
Nonlinear Model Predictive Control using
Derivative-Free Optimization

Jon Dæhlen

Master of Science in Engineering Cybernetics (2)

Supervisor: Tor Arne Johansen, ITK

Department of Engineering Cybernetics

Submission date: June 2013

Norwegian University of Science and Technology

Abstract

Today it is common to solve the Non-Linear Programming (NLP) problem aris-
ing in NMPC by the use of gradient-based optimization. However, these tech-
niques may not be suited if the prediction model, and thus the optimization
problem, is not differentiable. Such cases can arise when the prediction model
contains logic operators, lookup-tables or a variable-step ODE-solver is used to
simulate the prediction model.
Although the model may be made differentiable by alterations or using another
ODE-solver, this can compromise the accuracy of the prediction, and thus the
performance of the NMPC can suffer. Therefore it is desirable to investigate
techniques that can solve a NLP without requiring the gradient of the objective
function or its constraints.
Derivative-Free Optimization(DFO) has been subject to substantial research, as
it is common for gradient information to be unavailable in optimization. This
class of algorithms have been frequently applied to simulation-based optimiza-
tion, as well as to some extent to NMPC. However, for the latter the studies
have mainly been limited to smaller and simpler systems.
This thesis will investigate some theoretical fundamentals of DFO, and present
some common practical algorithms. Then a case-study is performed which de-
velops a NMPC for a particular industrial crude-oil separator. This controller
is simulated using the presented algorithms, as well as a gradient-based SQP.
The experience gained is then used to modify an existing algorithm to improve
real-time performance.
The findings of the thesis are that DFO is significantly more robust against
the numerical issues which the model of the case-study inhabits compared to
the SQP tested. Further, one of the DFO-algorithms is comparable with the
particular SQP, both with respect to computational consumption and accuracy
of the solutions. Another algorithm is also very robust against numerical is-
sues. Distribution of the computational load over several processing cores can
improve real-time performance significantly, as well as minimizing the computa-
tional consumption by reducing the number of predictions required at each time
step. This makes DFO a promising alternative to gradient-based optimization
in NMPC.

Sammendrag

I dag er det vanlig å løse det ikke-lineære programmerings problemet (NLP)
som oppstår i NMPC ved bruk av gradient-basert optimalisering. Disse teknik-
kene kan være lite egnet hvis prediksjonsmodellen, og således optimaliserings-
problemet, ikke er deriverbar. Slike tilfeller kan oppstå når predisjonsmodellen
inneholder logiske operatører, oppslagstabeller eller hvis en variabel steglengde
ODE-løser brukes til å simulere prediksjonsmodellen.
Selv om modellen kan gjøres deriverbar ved å endre denne, eller bruke en annen
ODE-løser, kan dette gå ut over nøyaktigheten av prediksjonen, og ytelsen til
NMPC kan dermed lide. Derfor er det ønskelig å undersøke teknikker som kan
løse en NLP uten at det kreves gradient av objektfunksjonen eller dens bibetin-
gelser.
Deriverings-Fri Optimalisering (DFO) har vært gjenstand for mye forskning, da
optimalisering hvor gradient informasjon er utilgjengelig er et vanlig problem.
Denne klassen av algoritmer har vært hyppig brukt i simulering-basert opti-
malisering, og til en viss grad også i NMPC. Men for sistnevnte har studiene i
hovedsak vært begrenset til mindre og enklere systemer.
Denne oppgaven vil studere det teoretiske grunnlaget for DFO, og presentere
noen vanlige praktiske algoritmer. Deretter er en case-studie utført som utvik-
ler en NMPC for en bestemt industriell råolje-separator. Denne regulatoren er
simulert ved hjelp av de presenterte algoritmene, samt en gradient-basert SQP.
Erfaringene fra disse simularingene er så brukt til å modifisere en eksisterende
algoritme, for å forbedre sanntidsytelse.
Funnene i oppgaven er at DFO er betydelig mer robust enn SQP-algoritmen
som er testet mot de numeriske problemstillingene som prediksjonsmodellen i
case-studiet innehar. En av DFO-algoritmene er definitivt sammenlignbar med
den testede SQP algoritmen, både med hensyn til krav til beregningskraft og
nøyaktigheten av løsningene, mens en annen er svært robust mot numeriske
problemer. Videre kan distribusjon av beregningene over flere prosessorer gi be-
tydelig forbedring i sanntidsytelse, samt å minimere nødvendig datakraft ved å
redusere antall prediksjoner nødvendig i hvert tidssteg. Dette gjør DFO til et
lovende alternativ til gradient-basert optimalisering i NMPC.

Preface

This report documents the work on my MSc thesis at the Department of Engi-
neering Cybernetics, during the final semester at the Norwegian University of
Science and Technology(NTNU).
I would like to thank my supervisor, Prof. Tor Arne Johansen at the Centre
for Autonomous Marine Operations and Systems at NTNU for his good advice
and guidance during my MSc thesis.
Gisle Otto Eikrem at Statoil provided the dynamic model of the crude-oil sep-
arator used for the case-study in the thesis. It was invaluable to have a model
of an industrial application for the testing of the resulting controller, and made
both the work and the final result significantly more interesting.
A thank also goes to D. Kwame Kufalor (Giorgio) for important input during
the implementation, and highly interesting discussions on the topic of MPC and
control engineering.

Trondheim, Norway
June 2013 Jon S. Dæhlen

Contents

1 Introduction 1
1.1 Outline . 4

2 Optimal control preliminaries 5
2.1 Optimization . 5
2.2 Finite-horizon optimal-control and LQR 8
2.3 Model-predictive Control . 11

3 DFO preliminaries 15
3.1 Monomial basis and the Horner Scheme 16
3.2 Lagrange polynomial . 18
3.3 Newton polynomial . 20
3.4 Poisedness and quality of the model 21
3.5 Obtaining a well-poised sample set 23
3.6 Over-determined models . 27
3.7 Under-determined models . 28

4 DFO algorithms 31
4.1 Genetic algorithm . 32
4.2 Trust-region methods . 34
4.3 Constraint handling . 37
4.4 Wedge . 38

4.4.1 Defining and solving the Wedge sub-problem 39
4.5 UOBYQA and CONDOR . 44

4.5.1 Finding and replacing the "worst" point in the sample set 45
4.5.2 Solving the first sub-problem 48
4.5.3 Solving the second sub-problem 49

i

4.6 BOBYQA . 51
4.6.1 Initialization . 51
4.6.2 Model update technique 53
4.6.3 Solving the first sub-problem(TRSBOX) 54
4.6.4 Solving the second sub-problem(ALTMOV) 54

5 A NMPC case study 57
5.1 The crude-oil separator . 57
5.2 Defining the NMPC problem . 61
5.3 Developing a penalty-function for constraint handling 65
5.4 Implementing the model and NMPC in Matlab/Simulink 68
5.5 Analysing the optimization problem 70

6 Using Wedge, Condor and BOBYQA for NMPC 75
6.1 Choice of parameters for the algorithms 77
6.2 Remarks about MPC tuning . 78
6.3 Summary of the results . 79
6.4 Gradient-based SQP . 80
6.5 BOBYQA . 83
6.6 Condor . 89
6.7 Wedge . 94
6.8 Remarks on the result . 100

7 Improved warm-start 105
7.1 Initial model based on old data 106
7.2 Updating the sample set YInit . 107
7.3 Simulations . 110
7.4 Discussion of the results . 113
7.5 Further work . 116

8 Conclusion 121
8.1 Further work and final remarks 123

A List of variables in the separator model 131

B Steady-state setting of the separator 132

C Article for publication in journal 133

ii

Chapter 1

Introduction

Model Predictive Control (MPC) technology uses a model of the process to be
controlled to predict the future behaviour of this and manipulates its control
inputs to achieve a desired control objective. This is accomplished by solv-
ing an open-loop optimal-control problem at each time instant[38], by applying
a numerical optimization algorithm. It is known for its general handling of
constraints in the states and inputs and inherit capability of Multiple-input
multiple-output (MIMO) systems. The method has been widely used in the
process industry where the plant works around a relatively constant set-point
and the dynamics are slow. It has been and still is controllers based on models
that is linear approximations to the real plant and limitation to linear con-
straints on the states and inputs that is the most common. This is referred
to as linear MPC and gives some numerical advantages that greatly simplifies
the optimization within the controller[5]. However in the later years Nonlinear
Model Predictive Control (NMPC) has started to attract much attention[10],
as the use of non-linear models improves the controller performance on highly
non-linear systems and allows for operation over wider range of set points[5].
Also NMPC allows for non-linear constraints which gives a great deal of flexi-
bility.
Today the probably most common method for solving a NMPC problem is by
linearising the model around the previous optimal trajectory, referred to as the
nominal trajectory. This is often done by applying a small perturbation to each
input and build a step-response model. This can be optimized as in linear MPC,
and a new linearisation is performed in the next time step around the updated
nominal trajectory[23]. This however makes the model only valid around small
perturbations from its current state, and e.g. if the set-point is changed, predic-
tion of larger transients may be desirable. Today state-of-the-art to overcome
this seems to be Sequential-quadratic programming (SQP) and Interior-Point
(IP)-methods[15]. Common for both is that they recursively linearise the model
and the constraints until convergence is achieved, which in turn requires to
somehow retrieve the gradient of these.

1

If the model is known explicitly, an off-line differentiation can be performed and
the gradient and possibly the Hessian implemented. For simple systems this
process can be done manually, however as models usually are complex and to
avoid calculation error the use of symbolic mathematical computation software
is preferable. Examples of such software can be Maxima[3], Maple[4] and a tool-
box is available for Matlab[2]. Given the expression for the model, this software
will perform an automatic differentiation according to calculus rules and give an
analytical answer. Some software also has the ability to return the solution in
source code in a selection of programming languages, for easy implementation.
These methods will however require the expression of the model to be known.
Another somewhat similar software is ADIFOR. This is a Fortran-subroutine
that given a model implemented as a subroutine in this language, ADIFOR will
return source code that gives the partial derivatives of this model[1].

However all of the above techniques will require that the model is described
and available explicitly. This may not always be the case, as it may not be
available in an appropriate programming language, can be made up of a mix
of subroutines from different programming languages or the source can simply
by unavailable. This will render the symbolic software in the best case hard
to apply[31]. The model may even not be continuous, as logic operators and
lookup-tables are common, and the model may not be explicitly available at all
as it may be a numerical simulation[42]. In these cases it is likely that the most
common and intuitive is to retrieve the gradient from finite-differences. This
method is however known to be sensitive towards numerical issues[46], and when
performing the simulation it can be desirable to use a variable-step Ordinary
Differential Equation (ODE)-solver. This can speed up the simulation time
significantly, however it is known that this tends to induce numerical noise,
non-smoothness and discontinuities, which possibly can be amplified through
finite-differences and thus compromise the performance of the NMPC.
This may in some cases be avoided using a fixed-step size in the ODE-solver.
However choosing a small step-size will make the simulation more time-consuming,
and large step size will make it less accurate, both directly inflicting the perfor-
mance of the controller. Further, the model may be simplified to be able to be
expressed as an explicit ODE. Again, this will necessarily make the model less
accurate. Also, developing a new model may be a time-consuming process as
model development and validation is considering one of the most time consum-
ing task in MPC development[23]. This motivates for investigating optimization
methods not requiring derivatives, namely Derivative-free optimization (DFO).

2

DFO has been a subject for much research, as optimization problems where
the gradient is unavailable or unreliable always has been present[12]. It is well-
known that much information is contained in the derivatives[12], and this is
reflected in the fact that DFO usually has a slower convergence rate than its
gradient-based counterpart. DFO tends to be characterized by requiring a larger
number of evaluations of the objective to compensate for this lack of informa-
tion. DFO has been applied in NMPC in several occasions, by use of Genetic
Algorithms (GA)[10][43][5][55][9]. However in these cases the goal has been to
overcome extreme non-linearities and improve computational consumption by
finding sub-optimal solutions, and although GA is known to be well-suited to-
wards noise and discontinuities it also tends to have slow convergence rate. [57]
used the Nelder-Mead simplex method for solving a highly non-linear NMPC
problem and reported that this were 10 times faster than GA, and [54] used
parallel computing on a Graphics Processing Unit (GPU) to obtain even faster
computation with the algorithm. These did however suggest to try other opti-
mization methods and more practical problems. [32] reported that a Derivative-
free Trust-region method (DFTRM) out-performed the Nelder-Mead method in
an optimal-control problem, however the exact nature of the optimization prob-
lem was not stated. DFTRM is also known to require less function evaluations
than algorithms as Nelder-Mead and GA[42], thus investigating the use of these
methods in NMPC aimed at controlling a realistic process seems appropriate.

DFTRM is much used in simulation-based optimization[35][22][18][26], which
essentially is the same optimization problem as in NMPC, only that the time
available for optimization is significantly longer and performed only once. The
reason for this lack of coverage is probably that as DFTRM is neither suited for
extreme non-linearities nor can be expected to be faster than gradient-based op-
timization and will only have an advantage in the special case when models with
numerical issues as described are applied. However as they should be expected
more effective than GA on approximately quadratic problems[42], which often is
the case in NMPC, and that the ability to use such challenging models in NMPC
definitely is attractive, this encourages investigation of DFTRM in NMPC. Also
several new DFO algorithms has emerged in the later years[52][7][36][42], and
together with the increased availability of computational power it seems appro-
priate to investigate the suitability for DFO in NMPC. The starting point for
the work in this report is [13]. This is a investigation done preliminary for this
report to get a overview of the field of DFO.

3

1.1 Outline
The rest of the report will be structured as follows:

• Chapter 2 will present some background in the field of optimization and
control, and introduce some notation used throughout the report.

• Chapter 3 will present some fundamental mathematical concepts used in
state-of-the-art DFTRM, and focus on interpolating a polynomial model
and the concept of Trust-Region (TR) that these methods are based on.

• Chapter 4 applies this theory were first an introduction to typical DFO
algorithms are presented, then a practical genetic algorithm and the basic
structure of a DFTRM is investigated. The important issue of constraint
handling is briefly discussed, and three well-known algorithms are reviewed
in detail.

• Chapter 5 presents and analyses a non-linear system with the charac-
teristics which generates a challenging NMPC problem with respect to
differentiation. Then a NMPC controller is developed to control this sys-
tem.

• Chapter 6 simulates this controller in closed-loop, testing the three dif-
ferent algorithms investigated in chapter 4 for solving the optimization
problem. A SQP algorithm is also applied for comparison, and to show
the difficulties that gradient-based algorithms may run into.

• Chapter 7 will use the insight gained during theory and simulations to
propose what can be done to make an improved algorithm that exploits
the properties of the NMPC problem to make DFO applicable in a real-
time application. Such a modification is done to one of the algorithms
from chapter 4, and the algorithm is simulated on the same problem as in
chapter 6.

• Chapter 8 concludes the findings of the report and suggests further work
on the subject DFO in NMPC.

4

Chapter 2

Optimal control
preliminaries

2.1 Optimization

Optimization is choosing the best among a set of choices, given the current cir-
cumstances. The choice to be taken can be of both discrete nature e.g. being
simply to choose "yes" or "no" to a dilemma by weighting the implications of
the choices, or continuous e.g. to choose the setting of the gas pedal of a car,
trying to choose the best compromise between fuel consumption and travel time.
In mathematical terms continuous optimization is that the domain of decision
variables is continuous, like a subset of an euclidean space.
Continuous optimization is commonly used in several fields, from optimizing
income and minimizing risk in economics, optimizing production efficiency at
a plant[40] to engineering application when optimizing design parameters. An
example of the latter is mentioned in [6], as it briefly describes how optimization
is applied to find the optimal values for 31 variables describing the rotor blades
of a compressor. Optimization are being applied to an increasingly number of
fields, which generates more challenging optimization problems and demands
for methods to solve these.

To solve a practical optimization problem, the case at hand must be described
in terms of a mathematical set of equations, referred to as the objective. As
all cases are different, there exist no general procedure for accomplishing this,
however the goal is to end up with a function f(x) that is to be minimized
or maximized. The argument x is the set of variables that are to be chosen,
referred to as Manipulated variables (MV). A minimization problem is usually

5

set up on the form

min
xεRN

f(x) (2.1a)

s.t
ci(x) ≤ 0, i ∈ I (2.1b)
ci(x) = 0, i ∈ E (2.1c)

where f(x) : Rn 7→ R1 is the function to be minimized, referred to as the ob-
jective function. This value is often referred to as "cost", to illustrate that it is
desirable to minimize the value of f(x). If the only goal of the optimization is
to minimize the cost, without any regard of the values of x, i.e. (I = E = ∅),
the problem is referred to as an unconstrained minimization problem. On the
other hand if it in addition is introduced constraints on the MV as illustrated by
equation (2.1b) and (2.1c) it is referred to as a constrained problem. The con-
straints are again divided into inequality(2.1b) and equality constraints(2.1c).
Simple examples of such can be for the former that the power setting of a engine
must lie between zero and 100%, and for the latter that the flow into a tank
must be equal to that out.

Constrained problems are again divided into classes after how hard they are to
solve. The simplest and frequently used are the Linear Programming (LP)class[40].
This class has a linear objective function and only equality constraints that are
linear. The class is commonly solved with the well-known simplex algorithm, or
the more modern IP method[40] which will be explained later in this section.
Further a more complex class is the Quadratic Programming (QP) class. No
standard definition of this class exist[40], however convexity plays an important
role. If the objective f(x) is a quadratic function with a positive-definite Hessian
matrix, then it is a convex one, i.e. by following the direction of the gradient
the minima will always be found. Introducing constraints the problem is still
convex if ci are linear for i ∈ E and concave for i ∈ I[40]. If these conditions are
fulfilled it is common to refer to the problem as a QP and it can be solved with
well-known methods such as active-set and interior-point[40]. Also because the
QP is convex, it inherits no local minimum points. Thus the solver can guaran-
tee to find the global solution[39].

The last class to be discussed is the Non-Linear Programming (NLP), which
will be the subject for this report. This problem typically arises when the crite-
ria to the QP are not fulfilled. Often the objective f(x) is not a purely quadratic

6

function, or a non-linear equality function arises, as will be shown to be the case
for NMPC applications.
No general method exist that can solve this class of problem and guarantee
a global minima in a finite time[39], because the optimization problem are no
longer necessarily convex[27]. A common method to find at least a local minima
is SQP. This method approximates the objective and constraints with quadratic
and linear models respectively for each iteration to create a QP, and solves this
with a QP solver such as active-set to find a good search direction. Then a
line-search is performed along this direction, which is terminated when certain
conditions of sufficient decrease are fulfilled[40].

Just as common is the IP or barrier method[15]. Two main approaches ex-
ist for this method. One being to introduce a slack variable into the inequality
constraints, and minimize this in a log-barrier function with a variable penalty,
together with the objective function. This way the inequality constraints are
eliminated, and the problem is solved repeatability using Newtons direct method
with decreasing penalty on the barrier function. When the penalty reaches zero,
a solution is found.
The second approach is also based on eliminating the equality constraints by
the use of log-barrier functions, however it applies the Karush-Kuhn-Tucker
(KKT)-conditions. By creating a equality-constrained minimization problem
of these and solving as in the approach described above, a point that satisfies
the conditions and thus by definition is a minima is approximately found. For
further reading [40] is recommended reading.

Other techniques exist which are considered semi-global, meaning that they
have features to avoid local minimum points and often find the global solution
to a non-linear, non-convex problem, however not always. Examples of this is
GA[10], DIviding RECTangles (DIRECT) and DFTRM also can be categorized
as semi-global[26]. These are typically methods that combines several techniques
with randomness to obtain a larger degree of "exploration" of the objective than
is typical for gradient-based algorithms as QP solvers and SQP. However still
no technique can guarantee a global optimum to general a non-convex problem
in a finite time.

7

2.2 Finite-horizon optimal-control and LQR
Before introducing MPC, the finite-horizon optimal-control problem is pre-
sented. This is the problem that a MPC solves at each time step, and is
concerned about optimizing the trajectory of a dynamic system over a given
time-horizon[17].
The goal of the controller is to find an optimal set of inputs u(k) that controls
the real system, from now on referred to as the plant, in a desirable(optimal)
way[37]. To accomplish this the controller uses a model that approximates the
behaviour of the plant, called the prediction model[27]. Such a model is usually
developed to be a continuous differential equation in, i.e. ẋ = l(x, u). However
to be implementable it must be discretised. This leads to the model on the form
of a difference equation, which will be denoted x(k+1) = g(x(0), x(k), u(k))[38].
Note that this model might as well be time-variant[34], however it is kept time-
invariant for convenient notation. Then a typical finite-horizon optimal-control
problem can be

min
xεRN ,uεRn

f(x(1), . . . , x(K), u(0) . . . u(K − 1), x(0)) =

K−1∑

k=0
[xe(k + 1)TQxe(k + 1) + ue(k)TRue(k) + ∆u(k)TU∆u(k)] (2.2a)

+xe(K)TTxe(K) (2.2b)
s.t
x(k + 1) = g(x(k), u(k)), x(0) given (2.2c)
xmin ≤ x(k) ≤ xmax (2.2d)
umin ≤ u(k) ≤ umax (2.2e)
∆umin ≤ ∆u(k) ≤ ∆umax (2.2f)

Here ∆u(k) = u(k + 1) − u(k), and K is referred to as the prediction-horizon
and is the number of time steps into the future that the behaviour will be
considered[27]. If the number of steps that the inputs are optimized had been
shorter, this would be referred to as the control-horizon, however in this case
these two are equal. Further x(0) is given, and is the initial state of the system.
xe(k) = x(k) − xref is the predicted control error and ue(k) = u(k) − uref .
The reference vectors can be time-dependent if this is desirable, but are here
kept constant for simplicity of notation. In addition, if the time between the
samples are not equal, e.g. by the use of variable-step solver in (2.2c), a discrete
integration method as the midpoint-rule must be applied to weight each sample

8

equal with respect to its time duration. The above formulation uses the L2-norm
to minimize the control error. This seems to be the most common, however both
L1 and L∞-norm have been seen in early research, leading to a LP-problem[19].
Inspecting the objective function (2.2a), a choice of the Q, R, U and T as
positive semi-definite diagonal matrices

Qij , Rij , Uij , Tij

{
≥ 0 if i = j
= 0 if i 6= j

(2.3)

will lead to a objective that is convex[17]. The three terms within the sum of
(2.2a) represents three different objectives that may be desirable in a control
system[53]. The first will seek to minimize the error between the states and
their references, and is the typical overall goal of the controller. However the
last term will pull in the direction of accomplishing this with as little change in
the input as possible. In a practical application this is an important term, as
rapid change in the actuators can cause wear and tear on these as well as on
the system. The second term will try to get the input close to some ideal value.
This can e.g. be zero, if a high cost is associated with using the input, or can
be a steady-state setting it is desirable to tend towards[53]. Together this is
referred to as the stage cost[27]. The last term is called terminal cost. This is
to approximate the infinite-horizon tail of the cost function in order to improve
the stability and performance properties of the controller[38], by punishing so-
lutions that ends with an error.

Considering the constraint (2.1c), this is the constraint that binds the pre-
diction model to the optimization. All states and inputs calculated must "fit"
the model, and as the model starts at the current state, a minimization will lead
to a input sequence u(k), k = 0 . . .K − 1 where a compromise of the criteria of
the objective function are taken into account to take the system from its initial
state x(0) and to their respective references. How much each term is prioritised
depends on the values set in the Q, R and U , thus the term "weight matrices".
A high value on a given position of the diagonal in the matrix, will result in a
high effort on keeping this variable close to its desired value.

The remaining constraints (2.2d)-(2.2f) are simply to keep the variables within
acceptable/possible limits, referred to as bounds. In a real-world application,
disturbances(i.e. model mismatch) can drive the plant to a state which is in-
feasible. This may then cause the optimization algorithm and the controller
to fail[39]. Therefore (2.2c) and (2.2f) are often the only constraint that never
are allowed to be violated(hard-constrained)[23]. The rest of the constraints

9

are often extended with slack-variables which are minimized in the objective to
ensure that a feasible solution always is obtainable(soft-constraints)[39]. Note
also that these constraints may not only be bounds, but can be what ever linear
or non-linear constraint that might be desirable.

If using a linear approximation to the plant to be controlled, this implies
that the equality constraint (2.2c) is linear. By also removing the constraints
(2.2d)-(2.2f) and setting K =∞, this problem can be solved using the Ricatti-
equation[34]. This results in a feedback-law, known as a infinite-horizon Linear
quadratic requlator (LQR)[17]. Because of the simplicity and robustness of the
feedback controller, this is a common solution used in the industry.

On the other hand if the constraints (2.2d)-(2.2f) are present, there exist no
pure feedback solution with constant gain to the problem. Therefore the infinite-
horizon problem is approximated by setting K to a finite value[21], creating a
finite-horizon optimal-control problem, and applying an optimization algorithm
to solve (2.2). It should however be noted that by assuming that no inequality-
constraints are active after a finite time and apply LQR for the remaining in-
finite horizon, a solution can be found for a linear, constrained infinite horizon
problem[25]. Still considering g(x(k), u(k)) to be linear, according to the discus-
sion about convexity in section 2.1 the whole problem is a QP as the inequality
constraints clearly are linear. This is a very common case in MPC, as the use
of step and impulse-response models has been and still are frequently used in
MPC[25][19], although in recent research the linear model is usually described
as a state-space model[39]. Further for systems that are to operate close to a
set point, and little change is expected, linear dynamic models may replicate
the behaviour of the plant well. This is often the case for the process-industry,
where the plant operates close to a set point and transients are mostly present
in start-up and shut-down operations. The problem can then be solved using
e.g. an Active-set[53] or IP algorithm which is attractive, as these algorithms
are known to be fast, well proven, and a global solution can always be found in
a convex QP.

In some cases it may be desirable to use a non-linear model in the constraint
(2.2c), and/or use non-linear constraints on the inputs and states for reasons
stated initially in the thesis. The problem is then no longer a QP, and a non-
linear solver such as SQP or IP must be applied. This is the kind of problem
that will be the topic for this report.

10

2.3 Model-predictive Control
If the model g(x(k), u(k), x0) were a perfect replication of the real plant and
no unknown disturbances were present, the solution to (2.2) could be calcu-
lated off-line. When applied to the plant this would have followed the optimal
trajectory perfectly. Unfortunately this is never the case, and something must
be applied to correct for these unknown factors. This is exactly what MPC
does, by acquiring new measurements of the states and implementing these as
x(0) in (2.2), and solves the new optimization problem. Then the first instance
in the minimizing sequence, u(0), is implemented, the rest discarded[39]. This
process is repeated with a period significantly smaller than the control horizon,
thus MPC gets a feedback-effect as the input clearly is dependent on the cur-
rent state[37]. The technique has proven very robust, it is relatively simple to
understand when the finite-horizon optimal-control technique is understood, it
naturally handles MIMO systems and maybe most importantly it handles con-
straints in a general manner without resorting to ad-hoc solutions[19]. When it
also has the ability to handle non-linear systems, it is a very attractive approach
for control engineering.
Not considering the development of the prediction model g(x(k), u(k), x0), the
clearly biggest challenge of the MPC approach is to solve the problem (2.2)
sufficiently fast. This operation must be performed in real-time, with a period
depending on the time constants of the process.

It is common to apply so-called input-blocking to the MPC problem[53]. This
is a quite simple way of reducing the number of MV in the problem to be opti-
mized. Instead of dividing the input sequence into K number of MV, it is taken
into account that the input should, and will, change somewhat slowly. Thus
the input can be held constant in some intervals without much change in the
result. The intervals with constant amplitude are called input blocks, and one
block is treated as one manipulated variable. The number of blocks to be cho-
sen depends greatly on the system at hand, however between five to ten blocks
seems a common choice[23]. Also it is reasonable to choose the blocks early in
the horizon shorter than those later. This way the controller gains freedom to
manoeuvre in the start of the horizon, then settling towards the end when the
change in the input is being forced to be smaller.

As mentioned in section 2.2, a non-linear optimization problem arises if non-
linear constraints, non-convex objective or maybe most commonly a non-linear
prediction model is introduced. This is referred to as NMPC, and is today

11

state-of-the-art within process control engineering. Two main approaches exist
when defining a NMPC problem. The first is the way that the prediction model
is introduced as an explicit equality constraint in (2.2). This way of defining the
system in the MPC problem is called the multiple shooting approach[25]. This
approach has some advantages, such as suited for parallelisation[14]. However
it requires in addition to a initial guess of the optimal input sequence, a cor-
responding trajectory to this guess. Further the gradient calculation requires
the prediction model to be continuous and differentiable at the whole feasible
set. As described initially in the report, this may not always be the case, as
the model may be implemented in a simulation environment such as Modelica
or Simulink. This means that given a initial state x(0) and a discrete series of
control inputs u(k), the solution to the initial-value problem from step 0 to K
can be denoted

[x(1), . . . , x(K̂)] = `(u(0), . . . , u(K − 1), x(0),K) (2.4)

where x(k) is the resulting states at time index k. Because ` may be a variable-
step ODE-solver, K̂ is introduced because the resulting states is likely to have
different sampling interval than the input sequence. In the fixed-step case
K̂ = K. This new form of the model can simply replace x(k) in equation
(2.2a). This will then always make sure that constraint (2.2c) is satisfied, and
equation (2.2c) and the variables x(0), . . . , x(K) can then be removed from the
problem. This approach is called single-shooting[27].

Re-stating the complete NMPC problem to be solved, re-using the objective
function (2.2a) using the single-shooting approach

min
uεRn

f(`(u(0), . . . , u(K − 1), x(0),K), u(0), . . . , u(K − 1)) (2.5a)

:=f(u) (2.5b)
s.t
xmin ≤ x(k) ≤ xmax, k = 1 . . . K̂ (2.5c)
umin ≤ u(k) ≤ umax, k = 0 . . .K − 1 (2.5d)
∆umin ≤ ∆u(k) ≤ ∆umax, k = 0 . . .K − 2 (2.5e)

where the equality constraint (2.2c) is removed from the list of explicit con-
straints. The possibility of K 6= K̂ also requires a modification of (2.2a), and
typically the sum over the state trajectory is replaced with a discrete integral.
The definition to f(u) is to illustrate that there are only the input blocks that

12

are MV. Note that because of input blocking, the number of MV will be less
than K, however this is not considered in (2.5). This notation for the objective
function will be used throughout the thesis.
Clearly although the constraints are linear, the objective function may no longer
be a convex one, thus no longer a QP. Applying SQP or IP methods these will
somehow need to do a linearisation of the objective function to approximate the
problem with a QP, thus requiring the gradient.

