2, which is called the D:
drive in Windows.

Anti-Reverse Engineering Efforts

While the libraries are compiled and stripped of their function names, they are
straightforward to open and provide little to no effort in attempting to make sure
the code is not fairly readable for a reverse engineer. Although the programmer
software and its third-party and commercial libraries require considerable time and
effort to figure out of due to the sheer size, it could still be made more difficult than
just having a complex system. By doing this, one essentially slows the adversaries
process of reverse engineering. We found no debug files from the alleged C++ project
even though we did find a string indicating the usage of a PDB file for the project
of certain files inside the binary, such as the EGSStart.exe file, which we believe is
responsible for starting the programmer software [Micc]. There are many other pdb
files too, revealing their path and environment of the original project. For instance,

4.2. PACEMAKER PROGRAMMER 59

searching for these pdb files and inspecting their folder structure allows us to gain a
tiny picture of said project development environment.
f o r i in \$ (f i n d Documents/ I n f o s i k / pacehacking /Bio) ; do s t r i n g s −f −a \

$ i 2>/dev/ n u l l | grep −v BioCommon | grep " pdb\$ " | grep " EgsV01 " ;
done | cut −d " " −f 2 | s o r t

Listing 4.3: The output can be found in Appendix C

Patient Data Encryption

Whenever the programmer interrogates a pacemaker, one receives the data stored on
the pacemaker to diagnose the patient, and either append to the already existing
patient data or adds it as a new entry in case it is their first interaction with this
particular programmer. As such, patient health information is stored permanently
on the programmer. All patient data are stored unencrypted on the hard drive in
a folder called D:\Bio\Execute\Printmandata either as an XML, PNG (which are
exported from graphs), or RAM dumps from pacemakers themselves. Patient data
should not be stored unencrypted and should require some form of authentication to
allow physicians to access the data only when needed. Overall this presents a risk of
patient data confidentiality being compromised should an attacker get a hold of the
machine physically.

60 4. RESULTS

Figure 4.14: Example of patient data which is presented to us in the programmer,
stored unencrypted on the disk.

Patient Data Import and Export

One of the interesting functions of the programmer is the fact that one has the ability
to export and import patient data through the data manager interface. One can
import data from special ZIP files, or export them to either PDF or ZIP. These
special ZIP files do not conform to the ZIP file standards. Since this is one of the few
attack vectors where we could potentially get a payload into the programmer using a
USB stick, our steps on how we figured out what made these ZIPs are documented
in this chapter. The importance of the structure and understanding of these ZIP files
are critical to continue work in order to search for potential vulnerabilities. By using
a disassembler called IDA Pro coupled with knowledge of how the format of a ZIP
file is exported, we were able to deduce how they were created inside the programmer
software.

In addition, exporting patient data is not a feature which requires explicit authen-
tication, meaning if anyone has access to the machine for a short amount of time

4.2. PACEMAKER PROGRAMMER 61

there is a possibility to exfiltrate patient data.

ChilkatSoft ZIP Libaries Firstly we were informed by previous members of the
project of some interesting library files on the programmer itself, called names similar
to ChilkatZip.dll. These libraries were the ones containing the actual functionality
for encrypting a ZIP file. Reading the documentation on the ChilkatSoft websites,
we understand the ChilkatZip2 file is the main library responsible for setting up the
context when creating such a file [Sofe]. A simple string search for references to this
DLL should match, in most cases, which files that either depends on or utilize this
library and could lead us to the area where the files are encrypted and its routine.
At the time, nobody had confirmed these files were indeed encrypted by Chilkat.
Since the library was so old, if one were to try to identify if the ZIP files indeed were
encrypted or encoded by a current version of the library, one would get an error
message stating this ZIP is not encrypted nor password protected, which is wrong.
The example code from their website even has a comment stating it should be able
to read the encryption property and confirm if it indeed is of an earlier format too,
but the check does not work for our ZIP [Sofc, Sofa].

anders@pacehacker \$ python DetectEncrypt ionChi lkat . py
This z ip i s NOT password−protec ted .
This z ip i s not encrypted .
Success !
Amount o f f i l e s in z ip : 294

Listing 4.4: Output of the python script with an up-to-date Chilkat library claiming
our ZIP file is not encrypted at all. Python source is in Appendix D

Following our investigation this is now confirmed, it does utilize the older library
version.

anders@pacehacker \$ grep −R Chi lkatZip2

Binary f i l e Shared_Tlb/ Chi lkatZip2 . t l b matches
Shared_Tlb/MK_Tlb. l og : t l ib imp7 mit Chi lkatZip2 . t l b
Binary f i l e Chi lkatZip2 . d l l matches
Data/ c o f f b a s e . txt : Chi lkatZip245dd00 00
Binary f i l e Hcc . d l l matches
MK_Tlb. l og : t l ib imp7 mit Chi lkatZip2 . d l l
MK_Tlb. l og : t l ib imp7 mit Chi lkatZip2 . d l l
MK_Tlb. l og : t l ib imp7 mit Chi lkatZip2 . d l l
MK_Tlb. l og : t l ib imp7 mit Chi lkatZip2 . d l l
MK_Tlb. l og : t l ib imp7 mit Chi lkatZip2 . d l l
Binary f i l e Tools / a t t r i b _ e d i t . exe matches

Listing 4.5: String search for references to the library.

62 4. RESULTS

We then chose to investigate these libraries further and the single executable. While
attrib_edit.exe did not seem to actively use functionality from the Chilkat library,
Hcc.dll did. It created several Chilkat library context objects in which it used
the methods from the Chilkat library. Another string search for chilkat returned
interesting strings related to TLB files. A description of how TLB files can be
used in the Chilkat library is availble on Chilkat forums [Sofd]. As mentioned in
subsection 4.2.3 the version of the library has vulnerabilities dated to 2008. Since the
webpage describing how was last edited in 2007, we can assume the same functionality
still applies.

ICh i lkatZ ip2
ChilkatZip2Lib_TLB\
TChilkatZip2UnzipPercentDone
TChilkatZip2WriteZipPercentDone
TChilkatZip2Fi leUnzipped
TChilkatZip2ToBeAdded
TChilkatZip2FileAdded
TChilkatZip2ToBeZipped
TChi lkatZip2Fi leZipped
TChilkatZip2ToBeUnzipped
TChilkatZip2
TChilkatZip2
ChilkatZip2Lib_TLB#
ChilkatZip2Lib_TLB

Listing 4.6: The result of running strings -a Execute/Hcc.dll| grep -i chilkat

Investigating the usage of the Chilkat libraries As such we opened IDA Pro
which has the ability to identify where inside the file hcc.dll the particular strings
are referenced. The most interesting one is TChilkatZip2, as it provided us with the
most interesting subroutines. In particular, subroutine sub_463BC1A4. In here there
is a smaller portion of code named loc_463BC267. After reading the documentation
of Chilkat and having written a short script on how to interact with the library as a
developer would do, looking at the source code for a demo script to decrypt a ZIP and
the particular subroutine in question, some striking similarities arise. Particularly
there are at least three string arguments in common going into different function
calls:

1. Chilkat license activation string

2. Filename

3. Password in a potentially encoded form

4.2. PACEMAKER PROGRAMMER 63

Figure 4.15: Portion of sub_463BC1A4 with the relevant function calls in assembly.

From the figure, we can see the Biotronik license string being put into what would
be the "unlock" feature of the Chilkat library. Furthermore, now that we might guess
this is the encryption stub we are looking for, we know certain parameters need to be
set, such as encryption mode and key length. Finally, before creating the encrypted
ZIP file you have to specify a password. Evidently, even though key length and
mode of encryption were chosen securely to AES and 256 bits, the password was
chosen to be BIOTRONIK and then most likely expanded to 32 bytes, as is normal
for string passwords in symmetric encryption using a key derivation function. Since
we do not possess the Chilkat source code, we cannot confirm if it does indeed use
a function like PBKDF2. However, they do have PBKDF2 implemented in their
Crypt2 library, and it is therefore reasonable to assume that they may use it for their
ZIP library as well. This is not needed to be confirmed though, as long as the method
is implemented the same way for the old Chilkat libraries for other programming
languages.

Armed with this information, we can now recreate the code given we find a library
that is old enough to support the legacy decryption routine. Browsing the internet,
it was not a simple task to find proper old library files. We tried to contact Chilkat
themselves, but they did not respond to either a forum post or email to customer

64 4. RESULTS

support. After ending up finding the library at [Sofb], we could now reconstruct
the code to decrypt all patient data found on the programmer, as well as encrypt
arbitrary data to use as input for our attack vector. We sucessfully managed to
decrypt data exported from our programmer. The proof-of-concept code to decrypt
and encrypt can be found in the Appendix E. In case the old .NET Chilkat library
disappears off the internet it can also be found in the project’s repository.

Figure 4.16: Output of the C sharp script in Appendix E. Pay attention to the
encryption mode and key length, lining up with the assembly code in Figure 4.15.
It also confirms the ZIP is encrypted, contrary to what the python script told us
earlier.

Potential to Compromise Patient Confidentiality We now asked ourselves
the question, ‘Can we decrypt exported data from any Biotronik programmer?’ We
reasoned the answer had to be yes, seeing as pacemakers and programmers are
devices in need of thorough testing to ensure they are safe. Meaning they also stay
in an active environment for a long time since releasing a new one would take a long
period of time. While not proven generally, we had exclusive access to data retrieved
from a different programmer than our own ICS 3000, namely a Renamic programmer
belonging to a hospital in the Netherlands. Using our new-made scripts we were able

4.2. PACEMAKER PROGRAMMER 65

to decrypt the patient data from the Renamic programmer as well.

It would appear then, as if all Biotronik programmers have this password hard-coded
for the process of exporting and importing ZIP data. This is bad for a number of
reasons. Firstly, using a static password means there is no key revocation mechanism
in place for existing programmers. This fact also makes it difficult for Biotronik
to support legacy data that has already been exported. Secondly, this password
enables us to create our own input data which the programmer will attempt to parse.
This is an entrance for a potential fuzzer. Thirdly, this discovery could result in a
sophisticated attacker being able to exfiltrate data from any Biotronik programmer in
the world. Consequently, the hard-coded password enables an attacker to compromise
patient data confidentiality.

4.2.6 ZIP Fuzzer

Mentioned before, the ZIP data that is exported and imported to the programmer
is one of our potential attack vectors. As such we would like to create a tool to
fuzz these libraries that handle the ZIP data to search for vulnerabilities which can
exploit the box and let us run arbitrary code.

Time permitting, we would have written a fuzzer to try to find new vulnerabilities in
the ZIP file format handler. Biotronik’s name format whitelisting served its purpose
in slowing down analysis. Nevertheless, we were able to defeat it as described below.

ZIP Name Format One of the first hurdles to understand how the program-
mer reads the file is the very specific date format filename. In itself, this can
also be fuzzed, but if we are to provide seemingly reasonable files for the pro-
grammer to believe to be valid in order to pass the name check, one has to fig-
ure out the specific filename format requirements. Considering dates are num-
bers, one of the first simple tests we can try is to see what numbers it accepts.
It turns out, the date format string will accept any number from 0–9 for year,
month, day, hour, minute and seconds. More specifically, the format turns out to
be Name format: NNNN_NN_NN_NN_NN_NN__402_N.zip , N = [0-9]. The 402 was
mandatory to be there, for unknown reasons so far. These tests were done by terminal
commands to copy a legit ZIP file with a normal name, then specifying the different
values for all the positions inside the string, then attempting to import them into
the programmer. The programmer will then return a number which is twice of the
number of accepted files. Important to note is that this does not necessarily mean it
does not attempt to read the ZIP file, simply that it returns unsuccessfully.

66 4. RESULTS

Figure 4.17: Showing 502 files, all with 402 as the name as well as one with a
bogus date, accepted and read by the pacemaker indicated by the 1004 number

4.2. PACEMAKER PROGRAMMER 67

Figure 4.18: After renaming one of the 502 files we can see the programmer no
more accepts reading the file successfully.

68 4. RESULTS

f o r i in seq { 1 . . 5 0 0 } ; do cp −v 2016_09_22_08_37_47__402_0 . z ip 2016
_09_22_08_37_47__" $ i "_0 . z ip ; done

f o r i in seq { 1 . . 5 0 0 } ; do cp −v 2016_09_22_08_37_47__402_0 . z ip 2016
_09_22_08_37_47__402_" $ i " . z ip ; done

Listing 4.7: Bash commands to produce the simple file name test files.

4.3 Findings From Resources Related to the Programmer

Finally we present more artifacts and their context related to the programmer in its
ecosystem, which has its origin from elsewhere than the disk image.

4.3.1 Artifacts Retrieved From Exported Data

When decrypting the data files recovered from the programmer in the Netherlands,
the files included has lots of logging information that describes the underlying system.
In the log files, we found some unique files which were not on our programmer. Firstly,
we found an entry for the update code used to update the programmer software to
its at the time newest version, 1504.
head B i o F i r s t . l og
[2 0 1 5 . 1 1 . 3 0 1 2 : 2 4 : 2 7] Log f i l e c r ea ted
[2 0 1 5 . 1 1 . 3 0 1 2 : 2 4 : 2 7] S t a r t i n g a f u l l i n s t a l l a t i o n
[2 0 1 5 . 1 1 . 3 0 1 2 : 2 4 : 2 7] CMD Param updateCode : 99999528
[2 0 1 5 . 1 1 . 3 0 1 2 : 2 4 : 2 7] CMD Param s i n g l e f i l e p a t h : e : \ Biotronik_PSW1504A

−1. exe
[2 0 1 5 . 1 1 . 3 0 1 2 : 2 4 : 2 7] CountryID : 528
[2 0 1 5 . 1 1 . 3 0 1 2 : 2 4 : 2 7] Executed "D: \ Bio\ Execute \ Tools \HCCReset2 . exe "
[2 0 1 5 . 1 1 . 3 0 1 2 : 2 4 : 2 7] Bui ldLabel : PSW 1504 .A/1

Listing 4.8: Snippet of BioFirst.log from the decrypted data

The entire log has valuable information for a reverse engineer trying to understand
the update procedure of the programmer and can be used to explore that path as
future work. Here we also get a glimpse of HCCReset2.exe’s functionality, which
now can be concluded is related to the update procedure. Judging from the other
log files as well, we gain valuable information that may help us in the process of
understanding the system, presenting an even better reason to properly authenticate
the user before exporting data.

4.3.2 Files From Self-Extracting Installer

When extracting the installer files to a directory and running md5sum on both
file hierarchies, there are no differences in the file output. We therefore assume
these are system files that are the same across system software updates. This could
mean, certain software libraries are potentially never patched. Although we cannot

4.3. FINDINGS FROM RESOURCES RELATED TO THE PROGRAMMER 69

say for certain whether or not these files are copied over, it causes concern for
what their purpose is, if not to be written to disk. Among these, we find both
references to the Kithara shared libraries and Chilkat libraries. Additionally, files
which strengthen our belief that the system still runs Windows XP Embedded is also
present. Below is a snippet of some of the interesting files found in the two installers,
Biotronik_PSW1504A-1.exe and Biotronik_PSW1701A-1.exe.
mkdir 1504 unzipped && cd 1504 unzipped
7z x Biotronik_PSW1504A −1. exe
f o r i in $ (f i n d) ; do md5sum $ i ; done 2>/dev/ n u l l > . . / 1 5 0 4 hashF
cd . .
mkdir 1701 unzipped && cd 1701 unzipped
7z x Biotronik_PSW1701A −1. exe
f o r i in $ (f i n d) ; do md5sum $ i ; done 2>/dev/ n u l l > . . / 1 7 0 1 hashF

d i f f 1504 hashF 1701 hashF
1 c1
< 46 db194f951504b0848a517c7dc78406 . / Biotronik_PSW1504A −1. exe
−−−
> 01 e6a45ee50b1175e9f1e5b93d847555 . / Biotronik_PSW1701A −1. exe

Listing 4.9: Bash commands to create text files with hashes, the output of diff
showing only the main binary differs, and none of the extracted files.

$ f i n d | grep − i kbas
. /W101/WINDOWS/ system32 / kbas6 . d l l
. /W101/WINDOWS/ system32 / kbas6 . sys
. /W100/WINDOWS/ system32 / kbas6 . d l l
. /W100/WINDOWS/ system32 / kbas6 . sys
$ f o r i in $ (f i n d) ; do s t r i n g s −f −a $ i 2>/dev/ n u l l | grep − i ’ c h i l k a t

’ ; done
. . sn ip . .
. /W100/WINDOWS/ system32 / c o n f i g /SOFTWARE: Chi lkatZip2 . Chi lkatZipEntry2
. . sn ip . .
$ f i n d | grep − i XPe
. /W101/WINDOWS/ system32 /XPePM. d l l
. /W101/WINDOWS/ system32 /XPePM. exe
. /W100/WINDOWS/ system32 /XPePM. d l l
. /W100/WINDOWS/ system32 /XPePM. exe
$ grep −Ri embedded
. . sn ip . .
W100/WINDOWS/ system32 / eu la . txt : P lease r e f e r to the End User L icense

Agreement that came with your embedded dev i ce .
. . sn ip . .

#Why have a boot . i n i backup f i l e , which isn ’ t used f o r v i s t a /w7 and
above ? Only XP uses i t , and below .

W101/WINDOWS/ pss / boot . i n i . backup : mult i (0) d i sk (0) r d i s k (0) p a r t i t i o n (1) \
WINDOWS="WINXP Embedded P a r t i t i o n 1" / f a s t d e t e c t / noguiboot /
boot logo

W101/WINDOWS/ pss / boot . i n i . backup : mult i (0) d i sk (0) r d i s k (0) p a r t i t i o n (2) \
WINDOWS="WINXP Embedded P a r t i t i o n 2" / f a s t d e t e c t / noguiboot /
boot logo

70 4. RESULTS

. . sn ip . .

Listing 4.10: Bash commands used to find the various files related to old software
and XPe

From the PDF files retrieved from the programmer software, it seems like the newer
software and Renamic programmer can update remotely over the internet. This was
underpinned by our observation of the symbol H in the status bar of the programmer
at the cardiovascular clinic, which indicates a mobile connection using High Speed
Packet Access (HSPA) on a Universal Mobile Telecommunications System (UMTS)
in accordance with the programmers’ user manual.

Figure 4.19: Mobile connectivity form user manual for the Renamic programmer
with version 1503.A/1

4.4 Findings From Interviews

Below are the responses from the six key informants interviewed, where we focus on
their consensus regarding roles at the hospital, the equipment itself, usage of said
equipment and access control in place at the hospital. To further gather context for
our environment we also ask about typical procedures such as check-ups of patients,
and how routines regarding their personal data are handled. The interview guide in
Norwegian is available in Appendix G.

4.4. FINDINGS FROM INTERVIEWS 71

4.4.1 Roles at the Hospital

There are in general two roles defined for individuals handling the equipment inside
the pacemaker ecosystem, which is doctors and nurses with special training as
pacemaker technicians. Our interview subjects consist of both roles, and as such the
subjects identify the other staff they interact with on a daily basis as well as head of
the clinic.

