
Infrared Object Detection & Tracking in
UAVs

Frederik Stendahl Leira

Master of Science in Engineering Cybernetics

Supervisor: Thor Inge Fossen, ITK

Department of Engineering Cybernetics

Submission date: June 2013

Norwegian University of Science and Technology

Abstract

The present thesis describes the design and implementation of a small, light weight
and power efficient payload system for the use in unmanned aerial vehicles (UAVs).
The primary application of the payload system is that of performing real-time ob-
ject detection and tracking based on an infrared camera. The implemented object
detection algorithm utilizes pre-trained classifiers to perform detection, and the im-
plemented object tracking algorithm is based on an estimate-and-measure tracking
approach. The estimator used is a standard Kalman filter, which assumes a linear
motion model for the tracked objects. A global nearest neighbor approach was used
to match the measurements to the tracked objects. Two types of classifiers were
trained. The first classifier was trained with a support vector machine in combina-
tion with the histogram of oriented gradients feature representation. The second
classifier was created by constructing a boosted cascade of classifiers trained using
the AdaBoost algorithm by means of a set of Haar-like features. Furthermore, ex-
periments are presented which demonstrate that the system is able to consistently
track humans in many simulated real-time scenarios. However, it was found that
in the presence of abrupt and relatively large object displacements, the linear mo-
tion model was not sufficiently accurate to keep track of the object. This implies
that the tracking algorithm can benefit from the implementation of a non-linear
estimator. Finally, the payload was found to be able to perform simulated real-
time tracking, while at the same time performing several additional tasks. This
includes sending important data to a control station located on the ground, and
also simulating control over the UAV.

Keywords: unmanned aerial vehicle, classifier, infrared camera, object detection,
object tracking, Kalman filter, linear motion model, global nearest neighbor, his-
togram of oriented gradients, support vector machine, boosted cascade, Haar-like
features.

Preface

This thesis is submitted in partial fulfillment of the requirements for the degree
MSc. at the Norwegian University of Science and Technology.

I would like to thank Professor Thor Inge Fossen and Professor Tor Arne Johansen,
my supervisors, who trusted me to take on this project. They have given me very
valuable and constructive suggestions during the development of this research work.
Thanks also to Dr. Esten Groetli for guiding me in the right direction regarding
software solutions.

Moreover, I would like to thank all the people at Maritime Robotics for help-
ing me in the process of finding appropriate hardware suitable for my project, as
well as giving me the opportunity to test their infrared camera system.

Finally, I would like to thank my parents, and Synne, for their support.

Trondheim, June 24, 2013

Frederik Stendahl Leira

i

Problem Text

The main objectives of the MSc project are to develop a sensor payload for in-
frared (IR) object detection and tracking in unmanned aerial vehicles (UAVs).
This includes the design, integration and implementation of electrical and software
components of the payload.

The main components in the design of the payload should be the following

• Processing unit (CPU)
The module should be able to handle the following functions

– Control and configuration of payload sensors.

– Interface to navigation module.

– Data logging to local storage device.

– Streaming of navigation and payload sensor data over IP radio / com-
munication link.

– IR-based Object detection and tracking.

• Infrared camera module
The module should be suitable for real time processing with a suitable number
of frames per second. It should also be able to perform data streaming to a
control station located on the ground.

• Video camera module
The module should be suitable for real time processing with a suitable number
of frames per second. It should also be able to perform data streaming to a
control station located on the ground.

ii

iii

• Navigation module
The module should be able to output the UAVs attitude and position data
to the processing unit and/or the local network in the payload.

• Electric power supply
The module should be able to stably supply the payload with sufficient elec-
trical power.

• Communication module
The module should enable communication between payload modules. In ad-
dition, it should be able to communicate with a control station located on
the ground.

The design should as far as possible be modular such that modules can be replaced
without too much redesign. Ideally, there should be space and weight available to
add one or two additional modules.

The ground control station will communicate over a wireless data link, and should
be able to display UAV status, payload sensor images and processed information
such as tracked objects.

The main tasks are

• Part 1: Payload

– Design of the payload: Specification and choice of components, con-
nection diagrams, data protocols, software and computer architecture.
The design must satisfy requirements for size, weight and power usage.
Use existing modules for CPU, communication, navigation, camera and
battery as far as possible.

– Design command station. Evaluate existing software and hardware to-
gether with Maritime Robotics.

– Implement, build and laboratory test payload and command station.

– Field test of the payload.

• Part 2: Object detection and tracking

– Implement and evaluate algorithms for object detection based on IR
sensor. Test the algorithms in the payload CPU.

iv

– Implement and evaluate an algorithm for object tracking based on IR
detection. Test the algorithm in the payload CPU.

– Implement data logging of the tracking results, video streaming and a
simple vision-based navigation algorithm.

– Evaluate the performance of the tracking algorithm in simulated real-
time object detection and tracking tests.

• Part 3: Conclusions

– Make suggestions for improvements to payload and architecture, as well
as algorithms and systems for IR-based object detection and tracking
applications.

Limitations:

1. The navigation algorithm is not required to control an UAV, but should be
able to output navigation commands to an autopilot or a navigation control
software.

v

This page intentionally left blank.

Contents

1 Introduction 1

1.1 Background . 1

1.2 Problem Formulation . 3

1.3 Thesis Outline . 4

2 Object Detection and Recognition 5

2.1 Feature Representations . 6

2.1.1 Haar-like Features . 6

2.1.2 Histogram of Oriented Gradients 9

2.2 Classifiers . 13

2.2.1 Support Vector Machine . 14

2.2.2 Boosted Cascade Classifier . 17

3 Object Tracking 21

vi

vii Contents

3.1 Estimation . 23

3.1.1 Motion Model . 23

3.1.2 The Kalman Filter . 26

3.1.3 Tracking With the Kalman Filter 29

3.2 Measurements . 31

3.2.1 Finding Measurements . 32

3.2.2 Matching Measurements . 37

4 The System 41

4.1 Hardware . 42

4.1.1 Single-Board Computer . 42

4.1.2 Infrared Camera . 44

4.1.3 IP Radio / Communication . 47

4.1.4 Power Supply . 51

4.1.5 Video Camera . 54

4.1.6 GPS/INS . 54

4.2 Software . 56

4.2.1 Ubuntu . 56

4.2.2 OpenCV . 57

4.2.3 Dune . 57

4.2.4 Neptus . 58

Contents viii

4.3 Setup Configuration 1 . 58

4.4 Setup Configuration 2 . 60

5 Experiments 67

5.1 Classifier Training . 68

5.1.1 Training and Testing the SVM/HOG Classifier 71

5.1.2 Training and Testing the BC/HL Classifier 72

5.2 Implementing the Object Tracking Algorithm 74

5.3 Implementing Additional Functions . 78

5.4 Field Testing . 81

6 Results and Discussion 83

6.1 Performance of the Classifiers . 84

6.2 Comparing the Classifiers . 87

6.3 Performance of the Tracking Algorithm 90

6.4 Performance of the Total System . 98

7 Conclusion 115

7.1 Overview . 115

7.2 Evaluation of the Two Classifiers . 117

7.3 Contributions . 119

ix Contents

8 Future Work 123

8.1 Realization of Setup Configuration 2 123

8.2 Extending the Object Detection Algorithms 124

8.3 Increasing Performance of the Object Tracking Algorithm 126

8.4 Extending the Object Tracking Algorithm 127

Appendices 129

A Discrete Convolution 130

B Focal Length and Perceived Object Size 131

C Single Board Computer 133

D Thermal Imaging Camera 136

E Video Camera 139

F Frame Grabbers 141

G Battery 143

H Ethernet Switch 145

List of Figures

2.1 A Haar-like Feature . 7

2.2 A List of Haar-like Features . 8

2.3 Integral Images . 9

2.4 Gradients of an Image . 10

2.5 Details of the HOG Descriptor . 11

2.6 Visualizing the HOG Descriptor . 12

2.7 SVM Hyperplane . 15

2.8 Nonlinear SVM Transformation . 17

2.9 Boosted Cascade Classifier . 18

2.10 The AdaBoost Algorithm . 20

3.1 The Estimate-and-Measure Tracking Cycle 22

3.2 Moving Objects in the Projection Plane 25

3.3 Visualization of How the Kalman Filter Works 28

x

xi List of Figures

3.4 Using the Kalman Filter for Tracking 30

3.5 Result of Filtering Images . 34

3.6 Morphological Opening . 35

3.7 Connected Components Labeling . 36

3.8 Weakness of the Nearest Neighbor Standard Filter 38

4.1 Illustration of Communication Between UAV And Ground Station . 50

4.2 Energy Density vs. Specific Energy For Common Battery Types . . 52

4.3 Setup Configuration 1 . 59

4.4 Power Diagram for Setup Configuration 1 61

4.5 Setup Configuration 2 . 63

4.6 Power Diagram for Setup Configuration 2 64

5.1 Small Sample From the Training Set 69

5.2 An Example of Classification . 70

5.3 Flowchart of the Tracking Algorithm 75

5.4 Flowchart of the Kalman Filter Manager 77

5.5 Video Stream Module . 79

5.6 Simple Navigation Algorithm . 80

6.1 ROC Curve For SVM/HOG Classifiers 85

6.2 ROC Curve For BC/HL Classifiers . 86

List of Figures xii

6.3 Estimated vs Real Position . 91

6.4 The Tracking Error for Different Design Parameters 93

6.5 Multiple Object Tracking . 97

6.6 Example of Synchronization Problems 99

6.7 Example of Interlacing Effects . 100

6.8 Tracking Error for the Two Classifiers 101

6.9 Real-Time Tracking with SVM/HOG Classification 103

6.10 Graphical User Interface of Command Station 105

6.11 Real-Time Tracking of Stationary Target With No Egomotion 106

6.12 Real-Time Tracking of Moving Target With No Egomotion 108

6.13 Real-Time Tracking of Stationary Target With Egomotion 110

6.14 Real-Time Tracking of Moving Target With Egomotion 112

B.1 Focal Length and Perceived Object Size 131

C.1 The PandaBoard With Specifications 134

D.1 FLIR Tau2 IR Camera . 136

E.1 The GoPro2 Video Camera . 139

F.1 Two Frame Grabbers . 141

G.1 The Biltema PowerPack . 143

xiii List of Figures

H.1 The TRENDnet Switch . 145

List of Tables

4.1 Overview of Different ARM Based Systems 43

4.2 List of Different Types of Infrared Radiation 45

4.3 Overview of Different Infrared Cameras 46

4.4 Focal Length and Corresponding Field of View 47

4.5 An Overview of Different Power Packs 53

6.1 Detection Time for Different Classifiers 88

6.2 Comparison of the Two Classifiers . 89

xiv

xv List of Tables

This page intentionally left blank.

List of Acronyms

BC Boosted Cascade

CPU Central Processing Unit

EO Electro-Optical

FPR False Positive Rate

FPS Frames Per Second

GPS Global Positioning System

GPU Graphical Processing Unitd

GNN Global Nearest Neighbor

HL Haar-like

HOG Histogram of Oriented Gradients

HTTP Hypertext Transfer Protocol

IMC Intermodule Communication

INS Inertial Navigation System

IR Infra-red

LoS Line of Sight

MJPEG Motion Joint Photographic Experts Group

NNSF Nearest Neighbor Standard Filter

xvi

xvii List of Tables

OS Operating System

POE Power Over Ethernet

RAM Random Access Memory

ROC Receiver Operating Characteristic

ROI Region of Interest

SBC Single Board Computer

SoC System on Chip

SVM Support Vector Machine

TCP/IP Transmission Control Protocol/Internet Protocol

TPR True Positive Rate

UAV Unmanned Aerial Vehicle

URL Uniform Resource Locator

USB Universal Serial Bus

Chapter 1

Introduction

The topic of the present thesis is real-time object detection and tracking in un-
manned aerial vehicles (UAVs), with the use of an infrared imaging camera. This
chapter will give a brief background to this research field, and state some of the
latest challenges and unsolved problems related to this topic. Furthermore, a prob-
lem formulation with associated goals are given, before the chapter ends with an
outline of the thesis and how the problems will be solved.