13

Chapter 3

DFO preliminaries

This chapter is mainly a summary of the chapters concerning quadratic interpo-
lation, regression and building quadratic models from under-determined sample
sets in [11]. It will present the parts that are important to understand the be-
haviour of DFO, with special focus on solving a NMPC optimization problem.
The objective function is denoted f(x) where x ∈ Rn. Most derivative-free
optimization algorithms uses some sort of a linear or quadratic model to locally
estimate f(x) and performs the minimization on this instead. Especially the
TR-methods are heavily based on this approach, which seeks to create a model,
q(x), on the form

q(x) = q(Θ,Φ, x) ≈ f(x) (3.1)

where Θ is the vector of unknown coefficients and determining these can be done
by retrieving a set of m samples in the domain of f(x), namely Y ⊂ Rn, and
solve a set of equations. Φ is called the polynomial basis and is a set of functions
in x. When the model is built from a sample set Y , the set of equations are
solved such that equation (3.1) holds exactly for the sample points, i.e.

q(yi) = f(yi) ∀ i ∈ [1,m] (3.2)

q(x) is then said to interpolate these points. Three questions now rises: How to
choose the basis Φ, where to sample, and how many samples should be retrieved
from f(x)? To answer these questions, some basic concepts in interpolation and
regression theory is needed.
Choosing a basis and a suitable set of sample points Y for use in q(Θ,Φ, x) is
important to make sure the resulting model captures the properties of f(x) well
within the area of interest. The main bases used in DFO will be presented, and
the term "poisedness" will be a key concept in this chapter. This is a measure of
how well the samples in Y covers, i.e. spans, all directions in the sampling space
Rn to retrieve as much information of the curvature of f(x) as possible[56]. This
has a direct connection to how well the model q(x) describes the true function
f(x) within the region of interest. Theories and some practical algorithms to

15

retrieve a set Y which have such desirable qualities will be presented. A discus-
sion of how to solve for Θ when the basis Φ and sample set Y is present and
techniques for deciding q(x) when there is less or more knowns than unknowns
will be reviewed.

3.1 Monomial basis and the Horner Scheme
Φ from equation (3.1) is referred to as the polynomial basis. This is how the
variables are combined into polynomial terms before multiplied with the vector
of unknowns Θ, referred to as the regressor. The probably most common basis
used in mathematics are the monomial, also called natural basis. Expanding
the system of equations for a second-order interpolation problem ΘΦ(yi) =
f(yi), i ∈ [1,m]

θ1(yi1)2 + θ2y
i
1y
i
2 + θ3y

i
1 + θ4(yi2)2 + θ5y

i
2 + θ6 = f(yi), i = [1,m] (3.3)

which obviously requires m = 6 in the two-dimensional case to be able to de-
termine the coefficients in Θ. This way of arranging the monomial is called the
Inverse Lexical Order. This is an advantageous basis as it is easy to evaluate nu-
merically. Consider generalizing equation (3.3) into n variables and factorizing
it as

(yi1 + yi2 + yi3 + · · ·+ yin + 1)yi1
+(yi2 + yi3 + · · ·+ yin + 1)yi2

+(yi3 + · · ·+ yin + 1)yi3
...

+(yin + 1)yin + 1

It is easy to see how this can be evaluated using two for-loops. In this thesis
algorithm 1 is used in the optimization in chapter 7 to evaluate polynomials and
retrieve the Hessian matrices and gradient vectors associated with Θ. Further,
if only the function value at y is required and not the Hessian and gradient,
this can be accomplished in O(n) by the use of the Horner scheme[7][44]. This
scheme sees the inverse lexical order as a sum of multiplications. This way
the algorithm also reduces the number of multiplications, which is a costly
operation. Algorithm 2 shows the single variable Horner scheme for evaluating
a d-dimensional polynomial. Extension to the multi-variable case is not covered

16

Algorithm 1 Evaluate polynomials arranged in inverse lexical order
1. Initialize: Given vector Θ ∈ Rm of coefficients to be evaluated at point
y ∈ Rn.

2. Instantiate the matrix that will hold the final Hessian and gradient of the
polynomial B ∈ Rn×n+1 and a counter variable l.

3. for i = 1 to i = n
for j = i to i = n+ 1
Gij = Θl

l = l + 1
end for
end for

4. Extract Hessian: Hij = Gij , i, j ∈ [1, n]
Extract gradient: Gi = Gi,n+1, i ∈ [1, n]

5. Evaluate the polynomial at y: z = yTHy +Gy + Θm

6. Return H,G and z

Algorithm 2 Single-variable Horner scheme

1. Initialization: Given Θ ∈ Rd + 1 to be evaluated at y ∈ R1. Instantiate
summation variable l = Θd+1.

2. for i=d+1 to 1
l = l + Θiy
end for

3. return l

in this thesis, but can be found in [44]. Compared to algorithm 1 the Horner
scheme only requires O(n) flops compared to O(n2) for the former, and in a
real-time implementation the Horner scheme should be used when applicable.
The system of equations to be solved when interpolating becomes

q(Θ,Φ(Y)) = ΘTΦ(Y) =

f(y1)
f(y2)

...
f(ym)

 (3.4)

and the interpolation model q(x) can be found. This model is built on the mono-
mial basis, and solving such a system can be done by inverting Φ(Y). However
this method is both computational costly and sensitive for the condition of
Φ(Y). Therefore other techniques are more common when performing fully de-
termined interpolation numerically, and Lagrange and Newton polynomials are
often encountered.

3.2 Lagrange polynomial
A commonly used basis in DFO are Lagrange polynomials, which forms an in-
terpolation basis. The definition of Lagrange Polynomials are given in
Definition 3.3 in [12]:

Given a set of interpolation points Y = {y1, y2 . . . ym}, a basis of m polyno-
mials `j(x), j=1,...,m, in Pdn is called a basis of Lagrange polynomials if

`j(yi) = δij =
{

1 if i = j,
0 if i 6= j.

Here Pdn denotes that the degree of the polynomial basis is d and the number of
free variables is n. In other words the Lagrangian polynomial is equal to zero
for all points in the sample set Y except the point used to create the polynomial
where it is equal to one. Note how these polynomials are created purely out of
the position of the sample points, with no connection to the actual value of the
objective function f(yi). Combining equation (3.2) and definition 3.3, it is easy
to verify that the interpolation model q(x) can be found from [8]

q(x) =
m∑

i=1
f(yi)`i(x) (3.5)

18

A common formula in mathematical literature for computing the Lagrange poly-
nomial belonging to sample yi in the one-dimensional case is

`i(x) =
m∏

j=1
j 6=i

(x− yj)
(yi − yj) (3.6)

Given that no two sample points are the same(i.e. poised). Algorithm 3, which
is algorithm 6.1 in [12], is for computing the Lagrange polynomials for the mul-
tivariate case, which is the algorithm applied in chapter 7. It is quite intuitive,
using a pivot-like technique to begin with the polynomial-point pair having the
biggest absolute value, normalizing this to one and remove the component of
all other pairs. The implementation used in chapter 7 uses a random set of
numbers to produce the initial polynomial instead of the monomial basis, and
uses a minimum value of 10 times the floating-point precision of Matlab as the
minimum allowed limit of |`i(yji)| to avoid degeneracy.

Algorithm 3 Compute Lagrange basis

1. Initialization: Given poised sample set Y = {y1, y2 . . . ym ∈ Rn} and an
estimate of the Lagrange basis `i(x), i ∈ [1,m] e.g. the monomial basis.

2. for i = 1 to m+1
Choose ji = argmax

i≤j≤m
|`i(yj)|.

If `i(yji) = 0 then stop, Y is not poised.
Else swap point yji and yi in Y .
End if
Normalize `i(x) to one for yi:
`i(x)← `i(x)

`i(yi)
Make `i equal to zero for all other points:
for j = 1 to m+1, j 6= i
`j(x)← `j(x)− `j(yi)`i(x)
End for
End for

3. Return the Lagrange basis L(x) = {`1(x), `2(x), . . . , `m(x)}

Lagrange polynomials are frequently used within DFO algorithms to ensure
good quality of q(x), however as algorithm 3 shows, all points must be available

19

before the polynomials can be computed. This makes the procedure of creating
Lagrange polynomials computationally expensive. Therefore a closely related
polynomial also seen frequently in DFO, is the Newton Polynomial.

3.3 Newton polynomial
Also called Newton Fundamental Polynomials (NFP), Newton Interpolation
Polynomials and Newtons Divided Difference Method results in a polynomial
basis as the Monomial basis and the Lagrange polynomial. However NFP has a
numerical advantage as a given NFP, ηj say, can be computed only knowing the
sample points yi, i ∈ [1, j], in contrast to Lagrange polynomials were all sample
points must be known for all polynomials[7] before starting the computation.
This property encourages use of parallelisation while building the interpolation
model.
In the one-dimensional case, given a sample set containing three samples Y ∈ R3,
the NFP for a quadratic interpolation is given by

q(x) =
3∑

i=1
αiηi (3.7)

where
η1 = 1
η2 = (x− y1)
η3 = (x− y1)(x− y2)

(3.8)

Now using the requirement that q(y1) = f(y1), q(y2) = f(y2) and q(y3) = f(y3),
this gives an explicit equation to solve the interpolation polynomial

α1 = f(y1)
α2 = (f(y2)−f(y1))

y2−y1

α3 = 1
y3−y1 (f(y3)−f(y2)

y3−y2 − f(y2)−f(y1)
y2−y1)

(3.9)

Here αi is called the i’th order divided difference. This may resemble finite-
differences, however this requires the sample points to lie relatively close. Note
the similarity of ηi to `i. Inserting yi into ηj will always make the polynomial
zero. The multi-variate case of NFP will not be covered here, but can be found
in [20].

20

3.4 Poisedness and quality of the model
Now it is known how to perform an interpolation to retrieve a model q(x) of
the objective function f(x). However the question of where to sample f(x) to
create the sample set Y is not discussed. This is in fact a key element especially
in DFTRM, as the position of the points relative to each other determines how
well the model q(x) resembles the objective function f(x). Consider solving the
interpolation problem (3.4) simply by inverting Φ(Y)

θ = Φ(Ȳ)−1

f(Y0)
f(Y1)

...
f(Ym)

 (3.10)

This will require Φ to be square and non-singular, and for certain choices of Y
this may not be the case[12]. This means that one or more of the degrees of
freedom in f(x) is not captured by Φ[29]. If this is the case, Y is singular, thus
said to be non-poised for interpolation. A formal definition of a poised set is
given in
Lemma 3.2 in [12]:

Given a function f : Rn → R and a poised set Y ∈ Rn, the interpolating
polynomials exist and is unique.

Further, if Φ(Y) is close to singular with the current sample set, the result-
ing model may not replicate the approximated model adequately, and a small
error in the objective function may induce a significant error in the model. In a
practical application it would be useful to be able to measure how close Φ(Y) is
to become singular, and thereby be able to ensure a certain quality and robust-
ness of the resulting model[12]. This is called well-poisedness, and is commonly
measured in a scalar Λ, thus referred to as Λ-poisedness. This is an useful tool
in DFO, as it makes it possible to ensure that the sample set is a certain dis-
tance from making Φ(Y) non-invertible[12]. Note also that if a sample set Y is
poised for a certain polynomial basis Φ, then it also poised for all other bases.
In fact, it does not matter which basis is used to interpolate, as the resulting
polynomial will be the same if the sample set is poised[12].
The Λ-poisedness measure of well-poisedness is defined in
Definition 3.6 in [12]:

21

Let Λ > 0 and a set B ∈ Rn be given. Let Φ = φ1(x), φ2(x), ..., φm(x) be a
basis in Pdn. A poised set Y = y1, y2, ..., ym is said to be Λ-poised in B (in the
interpolation sense) if and only if
1. for the basis of Lagrange polynomials associated with Y

max
1≤i≤m

max
x∈B
|`i(x)| ≤ Λ (3.11)

or, equivalently,

2. for any x ∈ B there exist λ(x) ∈ Rm such that
m∑

i=1
λi(x)φ(yi) = φ(x) (3.12)

with
‖λ(x)‖∞ ≤ Λ (3.13)

or, equivalently,

3. replacing any point in Y by any x ∈ B can increase the volume of the
set {φ(y1), φ(y2), ..., φ(ym)} at most by a factor Λ

Here B is the set that f(x) is to be approximated within. When introducing
DFO algorithms, this can be seen as the set(Trust region) where the approxima-
tion q(x) is considered to be a valid approximation to f(x). As 3.11 of definition
3.6 shows, a upper limit of the Λ-poisedness can be measured by finding the La-
grange polynomial with the biggest absolute value in B. Inspecting (3.6), this
makes sense as the coefficients of the polynomials are found from dividing on
the difference between the sample points. If the points lie close, thus not well
poised, the coefficients will become large. Further more if the points yi and yj ,
i 6= j lies close, the coefficients of these two corresponding Lagrange-polynomials
will be large to be able to change between one and zero on a small change in
the variables.
3.12 of the definition gives a intuitive understanding of what Λ-poisedness is. yi
is sampling point i, while x represents points on the set B and φ is the mono-
mial basis. The smaller the scalar Λ is, the better poised the sample set is. If
Λ is equal to one, then the sample set spans Rn perfectly within B. The last
statement of the definition is a geometric interpretation of 3.12[12].

22

Some important properties of Λ poisedness which will be used to obtain well-
poised sample-sets is stated in
Lemma 3.7[12]:

1. If B contains a point in Y and Y is Λ-poised in B, then Λ ≥ 1
2. If Y is Λ-poised in a given set B, then it is Λ-poised (with the same constant)
in any subset of B
3. If Y is Λ-poised in B for a given constant Λ, then it is Λ̃-poised in B for any
Λ̃ ≥ Λ

Where the fourth point is omitted as the purpose here is a working under-
standing of the poisedness concept. Especially point 2 is important, as it will
be used in DFTRM. The poisedness will never decrease by shrinking the set
B[12]. This is quite intuitive when working with approximations, as shrinking
the region that q(x) is considered to be a good approximation within, will not
make q(x) a less accurate approximation. Actually, as will be used in chapter
4, a decrease of B can, and usually will, make the approximation better.

3.5 Obtaining a well-poised sample set
When applying interpolation in an optimization algorithm, the sample set will
continuously change and therefore the poisedness of the set has to be checked
and, if necessary, improved in some way. This can either be done by finding the
point that contributes the worst to the Λ-poisedness and find a good substitute
for this, or remove a set of points(possibly all) and find new points that gives
a well-poised set. Before proceeding to the algorithms that ensures sampling
sets that are sufficiently well-poised, a class of models called Fully Quadratic
Models is presented. Models belonging to this class meets certain requirements
that will be interesting when looking into algorithms that creates poised sample
sets. [12] gives the definition of this class in
Definition 6.2 in [12]:

1. If a model q(x) belongs to the class of fully quadratic models, then ‖q(x) −
f(x)‖, ‖∇q(x)−∇f(x)‖ and ‖∇2q(x)−∇2f(x)‖ is bounded from above by finite
constants on a set B, where ∇ denotes the gradient with respect to x.
2. There exist an algorithm that in a finite, bounded number of steps can either
verify that a model is fully quadratic or create a quadratic model that is fully
quadratic on a set.

23

A quadratic model built from a Λ-poised set, will always belong to the class
of fully quadratic models[12], and the constants bounding the model error in
the first point of Definition 6.2 will make it possible to ensure a certain quality
of the model. The second point states that it is possible to create such a model
in a finite number of iterations. The relationship between poisedness and Fully
Quadratic can be understood intuitively from equation (3.12). If Λ ≤ ∞ then
f(x) and q(x) have certain similarities on the set that q(x) is trusted to be a
good approximation, because the difference between the two are bounded by
a scalar. The bound on the first and second order gradients then follows from
this, given that the gradient is defined for f(x) within the set B.

Algorithm 4 uses Lagrange polynomials to improve the poisedness of the
sample set(this is Algorithm 6.3 in [12]). Each iteration will simply find the
Lagrangian polynomial that gives the most contribution to Λ, following the def-
inition of Λ-poisedness of equation (3.11). Because each polynomial is created
with a certain sample point, the sample point belonging to this polynomial is
the point that increases Λ the most. If the value of Λ to this point is within the
tolerance, the sample set is considered well-poised and the Lagrange polynomi-
als are updated. If not, a point which do contribute to bad poisedness is found.
This does not have to be the same point as found in step 2 in the algorithm,
however if it is the algorithm can be used to increasingly improve the sample
set one sample at a time(by simply setting the Λ-threshold very low)[12]. This
point is then exchanged with the point that gave the "bad" Lagrange polyno-
mial, and the Lagrange polynomials is updated with the new sample set.
The most difficult operation in algorithm 4 is the maximization of the Lagrange
polynomials, as the absolute value can make the surface non-differentiable and
several local maximum points may exist. This requires either some global opti-
mization procedure, or the solution can be approximated.
Algorithm 4 is computationally expensive, and a more effective version using
LU -factorization is presented in [12] as algorithm 6.5 , however the Lagrange-
version is here presented as it gives the most direct understanding of the relation
towards Λ-poisedness.

In chapter 7 the approach of completing the sample set is applied, and algo-
rithm 5 is used. This is algorithm 6.4 from [12], and uses a pivot basis to replace
any points that makes the set non-poised. Further, if the given sample set is
smaller than the desired size(incomplete), it will generate new points, that gives
good poisedness, until the set is completed. This algorithm uses a pivotal basis
instead of the Lagrange basis, and builds this with Gaussian elimination. The

24

Algorithm 4 Improving the poisedness of a sample set using Lagrange poly-
nomials

1. Choose Λmax ≥ 1 which will be the maximum acceptable value of the Λ-
poisedness. Given a sample set Y with m points, compute the Lagrange
polynomials associated with Y if not already done.

2. Find the Lagrange polynomial which gives the largest contribution to the
poisedness by estimating

Λ = max
0≥i≥p

max
x∈B
|`i(x)| (3.14)

where B is the area (set) where the model is trusted to be a good enough
approximation to f(x)(see Fully Quadratic Model).

3. If Λ ≤ Λmax
Y is Λ-poised, exit algorithm.
Else
let i be an index such that

max
x∈B
|`i| > Λ (3.15)

and let yi∗ ∈ B be a point that minimizes |`i| in B. Update Y by replacing
the worst point yi with yi∗.
End if

4. Update all Lagrange polynomials.

5. Go to point 2

implementation used in chapter 7 applies the same technique for approximat-
ing the maximum of the Lagrange polynomials as the UOBYQA and Condor
optimization algorithms, which are described in chapter 4.5.

Algorithm 5 Completing a non-poised sample set using LU-factorization
1. Given a sample set Y with d points, compute an approximation to the

pivot polynomials ui, i ∈ [1,mini] associated with Y , e.g. the monomial
basis. Choose the desired size of the sample set m.

2. for i = 1 to m
Choose ji = argmax

i≤j≤d
|ui(yj)|.

Choose the pivotal element:
If |ui(yji)| > 0 and i < mini

Swap points yi and yji .
Else
Make point well-poised:
Compute or estimate yi = max

x∈B
|ui(x)|

End If
For j = i+ 1 to m
Gaussian elimination:
uj(x) = uj(x)− uj(yi)

ui(yi)ui(x)
End For
End For

3. Return poised set Y

26

3.6 Over-determined models
Until now the matrix Φ of the interpolation model has been square. This gives a
determined set of equations, which is then solved exactly. However if the number
of sampling points increases, Φ will get more rows than columns and the set of
equations will become over-determined. If the function to be approximated is an
analytical function without noise and the sample set is poised, these equations
can be solved simply by neglecting some of the equations such that Φ becomes
square. However, when noise is present, the set will not necessarily have an
exact solution as in the interpolation case. In this case the set of equations
can be solved in a least-squares manner, called regression, by minimizing the
approximation error[12].

min
α
‖Φ(Y)θ − f(Y)‖2 (3.16)

Equation (3.16) has an unique minimum if Φ(Y) has full column rank[12], which
is obtained if the sample set Y is poised. Regression is also quite similar to inter-
polation when looking at bases and poisedness. E.g. the Lagrange polynomials
are given as in interpolation, however now solved in a least-square fashion. From
Definition 4.4 in [12]

`j(yi)
l.s.= δij =

{
1 if i = j,
0 if i 6= j.

Further, the Λ-poisedness is still measured as the maximum absolute value of
the Lagrange polynomial on the set B[12]. Because of the bigger sample set
and the least-square approach, regression will have a smoothing-effect on f(x),
thus suppressing noise. On the other hand, to have any noticeable effect of this
smoothing effect in all degrees of freedom, the sample set will probably need to
be quite much bigger than in the interpolation case. This will require a signifi-
cant increase in the number of function evaluations, which is unattractive as this
is an expensive operation in NMPC. To be able to justify such an approach, the
improvement in accuracy of q(x) and the convergence rate of the optimization
algorithm must increase accordingly.

27

3.7 Under-determined models
The last type of model that will be mentioned is under-determined models. This
occurs when the number of sample points is too small for a fully determined
interpolation to be possible. The matrix Φ in equation (3.1) gets less rows than
columns. To solve such a system, the non-determined Degrees of freedom (DOF)
must be filled in some way. One possible procedure can be to remove columns
from Φ(Y) such that the matrix becomes square[12]. This will in essence be to
neglect some degrees of freedom in the interpolation. However, which columns
to be removed is not trivial. If the "wrong" column is removed, then Φ(Y)
may become singular.[12] As seen in section 3.5, singularity of Φ(Y) and the
poisedness of Y has a direct connection. It is then necessary to choose between
several possible models, corresponding to which columns are removed from Φ.
The goal then essentially becomes to choose a model, which is a subset of Φ,
that Y is well-poised in. This can be done through a minimum-norm solution.
To find the unknown parameters Θ in the model (3.1), minimum norm may be
applied as defined in [12]

Θmn = Φ(Y)T (Φ(Y)Φ(Y))T f(Y) (3.17)

As in regression, (3.17), the Lagrange polynomials are given as in interpolation,
however now solved using the minimum norm. From [12]:

Φ(Y)θj
m.n.= ej , j = 1 . . .m

Where m.n. stands for minimum norm, and ej is the j’th column of the identity
matrix of size m. The interpolation polynomial is given as in equation (3.5).
As there will be fewer Lagrange polynomials than columns in Φ, the Lagrange
polynomials will not be a basis. However, as in interpolation and regression, if
the Lagrange polynomials exist and is unique, the sample set Y is poised[12].
As a matter of fact, the Minimum Norm Solution is mainly used for linear
under-determined systems. However because of the nature of the MPC prob-
lem, it is desirable to approximate quadratic functions. The most common way
to create quadratic models from under-determined sample sets are through the
Minimum Frobenius norm. This is somewhat related to the Minimum norm,
but splits the problem into a linear and a quadratic term, then solves this as an
optimization problem.[11] This method has been successfully implemented in
several algorithms, e.g. NEWUOA[50] and BOBYQA[52]. In these algorithms
undetermined space of the Hessian is absorbed by minimizing the Frobenius
norm of the Hessian matrix of the previous iteration and the current, subject to

28

that the Hessian must be symmetric and to the interpolation condition (3.2).
This is referred to as "Minimum change-updating" in [40].
Typical for under-determined models are the difficulty of determining a bound
on the error of the model, as described in definition 6.2 in [12]. How well an
under-determined implementation will work on the MPC problem is probably
most easily verified by experiments, but the advantages of requiring a low num-
ber of function evaluations at each iteration point compared to fully determined
methods is encouraging. However these advantages may be compromised if the
quality of the model becomes bad, and the algorithms gets a slow convergence
rate.

29

Chapter 4

DFO algorithms

This chapter will present how the theory of chapter 3 is applied in DFO algo-
rithms. The focus will be on DFTRM, however also the GA is presented as it
is experimented with using this to improve the robustness of the NMPC. Lastly
some well-known and proven algorithms are presented in detail, to give basis
for evaluating the results to come in chapter 6.

DFO algorithms comes in a vast number of types and varieties. The maybe
simplest that can be though of is the "brute-force" method, which simply tries
a large number of random solutions and chooses the best one. This however
quickly becomes impractical when the number of MV, n, grows, and more so-
phisticated methods have been developed.
A common characteristic of these methods are that they start with an initial set
of m samples, Y ⊂ Rn, of the objective function f(x) : Rn 7→ R1, and creates
new points by trying to figure out where the optimum of f(x) is by looking at
the positions of yi, i ∈ [1,m] and the resulting functions values f(yi), i ∈ [1,m].
Several DFO methods are discussed in [12] and [40], and some of these are
presented and tested in [13]. However in this thesis only methods that proved
promising during initial testing on the more complex problem yet to be presented
are investigated, these being DFTRM which uses quadratic interpolation mod-
els. In addition the GA is presented, which proved to be very robust for finding
a feasible starting point on numerically challenging NMPC problems.
In [13] the linear DFTRM Cobyla[28] gave very promising results as it used
remarkably few iterations. However as suspected this algorithm runs into prob-
lems when the number of MV increases as the complexity of the problem grew,
usually not being able to come up with a reasonable solution at all.

31

4.1 Genetic algorithm
GA is inspired from the natural selection of the strongest individuals in nature.
The method uses the terminology chromosomes and genes for describing a pos-
sible solution and the individual MV for the given chromosome respectively.
Thus there exist m chromosomes, each built up of n genes. Further population
refers to the current set of chromosomes at the current iteration[12].
For each iteration the cost of each chromosome is evaluated and the current
population is sorted. A predetermined survival percentage is used to remove
the chromosomes with the highest cost. New chromosomes are made from
combinations of the surviving ones, called mating. Several ways of perform-
ing this combination have been proposed, e.g. interpolation, extrapolation or
some heuristic crossover[24]. This promotes the best solutions, and makes the
algorithm converge towards an optimal solution.
A percentage of the genes are exchanged with a random number, called muta-
tion. This randomness gives the exploration effect that the GA is mostly known
for, and the GA has proved to be effective when searching for a global optimum
in a non-convex problem, even if several similar solutions exists and the cost
landscape is very complex[24].

The GA used in this thesis is based on the algorithm presented in [24], however
it uses a modified method of combining chromosomes which proved effective by
experiments. This method repeats the following until all the discarded chro-
mosomes are replaced: Choose two surviving chromosomes ci and cj , where i
starting at 1 is increased for each repetition and restarted if i > nsel, while cj is
a random surviving chromosome. ci and cj is exchanged if f(cj) < f(ci). Then
a random number p between 0.5 and 1.5 is chosen, and the new chromosome is
cnew = pci + (1− p)cj .
This method is inspired from the observation that the objective function in a
NMPC optimization problem is at least usually locally convex around the op-
timum solution. Then the line from cj to ci is drawn. The optimal solution
may as well lie in between these two as along the extended line beyond ci, how-
ever never in a negative direction along this line from cj . A choice between the
midpoint between these points and 0.5 beyond ci in positive direction therefore
seems reasonable, and experiments proved these values to give good results.
The algorithm used is stated in algorithm 6.

The algorithm uses so-called elitism, as it never changes the best chromo-
some. This is an important feature in GA, as the mutation can actually change
the best solution to a worse one if this issue is not specially handled.

32

Algorithm 6 Genetic algorithm

1. Given mutation rate rmut ∈ [0, 1], selection rate rsel ∈ [0, 1], bl, bu ∈ Rn,
the desired size of the population npop and maximum number of iterations
kmax. If not supplied, generate a random initial population p0.

2. Calculate how many chromosomes which will survive between iterations
nsel = rselnpop and how many will be discarded ndisc = nsel − npop. Also
find the total number of genes to be mutated nmut = rmutngennpop. Set
k = 1

3. Evaluate the cost of each chromosome, and sort the population in increas-
ing order.

4. If k > kmax then return with solution set to the first chromosome in the
list.

5. Replace the ndisc chromosomes at the bottom om the list by combining
the nsel chromosomes from the top, using the method described above.

6. For all genes in the population gi, i ∈ [1, npopn] set gi = bu if gi > bu or
gi = bl if gi < bl.

7. Choose nmut random genes from the population which is not in the best
chromosome. Replace each of these with random number between bl and
bu.

8. Go to step 3

4.2 Trust-region methods
TR methods are based on making a model q(x) of the true objective function
f(x) around the current best solution xk, called the current iterate, k being the
iteration index. The minimization is performed on this model instead of the
true objective function.
Both derivative and derivative-free variants exist, common for both types are
that they rely on Lemma 3.7 from [11], also described in chapter 3. The Lemma
is applied through the trust-region radius ∆, which is a scalar defining a hyper-
sphere around xk. The optimization of q(x), which gives the Trust-region step
sTR, is performed under the constraint that the solution must be within this
TR. A typical trust-region sub problem is

min
sεRn

q(xk + s) (4.1a)

s.t
‖s‖ ≤ ∆ (4.1b)

Where s defines the step length from the current iterate. This is common in
TR-algorithms, and it is appropriate to define a new sample set D that is Y
shifted around xk and is denoted D = {y1 − xk, y2 − xk . . . ym − xk}, denoting
element i in D as si.
If the original problem were an unconstrained minimization of f(x), problem
(4.1) may actually be harder to solve than the original one[7]. However typical
for applications of DFO and especially single-shooting NMPC problems is that
f(x) is non-quadratic and non-convex, and evaluations of it is very expensive and
contaminated with numerical noise. Also the function may not be differentiable,
or the derivatives may come at a high cost. By making e.g. the quadratic
approximation q(xk + s) = sTHs + Gs + f(xk) ≈ f(xk + s), this model can
evaluated repeatedly at a low cost and both the gradient and Hessian are easily
available. Thus a variety of techniques exist for solving (4.1) to retrieve the
trust-region step sTR.
Now the model predicts a reduction, pred = q(xk + sTR)− q(xk) and the actual
reduction ared = f(xk + sTR) − f(xk) is computed and compared with pred.
What is done next separates the different algorithms, however it is common
that if the difference between the two is large a new TR step is computed with
a smaller "local" TR radius[7]. This is the point where Lemma 3.7 comes into
place, as a smaller step will(hopefully) not lead to such a big model error.

34

Clearly the main concern is to actually retrieve q(x), and make sure it is
of adequate similarity to f(x). In DFTRM this is done without calculating
or evaluating any derivatives of f(x). q(x) is constructed by the interpolation
techniques described in chapter 3. This is the reason why "poisedness" play such
an important role in DFTRM, as the position of the points in Y is essential to
the accuracy of q(x) with respect to f(x). Therefore it is usual for DFTRM to
solve a second sub problem, which is the maximization of the polynomial basis
seen in chapter 3, which purpose is to check the poisedness of the sample set
after the solution from the TR sub problem is included in Y . If the poisedness is
still adequate, nothing needs to be done. Else several different approaches exist,
however the most intuitive may be to run a geometry improving algorithm such
as algorithm 4.

Note that it is usual for a TR algorithm to use two separate trust region radii,
one global ∆ and one local ρ[7]. The global is the radius that q(x) is currently
trusted within. The second is used "locally" in the algorithm. If the difference
between pred and ared is to large, ρ is reduced and the sub problem (4.1) is
solved again. ∆ is on the other hand the hypersphere that the second sub prob-
lem is solved within, thus new poisedness-improving sample points will typically
lie on this sphere.

Algorithm 7 describes a simplified DFTRM. Although several aspects is left
out, it incorporates the most important steps. Especially important is step 6. If
the calculated TR-step is small, this indicates that the algorithm is getting close
to a solution. It is therefore necessary to reduce the spread of the samples in Y
by reducing ∆, making it increasingly more accurate around the exact solution
of f(x). Simplified it can be said that the local TR-radius ρ is used to correct
for model mismatch, ensuring that the steps is small enough that the model is
sufficiently accurate. The global TR makes the algorithm converge towards the
solution.
Common stopping criteria is minimum global TR-radius ∆end, maximum num-
ber of function evaluations, and/or algorithm iterations.