4.4.2 Selection of Equipment

According to our interview subjects, selection of the pacemaker brand is chosen based
on two factors. The first factor is based on a national bidding process, where the
outcome is a list of suppliers hospitals can choose from and a percentage distribution
of market shares. The second factor is how certain features of a specific brand might
perform better related to patient needs, for instance how their sensor technology gives
better granularity which in turn gives better information to the doctor. Furthermore,
pacemakers are locally stored after being ordered in local storage at the hospital,
locked by key card at all times. Programmers, on the other hand, are taken care of
by the respective company that has manufactured them, and each hospital might
only have a few available to them from each vendor at a time.

4.4.3 Implantation Process

While posing the question of how a pacemaker is implanted, we wished to understand
when a programmer is used with the pacemaker for the first time, as well as identifying
attack vectors for when a possible timed attack could be most effective. The subjects
responded with the pacemaker normally being first interrogated after it is implanted
in the patient. From there, rigorous first installment tests are performed, such as
checking the values which will be their unique configuration for the condition as well
as checking the wires and sensors in the pacemaker itself.

4.4.4 Usage of the Programmer in Its Environment

We then asked how a programmer is used in the hospital. Firstly, there are multiple
programmers stored in either the clinic for regular checkups or by operating rooms
which are mainly used for the implantation procedure. An important point here is
that the programmers themselves are stored in the hallway, often unattended. When
asking the follow-up question of where it is stored, some of the subjects responded
by theorizing it could very well be possible for anyone to access these machines
without anyone noticing. Moreover, whenever these programmers are moved around
the hospital, they might be left unattended inside patient rooms by their bed, or if
attention is brought elsewhere during a checkup.

72 4. RESULTS

4.4.5 Patient Data Deletion

Asking how much data is stored on different programmers revealed that doctors
and pacemaker technichians are not aware of any routines to delete data from a
programmer. Candidates estimate that somewhere between 50 and a few hundred
patients are stored on programmers that support storing patient data, and that this
probably includes deceased patients.

4.4.6 Patient Data Flow

In most cases, it could be beneficial to transfer data into the journalling systems
in place. These systems do not interact with the programmer, as such our subjects
stated they must manually write details into the journalling system or optionally print
out information and then scan the printed pages. Exporting data was not common
practice for most of our subjects, but they responded with it being a relatively
familiar process with USB sticks. Their knowledge about the system and its inner
workings ends at ‘the data is encrypted’. In addition, the subjects confirmed most
programmers do allow to permanently store patient data on them, with the explicit
exception of one where it can only be exported by USB stick.
When asked if patients would be given their personal data, the response was in general
yes. Followingly, the next question regarding data flow was about the deletion of
data. Per protocol, data stored on an old programmer is supposed to be deleted
before sent back to the manufacturer and is also transferred by USB stick over to
the new programmer.

4.4.7 Internet Connectivity

When asked about whether or not these programmers were connected to the internet,
it is very subjective what that might be interpreted as. Some might expect access
to the world wide web as internet, while others might realise it can download and
upload files regardless of accessing web pages. When queried on the matter, all
subjects responded with no, none of the programmers are connected to the internet.
This does not match information in the programmer’s user manual and our own
observation of the programmer.

4.4.8 Patient Safety Concerning the Availability of the
Programmer

An important point when considering the security measures we recommend later
on, is to have insight as to how critical it may be if all programmers for the specific
vendor of the patients’ pacemaker is somehow malfunctioning. When asked on the
matter, all subjects replied that while there are times where it is more critical to
have it function, such as during implantation, even in an emergency situation at

4.4. FINDINGS FROM INTERVIEWS 73

the ER the programmer is not a critical component, keeping the patient alive is.
Even if a patient has a pacemaker, inside a hospital, the patient will be kept alive.
In conclusion, patient health is not at risk, should a programmer stop working or
malfunction during an emergency in its normal environment.

4.4.9 Dangerous Configurations of a Pacemaker

Proposing the question, ‘Are there configurations which can be dangerous to a patient?’
we wished to uncover whether or not having access to patient data could potentially
provide an attacker with enough information to create an exploit which could harm
a specific patient. Subjects replied with varied responses, but clarification uncovered
that it is possible to turn off emergency shock therapy for ICD patients as well as
change threshold values for pacing, effectively rendering a pacemaker useless, since it
is not providing enough electricity for the heart to contract.

4.4.10 Decision to Perform Surgery Based on Diagnostic Data

In attempting to uncover the importance of how central the data retrieved from
the programmer is, we asked the subjects whether or not the decision to remove
cables, one of the more dangerous procedures related to having a pacemaker, could be
based solely on the information from the programmer. Overall, the subjects replied
with the data coming from the programmer is central in the decision making of
removing cables, underlining its importance in diagnostics of potential issues with the
pacemaker in comparison to other procedures which are supplementary, i.e., X–Ray
or EKG. Cables themselves are only able to be tested by the programmer. The risk
associated with such surgery is so significant they have a team of thorax surgeons on
standby.

4.4.11 Decision to Apply Cybersecurity Patches

The doctors interviewed explained that certain patients that are fully dependent
on their pacemaker are not receiving security patches for their pacemakers, due to
the risk involved in the patching process. While the exact number of unpatched
pacemakers is uncertain, it indicates potential for improvement in the patching
process. Doctors explained how they could perform the update on all patients if the
patch was critical, which they didn’t consider the cybersecurity update from Abbot
to be. The interview subjects also reveal that it might take up to a year for a security
patch to be applied in a routine control if the patient is not explicitly called in.

4.4.12 Patient Safety Routines

When considering consequenes of deliberate pacemaker misconfiguration and unavail-
able programmers, it is apparent that the cardiovascular clinic has resources and

74 4. RESULTS

procedures to ensure patient safety. In an acute situation, the focus is on keeping
the hearth pumping regardless of the pacemaker. Additionly, the problem of a
misconfigured pacemaker can be resolved by using a strong magnet.

4.5 Summary

To summarize our findings, we have a working platform for which the research project
can continue with the VM as it creates a common ground for all participants. In
addition, we have pointed out several inadequacies, such as an unencrypted hard
drive and no authentication mechanism to use the programmer itself.

Furthermore, we have proven for two different programmers that we can decrypt
patient data exported from them, violating patient data confidentiality. Our testing
of this vulnerability implies exporting data with a static password is not specific
to a programmer model, and indicates it can be possible to decrypt data from any
Biotronik programmer in the world.

Finally we have gathered insights of how changes in context can affect people and
procedures by interviewing key informants with expert knowledge of the pacemaker
ecosystem.

These findings enable attack vectors with associated impact on key principles in
information security listed in Table 4.3. A separation is made between exporting data,
and decrypting exported data, because the programmer can export unencrypted
PDF files in addition to encrypted ZIP files. Physical access to the programmer also
breaches the principle of confidentiality by allowing a user to observe patient data
without authentication.

Table 4.3: Attack vectors from results.

Attack vectors Impact on key principles
Exploiting vulnerabilties in the OS Confidentiality, Integrity and Availability
Exploiting vulnerabilties in commercial
software

Confidentiality, Integrity and Availability

Data export using the USB interface Confidentiality
Decrypting exported data Confidentiality
Data import using the USB interface Integrity and Availability
Physical access to the programmer Confidentiality
Physical theft Confidentiality and Availability

Chapter5Countermeasures

In this chapter, we answer RO.3 by describing countermeasures to mitigate attack
vectors documented in chapter 4. Additionally, we propose a new programmer
adopting countermeasures described in this chapter.

5.1 Software

5.1.1 Operating System

Whenever one designs special software for systems responsible for life-critical functions,
it is important to consider the use of operating systems and third-party or commercial
libraries with great care. Effectively, using a modern operating system increases
the security level of the ecosystem. Integrity is more difficult to compromise with
the advantage of an up-to-date system with fewer known vulnerabilities. Successful
exploitation of certain known vulnerabilities can affect all three principles of the CIA
model, making it very important to stay up-to-date on the patching procedure for
both the operating system and its software.

Firstly, by using Windows XP Embedded after it has reached end of support implies
that the operating system has known vulnerabilities that can be exploited to compro-
mise the integrity of the system. Also, as observed during a visit to a cardiovascular
clinic, the Renamic programmer most likely runs Windows XP Embedded in 2018.
Even if it uses service pack 3, it is no longer supported by Windows [Mas].

Secondly, there are challenges with using Windows XP Embedded in a closed en-
vironment. Considering the options for updating this particular system is either
done through a CD or a USB stick, patching the operating system itself requires an
in-person visit. Hence, updating these systems require a person with knowledge of the
system, such as a Biotronik engineer or certified technician. As for our programmer, it
is then what we call ‘air-gapped’. An air-gapped system is one which is not currently
connected to the same network as other machines (to the best knowledge of the

75

76 5. COUNTERMEASURES

staff), and updates have to be delivered out of band. While one may believe these
computers are not connected to the internet, it is difficult to say if this is the case or
not. From the PDF files retrieved from the programmer software in subsection 4.3.2,
it seems like the newer software and Renamic programmer can update remotely over
the internet, and that connectivity is enabled by default. Such a case can provide
a false sense of security, where one believes that a system is not connected to the
internet when it, in reality, is connected [Lev11]. All key informants were of the
opinion that the programmer is not connected to the internet, despite our findings
in the user manual and observation of the programmer in use at the cardiovascular
clinic.

Therefore, due to the difficulty of providing a closed environment reliant on commercial
software, we would recommend using a real-time operating system instead. These
operating systems are tested based on their behavior at failure time, ensuring the
stability of the system is the top priority. A downside to using such an operating
system, especially if one develops it independently, is its time-consuming manner
of testing. As such, given this is unreasonable to require from a medical device
compared to, i.e., an air traffic controller system, one could still utilize specialized
versions of commercial operating systems.

Both Linux and Windows provide these, although it requires vendors to update their
systems from Windows XP to for instance Windows 10 to harden their systems.
As previously shown, Windows XP Embedded might have received system updates
until 2016, but application-level security measures were not adequate, minimizing
the effort required to potentially exploit a device if a vulnerability is discovered. Of
course, there are Linux distributions available as well for such purposes, but the most
important point here is to ensure security updates are regularly and easily applied to
the systems.

In the same manner, protection mechanisms such as ASLR and DEP must be turned
on and supported by the operating system. Most modern systems today apart from
certain specific Embedded systems have this enabled, and would certainly not be a
problem on such a machine that uses a commercial operating system.

Binary Security Protection Mechanisms

Binaries should also be compiled using security protection mechanisms to mitigate
the risk of exploitation of a vulnerability. PIC, binary specific ASLR, code integrity
checks, and buffer overflow protection mechanisms such as the /GS switch for Visual
Studio [Micd] are examples of security protection mechanisms that should be enabled.

5.1. SOFTWARE 77

5.1.2 Commercial Software

Similar to operating systems, commercial software also has an update process for
both security and functionality updates. Most critical to medical devices would be
to avoid breaking changes, while balancing security needs. Our observation that
the process of exporting and importing patient data rely on a very old commercial
library is concerning. Nowadays, both Linux and Windows provide tools internally
to secure storage of files adequate for the security requirements of patient data. More
specifically, the CryptoAPI by Microsoft or the Crypto API for Linux which are both
implemented directly at kernel level [Mica, MV]. Hence there is no need to use an at
least ten-year-old Chilkat library for securely exporting and importing patient data.

5.1.3 Cold Storage Encryption

Encrypting data at rest is an important step in ensuring confidentiality of sensitive
data. Inside the pacemaker ecosystem, there are patient data stored on every device.
Therefore, each of them needs to employ a secure and tamper-resistant storage
module. For pacemakers, a more significant focus on the hardware security could be
applied due to its energy efficiency so that power is not spent on encryption. Instead,
gluing components together and creating a much more restrictive environment for
hardware hackers is most likely a better approach. Below is a picture of a pacemaker
where the chips are available after desoldering the outer layers.

Figure 5.1: Pacemaker with outer components desoldered giving access to the
underlying chips.

78 5. COUNTERMEASURES

As for the programmer, we recommend disk encryption. Depending on the choice
of OS this can be implemented in several ways. On the Windows platform, it is
possible to deploy BitLocker such that only authenticated users in an Active Directory
(AD) can access the disk. Combining this with the key access cards already in use
in hospitals today should provide an adequate security level without significantly
worsening the availability of the machine for normal usage in its regular environment.
Adversaries attempting to steal the machine would then also need a valid set of
credentials to decrypt the disk.

Additionally, patient data should be encrypted and decrypted only when needed to
be displayed in the programmer. Whenever the programmer is active and in use,
all patient data except for the patient currently being diagnosed should be stored
encrypted and out of reach from someone who could potentially gain access remotely.

5.1.4 Anti-Reverse Engineering Efforts

Software

Anti-reverse engineering efforts are effective against reverse engineers by complicating
the process of understanding the system. Examples of these efforts are encrypting
functions, packing the code and stripping them of function names and symbols.
Although these efforts may slow down the execution time of the binaries slightly, it
should not affect the program while running. Hence, its performance impact should
be negligible and at the same time improve the time complexity until a possible
vulnerability would be discovered. For this, we do not wish to provide an example,
as most solutions are commercially sold. Another important factor to consider is
that these solutions may introduce new problems, and their robustness might not
be guaranteed concerning availability. Therefore we propose it as a suggestion and
encouragement for vendors to apply, but strictly not necessary.

Hardware

For all three units inside the ecosystem, we also recommend concealing or disabling
the debug ports such as UART and JTAG, making it considerably more difficult for
an adversary to connect to the board with privileged access. Mentioned before, the
manufacturers have not spent enough effort on concealing their debug interfaces.

5.2 Hardware

5.2.1 Storage

Currently, the programmer uses removable commercial hard drives in 3.5“ format,
which is easily removable and easy to analyze with commercial tools. Therefore, we

5.3. AUTHENTICATION 79

propose to embed the storage device into the motherboard or PCB where critical files
and software can be stored securely and tamper resistant. This is not strictly needed,
as full disk encryption might be a simpler and cheaper alternative. Regardless,
depending on the vendors’ requirements, a dedicated secure storage module might be
a better solution for some vendors. It should be underlined that either this or full disk
encryption are two different ways of achieving the desired outcome, a more tamper
resistant environment. Ideally, both would be preferred, both a physical tamper-
resistant storage module that employed full disk encryption. The confidentiality of
the disk then rests upon the security of the passphrase or keys stored on smart cards
authorized to decrypt the disk.

5.3 Authentication

Authentication, as mentioned in section 4.2.5, was nonexistent on the programmer
device for both interrogating with a pacemaker and to access the system and its
sensitive data. With GDPR now in effect, it is mandatory that patient data comply
with special requirements for processing, and that sensitive information follows
requirements for storage and retrieval [oEU16, p. 121]. Even though subsystems
analyzed by Whitescope and MedSec did not have any form of patient data encryption,
we have observed encrypted patient data exported from the data manager. Therefore,
for all manufacturers, it is necessary to implement authentication to ensure patient
data confidentiality. Additionally, patient data should be easily available and not
require unnecessary hassle to access for pacemaker technicians. Below are situations
where we believe it should be required to implement an authentication mechanism:

– Booting the programmer itself to decrypt the hard drive

– Ability to lock and unlock the system in a running state for interrogating or
configuring pacemakers

– Accessing patient data

– Exporting patient data

– Importing patient data

For all these situations, the most practical solution which provides an adequate
security level for the programmer will be a smart card solution integrated with key
access cards. The cardiovascular clinic previously mentioned already use key access
cards for authentication on computers. Consequently, this authentication mechanism
is familiar to doctors and pacemaker technicians, and is therefore not in conflict with
normative constraints. Keys access cards are also possible to synchronize with AD

80 5. COUNTERMEASURES

users in corporate Windows environments. Since authentication keys can be revoked
and replaced, it makes malicious activities difficult despite physical possession of a
programmer. Assuming this authentication mechanism is appropriately implemented,
we believe it would be a sufficient step towards a more secure system with the
exception of exporting patient data. Due to GDPR and new regulations in the EU
on privacy, a second authentication token or passphrase should be used whenever
one wants to export or print patient data. For such activities, we suggest employing
another physically stored digital key, in the form of a Yubikey or other solutions such
as OpenPGP Smart Cards to work as a second form of authentication [Yub, Sho].
Furthermore, the digital key should be stored securely in a locked office, preferably
in a safe or similar safe storage device. Even better, would be to also deploy a secure
password or PIN on the digital key to strengthen secrecy in case it is stolen.

Authentication can provide stronger non-repudiation and accountability for the
programmer by linking the existing logging of actions described in section 4.2.2 with
the authenticated user.

Also, while not explicitly looked at by us, the pacemakers should only accept com-
mands received from a programmer when the user is properly authenticated. This
may require software updates for the pacemakers, in case the protocol does not
already provide such mechanisms. Implementing authentication on the programmer
will also increase the security of pacemakers by mitigating the possibility for an
adversary to maliciously configure a pacemaker. As a consequence, strengthening the
security of the programmer also improves the security of the pacemaker ecosystem.

5.4 Theoretical Proposal

For clarity, we propose a theoretical programmer to ensure that security requirements
are met by applying fundamental security measures and using modern up-to-date
software and hardware solutions to mitigate vulnerabilities. The suggestion is
based on the Windows platform since Biotronik programmers are built on Windows.
Proprietary software from Biotronik also has to be updated to be compatible with
this proposal. The theoretic programmer has the following specifications.

– Microsoft Windows 10 Long Term Servicing Branch.

– Enabling modern security protection mechanisms such as ASLR, DEP and
PIC.

– Updated commercial software.

– BitLocker Drive Encryption.

5.4. THEORETICAL PROPOSAL 81

– Trusted Platform Module for secure storage of private keys.

– Use the CryptoAPI by Windows to authenticate users with key access cards.

– Require authentication in recommended situations.

– Use the CryptoAPI by Windows to encrypt patient data and require authenti-
cation for decryption.

– Use the CryptoAPI by Windows to sign exported data and verify the signature
of imported data.

– Ensure sensitive data is stored on a secure tamper-resistant chip and encrypted
when not in use.

– In place integrity checks of the software running to ensure only untampered
software is in use.

– Signed executables to hinder integrity violations of code before executing vital
functions. As a part of the authentication scheme, functions that could, if
abused, cause patient harm should be encrypted and only decrypted at runtime
after authentication is successful.

This proposal aims to improve the development and design of pacemaker ecosystems
to achieve a more secure environment. These components, if implemented, provides
a more hardened environment for malicious adversaries to operate in compared to
the current programmer’s environment. The proposed countermeasures are mapped
to the attack vectors identified in section 4.5 in Table 5.1.

Table 5.1: Countermeasures to mitigate attack vectors uncovered
in results.

Attack vectors Impact on key
principles

Countermeasures

Exploiting vulnerabilties in
the OS

Confidentiality, Integrity
and Availability

Windows 10 Long Term
Servicing Branch with
enabled modern security
protection mechanisms and
integrity verification of
signed executables

Exploiting vulnerabilties in
commercial software

Confidentiality, Integrity
and Availability

Updated commercial
software and integrity
verification of signed
executables

82 5. COUNTERMEASURES

Data export using the USB
interface

Confidentiality User authentication

Decrypting exported data Confidentiality Windows CryptoAPI
Data import using the USB
interface

Integrity and Availability Updated commercial
software, integrity
verification of signed data
using Windows CryptoAPI
and integrity verification of
signed executables

Physical access to the
programmer

Confidentiality User authentication

Physical theft Confidentiality and
Availability

BitLocker Drive Encryption

Chapter6Discussion

In this chapter, we discuss our results in a broader perspective. Validation criteria
for the security of programmers are discussed, and our findings of artifacts and
their context are evaluated. We discuss connecting the programmer to the internet
and debate the availability requirement of programmers. Furthermore, we outline
the most significant implications of our research for the people and procedures in
the pacemaker ecosystem. Finally, possible attack vectors and attack scenarios are
presented before outlining future work.