1.1 Background

Unmanned aerial vehicles (UAVs) have been an active topic for research for several
years [40]. They can be applied in a large variety of different scenarios, and supply
a testbed to investigate several unsolved problems such as path planning, control
and navigation. Furthermore, with the availability of low cost, robust and small
video cameras, UAV video has been one of the fastest growing data sources in the
last couple of years [44]. In other words, object detection and tracking as well as
visual navigation has recently received a lot of attention. Some of the most recent
work within this field include autonomous see-and-avoid systems and autonomous
visual based landing [12,17].

1

1.1. Background 2

Several object detection and tracking algorithms suitable for the use in UAVs
already exists, but most of them are restricted to the case of tracking moving
objects [6, 28, 29, 35, 44]. Now, with infrared cameras becoming cheaper and more
available to the public, the focus of target tracking in UAVs has shifted more to-
wards the case of search and rescue operations. In such operations it can not be
assumed that the tracked object (a human), is moving. On the contrary, during
such operations it might be expected that most targets will be stationary more of-
ten than not. This introduces the need for novel detection and tracking algorithms
which are not limited to tracking only moving targets.

A common approach to object detection and tracking in UAVs is to send the
recorded video data to a ground station for processing [32]. Object detection and
tracking is then performed at a high-end desktop computer, before command signals
are sent to the autopilot located on-board the UAV. There are several complications
associated with this approach. For example, for this to function properly, a reli-
able and fast wireless data connection is required between the UAV and the ground
station at all times. If the UAV moves too far away from the ground station, the
video signal is usually either transmitted with a huge lag time or worse, the data
received at the ground station may be corrupted. This effectively limits the opera-
tional range of this approach drastically, and it is therefore in many cases not ideal.

Now, in recent years, computer hardware has become smaller, lighter, more power
efficient and more powerful. This has lead to the possibility of implementing real-
time object tracking directly on-board the UAV [8, 19, 33]. Performing the image
processing on-board has several key advantages compared to sending the video to a
control station, especially in search and rescue operations. The key advantages to
this approach is that there is a reduction in the delay between the tracking and the
resulting command signal sent to the autopilot. In addition, and arguably more
importantly, this approach enables the UAV to travel outside the line of sight (LoS)
of the control operator, effectively extending the range of operation.

The main focus of the present thesis is the design and implementation of a system
that is able to perform real-time object detection and tracking on-board the UAV.
A requirement for the tracking algorithm is that it should be able to track station-
ary as well as moving targets. Furthermore, the main video source for the tracking
algorithm should be video captured from an infrared camera. Finally, it should be
noted that there has been a recent increase in the resolution of infrared cameras,
which effectively make them applicable for object detection over larger distances
than previously possible.

3 Chapter 1. Introduction

1.2 Problem Formulation

The main objectives of the present thesis are to develop a sensor payload able to
perform real time infrared object detection and tracking in UAVs. This includes
the design and implementation of the electrical and software components of the
payload.

The work of designing the total payload system is divided into the following three
tasks

• The payload
The design of the payload should include the specifications and choice of
components, connection diagrams, data protocols and software choices. The
design should as far as possible be modular, as well as satisfy requirements
for size, weight and power usage.

• Object detection algorithms
Promising methods for performing robust real-time object detection from
UAVs with an infrared camera should be implemented and evaluated.

• Object tracking algorithm
A tracking algorithm suitable for real-time tracking with an infrared camera
should be implemented and tested.

For the implementation of the payload to be considered successful, it should be
tested and verified to be able to

• Robustly detect and track humans in real-time with the use of an infrared
camera. The tracking algorithm should be able to consistently track targets
under a variety of different scenarios.

• Store the tracking results to the local storage unit.

• Stream processed images to a control station located on the ground.

• Supply the ground station with important information such as UAV status
and battery life.

Furthermore, suggestions for improvements of the payload as well as the object
detection and tracking algorithms should be made based on the test results.

1.3. Thesis Outline 4

1.3 Thesis Outline

To achieve the goals mentioned in the previous section, first a brief look on differ-
ent approaches to the problem of object detection and recognition will be covered
in chapter 2. Chapter 3 then proceeds to suggest an object tracking algorithm
which can be used in conjunction with any object detection technique to achieve
computationally efficient tracking. Chapter 4 subsequently cover the design of the
total payload system.

Having designed the payload and reviewed suitable object detection and track-
ing algorithms for the use in UAVs, chapter 5 describes how all of this can be
implemented and tested by describing a variety of different experiments. Chapter
6 then features a presentation and discussion of the most important results that
were found during the experiments, before chapter 7 concludes the thesis with a
brief summary of the work that was performed and the associated implications.
Finally, in chapter 8, various ways to further develop and improve the payload
system and its object detection and tracking algorithms are proposed.

Chapter 2

Object Detection and
Recognition

Object detection in computer vision consists of finding a given object in an im-
age. To be more specific, in our case we are concerned with the problem of telling
whether or not a specific type of object (e.g a human) is present in an image or
not. This is referred to as a 2-class classification problem [10]. Now, the task of
object detection is considered to be very challenging for computer systems in gen-
eral. This is mostly due to the fact that the appearance of an object is dependent
on many different factors. Just to mention a few aspects; viewing angle, scaling,
illumination, occlusion, deformation and background clutter are all characteristics
that play an important part in relation to how an object is projected onto the lens
of a video camera. Hence, in the present thesis we want to use algorithms which
are robust with respect to many of these factors.

The success of object detection systems is determined by two key factors: the
feature representation and the learning algorithm. In other words, a good object
detection system needs to have both a good feature representation and a good
learning algorithm in order to have good performance. The feature representation
is responsible for how to represent an object in an image in a reasonable way, us-
ing a reasonable amount of properties. The learning algorithm is responsible for
the other half, i.e deciding whether the object is what we are searching for or not

5

2.1. Feature Representations 6

(recognition). Such an algorithm is also referred to as a classifier. The following
chapter provides a review of feature representations and classifiers.

2.1 Feature Representations

A feature in computer vision is used to denote a piece of information that is relevant
to solving a given computer vision problem. In other words, features can be of
almost any shape and color. Now, how and which features we choose to describe
in an image is referred to as feature representation, and each instance of a feature
representation is referred to as a feature descriptor [26]. This is illustrated with
the following example. A circle in an image can be represented by two coordinates
x, y and a radius r. This would then be a feature representation for the feature
”circle”. Now, say that a circle with radius r0 is located at location x0, y0. The
set r0, x0, y0 would then be the feature descriptor of this circle. Furthermore, the
feature space refers to the total span of the feature representation. In our example
this would mean the combination of all possible circle locations and different radii.
As previously mentioned, the choice of feature representation is crucial for the
performance of object detection algorithms. Following is the review of two popular
feature representations.

2.1.1 Haar-like Features

The principle behind Haar-like features is that instead of using the intensity value
of pixels (as many feature representations do), the features make use of the change
in contrast values between adjacent rectangular groups of pixels [31] [16]. The
contrast variances between the rectangular pixel groups can in turn be used to
determine relative light and dark regions. As seen in figure 2.2, Haar-like features
are formed by combining two to three adjacent rectangular groups with a relative
contrast variance. An important thing to note is that the rectangular regions can
be independently scaled, effectively making the number of possible Haar-like fea-
tures very large. Furthermore, the position of a Haar-like feature is defined relative
to a fixed frame. This concept is illustrated in figure 2.1

Each Haar-like feature is represented by a scalar value, which is the difference
between the sum of the pixel gray level values within the black rectangular regions

7 Chapter 2. Object Detection and Recognition

Figure 2.1: (a) shows a Haar-like feature and how it is defined relative to a fixed
frame. (b) shows an image (a fixed frame) that has the characteristics of the
Haar-like feature in (a).

and the white rectangular regions, i.e

f(x) = ∑
black rectangles

(pixel gray level) − ∑
white rectangles

(pixel gray level) (2.1)

where x contains all the pixels the Haar-like feature consists of. Now, using the
operator f it is possible to search a region in an image, and estimate whether a
Haar-like feature is present or not. Let us consider the case where we are given a
Haar-like feature j with operator fj . To check if a region x in the image has similar
features to the Haar-like feature j, one can simply apply the function 2.1 to the
region. This results in a weak classifier1 hj(x), which can be defined as

hj(x) = { 1 if pjfj(x) ≤ pjθj
0 otherwise

(2.2)

Where θj is a treshold value and pj is a polarity indicating the direction of the
inequality sign (e.g −1 or 1). The classifier hj is equal to 1 if a region of interest
(x) is similar to Haar-feature j, and 0 otherwise. It should be emphasized that it
is the operator fj that decides which areas of x that should be treated as a black
rectangle, and which areas of x that should be treated as a white rectangle. In
other words, this is irrespective of the actual gray level value of a pixel in the image
i(x, y). How to use weak classifiers in order to make a strong classifier, i.e a clas-
sifier with strong correlation to the true classification, and how to set reasonable
tresholds θj will be reviewed in section 2.2.2.

1The term weak classifier refers to the fact that this is a classifier that only works slighly
better than random guessing [34]

2.1. Feature Representations 8

Figure 2.2: A list of different haar-features (image source: [27])

Now, a classifier utilizing Haar-like features may have to search a region for many
different Haar-like features before it can conclude anything. This implies that the
classifier will have to calculate the sum of pixel gray level values on possibly thou-
sands of rectangles in every image for which object detection is wanted. Hence,
a good way to calculate these sums is important for the speed and efficiency of
Haar-like feature classification. This is achieved by calculating the integral image.
The integral image of an image i is defined as follows [31]

I(x, y) = ∑
x′≤x,y′≤y

i(x′, y′) (2.3)

In short, letting 0,0 represent the top left corner of an image, this means that the
integral image at location x, y contains the sum of the pixel gray level values above
and left of x, y (inclusive) in the original image. This is illustrated in figure 2.3.
Now, the reason for doing this is that it allows a computer to sum the pixel gray level
values over a rectangle very efficiently. This can be seen from the following example.
A rectangle consists of four corners described by four sets of x, y coordinates. If we
let xTL, yTL represent the top left corner, xTR, yTR the top right corner, xBL, yBL

the bottom left corner and finally xBR, yBR the bottom right corner, the sum of
the pixel gray level values in this specific rectangle can be expressed in terms of
the integral image as

∑
rectangle

(pixel gray level) = I(xBR, yBR) − I(xTR, yTR)
− I(xBL, yBL) + I(xTL, yTL) (2.4)

9 Chapter 2. Object Detection and Recognition

Figure 2.3: (a) shows how an image i is related to its integral image I. I(x, y) is
equal to the sum of the gray level values for all pixels in the gray rectangle. (b)
shows the correlation between the corners of a rectangle in the original image i and
the same points in the integral image I.

This is easily illustrated. Letting the above mentioned x, y corner coordinates repre-
sent the corners of rectangle D in figure 2.3, it is readily seen that I(xTL, yTL) = A,
I(xTR, yTR) = A +B, I(xBL, yBL) = A + C and I(xBR, yBR) = A +B + C +D. It
should then be clear that inserting these equations into 2.4 yields the following

∑
rectangle

(pixel gray level) = A +B +C +D − (A +B) − (A +C) +A = D

This simple way of calculating the sum of a rectangle’s pixel gray level values is
one of the key advantages of Haar-like features over other feature representations.
Exactly how Haar-features are used to create a good classifier is covered in section
2.2.2

2.1.2 Histogram of Oriented Gradients

The histogram of oriented gradients (hereafter denoted HOG) is a feature repre-
sentation that can be used for robust object detection. This technique is based on
the principle of counting occurrences of gradient orientations in subregions of an
image [14]. That is to say, the HOG representation exploits the fact that objects
within an image can be described by the vector field of gradients that they induce
on the image. Mathematically, this is done by subdividing the image up into small
connected regions (called cells), and then for each such cell computing a histogram

2.1. Feature Representations 10

Figure 2.4: (a) shows a gray scale image captured from a thermal imaging camera
and (b) shows the gradients in the horizontal direction. (c) is showing the gradients
in the vertical direction and (d) is a merged version showing gradients in both the
horizontal and the vertical direction.

of gradient directions (edge orientations) for the pixels within the cell. The com-
bination of all histograms over all the cells represents the HOG descriptor.