For simplicity of notation only xk is denoted with iteration index to identify
it from the general vector x. For other variables changing from an iteration to
the next this should be clear from the context. Further it should be noted that
BOBYQA, UOBYQA and Condor uses two iterates, xk and xbase. xk holds
the current best point while xbase is set equal to xk only when the ∆ is up-
dated. The sample set is always shifted to lie around xbase in these algorithms,
as it makes the interpolation more accurate[7] due to less numerical round-off

35

Algorithm 7 Simplified general trust-region algorithm
1. Initialization: Given a poised sample set Y0, a feasible starting point x0

and an initial trust-region radius ∆0.

2. Model building: Construct q(x) from the interpolation condition q(yi) =
f(yi), i ∈ [1,m].

3. TR-sub problem: Find the solution x+ = xk + sTR to TR-sub problem,
and calculate model agreement r = ared

pred .

4. If r is adequate, replace a leaving point yl with x+ in Y and continue.
Else reduce ρ and go to step 3.

5. Second sub-problem: Check the poisedness of Y .
If adequate continue.
Else initiate poisedness-improvement mechanism.

6. Model correctness check: If the step length ‖sTR‖ is below a threshold,
reduce ∆ for the next iteration such that the model starts to be focused
around a smaller area thus improving correctness.

7. Stopping criteria: If allowed, go to step 2.

errors[52]. xbase is not considered in this report, as it is only important for prac-
tical implementation and not for a general understanding of the algorithms.
To ensure that the TR restricts all DOF the same, the MV of the problem are
scaled within the algorithm. This is an important concept as the order of mag-
nitude of the MV can be vary largely. Although important for the success of
the algorithm, this aspect is left out of the descriptions in this report. However
this scaling is often to be pre-supplied by the user, or the algorithm takes basis
in the constraints provided to decide a typical span of a MV.

4.3 Constraint handling
A common limitation in DFO is often the lack of constraint handling. In
Derivative-based optimization (DBO), constraints is usually handled through
Lagrange multipliers. This gives the gradient of the constraints, and gives these
algorithms the ability to "slide" along a constraint in a direction that reduces
f(x)[7]. For DFO these multipliers are never available directly, because of the
need for differentiation. Some TR algorithm handles constraints by applying
them in the TR-sub problem[52][6]. This will work well for explicit constraints,
however implicit constraints which requires evaluation of the true objective to
be decided if violated gives problems. The only two general approaches found
by the author is the use of penalty-functions and hidden constraints[30]. The
latter is the only one that will guarantee that the constraint is never violated, as
an error is returned from the objective function if a solution is not feasible. The
algorithm will then simply "retreat" the solution a little against a known feasi-
ble solution(preferably the iterate) until no error is returned. This technique is
mainly meant as an "emergency" mechanism, if the objective function of some
reason is not defined at certain points. Most developers of DFTRM recommends
to avoid using this features for constraint handling, and rather rely on using an
penalty function[30].

37

4.4 Wedge
The Wedge algorithm is unique by introducing a constraint when solving the
sub-problem that ensures that the new point can be added to the sample set
without compromising the poisedness of the set. The algorithm has both a
linear and a quadratic version, and the versions are similar enough that both
will be presented here as the linear one gives an intuitive understanding of the
poisedness-ensuring mechanism of the algorithm. This section is mainly based
on [36], with notation to fit the rest of this thesis.

As model-improving steps requires evaluations of the objective and does not di-
rectly contribute to a better point, such steps can be considered very costly[56].
To guarantee that the TR-step fulfils this condition, an additional constraint is
introduced in the sub problem. The constraint is designed such that the new
point has a certain distance from making the sample set degenerate, which can
be recognized as a poisedness condition. The set where the constraint is active
will be defined later and is denoted W. This will change as Y changes, thus
usually each iteration. γ is a constant deciding the size of W, the bigger γ the
more well-poised the sample set will be kept. However if the solution to the sub
problem lies inside W, a compromise must be made of how much the value of
the objective is allowed to increase by moving the solution outside this region.
Therefore the algorithm incorporates an update-mechanism for γ, reducing it if
the function value increases by more than a factor called fracOptRed, in this
thesis denoted µ.
The Wedge sub-problem to be solved is

min
sεRn

q(s+ xk) = sTHs+Gs+ f(xk) (4.2a)

s.t
‖s‖ ≤ ∆k (4.2b)
s /∈ Wk (4.2c)

When the algorithm has solved the sub problem and found the TR-step sTR,
this forms the candidate to a new iterate x+

k = xk + sTR. Whether it indeed
makes this replacement, enters the sample set or is rejected depends on the
model validation step. In the two former cases it will replace a point yl, which
is the point that currently has the longest distance to xk.
The generation of the initial sample set is the same as used by the BOBYQA-
algorithm which will be presented in section 4.6. BOBYQA chooses the side of

38

xk that the samples in Y lies on from the distance to the bounds, while Wedge
makes this choice at random. For further details about the technique the reader
is referred to [36].

Algorithm 8 shows how simple and straight-forward the DFTRM becomes
when using the Wedge-constraint. However this comes at a cost, as solving the
sub-problem clearly becomes more of a challenge. How the Wedge-constraint
is formed and solved remains to be explained, as well as the model-building step.

The algorithm has three optional rules for changing the trust region. The one
explained in algorithm 8 is the default, and takes into account that there is only
a need to expand the trust region if sTR actually is constrained by it, as an
expansion can lead to a less accurate model.

The algorithm uses QR-factorization to build linear models, and this procedure
is quite straight-forward. However the quadratic model is built in an interesting
way. The model (4.2a) is factorized as

q(s+ xk) = f(xk) +Gs+
∑

i<j

Hijsisj + 1
2 +

∑

i

Hiis
2
i (4.3)

=f(xk) + ĝT ŝ (4.4)

where
ĝ =

[
GT {Hij}, i < j { 1√

2Hii}
]T

(4.5)

ŝ =
[
sT {sisj}, i < j { 1√

2s
2
i }
]T

(4.6)

Then LU-factorization is applied to solve the system

ĝT
[
ŝ1 ŝ2 . . . ŝm

]
=
[
f(y1) f(y2) f(ym)

]T − f(xk) (4.7)

Where ŝi denotes (4.6) inserted point i from D.

4.4.1 Defining and solving the Wedge sub-problem
For equation 4.7 to be solvable,

[
ŝ1 ŝ2 . . . ŝm

]
must be non-singular when

the leaving point yl is replaced with the trial-point sTR. This means that this
point must not lie in the (n − 1)-dimensional subspace spanned by D \ sl[36].
The set of points that will make D degenerate is called the taboo-region, and
is described using the null-space vector B of the set D, which is an orthogonal

39

Algorithm 8 The Wedge algorithm
1. Initialization: Create a initial sample set Y , choose constants for TR-

update γ1, γ2, objective increase-tolerance µ, initial value for TR radius
∆0 and initial angle on the Wedge constraint γ0. Choose starting point
for optimization x0.

2. Choose the sample point yout that is farthest from the current iterate xk,
by finding max

i∈{1,2..m}
‖yi − xk‖

3. Create the model q(s + xk) = sTHs + Gs + f(xk) from the sample set
Y ∪xk using equation (4.7), and define the wedge Wk by use of technique
in section 4.4.1.

4. Solve the sub problem 4.2 to compute the step sTRk from the current iterate
xk to the new candidate point using technique described in section 4.4.1
This step also updated the angle of the Wedge-constraint γ.

5. Retrieve the actual reduction of the objective ared = f(xk)− f(xk + sk)
and the predicted reduction pred = q(xk) − q(xk + sk), and calculate
r = ared

pred .

6. Trust-region update:
IF(ared ≤ 0)
THEN ∆+ = γ1‖sk‖
ELSE IF (ared > 0 AND ‖sk‖ ≤ ∆)
THEN∆+ = γ2∆ Expand the trust-region only if the trial point is con-
strained by it.
ENDIF

7. Update the sample set Y:
IF ared < 0
THEN Set x+ = xk + sk and Y + = Y ∪ (xk) \ yout Successful iteration.
ELSE
IF (‖sk‖ ≤ ‖xk − yout‖)
THEN Set Y + = Y ∪ (xk + sk) \ yout
ELSE Set Y + = Y
ENDIF
Set xk = x+

Set ∆ = ∆+

Set Y = Y +

ENDIF

8. Stopping criteria: If allowed, go to step 2.

Figure 4.1: The taboo region illustrated in a two-dimensional space for the
linear case. Figure taken from [36].

vector to the displacement vectors in D \ sl. In the linear case the taboo region
is defined as

T = {bT si = 0, i = 1 . . .m, i 6= l} (4.8)

Figure 4.1 shows a two-dimensional linear space, where two points is needed
to make a exact interpolation. When the leaving sample point is not considered,
the new trial point cannot lie on a extended line between the current iterate and
the one sample point left in the sample set, as this will only give information
about the planes slope in the direction of this line.
This condition will ensure that the sample set is not degenerate, however the
trial point may lie infinitely close to the taboo region. Therefore, a requirement
for the trial point to lie a certain distance from the taboo region is introduced,
by demanding a certain angle between b and s in (4.8). The Wedge constraint
for the linear case is then defined by

|bT s| ≥ γ‖b‖‖s‖ (4.9)

For the quadratic case the form of the model (4.3) is exploited, as this model is
on the same form as the linear model. In essence, the same technique is applied,
using a null-space vector b̂ such that the taboo-region is defined as

T = {b̂T si = 0, i = 1 . . .m, i 6= l} (4.10)

and demanding an angle between b̂ and ŝ to keep a certain degree of well-

41

Figure 4.2: Plot showing the resulting sub-problem. The darkest region shows
the region disallowed by the Wedge-constraint when the point (1,0) is chosen as
the leaving point(left), and (1,1) as the leaving point(right).

poisedness, forming the Wedge constraint

|b̂T ŝ| ≥ γ‖b̂‖‖ŝ‖ (4.11)

As the sub problem (4.2) is solved in the form with s ∈ Rn, the constraint
(4.11) must also be expressed in this form. [36] addresses this issue, however
these details are not important for a working understanding of the algorithm.
In a similar way as ĝ in 4.3, b̂ is a vector extended from b as

b̂ = (bT , {Bij}, {
1√
2
Bii}) (4.12)

The final Wedge-constraint for the quadratic case in Rn can be expressed as

|bT s+ 1
2s

TBs| ≥ γ‖s‖
√

1 + 1
2‖s‖2 (4.13)

In the same manner as (4.9) this constraint is non-linear, and both resulting
sub problems are no longer convex.

Figure 4.2 shows the contour plot of the sub problem when the Wedge-
constraint is introduced for the quadratic function f(x1, x2) = x2

1 + x2
2. The

darkest region shows the regions not allowed for the trial point to enter. The
trust-region constraint (4.2b) is not considered. Not only does the optimization
problem become non-convex, but the allowed set is divided into disconnected
regions. This problem has no general solution[40], however the Wedge-algorithm
solves it using a combination of some techniques and heuristics.

Both in the linear and in the quadratic case the sub-problem (4.2) is first
solved regardless of the Wedge-constraint (4.2c), retrieving a candidate to the

42

trust-region step s+. In the linear case this is accomplished by the formula
s+ = − ∆

‖g‖g, and in the quadratic case by the use of techniques described by
Mòre and Sorensen[36]. These are both common techniques in DFTRM. If the
Wedge constraint (4.2c) is satisfied for the step s+, the sub-problem solving
mechanism can exit with solution sTR = s+. If not, the approaches are some-
what different for the quadratic and the linear case.
In the linear case, if s+ lies in the Wedge-region, it can be shown that the so-
lution of the full sub-problem (4.2) is on the edge of the Wedge-region, i.e. the
Wedge constraint (4.2c) used as an equality constraint. s+ is thus rotated in
the plane that b and s+ spans[36], until the Wedge constraint is just fulfilled.
For the quadratic case, the wedge constraint is used as a penalty-function. By
computing the gradient of the left-hand side of the Wedge-constraint (4.13)

∇φ(s) = sign(bT s1
2s

TBs)(Bs+ b) (4.14)

and generating trial-steps strial which satisfies ‖strial‖ = ‖s+‖, strial can be
chosen such that decrease in the violation of the wedge-constraint occurs, while
not changing the right-hand side of this. As in the linear case, these trial-steps
are computed by rotating s+ in the plane spanned by s+ and (BT s+ b)[36].

A last action the algorithm takes is to make sure that the width of the Wedge-
constraint, i.e. γ, is not to large. As the trial steps progresses and reducing
the violation of the Wedge-constraint (4.13), the function value of the sub prob-
lem (4.2a) will possibly increase(because the trial steps moves away from the
minimum point of q(s)). If the trial step strial gives an increase in q(s) such
that µ(q(xk)− q(s+)) ≤ q(xk)− q(strial), this is seen as an indication that the
width of the Wedge-constraint is to large. γ is then chosen such that the Wedge
constraint is just satisfied, by solving (4.13) as an equality with respect to γ by
inserting the trial step strial. This new γ is then used in the next iteration of
the algorithm.
The sub-problem is now solved with sTR = strial.

43

4.5 UOBYQA and CONDOR
UOBYQA is a well-known DFO algorithm, its name being a acronym for Un-
constrained Optimization By Quadratic approximations[46]. It is claimed to be
robust against noise in the objective function[45], and suited for problems with
less than n = 20 free variables[46].
Condor is an extension of UOBYQA, exploiting parallel computing(actually pos-
sibility of distributing over several computers), added tolerance towards noisy
objective functions and, maybe most interesting for the purpose of NMPC, han-
dling of both bound, linear and non-linear constraints[7].
This section will present the relevant details of these two algorithms, taking
basis in UOBYQA and comments will be made where additions/changes are
made within Condor from this. The material presented is based on [45], [46],
[7] and [8].

The UOBYQA algorithm uses a fully determined interpolation model, i.e. re-
quiring m = 1

2 (n+1)(n+2) interpolation point. The interpolation is performed
using Lagrange polynomials, which also are used to maintain and control the
quality of the quadratic model. Condor is here using parallel(distributed) com-
puting over a network connection, by starting the optimization as UOBYQA,
but starting a second process in parallel where the model is verified and im-
proved on other processing cores if the user chooses to enable this feature. The
optimization progresses as UOBYQA, and when finished the two processes joins
and a better model is available for the next iteration. A good model is essen-
tial for fast convergence rate, however expensive to retrieve. Distributing this
process clearly gives an advantage for optimization problems that have long run-
ning time, however for a real-time MPC problem which is solved typically from
every tenth of a second to each second, this feature does not seem directly appli-
cable as the communication between different processing cores over a network
connection has a significant time consumption in it self and may be undesirable.

UOBYQA solves two trust-region sub-problems similar to the simplified algo-
rithm 7. The first is the usual minimization of q(x) within the trust-region.
Because CONDOR handles both linear and non-linear constraints, these are
introduced in the first sub problem as seen in (4.22) for this algorithm.
The second sub-problem is for the purpose of maintaining the poisedness of the
sample set Y as described in section 3.5. However UOBYQA uses a different
technique in finding the point to be replaced, as the quality of the model is
monitored using a bound M on the difference between the third derivative of

44

the model q(x) and of the objective function f(x). As neither of the function
are differentiated, the bound is on a theoretical plane, however it is interesting
to see ways of controlling the accuracy of the model and not only the poisedness
of the sample set Y .

Algorithm 9 shows the steps of the UOBYQA algorithm.
The update of the local TR-radius ρ according to

ρ =

max[ρ, 5
4‖sTR‖,∆ + ‖s‖] if 0.7 ≤ r

max[1
2ρ, ‖sTR‖] if 0.1 < r < 0.7

1
2‖sTR‖ if r < 0.1

(4.15)

and the global

∆ =

∆end if ∆end < ∆ ≤ 16∆end√
∆end∆ if 16∆end < ∆ ≤ 250∆end

0.1∆ if 250∆end < ∆
(4.16)

In addition to the steps of algorithm 9, Condor has a parallel extension that
is started between step 1 and 2, which continuously improves the model. The
progress of this is then retrieved to increase the quality of q(x) before perform-
ing the first sub problem, and before evaluating the quality of the model in step
10.

Condor also has a way of handling hidden constraints(see virtual constraints
in[6]). This mechanism reduced the trust region when a function evaluation
returns an error. This feature is not meant to be used to handle known, explicit
constraints, but rather make the algorithm tolerant against failures in evaluating
the objective function as discussed in section 4.3. As the simulation of the
prediction model in the objective may fail for certain combinations of states and
inputs, this is a feature that clearly improves the robustness of the controller.

4.5.1 Finding and replacing the "worst" point in the sam-
ple set

As the theory behind interpolation in chapter 3 reveals, maintaining the sam-
ple set Y with respect to poisedness is a non-trivial task. Chapter 3 presents
some algorithms to generate Lagrange polynomials and use this to maintain the
poisedness of the sample set. However an issues left unaddressed is the maxi-
mization of the Lagrange polynomials. This together with how the UOBYQA

45

Algorithm 9 The UOBYQA algorithm
1. Initialization: Given ∆0, set ρ = ∆ and generate a poised sample set Y

using techniques described in [45]. Also set the bound on the model error
M = 0.

2. Solve the first sub problem using the Mòre and Sorensen algorithm, to
retrieve the trust region step sTR.
If ‖sTR‖ < ρ

2 go to step 13.

3. Calculate the predicted reduction of the objective function pred = q(xk)−
m(xk + sTR) and update M from equation (4.18).

4. Calculate the actual reduction in the objective, ared = f(xk)−f(xk+sTR),
and find the model agreement r = ared

pred .

5. Update the local trust region radius ρ by the use of the rules (4.15).

6. Find the point yl that contributes the worst to the model q(x), by the use
of the technique described in section 4.5.1, and replace this with xk+sTR.
Choose the new current iterate to be xk = min[xk, xk + sTR].

7. Update the Lagrange polynomials to interpolate the new point.

8. Update M from equation 4.18.

9. If f(xk + sTR) < f(xk) or ‖sTR‖ > 2ρ then go to step 2.

10. Check the validity of the model q(x) using equation (4.19).
If model in invalid, use techniques described in section 4.5.1 to find the
point which contributes the most to the model error and replace it. Update
M from equation (4.18). Go to step 3.
Else if ‖sTR > ρ‖, go to step 3.
Else continue.

11. If Stopping criteria fulfilled exit algorithm with solution xk + sTR.

12. Update the global trust-region radius ∆ using the rules (4.16). and go to
step 2.

and Condor algorithms chooses a point yl to replace in the sample set Y and
finds a new point ynew are addressed in this section.

UOBYQA and Condor is based on calculating the error between the quadratic
approximation q(x) and the actual objective function f(x). The theory takes
basis in that comparing the Taylor expansions of q(x) and f(x), it is the third
and higher order derivatives that will be different because q(x) is a quadratic
approximation to f(x). Note that this value is purely theoretical, as f(x) is
never actually differentiated. Only the bound on the error will be stated here,
as the proof can be found in [7] and [45]. The interpolation error is given by

InterpolationError = |q(x)− f(x)| < 1
6M

m∑

j=1
|`j(x)|‖x− yj‖3 (4.17)

M is the bound on the third derivative of the Taylor expansion of f(x) and is
updated from

M = max[16M,
|q(xk + sTR)− f(xk + sTR)|∑m

j=1 |`j(xk + sTR)|‖xk + sTR − yj‖] (4.18)

This bound on the interpolation error is the driving factor of how the poisedness
of the sample set is kept in UOBYQA and Condor.

At step 10 of algorithm 9, the validity of the model is checked. If all the
points in Y are less than 2ρ away from the current iterate, the model is consid-
ered valid. If not, all the points which are further away than 2ρ are inspected,
starting from the furthest. Sample point yi is considered valid if

M = ‖yi − xk‖3max
s
{|`i(xk + s)| : ‖s‖ ≤ ρ} < ε (4.19)

where ε is a bound for the interpolation error. This is an approximation of
the contribution sample point yi makes to the interpolation error[45]. When
comparing this to the procedure of finding a sample point to replace in chapter
3, the difference is multiplication with the points distance from the current
iterate. This is because the techniques used by UOBYQA and Condor are
concerned with interpolation error, and not purely poisedness as described in
chapter 3 and [12]. UOBYQA and Condor will therefore rather favour points
which are close to the current iterate because of its implication to the model
quality described in definition 3.6 in [12] and chapter 3.

47

If this test fails for subscript j, the sample point yj is replaced with xk + d,
where d the solution to

max
s
{|`j(xk + s)| : ‖s‖ ≤ ∆} (4.20)

Equation (4.20) is then recognized as the second sub-problem, as seen in algo-
rithm 4 and 5 and discussed in section 4.2.
A last interesting case described in [7] is if given a point ynew, and it is desirable
to include this in the sample set Y by dropping a point in this, even though
Y has passed the validation of equation (4.19). Which point in Y to replace
to exploit the properties of ynew best? From chapter 3 it is known that it is
desirable to choose a point yl to be replaced such that `l(ynew) becomes large,
and as always dropping a point far from the current iterate is desirable. This
leads to choosing yl as the point that maximizes

|`i(ynew)|max

i
[1, ‖y

i−ynew‖
ρ3] iff(ynew) < f(xk)

|`i(ynew)|max
i

[1, ‖y
i−xk‖
ρ3] iff(ynew) ≥ f(xk)

(4.21)

where i ∈ [1,m] for the second equation, and xk is considered a part of the
sample set in the first one, as ynew in this case will become the new iterate.

4.5.2 Solving the first sub-problem
In UOBYQA and the unrestricted, open-source version of Condor, the first
sub problem is solved using versions of the Mòre and Sorensen algorithm, which
solves quadratic problems on the form of 4.1. The constrained version of Condor
implements its constraint handling at this point, by modifying the constraints
to accommodate the trust region step such that the TR sub problem becomes

min
sεRn

q(xk + s) = sTHs+Gs+ f(xk) (4.22a)

s.t
‖s‖ ≤ ∆k (4.22b)
bl ≤ xk + s ≤ bu, bl, bu ∈ Rn (4.22c)
A(xk + s) ≥ b, A ∈ RnL×n, B ∈ Rr (4.22d)
ci(xk + s) ≥ 0, i ∈ [1, nNL] (4.22e)

where nL is the number of linear constraints, and nNL is the number of non-
linear constraints. This problem is almost as hard to solve as the original prob-
lem, only that the objective (4.22a) now is a quadratic function, and as it is

48

an analytical one it is significantly easier to evaluate than evaluating the true
objective which in NMPC can (and in this thesis will) involve a simulation.
Condor checks if the non-linear constraint (4.22e) is active for each iteration. If
active, a SQP-algorithm is applied to find a search-direction and a line-search is
performed. If not a combination of the Mòre and Sorensen algorithm, the Active-
set algorithm and the null-space method is used to solve the problem. This latter
solution makes it possible to extend the Active-set method to also handle the
non-linear constraint associated with the trust-region constraint (4.22b). More
details of this solution can be found in [7], and concerning the active-set method,
SQP and null-space method [40] can be recommended reading.

4.5.3 Solving the second sub-problem
As described in chapter 3, the cross-terms in the Lagrange polynomials and the
absolute value makes the second sub-problem non-convex, and to find an exact
solution some sort of global optimization algorithm must be applied. However
UOBYQA and Condor uses an approximation to solve the problem.
Starting from optimization problem (4.20), this is rewritten to the form

max
s∈Rn

`i(s) = 1
2s

T (H`)s+ (G`)s (4.23a)

s.t
‖s‖ ≤ ∆ (4.23b)

(4.23c)

where only one Lagrange polynomial is considered, therefore the subscript i
denoting the specific polynomial is omitted for simple notation. H` and G` are
the coefficient matrices for the first and second-order terms of the Lagrange
polynomial.
The technique used by UOBYQA and Condor exploits that because of the
shape of the constraint (4.23b), s can be exchanged with −s and still satisfy
this constraint. This makes it possible to consider (4.23) as

max
s∈Rn

1
2 |s

T (H`)s|+ max
s∈Rn

|(G`)s| (4.24a)

s.t
‖s‖ ≤ ∆ (4.24b)

If the solution ŝ to the linear term of (4.24a) and s̃ to the quadratic term could
be found, making the choice between ŝ,−ŝ, s̃ and −s̃ as the one that gives the

49

largest value to (4.23) can be shown to be no less than half the size of the exact
solution[45].
As in the Wedge algorithm(see section 4.4 and [36]), the solution for the linear
term can be calculated from ŝ = ±ρ G`

‖G`‖ . The solution to the quadratic is
s̃ = ±ρ vmax

‖vmax‖ , where vmax is the eigenvector corresponding to the eigenvalue
of H` with largest absolute value. This approach is used in chapter 7, however
computing the eigenvectors are expensive, so [45] suggests a method to approx-
imate the direction of these. Algorithm 10 shows the steps performed to solve
the quadratic part of the second sub-problem. When both ŝ and s̃ are retrieved,

Algorithm 10 Solve the quadratic part of the second sub-problem
1. Decide the vector ω which is the column of H` with the largest euclidean

norm.

2. The direction d̃ of s̃ is picked from the span of ω and H`ω, namely d̃ =
αω + βH`ω

3. Choose α and β by maximizing the expression

{α, β} = max
α,β∈R1

|(αω + βH`ω)TH`(αω + βH`ω)|
‖αωβH`ω‖

(4.25)

4. Choose s̃ on the edge of the trust-region, s̃ = ρ d̃
‖d̃‖

the algorithm sets the final solution to a linear combination to these to improve
it further. This combination goes beyond just s̃, −s̃, ŝ and −ŝ. Therefore the
reader is referred to equation (2.18) in [45] and the above section in this, keeping
in mind that Gj and hj corresponds to H` and G` respectively, and d in [45]
corresponds to s.

50

4.6 BOBYQA
The BOBYQA algorithm is the successor of COBYLA, UOBYQA, and
NEWUOA[28]. The algorithms main structure is quite similar to the that of
algorithm 7 and UOBYQA as of solving two sub problems with purposes of min-
imizing a quadratic approximation and ensure poisedness. Its main difference
from the UOBYQA algorithm described previously is that it builds the model
from an under-determined sample set, and support bound constrains on the MV.
However the technique used to update H from the previous Hessian is numeri-
cally sensitive because the KKT-matrix must be inverted, therefore much atten-
tion is given to avoid numerical round-off errors in this calculations[50], leading
to this being the focus of the second sub problem, called Alternative Move (ALT-
MOV). This leads to the details of the algorithm to be more mathematically
complex than the algorithms previously described in detail, however it has both
in this thesis and other experiments shown very promising results[52][28]. This
section is an excerpt of the parts in [52] concerning the initialization, model
update technique and solving the sub-problems, as the rest of the algorithm is
mostly similar to UOBYQA(see section 4.5).

4.6.1 Initialization
The initialization procedure of BOBYQA gives a good working understanding
of how the under-determined model is solved in this algorithm. The choice of
the starting point for the optimization also proved to play an important role
when the algorithm was applied to the NMPC problem of section 6.5.

Given an initial starting point x0 ∈ Rn, trust region radius ∆0 ∈ R1 and
vectors of upper and lower bounds for the MV, bu, bl ∈ Rn respectively. Also
the user specifies the number of interpolation points m ∈ [n+ 2, (n+1)(n+2)

2] for
the interpolation model. When creating the sample set, BOBYQA makes step
with magnitude ∆0 along coordinate directions. These steps are chosen as

yi+1 = x0 + ∆0ei and yn+i+1 = x0 −∆0ei if bl < x0 < bu
yi+1 = x0 + ∆0ei and yn+i+1 = x0 + 2∆0ei if x0 = bl
yi+1 = x0 −∆0ei and yn+i+1 = x0 − 2∆0ei if x0 = bu

(4.26)

where i ∈ [1, n] and ei =
[
0, . . . , 0, 1, 0, . . . , 0

]T with the i’th element equal
to one. BOBYQA automatically changes the components of the initial iterate
to lie on the bound, if this component is outside the feasible region. Also, as

51

the first line of (4.26) implies, all components of x0 must have a distance of at
least ∆0 from the bounds. x0 is therefore changed according to the following
rules

x0i =

bli if x0i < bli
bui if x0i > bui
x0i + ∆0 if bli < x0i < bli+ ∆0
x0i −∆0 if bui > x0i > bui−∆0

(4.27)

Further, if bui− bli < 2∆0 there is no room to make the sample points of (4.26),
and an error is returned.
If m ≤ 2n + 1 then the initial Y is now complete. If not, more points are
generated by combining the already defined points, i.e. for i ∈ [2n+ 2,m]

yi = yp(i) + yv(i) − x0 (4.28)

where p(i) si defined as

p(i) =
{
i− 2n− 1 if 2n+ 2 ≤ i ≤ 3n+ 1
p(i− n) if 3n+ 2 ≤ i ≤ m (4.29)

and v(i) as

v(i) =
{
p(i) + i if p(i) + k ≤ n
p(i) + i− n if p(i) + k > n

(4.30)

Next BOBYQA builds the first quadratic model

q(x0 + s) = f(x0) +G0s+ sTH0s (4.31)

by giving priority to the bias q(x0) and the gradient G0, which requires a total
of n + 1 points. Then the coefficients of the diagonal of the Hessian Hii, i ∈
[1,m − n − 1] is interpolated from the points yi, i ∈ [n + 1,m]. Further, if
m > 2n + 1, the remaining coefficients Hq(i)p(i) is calculated from the points
yi, i ∈ [2n + 2,m]. The remaining elements of H is set to zero, which can be
interpreted as minimizing the Frobenious norm of H[52].
Note that [51] recommends 2n + 1 as the number of interpolation points for
BOBYQA, which will start the optimization with a diagonal approximation to
the Hessian[50].
Also an initial inverse of the KKT-matrix is calculated, so that the inverse for
iteration 1 has a previous matrix to be calculated from. However the details is
omitted here, and can be found in [52].

52

4.6.2 Model update technique

The BOBYQA algorithm uses under-determined interpolation, using from n+2
to (n+1)(n+2)

2 sample points. The model is written on the same form as 4.31,

q(xk + s) = sTHs+Gs+ f(xk) (4.32)

As mentioned earlier, this model is determined with n + 1 sample points by
neglecting the Hessian H. However to guarantee that H will have a change
from one iteration to the next the size of m must be chosen to n + 2 or larger
[40],[50]. The remaining DOF in H are absorbed by minimizing the Frobenious
norm of the difference of the Hessian from one step (k) to the next (k + 1).

‖H(x)k+1 −H(x)k‖F (4.33)

thus taking up the undetermined space in q(x) by making it close to the previous
Hessian. The update of q(x) from one iteration to the next is performed by
requiring that H is symmetric and the interpolation condition to hold, and
solving the equality-constrained, convex optimization problem

min
s∈Rn

‖H(s)k+1 −H(s)k‖F (4.34a)

s.t
H = HT (4.34b)
q(yl) = f(yl) ∀ l ∈ [1,m] (4.34c)

By using the KKT-matrix[40] for (4.34) and inserting the interpolation points
from Y this problem can be solved as a set of linear equations to decide the
coefficients of Hk+1.
When solving this system of equations the KKT-matrix is inverted by calculat-
ing the inverse of this matrix from the previous inverse, by only updating the
row and column that actually is changed due to the one point that has changed
in the last iteration[48]. This way the work of updating the Hessian requires
O(n4) operations if the sample set is fully determined, and O(n2) operations
when m = 2n+ 1[52], thus encouraging a small sample set. Details of how the
model update is performed is described in [48] and [49].