6.1 Validation Criteria for Security

The security level of the pacemaker ecosystem can be discussed using the security
model introduced in subsection 3.1.1. Lysne argues that one must consider what one
is trying to protect against to answer if something is secure [Lys15].

What do we need to protect against? The unauthorized configuration of a pacemaker
is essential to mitigate. Authorized personnel test the pacing amplitude after the
implantation of a pacemaker to optimize power usage while ensuring that the pacing
amplitude is above the threshold necessary for the heart to contract. However, setting
the pacing amplitude too low for the heart to contract without the resources of a
cardiovascular clinic to keep the heart pumping can have a fatal outcome. We also
need to mitigate data theft to protect data privacy rights. Besides, integrity must
be ensured to protect the trust of the programmer for diagnosis and configuration
purposes.

In light of this, we can return to the elements of the security model. Authentication
is not implemented, and as such non-repudiation, authenticity and accountability
are not provided by the programmer. We argue that authentication should be a
security criterion for the programmer to protect data privacy rights and to protect
against unauthorized pacemaker configuration. As discussed in section 5.3, we argue
for using key access cards for authentication which is already used for authentication

83

84 6. DISCUSSION

in other information systems at the mentioned cardiovascular clinic. Furthermore,
we argue for a second authentication factor whenever an action involves accessing
patient data or configuring a pacemaker.

Disk encryption and patient data encryption should also be enabled to ensure
confidentiality and protect data privacy rights, as previously discussed in subsection
5.1.3. Neither the disk nor patient data are encrypted on the programmer.

Also, the programmer should be hardened to ensure verifiable integrity. This is to
protect against unauthorized pacemaker configuration and data theft and to protect
the trust of the programmer. The main software used for diagnosis and configuration
in the programmer is not signed and is therefore not integrity protected.

Lysne also argues that one must look at the environment, and not only the technical
aspects. This underpins why the Design Science Framework by Hevner incorporating
both the environment and the technological side is a good fit for this research. A
critical part of the environment is the regulations that affect medical devices.

The guidance by FDA and regulation by EU of pre-market and post-market surveil-
lance of cybersecurity in medical devices was discussed in chapter 3.3. This is a
continuous process during the lifetime of a device that should detect known vul-
nerabilities and patch the device to reduce risk without adversely affecting the
benefit-risk ratio. However, we have uncovered multiple known critical vulnerabil-
ities in the programmer that have not been patched. These known vulnerabilities
would be easy to monitor with publicly available vulnerability data sources such as
https://www.cvedetails.com given vendors knowledge of commercial and third-
party software in their products. This indicates that a post-market surveillance
system has not yet been put in place by Biotronik.

The missing patches for known vulnerabilities also indicate that Biotronik is not
following best practices in the industry. Not following best practices indicates that
Biotronik violates current FDA recommendations and EU regulations. A study
of security framework adoption in The USA from 2016 reported that 70 % of the
surveyed organizations recognize the NIST Cybersecurity Framework as best practice
for computer security [res]. The NIST Cybersecurity Framework is also recommended
by FDA in their post-market guidance.

The latest amendment to the EU MDD 2007/47/EC expands the definition of medical
devices also to include software, and states that ‘software must be validated according
to the state of the art’ [MMC12]. Dr. Martin McHugh describes the state of the art
as ‘what is generally accepted as good practice’, which takes us back to the NIST
Cybersecurity Framework.

6.2. ARTIFACTS AND CONTEXT 85

We suggest that a validation criterion for the security of programmers should be
that vendors are collaborating with third-party and commercial software vendors to
receive cyber threat intelligence and vulnerability information in accordance with the
NIST Cybersecurity Framework. This would enable programmer vendors to apply
patches before vulnerabilities become publicly available. It would also allow the
post-market surveillance system to be ‘actively and systematically’ gathering data
following the upcoming EU regulation.

The Joint Research Centre of the European Commission is suggesting that research
should be the main driver for vulnerabilities discovery [Pup]. While there is no
harmonized standard in the EU for coordinated vulnerability disclosure, we suggest
that a validation criterion for pacemaker programmer security is that vendors actively
collaborate with researchers to discover vulnerabilities.

Another validation criterion in Norway is if the product is in compliance with the
Norwegian Code of Conduct for information security in the healthcare sector. We
argue that it is not. The programmer breaches the principle of confidentiality in that
anyone with physical access could get access to health and personal information. As
discussed in chapter 4, data at rest is not encrypted, and there is no authorization
of personnel. Moreover, it is not in compliance with integrity, where the Code of
Conduct states that security measures are to be taken to stop people or technology
from changing information without authorization. As a result of missing security
measures for authentication, it is possible for people without authorization to change
data. The low adoption of file signatures implies that changes would not be discovered
by the programmer itself. Besides, the number of known vulnerabilities simplifies
exploitation by increasing the attack surface. Vulnerabilities could be exploited to
achieve arbitrary code execution, thereby changing information without authorization.

6.2 Artifacts and Context

As discussed in chapter 2, answering RQ.1 is a wicked problem. With finite resources
and the complexity of the ecosystem, it is not feasible to describe all artifacts and
their context. Consequently, we cannot conclude with absolute certainty on the
context of artifacts. We argue, however, that our assumptions do give a clearer
picture of the security state in the pacemaker ecosystem. As presented in section
4.2.2, we have taken measures to filter out interesting artifacts, where we have focused
on artifacts possibly related to RQ.1.

One find is that the programmer utilizes old proprietary commercial software. While
commonly used software such as Internet Explorer and Adobe Acrobat Reader contain
known vulnerabilities, one cannot conclude that less used software is safe because
there are no known vulnerabilities. There is a delay from when a vulnerability is

86 6. DISCUSSION

introduced and until it is discovered and patched. Without entering the discussion
of security in proprietary vs. open source software, it is worth noting that the source
code of open source software is more accessible and therefore more available for
security testing. While it is not certain whether commercial software vendors perform
security tests on their software, it is not transparent if Biotronik does.

Furthermore, we question the necessity of storing vendor specific debug tools on the
programmer. While this has helped our understanding of the programmer, it would
also aid a potential adversary in the reconnaissance phase of an attack.

6.3 Connecting the Programmer to the Internet

The implications of an air-gapped system was previously mentioned in chapter 4 and
chapter 5. On the one hand, connecting the programmer to the hospital network for
authentication purposes could provide an even wider attack surface for a network
intruder, but on the other hand, having no network connection at all is in general
more secure, considering their update procedure is mainly through USB sticks. In
its current state, connecting the programmer to the network would be a bad idea.
Therefore, it is worrisome that the newer version appears to be connected to the
internet as revealed in subsection 4.3.2.

If one decides to implement authentication through smart cards as already mentioned,
the security of the programmer is now related to the security of the hospital network.
Although it may widen the attack surface if one sufficiently secures the programmer,
as described in chapter 5, the criteria for the system security should be sufficient.

6.4 Availability Requirement

While there might be a stricter requirement in general for the availability of medical
devices such as a pacemaker, the programmer does not need to meet the same level.
While we do not propose it needs anywhere near the authentication hardening of
a classified network, such as the ones used by governments, having programmers
require authentication for accessing functionality is needed. Our interviews indicate
there is no immediate need of a programmer in an emergency situation at the ER,
as such it builds a stronger argument for implementing proper authentication for
functions such as reprogramming a pacemaker and exporting or printing data.

6.5 Implications for People and Procedures

The programmer is a vital component of the pacemaker ecosystem, as it is used both
for the diagnosis and configuration of pacemakers. The diagnosis is an essential basis
for the doctor’s decisions, and an individual configuration is necessary for patient

6.6. POSSIBLE ATTACK VECTORS 87

comfort and to ensure that the pacemaker is functioning. While our interviews indicate
that the cardiovascular clinic has resources and procedures to safeguard patient safety
in the case of a pacemaker misconfiguration or even without a programmer, these
findings can not be generalized to apply for all pacemaker clinics. Also, the safety
net of a cardiovascular clinic’s resources and procedures are not readily available if
an incident occurs elsewhere.

6.6 Possible Attack Vectors

A vulnerability is an instantiation of an attack vector that can be exploited. The sum
of attack vectors constitutes the attack surface which can be exploited in an attack
scenario. In addition to the attack vectors identified from our results in Table 4.3,
our findings and related literature indicate other possible attack vectors.

Whitescope identified UART and JTAG debug ports on an unspecified number
of programmers in their study [RB17]. We did not focus on the hardware of the
programmer due to the risk of bricking the device, but this could be an attack vector.

The USB interface on the programmer is another possible attack vector we did not
test due to the risk of bricking the device. Jodeit & Johns has studied the potential
of attacking the USB interface.

[...] potential attacks are not limited to the USB related code inside the
kernel but extend over a large number of different kernel sub-systems and
device drivers reachable by USB devices which would not be associated
with USB at first glance. The USB protocol allows reaching those parts of
the kernel which could otherwise not easily be attacked remotely [JJ10].

Furthermore, the VM could be combined with a PGH to possibly create a functioning
programmer. If so, it could be used as an attack vector to interrogate or alter
the configuration of a pacemaker. Regardless of the VM, a programmer can also
be acquired to interrogate or alter the configuration of a pacemaker. SafeSync is
a module to connect a programmer, such as the ICS3000 we have studied, to a
pacemaker without using a PGH [Datb]. This functionality could be used to extend
the reach of a malicious configuration up to six meters [Datb].

Our finding that newer software supports internet connectivity is also a possible
attack vector. Internet connectivity could potentially extend the reach of an attack
and scale the possible number of attacks.

The lack of disk encryption and integrity checks implies that changing the hard drive
of a programmer is also a possible attack vector.

88 6. DISCUSSION

These unconfirmed but possibly feasible attack vectors are summarized in Table 6.1
which expands Table 4.3 with attack vectors identified in our results.

Table 6.1: Possible attack vectors.

Attack vectors Impact on key
principles

Feasible

Exploiting vulnerabilties in the OS Confidentiality,
Integrity and
Availability

Confirmed

Exploiting vulnerabilties in
commercial software

Confidentiality,
Integrity and
Availability

Confirmed

Data export using the USB interface Confidentiality Confirmed
Decrypting exported data Confidentiality Confirmed
Data import using the USB interface Integrity and

Availability
Confirmed

Physical access to the programmer Confidentiality Confirmed
Physical theft Confidentiality and

Availability
Confirmed

Debug ports Confidentiality and
Integrity

Unconfirmed

USB interface Confidentiality,
Integrity and
Availability

Unconfirmed

Internet connectivity Confidentiality,
Integrity and
Availability

Unconfirmed

Replace disk Integrity Unconfirmed

6.7 Attack Scenarios

In this section, we present three possible attack scenarios based on possible attack
vectors identified in Table 6.1. An adversary could perform these attacks with COTS
equipment. Thus, an adversary does not need to be very resourceful to perform these
attacks.

6.7. ATTACK SCENARIOS 89

6.7.1 Malicously Alter System Files

Starting from the disk image that was altered to create the VM, similar techniques
could be applied to alter system files with malicious intent. Other possible attack
vectors to alter files are vulnerabilities in commercial software, ZIP fuzzing, in-
ternet connectivity or the USB interface. Also, we know that the main software
EgsMain.exe, used by doctors and pacemaker technicians, is not signed. The ability
to alter system files could then be used to configure the pacemaker with one value
and display another value to the doctors. For instance, the power amplitude ensuring
that the heart contracts from pacing could be set lower than the doctor intended to
increase patient risk outside the hospital. Diagnosis data for the resistance in leads
could be displayed to be artificially high, indicating that the high-risk operation of
replacing the leads is necessary.

6.7.2 Maliciously Configure Pacemaker

After acquiring a functional programmer, either using a VM with a PGH or buying a
programmer on eBay, there are no authentication mechanisms in place that prevents
an adversary from utilizing the same functions as doctors and pacemaker technicians.
Consider an adversary targeting a sleeping pacemaker dependent patient by adjusting
the pacing amplitude to the point where the heart no longer contracts from pacing.
Using the SafeSync module, the attack range could be extended facilitating attacks
from nearby seats on buses, trains, and airplanes. Without aid to keep the heart
pumping, this attack would have a fatal outcome.

6.7.3 Data Theft

To further expand on how it would be possible for a malicious adversary to gain
valuable knowledge about a programmer device, consider the following attack path,
focusing on exporting data from the programmer, compromising both patient confi-
dentiality and accessing logs from the programmer itself.

Firstly we need to perform reconnaissance at the hospital to locate the programmer
machines. Knowing there most likely will be programmers in the same areas as
described in our interviews, the easiest method would be to walk in, as most hospitals
are open to the public during business hours. Arguing further, due to the programmers
not having authentication, and allegedly being unprotected for minutes at a time
during checkups, it is possible for an adversary to walk up to a programmer and
export the data to a USB stick. Due to the incomplete security of the encryption
key of exported data, an adversary will gain access to logs and all patient data by
decrypting them locally. Furthermore, as evident from the results analyzing the data
from the programmer from the Netherlands, interesting artifacts about the system

90 6. DISCUSSION

and its internal workings can be uncovered as well, i.e., the update code which was
found.

6.8 Disclosure Process

We argue by practicing Coordinated Vulnerability Disclosure following ISO/IEC
29147:2014, our thesis has the potential of causing a larger impact on the environment
of the ecosystem. If we compare the case against Abbott, which has gotten two
security advisories by ICS–CERT, to the Whitescope paper as well as Marin et al. it
is unclear whether or not these reports have been followed up. We believe disclosing
the details of our analysis through the proper channels in a separate more succinct
document will be the correct procedure to cause a meaningful contribution to the
pacemaker ecosystem. Hopefully, it will contribute to reducing the risk for patients
health and safety, and compromise of patient data.

Dr. Hauser argue that ‘[...] patients have a fundamental right to be fully informed
when they are exposed to the risk of death no matter how low that risk may be
perceived.’ [SOMM10]. As such, we intend to publish this thesis after one year,
which should be a sufficient time-frame for Biotronik to handle the Coordinated
Vulnerability Disclosure.

6.9 Future Work

Throughout the project, we managed to open a few possibly interesting doors for
new participants to the project. Additionally, other unexplored paths are described
here.

6.9.1 Pacemaker Memory Dump

As previously mentioned, we have access to log files including a RAM dump of a
pacemaker from the Netherlands. Such log files, as explained, when exported, are
zipped encrypted. Since we were able to determine the encryption method and
password, we also managed to decrypt the content of this file. Besides, we also have
a partial memory dump with many redacted parts. In-depth analysis of this memory
dump would be an interesting project path on its own for someone with memory
forensics knowledge in embedded devices.

6.9.2 Biotronik pacemaker Radio Frequency Protocol

While reading the documentation for the programmer we came upon a detailed
description of how the RF protocol works, which makes the work that must be done

6.9. FUTURE WORK 91

simpler for the ones who would like to explore the RF protocol of the programmer
by Biotronik.

Figure 6.1: MICS RF details.

At this time of writing there are no publicly available documents analzying the
security of the RF protocol used by the renamic programmer.

6.9.3 Home Monitoring Unit Retry

While we initially tried to verify and test previous work done by Whitescope in order
to attack the Biotronik HMU, the result leaves the door open for further investigation
by others.

6.9.4 Continuing Fuzzing of ZIP Files and Their Contents

There are a couple of things to consider with the fuzzing of the ZIP files which can
lead to a potential exploit. Firstly, there are the ZIP files themselves, meaning one
would attempt to exploit how the Chilkat library handles its unzip function with
bogus data. More clearly, this is an option that does not care for what data it gives
to the programmer. It tries to see if the unzip library can or can not handle certain
inputs. Another alternative is fuzzing the Biotronik XML files inside the ZIP file,
both the patient data and the other log entities [KG]. These files are the ones that
are read by the programmer software itself and then displayed to us by the data
manager. Fuzzing these files, compared to the ZIP itself means we focus on keeping
the ZIP structure intact, and focus on fuzzing the Biotronik XML file format. Any
cause for exceptions to be thrown would open up a potential vulnerability which
could lead to exploitation of the device. Most preferably we would like the ability to
write and execute files.

92 6. DISCUSSION

6.9.5 USB Hardware Interface Fuzzing

While not limited to attempting to exploit the data via a USB stick, one could
attempt to exploit the actual USB driver software installed on the programmer. This
is a bit more risky, considering the virtual machine uses its own driver to enable USB
functionality which is not representative of the real world drivers in use.

Considering this hardware is old, and potentially legacy, the USB drivers used on the
physical programmer could be vulnerable to attacks on a hardware driver level. This
is different from fuzzing the input data itself, as one attacks the hardware port of
the programmer, hopefully causing a malfunction in the system driver for the USB.
Since we use a virtual machine for most of our testing, it uses another set of USB
drivers in order to enable them for the host machine, as such this fuzzing option is
only viable on the physical machine itself, making it quite risky in case we break the
expensive programmer.

6.9.6 Third-Party and Commercial Software

As shown with its own tools, namely drivercheck.exe, there are several third-party
and commercial tools installed which we have not analyzed. Each of them is a
new attack vector which could be explored to uncover even more vulnerabilities.
Promising candidates are Renesas from 2008 which seems to communicate with a
flash device, and Kithara from 2002 with the ability to create code executable at the
kernel level. With Kithara, there might be a possibility to inject code at the kernel
level by utilizing Kithara drivers or creating an application for Kithara that runs
separated from Windows. Kithara also has an optional memory module that enables
direct access to physical memory data.

6.9.7 Renamic Programmer

When in possession of a Renamic programmer, verifying the work done in this thesis
and testing new functionality from software updates is also a possible path. Most
relevant are the new UMTS capabilities for it to have automatic diagnostic data
uploaded, a functionality they call ‘ReportShare’, and an automatic remote update
feature. With this enabled it implies the programmer is connected to the internet.
The fact we have seen it still may be running Windows XP and is connected to the
internet is a cause for concern. These features are described in the PDFs found inside
the programmer software update files. These can be found in the project’s repository.

Chapter7Conclusion

In this research we have set out to answer the following research question:

What is the security of the programmer within the framework of the
key principles of Information Security: Confidentiality, Integrity, and
Availability (CIA).

We conclude that the security level of the pacemaker ecosystem is inadequate.
Shown in Table 4.3, the current implementation of the programmer breaches all
three principles of the CIA model. As discussed in chapter 6, the programmer
puts the ecosystem as a whole in a more vulnerable state. We have shown that
the programmer does not comply with current FDA recommendations, or EU and
Norwegian regulations. It contains at least 246 known vulnerabilities where 194 are
rated as critical. The programmer has no authentication, and physical access to the
programmer is feasible. It uses an OS that has reached end of support, meaning
that it no longer receives security updates. Furthermore, it utilizes old proprietary
commercial software. Also, we have shown that one can decrypt data from two
programmers with different software versions in different countries. This is a breach
of patient data confidentiality, and also raises the concern if all exported data from
Biotronik programmers are encrypted with the same static password.

As such, we have not been able to disprove our hypothesis that ‘The pacemaker
programmer has vulnerabilities that make it insecure in its regular environment’. On
the contrary, we have found vulnerabilities that confirms that the programmer is
insecure in its regular environment.