To calculate a HOG descriptor in an image, the first operation we have to per-
form is to compute the magnitude and direction of the gradients of the image we
want to analyze [14]. This can be achieved by calculating the gradients decom-
posed in the horizontal and the vertical direction. After computing this, finding
the magnitude and direction of the gradients is just a matter of simple vector cal-
culus. Now, in order to find gradients in the horizontal and vertical direction in
an image, I, we can convolve/filter (see appendix A for details) the image with the
simple 1-D masks [−1,0,1] and [−1,0,1]T , i.e

Igradx = I ⋆ [−1,0,1] Igrady = I ⋆ [−1,0,1]T (2.5)

The result of doing this can be seen in figure 2.4(b) and (c). Once the decomposed
gradients are found, the magnitude (G(x, y)) and direction (θ(x, y)) of a gradient
at pixel x, y is easily calculated by the application of the following formulas [14]

G(x, y) = √
I2gradx

(x, y) + I2grady
(x, y)

θ(x, y) = arctan(Igrady(x, y)
Igradx(x, y))

(2.6)

11 Chapter 2. Object Detection and Recognition

Figure 2.5: Each cell consists of 8x8 pixels, and each block consists of 3x3 cells. A
histogram of oriented gradients is calculated for each cell in each block, based on
the gradient magnitude and orientation for every pixel in the cell.

Once the gradient image is found, the next step is the orientation binning. This con-
sists of iterating over all the pixels in a cell. Each pixel in the cell casts a weighted
vote (based on the magnitude of the gradient at this pixel) for an orientation-based
histogram channel (based on the gradients orientation at the particular pixel). The
orientation-based histogram is divided into 9 bins evenly spaced over 0○−180○ (”un-
signed” gradient direction). A small example of how this works is illustrated in
figure 2.5

After finding the local histograms for each cell, there is one final step still re-
maining, which is to account for changes in illumination and contrast. This is done
by locally normalizing the gradient strengths by grouping cells together into larger
connected blocks. The cell histograms are then normalized with respect to their
corresponding block. An important thing to note, is that for the best performance,
tests indicate that these blocks should overlap [14]. This means that each cell con-
tributes more than once to the final descriptor, with the only difference being which
block it is normalized with respect to. The total HOG descriptor is represented
as the vector of normalized cell histograms from every block. An illustration of a
HOG descriptor for an image can be seen in figure 2.6. As a side note, the cells

2.1. Feature Representations 12

Figure 2.6: The figure shows a visualization of the HOG descriptor for an image.
Each cell has a histogram of oriented gradients, visualized by showing all possible
gradient orientations and scaling them appropriately, i.e the dominant gradient
orientations has a larger magnitude than the less dominant orientations.

and the blocks can be represented by different shapes. Both rectangular (R-HOG)
and circular (C-HOG) [14] shapes can be used, and which works best depends on
the application. In this thesis the implemented HOG algorithm uses rectangular
cells, i.e is a R-HOG implementation.

Calculating a histogram of oriented gradients for each cell in every block, in every
region that is to be searched can be very time consuming. To simplify this cal-
culation, a similar trick to that of integral images in section 2.1.1 can be applied.
The integral histogram representation is based on the same simple idea. Let us
consider a histogram h(x, y, b) where b is the channel/orientation, i.e h(x, y, b) is
the weighted contribution of pixel x, y to histogram channel/orientation b. Then
the integral histogram representation for channel b can be described as

H(x, y, b) = ∑
x′≤x,y′≤y

h(x′, y′, b) (2.7)

13 Chapter 2. Object Detection and Recognition

It is readily seen that the same procedure as for the integral images (figure 2.3) can
be applied to calculate the contribution of a rectangle to the histogram for channel
b. Now, calculating H(x, y, b) for all the histogram channels, the total histogram
of oriented gradients for a rectangle can be found by looking up the contribution
of the same rectangle to all the channels/orientations.

2.2 Classifiers

The task of a classifier is to determine the most likely class of an object/a subre-
gion of an image. The classification is based on already known instances of each
class referred to as the training set [46]. i.e a classifier is trained a priori to the
actual classification. Now, classification, as previously mentioned, may correspond
to checking whether an object/subregion of an image is a chair or not (two-class
classification). It can also be more complex, e.g multi-class classification refers to
the case where a classifier is used to determined not only if an object is present, but
also distinguishing between different types of objects. In this thesis the focus is on
creating classifiers for two-class classification. This implies that the training sets
consists of only two classes, i.e example images where the object we want to detect
is present (positive examples or positives for short) and example images where the
designated object is not present (negative examples or negatives for short).

The first step to create a classifier is to use a feature representation in order to de-
scribe the training set. Once this is done, there are two ways to proceed. One can
either apply supervised training, which corresponds to the case where the class of
each instance in the training set is made available to the classifier when it is trained.
Alternatively, one can use unsupervised training, which, as the name implies, is the
case where the class of the instances in the training set is not given to the classifier
during training. Techniques using supervised training has proven to result in fast
and accurate classifiers, but later research has shown that unsupervised training
can be used in conjunction with supervised training to get enhanced detection re-
sults [30]. This, however, is out of the scope of the present thesis. Now, once a
classifier is trained on a training set, it can be used to classify objects of interest
found in an image. The following section gives a review of two classifiers and takes
a brief look at how they can be trained/created for two-class classification using
supervised training.

2.2. Classifiers 14

2.2.1 Support Vector Machine

In short, a Support Vector Machine (SVM) is a machine learning algorithm that
takes labeled training data (positives and negatives) as input. It then proceeds to
cluster the data into two classes by finding the maximum marginal hyperplane that
separates one class from the other [9]. The margin of the hyperplane is defined as
the distance (in feature space) from the hyperplane to the nearest training data
point, and the data points that lie on this boundary are referred to as support
vectors (hence the name). Now, the hyperplane that maximizes the margin, while
still separating the positives from the negatives, is said to be the optimal hyper-
plane [23]. An optimal hyperplane in a 2-dimensional feature space can be seen in
figure 2.7.

To compute the optimal hyperplane the following definition of a hyperplane is
introduced

f(x) = β0 +βTx (2.8)

where β0 is the bias vector, β is a weight vector and x is a vector in the feature
space. Notice that the optimal hyperplane can actually be represented in an infinite
number of ways. Mathematically this can be done by scaling β and β0, hence a
representation has to be chosen. The one chosen is [23]

∣β0 +βT ν ∣ = 1 (2.9)

Where ν are the training examples closest to the hyperplane in feature space (the
support vectors). Equation 2.9 is known as the canonical hyperplane [23].

Now, it can be shown [23] that the distance d from a point ν to the hyperplane
f(ν) can be expressed as

d = ∣β0 +βT ν ∣∥β∥ (2.10)

Furthermore, combining equations 2.9 and 2.10 we can express d in the following
way

d = 1∥β∥ (2.11)

and from figure 2.7 it can be seen that the total margin M in this case will be equal
to

M = 2d = 2∥β∥

15 Chapter 2. Object Detection and Recognition

Figure 2.7: A figure showing the separating hyperplane and its relation to other
class instances in a two dimensional feature space. It is seen that both margins are
equal, hence the hyperplane is placed halfway between the two closest instances of
the two classes.

2.2. Classifiers 16

Finally, remembering that the goal of the SVM algorithm is to maximize the margin
(M), it is readily seen that this can be expressed as the following optimization
problem

min
β,β0

L(β) = 1

2
∥β∥2

subject to

yi(βT νi +β0) ≥ 1 ∀i
(2.12)

Where yi ∈ {−1,1} indicates what class the point ν belongs to (hence also which side
of the hyperplane the data point lies in). This minimization problem can be under-
stood as minimizing ∥β∥ (hence, maximizing M), while maintaining the canonical
hyperplane (the restrictions). Equations 2.12 represent a quadratic programming
problem [23], and is a well known optimization problem within optimization theory.

Now, in the cases where there is no solution to this problem (e.g in the case of
mislabeled examples), some slack can be imposed on the restrictions. Further-
more, if there is no linear hyperplane that can solve this problem, a kernel trick
can be used on the training data. The kernel trick, first proposed by Aizerman et
al. [4], transforms the training data to a higher dimensional space which is likely to
be linearly separable. The above mentioned optimization problem is then solved in
this higher dimensional space, before the inverse of the kernel is applied to find the
solution in the original feature space. This is explained in figure 2.8. The reader
is referred to [23] for a more in-depth-look on the support vector machine and the
non linear case. It should be noted that the weights of β satisfying equation 2.12
will represent a linear combination of the support vectors.

Since the SVM classifiers discriminate between data in feature space, the suc-
cess of such a classifier is very dependent on the feature representation of the test
set. It should be rich (large number of dimensions), and in addition cluster similar
data. In such regard, the HOG representation covered in section 2.1.2 has proven
useful [38] [14]. Classification with a SVM classifier can be done by computing
the feature descriptor of a region of interest, and then take the distance from this
point to the hyperplane given by the SVM classifier. Depending on the value of
this distance (negative or positive), the region of interest can be said to belong to
a specific class.

The Haar-features are represented with only a scalar value (1 dimension), hence it
is not very useful for creating a SVM classifier. For Haar-features to be effective a
different approach is preferred.

17 Chapter 2. Object Detection and Recognition

Figure 2.8: Illustration of how applying a kernel T (●) to the training set can
transform a nonlinear optimization problem to a linear one. The red squares and
the blue circles are the positive and negative training examples, respectively. The
green line is the hyperplane separating the two classes from each other.

2.2.2 Boosted Cascade Classifier

A cascade classifier consist of several simpler classifiers, which subsequently are
applied to a region of interest. That is, each classifier is applied subsequently until
a candidate region of interest is either rejected or it passes through all the classi-
fiers [41]. Once a region of interest passes a classifier, it is said that it has passed a
stage. This concept is illustrated in figure 2.9. Now, the word boosted refers to the
fact that each classifier (stage) is complex in the way that it is constructed. To be
more specific, this means that a weighted voting technique (boosting technique) is
used to create the classifier at a given stage n. There exists several boosting tech-
niques, but the one used in this thesis is an algorithm called AdaBoost (Adaptive
Boost) proposed by [41]. AdaBoost is a boosting technique that, at each stage n,
seeks to find the most critical features to evaluate in a region of interest. These
features are the most critical ones in the sense that they are, combined, the most
effective features with regard to classifying a region as non-object/object. It should
be emphasized that the performance of a boosted cascade classifier is greatly influ-
enced by its ability to reject regions of interest which do not contain an instance of
the object we are looking for at an early stage. This will greatly reduce the total
computation power required for object detection, as each stage of the classifier is
fairly simple and does not require much computation. Hence, a good boosted cas-
cade classifier should find the features that are most characteristic for the object we
are searching for, and let these features make up the earlier stages of the cascade

2.2. Classifiers 18

Figure 2.9: A region of interest must pass through all stages (in this case 4) to be
accepted, i.e classified as an instance of the type of object the classifier is trained
to recognize. If any of the 4 stages reject the region of interest, further processing
is dropped. ROI = Region of Interest

classifier.

To create a boosted cascade classifier the first thing that has to be done is to
find a suitable type of weak classifiers that can be used to make up a classifier at
each stage n. A weak classifier is here defined to be a classifier which is restricted
to using only a single feature [41], and an example of such a classifier is hj(x) as
described in section 2.1.1. Using the AdaBoost algorithm to construct a boosted
classifier consisting of T features was derived by Viola and Jones in [41], and is
summarized as follows:

• Find example images (x1, y1),...,(xn, yn) where yi = 0,1 for negative and
positive examples respectively

• Initialize weights w1,i = 1
2m

, 2
2l

for yi = 0,1 respectively, where m and l are
the numbers of negatives and positives respectively.

• For t = 1,...,T

1. Normalize the weights,

wt,i ← wt,i∑
j=1

wt,j

so that wt is a probability distribution

2. For each feature, j, train a classifier hj which is restricted to using a

19 Chapter 2. Object Detection and Recognition

single feature. The error is evaluated with respect to wt, i.e

εj = n∑
i

wi∣hj(xi) − yi∣
3. Choose the classifier, ht, with the lowest error εt

4. Update the weights:
wt+1,i = wt,iβ

1−ei
t

where ei = 0 if example xi is classified correctly, ei = 1 otherwise, and
βt = εt

1−εt

• The final strong classifier is:

h(x) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if

T∑
t=1

αtht(x) ≥ 1
2

T∑
t=1

αt

0 otherwise
(2.13)

where αt = log 1
βt
.