53

4.6.3 Solving the first sub-problem(TRSBOX)
The BOBYQA sub problem

min
s∈Rn

q(xk + s) (4.35a)

s.t
‖s‖ ≤ ∆ (4.35b)
bl ≤ xk + s ≤ bu, bl, bu ∈ Rn (4.35c)

is solved using an active-set algorithm called Trust Region Step in the Box
(TRSBOX). This algorithm stores the current active bounds in the set I, and
uses a function PI to calculate a Cauchy step which moves along the active
constraints. PI(x) is such that given a vector v ∈ Rn and v̂ = PI(v) ∈ Rn,
component i of v̂ is

v̂i =
{

0 if i ∈ I
vi if i /∈ I (4.36)

and the Cauchy-step d is calculated as

d = −PI(G(s)) (4.37)

Then a line search is performed that is terminated with solution s if the model
is no longer decreasing along the line, or if further progress is restricted by the
constraint (4.35b). Further, if the line-search hits a bound(4.35c) a termination
check is performed.

‖PI(G(xk + s))‖∆ ≤ 0.01[m(xk)−m(xk + s)] (4.38)

If the expression (4.38) returns true, little progress is likely to be gained from
further iterations, and termination occurs with solution s. Otherwise the new
active constraints are added to I and TRSBOX is restarted. Additionally, s
may be moved around on the trust region boundary if a sufficient improvement
in q(x) justifies this. The details of this procedure is omitted here, but can be
found in [52].

4.6.4 Solving the second sub-problem(ALTMOV)
If the solution from TRSBOX has a norm of less than ‖ 1

2∆k‖, the poisedness-
improving mechanism ALTMOV is invoked, which is the BOBYQA-equivalent
to the second sub-problem. The goal of this algorithm is to find a replacement

54

for a leaving point yl, that is the point furthest away from xk, such that the in-
verse of the KKT-matrix is kept valid. ALTMOV generates two different steps,
d and c which accomplishes this. The first is chosen to lie on a line between
the current iterate xk and one of the interpolation points yi, i ∈ [1,m]. The
absolute-value of the Lagrange polynomial corresponding to the leaving point is
evaluated along each of these lines(except the line corresponding to the leaving
point itself). The point along all of these lines that gives the maximum value
without violating the constraints (4.35b) and (4.35c) is chosen as d.

Also the alternative to d is generated, namely c. This step is found by cal-
culating the Cauchy step of the linearised Lagrange-polynomial corresponding
to the outgoing sample, `l subject to the bounds (4.35c) and the trust region
constraint (4.35b).

max
s∈Rn

|`l(xk) + sT∇`l(xk)| (4.39a)

s.t
‖s‖ ≤ ∆k (4.39b)
bl ≤ s+ xk ≤ bu, bl, bu ∈ Rn (4.39c)

Problem (4.39) is both minimized and maximized, to take into the account the
goal of maximizing the absolute value. By choosing si = (bl)i− (xk)i if ∇`l > 0,
si = (bu)i − (xk)i if ∇`l < 0 and zero otherwise, problem (4.39) is solved if the
trust region constraint is satisfied. If not, ALTMOV iteratively retreats some
of the components of c against xk until it is satisfied.
Whether to use c or d to replace yt is decided when updating the model q(x)
later in the iteration, and for these details the reader is referred to [52].

In addition to ALTMOV, BOBYQA has a feature called RESCUE. This pro-
cedure is initiated when rounding errors occurs in the updating of the inverse
KKT-matrix, causing this to become close to singular. RESCUE handles this
by moving some point in Y . According to [52] this method is rarely invoked,
and is omitted here as this sections purpose is to give a understanding of the
main mechanisms of BOBYQA.

55

Chapter 5

A NMPC case study

To test the performance of the optimization algorithms, a NMPC scheme is
developed for a system with a prediction model where DFO becomes beneficial.
Such characteristics can be high stiffness and usage of a variable-step solver in-
ducing numerical noise, logic operators, lookup tables and sets where the model
is not defined. These characteristics typically occurs in fluid-flow models, and
such a scenario were described in the fluid-tank model in [13], where the square-
root characteristics of a fluid-valve induced highly varying stiffness, which in
turn generated a rugged cost-surface when a variable-step ODE solver were used
to simulate the prediction model. However this scenario proved to me rather
simple, as it contained only a single input and one differentiated state. In this
report a more complex MIMO system is tested, to differentiate the algorithms
more clearly, as suggested in [13]. This chapter will present such a system, and
how the NMPC problem is defined. Also the system will be analysed in a similar
manner as the one from [13], to show what characteristics it inhabits.

5.1 The crude-oil separator
The system that will be used to test the DFO algorithms is a model of a sub-sea
crude-oil separator, developed by Statoil. The model is a simplified model of
a laboratory setup as the system is still under design, and figure 5.1 shows its
structure. The following description of the separation process is an excerpt from
[41], where also the details of the simplifications can be found.
The unit separates the input crude oil flow qin into its gas qout1 and liquid qout2
component flows. The input flow rate may be time varying, as well as the frac-
tion of gas in the crude oil, called Gas Volume Fraction (GVF), which varies
from zero(only liquid) to one(only gas).
The unit is split into two main control volumes, each containing a liquid level.
The Gas-Liquid Cylindrical Cyclone (GLCC) does the first separation of the
crude oil, however at high flow rates the GLCC does a very rough separation[41].

57

Therefore both the gas output flow q1 and the liquid output flow q2 from GLCC
is fed through a second separation stage, called the De-Liquidizer (DL) and
Phase Splitter (PS) respectively. Both these stages are co-axial cyclones, which
rotates the input mixture to create a centrifugal force which separates the gas
and liquid phases. The gas is then extracted from the centre of the cyclones,
while liquid will be along the walls.
Gas-flow from the GLCC to the DL, q1, is controlled by the valve u1. The gas
outlet from the PS, q3, is fed into the mixture inlet of the DL, while the liquid
outlet of the DL, q5, is fed right into the liquid outlet of the separator. Both of
these flows are controlled by valves u3 and u4 respectively. At outlet qout1 there
is a compressor to move the gas to the surface, and at qout2 there is a pump for
the same purpose for the liquid. The feed to these are controlled by the valves
ucompressor and u7 respectively. Note that the former will be referred to as uc
from now.
The model also contains the liquid levels of the GLCC and the DL. These are
assigned notation hs and hdl respectively, and measured in meters. These levels
are not necessarily desirable to keep at a set-point, as allowing them to move
freely within certain bounds can make the whole system act more smoothly.
However the cyclones has a physical maximum liquid level where they will over-
flow. Both these limits are at 2 meters, and these therefore naturally becomes
constraints in the NMPC. The model is not valid for liquid levels below zero,
thus it makes sense to also constrain the levels to positive values.
Also important variables for the NMPC is the pressures of Control volume 1
(CV1), p1, of Control volume 2 (CV2), p2, and the difference between these
pressures ∆p. From [41], p1 should be kept between 9 and 15 bar, p2 between 8
and 12 bar while ∆p between 0.5 and 4 bar. Simulations done in earlier studies
has shown that these constraints are relatively easy to satisfy [41] [33], however
the consequence of a violation is not accounted for.

The overall goal of the separation process is to keep the GVF of the gas out-
let, GV Fout1, as close as possible to one, and the GVF of the liquid outlet,
GV Fout2, as close as possible to zero. This goal is rarely feasible to obtain
perfectly, however two physical constraints are present on these variables. The
compressor and the pump receiving qout1 and qout2 has limits on the GVF of
their input flow. Violating these limits can inflict damage to the units. This
results in a lower constraint in the GVF of qout1 of 0.97 and the GVF of qout2
should be constrained to below 0.03. However it should be pointed out that
these constraints can be allowed violated for short periods of time. Although
satisfying these constraints under violent disturbances is feasible as shown in

58

Figure 5.1: The separator unit used in testing the NMPC

[33], this results in violent input controls. Also the system has a big spread
of time constants, from the rapidly changing GVF and pressures to the slow-
varying liquid levels. To control the quick modes, the input blocks of the MPC
horizon should be chosen short, while controlling the slow modes requires a long
horizon. Together these two criteria results in a large amount of MV. Therefore
[41] and [33] pre-stabilises the plant using PID-controllers for controlling the
liquid levels by feeding the measurements of hdl and hs back to the valves u4
and u7 respectively. This both reduces the number of variables as the MPC only
has to control three valves instead of five, and as the slow dynamics is stabilized
a much shorter horizon can be chosen. Both the approach of controlling all
valves with MPC and using pre-stabilization is tested in this thesis.

A summary of the variables of the model with their notation are shown in
table A.1. Note that the model distinguishes between parameters and states,
where the latter is variables which must be integrated and fed back into the
model, whereas parameters do not need to be integrated before fed back. To
simulate the model in open loop for deciding the structure and initial settings
for the tuning variables of the NMPC optimization problem, initial values for
the model is found from experiments and simulations. Table B.1 shows values

59

0 50 100 150 200
0

0.02

0.04
σ : GVF in liquid outlet of PS

Time(sec)

G
V

F

0 50 100 150 200
0

1

2

Liquid height in GLCC (h
s
)

Time(sec)

M
et

er
s

Pre−stabilized
Unstabilized

0 50 100 150 200
0

1

2

Liquid height in DL(h
dl

)

Time(sec)

M
et

er
s

0 50 100 150 200
8

10

12

14

16
Pressure in GLCC(CV1)

Time(sec)

B
ar

0 50 100 150 200

8

10

12

Pressure in DL(CV2)

Time(sec)

B
ar

0 50 100 150 200
0.04

0.045

Disturbance

Time(sec)

F
lo

w

0 50 100 150 200

0.5

0.6

0.7

G
V

F

q
in

δ

Figure 5.2: The separator model with steady-state inputs and steps in the
disturbance.

that will lead to a steady-state behaviour of the model. The analysis is done
by applying steps in the disturbance, and keeping the valve openings constant.
First a step in the input GVF occurs, then this step is set back to its steady-state
value. The input flow is then perturbed, and towards the end both disturbances
are perturbed simultaneously.
Figure 5.2 shows the result of the simulation. In the un-stabilised case, the

liquid levels are highly sensitive towards the disturbance. As the flow increases,
so does the liquid levels as more liquid is introduced in the unit. However when
the input GVF δ increases a smaller fraction of the input flow is liquid, thus the
liquid levels decreases and actually reaches zero and continue in negative direc-
tion relatively quickly. As this clearly is not realistic the trajectory after this

60

point is not representative in respect to the real-world unit, however it should
be noted that all other states remains within their constraints. Note that the
GVF of the DL, µ, and the difference pressure ∆p is not plotted to save space,
as these variables are generally very close to their optimal values and are thus
not considered very interesting.
By applying the PID-controllers for pre-stabilizing the liquid levels, figure 5.2
shows that the liquid levels now become locally stable, and are kept close to
their set-points. However this comes at the cost that the pressures in the con-
trol volumes increases. It seems that when only one of the disturbances are
perturbed, the pressures will converge close to their constraints, however when
both qin and δ are perturbed from their steady-state values, constraints are vi-
olated. Also the output GVF of the PS σ is more excited from the active usage
of u4 and u7, which both controls the flow where σ is measured.
These results suggests that controlling the model leads to contradicting goals,
and there must be compromises between the performance of the different out-
puts. MPC is thus well suited, as it is intuitive to adjust the priority of the
different objectives as discussed in chapter 2.

5.2 Defining the NMPC problem
It is reported from Statoil and [41] that the system sets great demands for the
choice of the ODE-solver, and this may not be available for the multiple-shooting
approach. Also the model is implemented in the C++ programming language,
and as parameters and states are distinguished, it is intuitive to do the simula-
tions in Simulink. This makes it convenient to call the simulation from within
the cost function which is a Matlab-function, thus becoming a single-shooting
NMPC problem.
From section 5.1 it is known that the most important purpose of the controller is
to keep the output GVF σ and µ from the separator sufficiently pure to protect
the compressor and pump, keep the liquid levels hdl and hs between zero and
their maximum bounds to keep the model within its valid limits and ensure that
the pressures is within their limits. Also the valve inputs are scalars between
zero and one which introduces bounds on these. [41] and [33] used ideal values
to punish valve openings that deviate from the steady-state settings. During the
simulations in this thesis it is experimented with both punishing change in the
input sequence and using penalty for deviation from ideal values. The former
gave a smoother trajectory of the inputs, however penalty for deviation from
the ideal values(the steady-state values of table B.1) proved important to make

61

the valves converge quickly when the dynamics of the system settles.
In [41] it was used set-points for the pressures p1, p2 and ∆p, and this is contin-
ued in this thesis. Further it is introduced set-points for the output GVF, σ and
µ, of zero and one respectively. This is in an attempt to make it easier for the
controller to minimize variations in these variables, by applying a small weight
in errors for these variables "pulling" them away from the constraint even if this
is not violated. The same idea is used when tuning the other constrained states
and parameters. Although the constraints shall ensure that the given variable
is never outside its bound, by applying a set-point with a small priority as far
as possible away from the constraints, the variable is not as likely to encounter
the constraint. In some cases though it may be desirable to work as closely
as possible to constraints, then this approach is not ideal. In this case study
however it does not matter where between the constraints a variable operates,
and the approach proved to work well.
Two different optimization problems are defined, one for the plant with stabi-
lized liquid levels and one without pre-stabilization. The latter also introduces
so-called terminal-cost[38] for the liquid levels, as this improves the performance
of the controller. Both problems are defined in the same way, although in the
pre-stabilized case all penalties associated with u4, u7, hdl and hs are set to
zero, as well as the terminal cost for the liquid levels.
The resulting objective of the NMPC is summarized in table 5.1, and (5.2) shows
the resulting optimization problem, when the notation from section 2.3 is used.

Note that to simplify the tuning of the optimization problem, scaling to the
weights are applied. This scaling is done according to the formula presented in
[23]:

q̃i = qi
(imax − imin)2 (5.1)

where qi is the weight for variable i from table 5.1, and q̃i is the scaled weight
applied in the objective function. imax and imin are typical maximum and min-
imum values for variable i. This can e.g. be constraints, or physical maximum
and minimum limits, or a combination. This way if two weights are chosen
equal, the corresponding variables will become equally punished for a relatively
equal deviation.

62

Variable Set-point Upper bound Lower bound Priority Terminal
σ 0 0.03 - 1 -
µ 1 - 0.97 10 -
p1 12 15 9 40 -
p2 10 12 8 40 -
∆p 2 4 0.5 60 -
hs 0.7 2 0 40 40
hdl 0.5 2 0 20 60
uc 0.38 1 0 2 -
∆uc 0 - - 4 -
u1 0.24 1 0 1 -
∆u1 0 - - 2 -
u3 0.05 1 0 0.24 -
∆u3 0 - - 0.24 -
u4 0.40 1 0 0.6 -
∆u4 0 - - 0.6 -
u7 0.15 1 0 0.6 -
∆u7 0 - - 0.6 -

Table 5.1: Objective of the NMPC. Priority are the weights applied to the stage-
cost, before scaled according to (5.1) and applied in (5.3b)-(5.3f). Terminal
is the terminal-weights, before they are scaled and applied in (5.3g). If pre-
stabilization is used, the priority to hdl, hs, u4 and u7 set to zero, as well as the
terminal cost to hdl and hs.

.

min
uεRn

f(`(u(0), . . . , u(K − 1), x(0),K), u(0), . . . , u(K − 1)) (5.2a)

s.t
σ(k) ≤ σmax, k = 1, 2 . . . K̂ (5.2b)
µmin ≤ µ(k), k = 1, 2 . . . K̂ (5.2c)
p1min ≤ p1(k) ≤ p1max , k = 1, 2 . . . K̂ (5.2d)
p2min ≤ p2(k) ≤ p2max , k = 1, 2 . . . K̂ (5.2e)

∆pmin ≤ ∆p(k) ≤ ∆pmin , k = 1, 2 . . . K̂ (5.2f)
hsmin ≤ hs(k) ≤ hsmax , k = 1, 2 . . . K̂ (5.2g)
hdlmin ≤ hdl(k) ≤ hdlmax , k = 1, 2 . . . K̂ (5.2h)
umin ≤ ui(k) ≤ umax, k = 0, 1 . . .K − 1 (5.2i)

Where the objective function is defined as

f(x(1), . . . , x(K̂), u(0) . . . u(K − 1)) = (5.3a)
K̂∑

k=1

1
∆t(k) [qsigma‖σ(k)− σref‖2 + qµ‖µ(k)− µref‖2+ (5.3b)

qhs
‖hs(k)− hsref

‖2 + qhdl
‖hdl(k)− hdlref

‖2 (5.3c)
+qp1‖p1(k)− p1ref

‖2 + qp2‖p2(k)− p2ref
‖2 (5.3d)

+q∆p
‖∆p(k)−∆pref

‖2] (5.3e)

+
K∑

k=1

5∑

i=1
ri‖ui(k)− uiref

‖2 (5.3f)

+ehs‖hs(K̂)− hsref
‖2 + ehdl

‖hdl(K̂)− hdlref
‖2 (5.3g)

Where ehs and ehdl
are the terminal weights of table 5.1, after scaling according

to (5.1). Note the introduction of the differentiated time vector ∆t, which holds
the interval between each time step of the states. This is assumed to be avail-
able from the ODE-solver, and is introduced be able to do a discrete integration.
This is important when applying a variable-step solver, as the number of sample
points returned by `(u(0), . . . , u(K − 1), x(0),K) will depend on the dynamics
of the system, which will change according to the state it is in. Failing to taking
this into account will typically favour solutions where the solver chooses long

64

steps, because this will tend to make the sum smaller.
For the choice of the control, and prediction horizon, figure 5.2 suggests that
the slowest dynamics has a time constant of approximately 40 seconds. This
choice proved to work well during simulations in the "Full MPC" case. For the
pre-stabilized case, pressures seems to be surprisingly slow when inspecting fig-
ure 5.2. However as the pressure in the DL shows, they are closely correlated
with the liquid levels, and it is likely that the dynamics of the pressures becomes
faster when the liquid levels becomes high thus less space is available for the
gas in the cyclones. Simulations proves that a horizon down to 5 seconds stabi-
lizes the model, however larger choices give smoother trajectories of the valves.
Therefore a horizon of 20 seconds is chosen. The input sequence is divided into
5 blocks. The length of each input block is {10%, 10%, 20%, 20%, 40%} of the
total length of the control horizon. Increasing the number of blocks does not
give an significant improvement in closed-loop performance.

5.3 Developing a penalty-function for constraint
handling

Because DFO algorithms often does not handle constraints, and because of the
single-shooting approach to NMPC used in this thesis, the most common and
general way of handling constraints on the system states is the use of penalty-
functions[30]. This expansion of the objective function introduces penalty(i.e.
increased cost) for constraint violations. The penalty function will here be de-
noted ψ : Rj 7→ R1, j being the number of states, and x(k) ∈ Rj is the
trajectory of the states to be constrained.
Several different approaches for designing ψ(xk) has been proposed in literature[40].
Given that it is desirable to constrain x(k) such that x(k) ≤ xc, k = 1 . . . K̂, xc ∈
Rj , a common choice for ψ is the L1 or L2-norm

ψ(x(k)) = qc‖xc − x(k)‖−i (5.4)

where the minus-sign denotes that it is only the elements in x(k) that vio-
lets the constraint that contributes to the norm. In the objective function the
penalty for the whole horizon is summarized(or integrated if variable-step solver
is used), and added to the original objective function. qc is a weighting constant,
which must be chosen such that the complete problem becomes well-scaled, and
large enough that the algorithm will prioritize to minimize the penalty function
before minimizing the rest of the objective function. At this point the L1 sepa-
rates from the L2-approach, as the former will ensure that the penalty function

65

always is reduced to zero if possible[23]. However it has the disadvantage of
being non-differentiable when ψ crosses zero, which is likely to happen regularly
when operating close to constraints. During some simulations DFTRM tends to
struggle with this penalty function, as the trust region quickly is being reduced
due to the difference between the smooth model and the non-smooth objective
function.
Other common choices of ψ is the logarithmic

ψ(x(k)) =
{
− log(xc − x(k)) if x(k) < xc,
∞ if x(k) ≥ xc (5.5)

and inverse functions

ψ(x(k)) =
{ 1

xc−x(k) if x(k) < xc,

∞ if x(k) ≥ xc
(5.6)

𝑥0

𝑥1

𝑥2

Figure 5.3: Illustration of how the sam-
ple points may lie in the infeasible set,
and therefore this area should return a
valid function value whenever possible.

however these are not very suitable
for model-based derivative-free opti-
mization such as the DFTRM used
in this thesis. These algorithms sam-
ples the objective function around the
current iterate, and as figure 5.3 il-
lustrates, if this iterate is close to the
constraint, samples may well lie out-
side the feasible area.

Using penalty functions that re-
turns ∞ in the infeasible set clearly
will introduce problems when trying
to build a model from the sample set,
as the infeasible samples will not con-
tain any information other than that
they are indeed infeasible.
Other proposals are adding a fixed
value to the resulting cost if con-
straints are violated[30]. This how-
ever makes the problem highly non-
smooth, and DFTRM proved to have
severe difficulties with this approach
as the gradient becomes undefined when crossing between the infeasible and
the feasible set. If using other algorithms which are developed to handle non-
smoothness and discontinuities, this approach may however be effective.

66

Based on this the L2 norm is chosen as the most promising candidate, and penal-
ties are implemented in ψ(x(k)) for deviation in the constraints (5.2b)-(5.2h).
The new objective function consisting of the old objective and the penalty func-
tion can be written

f̄(x(1), . . . , x(K̂), u(0) . . . u(K − 1))

= f +
K̂∑

k=1

1
∆t(k)ψ(x(k)) (5.7a)

where the argument for the old objective function (5.3) is not denoted for sim-
plicity of notation. As this new objective takes into account the constraints, the
new optimization problem can be written

min
u∈Rn

f̄(`(u(0), . . . , u(K − 1), x(0),K), (5.8a)

u(0) . . . u(K − 1)) (5.8b)
(5.8c)

s.t
umin ≤ ui(k) ≤ umax (5.8d)
k = 0, 1 . . . ,K − 1

The weights on the penalties are chosen two times that of the respective weight
presented in table 5.1, and scaled according to (5.1) before applied in ψ. Note
that the constraints on the inputs are left as explicit constraints. This is because
these are bounds directly on the MV, and is therefore easy to check if are
satisfied, and also easy to correct if violated. For convenient notation, f is
defined as the complete objective function, i.e. f := f̄ .

67

5.4 Implementing the model and NMPC in Mat-
lab/Simulink

To test the performance of the NMPC, the separator model is implemented
in Simulink in closed loop with the NMPC. Figure 5.4 shows the Simulink

Figure 5.4: The Simulink diagram for the simulator of the Separator(Compact
Sep Plant), and the NMPC in feedback(NMPC Controller).

diagram of the model that is to be controlled, referred to as the plant. This is
simulated with Matlabs fixed-step solver ode1, with a sampling period of 10−2

seconds. This is the same sample period as used in [33], and should be able
to capture all the dynamics of the system well. The NMPC controller block
is down-sampled from 10−2 to 2 · 10−1 seconds to emulate a realistic sampling
frequency of the controller. Although higher sample time succeeds in controlling
the plant, this gives a relatively large variance in the trajectories of the valves.
This is probably because the pressure and GVF states have fast dynamics, and
together with mismatch between the plant and the prediction model this makes

68

the plant change to much from one step of the controller to the next. The
chosen frequency is then a compromise between controller performance and
computational consumption.

Figure 5.5: The Simulink diagram for the prediction model used by the NMPC.

Figure 5.5 shows the Simulink implementation of the prediction model used
by the NMPC. Two different ODE-solvers, both from Matlab, are used to simu-
late this. The variable-step solver ode23s and the fixed-step ode1. The variable-
step solver uses a relative and absolute tolerance of 10−2, and a minimum and
maximum step length of 10−2 and 2·10−1 respectively. The upper limit is chosen
such that the solver will be computationally faster than the fixed-step version
when there is little disturbance and the system are in steady-state, while the
lower limit is the same as that of the plant simulator. The solver tends towards
the minimum step length during the fastest transients of the system, typically
occurring during quick changes in the disturbance. In these circumstances the
prediction model will be simulated at the same precision as the plant itself,
thus giving an almost perfect prediction at high stiffness. It does however not
become completely perfect as ode1 and ode23s doesn’t give the exact same solu-
tion at the same step length, as ode1 is the Euler-rule, while ode23s is built on
the Runge-Kutta methods of order 2 and 3. That this prediction becomes this
good when the systems fastest dynamics are excited is not necessary realistic,
however this does not matter as it is the algorithms ability to handle numerical
noise in the objective function that is the purpose of the simulation. Also the

69

tolerances of the variable-step solver are chosen rather large. This reduces the
computational load during simulation, thus decreases the time consumption of
the NMPC computations significantly. However because this also decreases the
accuracy of the predictions, it also increases the numerical noise in the objective
function, and increases the model mismatch between the plant and the predic-
tion model.
The fixed-step solver uses a step-length of 10−1 seconds, to be computationally
fast. As the low tolerances of the variable-step solver, this introduces a model-
mismatch, which increases the realism of the simulation as model-mismatch
always will be present in a real-world application.
The implementation of the prediction model is done under the assumption that
the current disturbance is estimated, and the most recent estimate is used in
the prediction. Because the NMPC uses the whole sample period (0.2 seconds)
to solve the optimization problem, the input implemented at time step t, is
calculated using the disturbance at t − 0.2. However the real-world plant will
always have a error in this estimate, which is not considered in the simulation.

5.5 Analysing the optimization problem
Before applying optimization algorithms to solve the NMPC problem, it is useful
to investigate the properties of the problem. Two sets of inputs and measured
states of the plant x(0) are chosen from a simulation, one set where the plant is in
a stiff condition, and one where this is not the case. Then the cost is evaluated
with different inputs by holding the three first and the two last input blocks
equal, varying one valve. It is the "Full MPC" approach that is investigated, as
this is the numerically most challenging.
Figure 5.6(a) and 5.6(b) shows the resulting cost when applying fixed and

variable-step ODE-solver respectively, in a non-stiff case. In the fixed-step case
the cost surface is relatively smooth, although some minor discontinuities can
be seen traversing the cost surface. Experiments show that the tested gradient-
based SQP algorithm handles this problem well. When applying a variable-step
solver noise appears. Local minimums seems to exist in the top left corner of
figure 5.6(b), which is challenging for all algorithms.

Figure 5.7(a) and 5.7(b) is the same experiment as figure 5.6(a) and 5.6(b),
however the system is in a stiff setting. It is important to notice that even
when using a fixed-step solver, the problem may still become discontinuous,
non-smooth and numerically challenging. Notice that at least two minimum
points exist, one at the bottom of the curve, and one on the edge next to this.

70

71

0.13
0.14

0.15
0.16

0.17
0.18

0.19

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0

20

40

60

80

100

120

140

Second input block

First input block

C
os

t

(a) Fixed-step, non-stiff

0.13
0.14

0.15
0.16

0.17
0.18

0.19

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0

20

40

60

80

100

120

140

Second input block

First input block

C
os

t

(b) Variable-step, non-stiff

Figure 5.6: Cost surface of the NMPC optimization problem when applying
fixed-step and variable-step solver when the plant is in a non-stiff configuration,
and varying u7 between 0.13 to 0.19.

72

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

40

50

60

70

80

90

100

First input block

Second input block

C
os

t

(a) Fixed-step, stiff

0.19
0.2

0.21
0.22

0.23
0.24

0.25

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

40

50

60

70

80

90

100

First input block

Second input block

C
os

t

(b) Variable-step, stiff

Figure 5.7: Cost surface of the NMPC optimization problem when applying
fixed-step and variable-step solver when the plant is in a stiff configuration.
The first block of u7 is varied between 0.19 and 0.25, the second between 0.17
and 0.23

These two points seem to have quite a similar function value, thus there can be
argued that it does not matter which one is chosen(from an optimization point-
of-view), however it is desirable that the same point is chosen at each time step
and not switching between them, as this will create unnecessary variance in the
inputs to the plant.
When using a variable-step solver, as in the non-stiff case, noise is introduced
leading to a function that is likely to be even harder to differentiate. Also more
local minimums are introduced. Applying finite-differences to this is likely to
introduce large errors in the gradient.

73

Chapter 6

Using Wedge, Condor and
BOBYQA for NMPC

This chapter will apply DFO algorithms to solve the optimization problem of
section 5.2. This requires the optimization problem formulation (5.8), as non of
these algorithms has the ability to handle constraints in the way they appear
in the single-shooting approach to NMPC, as described in chapter 5.2. Condor
and BOBYQA handles bounds on MV, however Wedge does not. Therefore
these bounds are handled through penalty function for this algorithm.
Two main categories of simulations are performed on the case study, namely
using NMPC to control all states("Full MPC") and where the two slowest states
are pre-stabilized with PID-controllers as described in section 5.1 and 5.2. The
plant is simulated as described in section 5.4, and both variable and fixed-step
solver is used to simulate the prediction model, using the same settings as in
section 5.4. Warm-start is also applied by always starting the optimization at
the previous solution to exploit that the solution is similar from one time step
to the next.
A time series of disturbances is used to test the system. This is shown in figure
6.1. It takes base in a disturbance series that [41] used for simulations, and
represents the worst disturbance the real plant can be expected to undergo.
However to test the performance of the algorithms under challenging dynamic
circumstances, the applied series is made "worse". As can be seen from figure
6.1 the system in closed-loop with the NMPC controller will be tested both for
constant, mild and severe change in the disturbance. After the last steps the
controllers ability to bring the system back to steady-state is tested.
The model, both in the prediction configuration and the plant, proved to be
very numerically challenging. Especially a negative rate of change in δ makes
the ODE-solver occasionally return infinite states or NaN(Not a number)(i.e.
undefined points), in the case of variable-step solver and "Full MPC" in combi-
nation with fixed-step solver. Investigations shows that in these cases the set of

75

0 50 100 150 200
0.02

0.03

0.04

0.05

Input flow, q
in

Time(sec)

F
lo

w

0 50 100 150 200

0.3
0.4
0.5
0.6
0.7

Input GVF, δ

Time(sec)

G
V

F

Figure 6.1: The disturbance sequence used during simulations.

inputs where the model is defined, becomes very small, particularly when using
the variable-step solver. The objective function also becomes very non-smooth
and quickly changing from one time step to the next, and an optimal solution
in one time step may become undefined in the next. None of the algorithms
handles undefined starting points. In these cases a last-resort solution must be
used, by implementing the solution from the previous time step and hope that
this eventually becomes defined again as the simulation progresses.