93

References

[Adm] U.S. Food Drug Administration. Developing a software precertification pro-
gram: A working model. https://www.fda.gov/downloads/MedicalDevices/
DigitalHealth/DigitalHealthPreCertProgram/UCM605685.pdf. Accessed: 2018-
05-01.

[BG82] Martin L Bariff and Michael J Ginzberg. Mis and the behavioral sciences:
research patterns and prescriptions. ACM SIGMIS Database: the DATABASE
for Advances in Information Systems, 14(1):19–26, 1982.

[Blo16] Carson Block. Mw is short st. jude medical. 2016.

[Bow08] Glenn A Bowen. Naturalistic inquiry and the saturation concept: a research note.
Qualitative research, 8(1):137–152, 2008.

[C+11] GH Crossley et al. The clinical evaluation of remote notification to reduce time
to clinical decision (connect) trial: The value of remote monitoring. Journal of
the American College of Cardiology, 57(10):1181–1189, 2011.

[CGH09] Anne Cleven, Philipp Gubler, and Kai M Hüner. Design alternatives for the eval-
uation of design science research artifacts. In Proceedings of the 4th International
Conference on Design Science Research in Information Systems and Technology,
page 19. ACM, 2009.

[Cha11] Kathy Charmaz. Grounded theory methods in social justice research. The Sage
handbook of qualitative research, 4(1):359–380, 2011.

[Cora] MITRE Corporation. Security vulnerabilities. https://www.cvedetails.com/
vulnerability-list.php?vendor_id=53&product_id=497&version_id=10038&
page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&
opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=
0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&
order=1&trc=19&sha=afbcb8f0ddb967791d113f6c0580cb569d1de4f2. Accessed
2018-03-28.

[Corb] MITRE Corporation. Security vulnerabilities. https://www.cvedetails.com/cve/
CVE-2008-5002/. Accessed 2018-05-21.

95

https://www.fda.gov/downloads/MedicalDevices/DigitalHealth/DigitalHealthPreCertProgram/UCM605685.pdf
https://www.fda.gov/downloads/MedicalDevices/DigitalHealth/DigitalHealthPreCertProgram/UCM605685.pdf
https://www.cvedetails.com/vulnerability-list.php?vendor_id=53&product_id=497&version_id=10038&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=1&trc=19&sha=afbcb8f0ddb967791d113f6c0580cb569d1de4f2
https://www.cvedetails.com/vulnerability-list.php?vendor_id=53&product_id=497&version_id=10038&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=1&trc=19&sha=afbcb8f0ddb967791d113f6c0580cb569d1de4f2
https://www.cvedetails.com/vulnerability-list.php?vendor_id=53&product_id=497&version_id=10038&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=1&trc=19&sha=afbcb8f0ddb967791d113f6c0580cb569d1de4f2
https://www.cvedetails.com/vulnerability-list.php?vendor_id=53&product_id=497&version_id=10038&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=1&trc=19&sha=afbcb8f0ddb967791d113f6c0580cb569d1de4f2
https://www.cvedetails.com/vulnerability-list.php?vendor_id=53&product_id=497&version_id=10038&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=1&trc=19&sha=afbcb8f0ddb967791d113f6c0580cb569d1de4f2
https://www.cvedetails.com/vulnerability-list.php?vendor_id=53&product_id=497&version_id=10038&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=1&trc=19&sha=afbcb8f0ddb967791d113f6c0580cb569d1de4f2
https://www.cvedetails.com/cve/CVE-2008-5002/
https://www.cvedetails.com/cve/CVE-2008-5002/

96 REFERENCES

[Corc] MITRE Corporation. Security vulnerabilities. https://www.cvedetails.
com/vulnerability-list/vendor_id-26/product_id-1813/version_id-6015/
Microsoft-Xml-Core-Services-4.0.html. Accessed 2018-03-28.

[Cord] Renesas Electronics Corporation. Flash development toolkit (program-
ming gui). https://www.renesas.com/en-us/products/software-tools/tools/
programmer/flash-development-toolkit-programming-gui.html#documents. Ac-
cessed 2018-05-02.

[Cou14] Council of European Union. Council regulation (EU) no 745/2017, 2014.
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:
32017R0745&from=EN.

[CWC+08] Jane Chen, Bruce L Wilkoff, Wassim Choucair, Todd J Cohen, George H Crossley,
W Ben Johnson, Luc R Mongeon, Gerald A Serwer, and Lou Sherfesee. Design
of the pacemaker remote follow-up evaluation and review (prefer) trial to assess
the clinical value of the remote pacemaker interrogation in the management of
pacemaker patients. Trials, 9(1):18, 2008.

[Data] FCC ID Database. 175 khz wireless frequency explorer. https://fccid.io/
frequency-explorer.php?lower=0.175&upper=0.175. Accessed: 2018-04-17.

[Datb] FCC ID Database. Safesync safesync module user manual 380184–d-
ga_safesyncmodule_en_2011-06-15.fm biotronik se & co. kg. https://fccid.
io/QRISAFESYNC/Users-Manual/15-SafeSync-UserMan-1577715. Accessed:
2018-05-19.

[FH13] Robert Farrell and Cliff Hooker. Design, science and wicked problems. Design
Studies, 34(6):681–705, 2013.

[fHA] Directorate for Health and Social Affairs. Norwegian code of conduct for informa-
tion security in the health and care sector. Accessed 2018-05-17.

[fTDM] Jonathan Gornall for The Daily Mail. The heart pacemakers at risk
from hackers: Sound far-fetched? security experts are treating it
deadly seriously. http://www.dailymail.co.uk/health/article-3252609/
The-heart-pacemakers-risk-hackers-Sound-far-fetched-Security-experts-treating-deadly-seriously.
html. Accessed: 2018-05-10.

[ftNMA] National Executive Committee for the Norwegian Medical Association. Etiske
regler for leger. http://legeforeningen.no/Om-Legeforeningen/Organisasjonen/
Rad-og-utvalg/Organisasjonspolitiske-utvalg/etikk/etiske-regler-for-leger/. Ac-
cessed: 2018-05-16.

[Fu15] Kevin Fu. On the technical debt of medical device security. 2015.

[Gro] IMDRF SaMD Working Group. Software as a medical device (samd):
Key definitions. http://www.imdrf.org/docs/imdrf/final/technical/
imdrf-tech-131209-samd-key-definitions-140901.docx. Accessed: 2018-05-
01.

https://www.cvedetails.com/vulnerability-list/vendor_id-26/product_id-1813/version_id-6015/Microsoft-Xml-Core-Services-4.0.html
https://www.cvedetails.com/vulnerability-list/vendor_id-26/product_id-1813/version_id-6015/Microsoft-Xml-Core-Services-4.0.html
https://www.cvedetails.com/vulnerability-list/vendor_id-26/product_id-1813/version_id-6015/Microsoft-Xml-Core-Services-4.0.html
https://www.renesas.com/en-us/products/software-tools/tools/programmer/flash-development-toolkit-programming-gui.html#documents
https://www.renesas.com/en-us/products/software-tools/tools/programmer/flash-development-toolkit-programming-gui.html#documents
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32017R0745&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32017R0745&from=EN
https://fccid.io/frequency-explorer.php?lower=0.175&upper=0.175
https://fccid.io/frequency-explorer.php?lower=0.175&upper=0.175
https://fccid.io/QRISAFESYNC/Users-Manual/15-SafeSync-UserMan-1577715
https://fccid.io/QRISAFESYNC/Users-Manual/15-SafeSync-UserMan-1577715
http://www.dailymail.co.uk/health/article-3252609/The-heart-pacemakers-risk-hackers-Sound-far-fetched-Security-experts-treating-deadly-seriously.html
http://www.dailymail.co.uk/health/article-3252609/The-heart-pacemakers-risk-hackers-Sound-far-fetched-Security-experts-treating-deadly-seriously.html
http://www.dailymail.co.uk/health/article-3252609/The-heart-pacemakers-risk-hackers-Sound-far-fetched-Security-experts-treating-deadly-seriously.html
http://legeforeningen.no/Om-Legeforeningen/Organisasjonen/Rad-og-utvalg/Organisasjonspolitiske-utvalg/etikk/etiske-regler-for-leger/
http://legeforeningen.no/Om-Legeforeningen/Organisasjonen/Rad-og-utvalg/Organisasjonspolitiske-utvalg/etikk/etiske-regler-for-leger/
http://www.imdrf.org/docs/imdrf/final/technical/imdrf-tech-131209-samd-key-definitions-140901.docx
http://www.imdrf.org/docs/imdrf/final/technical/imdrf-tech-131209-samd-key-definitions-140901.docx

REFERENCES 97

[HHBR+08] Daniel Halperin, Thomas S Heydt-Benjamin, Benjamin Ransford, Shane S Clark,
Benessa Defend, Will Morgan, Kevin Fu, Tadayoshi Kohno, and William H Maisel.
Pacemakers and implantable cardiac defibrillators: Software radio attacks and
zero-power defenses. In Security and Privacy, 2008. SP 2008. IEEE Symposium
on, pages 129–142. IEEE, 2008.

[Hir] Ben Hirschler. Gsk and google parent forge $715 million bioelec-
tronic medicines firm. https://www.reuters.com/article/us-gsk-alphabet/
gsk-and-google-parent-forge-715-million-bioelectronic-medicines-firm-idUSKCN10C1K8.
Accessed: 2018-05-02.

[ICa] ICS-CERT. Advisory (icsma-17-241-01). https://ics-cert.us-cert.gov/advisories/
ICSMA-17-241-01. Accessed: 2018-04-25.

[ICb] ICS-CERT. https://ics-cert.us-cert.gov/advisories/icsma-18-107-01. https://
ics-cert.us-cert.gov/advisories/ICSMA-18-107-01. Accessed: 2018-04-25.

[Int] Intel. Network adapter drivers for windows xp*, final re-
lease. https://downloadcenter.intel.com/download/18717/
Network-Adapter-Drivers-for-Windows-XP-Final-Release. Accessed: 2018-04-06.

[ISO14] Information technology – Security techniques – Vulnerability disclosure. Standard,
International Organization for Standardization, Geneva, CH, February 2014.

[JJ10] Moritz Jodeit and Martin Johns. Usb device drivers: A stepping stone into your
kernel. In Computer Network Defense (EC2ND), 2010 European Conference on,
pages 46–52. IEEE, 2010.

[Jona] Richard W. Jones. hivexsh(1) - linux man page. https://linux.die.net/man/1/
hivexsh. Accessed: 2018-02-02.

[Jonb] Richard W. Jones. libguestfs, library for accessing and modifying vm disk images.
http://libguestfs.org/. Accessed: 2018-04-29.

[KG] BIOTRONIK SE Co. KG. Biotronik ieee 11073-10103 xml struc-
ture. https://www.biotronik.com/sixcms/media.php/211/biotronik_ieee_
11073-10103_xml_structure.pdf. Accessed: 2018-04-29.

[Kro08] David M Kroenke. Experiencing MIS. Pearson Prentice Hall„ 2008.

[lab] labgeek. dd2vmdk. https://github.com/labgeek/dd2vmdk. Accessed: 2018-01-29.

[Lee00] A Lee. Systems thinking, design science, and paradigms: Heeding three lessons
from the past to resolve three dilemmas in the present to direct a trajectory for
future research in the information systems field,“keynote address. In Eleventh
International Conference on Information Management, Taiwan, 2000. Available
at: http://www.people.vcu.edu/~aslee/ICIM-keynote-2000/ICIM-keynote-2000.
htm. Accessed: 2018-05-06.

[Lev11] Eireann P Leverett. Quantitatively assessing and visualising industrial system
attack surfaces. University of Cambridge, Darwin College, 7, 2011.

https://www.reuters.com/article/us-gsk-alphabet/gsk-and-google-parent-forge-715-million-bioelectronic-medicines-firm-idUSKCN10C1K8
https://www.reuters.com/article/us-gsk-alphabet/gsk-and-google-parent-forge-715-million-bioelectronic-medicines-firm-idUSKCN10C1K8
https://ics-cert.us-cert.gov/advisories/ICSMA-17-241-01
https://ics-cert.us-cert.gov/advisories/ICSMA-17-241-01
https://ics-cert.us-cert.gov/advisories/ICSMA-18-107-01
https://ics-cert.us-cert.gov/advisories/ICSMA-18-107-01
https://downloadcenter.intel.com/download/18717/Network-Adapter-Drivers-for-Windows-XP-Final-Release
https://downloadcenter.intel.com/download/18717/Network-Adapter-Drivers-for-Windows-XP-Final-Release
https://linux.die.net/man/1/hivexsh
https://linux.die.net/man/1/hivexsh
http://libguestfs.org/
https://www.biotronik.com/sixcms/media.php/211/biotronik_ieee_11073-10103_xml_structure.pdf
https://www.biotronik.com/sixcms/media.php/211/biotronik_ieee_11073-10103_xml_structure.pdf
https://github.com/labgeek/dd2vmdk
http://www.people.vcu.edu/~aslee/ICIM-keynote-2000/ICIM-keynote-2000.htm
http://www.people.vcu.edu/~aslee/ICIM-keynote-2000/ICIM-keynote-2000.htm

98 REFERENCES

[Liv16] Carl Livitt. Preliminary expert report of carl d. livitt. 2016.

[LPL+12] Maurizio Landolina, Giovanni B Perego, Maurizio Lunati, Antonio Curnis,
Giuseppe Guenzati, Alessandro Vicentini, Gianfranco Parati, Gabriella Borghi,
Paolo Zanaboni, Sergio Valsecchi, et al. Remote monitoring reduces health-
care use and improves quality of care in heart failure patients with implantable
defibrillatorsclinical perspective: The evolution of management strategies of
heart failure patients with implantable defibrillators (evolvo) study. Circulation,
125(24):2985–2992, 2012.

[Lys15] Beitland K. Hagen J. Holmgren A. Lunde E. Gjøsteen K. Manne F. Jarbekk
E. Nystrøm S. Lysne, O. Digital sårbarhet – sikkert samfunn. 2015. Accessed
2018-05-30.

[Mar96] Martin N Marshall. The key informant technique. Family practice, 13:92–97,
1996.

[Mas] Dave Massy. What does the end of support of windows xp mean for windows
embedded? https://blogs.msdn.microsoft.com/windows-embedded/2014/02/17/
what-does-the-end-of-support-of-windows-xp-mean-for-windows-embedded/. Ac-
cessed: 2018-04-15.

[MCPF13] Bryan Marshall, Peter Cardon, Amit Poddar, and Renee Fontenot. Does sample
size matter in qualitative research?: A review of qualitative interviews in is
research. Journal of Computer Information Systems, 54(1):11–22, 2013.

[Mica] Microsoft. About cng. https://msdn.microsoft.com/en-us/library/windows/
desktop/aa375276(v=vs.85).aspx. Accessed: 2018-05-04.

[Micb] Microsoft. Msxml 4.0 sp3 release notes. https://www.cvedetails.
com/vulnerability-list/vendor_id-26/product_id-1813/version_id-6015/
Microsoft-Xml-Core-Services-4.0.html. Accessed 2018-05-12.

[Micc] Microsoft. /pdb (use program database). https://msdn.microsoft.com/en-us/
library/kwx19e36.aspx. Accessed: 2018-05-13.

[Micd] Microsoft. We recommend using visual studio 2017 download now /gs (buffer secu-
rity check). https://msdn.microsoft.com/en-us/library/8dbf701c.aspx. Accessed:
2018-05-01.

[Mice] Microsoft. Windows sysinternals. https://docs.microsoft.com/en-us/sysinternals/.
Accessed: 2018-05-13.

[MMC12] Martin McHugh, Fergal McCaffery, and Valentine Casey. Changes to the in-
ternational regulatory environment. Journal of Medical Devices, 6(2):021004,
2012.

[MS95] Salvatore T March and Gerald F Smith. Design and natural science research on
information technology. Decision support systems, 15(4):251–266, 1995.

https://blogs.msdn.microsoft.com/windows-embedded/2014/02/17/what-does-the-end-of-support-of-windows-xp-mean-for-windows-embedded/
https://blogs.msdn.microsoft.com/windows-embedded/2014/02/17/what-does-the-end-of-support-of-windows-xp-mean-for-windows-embedded/
https://msdn.microsoft.com/en-us/library/windows/desktop/aa375276(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa375276(v=vs.85).aspx
https://www.cvedetails.com/vulnerability-list/vendor_id-26/product_id-1813/version_id-6015/Microsoft-Xml-Core-Services-4.0.html
https://www.cvedetails.com/vulnerability-list/vendor_id-26/product_id-1813/version_id-6015/Microsoft-Xml-Core-Services-4.0.html
https://www.cvedetails.com/vulnerability-list/vendor_id-26/product_id-1813/version_id-6015/Microsoft-Xml-Core-Services-4.0.html
https://msdn.microsoft.com/en-us/library/kwx19e36.aspx
https://msdn.microsoft.com/en-us/library/kwx19e36.aspx
https://msdn.microsoft.com/en-us/library/8dbf701c.aspx
https://docs.microsoft.com/en-us/sysinternals/

REFERENCES 99

[MSG+16] Eduard Marin, Dave Singelée, Flavio D Garcia, Tom Chothia, Rik Willems,
and Bart Preneel. On the (in) security of the latest generation implantable
cardiac defibrillators and how to secure them. In Proceedings of the 32nd Annual
Conference on Computer Security Applications, pages 226–236. ACM, 2016.

[MV] Stephan Mueller and Marek Vasut. Linux kernel crypto api. https://www.kernel.
org/doc/html/v4.12/crypto/index.html. Accessed: 2018-05-05.

[New] Lily Hay Newman. The ransomware meltdown experts warned about is here. https:
//www.wired.com/2017/05/ransomware-meltdown-experts-warned/. Accessed:
2018-03-15.

[oEU16] Council of European Union. Council regulation (eu) no 5419/2016, 2016.
http://data.consilium.europa.eu/doc/document/ST-5419-2016-INIT/en/pdf.

[Pat90] Michael Quinn Patton. Qualitative evaluation and research methods. SAGE
Publications, inc, 1990.

[PLN+12] Helen Høgh Petersen, Mie Christa Jensen Larsen, Olav Wendelboe Nielsen, Finn
Kensing, and Jesper Hastrup Svendsen. Patient satisfaction and suggestions
for improvement of remote icd monitoring. Journal of interventional cardiac
electrophysiology, 34(3):317–324, 2012.

[Pup] Lorenzo Pupillo. Software vulnerabilities disclosure: The
european landscape. https://www.ceps.eu/publications/
software-vulnerabilities-disclosure-european-landscape. Accessed 2018-05-
21.

[RB17] Billy Rios and Jonathan Butts. Security evaluation of the implantable cardiac
device ecosystem architecture and implementation interdependencies. 2017.

[res] Dimensional research. Trends in security framework adoption - a survey of it and
security professionals. https://static.tenable.com/marketing/tenable-csf-report.
pdf. Accessed: 2018-05-13.

[RW73] Horst W Rittel and Melvin M Webber. 2.3 planning problems are wicked. Polity,
4:155–169, 1973.

[San17] Karen Sandler. Cyborg lawyer 2.0, "hack proof", 2017. https://sfconservancy.org/
blog/2017/apr/06/hack-proof/.

[Sch16] Suzzanne Schwartz. Postmarket management of cybersecurity in medical devices.
2016.