An intuitive explanation of the AdaBoost algorithm is seen in figure 2.10. The main
observation is that the AdaBoost algorithm systematically selects the features that
are best suited for classification (point 2 and 3). Another important aspect of this
algorithm is the procedure which is applied in step 4. In this step, the weight on
the wrongly classified examples (either false positive or false negative) is increased,
making these examples more important than the other already correctly classified
objects. By doing so, the weak classifier that the AdaBoost algorithm selects next,
will be the one that is able to correctly classify those object that the previously
weak classifiers did not classify properly. The main idea is that the cascade of weak
classifiers will form a strong classifier by supplementing each other, i.e where one
classifier fails, others will succeed. The strong classifier h(x) is referred to as a
boosted classifier. It should be noted that the requirement for this strong classifier
to classify a region of interest as a positive example of an object, is that at least
a weighted half of the weak classifiers find their corresponding feature within the
region of interest. It is a weighted half because the weak classifiers with low error
rate count more towards the final decision.

Now, a boosted cascade classifier can be created by combining several boosted
classifiers. This is done by training each stage of the cascade classifier with the
AdaBoost algorithm. An acceptable false positive rate, and an acceptable target
detection rate is set for both each stage n and the cascade classifier in total. Now,

2.2. Classifiers 20

Figure 2.10: Visualization of the AdaBoost algorithm. Each block corresponds to
an example in the training data. Blocks with + represent positives, and blocks with− represents negatives. In (a), a classifier is shown represented with a green line. It
separates the training data into a positive and a negative side (marked by a big +
and −) . The false negatives and the false positives are marked with a yellow circle.
(b) shows the next step, where the weight (represented by the height of the block)
on the wrongly classified examples has increased. (c) shows how two classifiers can
be used to correctly classify all examples in the training set.

each stage is trained by adding features until the target detection and false pos-
itives rates are met for that specific stage. Furthermore, stages are added until
the overall target for false positive and detection rate is met. In this regard, the
boosted cascade classifier is very easy to create with good control of the tradeoff
between computational cost and accuracy during detection. As previously men-
tioned it is preferred that the first stages of the cascade classifier consists of few,
but effective, weak classifiers.

A boosted cascade classifier using Haar features to create the weak classifiers has
proven to be a very powerful combination, and is known to be a very fast and
reliable way to perform object detection [43] [20].

Chapter 3

Object Tracking

Object tracking in computer vision can be defined as the problem of estimating the
trajectory of an object in the image plane (2 dimensional) as it moves around a 3
dimensional scene [45]. This is done by creating a tracker that assigns consistent
labels to tracked objects in every frame of a video. There exists many solutions to
this problem, but there are also many factors that makes the tracking of objects
a very challenging task. For example complex object motions, partial and/or full
object occlusions and real-time processing requirements are all factors that will
impact which tracking algorithm that is suited for an application. Furthermore,
tracking different objects will often need different tracking algorithms to achieve
proper tracking. For example, in an UAV, tracking moving cars is different from
tracking humans. A common approach to track fast moving objects from UAVs
(like moving cars) is a differential motion analysis [7, 37]. This is an approach
where the egomotion of the UAV is estimated, so that subsequent frames in a
video sequence can be subtracted from each other. This will result in that only the
moving objects in the image will remain in the final result, hence they become easy
to detect. However, it should be obvious that the same approach can not be used
to detect and track humans from an UAV, as the movement (if any) of humans
seen from a high altitude often will appear stationary between subsequent frames.

In the present thesis, a tracking algorithm that is able to detect and track both
stationary and moving objects is preferable. Furthermore, it should be able to
track multiple objects, while keeping the computational cost of the tracker algo-

21

3.1. Estimation 22

Figure 3.1: The tracking cycle for an estimate-and-measure tracker. The estimation
update predicts the position of an object ahead in time. The measurement update
corrects this prediction based on the measurement of the actual position of the
object.

rithm sufficiently small. This is because the tracking algorithm should be able to
run on the on-board UAV hardware in real-time. Considering the limited computa-
tional power available, it should stand to reason that the performance of the tracker
may have to suffer in favor of simple computation, at least compared to current
state-of-the-art trackers. One type of tracking algorithms that are known to ful-
fill many of these criteria are the ones that are based on an estimate-and-measure
approach [45]. This means that the tracking algorithm estimates the position of
an object into the future using measurements available in the present. This step is
referred to as the prediction step. Furthermore, the estimate is updated/corrected
by doing measurements of the position of the object, which is referred to as the
correction step. This cycle is illustrated in figure 3.1. The following chapter is a
review of the tracking problem based on the estimate-and-measure approach, with
the goal of arriving at a multi object tracker for application in on-board hardware
in UAVs.

23 Chapter 3. Object Tracking

3.1 Estimation

In object tracking, estimation is the concept of attempting to predict the location
of objects at time step t + 1 using available measurements at the time step t and
some stochastic model of the movement of the object. The first step in order to
arrive at such an estimator is to determine the probability distribution of the mea-
sured data. In the case of object tracking, this is done by creating a motion model
for the tracked objects. Next, an estimator known to estimate said motion model
efficiently can be developed (or applied), which in turn will allow the estimator to
estimate future positions of the tracked objects.

This section will begin with a review of a common motion model for object tracking
in computer vision. Following that, an estimator that is known to estimate this
motion model efficiently is introduced, before the section ends with a look at how
measurements can be used to update the parameters of the estimator.

3.1.1 Motion Model

To track objects using an estimate and measure-approach, a motion model for the
objects we want to track is needed. A motion model can be derived by assuming
that the projections of the objects on the image plane will move in a certain way.
The first step to find such a model is to realize that when an object moves around
in the real world, on the image plane this will be projected as an two dimensional
displacement. This is illustrated in figure 3.2. Now, assuming that the motion of
the object is fairly smooth (no abrupt changes), motion of an object on the image
plane can be modeled as a two dimensional linear motion. Accounting for small
variations in the velocity, a discrete time linear motion model might be described
by the following equations [13]:

xk+1 = xk +ΔTvx +wk

yk+1 = yk +ΔTvy + zk
(3.1)

where xk, yk is the position of the object in the image at time step k, and vx, vy is
its velocity. ΔT is the time between each time step (i.e t(k + 1) − t(k) = ΔT) and
wk and zk are gaussian white noise variables accounting for small changes in the
velocity. Let us also assume that we want to measure the location of the object in
the image plane at time step k, and that the measurement sometimes may be a bit

3.1. Estimation 24

inaccurate. This can be described in the following way

y1k = xk + vk

y2k = yk + qk
(3.2)

Here, y1k refers to the measurement of xk, and y2k the measurement of yk. vk and
qk is also here assumed to be gaussian white noise, now describing the measurement
inaccuracy. Setting ΔT = 1 (without loss of generality), equations 3.1 and 3.2 can
be written in the following compact state space form [13]

xk+1 =Axk +Buk +wk

yk =Cxk + vk

(3.3)

Where we have that

• A, B and C are matrices

• k is the time index

• xk is the state vector at time step k

• uk is the input to the system at time step k

• yk is the measurement at time k

• wk and vk are the white noise vectors at time step k, where w is the process
noise and v is the measurement noise

For the two dimensional motion described in equation 3.1, the state vector xk, the
measurement yk and the input to the system uk are equal to

xk =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

xk

yk
vx
vy

⎤⎥⎥⎥⎥⎥⎥⎥⎦
uk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
yk = [y1k

y2k
] (3.4)

Furthermore, the matrices A,B and C are equal to

A =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
C = [1 0 0 0

0 1 0 0
] (3.5)

25 Chapter 3. Object Tracking

Figure 3.2: This figure shows how an object moving in a complex way can appear
to move linearly on the image plane, i.e through the eyes of a camera.

where x, y is the object location in the image, and vx, vy is the velocity of the object
in the x and y direction respectively.

Now, when tracking is performed from a moving UAV, this will also have an affect
on the frame to frame displacement of the tracked objects. Let us, for the simplic-
ity, assume that the UAV has constant velocity and constant attitude. Let us also
assume that the UAV will not make any abrupt turns. In this case, movement of
the UAV will affect the perceived motion of the tracked objects simply by an offset
in the velocity of the objects. This implies that the two dimensional linear motion
model still can be effective in the process of tracking objects.

Even though these assumptions are simplifying the problem, the most important
characteristic of a motion model is that it should be accurate enough. This is a
rather vague criteria, but it refers to the fact that the motion model can be sim-
plified, if we compensate for this by making observations. This is the step where
the estimator is very powerful. Finally, it should be noted that due to the limited
computer power available in-flight, a simple motion model is preferred.

3.1. Estimation 26

3.1.2 The Kalman Filter

Now that we have acquired a motion model, the next step is to develop or apply an
estimator that is known to estimate such linear motion models accurately. In this
regard, the Kalman filter is a very common and effective estimator for predicting
the state of a linear motion model. That is, in many cases the actual states xk

are unavailable/unknown, and the Kalman filter can be used to predict the states
xk based on measurements of the type yk. The Kalman filter can also be used to
predict xk+1 (prediction into the future) based on all previous measurements up to
and including yk.

It could be tempting to use the measurements yk directly to estimate the state
of the system. However, because the measurements are corrupted by the noise
vk, this is not an efficient approach. Hence, the Kalman filter does not only use
the measurement yk, but also uses the information that is contained in the state
equation. More precisely, the Kalman filter is a set of equations that provides a
recursive solution to the following least-squares problem [24]

min
x̂k∣k

E[∣xk − x̂k∣k∣2] (3.6)

where x̂k∣k is the estimate of the state xk given measurement up to and including
time step k. This is also referred to as the a posteriori1 state estimate. The reader
is referred to [24] for a detailed derivation of the Kalman filter, but it should be
noted that it is constructed in such a way that each measurement casts a weighted
vote towards the estimation of the linear model (equation 3.3). That is, the cer-
tainty of a measurement is taken into account when the Kalman filter is updated.
If a measurement is likely to be an anomaly or a very noisy measurement, the
Kalman filter weights this measurement lower than a measurement that fits the
motion model better.

Now, solving equation 3.6 yields the following set of recursive equations [24].

Kk =PkC
T (CPkC

T +R)−1
x̂k+1 =(Ax̂k +Buk) +Kk(yk −Cx̂k)
Pk+1 =A(I −KkC)PkA

T +Q

(3.7)

• x̂k is the estimate of xk

1A posteriori is Latin for ”from the later”, and refers to the fact that x̂k∣k is an estimate of
the states done after measuring the system output yk at time step k

27 Chapter 3. Object Tracking

• Kk is a matrix called the Kalman gain

• Pk is a matrix called the estimation error covariance, and is defined as

Pk = E([xk − x̂k][xk − x̂k]T)
• Q is the covariance matrix of the process noise wk, and R is the covariance
matrix of the measurement noise vk. We have

Q = cov(wk,wj) R = cov(vk,vj)
• A, B, C, uk and yk are as defined in equation 3.3

• The −1 superscript indicates matrix inversion

• The T superscript indicates matrix transposition

• I is the identity matrix

Another representation of the Kalman filter which is more useful in implementation
is a representation where the calculations are divided into one predicting and one
updating phase. This is more in line with the estimate-and-measure approach to
tracking, and make the Kalman filter easy to manage. The predict phase produces
a state estimate that is referred to as the a priori2 state estimate. Mathematically,
it is denoted x̂k∣k−1 as it is an estimate of the state vector based only on previous
measurements. In the update phase, we have that the a priori prediction is com-
bined with the new measurement information to correct the state estimates from
the predict phase. Equation wise, the predict phase can be represented by [24]

x̂k∣k−1 = Ax̂k−1∣k−1 +Buk−1

Pk∣k−1 = APk−1∣k−1A
T +Qk

(3.8)

and for the update phase, the equations are

Kk = Pk∣k−1C
T (CPk∣k−1C

T +R)−1
x̂k∣k = x̂k∣k−1 +Kk(yk −Cx̂k∣k−1)
Pk∣k = (I −KkC)Pk∣k−1

(3.9)

Note that equations 3.8 and 3.9 combined are equal to equation 3.6.