It should however be mentioned that an experiment is performed where the
optimization is divided into two stages. The first stage uses the GA described
in section 4.1 to find a defined starting point x0, which is a sub-optimal so-
lution. Then a second stage applies a DFTRM with this solution as starting
point, to improve the optimality of this. This two-stage approach proves very
robust, and by allocating say 40 function evaluations to the GA at each time
step it not only finds a feasible starting point, but also does some good steps
towards the solution such that the DFTRM converge quicker. However because
of the randomness in the GA each simulation tends to result in a slightly dif-
ferent solution, and it is therefore hard to directly compare these. If e.g. it is

76

desirable to use the variable-step solver with parameters that tends to result in
infeasibility or simply increase the robustness of the controller, such a approach
can definitely have a positive effect.

6.1 Choice of parameters for the algorithms

Tuning of the algorithms proves to be decisive on the results, and it seems that
there always exist room for improvement. The maximum allowed number of
function evaluations ,kmax, is chosen such that all algorithms gets a comparable
amount of computation time. This is done under the assumption that evalua-
tion of the objective function is significantly more computationally costly than
then rest of the operations.
Further all algorithms must be supplied with the initial TR-radius ∆0. Inspect-
ing the algorithms presented in chapter 4, choosing this large should give a good
"filtering-effect" against noise[46], as the initial sample set will be widely spread.
On the other hand, when the system operates relatively steady, it will be more
desirable to start with a small radius. This will make the algorithm already
"zoomed" in on the solution, thus requiring fewer function evaluations to zoom
on to the solution and stop at a better solution when kmax is reached. Thus a
good choice of the TR-radius would be the distance from the current starting
point to the current solution, the latter obviously unknown. Simulations proves
that the change of a input is usually in the magnitude of 10−2 during relatively
large disturbances, and usually smaller. Taking basis in this and experimenting
with different choices of the initial TR radius, ∆0 = 0.05 proved to be a reason-
able compromise between robustness and accuracy. This may seem large taken
into account that it is very rare for a variable to change this much, however it
is chosen to also ensure robustness. If the algorithm of some reason, e.g. noise,
gets stuck in a local minima or is forced to revert to a last-resort solution far
from the optimum, this may give an "exploration"-effect that ensures steps in
the correct direction and may overcome local minimums.
During the simulations all DFO algorithms uses a minimum TR-radius, ∆end,
as stopping criteria in addition to a maximum number of function evaluations.
This is chosen purely from simulations, to find values for each algorithm that
stops the algorithm before the noise level becomes significant.

77

6.2 Remarks about MPC tuning
To keep the focus on the algorithms during the following results, some remarks
concerning the tuning of the MPC will be stated here.
Inspecting the best found solution of figures 6.4 and 6.5, it is definitely desir-
able to make changes to the weight matrices if it is to be used in a real-world
application. For the "Full-MPC" approach u5 should be less aggressive, as the
variations may be limited by actuator dynamics. It is experimented with larger
weights in the corresponding indices in the weight matrices, however this did not
improve the result. It is likely that some underlying dynamics should also be
controlled, or one or more of the other controlled states should be less weighted
to relax the demand on u5.
Further more, uc seems to get some minor oscillations when δ has a negative
rate of change using the pre-stabilized plant. This is likely to have its origin in
the controlled state σ and α, as these clearly has "spikes" at these points in the
time series. As these two states are known to have relatively fast dynamics, the
"correct" solution to this problem is probably to increase the number of input
blocks, however this will increase computational load. Increasing the respective
indices in the weight matrices did not give any improvement, however it seems
reasonable that less weight on the error in σ and α may make the controller
less aggressive. It should also be mentioned that this tendency greatly improves
as the control horizon is extended, and choosing a horizon of 5 seconds makes
the oscillations severe. Also more active use of terminal weights, or even us-
ing a barrier-function to create terminal constraints may create less aggressive
behaviour[39]. Note that as discussed initially the objective function is known
to be numerically difficult in the case of negative rate of change in δ, thus the
issue may not be easy to solve only by tuning the controller.
Because the focus of this report is numerical optimization rather than tuning
of MPC, limited time is spent on this issue. It may also be argued that is in-
teresting to see how the algorithms performs on a sub-optimally tuned NMPC
problem.

78

Algorithm MPC Fs/Vs W/C sol. Av. sol. Av. evals. S.S. evals.
SQP P.S. Fs 176.7 5.9 178.6 93
BOBYQA P.S. Fs 10.2 1.6 117 80
Condor P.S. Fs 25.5 2.2 247 252
Wedge P.S. Fs 16.9 2.5 168 143
BOBYQA P.S. Vs 28.7 2.7 80 71
Condor P.S. Vs 11.6 1.2 245 249
Wedge P.S. Vs 89.5 3.9 164 151
Wedge* P.S. Vs 53.7 1.1 197 150
SQP Full Fs 194 38.6 101 74
BOBYQA Full Fs 119.6 3.4 213 212
Condor Full Fs 42.9 7.2 463 456
Wedge Full Fs 140.3 8.7 389 382

Table 6.1: Summary of the results. "W/C sol." is the highest cost the respective
algorithm finds during simulation, while "Av. sol." is the average cost. "Av.
evals. and "S.S. evals." is the average number of function evaluations used during
the whole simulations, and during the first 30 seconds while the disturbance is
constant, respectively. Wedge* γ1 = 0.75 instead of 0.5.

6.3 Summary of the results

Table 6.1 summarize the results for the four algorithms that is tested. "Fs/Vs"
refers to the method used to simulate the prediction model, fixed-step or variable
step respectively. "MPC" is pre-stabilized(P.S.) or Full. "W/C sol." and "Av.
sol" refers to the highest and the average cost of the solutions found, while "Av.
evals" is the average number of function evaluations used. The highest number
of function evaluations is the same as the maximum allowed number for the
respective algorithm, thus stated in the section for the algorithm. "S.S. evals"
is the average number of function evaluations used from the start of the time
series under steady-state conditions until the disturbance starts to change at 30
seconds. In the figures showing the resulting costs when the NMPC is simulated,
it is important to note that the pre-stabilized plant does not weight error on the
liquid levels and deviation from ideal values on two of the inputs, as these are
not controlled by the NMPC. Therefore the resulting cost of the pre-stabilized
and "Full MPC" is not directly comparable. These are plotted in the same plot
merely to save space.

79

6.4 Gradient-based SQP
For comparison, the finite-differences, gradient-based SQP algorithm from the
"fmincon()" method in the optimization-toolbox in Matlab, is applied to both
the pre-stabilized and the "Full MPC" approach. The algorithm is allocated
kmax = 400 function evaluations, and stopped if the step size is less than a
magnitude of 10−5. It is however only applied using fixed-step solver for sim-
ulation of the prediction model, as variable-step solvers makes the algorithm
do unrecoverable errors. It should be noted that this SQP-implementation is
known to not be state of the art, however it gives an indication of how gradient-
based algorithms handles this NMPC problem.
Several times the algorithm seem to suffer from discontinuities and non-
smoothness in the objective function, returning costs in the magnitude of sev-
eral thousand. For the algorithm to be applicable for the whole time series, the
algorithm is restarted with x0 chosen to the steady-state values of the inputs
presented in table B.1 if the solution found using the solution from the previous
time step is greater than 500. If still no good solution is found, the solution from
the previous time step is used as the control input. This procedures are used
quite often, indicated by the peaks in cost in figure 6.2. Note that the last-resort
procedure described initially in this chapter to handle undefined initial points
is also implemented, thus the algorithm has two different sort of "failures" to be
handled; wrong solution due to errors in the differentiation and lack of solution
due to undefined point in the model.
Figure 6.2 and 6.3 shows the resulting control inputs and states respectively.
Clearly SQP suffers greatly from the discontinuities. This is reflected in table
6.1, as this algorithm has the highest costs of all tested. Just as important
however is the number of function evaluations. The average number of func-
tion evaluations used is actually higher for the pre-stabilized case, may suggest
that the "Full MPC" approach has some numerical difficulties. If the number of
evaluations are reasonably high, this may suggest that the algorithm has suc-
ceeded. The low number of evaluations for the "Full MPC" can be interpreted
as local minimums trapping the algorithm, or discontinuities simply making the
algorithm fail.
When inspecting the figures this is partly confirmed, as the cost for the "Full
MPC" is extremely high over long periods of time as the fall-back solution is ap-
plied. For the pre-stabilized case it is, at least while the disturbance is moderate,
similar to that found by the other algorithms. This shows how the pre-stabilized
case is easier to optimize than the "Full MPC", as it is less contaminated with
discontinuities and non-smoothness, as well as undefined points.

80

81

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
c

Time(sec)

V
al

ve
 o

pe
ni

ng

Full MPC
Pre−stabilized

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
1

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
3

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
5

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
7

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

10

20

30
Cost of solutions found

Time(sec)

C
os

t

Figure 6.2: Control inputs using SQP, and prediction model simulated with
fixed-step solver.

82

0 50 100 150 200
0

0.02

0.04
σ : GVF in liquid outlet of PS

Time(sec)

G
V

F

Full MPC
Pre−stabilized

0 50 100 150 200

0.96

0.98

1
µ : GVF in gas outlet of DL

Time(sec)

G
V

F

0 50 100 150 200
0

1

2

Liquid level in GLCC (h
s
)

Time(sec)

M
et

er
s

0 50 100 150 200
0

1

2

Liquid level in DL(h
dl

)

Time(sec)

M
et

er
s

0 50 100 150 200
8

10

12

14

16
Pressure in GLCC(CV1)

Time(sec)

B
ar

0 50 100 150 200

8

10

12

Pressure in DL(CV2)

Time(sec)

B
ar

0 50 100 150 200
0

2

4

∆
p
: Difference pressure between CV1 and CV2

Time(sec)

B
ar

Figure 6.3: Controlled states using SQP, and prediction model simulated with
fixed-step solver.

6.5 BOBYQA
The stop criteria used for BOBYQA are ∆end = 10−3 and kmax = 216 for the
pre-stabilized plant and kmax = 600 for the "Full MPC".
Note that it is not the minimum TR-radius that is set in BOBYQA, but the
minimum step-size. This is due to the specific implementation of BOBYQA
used, namely in the NLOpt package[28]. The two types of stopping criteria are
closely related, however the one used in BOBYQA will stop when a solution
such that the change in one of the variables from the current iterate is less than
∆end. This however seems to work very well, as the algorithm adjusts nicely
the number of iterations necessary.
These values are chosen partly from experiments, and from the suggestion of [52]
of optimizing a problem in 1

2n
2 function evaluations. However it turns out that

this limit makes the algorithm perform poorly when the change in the objective
is severe. Thus the stated limit is chosen, and a relatively high ∆end such that
the algorithm terminates after fewer iterations if convergence is achieved quickly
due to small change in the objective function from the previous time step.
Some unexpected behaviour is observed with BOBYQA. Now and then it returns
a solution that is worse than its starting point x0. This seems counter-intuitive,
however inspecting the initialization-procedure of section 4.6, it turns out that if
the given starting point is close to the bounds, it will automatically be moved.
To avoid this, the cost of the starting point is evaluated before BOBYQA is
started, and compared with the returned solution when the algorithm exits,
then choosing the best solution.

Figure 6.4 and 6.5 shows the control inputs and states using BOBYQA both
for pre-stabilized and "Full MPC".

The most interesting result from using the fixed-step ODE-solver with BOBYQA
is that it has the lowest number of function evaluations used, and still the solu-
tions found are satisfactory. For the pre-stabilized plant with fixed-step solver
it is both the best average and worst-case solution. Table 6.1 shows that as
long as the disturbance is small, thus the objective function relatively smooth
and similar from one time step to the next, the number of function evaluations
increases slowly.
Inspection of the figures and comparison with other algorithms also indicates
that the solution found by BOBYQA in the "Full MPC" case is good as long as
the disturbance is moderate, thus the objective function is relatively smooth.
This is also backed up by table 6.1, where BOBYQA has the lowest average cost,
however the worst-case solution suffers, as this case occurs during the most se-

83

84

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
c

Time(sec)

V
al

ve
 o

pe
ni

ng

Full MPC
Pre−stabilized

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
1

Time(sec)
V

al
ve

 o
pe

ni
ng

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
3

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
5

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
7

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

10

20

30
Cost of solutions found

Time(sec)

C
os

t

Figure 6.4: Control inputs using BOBYQA, and prediction model simulated
with fixed-step solver.

85

0 50 100 150 200
0

0.02

0.04
σ : GVF in liquid outlet of PS

Time(sec)

G
V

F

Full MPC
Pre−stabilized

0 50 100 150 200
0.95

1
µ : GVF in gas outlet of DL

Time(sec)

G
V

F

0 50 100 150 200
0

1

2

Liquid level in GLCC (h
s
)

Time(sec)

M
et

er
s

0 50 100 150 200
0

1

2

Liquid level in DL(h
dl

)

Time(sec)

M
et

er
s

0 50 100 150 200

10

15

Pressure in GLCC(CV1)

Time(sec)

B
ar

0 50 100 150 200

8

10

12

Pressure in DL(CV2)

Time(sec)

B
ar

0 50 100 150 200
0

5

∆
p
: Difference pressure between CV1 and CV2

Time(sec)

B
ar

Figure 6.5: Controlled states using BOBYQA, and prediction model simulated
with fixed-step solver.

vere disturbance. Is is plausible that the cause of this can be traced back to the
underdetermined interpolation in the algorithm. It is known from [52] and [50]
that it is common for the difference between the Hessian of f(x) and that of
q(x) to be relatively large. The success of the algorithm during little numerical
issues may then be interpreted as although the mismatch between f(x) and q(x)
can be substantial, the minimum point is similar. It is known that f(x) is at
least to some extent convex close to the solution, and this is usually quite close
to the starting point for the optimization, x0. As this point is used as a point
in the interpolation in the initial model, it is reasonable to believe that q(x) is
accurate around the actual solution. Also because ∆0 is chosen relatively large,
all other points in the initial sample set will have a larger function value due
to the convex tendencies of f(x). As the Hessian of q(x) is a diagonal matrix
initially, this will then become positive definite if these assumption holds, and
the algorithm will initially make steps towards the actual solution even though
the model mismatch is large. When more numerical noise and discontinuities
are introduced, as is the case when the disturbance is severe in the "Full MPC"
approach, these assumptions may not hold, and the algorithm may take steps
in bad directions, e.g. due to a negative-definite Hessian.
Further, as the initial model is built up from fewer samples than is the case with
fully determined interpolation, less information is also stored. As the algorithm
progresses, fewer iterations will be needed before the model is renewed by "fresh"
sample points. This can give a better ability for the model to adapt to local
non-linearities as the trust-region moves.
These are only speculations, however it would definitely be interesting to mon-
itor the accuracy of q(x) and the TR-steps made by the algorithm to try to
determine what is the origin of the effectiveness of BOBYQA. Such findings
may then be exploited to make the algorithm even better for NMPC, or may
give good guidelines in how a NMPC problem should be designed to make
BOBYQA and possibly other DFO algorithms effective on such problems.

Inspecting the result using the variable-step solver in figure 6.6 and 6.7, it
is clear that this has a big impact on BOBYQAs performance, supporting the
previous claims. Considering the worst-case cost, this peaks at an amplitude of
28.7 instead of 10.2 in the case of fixed-step solver. The origin of these are from
the NLOpt-implementation of BOBYQA. If the objective at any point returns
an error, which occasionally happens due to the model, it will immediately
exit, returning the current best cost. In these simulations the algorithm did
no progress at these points, only returning the start-point. However as the
simulation progressed using the last-resort solution, the state of the plant altered

86

87

0 50 100 150 200
0

0.5

1

Input u
c

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

0.5

1

Input u
1

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

0.5

1

Input u
3

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

0.5

1

Input u
5

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

0.5

1

Input u
7

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

10

20

30
Cost of solutions found

Time(sec)

C
os

t

Figure 6.6: Control inputs using BOBYQA, and prediction model simulated
with variable-step solver.

88

0 50 100 150 200
0

0.02

0.04
σ : GVF in liquid outlet of PS

Time(sec)

G
V

F

0 50 100 150 200
0.95

1
µ : GVF in gas outlet of DL

Time(sec)
G

V
F

0 50 100 150 200
0

1

2

Liquid level in GLCC (h
s
)

Time(sec)

M
et

er
s

0 50 100 150 200
0

1

2

Liquid level in DL(h
dl

)

Time(sec)

M
et

er
s

0 50 100 150 200

10

15

Pressure in GLCC(CV1)

Time(sec)

B
ar

0 50 100 150 200

8
10
12

Pressure in DL(CV2)

Time(sec)

B
ar

0 50 100 150 200
0

5

∆
p
: Difference pressure between CV1 and CV2

Time(sec)

B
ar

Figure 6.7: Controlled states using BOBYQA, and prediction model simulated
with variable-step solver.

and the starting point became defined again.
Also noteworthy is that the average number of function evaluations is equal
for the steady-state as the whole simulation in this case. This suggests that
the variable-step solver generates numerical noise that makes the algorithm
quickly reduce its local TR, ρ, because non-smoothness in f(x) will induce
model mismatch between this and the smooth q(x). This makes the algorithm
do small steps, and the minimum allowed step size may be reached quickly.

6.6 Condor
Condor is constrained to 100 iterations after the initial model building, and
∆end = 10−3. This typically results in a total of approximately 250 function
evaluations for the pre-stabilized plant and approximately 450 evaluations for
the "Full-MPC", as model improvement may consume more than one function
evaluations for one iteration. As BOBYQA is given kmax = 600 for the "Full
MPC", this may seem unfair. However Condor rarely stops due to ∆end is
reached, and usually uses all of its allowed iterations. This is likely because of
extensive model improvement, to be robust against noise. As the algorithm uses
a full sample set, it is intuitive that it would perform better than BOBYQA as
Condor may have a better model of f(x) initially, especially if significant off-
diagonal elements exist in ∇2f(x).

Figure 6.8 and 6.9 shows the control input and controlled states when Con-
dor is applied to the fixed-step cases. These figures suggests that for the pre-
stabilized plant, the solutions with Condor and BOBYQA are similar. Condor
tends to have slightly higher spikes during the negative transients of δ. How-
ever during the "Full-MPC" approach Condor tends to not be able to minimize
the objective function quite as good as BOBYQA, especially during moderate
disturbances. Around 150 seconds, where the algorithms seems to struggle the
most due to discontinuities, Condor performs better.

Condors ability to handle noise is confirmed by simulations with a variable-
step ODE-solver, shown in figure 6.10 and 6.11. Inspecting the cost of the
solutions found, Condor finds solution that is at least of a factor of two smaller
than that of BOBYQA under similar circumstances. Also note from table 6.1
that the cost in the fixed-step and variable-step cases are almost similar, sug-
gesting that Condor is little affected by numerical noise.
Due to the implementation of Condor, the algorithm will in contrast to BOBYQA
exit and stop the simulation if the initial point is undefined, or the sample set
around the initial point cannot be formed within a reasonable radius due to

89

90

0 50 100 150 200
0

0.5

1

Input u
c

Time(sec)

V
al

ve
 o

pe
ni

ng

Full MPC
Pre−stabilized

0 50 100 150 200
0

0.5

1

Input u
1

Time(sec)
V

al
ve

 o
pe

ni
ng

0 50 100 150 200
0

0.5

1

Input u
3

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

0.5

1

Input u
5

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

0.5

1

Input u
7

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

10

20

30
Cost of solutions found

Time(sec)

C
os

t

Figure 6.8: Control inputs using Condor, and prediction model simulated with
fixed-step solver.

91

0 50 100 150 200
0

0.02

0.04
σ : GVF in liquid outlet of PS

Time(sec)

G
V

F

Full MPC
Pre−stabilized

0 50 100 150 200
0.95

1
µ : GVF in gas outlet of DL

Time(sec)

G
V

F

0 50 100 150 200
0

1

2

Liquid level in GLCC (h
s
)

Time(sec)

M
et

er
s

0 50 100 150 200
0

1

2

Liquid level in DL(h
dl

)

Time(sec)

M
et

er
s

0 50 100 150 200

10

15

Pressure in GLCC(CV1)

Time(sec)

B
ar

0 50 100 150 200

8

10

12

Pressure in DL(CV2)

Time(sec)

B
ar

0 50 100 150 200
0

5

∆
p
: Difference pressure between CV1 and CV2

Time(sec)

B
ar

Figure 6.9: Controlled states using Condor, and prediction model simulated
with fixed-step solver.

92

0 50 100 150 200
0

0.5

1

Input u
c

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

0.5

1

Input u
1

Time(sec)
V

al
ve

 o
pe

ni
ng

0 50 100 150 200
0

0.5

1

Input u
3

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

0.5

1

Input u
5

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

0.5

1

Input u
7

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150
0

5

10

15
Cost of solutions found

Time(sec)

C
os

t

Figure 6.10: Control inputs using Condor, and prediction model simulated with
variable-step solver.

93

0 50 100 150 200
0

0.02

0.04
σ : GVF in liquid outlet of PS

Time(sec)

G
V

F

0 50 100 150 200
0.95

1
µ : GVF in gas outlet of DL

Time(sec)

G
V

F

0 50 100 150 200
0

1

2

Liquid level in GLCC (h
s
)

Time(sec)

M
et

er
s

0 50 100 150 200
0

1

2

Liquid level in DL(h
dl

)

Time(sec)

M
et

er
s

0 50 100 150 200

10

15

Pressure in GLCC(CV1)

Time(sec)

B
ar

0 50 100 150 200

8

10

12

Pressure in DL(CV2)

Time(sec)

B
ar

0 50 100 150 200
0

5

∆
p
: Difference pressure between CV1 and CV2

Time(sec)

B
ar

Figure 6.11: Controlled states using Condor, and prediction model simulated
with variable-step solver.

hidden constraints. Therefore the simulations did not get past the step in δ, in
contrast to BOBYQA that just exits and implements the last solution in these
cases.
Compared to the case with the fixed-step solver, it can be noted that hdl ex-
ceeds its limit, thus u5 saturating. This state and input are controlled by other
internal controllers, however the difference in the behaviour is noteworthy.

6.7 Wedge

Variable Value
∆0 0.05
γ0 0.4
γ1 0.5
γ2 2
µ 0.5

Table 6.2:
Parameters used in
the simulations of
Wedge.

As seen in section 4.4, Wedge has an extensive number of
tuning parameters. This makes it possible to tweak the
algorithm to fit the problem at hand in a best possible
manner, however it also makes the task to find the op-
timal set of parameters significantly more difficult. The
parameters used are stated in table 6.2. In addition the
stopping criteria are set to ∆end = 10−3, kmax = 461
for the "Full MPC" approach and kmax = 246 for the
pre-stabilized, to be comparable to Condor. This is in
contrast to Condor constrained on the number of func-
tion evaluations, and not iterations.
From the paper presenting Wedge[36] it is clear that the
purpose of the algorithm is not to optimize noisy func-
tions. On the other hand, all DFO algorithms tends to
be more suited to noisy optimization than gradient-based algorithms. However
Wedge should not be expected to handle noise as well as Condor that has an ex-
plicit handling of noise implemented and is developed for noisy optimization[6].
Figure 6.12 and 6.13 shows the resulting control inputs and states when the

fixed-step solver is applied. Compared to Condor, Wedge seems to perform
equally or better when the disturbance is moderate. Inspecting the cost from
0 to 50 seconds, it seems to be lower or equal, especially for the "Full MPC"
approach. It is also important to note that the algorithm uses significantly
fewer evaluations than Condor, as it tends to reach ∆end quicker. Also note
that the variance in u5 seems to be smaller with Wedge than Condor. Although
desirable, this "filtering" is actually a side-effect when the algorithm does not
find the exact solution. The solution will become somewhat more similar to the
previous which is the current start point, thus less variance will occur.

As expected the performance of Wedge suffers when the disturbance and thus

94

95

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
c

Time(sec)

V
al

ve
 o

pe
ni

ng

Full MPC
Pre−stabilized

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
1

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
3

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
5

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
7

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

10

20

30
Cost of solutions found

Time(sec)

C
os

t

Figure 6.12: Control inputs using Wedge, and prediction model simulated with
fixed-step solver.

96

0 50 100 150 200
0

0.02

0.04
σ : GVF in liquid outlet of PS

Time(sec)

G
V

F

Full MPC
Pre−stabilized

0 50 100 150 200

0.96

0.98

1
µ : GVF in gas outlet of DL

Time(sec)

G
V

F

0 50 100 150 200
0

1

2

Liquid level in GLCC (h
s
)

Time(sec)

M
et

er
s

0 50 100 150 200
0

1

2

Liquid level in DL(h
dl

)

Time(sec)

M
et

er
s

0 50 100 150 200
8

10

12

14

16
Pressure in GLCC(CV1)

Time(sec)

B
ar

0 50 100 150 200

8

10

12

Pressure in DL(CV2)

Time(sec)

B
ar

0 50 100 150 200
0

2

4

∆
p
: Difference pressure between CV1 and CV2

Time(sec)

B
ar

Figure 6.13: Controlled states using Wedge, and prediction model simulated
with fixed-step solver.

the non-smoothness becomes severe, especially clear from the worst-case so-
lution in the "Full MPC" approach. This is likely because of the simple TR
update, i.e. point 6 of algorithm 8 which incorporates only one TR. When the
disturbance is severe, discontinuities can be introduced, as the system becomes
stiff due to exciting fast dynamics. The difference between f(x) and q(x) is thus
likely to be relatively large. The TR will typically be reduced to compensate
for this. In the case of Condor and BOBYQA this may only reduce the local
trust region ρ, and allow a larger step in the next iteration if a model improve-
ment has occurred. However in Wedge it is the global TR that is reduced, and
in the next iteration the TR-step will be constrained by the reduced TR. The
algorithm also recovers quickly after the peaks in cost during the largest steps
in the disturbance, as the algorithm restarts with ∆0.

Because Wedge is a Matlab-implementation, it is easier to investigate the be-
haviour of the algorithm. Firstly, the poisedness-improving mechanism is rarely
invoked, especially when good progress is achieved such that trial-points are
relatively far from each other. When the algorithm starts close to the solution,
trial-points are closer thus the wedge-constraint becomes active more often. This
is intuitive and according to [16].
Further it seems that the Hessian of q(x) is rarely positive-definite, the reason
for this is unknown as this would be expected at least under steady-state op-
eration(see figure 5.6(a)). Also the absolute value of the gradient of q(x) does
not decrease as the algorithm progresses. This may suggest that the model is
not very accurate or the function evaluations are noisy, as the gradient would
be expected to decrease when approaching the solution. It would definitely be
interesting to inspect the approximation models of BOBYQA and Condor as
well, to see if the tendencies also occur in these.

Figure 6.14 and 6.15 shows the control inputs and states when Wedge is
applied when simulating the prediction model using the variable-step solver. Its
performance up to around 110 seconds is largely the same as BOBYQA, contin-
uing the tendency that Wedge handles moderate disturbances the best. As the
algorithm progresses, it often tends to terminate early after very few iterations
due to the ∆end stopping criteria. This can be seen clearly in table 6.1, as the
algorithm does not have a good average solution as long as γ1 = 0.5. The worst
case-solution is also high, however this is because the algorithm encounters un-
defined points when the peaks in the cost occur in figure 6.14. If better handling
of this is implemented, the worst-case is likely to be lower.
The choice of γ1 and ∆0 proved to be of great significance. Choosing the latter
larger clearly gives an improvement in worst-case performance during transients,

97

98

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
c

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
1

Time(sec)
V

al
ve

 o
pe

ni
ng

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
3

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
5

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
7

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

20

40

60

80

100
Cost of solutions found

Time(sec)

C
os

t

γ
1
 = 0.5

γ
1
 = 0.75

Figure 6.14: Control inputs using Wedge, and prediction model simulated with
variable-step solver. Note that ∆0 = 0.075.

99

0 50 100 150 200
0

0.02

0.04
σ : GVF in liquid outlet of PS

Time(sec)

G
V

F

γ
1
 = 0.5

γ
1
 = 0.75

0 50 100 150 200

0.96

0.98

1
µ : GVF in gas outlet of DL

Time(sec)
G

V
F

0 50 100 150 200
0

1

2

Liquid level in GLCC (h
s
)

Time(sec)

M
et

er
s

0 50 100 150 200
0

1

2

Liquid level in DL(h
dl

)

Time(sec)

M
et

er
s

0 50 100 150 200
8

10

12

14

16
Pressure in GLCC(CV1)

Time(sec)

B
ar

0 50 100 150 200

8

10

12

Pressure in DL(CV2)

Time(sec)

B
ar

0 50 100 150 200
0

2

4

∆
p
: Difference pressure between CV1 and CV2

Time(sec)

B
ar

Figure 6.15: Controlled states using Wedge, and prediction model simulated
with variable-step solver. Note that ∆0 = 0.075.

however compromises steady-state performance. On the other hand choosing
∆0 small gives a significantly larger amplitude in the worst-case cost, however
the performance up to 50 seconds is improved.
This is likely because the algorithm becomes more robust towards change in the
objective function as ∆0 increases, as the initial sample set will have a larger
radius. Thus q(x) is valid over a larger set, more likely to include the actual
solution. In addition it seems intuitive that a large ∆0 also will give a smoothing
effect against noise in the initial steps. However because the maximum number
of function evaluations is reached before the algorithm has converged a less ex-
act solution will be found. On the other hand, choosing ∆0 small works well as
long as the objective function does not change significantly from one time step
to the next, as the initial starting point will be close to the solution and the
algorithm can "zoom" in on the exact solution.
γ1 seems to have a similar effect, and proves to be closely related with the algo-
rithms robustness against noise. Increasing this gives the best average cost on
the variable-step case of all the algorithms, as well as an significant improve-
ment in the worst-case. However as is clear from figure 6.14, the variance in the
input sequence increases. This is likely because an increase in γ1 allows for more
iterations before reaching kmax, thus better "exploration" when noise is present
and the optimum is far from x0. However when x0 is close to the solution and
the objective function is relatively smooth, more iterations are needed for the
sample set to be zoomed in on the solution. As the algorithm still stops due
to ∆end stopping criteria, it is not intuitive that variance in the inputs occurs
as the sample set should be zoomed in on the solution. An explanation may
be that local minimums exist, and because the TR is reduced more slowly, the
algorithm of some reason is more likely to get stuck in these.