[Sho] FLOSS Shop. Openpgp smart card v3.3. https://www.floss-shop.de/en/
security-privacy/smartcards/13/openpgp-smart-card-v3.3. Accessed: 2018-04-28.

[Sofa] Chilkat Software. C determine if a zip is encrypted or password-protected.
https://www.example-code.com/csharp/zip_CheckForEncrypted.asp. Accessed:
2018-05-13.

https://www.kernel.org/doc/html/v4.12/crypto/index.html
https://www.kernel.org/doc/html/v4.12/crypto/index.html
https://www.wired.com/2017/05/ransomware-meltdown-experts-warned/
https://www.wired.com/2017/05/ransomware-meltdown-experts-warned/
http://data.consilium.europa.eu/doc/document/ST-5419-2016-INIT/en/pdf
https://www.ceps.eu/publications/software-vulnerabilities-disclosure-european-landscape
https://www.ceps.eu/publications/software-vulnerabilities-disclosure-european-landscape
https://static.tenable.com/marketing/tenable-csf-report.pdf
https://static.tenable.com/marketing/tenable-csf-report.pdf
https://sfconservancy.org/blog/2017/apr/06/hack-proof/
https://sfconservancy.org/blog/2017/apr/06/hack-proof/
https://www.floss-shop.de/en/security-privacy/smartcards/13/openpgp-smart-card-v3.3
https://www.floss-shop.de/en/security-privacy/smartcards/13/openpgp-smart-card-v3.3
https://www.example-code.com/csharp/zip_CheckForEncrypted.asp

100 REFERENCES

[Sofb] Chilkat Software. Chilkat .net 9.4.0 download. http://download.informer.com/
win-1192920767-4e5ef850-550846a3/chilkatdotnet4-9.4.0-win32.msi. Accessed
2018-03-12.

[Sofc] Chilkat Software. Ckzip c++ reference documentation. http://www.chilkatsoft.
com/refdoc/vcCkZipRef.html#prop12. Accessed: 2018-05-13.

[Sofd] Chilkat Software. Creating chilkat activex components in delphi. https://www.
chilkatsoft.com/p/p_153.asp. Accessed 2018-03-08.

[Sofe] Chilkat Software. Unzip a .zip archive. https://www.example-code.com/cpp/
zip_SimpleUnzip.asp. Accessed: 2018-03-15.

[Soff] Kithara Software. Real-time for windows. http://kithara.com/en. Accessed:
2018-04-27.

[SOMM10] Karen Sandler, Lysandra Ohrstrom, Laura Moy, and Robert McVay. Killed by
code: Software transparency in implantable medical devices. Software Freedom
Law Center, pages 308–319, 2010.

[STW+07] Roy Small, Wilson Tang, William Wickemeyer, Robin Germany, Bobbi Hoppe,
John Andriulli, Peter Brady, LaBeau Melody, and Douglas Hettrick. Managing
heart failure patients with intra-thoracic impedance monitoring: a multi-center
us evaluation. Journal of Cardiac Failure, 13(6):113–114, 2007.

[SVE+18] Leslie A. Saxon, Niraj Varma, Laurence M. Epstein, Leonard I. Ganz, and
Andrew E. Epstein. Factors influencing the decision to proceed to firmware
upgrades to implanted pacemakers for cybersecurity risk mitigation. Circulation,
2018.

[Tan] Ellen Tannam. Why cybersecurity is essential for the progress of medtech.
Accessed 2018-05-13.

[Tre57] Marc-Adelard Tremblay. The key informant technique: A nonethnographic
application. American Anthropologist, 59(4):688–701, 1957.

[VAMPR04] R Hevner Von Alan, Salvatore T March, Jinsoo Park, and Sudha Ram. Design
science in information systems research. MIS quarterly, 28(1):75–105, 2004.

[Wie14] Roel J. Wieringa. Design Science Methodology. Springer, 2014.

[Win] Winitor. pestudio. https://www.winitor.com/. Accessed: 2018-05-13.

[WSK17] Anders Been Wilhelmsen and Eivind Skjelmo Kristiansen. Security testing of
wireless body area networks with implantable medical devices, 2017.

[Yub] Yubico. Security key by yubico. https://www.yubico.com/product/
security-key-by-yubico/. Accessed: 2018-04-28.

http://download.informer.com/win-1192920767-4e5ef850-550846a3/chilkatdotnet4-9.4.0-win32.msi
http://download.informer.com/win-1192920767-4e5ef850-550846a3/chilkatdotnet4-9.4.0-win32.msi
http://www.chilkatsoft.com/refdoc/vcCkZipRef.html#prop12
http://www.chilkatsoft.com/refdoc/vcCkZipRef.html#prop12
https://www.chilkatsoft.com/p/p_153.asp
https://www.chilkatsoft.com/p/p_153.asp
https://www.example-code.com/cpp/zip_SimpleUnzip.asp
https://www.example-code.com/cpp/zip_SimpleUnzip.asp
http://kithara.com/en
https://www.winitor.com/
https://www.yubico.com/product/security-key-by-yubico/
https://www.yubico.com/product/security-key-by-yubico/

AppendixAList Files Code

A.1 Edited For Readability

This code has been altered for readability. Working versions of the code has been
given to the security project initiated by Dr. Moe. The order of functions has been
altered, functions has been simplified to highlight their purpose, and graphics and
print statements as been deleted.

A.1.1 List Files of Windows XP

The main script clean_xp_tabulator.py in listing A.1 imports the script storage_parser.py
in listing A.2 and tabulator.py in listing A.3

import s torage_parse r
import t a b u l a t o r
import os

output_file_name = ’ CleanXPFileTable . tex ’
output_fi le_path = ’ . . / s e c t i o n s / ’
s t o r a g e _ f o l d e r = os . path . abspath (’ c : / ’)

Parse s t o r a g e f o r t a b l e content
s torage_parse r . parse_storage_fo lder_for_f i l e_hashes_and_f i l e_paths (

s t o r a g e _ f o l d e r
)
s torage_parse r . p a r s e _ l a t e x _ f i l e (

output_fi le_path ,
output_file_name

)

Create t a b l e
t a b u l a t o r . ca tegor i ze_hashes (

s torage_parse r . hashes_from_storage ,
s torage_parse r . hashes_from_latex_f i le

)
t a b u l a t o r . build_updated_table_content ()

101

102 A. LIST FILES CODE

t a b u l a t o r . write_updated_table_content_to_fi le (
output_fi le_path ,
output_file_name

)

Listing A.1: clean_xp_tabulator.py

import subproces s
import os
import s t r i n g

s t o r a g e _ f o l d e r = None
hashes_from_storage = {} # key=hash and value=path
hashes_from_latex_f i le = {} #key=hash and value=path
l i n e s _ f r o m _ l a t e x _ f i l e = {} #key=hash and value=l i s t [path , d e s c r i p t i o n]
d u p l i c a t e F i l e s = s e t ()

de f parse_storage_fo lder_for_f i l e_hashes_and_f i l e_paths (
new_storage_folder) :

g l o b a l s t o r a g e _ f o l d e r
s t o r a g e _ f o l d e r = new_storage_folder
Get f i l e paths
f i l e _ p a t h s = get_f i l e_paths_in (s t o r a g e _ f o l d e r)
Get hashes o f f i l e s
generate_hashes_from_fi le_paths (hashes_from_storage , f i l e _ p a t h s)

de f get_f i l e_paths_in (f o l d e r) :
Setup f u n c t i o n v a r i a b l e s
f i l e _ p a t h s = s e t ()
storage_fo lder_path =

os . path . j o i n (
os . path . dirname (os . path . r ea lpa t h (__file__))
, ’ . . ’ , f o l d e r)

Traverse t a r g e t f o l d e r f o r s u b f o l d e r s and f i l e s
f o r root , d i r s , f i l e s in os . walk (storage_fo lder_path) :

base_path = s t r i n g . s p l i t (root , f o l d e r) [1]
f o r f i l e in f i l e s :

i f f i l e == " . DS_Store " or f i l e == " \ . DS_Store " :
p r i n t (" \ r " + graph i c s . Bco lor s .WARNING
+ " Ignor ing . DS_store f i l e at : "
+ base_path + " / " + f i l e
+ graph i c s . Bco lor s .ENDC)

e l s e :
f i l e _ p a t h s . add (base_path + " \\ " + f i l e)

r e turn f i l e _ p a t h s

de f generate_hashes_from_fi le_paths (
s to rage_dic t ionary ,
path_set

) :
Setup f u n c t i o n v a r i a b l e s
r e s u l t s = []

A.1. EDITED FOR READABILITY 103

s u b f o l d e r = ’ " . . / ’
i f " : " in s t o r a g e _ f o l d e r : # Handle abso lu t e path

s u b f o l d e r = ’ " ’

Generate hashes
f o r path in path_set :

tmp = subproces s . Popen (
’md5sum ’ + s u b f o l d e r + s t o r a g e _ f o l d e r + path + ’ " ’ ,
s h e l l=True ,
s tdout=subproces s . PIPE , s t d e r r=subproces s .STDOUT

)
print_var = tmp . stdout . read ()
tmp = print_var . s p l i t (" ∗ ")
hash_value = tmp [0] . s t r i p ()

hash_of_empty_file =
" d41d8cd98f00b204e9800998ecf8427e "

i f hash_value == hash_of_empty_file :
Ignore empty f i l e s

e l s e :
r e s u l t s . append ((hash_value , path))

Add hashes to d i c t i o n a r y
s to r ag e _d i c t i o na r y . update (r e s u l t s)
ident i fy_dup l i ca te_hashes (s to rage_dic t ionary , r e s u l t s)

de f ident i fy_dup l i ca te_hashes (s torage_dic t ionary , r e s u l t s) :
i f l en (s t o r a ge _ d i c t i o n ar y) != l en (r e s u l t s) :

seen_twice = l i s t _ d u p l i c a t e s (r e s u l t s)
f o r hash_value in seen_twice :

al l_matching = f i l t e r (
lambda x : x [0] == hash_value [0] ,
r e s u l t s

)
d u p l i c a t e F i l e s . add (tup l e (al l_matching))

de f l i s t _ d u p l i c a t e s (seq) :
seen = s e t ()
seen_add = seen . add
seen_twice = s e t (

l i n e f o r l i n e in seq i f
l i n e [0] in seen or seen_add (l i n e [0])

)
r e turn l i s t (seen_twice)

de f p a r s e _ l a t e x _ f i l e (output_fi le_path , output_file_name) :
t ry :

t a b l e _ f i l e = open (
output_fi le_path + output_file_name , ’ r ’

)
Table in l a t e x f i l e s t a r t s on l i n e 24
f o r i in xrange (24) :

t ry :

104 A. LIST FILES CODE

t a b l e _ f i l e . next ()
except S t o p I t e r a t i o n :

F i l e i s empty
break

f o r l i n e in t a b l e _ f i l e :
va lue s = s t r i n g . s p l i t (

l i n e . r e p l a c e (
" _" ,
"_"

) ,
’& ’

)
i f l en (va lue s) == 1 : # End o f l a t e x t a b l e

t a b l e _ f i l e . c l o s e ()
break

path = va lue s [0] . s t r i p ()
f i l ename = va lues [1] . s t r i p ()
d e s c r i p t i o n = va lues [2] . s t r i p ()
hash_value = va lue s [3] [: − 3] . s t r i p ()
Store hash , f i l e path and d e s c r i p t i o n
l i n e s _ f r o m _ l a t e x _ f i l e [hash_value] =

[path + " / " + f i l ename , d e s c r i p t i o n]
Store hash and f i l e path
hashes_from_latex_f i le [hash_value] =

path + " / " + f i l ename
except IOError :

Latex f i l e does not appear to e x i s t

Listing A.2: storage_parser.py

from t abu la t e import t abu la t e
import sys
import s torage_parse r
import sys
import codecs
sys . s tdout = codecs . g e t w r i t e r (’ u t f 8 ’) (sys . s tdout)

updated_table_content = [] # Content to be wr i t t en
added_f i l e s = {} # Hashvalue
unchanged_f i l e s = {} # Hashvalue
moved_fi les = {} # Hashvalue
d e l e t e d _ f i l e s = {} # Hashvalue
changed_f i l e s = {} # key = path , va lue = [newhash , oldhash]
d u p l i c a t e _ f i l e s = s e t ()

de f categor i ze_hashes (current_dict , past_dict) :
g l o b a l added_f i l e s
g l o b a l unchanged_f i l e s
g l o b a l moved_fi les
g l o b a l d e l e t e d _ f i l e s
g l o b a l changed_f i l e s

d i c t _ d i f f e r = D i c t D i f f e r (current_dict , past_dict)

A.1. EDITED FOR READABILITY 105

unchanged_f i l e s = d i c t _ d i f f e r . unchanged ()
added_f i l e s = d i c t _ d i f f e r . added ()
moved_fi les = d i c t _ d i f f e r . moved ()
d e l e t e d _ f i l e s = d i c t _ d i f f e r . d e l e t e d ()

de leted_f i l e s_tmp = d e l e t e d _ f i l e s . copy ()
added_files_tmp = added_f i l e s . copy ()

Handle changed f i l e s (same hash d i f f e r e n t path)
f o r hash_value_added in added_files_tmp :

f o r hash_value_deleted in de leted_f i l e s_tmp :
i f (cur rent_dic t [hash_value_added]

== past_dict [hash_value_deleted]
) :

changed_f i l e s [cur rent_dic t [hash_value_added]]
= [hash_value_deleted , hash_value_added]

added_f i l e s . remove (hash_value_added)
d e l e t e d _ f i l e s . remove (hash_value_deleted)

c l a s s D i c t D i f f e r (o b j e c t) :
D i c t D i f f e r from https : // github . com/hughdbrown/ d i c t d i f f e r
de f __init__ (s e l f , currentDict , pastDict) :

s e l f . currentDict , s e l f . pastDict = currentDict , pastDict
s e l f . setCurrent , s e l f . s e tPast = s e t (cur r entDic t . keys ()) , s e t (

pastDict . keys ())
s e l f . i n t e r s e c t = s e l f . s e tCurrent . i n t e r s e c t i o n (s e l f . s e tPast)

de f added (s e l f) :
r e turn s e l f . s e tCurrent − s e l f . i n t e r s e c t

de f d e l e t e d (s e l f) :
r e turn s e l f . s e tPast − s e l f . i n t e r s e c t

de f moved(s e l f) :
r e turn s e t (o f o r o in s e l f . i n t e r s e c t i f s e l f . pastDict [o] !=

s e l f . cu r r entDic t [o])

de f unchanged (s e l f) :
r e turn s e t (o f o r o in s e l f . i n t e r s e c t i f s e l f . pastDict [o] ==

s e l f . cu r r entDic t [o])

de f build_updated_table_content () :
f o r hash_value in s o r t e d (added_f i l e s) :

f i l e _ p a t h = storage_parse r
. hashes_from_storage [hash_value]

d e s c r i p t i o n = " "
path_elements = f i l e _ p a t h . r s p l i t (" \\ " , 1)
fo lder_path = path_elements [0]
f i le_name = path_elements [1]
c h e c k _ f o r _ i l l e g a l _ c h a r a c t e r (

106 A. LIST FILES CODE

"&" , fo lder_path , f i le_name
)
updated_table_content . append ([

fo lder_path ,
fi le_name ,
d e s c r i p t i o n ,
hash_value

])

f o r hash_value in s o r t e d (unchanged_f i l e s) :
l i n e = storage_parse r

. l i n e s _ f r o m _ l a t e x _ f i l e [hash_value]
f i l e _ p a t h = l i n e [0]
d e s c r i p t i o n = l i n e [1]
path_elements = f i l e _ p a t h . r s p l i t (" \\ " , 1)
fo lder_path = path_elements [0]
f i le_name = path_elements [1]
updated_table_content . append ([

fo lder_path ,
fi le_name ,
d e s c r i p t i o n ,
hash_value

])

f o r hash_value in s o r t e d (moved_fi les) :
f i l e _ p a t h = storage_parse r

. hashes_from_storage [hash_value]
o ld_f i l e_path = storage_parse r

. hashes_from_latex_f i le [hash_value]
path_elements = f i l e _ p a t h . r s p l i t (" \\ " , 1)
fo lder_path = path_elements [0]
f i le_name = path_elements [1]
c h e c k _ f o r _ i l l e g a l _ c h a r a c t e r (

"&" , fo lder_path , f i le_name
)
d e s c r i p t i o n = storage_parse r

. l i n e s _ f r o m _ l a t e x _ f i l e [hash_value] [1]
updated_table_content . append ([

fo lder_path ,
fi le_name ,
d e s c r i p t i o n ,
hash_value

])

f o r f i l e_path , hashLi s t in s o r t e d (changed_f i l e s . i tems ()) :
d e s c r i p t i o n = storage_parse r

. l i n e s _ f r o m _ l a t e x _ f i l e [hashLi s t [0]] [1]
path_elements = f i l e _ p a t h . r s p l i t (" \\ " , 1)
fo lder_path = path_elements [0]
f i le_name = path_elements [1]
updated_table_content . append ([

fo lder_path ,

A.1. EDITED FOR READABILITY 107

f i le_name ,
d e s c r i p t i o n ,
hashLi s t [1]

])

de f c h e c k _ f o r _ i l l e g a l _ c h a r a c t e r (
i l l e g a l _ c h a r a c t e r ,
fo lder_path ,
f i le_name

) :
i f i l l e g a l _ c h a r a c t e r in fo lder_path :

sys . e x i t ()
i f i l l e g a l _ c h a r a c t e r in f i le_name :

sys . e x i t ()

de f write_updated_table_content_to_fi le (
output_f i l epath ,
output_fi lename

) :
o u t p u t _ f i l e = open (

output_f i l epath
+ output_fi lename ,
’w ’

)
Write everyth ing needed b e f o r e t a b l e content
o u t p u t _ f i l e . wr i t e (

’ %!TEX root = . . / main . tex \n ’
)
o u t p u t _ f i l e . wr i t e (

’% Please only e d i t d e s c r i p t i o n s \n ’
)
o u t p u t _ f i l e . wr i t e (

’ \\ begin { landscape }\n\ c e n t e r i n g \n
\\ t a b u l i n e s e p=_3pt^3 pt \n
\\ begin { longtabu } to
\ l i n e w i d t h { |X[1 , l] | X[2 , l] | X[1 , l]H|}\ n
\ capt ion { F i l e L i s t }\n\ l a b e l { tab : f i l e _ l i s t }\\\\\n
\\ t a b u c l i n e [1 pt]{1 −}\n ’

)
o u t p u t _ f i l e . wr i t e (

’ \n\\ t e x t b f {Path} & \\ t e x t b f { Filename } &
\\ t e x t b f { D e s c r i p t i o n } & \\ t e x t b f {Hash} \\\\\n
\\ t a b u c l i n e [0 . 5 pt]{1 −}\n
\ e n d f i r s t h e a d \n\ capt ion {
\\ tablename −−
\\ t e x t i t { Continued from prev ious page }} \\\\ ’

)
o u t p u t _ f i l e . wr i t e (

’ \n\\ t a b u c l i n e [0 . 5 pt]{1 −}\n
\\ rowfont [c]{\\ b f s e r i e s }\n
Path & Filename & D e s c r i p t i o n & Hash \\\\\n
\\ t a b u c l i n e [0 . 5 pt]{1 −}\n\endhead\n\