2A priori is Latin for ”from earlier”, and refers in this case to the fact that the Kalman filter
tries to estimate the state vector using only previously measured data (yk is not yet available).

3.1. Estimation 28

Figure 3.3: The position and velocity of the object at time k + 1 is predicted (the
smallest circle) using measurements available at time k. Then, an observation is
made at yk+1 (the pentagon), and the prediction is corrected using this information
(x̂k+1∣k+1). Note how the estimation error covariance matrix P increases at the
prediction, and then decreases when new measurements are available.

29 Chapter 3. Object Tracking

3.1.3 Tracking With the Kalman Filter

After having established how general estimate-and-measure trackers work, and also
having found an estimator that can be used in such algorithms, the big question
still remains. How can such estimators be used to track objects? The tracking
method can be summarized in the following steps [5]:

1. Find object
Before tracking of the object can begin, the image location of the object has to
be found. This can be done by applying an object recognition algorithm (e.g
one of the techniques reviewed in chapter 2) on the whole image. Furthermore,
the estimation error covariance is initially set high, as the state estimate of
the motion model is still uncertain. The initial state estimate is based on the
observed position of the object. In summary

x̂0∣0 =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

x
y
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
P0∣0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Where (x, y) is the observed position of the object.

2. Estimate
In this step, the estimator (e.g Kalman filter) is used to predict the image
position of the object. This position is then used as the search center for the
object. Note that the estimate used is the a priori x̂k∣k−1.

3. Measure
After locating the object within the search area estimated in step 2, the
measured location of the object is used to correct the state estimation, i.e
calculating x̂k∣k. After this is done, steps 2 and 3 are repeated on the next
image frame.

Steps 2 and 3 are illustrated in figure 3.4.

Now, when this approach is used to track objects, there are some considerations
that have to be made. Specifically, care has to be taken with regard to the following
points

3.1. Estimation 30

Figure 3.4: An illustration of how the Kalman filter is used to predict the location
of an object in each frame, and how the search for said object can be limited to a
subregion of the image frame.

31 Chapter 3. Object Tracking

Scaling of the predicted region
To be certain that the tracked object will be located within the predicted
region, the predicted region should be scaled both according to the size of
the object, and the certainty of the prediction. A measure of the certainty
of the estimate in the Kalman filter is the estimation error covariance matrix
Pk. Hence, scaling the predicted region based on Pk may be a good idea.
The region should also be scaled at some percentage of the size of the object,
and not some constant value.

No measurement available
In some image frames the detection algorithm may not be able to localize
the object. This can for example be the result of the fact that the object is
partly or fully occluded. A reasonable way to solve this problem is to use the
predicted location of the object as the measurement, i.e the Kalman filter
supplies itself with a measurement. A criterion for this to work properly is
that the estimated motion model should be accurate.

Choice of the Q and R matrices
The choice for the noise covariance matrices Q and R will greatly impact
the tracking abilities of the estimator. There has been some research on the
subject of choosing Q and R based on empirical data, but good performance
can also be achieved by trying different variations.

The Kalman filter can also be used to track multiple objects, simply by creating a
new instance of a Kalman filter for each new object that is observed. New objects
can be located by searching the whole image frame from time to time. A new
Kalman filter is then created for objects that do not have a high correlation with
the position of an object that is already being tracked. How this is done in practice
will be described in section 3.2.2.

3.2 Measurements

As already mentioned, the problem of object tracking can be defined as that of esti-
mating the movement of an object in the image plane. As described in the previous
section, some tracking algorithms seek to achieve this by creating a motion model
for the tracked objects. Now, estimating the states of such motion models relies
on measurements, which in turn raises the question of what type of measurements,

3.2. Measurements 32

and of what form these measurements should be. There are as many answers to
these questions as there are trackers, and there is no definite best answer [45]. In
other words, different trackers will require different types of measurements. How-
ever, the best measurement for a given tracker algorithm, is the measurement that
most effectively supply the tracker with information that can be used to correct
or enhance the estimated object motion. Furthermore, the frequency and quality
of the measurements has to be decided. In many real-time tracking applications
a good balance between quantity and quality is very important. That is, over a
given time period it may be better to have two inaccurate measurements, than to
have one really accurate one.

The following section features a review of techniques that can be applied to an
image to find accurate measurements in an efficient way, followed by a simple ap-
proach to match measurements to the correct Kalman filter in the case of multiple
object tracking.

3.2.1 Finding Measurements

Finding measurements can be a very time consuming task, especially if it is not
done efficiently. The easiest, but also the most computational heavy approach,
is simply to search the whole image for the tracked object. However, this is an
approach that can take up to seconds even on powerful desktop computers. Hence,
with the computational power available on an UAV, it may be preferred to apply
filtration methods that narrows the search to a few, but important, regions in the
image. A method to locate regions of interest is listed below.

Normalization

Even though some object detectors are invariant to changes in lighting and inten-
sity, it is favorable to find some sort of common ground that every frame in a video
sequence can be evaluated from. This can, to some degree, be obtained by normal-
izing each frame in a consistent way. Assuming i(x, y, t) is the image captured at
time t, the following equation can be applied to normalize i(x, y, t)

i′(x, y, t) = i(x, y, t) × γ

ī(t) (3.10)

33 Chapter 3. Object Tracking

where i′(x, y, t) is the normalized image, ī(t) is the mean intensity value of the
image i and γ is a scaling factor [11]. Note that when ī(t) = γ, we have that
i′(x, y, t) = i(x, y, t). The normalization is done such that every image will have
similar intensity values, which is a good feature to have in the search for relative
light and dark regions.

Segmentation by Thresholding

As mentioned, searching the whole image in every frame is an inefficient solution
to the tracking problem, hence we want to divide the image into different regions.
Preferably, the image should be divided into interesting and non-interesting regions.
This process is called image segmentation. Segmentation can be achieved in many
ways, but an effective technique on gray scale images is referred to as thresholding.
Thresholding can be used to identify regions that are either lighter or darker than
its environment. This is done in the following way [39]

i(x, y) = { maxV alue if i(x, y) > θT
0 otherwise

(3.11)

where θT is a threshold value between [minV alue,maxV alue], which is the min-
imum and the maximum value of the image i(x, y). The process of thresholding
is often referred to as binarizing [11] the image, because after the thresholding is
done, the image can be represented using only two values (0 and maxV alue). The
result of normalizing and thresholding an image can be seen in figure 3.5.

In some situations, the intensity value of the regions we are interested in locat-
ing is somewhere in between two different intensity values. In this case, two-tailed
thresholding can be used. This is formally defined as

i(x, y) = { maxV alue if θT1 ≤ i(x, y) ≤ θT2

0 otherwise
(3.12)

Now, after applying thresholding to an image, it will contain a number of connected
regions called blobs. This image can be processed further to remove blobs that do
not have a shape similar to the tracked object.

3.2. Measurements 34

Figure 3.5: (a) is the original image. (b) shows a normalized version, which has re-
sulted in a (slightly) larger contrast. (c) is the thresholded image with thresholding
value (θT) at 150 (max is 255).

Erosion and Dilatation

After applying the thresholding technique on an image, several non-interesting re-
gions may still be a part of the image. This can happen if either some parts of
the background or other objects than the one being tracked, has similar intensity
values as the tracked object. Then, to favor objects of one certain shape, mor-
phological operations can be applied. Morphological operations are operations that
process images based on shapes. This is done by applying a structuring element to
an image, generating a new image that is sensitive to the shape of the structuring
element. There are two types of basic morphological operations, i.e erosion and
dilatation [39].

Dilation is an operation where the output pixel is the maximum value of all the pix-
els in the neighborhood of the input pixel, effectively adding pixels to the boundary
of a blob. Exactly what neighborhood this is, is defined by the structuring element.
Erosion is the opposite, i.e the output pixel is the minimum value of all the pix-
els in the neighborhood of the input pixel, effectively removing pixels from the
boundary of a blob. Now, erosion and dilatation become especially powerful when
they are applied in a specific order. Specifically, erosion followed by dilatation is
referred to as closing, and dilatation followed by erosion is referred to as opening.
Opening will remove small blobs present in the thresholded image, while a closing
will close the gaps between blobs that lie next to each other. It is the opening
operation that can be used to find specific shapes in an image, i.e removing blobs
that do not have a similar shape to that of the structuring element. The result of
applying a morphological opening with a structuring element formed as a rectangle

35 Chapter 3. Object Tracking

Figure 3.6: (a) is the original thresholded image, and (b) is the image after a
morphological opening with a structuring element formed as a vertical rectangle
(20x5 pixels).

on a thresholded image is shown in figure 3.6.

Extracting Regions of Interest

By applying a combination of the above mentioned techniques, it is possible to iso-
late promising features in an image. The regions in the image where these features
are located are referred to as regions of interest. Now, these are the regions that we
want to extract from the original image and examine more closely. A common way
to do this is to use connected-component labeling on the thresholded image [39].
The result of a connected-components algorithm is that each blob (collection of
bright pixels) in a segmented image is appointed its own unique label. There exists
different connected-components algorithms, and they differ mainly in which pixels
are considered to be neighboring pixels. 4-connectedness and 8-connectedness are
the most commonly used algorithms. In 4-connectedness, a pixel is only part of a
blob if it has a bright neighboring pixel for at least one of four locations (north,
west, south and east). In 8-connectedness the only requirement for a pixel to be
part of a blob is that any of its 8 neighbor pixels should also be bright. The result of
applying 8-connectedness based connected-component labeling can be seen in figure
3.7.

Now, the area of each connected component can then be calculated, which in turn
allows for the filtration of either too small or too big blobs. This is an effective
way to isolate the features that have a size similar to that of the tracked object.

3.2. Measurements 36

Figure 3.7: The result of applying connected-components labeling is that each blob
is appointed its own unique label. In this case, there are 4 blobs present.

Finally, the features that are still present in the image represent regions of interest.
The position of the center of these features can then be used as a search center for
the tracked object in the original image. The size of the region around the search
center that is extracted from the original image is scaled by the size of the tracked
object.

Measurement Representation

As seen in section 3.1, estimate-and-measure trackers use measurements of the
position of the tracked object in order to do more accurate predictions. Now, the
object recognition algorithms in chapter 2 are only able to tell if a whole region is
similar to an object or not, i.e, given a region of interest it is either classified as
an object or not an object. In order to use this information to update the Kalman
filter, we need to represent the whole region containing the object using only a
single point. This can be done by assuming that the object will be the center of
the region of interest, hence the center of said region will be a good point estimate
of the position of the object. This point is then passed to the Kalman filter as a
measurement. An alternative method could be to calculate something called the
central moment of the object, and by doing so calculating the position of the center
of the object. However, because of the limited computational power available, the
simple solution (region center) is preferred.

37 Chapter 3. Object Tracking

3.2.2 Matching Measurements

The problem of matching the obtained measurements to the correct Kalman filter
is a problem of data association, and this is known to be a very hard and complex
problem. In fact, according to [18], data association may be the biggest source
of difficulties in computer vision applications in general. In the case of multiple
object tracking, an unknown number of tracked objects is something that compli-
cates the problem. This is because new objects can appear or disappear at any
time, anywhere. Furthermore, it has to be determined if a measurement is correct
or incorrect, and whether a new Kalman filter should be initialized or an existing
one should be updated.

In the present thesis, the requirement of low computational cost is weighted very
high. In this regard, the problem of data association can be solved by using a
nearest neighbor standard filter [36]. The nearest neighbor standard filter (hereby
denoted NNSF), is regarded as one of the most straight forward approaches to data
association. Given several possible measurements for the position of a target, the
correct measurement is assumed to be the measurement ”closest” to the predicted
position of the tracked target. Mathematically this can be defined as

y⋆(k) = min
y∈Y (k)

D(y) (3.13)

where y⋆(k) is the measurement that is assumed to be correct at time step k,
Y (k) contains all measurements available at time step k, and D(y) is the following
operator

D(y) = [y − ŷk∣k−1]TS(k)−1[y − ŷk∣k−1] (3.14)

in which ŷk∣k−1 is the a priori predicted measurement (i.e ŷk∣k−1 = Cx̂k∣k−1) and
S(k) is its associated covariance matrix. When NNSF is used in combination with
the Kalman filter, S(k) will be equal to CPk∣k−1C

T +R [36], where C,Pk∣k−1 and
R are defined as in equations 3.3 and 3.7. Notice that the matrix S(k) can be
regarded as a scaling matrix, effectively scaling the distance between the estimated
state and the measurement according to how certain the estimate is. If it is a
certain estimate, this indicates a small R and/or P (yielding a small S(k)), which
in turn results in a large S(k)−1, meaning that the distance D(y) is scaled to be
greater than it actually is. In the same way, the distance between a measurement
and an uncertain estimate is scaled to be shorter than it actually is, since such an
estimate indicates a large R and/or P .