6.8 Remarks on the result
There is no clear winner among the algorithms, as all seem to have their strong
and weak properties. An important observation is that there are large differ-
ences in their ability to find an optimum, or even near-optimal solution within
the tolerances and iteration limits. It is interesting that the gradient-based al-
gorithm do fail due to non-smoothness and makes large steps in bad directions,
both when fixed and variable-step ODE solvers are applied. All DFO algorithms
handles this well, and although some are more sensitive due to numerical noise
and discontinuities than others, all of these algorithms are significantly more tol-
erant than the tested SQP against such issues. The simulations shows that the

100

choices of tuning parameters of the algorithms is of great significance, as shown
with Wedge where the worst-case performance greatly improves by increasing
the reduction factor of the TR, however this resulted in increased variances of
the control inputs and worse performance during steady-state. Most surprising
is probably the performance of BOBYQA, which is able to come up with good
solutions with a very limiting number of function evaluations. Comparing to the
gradient-based SQP algorithm, BOBYQA actually seems directly comparable
in performance. Condor stands out as the best suited against noise and discon-
tinuities, induced when using the variable-step solver, and the fast dynamics are
excited by large disturbances. The algorithm seems almost unaffected in these
cases.
This may be traced back to the model-improvement steps in Condor. While
BOBYQA only uses poisedness-based techniques and the rules for reduction
of the TR, (4.15)-(4.16), to ensure model accuracy, Condor also weights the
difference between the model and the actual objective function using (4.17)-
(4.19). If the accuracy is poor, Condor may spend more evaluations on model-
improvement than BOBYQA. It should also be noted that during these tran-
sients, Condor never exceeds 461 function evaluations, as BOBYQA uses all of
its 600 allowed iterations. This suggests that Condor may be more well suited
for handling problems where noise and discontinues typically arises, as when
stiff dynamics are excited and the ODE solver makes larger errors. On the
other hand, when the disturbances are moderate and the objective is relatively
smooth, Condor may seem to spend unnecessary many evaluations on model
improvement. In these cases BOBYQA and Wedge are more suited, as these
algorithms has a better ability to terminate after fewer iteration when a suffi-
ciently good solution is found. Further, in the case of a real-time application
such as MPC, the worst-case performance is of primary significance as compu-
tational resources must be reserved for this case. Considering this, Condor will
have an advantage, as a smaller number of evaluations must be reserved for this
algorithm compared to BOBYQA.
Wedge seem to handle moderate noise well, as it has the best average solu-
tion when choosing γ1 = 0.75. However the algorithm does not handle severe
noise well, as the highest worst-case cost of all the DFO algorithms occurs using
Wedge. It is in this case important to note that Wedge uses fewer evaluations
than Condor, and using stopping criteria allowing for more function evaluations,
or another TR-update rule may improve the worst-case performance of Wedge.

On the issue of model accuracy in Wedge, discussed in section 6.7, it can be
questioned if this is due to the lack of a second sub-problem to improve poised-

101

ness of the sample set in Wedge. However [16] has suggested that DFTRM is
quite robust against non-poised sample sets, and good results is presented with-
out any poisedness-ensuring mechanism. Further the Wedge-constraint (4.13)
is rarely active during simulations, and BOBYQA is known to often work with
a Hessian of q(x) that has a large difference to that of f(x), and still perform
well[52]. This together with the observed change in the performance of Wedge
when changing the factor used in the TR update, γ1, it is more likely that it
is the ∆-update rules of step 6 in algorithm 8 that is not very robust against
large discontinuities and non-smoothness. Mismatch between f(x) and q(x) due
to numerical issues will reduce the single TR, and the new sample points will
become close.

The computational consumption of the simulations in this chapter is much more
than what can be accepted in a real-time for the case-study. This is because of
the required amount of function evaluations, and that these requires a relatively
large amount of resources. Especially the use of the algorithms directly on the
optimization problem requires that a new sample-set will be generated each
time the controller is run(i.e. each 0.2 seconds in the case-study). In the case of
Condor and Wedge, this clearly is a challenge, as the work needed to build the
initial model becomes O(n4)[47]. With the choice of number of input blocks be-
ing 5 and for "Full MPC", this gives a sample set of 351 samples in the case study.

In this thesis, all simulations are performed on one CPU/core. This raises
an significant question, as although BOBYQA is the clear winner with respect
to the number of function evaluations used, few of this are evaluated in the
initial sample set. If evaluations is to be spread over several CPUs, it is this
initial work that is the most suited for distributed processing. If using, say
16 CPUs which may be accomplished in a Digital Signal Processor (DSP), the
algorithms using fully determined sample sets may become the fastest with
respect to computation time. Considering that Wedge and Condor requires ap-
proximately 110 evaluations after the initial sample set building, all the initial
351 evaluations may be spread across 16 CPUs. This gives a processing time
consumption similar to 351

16 + 110 = 132 evaluations, while BOBYQA using an
initial sample set of 51 samples and a total of 212 evaluations requires a time
similar to 51

16 + 161 = 202 evaluations giving Wedge and Condor a clear advan-
tage. When also considering the remark above that computational resources
must be reserved for the worst-case, this will give Condor and Wedge an even
larger advantage, as BOBYQA in this case requires 600 function evaluations.
By also considering using a multi-core GPU for parallel computing as shown in

102

[54], the computational time required to evaluate the initial sample set can be
even more reduced.
Further reduction of this can be accomplished by using other simulation soft-
ware, as using a C++-based simulation utility, and compile this into a mex-file.
Because the prediction model currently is implemented in Simulink, the model
is compiled each time it is executed, i.e. each function evaluation, which is un-
necessary time consuming.

The NLOpt-package containing BOBYQA is a C++-implementation, as is also
the Condor algorithm. As many industrial control systems is based on this pro-
gramming language, the path to using BOBYQA and Condor in such a system
is shorter than Wedge, which will have to be converted from Matlab to a more
appropriate language.

Based on this, it currently seems that BOBYQA and Condor are two algorithms
that may be interesting for use in NMPC. For the case where the numerical noise
and discontinuities are not severe, however enough to make gradient-based algo-
rithms fail, BOBYQA seems like a very promising candidate. It requires a low
number of function evaluations that is comparable with the gradient-based SQP
tested, thus is especially attractive for use where only a single core is available.
If the numerical issues are severe, Condor is attractive. It usually requires more
function evaluations, but are significantly more robust against such numerical
difficulties. As it is more suited for parallelism, and already have a parallelisa-
tion mechanism implemented, it is also interesting for use on multi-core systems.
The clearly biggest obstacle for using DFO in NMPC, and for NMPC in general,
is real-time performance. A general characteristic of a MPC problem is that the
objective function is relatively similar from one time step to the next. This is
really unexploited information in the way the algorithms are used above, other
than the use of warm start by starting the optimization at the solution from
the previous time step. To take this warm-start philosophy further, it seems
useful to somehow recycle the model from the previous iteration to the next,
only re-evaluating a fraction of the sample points. A discussion of how such an
algorithm can be achieved, and an experimental simulation, will be presented
in the next chapter.

103

Chapter 7

Improved warm-start

One of the biggest obstacles in NMPC is to solve the optimization problem
fast enough for real-time performance. This is especially true for DFO which is
known to require a large number of function evaluations[12]. Although BOBYQA
scores well on this by using a under-determined model as seen in section 6.5, this
algorithm seems to require an increased number of iterations after the initial
model building, which cannot be parallelised directly. This is probably because
a smaller number of sample points initially will give less information to use in
the initial model q(x). Also the simulations show that the two algorithms us-
ing a fully determined sample set tends to be more robust against noise and
discontinuities than BOBYQA. As the reason for using DFO is to overcome
just such difficulties in the prediction model, these algorithms are attractive.
However they require (n+1)(n+2)

2 sample points for the initial model building,
and this is the biggest obstacle when considering to use DFO in a real-time
application. If the number of points required to be evaluated initially for each
time step can be reduced significantly without an extensive increase in the al-
gorithm iterations, this would at least be a step in the right direction to make
DFO more applicable in a real-time NMPC setting. As the objective function
is known to typically be similar in time step k compared to time step k−1, this
information may be exploited to build an accurate initial model and still use
few function evaluations for this. This chapter will propose a modification of
the Wedge-algorithm that exploits the nature of the NMPC problem to reduce
the number of function evaluations in the initial model building. The reason for
using the Wedge-algorithm is purely because this is a Matlab-implementation
and therefore easy to modify. The concept can be transferred e.g. to Condor,
or even to BOBYQA as will be discussed later.

105

7.1 Initial model based on old data
The idea behind the modification is to take the warm-start a step further, by
also warm-starting the approximation model q(x). The original idea is to start
the algorithm at time step k with a model built from the final sample set in
the previous time step. However because this sample set is "zoomed" in on the
previous solution, the distance between these samples are usually very small,
slightly larger than ∆end, and only valid within the hypersphere of this radius.

Therefore a sample set purely used for building of the initial model at each
time step is introduced, YInit. This set, with its corresponding function values
fInit, are saved from one time step to the next. Then, only a fraction of these
points are moved and function values updated at each time step. After the
initial model building is finished this sample set is copied into a "local" sample
set used in the iterations of the algorithm, YIter and fIter. This way the points
YIter will be "zoomed" in on the solution, YInit still having a relatively large
distance between its points. When the algorithm is finished for the current
time step, YIter and fIter are discarded. When some of the points in YInit are
updated in the next time step, the current iterate(i.e. the solution from the
previous time step) is chosen as the centre for these new points. This way, as
the time steps progresses the points in YInit will slowly "follow" the positions of
the current iterate.
To ensure that all points are updated within a given time frame, YInit is divided
into ns subsets Si, i ∈ 1 . . . ns. The samples belonging to these subsets are fixed,
i.e. a sample will never change the subset it belongs to, even though it may(and
will) change its geometric position. Then one sub-set is updated at each time
step, cycling such that no set has samples older than ns time steps. The initial
model is then built from YInit, resulting in a model fulfilling the interpolation
condition

qk(yi) =

fk(yi) ∀ i ∈ Sk
fk−1(yi) ∀ i ∈ Sk−1
fk−2(yi) ∀ i ∈ Sk−2
...
fk−ns

(yi) ∀ i ∈ Sk−ns

(7.1)

and k denotes the current time step. For the fully determined algorithm
Wedge this implies that only m̂ = (n+1)(n+2)

2ns
samples needs to be evaluated ini-

tially for each time step. This will come at the cost that the initial model may
be less accurate, possibly requiring more function evaluations in the proceeding
iterations. However the motivation for this approach is the observation that the

106

difference between q(x) and f(x) is often rather large both in the initial model
building and iterations of Wedge. Especially the magnitude of the gradient does
usually not decrease at all as the algorithm progresses trough iterations, which
would be expected if the accuracy of q(x) is good. Still Wedge seems to perform
well in section 6.7, and this suggests that DFTRM is quite robust against model
error.
Also the findings in [16] suggests this, as this article experimented with a
DFTRM without any poisedness-ensuring mechanism. This caused the sample
set to become badly poised inducing large error in the model, still the algorithm
was reported to perform well. Further [52] has reported that BOBYQA works
with large error in the Hessian of q(x) compared to ∇2f(x), but the algorithm
still seemed to work well. This encourages the approach of re-using old sample
points and function values of the objective function, although this results in an
known model error.

7.2 Updating the sample set YInit

Because it is known from chapter 3 that the accuracy of q(x) is closely related
with poisedness, this is used in the modification to Wedge to ensure that the
algorithm gets a good start as possible for each time step. Further, at the fist
time step the algorithm uses the same initialisation procedure as the original
Wedge algorithm. Thus for the first time step the algorithms are similar. The
update procedure for YInit of the modified Wedge-algorithm is stated in algo-
rithm 11.

• After the initialisation, step 2 shifts YInit such that its origin is x0, because
algorithm 5 requires this.

• Step 3 chooses which sub set is to be updated. This is done by the use
of modulus, e.g. in the simulation where ns = 3 and ts = 0.2, l will cycle
through l = 1, 2, 3, 1, 2, 3,

• Step 4 creates a vector which contains the current order of the points(which
currently is in increasing order). The indices corresponding to the points
to be updated, i.e. points belonging to Sl, are removed.

• Step 5 removes the sample points in YInit to be updated. This makes
algorithm 5 find new points that makes the set well-poised.

107

Algorithm 11 Update procedure for YInit
1. Given current time instance t, sample period ts, current iterate x0, number

of update sets ns and initial TR ∆0. Load YInit from the previous time
step and corresponding objective values fInit.

2. YInit ← YInit − x0

3. l← mod (tts , ns) + 1

4. o← [i = 1, 2, . . . ,m] \ Sl
5. YInit ← YInit[o]

6. YInit, o← CompleteNon-PoisedSet(YInit,∆0, o)

7. (YInit)o(j) ← (YInit)j , j = 1 . . .m

8. YInit ← YInit + x0

9. (fInit)j ← f((YInit)j)∀j ∈ Sl
10. j ← argmin

i∈Sl

(fInit)i

11. If (fInit)j < f(x0)
Swap x0 and (YInit)j
End if

12. YIter ← YInit
fIter ← fInit
Store YInit and fInit for use in the next time step.

13. Return YIter and fIter

• Step 6 executes a slightly modified version of algorithm 5, with YInit, ∆0
and o as arguments. The modification of algorithm 5 is for the use of the
list o that keeps the order of the sample points. The indices in o are moved
when the algorithm swaps points such that index i in o tells which sample
currently is on this index in YIter. o is returned from the algorithm, thus
YInit can be re-organised to its original order.

• Step 7 does this re-organisation.

• Step 8 shifts the sample set back to a global origin, to prepare for the
evaluations of the points in the objective function.

• Step 9 evaluates the function value of the new sample points in YInit found
in step 6, and replaces the corresponding entries in fInit.

• Step 10 finds the index among the new points that has the least function
value.

• Step 11 If the point found in step 9 is less than the function value of
the current iterate, these two points are swapped. Because the objective
function is likely to have changed since the previous time step and the
current iterate is the solution of this, this swap occurs quite often as the
new samples in YInit lies in the neighbourhood of x0.

• Step 12 copies YInit into YIter and fInit into fIter, such that the iterating
procedure of the optimization algorithm works on these. The initial sets
are no longer needed in this time step, and is stored such that the next
time step can retrieve it in its initialization step.

• Step 13 returns YIter and fIter to the optimization algorithm. Then the
first model will be built from these sets, which incorporated old function
values. As the optimization progresses, iterates will retrieve new sample
points and function values and replace with points in YIter and fIter.

Note the shifts to the sample set back and forth between the global origin
and x0 as origin. This should be modified such that it is only shifted from the
initial x0 of the previous time step to that of the current. This may avoid some
numerical round-off errors[50], as shifts are sensitive towards numerical preci-
sion. However the simplified presentation is made to keep a good overview in
the implementation.
An important aspect is step 10 and 11. When checking if fInit contains any bet-
ter solutions than x0, only the newly evaluated sample points can be checked. If

109

Algorithm MPC Fs/Vs W/C sol. Av. sol. Av. evals. S.S. evals.
Wedge P.S. Fs 16.9 2.5 168 143
ModWedge P.S. Fs 11.7 1.5 89 76
Wedge P.S. Vs 89.5 3.9 164 151
Wedge* P.S. Vs 53.7 1.1 197 150
ModWedge P.S. Vs 66.1 4.7 90 76
Wedge Full Fs 140.3 8.7 389 382
ModWedge Full Fs 73.8 11.1 165 162

Table 7.1: Wedge compared with(ModWedge) and without (Wedge) modified
update procedure. Wedge* uses γ1 = 0.75 instead of 0.5.

all points in fInit are checked, x0 may be switched with a point that had a lower
value in an earlier time step, which may be worse in this step. This way the
function values are only used to build the initial model, not in any way directly
in optimization.

It is only implemented two stopping criteria, namely minimum TR and maxi-
mum number of function evaluations kmax. This is simply because these proved
the most significant in the simulation in chapter 6.

7.3 Simulations
During the simulations it turns out that the modified Wedge algorithm can
handle a larger value on γ1 without inducing great variance in the optimal
solution, and 0.85 is used in these simulations. This is likely to be because it
builds the model also on previous data, thus creating a filtering effect. The rest
of the parameters are ∆0 = 0.05, kmax = 110, µ = 0.5, γ2 = 2 and γ0 = 0.4 i.e.
the same as the simulation in section 6.7.

Table 7.1 compares the modified algorithm with the original. It is observed
that for the pre-stabilized fixed-step case, the solutions are better using ap-
proximately half the function evaluations. The other results are somewhat as
expected, as the use of substantially fewer evaluations and an initial model with
known error the result sometimes becomes worse. However the solution is not
much worse than that of the original algorithm, in particular in the worst case.

Figure 7.1 and 7.2 shows the resulting input sequences and states when the
modified algorithm is applied to the NMPC case-study, using fixed-step solver.
Inspecting the resulting cost in figure 7.1 and comparing with that of the original

110

111

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
c

Time(sec)

V
al

ve
 o

pe
ni

ng

Full MPC
Pre−stabilized

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
1

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
3

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
5

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
7

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

10

20

30
Cost of solutions found

Time(sec)

C
os

t

Figure 7.1: Control inputs using modified Wedge, and prediction model simu-
lated with fixed-step solver.

112

0 50 100 150 200
0

0.02

0.04
σ : GVF in liquid outlet of PS

Time(sec)

G
V

F

Full MPC
Pre−stabilized

0 50 100 150 200

0.96

0.98

1
µ : GVF in gas outlet of DL

Time(sec)

G
V

F

0 50 100 150 200
0

1

2

Liquid level in GLCC (h
s
)

Time(sec)

M
et

er
s

0 50 100 150 200
0

1

2

Liquid level in DL(h
dl

)

Time(sec)

M
et

er
s

0 50 100 150 200
8

10

12

14

16
Pressure in GLCC(CV1)

Time(sec)

B
ar

0 50 100 150 200

8

10

12

Pressure in DL(CV2)

Time(sec)

B
ar

0 50 100 150 200
0

2

4

∆
p
: Difference pressure between CV1 and CV2

Time(sec)

B
ar

Figure 7.2: Controlled states using modified Wedge, and prediction model sim-
ulated with fixed-step solver.

algorithm in figure 6.12, the modified version seems to succeed better in keeping
the worst-case costs low for the pre-stabilized plant, as also indicated by table
7.1. However for the "Full MPC" case the modified version starts to struggle as
the average solution is worse. From the analysis of the optimization problem it
is known that the cost surface becomes less smooth for the "Full MPC" than for
the pre-stabilized case, and this may induce a change in the objective function
that makes q(x) inaccurate. What such changes may be will be discussed in
section 7.5. Still the worst-case solution is better than the original algorithm,
which may be the most important case in NMPC as discussed in section 6.8.
The re-use of old data is also reflected in the trajectory of the cost, as it seems
that the algorithm is less aggressive i.e. more time steps are needed before the
cost is minimized. Especially interesting in this case is the trajectory of input u5
for the "Full MPC", which is significantly smoother for the modified algorithm.
Although this is probably because it uses more time steps to find the optimal
solution thus really are an "error", it has an positive effect in this NMPC setting,
as smooth trajectories are desirable.

Inspecting the results using variable-step solver of figure 7.3 and 7.4, the
fist thing to notice is that even thought the modified version uses γ1 = 0.85,
the result is similar to that of figure 6.14 and 6.15 when using γ1 = 0.5. The
conclusion from this and the figures is that γ1 = 0.5 gives the most precise
results during steady-state and γ1 = 0.75 gives the best worst-case performance,
due to more exploration, however the latter gives more variance in the input
trajectories. For the modified algorithm it seems that γ1 = 0.85 gives advantages
with respect to worst-case performance but still seem to keep the variance low(at
least better than γ1 = 0.75 for the original version). Compared to the original
algorithm using γ1 = 0.5, the accuracy of the solutions found seems to be of the
same order of magnitude. Because the modified version has a filtering effect,
it is slower to converge, the average solution is somewhat worse, however the
ability to use high γ1 gives an improved worst-case performance as both table
7.1 and the figures shows.

7.4 Discussion of the results
Generally, the simulations gives promising results for the approach of re-using
"old" function evaluations. Compared to the original Wedge-algorithm it has
an smoothing effect on the inputs due to the use of old data, which actually in
this case results in better controller performance even though the cost of the
solution is slightly higher. This reflects that limited time is spent on designing

113

114

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
c

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
1

Time(sec)
V

al
ve

 o
pe

ni
ng

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
3

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
5

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input u
7

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

20

40

60

80
Cost of solutions found

Time(sec)

C
os

t

Figure 7.3: Control inputs using modified Wedge, and prediction model simu-
lated with variable-step solver.

115

0 50 100 150 200
0

0.02

0.04
σ : GVF in liquid outlet of PS

Time(sec)

G
V

F

0 50 100 150 200

0.96

0.98

1
µ : GVF in gas outlet of DL

Time(sec)
G

V
F

0 50 100 150 200
0

1

2

Liquid level in GLCC (h
s
)

Time(sec)

M
et

er
s

0 50 100 150 200
0

1

2

Liquid level in DL(h
dl

)

Time(sec)

M
et

er
s

0 50 100 150 200
8

10

12

14

16
Pressure in GLCC(CV1)

Time(sec)

B
ar

0 50 100 150 200

8

10

12

Pressure in DL(CV2)

Time(sec)

B
ar

0 50 100 150 200
0

2

4

∆
p
: Difference pressure between CV1 and CV2

Time(sec)

B
ar

Figure 7.4: Controlled states using modified Wedge, and prediction model sim-
ulated with variable-step solver.

and tuning the optimization problem, as discussed in section 6.2. It must also
be taken into account that the method used here is simple, and is mainly to
investigate if improved warm-start is a possible way to go.
An important aspect in the context of recycling function evaluations, is the topic
of parallelisation. It seems that although the total number of function evalua-
tions is reduced, the algorithm tends to require more evaluations proceeding the
initial model building. For the fixed-step case the modified algorithm uses ap-
proximately ten evaluations more during the iterations. Distributing the initial
function evaluations over 16 cores as in section 6.8, this results in a an increase
in relative processing time consumption of 6 evaluation and a reduction in 5
evaluations for the pre-stabilized and "Full MPC", respectively, using the fixed-
step solver. For the case of variable-step solver the modified algorithm either
uses 22 evaluations less than Wedge in the case of γ1 = 0.5, or 11 evaluations
more if γ1 = 0.75. These differences are so small that they should be seen as
similar, as they may vary from case to case.

7.5 Further work
Intuitively as long as the change in the objective function is small as is the case
during moderate disturbances, the model error is likely to be small as discussed
in section 5.5. However, consider figure 7.5: The objective function is convex
with positive-definite Hessian both at t = 1 and t = 2. From t = 1 to t = 2 one
sample in the sample set is to be updated, and the choice falls on the sample
marked three. This will in fact lead to a negative-definite Hessian, and may
lead to a solution to the TR sub-problem which leads in the wrong direction.
Note that given the performance of the modified algorithm, it does not seem like
the algorithm suffer greatly from this issue. DFTRM seems to be either very
robust against large errors in q(x), or the problem does not arise very often.
An observation from figure 7.5 is that updating two very close samples is more
likely to generate this issue than when updating two points far from each other.
Then the use of a well-poised YInit is likely to have a positive effect on this issue
as a poised set has samples with large distance between each other. Considering
this, and under the weak assumption that the change in the objective is small
enough, the described issue may not be relevant for a practical problem. Even
so, for a real-world NMPC application, this problem should be investigated fur-
ther to ensure robustness in the controller.

116

117

Interpolation

Actual function

1

2

3

Figure 7.5: Illustration of how an unfortunate choice of sample update can lead
to a negative-definite Hessian.

1

2
3 4

5

Figure 7.6: Illustration of how one sample, x5,
spans several axes.

A solution may be to dy-
namically choose which sam-
ple points to be updated, and
not use the fixed sets as de-
scribed in section 7.2. The is-
sue may occur if some and not
all of the samples spanning an
axis is updated. If either all
or none of the samples span-
ning a given axis is chosen to
be updated, the issue should
not arise. Consider figure 7.6.
If the horizontal axis are cho-
sen for update, the samples
points x3, x4 and x5 must be
re-evaluated. For the vertical
axis x1, x2 and x5 is chosen.
It also requires that each sam-
ple spans few axes, which is
not a very ideal case seen from a poisedness point-of-view. By running a
poisedness-ensuring mechanism as described in chapter 3, samples tend to span
a substantial number of axes, thus the described technique does not become
applicable as almost all samples will have to be updated at each time step.

A more promising approach for solving the problem may be to apply the tech-
niques used for model building by BOBYQA. A possible method may be one
that does not use two sample sets, but stores the Hessian of the initial model
building for use in the next time step rather than storing the sample points.
Then sampling say 2n + 1 points, as with BOBYQA in section 6.5, and us-
ing the update technique (4.34), the information of the objective function in
previous steps will be transferred through the Hessian to the current time step.
Although not necessarily solving the problem described in figure 7.5, the method
may "weight" earlier Hessians and not allowing such a sudden big change to it as
figure 7.5 illustrates. As BOBYQA proved effective using this update technique,
this seems like a promising way to go.

On the topic of parallelisation discussed in section 7.4, it is clear that a large
initial sample set can be accepted if this results in a significant reduction in
function evaluations in the proceeding iterations. Although the ideal case is to

118

reduce both the required initial sampling set as well as the number of proceed-
ing evaluations, it is clear that when a relatively large number of processing
cores can be used for parallelisation, as is the case when applying a GPU for
parallelisation[54], a large initial sample set can be used. Therefore it would be
interesting to investigate the possibility to apply over-determined interpolation
in the DFTRM as presented in section 3.6. This will then require that the
number of iterations is significantly reduced, and if such an approach has this
effect is unknown. Although the initial model should become more accurate and
this intuitively should make the converge of the algorithms faster, experiments
both in this thesis and previously[16] has shown that DFTRM does not need an
accurate model to perform well. It is therefore unknown if these methods will
exploit the information in an over-determined model.

It would also be interesting to investigate to combine the update-technique
of section 7.2 with the over-determined scheme described above. This can be
accomplished by re-cycling all of the sample points from a given number of
time steps back in time, and use these to form an over-determined interpola-
tion. Considering a small change in the objective function, this may combine
the noise-suppressing abilities of an over-determined model with the reduction
in function evaluations of the approach of section 7.2.

Continuing the discussion on computational consumption and real-time per-
formance from section 6.8, the modified algorithm still is to computationally
expensive to be applicable in real-time for the case study. However because this
is a simple implementation, it is likely that further research and development
of the algorithm in combination with parallelisation and computationally faster
simulation software for the prediction model can make it come closer to this
goal. Further other measures can also be though of, as altering the NMPC
problem. This can be to experiment with fewer input blocks , or maybe less
number of blocks on the pressures as these seem to be quite simple to stabilize.
Also there can be considered increasing the sample interval of the controller,
which will lower the demand for computation speed for the controller.

119

Chapter 8

Conclusion

The goal of the thesis were to investigate the suitability of DFO in a NMPC
optimization problem, to overcome issues such as numerical noise and discon-
tinuities in the objective function. Some fundamental theory behind DFO and
survey of some existing DFO algorithms have been presented, namely Wedge,
UOBYQA, Condor and BOBYQA. A case-study of an industrial, numerically
difficult NMPC problem using the single-shooting approach was presented, and
both a gradient-based SQP algorithm and DFO were used to simulate the closed-
loop system. Lastly, a warm-start modification to one of the algorithms for
reducing the computational consumption was presented and simulated.

Analysis of the NMPC problem used in the simulations uncovered that dis-
continuities can arise in the objective function both when using a fixed and
variable-step ODE-solver. Simulations using a gradient-based SQP-algorithm
in the NMPC, proved that these types of algorithms are highly vulnerable to
such numerical difficulties, and the algorithm experienced issues with differen-
tiation for both types of ODE solvers. It is encouraging that all the DFO algo-
rithms tested performed better with respect to worst-case performance during
the simulations than the SQP. Although the issue is more severe when applying
a variable-step solver, this stresses the importance of optimization algorithms
that is robust against such numerical difficulties.

As in NMPC in general, real-time performance is a key aspect when applying
DFO. Simulations proved that the DFO algorithm BOBYQA performed well
with respect to the number of evaluations of the objective function, however
it tends to have trouble when severe numerical noise, non-smoothness and dis-
continuities are introduced in the case study. As long as the objective function
is relatively smooth, BOBYQA proved to be comparable with the SQP algo-
rithm used. Generally, if only one processing core is available for computation,
BOBYQA is a computationally efficient DFO algorithm. It is, however, not as
suited for parallelisation as the other DFO algorithms.

121

Considering the ability to handle severe numerical noise, non-smoothness and
discontinuities, Condor stands out as the best suited in the case study. Although
having the largest demand of function evaluations on average, it handles severe
numerical difficulties well without a significant increase in the required number
of function evaluations, compared to the smooth case. This makes this algo-
rithm attractive in NMPC, as computational resources usually must be reserved
for worst-case anyway.

Wedge has a large number of tuning parameters, giving possibilities for fine-
tuning the algorithm for the problem at hand. This was illustrated as a change
in one tuning parameter gave the algorithm the best average cost of the solu-
tions, and simultaneously improved worst-case performance significantly using
less computational resources. However, it also illustrated how the cost of the
solutions should not be the only criterion to evaluate, as variance in the opti-
mized variables increased in the simulations. It is likely that a better formulated
NMPC problem would have improved on this matter, but this remains unknown.

Parallelisation of the function evaluations is an important aspect, and it was
discussed how this can make the Wedge and Condor algorithms faster with re-
spect to computational time consumption than BOBYQA, even though these
requires more evaluations of the objective function than the latter. Under these
circumstances Condor seems very attractive, because of its worst-case perfor-
mance and that parallelisation is already implemented.

A novel modification to the Wedge algorithm, which recycles function evalu-
ations from earlier time steps to reduce computational time consumption, is
presented and simulated. This approach seems promising, considering the sim-
plicity of the implementation. It is likely that further research and development
can result in a DFO algorithm that is able to optimize in real-time, and be
robust against numerical issues, and suggestions are made that may improve
the algorithm further.

122

8.1 Further work and final remarks
The simulations performed required large computation time, and to try to im-
prove the real-time performance of the simulations will give the ability to do
a larger number of simulations in a shorter period of time. This will make it
easier to evaluate the quality of the NMPC formulation, and also the perfor-
mance of the algorithms themselves under different conditions. This may be
accomplished by using a less computationally demanding software to simulate
the prediction model, and avoid using Simulink as this does not seem suited
for the purpose. Also, applying parallelisation will decrease the computational
time consumption greatly, and as the C++ version of Condor already has such
a feature this would be interesting to exploit.
Investigation and possibly improvements of the NMPC formulation is needed
for the case-study presented in this thesis, as the simulations has suggested that
this is not optimal. Altering the NMPC horizon and input blocking may also
lower the computational demand for the case-study. Simulations with other
models are needed to verify that the results are transferable to other cases.

The simulations has shown that DFO has robustness that is desirable in cer-
tain NMPC problems. The algorithms is known to have a slower converge rate
and require a large number of function evaluations, especially for large-scale
problems. However, with the increased availability of computational resources,
especially parallelisation, they have the ability to be fast enough for real-time
performance. If the optimization problem is smooth and differentiable, gradient-
based optimization is still preferable, but DFO is a good alternative when this
is not the case.

123

Bibliography

[1] Adifor home page. http://www.mcs.anl.gov/research/projects/
adifor/. Accessed: 12/12/2012.

[2] Matlab symbolic toolbox. Accessed: 31/04/2013.

[3] Maxima home page. http://maxima.sourceforge.net/. Accessed:
12/12/2012.

[4] Maple home page. http://www.maplesoft.com/products/maple/, 2012.
Accessed: 12/12/2012.

[5] H. Al-Duwaish and W. Naeem. Nonlinear model predictive control of ham-
merstein and wiener models using genetic algorithms. In Control Applica-
tions, 2001. (CCA ’01). Proceedings of the 2001 IEEE International Con-
ference on, pages 465–469, 2001.

[6] F.V. Berghen. Condor user’s guide. http://www.applied-mathematics.
net/CONDORManual/CONDORManual_1.0.pdf. document v. 1.05.

[7] F.V. Berghen. CONDOR: A constrained, non-linear, derivative-free parallel
optimizer for continous, high computing load, noisy objective functions.
PhD thesis, Facultè des Sciences Appliquèes, Universitè Libre de Bruxelles,
2004.