108 A. LIST FILES CODE

\ t a b u c l i n e [0 . 5 pt]{1−}
\ multicolumn {4}{ l }{\\ t e x t i t { Continued on next page }}
\\\\\ endfoot \n
\\ t a b u c l i n e [1 pt]{1 −}\n
\ e n d l a s t f o o t \n
\\ taburowco lors [1] 2 { l i g h t g r e y . . white } ’

)

Write t a b l e content
o u t p u t _ f i l e . wr i t e (

ta bu l a t e (so r t e d (updated_table_content) ,
tab le fmt=" l a t e x ") . s p l i t (’ \ h l i n e ’ , 2) [1]

)
Write everyth ing needed a f t e r t a b l e content
o u t p u t _ f i l e . wr i t e (’ \end{ longtabu }\n\end{ landscape } ’)
o u t p u t _ f i l e . c l o s e ()

Listing A.3: tabulator.py

A.1.2 List Files and Signatures

The only differences between main.py in listing A.4 and
clean_xp_tabulator.py from listing A.1 are the storage_parser and tabulator
imported, which storage folder to parse and the output filename. The script can be
used with different storage_folder and output_filename variables for the LATEX table
to accomodate parsing both the programmers disk partitions. It is also used for the
table of interesting files in the Bio\Execute\Tools folder.

import s i g n t o o l _ p a r s e r as s torage_parse r
import s i g n t o o l _ t a b u l a t o r as t a b u l a t o r

output_file_name = ’ DDiskFi leTableWithSignatures . tex ’
output_fi le_path = ’ . . \ \ s e c t i o n s \\ ’
s t o r a g e _ f o l d e r = ’G:\\ ’

Parse s t o r a g e f o r t a b l e content
s torage_parse r . parse_storage_fo lder_for_f i l e_hashes_and_f i l e_paths (

s t o r a g e _ f o l d e r
)
s torage_parse r . p a r s e _ l a t e x _ f i l e (output_fi le_path , output_file_name)

Create t a b l e
t a b u l a t o r . ca tegor i ze_hashes (

s torage_parse r . hashes_from_storage ,
s torage_parse r . hashes_from_latex_f i le

)
t a b u l a t o r . build_updated_table_content ()
t a b u l a t o r . write_updated_table_content_to_fi le (

output_fi le_path ,
output_file_name

A.1. EDITED FOR READABILITY 109

)

Listing A.4: main.py configured for the programmers D partition

The resulting LATEX table from clean_xp_tabulator.py from listing A.1 is used by
signtool_parser.py in listing A.5 to ignore file paths and names or hash values
that has previously been parsed in a clean Windows XP installation.
import subproces s
import os
import s t r i n g
import s i g n t o o l _ t a b u l a t o r as t a b u l a t o r

s t o r a g e _ f o l d e r = None
xp_latex_fi le_path = ’ . . / s e c t i o n s / CleanXPFileTable . tex ’
hashes_from_xp_latex_fi le = s e t ()
hashes_from_storage = {}
hashes_from_latex_f i le = {}
l i n e s _ f r o m _ l a t e x _ f i l e = {}
hashes_with_signatures = {}
d u p l i c a t e F i l e s = s e t ()

de f parse_storage_fo lder_for_f i l e_hashes_and_f i l e_paths (
new_storage_folder

) :
g l o b a l s t o r a g e _ f o l d e r
g l o b a l hashes_from_xp_latex_fi le
s t o r a g e _ f o l d e r = new_storage_folder
f i l e _ p a t h s = get_f i l e_paths_in (s t o r a g e _ f o l d e r)
de fault_xp_f i le_paths = get_f i l e_paths_from_latex_f i l e (

xp_latex_fi le_path
)
i n t e r e s t i n g _ f i l e _ p a t h s = f i l e _ p a t h s . d i f f e r e n c e (

default_xp_f i le_paths
)
hashes_from_xp_latex_fi le = get_hashes_from_latex_fi le (

xp_latex_fi le_path
)
generate_hashes_from_fi le_paths (

hashes_from_storage ,
i n t e r e s t i n g _ f i l e _ p a t h s

)

de f get_f i l e_paths_in (f o l d e r) :
Setup f u n c t i o n v a r i a b l e s
f i l e _ p a t h s = s e t ()
storage_fo lder_path =

os . path . j o i n (
os . path . dirname (

os . path . r ea lp a th (__file__)
) ,
’ . . ’ ,

110 A. LIST FILES CODE

f o l d e r
)

Traverse t a r g e t f o l d e r f o r s u b f o l d e r s and f i l e s
f o r root , d i r s , f i l e s in os . walk (storage_fo lder_path) :

base_path = s t r i n g . s p l i t (root , f o l d e r) [1]
f o r f i l e in f i l e s :

i f f i l e == " . DS_Store " or f i l e == " / . DS_Store " :
Ignore . DS_Store f i l e

e l s e :
f i l e _ p a t h s . add ((base_path + " \\ " + f i l e))

r e turn f i l e _ p a t h s

de f get_f i l e_paths_from_latex_f i l e (xp_latex_fi le_path) :
paths_from_xp_latex_fi le = s e t ()
t ry :

t a b l e _ f i l e = open (xp_latex_fi le_path , ’ r ’)
f o r i in xrange (24) : # Table s t a r t s at l i n e 24

try :
t a b l e _ f i l e . next ()

except S t o p I t e r a t i o n :
Table i s empty
break

f o r l i n e in t a b l e _ f i l e :
l i n e = l i n e . r e p l a c e (" t e x t b a c k s l a s h {} " , " ")
va lue s = s t r i n g . s p l i t (l i n e . r e p l a c e (" _" , "_") , ’& ’)
i f l en (va lue s) == 1 : # End o f t a b l e

t a b l e _ f i l e . c l o s e ()
break

path = va lue s [0] . s t r i p ()
f i l ename = va lues [1] . s t r i p ()
paths_from_xp_latex_fi le . add (path+" \\ "+f i l ename)

except IOError :
F i l e does not e x i s t

r e turn paths_from_xp_latex_fi le

de f get_hashes_from_latex_fi le (xp_latex_fi le_path) :
hashes_from_xp_latex_fi le = s e t ()
t ry :

t a b l e _ f i l e = open (xp_latex_fi le_path , ’ r ’)
f o r i in xrange (24) : # Table s t a r t s at l i n e 24

try :
t a b l e _ f i l e . next ()

except S t o p I t e r a t i o n :
Table i s empty
break

f o r l i n e in t a b l e _ f i l e :
l i n e = l i n e . r e p l a c e (" t e x t b a c k s l a s h {} " , " ")
va lue s = s t r i n g . s p l i t (l i n e . r e p l a c e (" _" , "_") , ’& ’)
i f l en (va lue s) == 1 : # End o f t a b l e

t a b l e _ f i l e . c l o s e ()
break

A.1. EDITED FOR READABILITY 111

hash_value = va lue s [3] . s t r i p ()
hashes_from_xp_latex_fi le . add (hash_value)

except IOError :
F i l e does not e x i s t

r e turn hashes_from_xp_latex_fi le

de f generate_hashes_from_fi le_paths (
s to rage_dic t ionary ,
path_set

) :
Setup f u n c t i o n v a r i a b l e s
r e s u l t s = []
s i g n a t u r e s = []
f o r path in path_set :

Generate hash
md5 = subproces s . Popen (

’md5sum " ’ + s t o r a g e _ f o l d e r + path + ’ " ’ ,
s h e l l=True ,
s tdout=subproces s . PIPE

)
print_var = md5 . stdout . read ()
md5 = print_var . s p l i t (" ∗ ")
hash_value = md5 [0] . s t r i p () [1 :]
hash_of_empty_file = " d41d8cd98f00b204e9800998ecf8427e "
i f hash_value == hash_of_empty_file :

Ignore empty f i l e s
cont inue

i f hash_value in hashes_from_xp_latex_fi le :
Ignore o r i g i n a l XP f i l e s
cont inue

e l s e :
r e s u l t s . append ((hash_value , path))

Ver i fy f i l e s i g n a t u r e
s i g n t o o l _ v e r i f y = subproces s . Popen (

" \"C:\\ Program F i l e s \\ Mic roso f t Visua l Studio \\2017\\
Community\\Common7\\ Tools \\VsDevCmd . bat \" "

Need to add s i g n t o o l . exe to path v a r i a b l e
+ ’ && s e t PATH="C:\\ Program F i l e s \\ Mic roso f t SDKs\\Windows

\\v7 .1\\ Bin ";%PATH%’
+ ’ && s i g n t o o l . exe v e r i f y /pa " ’
+ s t o r a g e _ f o l d e r + path + ’ " ’ ,
s h e l l=True ,
s tdout=subproces s . PIPE ,
s t d e r r=subproces s .STDOUT

)
print_var = s i g n t o o l _ v e r i f y . s tdout . read ()

F i l t e r s i g n a t u r e v e r i f i c a t i o n r e s u l t
r e s u l t = print_var . s p l i t ("

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ") [2]
. s t r i p () . s p l i t (" : ")

112 A. LIST FILES CODE

i f l en (r e s u l t)==2:
v e r i f y _ r e s u l t = r e s u l t [0]

i f l en (r e s u l t)==3:
v e r i f y _ r e s u l t = r e s u l t [2]

i f l en (r e s u l t)==4:
v e r i f y _ r e s u l t = r e s u l t [2] . s t r i p () + " : " + r e s u l t [3]

v e r i f y _ r e s u l t = v e r i f y _ r e s u l t . r e p l a c e (" \ r \n " , " ") . s t r i p ()
v e r i f y _ r e s u l t = v e r i f y _ r e s u l t . r e p l a c e (" \ r " , " ") . s t r i p ()
v e r i f y _ r e s u l t = v e r i f y _ r e s u l t . r e p l a c e (

" This f i l e format cannot be v e r i f i e d because i t i s not
r e cogn i z ed . " ,

"Unknown f i l e format "
)

s i g n a t u r e s . append ((hash_value , v e r i f y _ r e s u l t))
Add hashes to d i c t i o n a r y
s to r ag e _d i c t i o na r y . update (r e s u l t s)
ident i fy_dup l i ca te_hashes (s to rage_dic t ionary , r e s u l t s)
Add r e s u l t from s i g n a t u r e v e r i f i c a t i o n to d i c t i o n a r y
hashes_with_signatures . update (s i g n a t u r e s)

de f l i s t _ d u p l i c a t e s (seq) :
seen = s e t ()
seen_add = seen . add
seen_twice = s e t (l i n e f o r l i n e in seq i f l i n e [0] in seen or
seen_add (l i n e [0]))
r e turn l i s t (seen_twice)

de f ident i fy_dup l i ca te_hashes (s torage_dic t ionary , r e s u l t s) :
i f l en (s t o r a ge _ d i c t i o n ar y) != l en (r e s u l t s) :

seen_twice = l i s t _ d u p l i c a t e s (r e s u l t s)
f o r hash_value in seen_twice :

al l_matching = f i l t e r (lambda x : x [0] == hash_value [0] ,
r e s u l t s)

d u p l i c a t e F i l e s . add (tup l e (al l_matching))

de f p a r s e _ l a t e x _ f i l e (output_fi le_path , output_file_name) :
t ry :

t a b l e _ f i l e = open (output_fi le_path + output_file_name , ’ r ’)
Table in l a t e x f i l e s t a r t s on l i n e 24
f o r i in xrange (24) :

t ry :
t a b l e _ f i l e . next ()

except S t o p I t e r a t i o n :
F i l e i s empty
break

f o r l i n e in t a b l e _ f i l e :
va lue s = s t r i n g . s p l i t (

l i n e . r e p l a c e (
" _" ,
"_"

A.1. EDITED FOR READABILITY 113

) ,
’& ’

)
i f l en (va lue s) == 1 : # End o f l a t e x t a b l e

t a b l e _ f i l e . c l o s e ()
break

path = va lue s [0] . s t r i p ()
f i l ename = va lue s [1] . s t r i p ()
d e s c r i p t i o n = va lues [2] . s t r i p ()
hash_value = va lue s [3] . s t r i p ()
Store has , f i l e path and d e s c r i p t i o n
l i n e s _ f r o m _ l a t e x _ f i l e [hash_value] =

[path + " \\ " + f i l ename , d e s c r i p t i o n]
Store has hand f i l e path
hashes_from_latex_f i le [hash_value] =

path + " \\ " + f i l ename
except IOError :

Latex f i l e does not appear to e x i s t

Listing A.5: signtool_parser.py

from t abu la t e import t abu la t e
import sys
import s i g n t o o l _ p a r s e r as s torage_parse r

updated_table_content = [] # Content to be wr i t t en
added_f i l e s = {} # Hashvalue
unchanged_f i l e s = {} # Hashvalue
moved_fi les = {} # Hashvalue
d e l e t e d _ f i l e s = {} # Hashvalue
changed_f i l e s = {} # key = path , va lue = [newhash , oldhash]
d u p l i c a t e _ f i l e s = s e t ()

de f categor i ze_hashes (current_dict , past_dict) :
g l o b a l added_f i l e s
g l o b a l unchanged_f i l e s
g l o b a l moved_fi les
g l o b a l d e l e t e d _ f i l e s
g l o b a l changed_f i l e s

d i c t _ d i f f e r = D i c t D i f f e r (current_dict , past_dict)

unchanged_f i l e s = d i c t _ d i f f e r . unchanged ()
added_f i l e s = d i c t _ d i f f e r . added ()
moved_fi les = d i c t _ d i f f e r . moved ()
d e l e t e d _ f i l e s = d i c t _ d i f f e r . d e l e t e d ()

de leted_f i l e s_tmp = d e l e t e d _ f i l e s . copy ()
added_files_tmp = added_f i l e s . copy ()

Handle changed f i l e s (same hash d i f f e r e n t path)
f o r hash_value_added in added_files_tmp :

f o r hash_value_deleted in de leted_f i l e s_tmp :

114 A. LIST FILES CODE

i f cur rent_dic t [hash_value_added] == past_dict [
hash_value_deleted] :

changed_f i l e s [cur rent_dic t [hash_value_added]] = [
hash_value_deleted , hash_value_added]

added_f i l e s . remove (hash_value_added)
d e l e t e d _ f i l e s . remove (hash_value_deleted)

c l a s s D i c t D i f f e r (o b j e c t) :
D i c t D i f f e r from https : // github . com/hughdbrown/ d i c t d i f f e r

de f __init__ (s e l f , currentDict , pastDict) :
s e l f . currentDict , s e l f . pastDict = currentDict , pastDict
s e l f . setCurrent , s e l f . s e tPast = s e t (cur r entDic t . keys ()) , s e t (

pastDict . keys ())
s e l f . i n t e r s e c t = s e l f . s e tCurrent . i n t e r s e c t i o n (s e l f . s e tPast)

de f added (s e l f) :
r e turn s e l f . s e tCurrent − s e l f . i n t e r s e c t

de f d e l e t e d (s e l f) :
r e turn s e l f . s e tPast − s e l f . i n t e r s e c t

de f moved(s e l f) :
r e turn s e t (o f o r o in s e l f . i n t e r s e c t i f s e l f . pastDict [o] !=

s e l f . cu r r entDic t [o])

de f unchanged (s e l f) :
r e turn s e t (o f o r o in s e l f . i n t e r s e c t i f s e l f . pastDict [o] ==

s e l f . cu r r entDic t [o])

de f build_updated_table_content () :
f o r hash_value , path in (

s torage_parse r . hashes_from_storage . i tems ()
) :

i f "\%" in path :
s torage_parse r

. hashes_from_storage [hash_value] =
path . r e p l a c e ("\%" , " \ t e x t b a c k s l a s h\%")

r e p l a c e =
(’ \\ ’ , ’ \\ t e x t b a c k s l a s h {} ’) ,
(’_ ’ , ’ _ ’) ,
(’ $ ’ , ’ \$ ’) ,
(’ ’ , ’ \ ’)

f o r hash_value in s o r t e d (added_f i l e s) :
f i l e _ p a t h = storage_parse r

. hashes_from_storage [hash_value]
d e s c r i p t i o n = " "
path_elements = f i l e _ p a t h . r s p l i t (" \\ " , 1)
fo lder_path = path_elements [0]
f i le_name = path_elements [1]
c h e c k _ f o r _ i l l e g a l _ c h a r a c t e r (

"&" , fo lder_path , f i le_name

A.1. EDITED FOR READABILITY 115

)
fo lder_path = reduce (

lambda a ,
kv : a . r e p l a c e (∗ kv) ,
r ep lace ,
fo lder_path

)
f i le_name = reduce (

lambda a ,
kv : a . r e p l a c e (∗ kv) ,
r ep lace ,
f i le_name

)
updated_table_content . append ([

" \ s e q s p l i t { "+fo lder_path+" } " ,
" \ s e q s p l i t { "+fi le_name+" } " ,
d e s c r i p t i o n ,
hash_value ,
s torage_parse r . hashes_with_signatures [hash_value]

])

f o r hash_value in s o r t e d (unchanged_f i l e s) :
l i n e = storage_parse r

. l i n e s _ f r o m _ l a t e x _ f i l e [hash_value]
f i l e _ p a t h = l i n e [0]
d e s c r i p t i o n = l i n e [1]
path_elements = f i l e _ p a t h . r s p l i t (" \\ " , 1)
fo lder_path = path_elements [0]
f i le_name = path_elements [1]
fo lder_path = reduce (

lambda a ,
kv : a . r e p l a c e (∗ kv) ,
r ep lace ,
fo lder_path

)
f i le_name = reduce (

lambda a ,
kv : a . r e p l a c e (∗ kv) ,
r ep lace ,
f i le_name

)
updated_table_content . append ([

" \ s e q s p l i t { "+fo lder_path+" } " ,
" \ s e q s p l i t { "+fi le_name+" } " ,
d e s c r i p t i o n ,
hash_value ,
s torage_parse r . hashes_with_signatures [hash_value]

])

f o r hash_value in s o r t e d (moved_fi les) :
f i l e _ p a t h = storage_parse r

. hashes_from_storage [hash_value]

116 A. LIST FILES CODE

o ld_f i l e_path = storage_parse r
. hashes_from_latex_f i le [hash_value]

path_elements = f i l e _ p a t h . r s p l i t (" \\ " , 1)
fo lder_path = path_elements [0]
f i le_name = path_elements [1]
c h e c k _ f o r _ i l l e g a l _ c h a r a c t e r (

"&" , fo lder_path , f i le_name
)
d e s c r i p t i o n = storage_parse r

. l i n e s _ f r o m _ l a t e x _ f i l e [hash_value] [1]
fo lder_path = reduce (

lambda a ,
kv : a . r e p l a c e (∗ kv) ,
r ep lace ,
fo lder_path

)
f i le_name = reduce (

lambda a ,
kv : a . r e p l a c e (∗ kv) ,
r ep lace ,
f i le_name

)
updated_table_content . append ([

" \ s e q s p l i t { "+fo lder_path+" } " ,
" \ s e q s p l i t { "+fi le_name+" } " ,
d e s c r i p t i o n ,
hash_value ,
s torage_parse r . hashes_with_signatures [hash_value]

])

f o r f i l e_path , hashLi s t in s o r t e d (changed_f i l e s . i tems ()) :
d e s c r i p t i o n = storage_parse r