Now, in the case of multiple object tracking, some considerations have to be made.

3.2. Measurements 38

Figure 3.8: In multiple object tracking, the nearest neighbor standard filter is prone
to error, as the order of matching measurements can affect the result. Assuming
that the green boxes are measurements, and that the red boxes are estimated po-
sitions of objects obtained by application of Kalman filters, it is seen how starting
with measurement 1 (hence matching it to object 1) leads to a non optimal match-
ing. Since measurement 1 is matched to object 1, the only object measurement 2
can be matched to is object 2. However, this does not equal to the optimal solu-
tion (which is measurement 1 matched to object 2, and measurement 2 matched
to object 1). The circles C1 and C2 are circles indicating the boundary where the
position measurements for each object are most likely to be found.

39 Chapter 3. Object Tracking

There are some problems with applying the same näıve approach as described in
equations 3.13 and 3.14 for several objects. Assume that Y (k) is all available mea-
surements, now originating from n different object sources, and that they should
be matched to m different Kalman filters. By simply assigning the measurement
closest to the predicted state for each Kalman filter (in a sequential order), the
total distance between the Kalman filters and the measurements may very well not
be the global minimum solution. This is illustrated in figure 3.8. To find the global
minimum solution in the case of multiple object tracking, a global nearest neigh-
bor (GNN) algorithm can be applied [25]. This is a more computationally heavy
approach, but is very similar to the NNSF algorithm. When the global minimum
distance is to be found, the following distance matrix A is calculated

A =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

D1,1 D1,2 ⋯ D1,m

D2,1 D2,2 ⋯ D2,m⋮ ⋮ ⋱ ⋮
Dn,1 Dn,2 ⋯ Dn,m

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.15)

where Di,j is the distance (equation 3.14) from measurement i to the predicted
measurement ŷk∣k−1 of Kalman filter j. If the distance Di,j exceeds some threshold
cj , Di,j is set to infinity. This is because in the case of

Di,j ≥ cj

the measurement i is not very likely to be a measurement of the position of the
tracked object j. Hence, if all values along a column j are equal to infinity, it is
assumed that a measurement for Kalman filter j is not present. To cope with this,
column j should be removed from A, and the predicted object position should be
used as the best available measurement for Kalman filter j. Furthermore, if all
values along a row i is equal to infinity, it is assumed that there exists no probable
Kalman filter for measurement i. In other words, this is most likely a measurement
originating from a new, unknown object. Hence, row i should be removed from the
matrix A, and a new Kalman filter should be initialized with measurement i as the
initial state.

After calculating A and removing unneeded rows and columns, the data associ-
ation problem is a matter of finding the combination of distances Di,j that yields
the global minimum distance. That is, the combination that assigns one mea-
surement to one Kalman filter, in a way such that the total distance between all
measurements and their assigned Kalman filters is the shortest achievable distance.
This is a well studied problem, and can be solved by applying an algorithm called
the Kuhn-Munkres algorithm. The details of this algorithm can be found in [47],

3.2. Measurements 40

but in short, it is an algorithm that solves the following optimization problem [25]

min(total distance) = min
N∑
i=1

N∑
j=1

Di,jχi,j

subject to

N∑
j=1

χi,j = 1 ∀i ∈ {1,N}
N∑
i=1

χi,j = 1 ∀j ∈ {1,N}

(3.16)

where Di,j is defined as before, χi,j = 1 if and only if measurement i is assigned to
Kalman filter j, and 0 otherwise. The restrictions are the requirement of one-to-one
mapping, i.e it limits one measurement to one Kalman filter, and one Kalman filter
to one measurement. After this optimization problem is solved, the global nearest
neighbor solution is found, and the Kalman filters can be updated thereafter.

Chapter 4

The System

Since object detection and tracking are going to be performed on-board the UAV,
and not in some external control center, a somewhat complex sensory payload is
needed for this task. Ideally, the payload should be able to perform the object
detection and tracking in real time, stream video to ground station, log data (such
as object locations) and send commands to the autopilot. Furthermore, since the
payload is located in an UAV, it is preferable if the electrical power requirement
is as low as possible. This is because high power requirement results in a large
battery, which in turn results in a high power required to keep the UAV in the air.
Now, while taking all of these requirements into consideration, the payload should
be able to feature the following modules

• Infrared camera module

• Video camera module

• Navigation module

• CPU module (with interface to the other modules)

• IP radio/communications module

• Battery module

41

4.1. Hardware 42

Furthermore, the payload should be as modularized as possible, making it an easy
task to change a single component without having to change anything else.

In the following chapter, several different components that can be used in the
payload are reviewed, followed by a short description of the software that was used
to realize the functionality of the payload, before the chapter ends with the descrip-
tion of two suggested setup configurations. One of these configurations is coined at
smaller UAVs, and should be used when the allowed all up weight (gross weight) is
small. The other configuration is more advanced and rich with respect to number
of features, but is for use in larger UAVs where the allowed weight of the payload
is higher.

4.1 Hardware

The general approach in the search for suitable hardware was to first make a broad
search of existing components. This was achieved mainly through extensive use of
the Internet, but dialogs with firms that specialize within the field of UAVs/robotics
were also initiated. After getting a rough overview of available components, a list
with requirements for each component was made. This in turn, narrowed down the
search to only a few viable candidate components. Following is a review of this
process and its outcome.

4.1.1 Single-Board Computer

A single-board computers (SBC for short), is a complete computer integrated on
a single circuit board. In other words, the central processing unit (CPU), the
memory (RAM), input-output (I/O) modules and other features are seamlessly
integrated into one small board. The SBCs are classified by the type of chip that
is used to integrate and connect all the different components, which is referred to
as the system on chip (SOC). Now, the high level of integration of the components
in SBCs allows for very compact, light weight and power efficient systems, mak-
ing them ideal for the use in UAVs. Alternatives such as the Mini-ITX platform
(17cm × 17cm motherboards) is usually more powerful than most SBCs, but the
power requirement of such systems is in the range of 30W − 60W compared to the
usual 5W − 10W requirement of a SBC. Furthermore, even though the weight of

43 Chapter 4. The System

Table 4.1: An overview of different ARM based SBCs

ARM SYSTEMS CPU Speed RAM Size Weight Power Requirement Price
CubieBoard 1GHz C-A8 1GB DDR3 10cm × 6cm 50g 5V/2A (10W) $50
Hackberry Board 1.2GHz C-A8 1GB DDR3 8.6cm × 5.4cm 51g 5V/0.4A (2W) $65
Nitrogen6X QC 1GHz C-A9 1GB DDR3 11.4cm × 7.6cm 90g 5V/0.3A (1.5W) $199
Odroid-U2 QC 1.7Ghz C-A9 2GB DDR2 6cm × 6cm 130g 5V/2A (10W) $89
Odroid-X2 QC 1.7GHz C-A9 2GB DDR2 9cm × 9.5cm 125g 5V/2A (10W) $135
Olimex OLinuXino 1GHz C-A8 512MB DDR3 12cm × 12cm 100g 6-16V/0.4A (4.2W) $60
PandaBoard ES DC 1.2GHz C-A9 1GB DDR2 11.4cm × 10.2cm 81.5g 5V/1A (5W) $182

DC = Dual Core QC = Quad Core C-A8/9 = ARM Architecture

Mini-ATX motherboards are similar to some SBCs, most Mini-ATX boards require
extra hardware (hence also extra weight) to have the same functionality as SBCs.

In recent years, SBCs have gained a lot of momentum due to their application
in mobile devices. The ARM architecture1 has become especially popular, due
to its low cost, high computational power and low power requirements. In other
words, within the domain of single-board computers there are many different vi-
able choices for a fast and power efficient computer, and finding the SBC best
suited for an application can be hard. In the search for a good SBC, these are the
characteristics that were considered most important

• CPU speed (at least a clock speed of 1GHz)

• Sufficient amount of RAM (at least 1GB)

• Low weight (maximum 150g)

• Small in size (no larger than 15cm × 15cm)

• Low power consumption (max 10W)

• Compatibility with GNU/Linux software

Following these criteria, the search was narrowed down to just a handful of SBCs.
A list of the possible choices with their specifications was generated (see table 4.1),
and the boards were evaluated. From this list, the CubieBoard, Hackberry Board
and the Olimex OLinuXino were excluded almost immediately, as they have single

1As of 2013, ARM is the most widely used 32-bit instruction set architecture in terms of
number of manufactured units

4.1. Hardware 44

core CPUs. Even though the first two only have weights of 50g and 51g (respec-
tively), and have very low power consumption, the processing speed is not sufficient
to do object detection and recognition. This is especially true in scenarios where
the SBC also has to read from/write to file and stream video over the network.

The Nitrogen6X is a very interesting board, delivering the most computational
power pr Watt with its quad core CPU clocked at 1GHz. However, to utilize all
four cores efficiently, the object detection and tracking algorithms have to be made
with multi threading2 in focus. This is a somewhat complicated task, and since
this thesis only seeks to implement a simple tracking algorithm, the algorithm will
mainly run in only one core at any given time. Hence the Nitrogen6X was also
excluded. Of the three SBCs still left on the list, i.e the PandaBoard ES, Odroid-
U2 and Odroid-X2, the two latter boards were released to the public in January
2013. At that time, no support for GNU/Linux operating systems had been added,
and there was a huge lead time on the boards as there is only one distributor of
the Odroid platform, which is located in South Korea. Furthermore, even though
both these boards have significantly superior computation power to that of the
other SBCs, some of this CPU power would be left unused until the detection and
tracking algorithm was tailor made for multi threading. Adding this to the fact
that both Odroid-U2 and Odroid-X2 come with a heat sink that weigh around∼ 100g, the PandaBoard ES was considered the best choice of all the evaluated
SBCs. A schematic and more in-depth info on the PandaBoard ES can be found
in appendix C. The PandaBoard ES is relatively expensive (compared to the other
alternatives), but it is very light weight, has two CPU cores clocked at 1.2GHz
and requires little electrical power. As it is not a completely new board, it also has
a quite large community resulting in a rich pool of available software and tools.

4.1.2 Infrared Camera

The first crucial decision in the search for an infrared camera (IR camera for short)
is whether it should be a cooled or uncooled camera. Cooling of IR cameras is done
to prevent the cameras to be ’blinded’ by their own radiation, hence it increases
the sensitivity and over all performance of the camera. However, cooling is a
power hungry and time consuming task. The cooling mechanism also adds to the

2Multi threading is the concept of dividing a problem into smaller parts, where each part
can be solved independently. Each part of the problem is then assigned to different CPU cores,
effectively decreasing the necessary computational time for a given problem. This is sometimes
referred to as parallel computing

45 Chapter 4. The System

Table 4.2: Commonly used sub-division scheme for infrared radiation

Division Name Abbreviation Wavelength
Near-infrared NIR 0.75 − 1.4μm
Short-wavelength Infrared SWIR 1.4 − 3μm
Mid-wavelength Infrared MWIR 3 − 8μm
Long-wavelength Infrared LWIR 8 − 15μm
Far Infrared FIR 15 − 1000μm

total net weight of the camera, which is an important factor in the application
of IR cameras in UAVs. Furthermore, cooled IR cameras are in general more
costly than the uncooled alternative. Weighting all of these factors, an uncooled
IR camera was considered the best solution. The next question was which type of
infrared radiation the camera should be sensitive to. As seen in table 4.4, there are
different types of infrared radiation. Now, the long-wavelength infrared radiation
is usually referred to as the thermal imaging region, because this is the region in
which sensors can obtain a completely passive image of objects with a temperature
slightly higher than room temperature (e.g the human body). Sensors operating in
this region do no require any illumination source such as the sun or the moon, and
was considered a good complementation to that of electro-optical (EO) cameras
(which is only sensitive to visible light). Hence, the search was narrowed down to
a long-wavelength, uncooled infrared camera suitable for use in UAVs. To be more
specific, the following characteristics were considered the most important

• Uncooled

• Long-wavelength infrared sensitive

• Low weight (maximum 200g)

• Small in size (less than 10cm × 10cm × 10cm)

• Low power requirement (max 5W)

• Middle to high resolution (more than 320 × 240 pixels)

The last point may be a bit misleading, but a resolution equal to 320x240 pixels is
actually considered a middle to high resolution within the field of infrared optics.
In fact, the highest resolution of IR cameras open to the public is at 640x512. Now,
the search for IR cameras with the above mentioned characteristics resulted in the

4.1. Hardware 46

Table 4.3: An overview of different long-wavelength uncooled infrared cameras.