[8] F.V. Berghen and H. Bersini. CONDOR, a new parallel, constrained exten-
sion of powell’s UOBYQA algorithm: Experimental results and comparison
with the DFO algorithm. Journal of Computational and Applied Mathe-
matics, 181:157–175, September 2005.

[9] L.G. Bleris, J. Garcia, M.V. Kothare, and M.G. Arnold. Towards embed-
ded model predictive control for system-on-a-chip applications. Journal of
Process Control, 16(3):255–264, 2006.

125

http://www.mcs.anl.gov/research/projects/adifor/
http://www.mcs.anl.gov/research/projects/adifor/
http://maxima.sourceforge.net/
http://www.maplesoft.com/products/maple/
http://www.applied-mathematics.net/CONDORManual/CONDORManual_1.0.pdf
http://www.applied-mathematics.net/CONDORManual/CONDORManual_1.0.pdf

[10] W. Chen, X. Li, and M. Chen. Suboptimal nonlinear model predictive
control based on genetic algorithm. In Intelligent Information Technology
Application Workshops, 2009. IITAW ’09. Third International Symposium
on, pages 119–124, 2009.

[11] A.R. Conn, K. Scheinberg, and L.N. Vicente. Geometry of interpolation
sets in derivative free optimization. Mathematical programming, 111:141–
172, 2008.

[12] A.R. Conn, K. Scheinberg, and L.N. Vicente. Introduction to Derivative-
Free Optimization. Society for Industrial and Applied Mathematics and
the Mathematical Programming Society, 2009.

[13] J.S. Dæhlen. Paralell-implementation of derivative-free model-predictive
control. Project report, NTNU, 2012.

[14] M. Diehl, H.G. Bock, J.P. Schlöder, R. Findeisen, Z. Nagy, and F. Allgöwer.
Real-time optimization and nonlinear model predictive control of processes
governed by differential-algebraic equations. Journal of Process Control,
12(4):577 – 585, 2002.

[15] M. Diehl, H.J. Ferreau, and N. Haverbeke. Efficient numerical methods
for nonlinear mpc and moving horizon estimation. In Lalo Magni, Davide-
Martino Raimondo, and Frank Allgöwer, editors, Nonlinear Model Pre-
dictive Control, volume 384 of Lecture Notes in Control and Information
Sciences, pages 391–417. Springer Berlin Heidelberg, 2009.

[16] G. Fasano, J.L. Morales, and J. Nocedal. On the geometry phase in model-
based algorithms for derivative-free optimization. Optimization Methods
and Software, 24(1):145–154, 2009.

[17] B. Foss. Linear quadratic control. Note from the subject TTK4135 Opti-
mization and Control at NTNU, March 2004.

[18] K.R. Fowler, J.P. Reese, C.E. Kees, J.E. Dennis Jr., C.T. Kelley, C.T.
Miller, C. Audet, A.J. Booker, G. Couture, R.W. Darwin, M.W. Farthing,
D.E. Finkel, J.M. Gablonsky, G. Gray, and T.G. Kolda. Comparison of
derivative-free optimization methods for groundwater supply and hydraulic
capture community problems. Advances in Water Resources, 31(5):743 –
757, 2008.

[19] C.E. García, D.M. Prett, and M. Morari. Model predictive control: Theory
and practice—a survey. Automatica, 25(3):335 – 348, 1989.

[20] M. Gasca and T.B. Sauer. Polynomial interpolation in several variables.
Advances in Computational Mathematics, 12:377–410, 2000.

126

[21] L. Grüne and J. Pannek. Practical NMPC suboptimality estimates along
trajectories. Systems and Control Letters, 58(3):161 – 168, 2009.

[22] V. Gunnerud, A. Conn, and B. Foss. Embedding structural information
in simulation-based optimization. Computers and Chemical Engineering,
53(0):35 – 43, 2013.

[23] S.O. Hauger. Lectures in course TK16: Model predictive control. Depart-
ment of Engeneering Cybernetics, NTNU, September 2012.

[24] R.L. Haupt and S.E. Haupt. Practical Genetic Algorithms, Second Edition.
John Wiley & Sons, Inc, 2004.

[25] L. Imsland. Introduction to model predictive control. Lecture notes from the
course Optimization and Control, Department of Engineering Cybernetics,
NTNU, 2007.

[26] S. Jakobsson, M. Patriksson, J. Rudholm, and A. Wojciechowski. A method
for simulation based optimization using radial basis functions. Optimization
and Engineering, 11(4):501–532, 2010.

[27] T.A. Johansen. Introduction to nonlinear model predictive control and
moving horizon estimation. www.irk.ntnu.no/ansatte/Johanse_Tor.
Arne/nonlinear.pdf, 2011.

[28] S.G. Johnson. The NLopt nonlinear-optimization package. http://
ab-initio.mit.edu/nlopt, July 2012. Accessed: 12/12/2012.

[29] B. Karasözen. Survey of trust-region derivative-free optimization meth-
ods. http://144.122.137.13/iam/images/2/29/Preprint58.pdf, 2000.
Accessed: 01/11/2012.

[30] C.T. Kelley. Implicit filtering. http://www4.ncsu.edu/~ctk/imfil.html,
February 2011. Accessed: 12/12/2012.

[31] T.G. Kolda, R.M. Lewis, and V. Torczon. Optimization by direct search:
New perspectives on some classical and modern methods. SIAM Review,
45(3):pp. 385–482, 2003.

[32] D. Koller and S. Ulbrich. Optimal control of hydroforming processes. Pro-
ceedings in Applied Mathematics and Mechanics, 11(1):795–796, 2011.

[33] D.K. Kufoalor. Nonlinear model predictive control of a subsea separation
process: Real-time optimization and numerical methods. Presentation,
December 2012.

127

www.irk.ntnu.no/ansatte/Johanse_Tor.Arne/nonlinear.pdf
www.irk.ntnu.no/ansatte/Johanse_Tor.Arne/nonlinear.pdf
http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt
http://144.122.137.13/iam/images/2/29/Preprint58.pdf
http://www4.ncsu.edu/~ctk/imfil.html

[34] W.H. Kwon, A.M. Bruckstein, and T. Kailath. Stabilizing state-feedback
design via the moving horizon method†. International Journal of Control,
37(3):631–643, 1983.

[35] A.M. Law and M.G. McComas. Simulation-based optimization. In Simu-
lation Conference, 2000. Proceedings. Winter, volume 1, pages 46–49 vol.1,
2000.

[36] M. Marazzi and J. Nocedal. Wedge trust region methods for deriva-
tive free optimization. Mathematical Programming, 91:289–305, 2002.
10.1007/s101070100264.

[37] D.Q. Mayne and H. Michalska. Receding horizon control of nonlinear sys-
tems. Automatic Control, IEEE Transactions on, 35(7):814–824, 1990.

[38] D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert. Constrained
model predictive control: Staility and optimality. Automatica, 36:789–814,
2000.

[39] M. Morari and J.H. Lee. Model predictive control: past, present and future.
Computers and Chemical Engineering, 23(4–5):667 – 682, 1999.

[40] J. Nocedal and S.J. Wright. Numerical Optimization, Second Edition.
Springer, 2006.

[41] P. Norgren. Compact subsea separation unit: Nonlinear model predictive
control and nonlinear observers. Master’s thesis, NTNU, 2011.

[42] R. Oeuvray and M. Bierlaire. Boosters: a derivative-free algorithm based on
radial basis functions. International Journal of Modelling and Simulation,
29(1):26, 2009.

[43] C. Onnen, R. Babuška, U. Kaymak, J.M. Sousa, H.B. Verbruggen, and
R. Isermann. Genetic algorithms for optimization in predictive control.
Control Engineering Practice, 5(10):1363 – 1372, 1997.

[44] J.M. Pena and T. Sauer. On the multivariate horner scheme. SIAM Journal
on Numerical Analysis, 37(4):pp. 1186–1197, 2000.

[45] M.J.D. Powell. UOBYQA: Unconstrained optimization by quadratic ap-
proximations. DAMTP 2000/NA14, December 2000.

[46] M.J.D. Powell. UOBYQA: Unconstrained optimization by quadratic ap-
proximation. Mathematical Programming, 92(3):555–582, 2002.

128

[47] M.J.D. Powell. On trust region methods for unconstrained minimization
without derivatives. Mathematical Programming, 97(3):605–623, 2003.

[48] M.J.D. Powell. Least Frobenius norm updating of quadratic models that
satisfy interpolation conditions. Mathematical Programming, 100(1):183–
215, 2004.

[49] M.J.D. Powell. On the use of quadratic models in unconstrained minimiza-
tion without derivatives. Optimization Methods and Software, 19(3-4):399–
411, 2004.

[50] M.J.D. Powell. The NEWUOA software for unconstrained optimization
without derivatives. In G. Pillo, M. Roma, and Panos Pardalos, editors,
Large-Scale Nonlinear Optimization, volume 83 of Nonconvex Optimization
and Its Applications, pages 255–297. Springer US, 2006. 10.1007/0-387-
30065-1_16.

[51] M.J.D. Powell. Developments of NEWUOA for unconstrained minimization
without derivatives. Dept. Appl. Math. Theoretical Phys., Univ. Cambridge,
Cambridge, UK, Tech. Rep. DAMTP, 2007. DAMTP 2007/NA05.

[52] M.J.D. Powell. The BOBYQA algorithm for bound constrained optimiza-
tion without derivatives. Cambridge NA Report NA2009/06, University of
Cambridge, Cambridge, 2009.

[53] S.J. Qin and T.A. Badgwell. A survey of industrial model predictive control
technology. Control Engineering Practice, 11(7):733 – 764, 2003.

[54] A. Sadrieh and P. A. Bahri. Application of graphic processing unit in
model predictive control. In M.C. Georgiadis E.N. Pistikopoulos and A.C.
Kokossis, editors, 21st European Symposium on Computer Aided Process
Engineering, volume 29 of Computer Aided Chemical Engineering, pages
492 – 496. Elsevier, 2011.

[55] H. Sarimveis and G. Bafas. Fuzzy model predictive control of non-linear
processes using genetic algorithms. Fuzzy Sets and Systems, 139(1):59 –
80, 2003.

[56] K. Scheinberg and P. Toint. Self-correcting geometry in model-based al-
gorithms for derivative-free unconstrained optimization. SIAM Journal on
Optimization, 20(6):3512–3532, 2010.

[57] B. Tlili, F. Bouani, and M. Ksouri. A derivative-free constrained predictive
controller. In Proceedings of the 10th WSEAS international conference on
Systems, pages 360–365. World Scientific and Engineering Academy and
Society (WSEAS), 2006.

129

Appendix A

List of variables in the
separator model

Disturbance variables Input variables
δ GVF separator input u1 Valve constraining q1
qin Flow rate separator input u3 Valve constraining q3
pin Pressure GLCC input u4 Valve constraining q5
pout1 Pressure gas outlet of separator u7 Valve constraining q4
pout2 Pressure liquid outlet of separator uc Valve constraining qout1
State variables Parameter variables
α GVF of gas outlet of GLCC p1 Pressure in CV1
β GVF of liguid outlet of GLCC p2 Pressure in CV2
σ GVF of liquid outlet of PS ∆p Difference pressure |p1 − p2|
ν GVF of gas outlet of PS q1 Gas flow rate from GLCC
µ GVF of gas outlet of DL q2 Liquid flow rate from GLCC
η GVF of liquid outlet of DL q3 Gas flow rate from PS
m1l Liquid mass in CV1 q4 Liquid flow rate from PS
m1g Gas mass in CV1 q5 Liquid flow rate from DL
m2l Liquid mass in CV2 qout1 Gas flow rate from separator
m2g Gas mass in CV2 qout2 Liquid flow rate from separator

hs Liquid level in GLCC
hdl Liquid level in DL

Table A.1: The disturbances, states and parameters relevant for the separator
model used in simulations.

131

Appendix B

Steady-state setting of the
separator

Disturbance variables Input variables
Name Value Name Value
δ 5 · 10−1 u1 3.81 · 10−1

qin 4 · 10−2 u3 0.24 · 10−1

pin 9 u4 8.78 · 10−2

pout1 7 u7 6.09 · 10−1

pout2 7 uc 1.44 · 10−1

State variables Parameter variables
Name Value Name Value
α 9.34 · 10−1 p1 12.00
β 7.18 · 10−2 p2 10.00
σ 7 · 10−4 ∆p 2.00
ν 6.84 · 10−1 q1 1.67 · 10−2

µ 1 q2 2.03 · 10−2

η 3.35 · 10−2 q3 2.10 · 10−3

m1l 51.72 q4 1.82 · 10−2

m1g 3.53 q5 1.50 · 10−3

m2l 28.07 qout1 2.07 · 10−2

m2g 9.22 · 10−1 qout2 0.00
hs 3.45 · 10−1

hdl 5.56 · 10−1

Table B.1: Steady-state values for the variables of the separator model.

132

Appendix C

Article for publication in
journal

133

Nonlinear Model Predictive Control using
Trust-Region Derivative-Free Optimization with

Application to a Subsea Oil-Gas Separation Process
Jon S. Dæhlen, Gisle Otto Eikrem, Tor Arne Johansen

Abstract
Gradient-based optimization may not be suited if the objective and

constraint functions in a Nonlinear Model Predictive Control(NMPC)
optimization problem are not differentiable. Derivative-Free Optimiza-
tion(DFO) have been frequently used in Simulation-based optimiza-
tion, as well as to some extent also in NMPC. However the NMPC
studies have mainly been limited to smaller and simpler systems. The
findings are that DFO is significantly more robust against the numer-
ical issues, compared to a gradient-based SQP tested. A novel warm-
start modification to the Wedge algorithm to improve computational
consumption is proposed and simulated with promising results.

1 Introduction
In the later years Nonlinear Model Predictive Control (NMPC) has attracted
much attention[4], as the use of non-linear models improves the controller
performance on highly non-linear systems and allows for operation over
wider range[1].
A common method for solving an NMPC problem is by linearising the model
around the previous optimal trajectory, referred to as the nominal trajectory.
This can be optimized as in linear Model Predictive Control (MPC), and
a new linearisation is performed in the next time step around the updated
nominal trajectory. This however makes the model only valid around small
perturbations from its current state, and e.g. if the set-point is changed, ac-
curate prediction of larger transients may be desirable. Today state-of-the-
art to overcome this seems to be Sequential-quadratic programming (SQP)
and Interior-Point (IP)-methods[7]. Common for both is that they recur-
sively linearise the model and the constraints until convergence is achieved,
which in turn requires to somehow retrieve the gradient of these. If the
model is known explicitly, an off-line symbolic differentiation can be per-
formed and the gradient and possibly the Hessian implemented.
However this may not always be the case, as the model may not be available
in an appropriate programming language, it can be made up of a mix of

1

subroutines from different programming languages or the source can simply
be unavailable. This will render the symbolic software hard or impossible
to apply. The model may even not be continuous, as logic operators are
common, and the model may not be explicitly available at all as it may
be embedded in a numerical simulation software[13]. In these cases it is
likely that the most common and intuitive is to retrieve the gradient from
finite-differences. This method is however known to be sensitive towards
numerical issues[16]. When performing the simulation it can be desirable
to use a variable-step Ordinary Differential Equation (ODE)-solver. This
can speed up the simulation time significantly, however it is known that this
tends to induce numerical noise and discontinuities, which possibly can be
amplified through finite-differences and thus compromise the performance
of a gradient-based NMPC optimization. This motivates for investigating
optimization methods not requiring derivatives, namely Derivative-free op-
timization (DFO).
DFO has been applied in NMPC in several occasions, by use of Genetic Al-
gorithms (GA)[4][14][1][21][3]. However in these cases the goal has been to
overcome extreme non-linearities. Although GA is known to be well-suited
towards noise and discontinuities it also tends to have slow convergence
rate. [23] used the Nelder-Mead simplex method for solving a highly non-
linear NMPC problem and reported that this were 10 times faster than GA,
and [20] used parallel computing on a Graphics Processing Unit (GPU) to
obtain even faster computation. These did however suggest to try other
optimization methods and more practical problems. [10] reported that a
Derivative-free Trust-region method (DFTRM) out-performed the Nelder-
Mead method in an optimal-control problem, however the exact nature of
the optimization problem was not stated. DFTRM is also known to require
less function evaluations than algorithms as Nelder-Mead and GA[13], thus
investigating the use of these methods in NMPC aimed at controlling a re-
alistic process seems appropriate.
The main contribution of the paper is an evaluation of DFTRM on a chal-
lenging sub-sea oil and gas separation process, including a novel warm-start
procedure.
The rest of the paper will be structured as follows:

Section 2 will briefly present the single-shooting formulation of the
NMPC problem.

The case study of an industrial sub-sea crude-oil separation unit will
be presented in section 3. The objectives of the controller is also
presented, and the resulting NMPC problem is analysed.

Section 4 gives a short description of DFTRM, and presents some
existing DFO algorithms, and a novel warm-start procedure.

2

The closed-loop system is simulated in section 5. The optimization
is done both with the DFO algorithms and a gradient-based SQP-
algorithm.

Section 6 summarises and concludes the findings.

For more details on the implementation and the simulations, the reader
is referred to [6].

2 Nonlinear Model Predictive Control Formula-
tion

The single-shooting approach to NMPC is based on parametrizing the ob-
jective function of the optimization problem in the input sequence(i.e. the
Manipulated variables (MV)) and the current state of the system. This ap-
proach is well suited when the prediction model of the plant is a simulation,
i.e. the solution to an initial value problem using an ODE-solver. Denoting
this solution

[x(1), . . . , x(K̂)] = `(u(0), . . . , u(K − 1), x(0),K) (1)

WhereK is the discrete length of the control horizon, and x(0) is the current
state of the plant. The left-hand side of (1) is then the resulting trajectory
of the states of the model from time step 1 to K̂. Note that if a variable-step
solver is used, K is likely to be different from K̂. Considering an objective
function on the form f(x(1), . . . , x(K̂), u(0), . . . , u(K−1)), which is common
in NMPC, the complete single-shooting NMPC problem can be stated

min
u∈Rn

f(`(u(0), . . . , u(K − 1), x(0),K), u(0), . . . , u(K − 1), x(0)) (2a)

:=f(u) (2b)
s.t
xmin ≤ x(k) ≤ xmax (2c)
umin ≤ u(k) ≤ umax (2d)
∆umin ≤ ∆u(k) ≤ ∆umax (2e)

The definition of f(u) is to illustrate that there are only the input blocks that
are free variables, (MV). Note that because of input blocking, the number of
MV will be less thanK, however this is not considered in (2) for simplicity of
notation. Clearly although the constraints are linear, the objective function
may not be convex. Applying SQP or IP methods will somehow need to
make a linearisation of the objective function to approximate (2) with a
Quadratic Programming (QP) problem, thus requiring the gradient of f(u).
As mentioned initially, the prediction model may not be differentiable, thus
this process may become troublesome.

3

3 Subsea Separation Process Case Study
The system that will be used to test the DFO algorithms is a model of a
sub-sea crude-oil separator, developed by Statoil. The model is a simplified
model of a laboratory setup as the system is still under design, and figure
1 shows its structure. The following description of the separation process
is an excerpt from [12], where also the details of the simplifications can be
found.
The unit separates the input crude oil flow qin into its gas qout1 and liquid
qout2 component flows. The input flow rate may be time varying, as well
as the fraction of gas in the crude oil, called Gas Volume Fraction (GVF),
which is between zero(liquid only) to one(gas only). These variations are
here considered as disturbances which can be measured but without any
knowledge of their future behaviour.
The unit is split into two main control volumes, each containing a liquid
level. The Gas-Liquid Cylindrical Cyclone (GLCC) does the first separation
of the crude oil, however at high flow rates the GLCC does a very rough
separation[12]. Therefore both the gas output flow q1 and the liquid output
flow q2 from GLCC is fed through second separation stages, called the De-
Liquidizer (DL) and Phase Splitter (PS) respectively. Both these stages are
co-axial cyclones, which rotates the input mixture to create a centrifugal
force which separates the gas and liquid phases. The gas is then extracted
from the centre of the cyclones, while liquid will move along the walls.
Gas-flow from the GLCC to the DL is controlled by the valve u1. The
gas outlet from the PS, q3, is fed into the mixture inlet of the DL, while the
liquid outlet of the DL, q5, is fed right into the liquid outlet of the separator.
These flows are controlled by valves u3 and u4 respectively. At outlet qout1
there is a compressor to move the gas to the surface, and at qout2 there is a
pump for the same purpose for the liquid. The feed to these are controlled
by the valves ucompressor and u7 respectively. Note that the former will be
referred to as uc from now.
The model also contains the liquid levels of the GLCC and the DL, measured
in meters, and assigned notation hs and hdl respectively. These levels are not
necessarily desirable to keep at a set-point, as allowing them to move freely
within certain bounds can make the whole system act smoothly. However
the cyclones has a physical maximum liquid level where they will overflow.
Both these limits are at 2 meters, and these therefore naturally become
constraints in the NMPC.
Also important variables for the NMPC is the pressures of Control volume
1 (CV1), p1, of Control volume 2 (CV2), p2, and the difference between
these pressures ∆p. From [12], p1 should be kept between 9 and 15 bar, p2
between 8 and 12 bar while ∆p between 0.5 and 4 bar. Simulations done in
earlier studies has shown that these constraints are relatively easy to satisfy
[12], however the consequence of a violation is not accounted for.

4

Figure 1: The separator unit used in testing the NMPC

The overall goal of the separation process is to keep the GVF of the
gas outlet, GV Fout1, as close as possible to one, and the GVF of the liquid
outlet, GV Fout2, as close as possible to zero. This goal is rarely feasible
to obtain perfectly, however two physical constraints are present on these
variables. The compressor and the pump receiving qout1 and qout2 has limits
on the GVF of their input flow. Violating these limits can inflict damage to
the units. This results in a lower constraint in the GVF of qout1 of 0.97 and
the GVF of qout2 should be constrained to below 0.03. However it should be
pointed out that these constraints can be allowed to be violated for short
periods of time. Although satisfying these constraints during large distur-
bances is feasible, this results in large input controls. Also the system has a
big spread of time constants, from the rapidly changing GVF and pressures
to the slow-varying liquid levels. To control the quick modes, the input
blocks of the MPC horizon should be chosen short, while controlling the
slow modes requires a long horizon. Together these two criteria results in
a significant amount of optimization variables. Therefore [12] pre-stabilizes
the plant using PID-controllers for controlling the liquid heights by feeding
the measurements of hdl and hs back to the valves u4 and u7 respectively.
This both reduces the number of variables as the MPC only has to control
three valves instead of five, and as the slow dynamics is stabilized a shorter
horizon can be chosen. Both the approach of controlling all valves with
MPC and using pre-stabilization are simulated in closed-loop.
For analysis of the dynamics of the model, a simulation without NMPC is
made both for the pre-stabilized and the unstabilized model. This simu-
lation is made by applying steps in the disturbances at different points in

5

0 50 100 150 200
0

0.02

0.04
σ : GVF in liquid outlet of PS

Time(sec)

G
V

F

0 50 100 150 200
0

1

2

Liquid height in GLCC (h
s
)

Time(sec)

M
et

er
s

Pre−stabilized
Unstabilized

0 50 100 150 200
0

1

2

Liquid height in DL(h
dl

)

Time(sec)

M
et

er
s

0 50 100 150 200
8

10

12

14

16
Pressure in GLCC(CV1)

Time(sec)
B

ar

0 50 100 150 200

8

10

12

Pressure in DL(CV2)

Time(sec)

B
ar

0 50 100 150 200
0.04

0.045

Disturbance

Time(sec)

F
lo

w

0 50 100 150 200

0.5

0.6

0.7

G
V

F

q
in

δ

Figure 2: The separator model with steady-state inputs and steps in the
disturbance.

time. Figure 2 shows the result of the simulation. The applied disturbance
sequences are shown in the lower right plot. In the un-stabilized case, the
liquid levels are highly sensitive towards the disturbance. As the flow in-
creases, so does the liquid levels as more liquid is introduced in the unit.
However when the input GVF δ increases a smaller fraction of the input
flow is liquid, thus the liquid levels decreases and actually reaches zero and
continues in negative direction relatively quickly. As this clearly is not re-
alistic the trajectory after this point is not representative with respect to
the real-world unit, however it should be noted that all other states remains
within their constraints. Note that the GVF of the DL, µ, and the difference
pressure ∆p is not plotted to save space, as these variables are generally very
close to their optimal values and are thus not considered very interesting.
By applying the PID-controllers for pre-stabilizing the liquid levels, figure
2 shows that the liquid levels now become locally stable, and are kept close
to their set-points. However this comes at the cost that the pressures in the
control volumes increases. It seems that when only one of the disturbances
are perturbed, the pressures will converge close to their constraints, how-
ever when both qin and δ are perturbed from their steady-state values the

6

Variable Set-point Upper bound Lower bound Priority Terminal
σ 0 0.03 - 1 -
µ 1 - 0.97 10 -
p1 12 15 9 40 -
p2 10 12 8 40 -
∆p 2 4 0.5 60 -
hs 0.7 2 0 40 40
hdl 0.5 2 0 20 60
uc 0.38 1 0 2 -
∆uc 0 - - 4 -
u1 0.24 1 0 1 -
∆u1 0 - - 2 -
u3 0.05 1 0 0.24 -
∆u3 0 - - 0.24 -
u4 0.40 1 0 0.6 -
∆u4 0 - - 0.6 -
u7 0.15 1 0 0.6 -
∆u7 0 - - 0.6 -

Table 1: Objective of the NMPC. Priority is the corresponding weight to
the variable in (4b)-(4f), and terminal is the corresponding terminal weight
of (4g). Note that these values are relative according to the magnitude of
the respective variable, and are scaled before applied in the optimization
problem. If pre-stabilization is used, the priority to hdl, hs, u4 and u7 set
to zero, as well as the terminal cost to hdl and hs.

constraints are violated. Also σ is more excited from the active usage of u4
and u7, which both effects the flow where σ is measured.

3.1 Control structure and objectives
The resulting specification of the NMPC is summarized in table 1, and (3)
shows the resulting optimization problem.

min
u∈Rn

f(`(u(0), . . . , u(K − 1), x(0),K), u(0), . . . , u(K − 1)) (3a)

s.t
umin ≤ ui(k) ≤ umax, i = 1, 3, 4, 7, c (3b)

k = 0, 1 . . .K − 1

7

where the constraints on the states are handled through penalty-functions.
The objective function becomes

f(x(1), . . . , x(K̂), u(0) . . . u(K − 1)) = (4a)
K̂∑

k=1

1
∆t(k) [qsigma‖σ(k)− σref‖2 + qµ‖µ(k)− µref‖2+ (4b)

qhs‖hs(k)− hsref
‖2 + qhdl

‖hdl(k)− hdlref
‖2 (4c)

+qp1‖p1(k)− p1ref
‖2 + qp2‖p2(k)− p2ref

‖2 (4d)
+q∆p‖∆p(k)−∆pref

‖2] (4e)

+
K∑

k=1

∑

i

ri‖ui(k)− uiref
‖2, i ∈ {1, 3, 4, 7, c} (4f)

+ehs‖hs(K̂)− hsref
‖2 + ehdl

‖hdl(K̂)− hdlref
‖2 (4g)

Where ehs and ehdl
are the terminal weights of table 1. Note the introduc-

tion of the differentiated time vector, which holds the time interval between
each time step. This is to be able to do a discrete integration. This is impor-
tant when applying a variable-step solver, as the number of sample points
returned by `(u(0), . . . , u(K − 1), x(0),K) will depend on the dynamics of
the system, which will change according to the state this is in.
For the choice of the control, and prediction horizon, figure 2 suggests that
the slowest dynamics has a time constant of approximately 40 seconds. This
choice proved to work well during simulations in the "Full MPC" case. For
the pre-stabilized case pressures seems to be surprisingly slow. However
as the pressure in the DL shows, they are closely correlated with the liq-
uid levels, and it is likely that the dynamics of the pressures becomes faster
when the liquid levels becomes high thus less space is available for the gas in
the cyclones. Simulations proves that horizons down to 5 seconds stabilizes
the model, however larger choices gives smoother trajectories of the valves.
Therefore a horizon of 20 seconds is chosen. The number input sequences
are divided into(input blocking) 5 blocks. The length of each input block
is {10%, 10%, 20%, 20%, 40%} of the total length of the control horizon. In-
creasing the number of blocks does not give an significant improvement in
closed-loop performance.

3.2 Analysing the optimization problem
Before applying optimization algorithms to solve the NMPC problem, it is
useful to investigate the properties of the problem. Two sets of inputs and
measured states of the plant x(0) are chosen from a simulation, one set
where the plant is in a stiff condition, and one where this is not the case.
Then the cost is evaluated at different points in this setting by holding the
three first and the two last input blocks equal, varying one valve. It is the

8

0.13
0.14

0.15
0.16

0.17
0.18

0.19

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0

20

40

60

80

100

120

140

Second input block

First input block

C
os

t

(a) Fixed-step, non-stiff

0.13
0.14

0.15
0.16

0.17
0.18

0.19

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0

20

40

60

80

100

120

140

Second input block

First input block

C
os

t

(b) Variable-step, non-stiff

Figure 3: Cost surface of the
NMPC optimization problem
when applying fixed-step and
variable-step solver when the
plant is in a non-stiff configura-
tion, and varying u7 between 0.13
to 0.19.

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

40

50

60

70

80

90

100

First input block

Second input block

C
os

t

(a) Fixed-step, stiff

0.19
0.2

0.21
0.22

0.23
0.24

0.25

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

40

50

60

70

80

90

100

First input block

Second input block
C

os
t

(b) Variable-step, stiff

Figure 4: Cost surface of the
NMPC optimization problem
when applying fixed-step and
variable-step solver when the
plant is in a stiff configuration.
The first block of u7 is varied
between 0.19 and 0.25, the second
between 0.17 and 0.23

"Full MPC" approach that is investigated, as this is the numerically most
challenging. The experiments are done using Matlabs ode1 solver with a
sampling period of 0.1 seconds in the fixed-step case, and Matlabs ode23s is
used for variable-step simulations. The latter uses an absolute and relative
tolerance of 10−2, and a minimum and maximum step size of 0.01 and 0.2
seconds respectively. Figure 3(a) and 3(b) shows the resulting cost when ap-
plying fixed and variable-step ODE-solver respectively, in the non-stiff case.
In the fixed-step case the cost surface is relatively smooth, although some
minor discontinuities can be seen traversing the cost surface. Experiments
show that the tested gradient-based SQP algorithm handles this problem
well. When applying a variable-step solver significant numerical noise ap-
pears. Local minimums seems to exist in the top left corner of figure 3(b),
which is challenging for all algorithms.

Figure 4(a) and 4(b) is the same experiment as figure 3(a) and 3(b),
however the system is in a stiff setting. It is important to notice that even
when using a fixed-step solver, the problem may still become discontinuous
and non-smooth. This is because the model is highly non-linear due to phase
transitions, logic operators is used in the implementation and the dynamics

9

are stiff. Note that at least two minimum points exist, one at the bottom of
the curve, and one on the edge next to this.
When using a variable-step solver, as in the non-stiff case, noise is introduced
leading to a objective function that is even harder to differentiate. Also more
local minima are introduced. Applying gradient-based SQP to this proves
to make the algorithm fail, usually either getting stuck in a local minima or
resulting in a extremely slow convergence. This is likely because large values
of the gradient can occur when differentiating the discontinuities, making
the algorithm try large steps in the wrong direction.