. l i n e s _ f r o m _ l a t e x _ f i l e [hashLi s t [0]] [1]
path_elements = f i l e _ p a t h . r s p l i t (" \\ " , 1)
fo lder_path = path_elements [0]
f i le_name = path_elements [1]
fo lder_path = reduce (

lambda a ,
kv : a . r e p l a c e (∗ kv) ,
r ep lace ,
fo lder_path

)
f i le_name = reduce (

lambda a ,
kv : a . r e p l a c e (∗ kv) ,
r ep lace ,
f i le_name

)
updated_table_content . append ([

" \ s e q s p l i t { "+fo lder_path+" } " ,
" \ s e q s p l i t { "+fi le_name+" } " ,
d e s c r i p t i o n ,

A.1. EDITED FOR READABILITY 117

hashLi s t [1] ,
s to rage_parse r

. hashes_with_signatures [hashLi s t [1]]
])

de f c h e c k _ f o r _ i l l e g a l _ c h a r a c t e r (
i l l e g a l _ c h a r a c t e r ,
fo lder_path ,
f i le_name

) :
i f i l l e g a l _ c h a r a c t e r in fo lder_path :

sys . e x i t ()
i f i l l e g a l _ c h a r a c t e r in f i le_name :

sys . e x i t ()

de f write_updated_table_content_to_fi le (
output_f i l epath ,
output_fi lename

) :
o u t p u t _ f i l e = open (

output_f i l epath
+ output_fi lename ,
’w ’

)
Write everyth ing needed b e f o r e t a b l e content
o u t p u t _ f i l e . wr i t e (’ %!TEX root = . . / main . tex \n ’)
o u t p u t _ f i l e . wr i t e (’% Please only e d i t d e s c r i p t i o n s \n ’)
o u t p u t _ f i l e . wr i t e (

’ \\ begin { landscape }\n\ c e n t e r i n g \n
\\ t a b u l i n e s e p=_3pt^3 pt \n
\\ begin { longtabu }
to \ l i n e w i d t h { |X[1 . 5 , l] | X[1 . 5 , l] | X[1 , l]H|X[1 , l] | } \ n
\ capt ion { F i l e L i s t }\n
\ l a b e l { tab : f i l e _ l i s t }\\\\\n
\\ t a b u c l i n e [1 pt]{1 −}\n ’

)
o u t p u t _ f i l e . wr i t e (

’ \n\\ t e x t b f {Path} & \\ t e x t b f { Filename } &
\\ t e x t b f { D e s c r i p t i o n } & \\ t e x t b f {Hash} &
\\ t e x t b f { S i g n t o o l v e r i f i c a t i o n } \\\\\n
\\ t a b u c l i n e [0 . 5 pt]{1 −}\n
\ e n d f i r s t h e a d \n
\ capt ion {\\ tablename −−
\\ t e x t i t { Continued from prev ious page }} \\\\ ’

)
o u t p u t _ f i l e . wr i t e (

’ \n\\ t a b u c l i n e [0 . 5 pt]{1 −}\n
\\ rowfont [c]{\\ b f s e r i e s }\n
Path & Filename & D e s c r i p t i o n &
Hash & S i g n t o o l V e r i f i c a t i o n \\\\\n
\\ t a b u c l i n e [0 . 5 pt]{1 −}\n
\endhead\n

118 A. LIST FILES CODE

\\ t a b u c l i n e [0 . 5 pt]{1−}
\ multicolumn {5}{ l }{\\ t e x t i t { Continued on next page }}
\\\\\ endfoot \n
\\ t a b u c l i n e [1 pt]{1 −}\n
\ e n d l a s t f o o t \n
\\ taburowco lors [1] 2 { l i g h t g r e y . . white } ’

)
Write t a b l e content
o u t p u t _ f i l e . wr i t e (

ta bu l a t e (
s o r t e d (updated_table_content) ,
tab le fmt=" latex_raw "

) . s p l i t (’ \ h l i n e ’ , 2) [1]
)
Write everyth ing needed a f t e r t a b l e content
o u t p u t _ f i l e . wr i t e (

’ \end{ longtabu }\n
\end{ landscape } ’

)
o u t p u t _ f i l e . c l o s e ()

Listing A.6: signtool_tabulator.py

#
Requirements f o r macOS
#
#brew i n s t a l l md5sha1sum

#
Requirements without v e r s i o n s p e c i f i e r s
#
ta bu l a t e
p r o g r e s s
tqdm

Listing A.7: requirements.txt

A.2 Performance

Utility was prioritized above performance since the script itself is outside the scope
of this thesis. However, since the script takes 4-5 hours to complete it is reasonable
to address that the performance can be improved. One suggestion is replacing MD5
as the hash algorithm with for instance xxHash, reported to be 16 times faster
https://github.com/Cyan4973/xxHash(sourced: 27. april).

Signature verification with Signtool takes about 1.4 seconds per file, and only files
that are not part of a default Windows XP installation is verified.

https://github.com/Cyan4973/xxHash

AppendixBDescription of Drivers and
Functions in Kithara Base Driver

The following are translated descriptions of the drivers that apperad on the Kithara
web page in 2002.

About the base driver: ‘Basic package, always required, functions to open the driver,
to find error descriptions, version control, debug aids’

‘The I/O Accelerator is a tool for direct access to I/O ports and physical memory
as well as the identification of PCI data and interface resources. The accesses are
made quickly and directly to any I/O ports.’

‘The »Hardware Toolkit« expands the »I/O Accelerator« with powerful mechanisms
for interrupt programming. This provides all the necessary mechanisms for the rapid
development of hardware drivers.’

‘The Timer Toolkit is a tool for creating time-critical applications and real-time
controls. It provides accurate timer routines and functions for high-resolution time
measurements.’

Description of functions found after reverse engineering the Kithara Base Driver
with Ida Pro are sourced from the Kithara documentation of the Base and Ker-
nel Driver at http://kithara.com/en/docs/krts:modules:base and http://kithara.
com/en/docs/krts:modules:kernel. One function missing description is the function
KS_registerRtxAddress.,

KS_startKernel Starts the kernel driver
KS_stopKernel Stops the kernel driver
KS_resetKernel Reset the kernel during development
KS_getDriverVersion Determine the driver version
KS_openDriver Open the driver

119

http://kithara.com/en/docs/krts:modules:base
http://kithara.com/en/docs/krts:modules:kernel.
http://kithara.com/en/docs/krts:modules:kernel.

120 B. DESCRIPTION OF DRIVERS AND FUNCTIONS IN KITHARA BASE
DRIVER

KS_closeDriver Close the driver
KS_getThreadPrio Gives the absolute priority of the current thread
KS_setThreadPrio Sets the absolute priority of the current thread
KS_createThread Creates a Windows application thread
KS_createThreadEx Creates a Windows application thread
KS_removeThread Exits from a Windows application thread
KS_createSharedMem Creates shared memory for data exchange
KS_freeSharedMem Frees shared memory
KS_getSharedMem Gives the current address of shared memory
KS_prepareKernelExec prepares user-space code for kernel-space execution
KS_endKernelExec Frees resources formerly allocated by KS_prepareKernelExec
KS_testKernelExec Runs code on kernel-level
KS_registerRtxAddress
KS_execSyncFunction Executes a function synchronized with an interrupt handler
KS_createEvent Creates an event object. To block Windows threads or tasks.
KS_closeEvent Removes an event object.
KS_setEvent Sets the event
KS_resetEvent Resets the event
KS_pulseEvent Sets and immediately resets the event
KS_waitForEvent Blocks the current thread or task for an event
KS_getEventState Gives the status of an event
KS_postMessage Posts a message to a window
KS_getErrorStringEx Error code in plain text
KS_getErrorString Error code in plain text
KS_createKernelCallBack Creates a callback object on a kernel-DLL function
KS_createCallBackEx Creates a callback object for execution on application level

or kernel level
KS_createCallBack Creates a callback object for execution on application level

or kernel level
KS_removeCallBack Removes a callback
KS_execCallBack Executes a callback
KS_getCallState Gives information about a signal handler

121

KS_enterQuietSection Starts execution of ring-3 (application level) code on ring-0
(kernellevel)

KS_releaseQuietSection Ends execution of ring-3 code on ring-0
KS_loadKernel Loads a DLL in a specific address-space
KS_freeKernel Unloads a DLL from memory
KS_execKernelFunction Executes a function of a kernel-DLL by name
KS_logMessage Generates a log message in the Kernel Tracer
KS_makeBeep Beeps shortly over the speaker

Table B.1: Descriptions of functions in Kithara

AppendixCList of PDB Paths

c : \ EgsV01\System\PMSpecificComponents\ Belos \ H o l t e r D e t a i l s B e l o s \ Release \
H o l t e r D e t a i l s B e l o s . pdb

c : \ EgsV01\System\PMSpecificComponents\ Belos \ HolterViewBelos \ Release \
HolterViewBelos . pdb

c : \ EgsV01\System\PMSpecificComponents\Primus\AppPrimusParmTransmit\
Re lease \AppPrimusParmTransmit . pdb

c : \ EgsV01\System\PMSpecificComponents\Primus\AppPrimus\ Release \
AppPrimus . pdb

c : \ EgsV01\System\PMSpecificComponents\Primus\BioFUPHistory\ Release \
BioFUPHistory . pdb

c : \ EgsV01\System\PMSpecificComponents\Primus\CommunicationPrimus\
Release \CommunicationPrimus . pdb

c : \ EgsV01\System\PMSpecificComponents\Primus\ CurrentCalcPrimus \ Release \
CurrentCalcPrimus . pdb

c : \ EgsV01\System\PMSpecificComponents\Primus\ HolterPrimus \ Release \
HolterPrimus . pdb

c : \ EgsV01\System\PMSpecificComponents\Primus\ I d e n t i f i c a t i o n P r i m u s \
Release \ I d e n t i f i c a t i o n P r i m u s . pdb

c : \ EgsV01\System\PMSpecificComponents\Primus\IegmPrimus\ Release \
IegmPrimus . pdb

c : \ EgsV01\System\PMSpecificComponents\Primus\ NavigationPrimus \ Release \
NavigationPrimus . pdb

c : \ EgsV01\System\PMSpecificComponents\Primus\ OptionsPrimus \ Release \
OptionsPrimus . pdb

c : \ EgsV01\System\PMSpecificComponents\Primus\ ParametersLayoutPrimus \
Release \ ParametersLayoutPrimus . pdb

c : \ EgsV01\System\PMSpecificComponents\Primus\PrimusCore\ Release \
PrimusCore . pdb

c : \ EgsV01\System\PMSpecificComponents\Primus\ PrimusRules \R1\ Release \
PrimusRulesR1 . pdb

c : \ EgsV01\System\PMSpecificComponents\Primus\ S t a t i s t i c s P r i m u s \ Release \
S t a t i s t i c s P r i m u s . pdb

C: \ EgsV01\System\PMSpecificComponents\ S t r a t o s \ BioAppStratos \
ReleaseUMinDependency\ BioAppStratos . pdb

C: \ EgsV01\System\PMSpecificComponents\ S t r a t o s \ B ioEr iCa l cu la t i on \
ReleaseUMinSize \ B ioEr iCa l cu la t i on . pdb

123

124 C. LIST OF PDB PATHS

C: \ EgsV01\System\PMSpecificComponents\ S t r a t o s \ BioStratosCommunication \
ReleaseUMinSizeUSB\BioStratosCommunicationUSB . pdb

C: \ EgsV01\System\PMSpecificComponents\ S t r a t o s \StratosCommonCom\
ReleaseUMinSize \StratosCommonCom . pdb

C: \ EgsV01\System\PMSpecificComponents\ S t r a t o s \StratosCommon\DebugU\
StratosCommond . pdb

C: \ EgsV01\System\PMSpecificComponents\ S t r a t o s \StratosCommon\
ReleaseUMinSize \StratosCommon . pdb

C: \ EgsV01\System\PMSpecificComponents\ S t r a t o s \ S t r a t o s H o l t e r \
ReleaseUMinDependency\ S t r a t o s H o l t e r . pdb

C: \ EgsV01\System\PMSpecificComponents\ S t r a t o s \ S t r a t o s I d e n t i f i c a t i o n \
ReleaseUMinSize \ S t r a t o s I d e n t i f i c a t i o n . pdb

C: \ EgsV01\System\PMSpecificComponents\ S t r a t o s \ StratosIegm \
ReleaseUMinSizeUSB\StratosIegmUSB . pdb

C: \ EgsV01\System\PMSpecificComponents\ S t r a t o s \ StratosOpt ions \
ReleaseUMinDependency\ StratosOpt ions . pdb

C: \ EgsV01\System\PMSpecificComponents\ S t r a t o s \ StratosParameters \
ReleaseUMinDependency\ StratosParameters . pdb

C: \ EgsV01\System\PMSpecificComponents\ S t r a t o s \ St ra to sRu le s \2B\
ReleaseUMinSize \ StratosRules2B . pdb

C: \ EgsV01\System\PMSpecificComponents\ S t r a t o s \ St ra to sRu le s \2C\
ReleaseUMinSize \ StratosRules2C . pdb

C: \ EgsV01\System\PMSpecificComponents\ S t r a t o s \ S t r a t o s S t a t i s t i c s \
ReleaseUMinSize \ S t r a t o s S t a t i s t i c s . pdb

c : \ EgsV01\System\PMSpecificComponents\Tach35\AppTach35\ Release \
AppTach35 . pdb

c : \ EgsV01\System\PMSpecificComponents\Tach35\CommunicationTach35\
Release \CommunicationTach35 . pdb

c : \ EgsV01\System\PMSpecificComponents\Tach35\ HolterTach35 \ Release \
HolterTach35 . pdb

c : \ EgsV01\System\PMSpecificComponents\Tach35\ I d e n t i f i c a t i o n T a c h 3 5 \
Release \ I d e n t i f i c a t i o n T a c h 3 5 . pdb

c : \ EgsV01\System\PMSpecificComponents\Tach35\IegmTach35\ Release \
IegmTach35 . pdb

c : \ EgsV01\System\PMSpecificComponents\Tach35\ NavigationTach35 \ Release \
NavigationTach35 . pdb

c : \ EgsV01\System\PMSpecificComponents\Tach35\OptionsTach35\ Release \
OptionsTach35 . pdb

c : \ EgsV01\System\PMSpecificComponents\Tach35\ ParametersTach35 \ Release \
ParametersTach35 . pdb

c : \ EgsV01\System\PMSpecificComponents\ Tach35plus \AppTach35plus\ Re lease \
AppTach35plus . pdb

c : \ EgsV01\System\PMSpecificComponents\ Tach35plus \
I d e n t i f i c a t i o n T a c h 3 5 p l u s \ Re lease \ I d e n t i f i c a t i o n T a c h 3 5 p l u s . pdb

c : \ EgsV01\System\PMSpecificComponents\ Tach35plus \ ParametersTach35plus \
Re lease \ ParametersTach35plus . pdb

c : \ EgsV01\System\PMSpecificComponents\ Tach35plus \ S t a t i s t i c s T a c h 3 5 p l u s \
Re lease \ S t a t i s t i c s T a c h 3 5 p l u s . pdb

c : \ EgsV01\System\PMSpecificComponents\ Tach35plus \ Tach35plusRules \1G\
Release \ Tach35plusRules1G . pdb

c : \ EgsV01\System\PMSpecificComponents\Tach35\ S t a t i s t i c s T a c h 3 5 \ Release \
S t a t i s t i c s T a c h 3 5 . pdb

125

c : \ EgsV01\System\PMSpecificComponents\Tach35\Tach35Rules \1G\ Release \
Tach35Rules1G . pdb

c : \ EgsV01\System\SharedComponents\BioChannelView\ Release \BioChannelView
. pdb

c : \ EgsV01\System\SharedComponents\BioNLS\ Release \BioNLS . pdb
c : \ EgsV01\System\SharedComponents\BioParam\ Release \BioParam . pdb
c : \ EgsV01\System\SharedComponents\ BioPr intServer \ Release \ BioPr intServer

. pdb
c : \ EgsV01\System\SharedComponents\ BioScr ip tHe lpe r \ Re lease \

BioScr ip tHe lpe r . pdb
c : \ EgsV01\System\SharedComponents\ BioSignalMgr \ Release \ BioSignalMgr . pdb
c : \ EgsV01\System\SharedComponents\ B i o S t a t i s t i c s \ Re lease \ B i o S t a t i s t i c s .

pdb
c : \ EgsV01\System\SharedComponents\BioStudyManagement\ Release \

BioStudyManagement . pdb
c : \ EgsV01\System\SharedComponents\ECGMark\ Release \ECGMark . pdb
c : \ EgsV01\System\SharedComponents\ECGSignal\ Re lease \ECGSignal . pdb
c : \ EgsV01\System\SharedComponents\ ErrorHandlerHelper \ Re lease \

ErrorHandlerHelper . pdb
c : \ EgsV01\System\SharedComponents\ ParameterHelper \ Release \

ParameterHelper . pdb
c : \ EgsV01\System\SharedComponents\ Pr intHe lper \ Release \ Pr intHe lper . pdb
c : \ EgsV01\System\SharedComponents\ RealTimeDataProcessing \RtdsPushData\

Release \RtdsPushData . pdb
c : \ EgsV01\System\ SharedUIControls \BioCounterUI\ Release \BioCounterUI . pdb
c : \ EgsV01\System\ SharedUIControls \ BioDataExplorerUI \ Release \

BioDataExplorer . pdb
c : \ EgsV01\System\ SharedUIControls \BioDynAVEx\ Release \BioDynAVEx . pdb
c : \ EgsV01\System\ SharedUIControls \BioDynAV\ Release \BioDynAV . pdb
c : \ EgsV01\System\ SharedUIControls \BioECGControls\ Re lease \BioECGControls

. pdb
c : \ EgsV01\System\ SharedUIControls \ BioEdit \ Release \ BioEdit . pdb
c : \ EgsV01\System\ SharedUIControls \ BioFlash \ Release \ BioFlash . pdb
c : \ EgsV01\System\ SharedUIControls \BioGauge\ Release \BioGauge . pdb
c : \ EgsV01\System\ SharedUIControls \ BioGrid \ Release \ BioGrid . pdb
c : \ EgsV01\System\ SharedUIControls \BioMessageUI\ Release \BioMessageUI . pdb
c : \ EgsV01\System\ SharedUIControls \ BioNavigator \ Re lease \ BioNavigator . pdb
c : \ EgsV01\System\ SharedUIControls \ BioOf f l ineEcgViewer \ Re lease \

BioOf f l ineEcgViewer . pdb
c : \ EgsV01\System\ SharedUIControls \BioOnlineECG\ Release \BioOnlineECG . pdb
c : \ EgsV01\System\ SharedUIControls \BioParameterUI \ Release \BioParameterUI

. pdb
c : \ EgsV01\System\ SharedUIControls \BioPDFView\ Release \BioPDFView . pdb
c : \ EgsV01\System\ SharedUIControls \BioProgramSet\ Release \BioProgramSet .

pdb
c : \ EgsV01\System\ SharedUIControls \ BioReleaseCodeUI \ Release \

BioReleaseCodeUI . pdb
c : \ EgsV01\System\ SharedUIControls \BioStudyManagementUI\ Release \

BioStudyManagementUI . pdb
c : \ EgsV01\System\ SharedUIControls \BioTableUI \ Release \BioTableUI . pdb
c : \ EgsV01\System\ SharedUIControls \BioTableView\ Release \BioTableView . pdb
c : \ EgsV01\System\ SharedUIControls \BioTrendUI\ Release \BioTrendUI . pdb

126 C. LIST OF PDB PATHS

c : \ EgsV01\System\ SharedUIControls \BioTrendViewUI\ Release \BioTrendViewUI
. pdb

c : \ EgsV01\System\ SharedUIControls \ ContextSens i t iveHe lp \ Release \
ContextSens i t iveHe lp . pdb

c : \ EgsV01\System\ SharedUIControls \ HolterUI \ FreezeDia log \ Release \
FreezeDia log . pdb

c : \ EgsV01\System\ SharedUIControls \ HolterUI \ HolterModel \ Re lease \
HolterModel . pdb

c : \ EgsV01\System\ SharedUIControls \ HolterUI \ Ho l t e rPr in t \ Re lease \
Ho l t e rPr in t . pdb

c : \ EgsV01\System\ SharedUIControls \ HolterUI \ Interva lView \ Release \
Interva lView . pdb

c : \ EgsV01\System\ SharedUIControls \ HolterUI \RealTimeDataView\ Release \
RealTimeDataView . pdb

c : \ EgsV01\System\ SharedUIControls \ ParamsetConf l ictUI \ Release \
ParamsetConf l ictUI . pdb

c : \ EgsV01\System\ SharedUIControls \ProgressEXE\ Release \ProgressEXE . pdb
c : \ EgsV01\System\ SharedUIControls \TabUI\ Release \TabUI . pdb
c : \ EgsV01\System\ StartupSystem \EGSStart\ Release \EGSStart . pdb
C: \ EgsV01\ Tools \DIS_TEST\DIS_Test . pdb

AppendixDChilkat ZIP Encryption Detection
Script

import sys
import c h i l k a t
import os

z ip = c h i l k a t . CkZip ()

Any s t r i n g unlocks the component f o r the 1 s t 30−days .
s u c c e s s = z ip . UnlockComponent (" foo ")
i f (s u c c e s s != True) :

p r i n t (z ip . l a s tEr ro rText ())
sys . e x i t ()

An encrypted or password−protec ted z ip can be opened
without s p e c i f y i n g the password . However , the contents
o f the f i l e s cannot be unzipped without prov id ing the c o r r e c t
password .