Camera Resolution Size (w/o lens) Power Req Weight Sensitivity Output
A35Sc 320 × 256 10.6 × 4 × 4.3 cm3 ≤ 2.5W 200g ≤ 50mK Ethernet
Eye-R25 384 × 288 5 × 6.3 × 6.3cm3 ≤ 2.2W ≤ 150g ≤ 50mK Analog (CCIR)
Gobi-640 640 × 480 5 × 5 × 7.7cm3 2W 200g ≤ 50mK Ethernet
Tau2 640 640 × 512 4.5 × 4.5 × 3 cm3 ∼ 1.2W 72g ≤ 50mK Analog (BNC)
Tau2 336 336 × 256 4.5 × 4.5 × 3 cm3 ≤ 1W 72g ≤ 50mK Analog (BNC)
Vumii OFC 640x480 7 × 5.7 × 3.9cm3 ∼ 2.5W 200g ≤ 70mK Analog (CCIR)

six cameras listed in table 4.3.

Of the six cameras listed, the Vumii OFC was excluded immediately, as it is both
the heaviest and the most power hungry camera of the six. Furthermore, even
though direct output to Ethernet (A35Sc and Gobi-640) is a desirable feature, the
extra weight compared to e.g Tau2 640 is a little too high. The benefit of having
a direct output to Ethernet is that it eliminates the need for some other means to
convert the analog signal to a digital signal, so that it can be processed by the SBC.
However, there exists frame grabbers3 that weighs less than the weight difference
between Tau640 and the Ethernet solutions (Gobi-640 and A35Sc). In appendix F
two such frame grabbers are suggested, where one of them connects through USB
(EasyCap) and the other through Ethernet (Axis M7001). Hence, with an IR cam-
era that has an analog output, one can choose how to digitize the signal through
the choice of a frame grabber, instead of being locked to the Ethernet output. After
removing Gobi-640 and A35Sc from the list, it is readily seen that the Tau2 640
and Tau2 336 require less power, and weigh less than the Eye-R25. This means
that if pricing is not a criterion, the Tau2 640 is the infrared camera that is best
suited for use in the payload. Now, since pricing actually is a factor, the Tau2 640
was acquired for the use in larger UAVs that are robust and not likely to crash.
The cheaper version (Tau2 336) was acquired for the use in smaller UAVs such
as miniature helicopters. The Tau2 IR cameras comes with an interfacing module
enabling power over USB and a BNC video output (analog video).

Now, the final decision that has to be made is what focal length the lens on the
camera should have. Because the camera is thought to be mounted on the UAV
in a fixed manner, i.e it is not allowed to turn/rotate about its own axis, the field
of view of the camera is crucial for the success of detection. However, there is
a conflict between having a large field of view and actually being able to detect

3A frame grabber is a device that converts analog video to digital video, usually connected via
either an USB port or an Ethernet connection.

47 Chapter 4. The System

Table 4.4: A table listing focal length vs. field of view.

Camera \Focal Length 7.5mm 9mm 13mm 19mm
Tau2 640 90○ × 69○ 69○ × 56○ 45○ × 37○ 32○ × 26○

Tau2 336 45○ × 35○ 35○ × 27○ 25○ × 19○ 17○ × 13○

objects on the ground. This is because a small focal length will yield a large field
of view, but everything in the image will appear small. On the other hand, a large
focal length will yield a small field of view, but objects in the image will appear
large. The focal length of the lens and the corresponding field of view for the Tau2
640 and Tau2 336 are listed in table 4.4. To balance out the perceived object size
and the field of view, a field of view of at least 30○ − 35○ was considered necessary.
This will allow the UAV to roll up to ∼ 25○ while most of the objects still will
be present in the image. In other words, a focal length of 13mm and 9mm was
chosen for the Tau2 640 and Tau2 336, respectively. Now, consider the case where
the infrared camera is mounted on the side of the UAV, pointing 45○ downwards,
and the UAV is operating at an altitude of 50m. In this scenario, a normal sized
human (in the center of the image) will be projected onto the image plane as 11
pixels wide and 20 pixel high for the Tau2 640, and 8 pixels wide and 16 pixels high
in the Tau2 336. This is a bare minimum to achieve good detection and tracking.
The mathematics behind this example is given in appendix B.

4.1.3 IP Radio / Communication

Reliable inter-communication in the payload and communication between the pay-
load and the ground station is equally important. However, there is one major
difference between the two. That is, within the payload, a lossless communication
layer4 can be assumed present. This is not the case for the communication layer
between the payload and the ground station. That is, messages sent over large
distances, to and from fast moving targets, will be subject to random failures. E.g
the Doppler effect, weak signal or in some cases no signal (due to physical block-
ing) are all problems that has to be explicitly dealt with. Hence, a redundant
communication system must be used to make sure that all packages reaches their
destination. In this section, an implementation of an inter-communication layer
in the payload is suggested, followed by a review of an existing transfer protocol,

4A lossless communication layer is a communication layer where no information is lost. Hence,
no information has to be sent more than once in order to arrive at the receiving end.

4.1. Hardware 48

namely intermodule communication (IMC), for application in IP radio communi-
cation, i.e communication between the payload and the ground station. Note that
the hardware needed for long distance communication (exceeding the Wi-Fi range)
was not evaluated, as it was considered already present in the UAV when needed.

Now, to achieve reliable, fast and efficient communication between the components
within the payload, the easiest solution is simply to connect every component to
the single board computer. However, most SBCs have a very limited amount of
input/output possibilities, hence this easily becomes an inefficient approach. Con-
necting every component to the single board computer will also increase the risk of
a full system failure because if the single board computer fails, all contact is also
lost with the other components. A better solution, in many cases, is therefore to
connect every component to a common communication layer. This will make the
data flow of each component independent of each other, and a single failure will
not affect the system in the same way. A robust and effective communication layer
for components that are physically close to each other, can be realized through the
use of an Ethernet switch. Ethernet switches use the TCP/IP protocol in order
to manage the data flow of the connected components, and are interfaced through
RJ45 cables. Such switches may also be designed to be both light weight and re-
quire very little electrical power. These are attributes that make them ideal for
the use in UAVs. Furthermore, the Ethernet interface is very common and next
to mandatory on single board computers, which in turn means it is easy to find
alternative components that fit into the communication scheme of the payload. In
the search for an Ethernet switch suitable for use in the payload, the following
characteristics were considered most important

• Sufficient amount of Ethernet ports (at least 4)

• Small in size (less than 10cm × 10cm × 5cm)

• Low weight (maximum 150g)

• Low power requirement (max 5W)

• Preferably a 5VDC requirement

Since almost all switches with these attributes work in almost exactly the same
way, the reader is not bothered with a list of different possible choices. Instead,
the specifications of the switch that was found to best satisfy the above mentioned
requirements, the TRENDnet 5-Port Fast Ethernet Switch, can be seen in appendix

49 Chapter 4. The System

H. Note that it is only the bare minimum circuit board that should be used in the
payload (i.e no chassis).

Having established a way to make the components in the payload communicate
in an efficient manner, one question still remains. How should the payload com-
municate with the ground station? The answer to this question is the intermodule
communication protocol. The IMC protocol achieves inter module communication
by the exchange of messages that can be recognized and interpreted by all the par-
ticipating modules. A module, in this case, refers to any module that can partake
in wireless radio communication, e.g a ground station, an UAV or simply just a
radio transponder. Radio transponders are devices that can be used to transmit
the same signal as it receives, effectively extending the maximum distance that
the IMC data packets can be sent. Now, let us consider the case where a ground
station wants to send a command to the autopilot in an UAV. The first thing that
is done, is that the ground station creates the command internally, i.e it creates a
command that the autopilot can understand. This may be a message on the form
”roll +5 degrees”. Then, a header of meta data is added to this message. The form
and size of this header is specified by the IMC protocol, and includes information
such as

• The source of the message (the ground station)

• The destination of the message (the UAV)

• The type of message (command to the autopilot)

• The length of the message

• A time stamp

Some header data might be added or removed depending on the type of message
being sent. The process of adding a header to the message is referred to as se-
rializing the message. This is done by an IMC manager located at the ground
station, and is the last step before the message is sent over the network. The
network might be a combination of Ethernet networks and radio networks, but
the communication is restricted to the case where both the source module and the
destination module operate through an Ethernet interface. This is achieved by
sending IP radio messages over the radio networks, which in short is the concept
of converting TCP/IP packets to radio waves, and radio waves to TCP/IP packets.
Exactly how this is done is out of the scope of this thesis, but it is a well known

4.1. Hardware 50

Figure 4.1: The ground station and the UAV communicates through the IMC pro-
tocol. This is a protocol that takes any kind of message and serialize it, effectively
adding a header enabling the IMC protocol to keep track of the messages and also
check if the messages arrive at their destination. At the destination, the IMC mes-
sage is deserialized, which is a process where the original message is reconstructed.
It should be noted that every node in the network (in this case there are 4 nodes),
are responsible for propagating the message through the network, making sure it
arrives at its destination.

51 Chapter 4. The System

method to send data over large distances. When the IMC message is sent over the
network, it is usually converted to an IP radio message close to the ground station,
and propagated through the network using every module in the network available.
This is referred to as a mesh network5. When the IP radio message finally reaches
the UAV, it is converted back to a TCP/IP packet and sent to the IMC manager
located in the UAV. The IMC manager deserializes the message, obtaining the
original command message sent from the ground station. The original message is
then sent the correct internal module (in this case the autopilot), before the IMC
manager sends a data packet back to the ground station with an acknowledgment
that it has received the message. The process of sending a message through the
network using the IMC protocol is illustrated in figure 4.1. It should be noted that
the IMC protocol also has instructions for how to handle cases where information
or data packets are lost. For a closer look on how the IMC protocol operates and
how it achieves fault tolerant network communication, the reader is referred to [1].
In the present thesis, the case where the distance between the ground station and
the UAV exceeds the range of wireless networks is not considered, hence no radio
transmitter/receiver hardware was needed.

4.1.4 Power Supply

In the search for a suitable battery pack for the payload, some characteristics of
different types of batteries were gathered. Specifically, a list of the energy density
(Wh/kg) and specific energy (Wh/L) for different types of batteries was made. The
result from this work can be seen visualized as a graph plot in figure 4.2. From this
figure it is readily seen that it is the lithium and zinc-air battery types that offer
the most electrical energy with respect to both size and weight. Further research
revealed that the recommended discharge rate for each 1.4V zinc-air battery cell is
in the range of 1−40mA, which would require too many battery cells to successfully
drive the payload. However, lithium batteries are known to be able to deliver high
discharge rates, hence they were considered as a good choice for supplying the
payload with electrical power. Furthermore, considering the power requirement of
the already mentioned components, the lithium battery pack had to feature the
following

• Low weight (≤ 200g)

5A mesh network is a network where every participating module must not only capture and
disseminate its own data packets, but also serve as a relay for other modules. I.e, the participating
modules must collaborate to propagate the data packets in the network.

4.1. Hardware 52

Figure 4.2: Energy density against specific energy for some common battery types
(data from [42]).