4 Derivative-free trust-region methods
DFO algorithms comes in a vast number of types and varieties. A common
characteristic of these methods are that they start with an initial set of sam-
ples Y ⊂ Rn of the objective function f : Rn 7→ R1, and creates new points
by trying to figure out where the optimum of f(x) is by looking at the po-
sitions of yi, i ∈ [1,m] and the resulting functions values f(yi), i ∈ [1,m][5].
DFTRM are based on making a polynomial model q(x) of the true objective
function f(x) around the current iterate xk, k being the iteration index.
This model is made from Y and its corresponding function values. The
minimization is then performed on this model instead of the true objective
function. A quadratic model q(x) is chosen, since optimality conditions are
simple, and inspection of figure 3(a) suggests that the objective resembles
a quadratic function. Some important aspects are introduced in these algo-
rithms, one of the most important is the concept of well-poisedness in Y .
This refers to how far the model construction is from becoming degenerate.
This has a direct implication on the accuracy of q(x) compared to f(x), and
is usually handled in DFTRM by solving a second optimization problem
which is to generate new points that ensures well-poisedness in Y , called
the second sub-problem. Because this requires evaluation of the objective
function and does not contribute directly to the minimization, poisedness
becomes a necessary but costly issue[22].
To compensate for lack of accuracy in q(x), a Trust-Region (TR), denoted
by a radius ∆, is applied. This is the hypersphere around xk where q(x) is
trusted to be accurate. The reduction in q(x) found in the first sub-problem
is compared with the actual reduction of f(x). If the difference is large, the
radius of the TR is shrunk to improve the accuracy of q(x) within the TR.
It is also common to use a minimum TR-radius as a stopping criterion, such
that the optimization is stopped if ∆ ≤ ∆end.
Further, the algorithms need enough samples initially to build the initial
model q(x). Because this uses an interpolation method, the number of sam-
ples required for a fully determined model is m = 1

2(n + 1)(n + 2), where
n in the number of MV. Because of the large computational resources re-

10

quired for this, it is definitely a challenge to handle this in many real-time
applications.

4.1 Wedge, UOBYQA, Condor and BOBYQA
The BOBYQA algorithm is the successor of COBYLA, UOBYQA, and
NEWUOA[19]. The algorithms main structure is quite similar to that
of UOBYQA, as of solving two sub-problems. Its main difference from
UOBYQA is that it builds the model from an under-determined sample set,
and support bound constrains on the MV. q(x) is built using the minimum
Frobenius-norm update[17], which takes up space in the undetermined de-
grees of freedom by minimizing the norm between the current ∇2q(x) with
that from the previous time step. It is optional to use between m = n + 2
to 1

2(n + 1)(n + 2) sample points, however[19] recommends 2n + 1, which
is used during the simulations. This choice makes ∇2q(x) a diagonal ma-
trix initially[19]. The implementation used in the simulation, is that of the
NLOpt-package[9].

UOBYQA is a well-known DFO algorithm for unconstrained optimization.
It is claimed to be robust against noise in the objective function[15], and
best suited for problems with less than n = 20 free variables[16]. q(x) is
built from a fully determined interpolation, and to ensure that Y does not
become degenerate a second sub-problem is solved to ensure well-poisedness.

The simulations are performed using Condor, which is an extension of
UOBYQA[2], exploiting parallel computing, added tolerance towards noisy
objective functions and, maybe most interesting for the purpose of NMPC,
handling of both bound, linear and non-linear constraints. As parallelism is
not applied in the simulations, the main difference from UOBYQA concern-
ing the simulations is that another method for solving the first sub-problem
is used in Condor to handle constraints.

The Wedge algorithm builds the interpolation model from a fully-determined
sample set using LU-factorisation[11]. The algorithms approach to poised-
ness is that it guarantees that the point found as the solution of the first
sub-problem can replace a pre-determined point in the sample set Y , with-
out making this set degenerate. To guarantee that the TR-step fulfils this
condition, an additional constraint is introduced in the sub problem. The
so-called constraint is designed such that the new point will ensure a certain
distance from degeneracy, and this distance is specified with the parameter
γ. From [11] it is clear that the purpose of the algorithm is not specifically
to optimize noisy functions. On the other hand, DFO algorithms tends in
general to be more suited to noisy optimization than gradient-based algo-
rithms.

11

4.2 Improved warm-start
One of the biggest obstacles in NMPC is to solve the optimization prob-
lem fast enough for real-time performance. This is especially true for DFO
which is known to require a large number of function evaluations, where the
initial evaluations are often dominating. Simulations shows that algorithms
using a fully determined sample set tends to perform better when numerical
noise and discontinuities are present. If the number of points required to be
evaluated initially for each time step can be reduced significantly without
an extensive increase in the number of algorithm iterations, this would be
a step in the right direction to make DFO more applicable in a real-time
NMPC setting. As the NMPC objective function is known to typically be
similar in time step k compared to time step k− 1, this information may be
exploited to build an accurate initial model and still use few function evalua-
tions for this. Therefore a modification to the Wedge-algorithm is proposed
that exploits the nature of the NMPC problem to reduce the number of
function evaluations in the initial model building made at the beginning of
each time step k.
The idea behind the modification is to take warm-start a step further than
just using the previous optimal solution as initial guess, by also warm-
starting the approximation model q(x). Because the sample set becomes
"zoomed" in on the solution as the algorithm iterates, a sample set purely
used for building of the initial model at each time step is introduced, YInit.
This set, with its corresponding function values fInit, are saved from one
time step to the next. Then, only a fraction of these points are replaced and
the corresponding function values are updated at each time step. After the
model building is finished this sample set is copied into a "local" sample set
used in the iterations of the algorithm, YIter and fIter. This way the points
YIter will be "zoomed" in on the solution, YInit still having a relatively large
distance between its points. When the algorithm is finished for the current
time step, YIter and fIter are discarded. When some of the points in YInit
are updated in the next time step, the start point x0(i.e. the solution from
the previous time step) is chosen as the centre for these new points. This
way, as the time steps progresses the points in YInit will slowly track the
positions of the current iterate.
To ensure that all points are updated at regular intervals, the indices of YInit
are divided into ns sub-sets, Si, i ∈ 1 . . . ns, and a sample points affiliation
to a given index is constant for the scope of the controller. The points be-
longing to the indexes to a given sample set is updated at each time step,
cycling such that no set is associated with samples older than ns time steps.
The initial model is then built from YInit, resulting in a model fulfilling the

12

interpolation condition

qk(yi) =

fk(yi) ∀ i ∈ Sk
fk−1(yi) ∀ i ∈ Sk−1
fk−2(yi) ∀ i ∈ Sk−2
...
fk−ns(yi) ∀ i ∈ Sk−ns

(5)

and k denotes the current time step. For a fully determined algorithm
this implies that only m̂ = (n+1)(n+2)

2ns
samples needs to be evaluated initially

at each time step. This will come at the cost that the initial model may be
less accurate, possibly requiring more function evaluations in the proceeding
iterations. However the motivation for this approach is the observation that
in the case-study the difference between q(x) and f(x) is often rather large
both in the initial model building and iterations of Wedge. Especially the
magnitude of the gradient does usually not decrease at all as the algorithm
progresses trough iterations, which would be expected if the accuracy of
q(x) is good. Still Wedge seems to perform well during simulations, and this
suggests that DFTRM is quite robust against model error.
Also the findings in [8] supports this observation, as this article experi-
mented with a DFTRM without any poisedness-ensuring mechanism. This
caused a large error in q(x), still the algorithm was reported to perform well.
Further [19] has reported that BOBYQA works with large difference in the
Hessian of q(x) compared to that of f(x), but the algorithm still seemed to
work well. This encourages the approach of re-using old sample points and
function values of the objective function, although this results in an known
model error.
Because it is known that the accuracy of q(x) is closely related with poised-
ness, this is used in the modification to Wedge to ensure that the algorithm
gets a good start at each time step. This is accomplished by the use of an al-
gorithm that adds sample points to an existing sample set, choosing the new
points such that the set becomes well-poised. This algorithm can be found
in [5], where it is known as algorithm 6.5. By removing the points to be
updated from Y and feeding the set to this algorithm, the algorithm ensures
that the set is filled up and is well-poised. Further, at the first time step
the algorithm uses the same initialisation procedure as the original Wedge
algorithm.

5 Subsea oil-gas separation process simulation re-
sults

Both the pre-stabilized case and the non-stabilized, referred to as "Full MPC"
approach, are simulated in closed-loop in this section. The disturbance se-
quence applied can be seen in figure 5. Warm-start is also applied by always

13

starting the optimization at the previous solution to exploit that the solu-
tion is similar from one time step to another. The plant model that is to
be controlled is simulated with Matlabs ode1 solver at a sampling period of
0.01 seconds, and the sampling frequency of the controller is 0.2 seconds, i.e.
a new input sequence is calculated with this interval. The prediction model
is tested with the same fixed and variable-step solvers as used in section 3.2.
That the plant and prediction model is simulated differently, will induce a
model-mismatch between the predictions and the plant. Such mismatches
are always present in real-world applications, and should therefore make the
simulations more realistic. Further the ∆end stopping criterion is set to 10−3

for all the DFO algorithms.
The model, both in the prediction configuration and the plant, proved to
be very numerically challenging. Especially a negative rate of change in
δ seems to make the ODE-solver tend to return infinite states or "Not A
Number"(referred to as undefined points). Investigations shows that in these
cases the set of inputs where the model is defined, becomes very small, es-
pecially when using the variable-step solver. The objective function also
becomes very non-smooth and quickly changing from one time step to the
next, and an optimal solution in one time step may become undefined in the
next. None of the algorithms handles undefined starting points. In these
cases a last-resort solution must be used, by implementing the solution from
the previous time step and hope that this eventually becomes defined again
as the simulation progresses. For the "Full MPC" case with variable-step
solver the problem becomes extremely numerically difficult, and non of the
algorithms performs well, thus this case is omitted.
Table 2 summarize the results for the five algorithms that is tested.
The SQP-algorithm tested, is the gradient-based implementation fmincon()
in Matlabs optimization toolbox, using finite-differences gradient approx-
imations. This algorithm experiences severe difficulties during the simu-
lations, as the algorithm takes large steps in bad directions, and returns
solutions with a cost in the magnitude of several thousand. This is likely
because finite-differences is applied to non-smoothness and discontinuities,
and significant errors occurs. This is handled by restarting the algorithm at
different starting points in these cases, implementing the solution from the
previous time step if this does not succeed. However when using variable-
step solver the algorithm did never recover, and the simulation failed, thus
this case is omitted in table 2. In addition the previous described handling
of undefined starting points is implemented.

5.1 BOBYQA
BOBYQA is limited to use a maximum of kmax = 600 function evaluations
for the "Full MPC" case, and kmax = 216 for the pre-stabilized case during
the simulations. The most interesting result from using the fixed-step ODE-

14

Algorithm MPC Fs/Vs W/C sol. Av. sol. Av. evals. S.S. evals.
SQP P.S. Fs 176.7 5.9 178.6 93
BOBYQA P.S. Fs 10.2 1.6 117 80
BOBYQA P.S. Vs 28.7 2.7 80 71
Condor P.S. Fs 25.5 2.2 247 252
Condor P.S. Vs 11.6 1.2 245 249
Wedge P.S. Fs 16.9 2.5 168 143
Wedge P.S. Vs 89.5 3.9 164 151
Wedge* P.S. Vs 53.7 1.1 197 150
ModWedge P.S. Fs 11.7 1.5 89 76
ModWedge P.S. Vs 66.1 4.7 90 76
SQP Full Fs 194 38.6 101 74
BOBYQA Full Fs 119.6 3.4 213 212
Condor Full Fs 42.9 7.2 463 456
Wedge Full Fs 140.3 8.7 389 382
ModWedge Full Fs 73.8 11.1 165 162

Table 2: Summary of the results. "W/C sol." is the highest cost the respec-
tive algorithm finds during simulation, while "Av. sol." is the average cost.
"Av. evals. and "S.S. evals." are the average number of function evaluations
used during the whole simulations, and during the first 30 seconds while
the disturbance is constant, respectively. The largest number of function
evaluations is equal to kmax of the respective algorithm. Wedge* γ1 = 0.75
instead of 0.5.

15

solver with the algorithm is the number of function evaluations. Table 2
shows that as long as the disturbance is small, thus the objective function
being relatively smooth and similar from one time step to the next, the
number of function evaluations increases slowly with the number of MV.

The simulations also indicates that the solutions found by BOBYQA in
the "Full MPC" case is not any worse than that of the other algorithms, at
least not while the disturbance is moderate. It is hard to tell why this is the
case, however it is known from [19] and [18] that the difference between the
Hessian of f(x) and that of q(x) often is relatively large. The success of the
algorithm may then be interpreted as although the mismatch between f(x)
and q(x) can be substantial, the minimum point is similar. It is known that
f(x) is at least to some extent convex close to the solution and that this is
usually quite close to the starting point for the optimization x0. As this point
is used as a point in the interpolation in the initial model, is it reasonable
to believe that q(x) is accurate around the actual solution. Because ∆0 is
chosen relatively large, all other points in the initial sample set will have a
larger function value due to the convex tendencies of f(x). As the Hessian
of q(x) is a diagonal matrix initially, this will then become positive definite
if these assumption holds, and the algorithm will make steps towards the
actual solution even though the model mismatch is large.

Further, as the initial model is built up from fewer samples than is the
case with fully determined interpolation, less information is also stored. As
the algorithm progresses, fewer iterations will be needed before the model
is renewed by "fresh" sample points. This can give a better ability for the
model to adapt to local non-linearities as the trust-region moves.

The simulations using variable-step solver shows that this has a great
impact on BOBYQAs performance. Considering the worst-case cost of 28.7,
instead of 10.2 in the case of fixed-step solver. The cause of this is that the
implementation used will exit and return the current best solution if an
undefined point is encountered.

Noteworthy is also the reduction in the number of function evaluations
when the variable-step solver is applied. This is likely because the TR is
reduced quickly when numerical noise is present, thus reaching ∆end after
fewer evaluations than when the objective is smooth and quadratic, i.e. the
algorithm terminates prematurely.

5.2 Condor
Condor is set to stop after 100 iterations, and rarely stops due to reaching
∆end. This causes the algorithm to not reduce the number of function
evaluations when x0 is close to the actual solution, unlike the case with
BOBYQA. Therefore the number of function evaluations are almost as large
during steady-state as during transients.

The results using Condor for the pre-stabilized MPC are better com-

16

pared to BOBYQA when using the variable-step solver, and worse when us-
ing fixed-step, although using significantly more function evaluations. This
reflects that Condor is designed for noisy optimization. In the "Full MPC"
case, the algorithm has the best worst-case performance, however the av-
erage solution is second best. Again, Condor tends to handle the disconti-
nuities caused by severe disturbances better than BOBYQA, it is however
out-performed in smooth cases.

5.3 Wedge
Wedge is limited to kmax = 461 and kmax = 246 function evaluations for the
"Full MPC" and the pre-stabilized cases respectively. It seems to perform
equally or better compared to Condor, when the disturbance is moderate,
which can be seen in [6]. It is also important to note that the algorithm
uses significantly fewer evaluations than Condor, as it tends to reach ∆end

quicker. Also the variance in the inputs tends to be smaller with Wedge
than with Condor. Although desirable, this "filtering" is actually a side-
effect when the algorithm does not find the exact solution. The solution will
become more similar to the previous which is the current start point, thus
less variations will occur. As expected the performance of Wedge suffers
when the disturbance and thus the non-smoothness becomes severe, espe-
cially clear from the worst-case solution in the "Full MPC" approach. Also
the algorithm performs better on the pre-stabilized case, which is known to
be less numerically difficult.

Because Wedge is a Matlab-implementation, it is easier to investigate
the behaviour of the algorithm. It is observed that the poisedness-improving
mechanism is rarely invoked, especially when good progress is achieved such
that trial-points are relatively far from each other. When the algorithm
starts close to the solution, trial-points are closer thus the wedge-constraint
becomes active more often. This is intuitive and according to [8].

Further it seems that the Hessian of q(x) is rarely positive-definite in the
case-study. The reason for this is unknown, as this would be expected at
least under steady-state operation(see figure 3(a)). Also the absolute value
of the gradient of q(x) does not decrease as the algorithm progresses. This
may suggest that the model is not very accurate, as the gradient would be
expected to decrease when approaching the solution.

When applying the variable-step solver, the performance up to around
110 seconds(see [6]) is largely the same as BOBYQA, continuing the ten-
dency that Wedge handles moderate disturbances well. As the algorithm
progresses, it often tends to terminate early after very few iterations due to
the ∆end stopping criteria.

γ1 is a parameter deciding how fast the TR is to be shrunk if the accuracy
of q(x) is poor. Choosing this large, will make the TR shrink less, and
this proves to make the algorithm more robust against noise than choosing

17

it smaller, and resulted in the best solutions with respect to optimality.
However much more variance is introduced in the resulting input sequences.
The initial TR ∆0 has a similar effect. This is likely because the algorithm
becomes more robust towards change in the objective as ∆0 increases, as
the optimum is more likely to be included within the initial TR. However
because the maximum number of iterations are reached before the algorithm
has converged, a less exact solution will be found. On the other hand,
choosing ∆0 small works well as long as the objective function does not
change significantly from one time step to the next, as the initial starting
point will be close to the solution and the algorithm can "zoom" in on the
exact solution.

5.4 Wedge with improved warm start
Figure 5 and 6 shows the optimized input sequence of the valves, and trajec-
tory of the states respectively when the modified Wedge-algorithm is applied
to solve the NMPC problem.

The modified version of Wedge is simulated with the same parameters
as the original version is, except a larger value on γ1. This is increased to
0.85 without inducing more variance in the optimal solution, as is the case
in the original algorithm. This is likely to be because it builds the model
also on previous data, thus creating a filtering effect.

For the pre-stabilized, fixed-step case, the modified algorithm finds so-
lutions with costs in the same magnitude as the other algorithms. For the
variable-step case the average solutions are between the two simulations us-
ing the original algorithm. In the "Full MPC" case the average solution is
the worst of the DFO algorithms, although the worst-case solution is only
superseded by Condor. However in all cases the number of function evalu-
ations are very few, especially in the "Full MPC" case, where the reduction
is substantial compared to the original algorithm. This suggests that the
concept of recycling old function evaluations is indeed a promising way to
go.

5.5 Summary and discussion
There is no clear winner among the algorithms, as all seem to have their
strong and weak properties. An important observation is that there are large
differences in their ability to find an optimum, or even near-optimal solution
within the tolerances and iteration limits. It is interesting that the gradient-
based SQP did fail in all cases, probably due to finite differences applied to
non-smoothness, and therefore had to rely on last-resort solutions. All DFO
algorithm did handle at least all fixed-step cases, proving that they have a
part to play in NMPC. The simulations shows that the choices of tuning
parameters of the algorithms is of great significance, as shown with Wedge

18

0 50 100 150 200
0

0.5

1

Input u
c

Time(sec)

V
al

ve
 o

pe
ni

ng

Full MPC
Pre−stabilized

0 50 100 150 200
0

0.5

1

Input u
1

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

0.5

1

Input u
3

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

0.5

1

Input u
5

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200
0

0.5

1

Input u
7

Time(sec)

V
al

ve
 o

pe
ni

ng

0 50 100 150 200

0.04

Disturbance

Time(sec)

F
lo

w

0 50 100 150 200

0.5

G
V

F

q
in

δ

Figure 5: Control inputs using modified Wedge, and prediction model simu-
lated with fixed-step solver. In the pre-stabilized case u3 and u4 is controlled
by internal feedback loops.

19

0 50 100 150 200
0

0.02

0.04
σ : GVF in liquid outlet of PS

Time(sec)

G
V

F

Full MPC
Pre−stabilized

0 50 100 150 200
0.95

1
µ : GVF in gas outlet of DL

Time(sec)

G
V

F

0 50 100 150 200
0

1

2

Liquid height in GLCC (h
s
)

Time(sec)

M
et

er

0 50 100 150 200
0

1

2

Liquid height in DL(h
dl

)

Time(sec)

M
et

er

0 50 100 150 200

10

15

Pressure in GLCC(CV1)

Time(sec)

B
ar

0 50 100 150 200

8

10

12

Pressure in DL(CV2)

Time(sec)

B
ar

0 50 100 150 200
0

5

∆
p
: Difference pressure between CV1 and CV2

Time(sec)

B
ar

0 50 100 150 200
0

20

40
Cost of solutions found

Time(sec)

C
os

t

Figure 6: Controlled states using modified Wedge, and prediction model
simulated with fixed-step solver. In the pre-stabilized case, hdl and hs is
controlled by internal feedback loops.

20

where the performance greatly improves by increasing the reduction factor
of the TR, however this results in increased variances of the control inputs
and worse performance during steady-state. Comparing BOBYQA to the
gradient-based SQP algorithm, BOBYQA actually seems directly compara-
ble, both in computational consumption and accuracy. Condor stands out
as the best suited against noise and discontinuities induced when using the
variable-step solver, and when the fast dynamics are excited by large dis-
turbances. Although using relatively many function evaluations, it does not
seem to require more even if numerical noise and discontinuities is severe. In
the case of a real-time application such as MPC, the worst-case performance
is of primary significance as computational resources must be reserved for
this case. Although not clear from table 2, BOBYQA and both versions of
Wedge uses kmax function evaluations in the worst case(details in [6]), thus
Condor is attractive.

Regarding real-time performance, all experiments are performed on one
CPU/core. This raises a significant question, as although BOBYQA and
the modified Wedge algorithm is the clear winner with respect to the num-
ber of function evaluations used, fewer of this are evaluated in the initial
sample set than in Condor and Wedge. If evaluations is to be spread over
several CPUs, it is this initial work that is the most suited for distributed
processing. If using, say 16 CPUs which may be accomplished in a Digital
Signal Processor (DSP), the algorithms using fully determined sample sets
may become the fastest with respect to time.
Considering that Condor requires approximately 110 evaluations after the
initial sample set building in the "Full MPC" case, all the initial 351 evalu-
ations may be spread across 16 CPUs. Considering perfect parallelisation,
this gives a processing time consumption similar to 351

16 + 110 = 132 evalua-
tions, while BOBYQA using an initial sample set of 51 samples and a total
of 212 evaluations requires a time similar to 51

16 + 161 = 202 evaluations.
This gives Wedge and Condor a clear advantage. When also considering
the remark above that computational resources must be reserved for the
worst-case, this will give Condor and Wedge an even larger advantage, as
BOBYQA in this case requires 600 function evaluations. By also considering
using a multi-core GPU for parallel computing as shown in [20], the com-
putational time required to evaluate the initial sample set can be reduced
even more.
Further, more sophisticated techniques for recycling previous function evalu-
ations in the modified Wedge algorithm is likely to improve the performance
significantly. Such techniques can be to apply the minimum-norm solution
used in BOBYQA to make ∇2q(x) similar to that of the previous model,
and that way carry information between time steps. [5] describes over-
determined interpolation, and this may be applied in NMPC by re-cycling
old sample sets and form an over-determined interpolation in the current
time step.

21

6 Conclusions
The simulations has shown that numerical issues where the tested finite-
differences gradient-based SQP has difficulties can occur both when using
variable and fixed step ODE-solver. All DFO-algorithms tested handles
these issues better, which emphasises that these algorithms have robustness
that is desirable in NMPC.

Although all DFO algorithms have their strengths and weaknesses, it
currently seems that BOBYQA and Condor are two algorithms that may be
interesting for use in NMPC. For the case where the noise and discontinu-
ities are not severe, however enough to make gradient-based algorithms fail,
BOBYQA seems like a very promising candidate. It requires a low number
of function evaluations that is comparable with finite-difference gradient-
based SQP, thus is especially attractive for use where only a single core is
available.

If the numerical noise and discontinuities are severe, Condor is attractive.
It requires more function evaluations, but is significantly more robust against
such numerical difficulties. As it is more suited for parallelism, and already
has a parallelisation mechanism implemented, it is also interesting for use
on multi-core systems.

A novel modification to the Wedge-algorithm shows that exploiting the
nature of the NMPC problem definitely can give advantages with respect
to computational time consumption, by recycling function evaluations from
previous time steps.

If the optimization problem is smooth and differentiable, gradient-based
algorithms are still preferable. However as this is not always the case, DFO
is a good supplement for ensuring robustness in NMPC.

References
[1] H. Al-Duwaish and W. Naeem. Nonlinear model predictive control of

hammerstein and wiener models using genetic algorithms. In Control
Applications, 2001. (CCA ’01). Proceedings of the 2001 IEEE Interna-
tional Conference on, pages 465–469, 2001.

[2] F.V. Berghen and H. Bersini. CONDOR, a new parallel, constrained
extension of powell’s UOBYQA algorithm: Experimental results and
comparison with the DFO algorithm. Journal of Computational and
Applied Mathematics, 181:157–175, September 2005.

[3] L.G. Bleris, J. Garcia, M.V. Kothare, and M.G. Arnold. Towards
embedded model predictive control for system-on-a-chip applications.
Journal of Process Control, 16(3):255–264, 2006.

[4] W. Chen, X. Li, and M. Chen. Suboptimal nonlinear model predictive
control based on genetic algorithm. In Intelligent Information Tech-
nology Application Workshops, 2009. IITAW ’09. Third International
Symposium on, pages 119–124, 2009.

22

[5] A.R. Conn, K. Scheinberg, and L.N. Vicente. Introduction to
Derivative-Free Optimization. Society for Industrial and Applied Math-
ematics and the Mathematical Programming Society, 2009.

[6] J. S. Dæhlen. Derivative-free optimization in NMPC. Master’s thesis,
NTNU, 2013.

[7] M. Diehl, H.J. Ferreau, and N. Haverbeke. Efficient numerical meth-
ods for nonlinear mpc and moving horizon estimation. In Lalo Magni,
DavideMartino Raimondo, and Frank Allgöwer, editors, Nonlinear
Model Predictive Control, volume 384 of Lecture Notes in Control and
Information Sciences, pages 391–417. Springer Berlin Heidelberg, 2009.

[8] G. Fasano, J.L. Morales, and J. Nocedal. On the geometry phase in
model-based algorithms for derivative-free optimization. Optimization
Methods and Software, 24(1):145–154, 2009.

[9] S.G. Johnson. The NLopt nonlinear-optimization package. http://
ab-initio.mit.edu/nlopt, July 2012. Accessed: 12/12/2012.

[10] D. Koller and S. Ulbrich. Optimal control of hydroforming processes.
Proceedings in Applied Mathematics and Mechanics, 11(1):795–796,
2011.

[11] M. Marazzi and J. Nocedal. Wedge trust region methods for deriva-
tive free optimization. Mathematical Programming, 91:289–305, 2002.
10.1007/s101070100264.

[12] P. Norgren. Compact subsea separation unit: Nonlinear model predic-
tive control and nonlinear observers. Master’s thesis, NTNU, 2011.

[13] R. Oeuvray and M. Bierlaire. Boosters: a derivative-free algorithm
based on radial basis functions. International Journal of Modelling and
Simulation, 29(1):26, 2009.

[14] C. Onnen, R. Babuška, U. Kaymak, J.M. Sousa, H.B. Verbruggen, and
R. Isermann. Genetic algorithms for optimization in predictive control.
Control Engineering Practice, 5(10):1363 – 1372, 1997.

[15] M.J.D. Powell. UOBYQA: Unconstrained optimization by quadratic
approximations. DAMTP 2000/NA14, December 2000.

[16] M.J.D. Powell. UOBYQA: Unconstrained optimization by quadratic
approximation. Mathematical Programming, 92(3):555–582, 2002.

[17] M.J.D. Powell. Least Frobenius norm updating of quadratic mod-
els that satisfy interpolation conditions. Mathematical Programming,
100(1):183–215, 2004.

[18] M.J.D. Powell. The NEWUOA software for unconstrained optimiza-
tion without derivatives. In G. Pillo, M. Roma, and Panos Pardalos,
editors, Large-Scale Nonlinear Optimization, volume 83 of Nonconvex
Optimization and Its Applications, pages 255–297. Springer US, 2006.
10.1007/0-387-30065-1_16.

23

[19] M.J.D. Powell. The BOBYQA algorithm for bound constrained opti-
mization without derivatives. Cambridge NA Report NA2009/06, Uni-
versity of Cambridge, Cambridge, 2009.

[20] A. Sadrieh and P. A. Bahri. Application of graphic processing unit
in model predictive control. In M.C. Georgiadis E.N. Pistikopoulos
and A.C. Kokossis, editors, 21st European Symposium on Computer
Aided Process Engineering, volume 29 of Computer Aided Chemical
Engineering, pages 492 – 496. Elsevier, 2011.

[21] H. Sarimveis and G. Bafas. Fuzzy model predictive control of non-linear
processes using genetic algorithms. Fuzzy Sets and Systems, 139(1):59
– 80, 2003.

[22] K. Scheinberg and P. Toint. Self-correcting geometry in model-based al-
gorithms for derivative-free unconstrained optimization. SIAM Journal
on Optimization, 20(6):3512–3532, 2010.

[23] B. Tlili, F. Bouani, and M. Ksouri. A derivative-free constrained predic-
tive controller. In Proceedings of the 10th WSEAS international con-
ference on Systems, pages 360–365. World Scientific and Engineering
Academy and Society (WSEAS), 2006.

24

	Introduction
	Outline

	Optimal control preliminaries
	Optimization
	Finite-horizon optimal-control and LQR
	Model-predictive Control

	DFO preliminaries
	Monomial basis and the Horner Scheme
	Lagrange polynomial
	Newton polynomial
	Poisedness and quality of the model
	Obtaining a well-poised sample set
	Over-determined models
	Under-determined models

	DFO algorithms
	Genetic algorithm
	Trust-region methods
	Constraint handling
	Wedge
	Defining and solving the Wedge sub-problem

	UOBYQA and CONDOR
	Finding and replacing the "worst" point in the sample set
	Solving the first sub-problem
	Solving the second sub-problem

	BOBYQA
	Initialization
	Model update technique
	Solving the first sub-problem(TRSBOX)
	Solving the second sub-problem(ALTMOV)

	A NMPC case study
	The crude-oil separator
	Defining the NMPC problem
	Developing a penalty-function for constraint handling
	Implementing the model and NMPC in Matlab/Simulink
	Analysing the optimization problem

	Using Wedge, Condor and BOBYQA for NMPC
	Choice of parameters for the algorithms
	Remarks about MPC tuning
	Summary of the results
	Gradient-based SQP
	BOBYQA
	Condor
	Wedge
	Remarks on the result

	Improved warm-start
	Initial model based on old data
	Updating the sample set YInit
	Simulations
	Discussion of the results
	Further work

	Conclusion
	Further work and final remarks

	List of variables in the separator model
	Steady-state setting of the separator
	Article for publication in journal