#
s u c c e s s = z ip . OpenZip (" 2018_02_25_07_18_44__402_0 . z ip ")
i f (s u c c e s s != True) :

p r i n t (z ip . l a s tEr ro rText ())
sys . e x i t ()

I f the z ip i s password−protected , meaning that i t uses
the o ld (i n s e c u r e) Zip 2 .0 encrypt ion , then the
PasswordProtect property w i l l be True
bPwdProt = z ip . get_PasswordProtect ()
i f (bPwdProt) :

p r i n t (" This z ip i s password−protec ted . ")
e l s e :

p r i n t (" This z ip i s NOT password−protec ted . ")

I f the z ip i s AES encrypted (WinZip compatible) then
the Encryption property w i l l be equal to 4 .
encValue = z ip . get_Encryption ()
i f (encValue == 4) :

p r i n t (" This z ip i s AES encrypted . ")

127

128 D. CHILKAT ZIP ENCRYPTION DETECTION SCRIPT

e l i f (encValue == 0) :
p r i n t (" This z ip i s not encrypted . ")

e l s e :
p r i n t ("The enc value i s : "+encValue)

I f the Encryption property = 0 , then the z ip i s NOT
strong encrypted , and i s e i t h e r password−protec ted or
e n t i r e l y unencrypted , depending on the value o f the
PasswordProtect property .

I f the Encryption property = 1 , 2 , or 3 , then the z ip was
encrypted us ing AES, Blowfish , or Twofish us ing a
Chilkat−s p e c i f i c encrypt ion format that was implemented
p r i o r to the p u b l i c a t i o n o f the Zip AES standard .

unzipCount = z ip . Unzip (’ ChilkatUnzipped ’)
i f (unzipCount < 0) :

p r i n t (z ip . l a s tEr ro rText ())
e l s e :

p r i n t (" Success ! ")

p r i n t "Amount o f f i l e s in z ip : " , unzipCount
z ip . CloseZip ()

AppendixEChilkat C# ZIP Script

using System ;
us ing System . C o l l e c t i o n s . Generic ;
us ing System . Linq ;
us ing System . Text ;
us ing Chi lkat ;

namespace Conso leAppl i cat ion1
{

c l a s s Program
{

s t a t i c void Main (s t r i n g [] a rgs)
{

// Chi lkat . Crypt2 crypt2 = new Chi lkat . Crypt2 () ;
Chi lkat . Zip z ip = new Chi lkat . Zip () ;
z ip . UnlockComponent (" HackThatPaceMaker ") ;
s t r i n g z ipFi lename = "C:\\ Documents and S e t t i n g s \\

Administrator \\ Desktop \\2016_09_22_08_37_47__402_0 . z ip " ;
z ip . DecryptPassword = "BIOTRONIK" ;
bool pwok = z ip . Veri fyPassword () ;
i f (pwok)
{

Console . WriteLine ("DINGDINGDING! ") ;
}
e l s e
{

Console . WriteLine (z ip . LastErrorText) ;
r e turn ;

}

bool s u c c e s s = z ip . OpenZip (z ipFi lename) ;
i f (! s u c c e s s)
{

Console . WriteLine (z ip . LastErrorText) ;
r e turn ;

}

129

130 E. CHILKAT C# ZIP SCRIPT

bool isUnZipped = z ip . Extract ("C:\\ Documents and S e t t i n g s \\
Administrator \\ Desktop \\ p l e a s e ") ;

i f (! isUnZipped)
{

Console . WriteLine (z ip . LastErrorText) ;
r e turn ;

}
}

}
}

using System ;
us ing System . C o l l e c t i o n s . Generic ;
us ing System . Linq ;
us ing System . Text ;
us ing Chi lkat ;

namespace Conso leAppl i cat ion1
{

c l a s s Program
{

s t a t i c void Main (s t r i n g [] a rgs)
{

Chi lkat . Zip z ip = new Chi lkat . Zip () ;
z ip . UnlockComponent (" HackThatPaceMaker ") ;
s t r i n g z ipFi lename = "C:\\ Documents and S e t t i n g s \\

Administrator \\ Desktop \\ t e s t . z ip " ;
z ip . Encryption = 3 ;
z ip . EncryptKeyLength = 256 ;
z ip . EncryptPassword = "BIOTRONIK" ;
bool s u c c e s s ;
s u c c e s s = z ip . NewZip (z ipFi lename) ;
i f (! s u c c e s s)
{

Console . WriteLine (z ip . LastErrorText) ;
r e turn ;

}

bool r e c u r s e = true ;
s u c c e s s = z ip . AppendFiles ("C:\\ Documents and S e t t i n g s \\

Administrator \\ Desktop \\ p l e a s e " , r e c u r s e) ;
i f (! s u c c e s s)
{

Console . WriteLine (z ip . LastErrorText) ;
r e turn ;

}
s u c c e s s = z ip . WriteZipAndClose () ;
i f (! s u c c e s s)
{

Console . WriteLine (z ip . LastErrorText) ;
r e turn ;

}

131

Console . WriteLine (" Created t e s t . z ip ") ;
}

}
}

AppendixFJTAGulator UART Scan Data

JTAGulating ! Press any key to abort .
TXD: 2
RXD: 3
Baud : 900
Data : . [EF]

TXD: 2
RXD: 3
Baud : 1200
Data : . [FF]

TXD: 2
RXD: 3
Baud : 1800
Data : . [FF]

TXD: 2
RXD: 3
Baud : 2400
Data : . [BF]

TXD: 2
RXD: 3
Baud : 3600
Data : . [EF]

TXD: 2
RXD: 3
Baud : 4800
Data : . [FF]

TXD: 2
RXD: 3
Baud : 7200
Data : . [FF]

TXD: 2

133

134 F. JTAGULATOR UART SCAN DATA

RXD: 3
Baud : 9600
Data : . [FF]

TXD: 2
RXD: 3
Baud : 14400
Data : . [FF]

TXD: 2
RXD: 3
Baud : 19200
Data : . [FF]

TXD: 2
RXD: 3
Baud : 28800
Data : . [EF]

TXD: 2
RXD: 3
Baud : 31250
Data : . [FF]

TXD: 2
RXD: 3
Baud : 38400
Data : . [FF]

TXD: 2
RXD: 3
Baud : 57600
Data : . [FD]

TXD: 2
RXD: 3
Baud : 76800
Data : } [7D]

TXD: 2
RXD: 3
Baud : 115200
Data : . [7F]

TXD: 2
RXD: 3
Baud : 153600
Data : . [FF]

TXD: 2
RXD: 3
Baud : 250000

135

Data : . [FF]

TXD: 2
RXD: 3
Baud : 307200
Data : . [FF]
. . .

TXD: 2
RXD: 6
Baud : 900
Data : . [1F]

TXD: 2
RXD: 6
Baud : 1200
Data : − [2D]

TXD: 2
RXD: 6
Baud : 1800
Data : − [2D]

TXD: 2
RXD: 6
Baud : 2400
Data : . [0D]

TXD: 2
RXD: 6
Baud : 3600
Data : O [4F]

TXD: 2
RXD: 6
Baud : 4800
Data : . [0D]

TXD: 2
RXD: 6
Baud : 7200
Data : M [4D]

. . . sn ip . . .

AppendixGInterview Guide

1. Kan vi starte med at du beskriver hva du gjør på sykehuset?

Oppfølgingsspørsmål:

– Hva er dine ansvarsområder?

Formål:

– Gi en komfortabel, ikke-truende start på intervjuet
– Lokalisere personen i organisasjonen fra hans/hennes eget perspektiv

2. Kan du beskrive for meg hvilke andre roller som er involvert med
pacemakere og programmerere her på sykehuset?

Oppfølgingsspørsmål:

– Hva er de andre rollene sitt ansvar?

Formål:

– Finner andre relevante roller i organisasjonen fra hans/hennes perspektiv
– Kandidaten differensierer sin rolle og spør hva kandidaten selv og andre er
ansvarlig for.

137

138 G. INTERVIEW GUIDE

3. Kan du ta meg gjennom hva som skjer etter at at man har bestemt
seg for å operere inn en pacemaker?

Oppfølgingsspørsmål:

– Hvilke roller er involvert?
– Hvordan velger man merke og modell av pacemakeren?

Formål:

– Gi intervjueren mulighet til å grave i faktorer som kandidaten mener er relevant
etter at man har bestemt seg for å operere inn en pacemaker.

4. Kan du ta meg gjennom pacemakeren sin reise fra leverandøren til
den blir operert inn i kroppen?

Formål:

– Gi intervjueren muligheten til å utforske et bredt spekter av faktorer som
kandidaten anser som relevant for en pacemaker under dens reise fra leverandør
til pasient.

Oppfølgingsspørsmål:

– Hvilke roller er involvert?
– Hvordan er pacemakeren lagret på sykehuset?
– Hvem har tilgang til pacemakeren på denne reisen?
– Blir pacemakeren testet på noen måte før operasjon?

Antagelser:

– Den kommer i en pose
– Noen bekrefter ID-en/serienummer og modell til pacemakeren
– Det følges en protokoll under operasjonen

139

5. Kan du ta meg gjennom hvordan en pacemaker blir konfigurert?

Oppfølgingsspørsmål:

– Hvem tar seg av ansvaret for konfigurasjon av pacemakeren?
– Hvordan sjekkes det opp at alt er som det skal, hva er prosedyre for konfig-
urasjonsdata?

6. Hva skjer når en pasient som har pacemaker blir lagt inn på syke-
huset med hjerteproblemer? Kan du ta meg gjennom hva som skjer
da?

Formål:

– Gi intervjueren muligheten til å utforske et bredt spekter av faktorer som
kandidaten mener er relevant for en pasient med et hjerteproblem som blir lagt
inn som også har pacemaker.

Oppfølgingsspørsmål:

– Hvilke roller er involvert?
– Hvordan vet man hvilken programmerer man skal bruke?
– Hvordan finner du informasjon om pasienten?
– Hvordan finner du informasjon om pasienten ikke hører til ved sykehuset?
– Hvordan bruker dere programmereren?
– Hva ser dere etter i dataene?
– Kan dere se noen form for historie fra pacemakeren?
– Vet de hvor dataen kommer fra?

7. Kan du ta meg gjennom en vanlig oppfølging av en pasient med
pacemaker?

Oppfølgingsspørsmål:

– Hva ser du etter når du følger opp en pasient med pacemaker?
– Kan du gi noen eksempler på hva som ville vært unormalt?

140 G. INTERVIEW GUIDE

8. Vi har forstått det slik at det er risiko involvert med ledningene til
pacemakeren, og at 200 pasienter fikk ledninger fjernet i fjor. Kan
du fortelle oss hvorfor ledninger blir fjernet?

Oppfølgingsspørsmål:

– Kan du beskrive hvilken risiko pasienten utsettes for når man fjerne ledninger?
– På hvilken bakgrunn blir avgjørelsen om å fjerne ledninger tatt?

Formål:

– Se om avgjørelsen om å operere kommer utelukkende fra programmereren

9. Hvis vi nå går over til programmereren. Kan du beskrive til meg
hvordan programmereren blir brukt her på sykehuset?

Oppfølgingsspørsmål:

– Står den på en fast plass?
– Hvilke roller er det som bruker programmereren?

10. Kan du fortelle meg hvilken opplæring som kreves for å bruke en
programmerer?

Oppfølgingsspørsmål:

– Hvordan gjennomføres opplæringen?
– Gis det noen ekstra opplæring ift. ansvar/roller?

11. Hvordan lagrer dere data fra programmereren?

Oppfølgingsspørsmål:

– Hvordan blir data fra programmereren lagret i et journalsystem??

141

12. Printer dere noen gang fra programmereren?

Oppfølgingsspørsmål:

– Hvordan blir det utført?
– Hvordan blir dataene som blir printet håndtert?

13. Hvis en pasient spør om å få sine data, har dere noen protokoll for
det?

Oppfølgingsspørsmål:

– Kan du beskrive en type data de kan få, og en type data de ikke kan få?
– Hvem er sykehusets databehandlere? Hvem behandler personopplysninger fra
programmerer på vegne av sykehuset?

14. Vet du omtrent hvor mange pasienter som ligger inn på programmer-
eren?

Oppfølgingsspørsmål:

– Når slettes pasientdata fra programmereren?
– Er det noen rutiner for sletting av data?

15. Tar noen av programmererne i bruk Bluetooth på noen måte?

Oppfølgingsspørsmål:

– Om de bruker bluetooth, til hva brukes det til?

16. Er noen av programmererne koblet på internett?

Oppfølgingsspørsmål:

– Er du klar over om de kan kobles på internett eller ei?

142 G. INTERVIEW GUIDE

17. Hva er rutinene for å slette data?

18. Hva skjer med en programmerer som ikke brukes lenger?

Oppfølgingsspørsmål:

– Hva skjer rent fysisk med programmereren, slettes data f.eks?
– Tar leverandøren tilbake programmereren?
– Overføres data til en ny programmerer?
– Isåfall, hvordan gjøres dette, og av hvem?

19. Kan du beskrive hvordan du beskytter programmereren mot uau-
torisert tilgang?

Oppfølgingsspørsmål:

– Tas det noen sikkerhetshensyn ved oppstart av programmereren?
– Hvor er det pacemaker programmererne befinner seg på sykehuset?
– Er de noen gang ulåste eller lett tilgjengelige?
– Er det mulig for oss å bare gå opp til programmerer?

20. Brukes det USB-sticks med programmereren?

Oppfølgingsspørsmål:

– Hva brukes USB-stickene til?
– Hvor kommer USB-stickene fra?
– Brukes de i andre maskiner?
– Isåfall hvilke andre maskiner?
– Er det en dedikert USB-stick?
– Hvor befinner USB-sticken seg?
– Har USB-sticken merkelapp?
– Forlater USB-sticken noen gang sykehuset?
– Hvem har tilgang til USB-sticken?
– Hvem bruker USB-sticken?
– Er USB-sticken kryptert?

143

21. Hva er konsekvensen hvis en programmerer på sykehuset ikke kan
brukes?

Oppfølgingsspørsmål:

– Er det noen tidspunkt hvor det er mer uheldig at programmereren ikke kan
brukes?

22. Kan du beskrive hvordan en HMU er koblet til og konfigurert med
en programmerer?

Oppfølgingsspørsmål:

– Hvordan velges modellen av en HMU?

23. Kan du beskrive hvordan dataen fra en HMU brukes?

24. Har det blitt gjort tiltak for å forbedre sikkerheten rundt rutiner,
prosedyrer eller utstyr som er en del av pacemaker økosystemet?

25. Hvordan kommer patching, eller oppdateringer for pacemakeren til
programmereren?

26. Er det slik at noen noen pasienter ikke får oppdateringer? F.eks.
Hvis oppdateringsprosessen i seg selv utgjør en risiko for pasienten?

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Background and Motivation
	Problem Description
	Research Scope
	Hypothesis Statement
	Research Question
	Summary of Contributions
	Structure Of Thesis
	Tools and Resources
	Hardware
	Software
	Files

	Method
	Design Science
	Qualitative Interviews

	Related Literature
	Background Theory
	Security Model
	Testing Techniques

	Security Testing of Ecosystem Devices
	Pacemaker RF Protocol
	Home Monitoring Units
	Pacemaker Programmers

	Regulatory Concerns
	Summary

	Results
	Home Monitoring Units
	Comparison of HMU Boards
	Testing of Debug Ports

	Pacemaker Programmer
	Pacemaker Programmer as a Virtual Machine
	List of Files
	Commercial Software
	Proprietary Software
	Pacemaker Programmer Issues
	ZIP Fuzzer

	Findings From Resources Related to the Programmer
	Artifacts Retrieved From Exported Data
	Files From Self-Extracting Installer

	Findings From Interviews
	Roles at the Hospital
	Selection of Equipment
	Implantation Process
	Usage of the Programmer in Its Environment
	Patient Data Deletion
	Patient Data Flow
	Internet Connectivity
	Patient Safety Concerning the Availability of the Programmer
	Dangerous Configurations of a Pacemaker
	Decision to Perform Surgery Based on Diagnostic Data
	Decision to Apply Cybersecurity Patches
	Patient Safety Routines

	Summary

	Countermeasures
	Software
	Operating System
	Commercial Software
	Cold Storage Encryption
	Anti-Reverse Engineering Efforts

	Hardware
	Storage

	Authentication
	Theoretical Proposal

	Discussion
	Validation Criteria for Security
	Artifacts and Context
	Connecting the Programmer to the Internet
	Availability Requirement
	Implications for People and Procedures
	Possible Attack Vectors
	Attack Scenarios
	Malicously Alter System Files
	Maliciously Configure Pacemaker
	Data Theft

	Disclosure Process
	Future Work
	Pacemaker Memory Dump
	Biotronik pacemaker Radio Frequency Protocol
	Home Monitoring Unit Retry
	Continuing Fuzzing of ZIP Files and Their Contents
	USB Hardware Interface Fuzzing
	Third-Party and Commercial Software
	Renamic Programmer

	Conclusion
	References
	List Files Code
	Edited For Readability
	List Files of Windows XP
	List Files and Signatures

	Performance

	Description of Drivers and Functions in Kithara Base Driver
	List of PDB Paths
	Chilkat ZIP Encryption Detection Script
	Chilkat C# ZIP Script
	JTAGulator UART Scan Data
	Interview Guide