• Small size (less than 10cm × 10cm × 5cm)

• Decent capacity (at least 2000mAh)

• Regulated 5V output

• Able to provide enough Watt (≥ 15W)

The requirement of having a regulated 5V output is there because both the Pand-
aBoard and the Tau640/335 IR camera require a steady voltage input of 5V . In
the case where an Ethernet switch is required, the switch mentioned in section 4.1.3
also require an input voltage of a steady 5V . The PandaBoard is especially sensi-
tive to this, and typically shuts down if the voltage is lower than 4.8V or higher
than 5.2V . Now, most lithium ion (Li-Ion) and lithium polymer (Li-Po) battery
cells has a nominal voltage of ∼ 3.7V , but this voltage typically decreases as the
battery cell discharges. Hence, to have a steady voltage output, a voltage regulator
is needed.

In recent years, a type of battery pack often referred to as external power packs
has become increasingly popular. External power packs are battery packs initially
made to charge smart phones and tablets, but they inherit several characteristics

53 Chapter 4. The System

Table 4.5: Summary of the Search for Different Power Packs

Power Pack Capacity Total Max. Current Output Weight Price
Biltema PowerPack 2000mAh 1A 5V USB 75g $27
IT-CEO 3000mAh 1A 5V USB 90g $25
PB5K 5000mAh 2A 2x5V USB 140g $45
Duracell PPS2 1150mAh 0.5A 5V USB 41g $20
Sinotek OEM 10000mAh 3A 2x5V USB 195g $20

that are suited for the use in the payload designed in the present thesis. For ex-
ample, most power packs come with either a 5V or 12V (some power packs feature
both) regulated output. Furthermore, most power packs come with built in protec-
tion against short circuits and over-drain6, making them more safe in use. These
are must-have features, as e.g Li-Po batteries are known to be very unstable and
easily set fire if misused. Because of this, the use of power packs to supply the
payload with power was considered a good choice. The wide variety of available
power packs also makes it easy to find a combination of power packs that is able
to drive the payload regardless of how many components and modules it contains.

The search for different suitable power packs is summarized in table 4.5. From
this table, the Duracell PPS2 was excluded because of its low maximum current
draw. 0.5A per power pack means that at least 2 such packs are needed only
to power the PandaBoard. Also, considering the price and capacity compared to
the alternatives, this is not an optimal solution. The Sinotek OEM was excluded
because it has a relatively high weight, which in turn makes it impossible to use
in some UAVs. The IT-CEO is very similar to the Biltema PowerPack, with the
difference being that the IT-CEO is 15g heavier. This makes the IT-CEO exces-
sive, and was therefore also removed from the list. Hence, the list was shortened
down to only two power packs; the PB5K and the Biltema PowerPack. Notice
that using two Biltema PowerPacks is very similar to that of using one PB5K. The
difference between these two solutions is that the PB5K is 10g lighter, which is
easily outweighed by the fact that using the Biltema PowerPacks, a third Power-
Pack can be added to the payload without exceeding the limit of 200g by more than
25g. Furthermore, removing the chasing of the PowerPack, it was revealed that the
voltage regulator and the battery only weighs 45g. This means that it is possible
to use four such packs and still not break the limit of 200g. Hence, the Biltema
PowerPack was considered the best choice for the payload. The specifications for

6Over-drain occurs when a battery is discharged at a higher rate than what is considered safe
and/or correct.

4.1. Hardware 54

this component is listed in appendix G.

4.1.5 Video Camera

In the payload designed in the present thesis, the video camera module plays only
a passive part. That is, the video stream from the video camera is not actively
used in the object detection and tracking algorithms, which in turn means that the
most important thing at this point is not exactly which camera, but rather how
the module should be integrated in the payload. Hence, the exact choice of camera
was not a prioritized activity. However, in the search for a video camera, these
were the requirements considered important

• Low weight (maximum 100g)

• Small in size (less than 10cm × 10cm × 10cm)

• Low power requirement (max 5W)

• At least the same field of view as the Tau2 IR camera

• At least the same resolution as the Tau2 IR camera

In this regard, the GoPro Hero2 video camera (the specifications are listed in
appendix E) is a solid choice. Not only does it satisfy all the above mentioned
requirements, but it has an internal battery, making it very easy to use. This adds
to the simplicity of the payload, making it applicable in virtually any payload. It
also has an analog output, making it easy to connect the camera to the SBC in
the same way as the Tau2 IR camera, i.e with a frame grabber. It should be noted
that there exist many cameras more suited for the payload than the GoPro Hero2,
but it is good enough as a temporary solution.

4.1.6 GPS/INS

Since non of the object detection and tracking algorithms that are implemented in
the present thesis relies on a navigation module, the procurement of such a module
was not considered very important. However, a review of possible solutions for such

55 Chapter 4. The System

a module still is important. This is especially so because future implementations of
the object detection and tracking algorithms probably will need some navigational
data at some point. Hence, in this section, a type of devices suited for use in the
navigation module in the payload is suggested.

In recent research on navigation in UAVs, one of the most widely used naviga-
tion technologies is the combination of a Global Positioning System (GPS) and an
Inertial Navigation System (INS) device [15]. The INS device operates without
any inputs or external signals, and provides a complete set of navigational param-
eters. That is, it provides the position, velocity and attitude of the UAV with a
high sampling frequency (i.e many updates per second). Now, the problem with
using only an INS is that systematic errors will grow over time. For example, if the
measured velocity is constantly off by +1m/s from the real velocity, the positional
error will only increase over time. This implies that it is a good idea to use GPS
measurements to correct the outputs from the INS. This is usually achieved by the
use of an Extended Kalman Filter (EKF), which is a filter that is used to estimate
non-linear processes.

Due to its wide spread use in navigation for UAVs, it was decided that the nav-
igation module in the payload should be realized through the use of a GPS/INS
device. There exist many GPS/INS devices suitable for the use in UAVs, most of
which have an USB interface. This is very convenient since most SBCs have at
least two USB ports. It should also be noted that some GPS/INS devices have
implemented the extended Kalman filter internally, removing the need to imple-
ment this on the single board computer. This is a very nice feature, as it leaves
more computational power free for the object detection and tracking algorithms.
However, these devices are usually considerably more expensive than the devices
that do not filter the signal internally. Finally, it should be noted that the INS
device should be physically placed as close to the center of gravity of the UAV as
possible, because most standardized INS devices model the UAV as a point mass.
Hence, it assumes that all of the motion dynamics happen at one central location.
This would not be true if the INS is placed far from the center of gravity, as e.g
the UAV rolling would induce an extra rotational velocity in the INS.

4.2. Software 56

4.2 Software

The different types of software that is needed for the payload, can be divided into
three different categories. The first category is the operation system (OS) of the
payload, i.e the software that handles the input and output of the system, and
is responsible for the intercommunication between different tasks in the payload.
The second category is that of object detection and tracking. There exist sev-
eral software solutions that supply the programmer with a framework for working
with computer vision, and choosing the appropriate software solution can simplify
the implementation of the object detection and tracking algorithms greatly. The
third and final category is that of navigation and communication. This means the
software responsible for controlling the UAV and communicating important infor-
mation with the ground station.

Now, the choice of the appropriate software for the payload and ground station
is crucial for the performance of the over all system, hence the task was not taken
lightly. Furthermore, it was important that the software was reliable, easily mod-
ified and up to date. It should be reliable because the payload is required to be
operational at all times during flight. It should be easily modified because it should
be easy to add new features or modify existing ones, and it should be up to date
because computer science evolves at an impressive pace. Several different soft-
ware solutions were evaluated, and following is the software from each of the three
categories that were considered to be best suited for application in the payload.

4.2.1 Ubuntu

Ubuntu is an open source operating system based on the Linux kernel. It is one of
the most popular Linux distributions not only for personal use, but also in servers.
The reason for Ubuntu being a good choice for the use in the payload, is that
it is very easily customized to only feature the bare amount of functions that is
needed for the payload to function properly. This will, in turn, make the computer
vision algorithms run faster, as more computational power is available to these
algorithms. It is also a very reliable OS, as it has become quite stable after 8
years of development. Furthermore, since the OS is so popular, it is continuously
updated. Hence it also has support for many external USB components, such as
frame grabbers and different GPS devices. Ubuntu is also a widely used OS for
ARM systems (such as the PandaBoard) in general, resulting in a variety of Ubuntu

57 Chapter 4. The System

distributions that are optimized with respect to the ARM architecture. All of these
factors makes Ubuntu an ideal operation system for the PandaBoard.

4.2.2 OpenCV

The Intel Open Computer Vision Library, referred to as OpenCV, is a collection
of many computer vision related algorithms. It also integrates some existing video
capturing libraries, effectively simplifying the process of reading images from a
video camera. The library features convenient data structures for storing images,
and supplies the programmer with a framework for working with HOG-descriptors,
Haar-like features and classifiers. Furthermore, compared to other similar libraries,
OpenCV is known for its speed and focus on real time computing, while at the
same time maintaining a large diversity. This makes OpenCV ideal for creating
and experimenting with new computer vision algorithms. The library is also under
constant development, with updated versions being released on a regular basis.

4.2.3 Dune

DUNE Unified Navigational Environment is a runtime environment for vehicle on-
board software developed by the Underwater Systems and Technology Laboratory
(LSTS) located in Porto. It provides an operating system and architecture inde-
pendent platform for control and navigation of different types of unmanned vehicles
(including UAVs). This means that if the OS or architecture of the payload changes
(e.g a change of single board computer), Dune can remain unchanged, and will work
out of the box in the new payload. This is a huge advantage, as the process of
making hardware components communicate with each other can be a tiresome pro-
cess. Dune includes drivers for sensors and actuator access, communication with a
ground station and has interfaces to many popular autopilot solutions. In addition
to this, Dune has inbuilt functions such as the extended Kalman filter and similar
algorithms. When Dune is communicating with a ground station, it uses the IMC
protocol described in section 4.1.3. It should be noted that Dune is based on run-
ning separate tasks, where each task has its own unique designated responsibility.
For example, there is one task for reading the GPS/INS output, and there is an-
other task for sending commands to the autopilot. Adding and removing tasks is
trivial, hence Dune is highly modularized. This makes it easy to adapt Dune to
function optimally in any payload, in any unmanned vehicle and any situation.

4.3. Setup Configuration 1 58

4.2.4 Neptus

Neptus is a ground station software developed by the creators of Dune. It is a
software that enables the operator to command and control fleets of different types
of unmanned vehicles (including UAVs). Neptus can also be used to create and
manage mission plans, and is an excellent software to use when executing these
plans. Real-time information about the unmanned vehicles, such as CPU load,
battery capacity and free hard drive space is also made available to the operator.
In addition to this, other sensor information such as GPS/INS data and video
streams are easily interfaced to Neptus, effectively gathering and displaying all
available information in one and the same place. As with Dune, Neptus achieves
remote communication through the use of the IMC protocol, and command and
control of the vehicles are obtained by exchanging messages with Dune. Using
the Neptus-IMC-Dune software tool chain has proven a great success, and has
been thoroughly tested by LSTS. This makes this combination of software a solid
solution for the payload designed in the present thesis.

4.3 Setup Configuration 1

The first setup configuration is designed with simplicity in mind. This is because
it is a configuration that even small and light UAVs should be able to handle. In
other words, this means that one of the highest priorities of this setup is low weight.
It should be noted that the maximum payload weight for different small UAVs
may vary, hence the design is made such that the functionality in the payload is
restricted by the weight requirement. To be more precise, the components featured
in the payload are added one by one until the maximum payload weight for the
UAV is reached. The following is a list of the components in a prioritized order,
i.e the order in which the components should be added to the payload.

• Battery (2xPowerPack)

• Single Board Computer (PandaBoard)

• Infrared Camera (Tau2 336)

• Frame Grabber (EasyCap DC60)

• Video Camera (GoPro Hero2)

59 Chapter 4. The System

���������	

��	���
�	�	����������
�
������

���	��
��
	�����

�����	����
��������	

���	�����	
�

��	��������

������
�� !�

"#�$%�� ��

"��&�����
�������������

'��	
�	�

!��������

"&����	
�

� #'

(
��	��
���	

 ��

&�)*)

Figure 4.3: Connection diagram for setup configuration 1. Notice that Dune is
running on the single board computer in the payload.

• GPS/INS

This adds up to a total weight of ∼ 400g, if the weight of a GPS/INS device is
excluded. Furthermore, it is assumed that some means of communicating with
the payload is already present and available for use. In some scenarios and ap-
plications, this will require a sophisticated data link between the payload and the
ground station, but technologies and solutions for this was not evaluated and out
of the scope of the present thesis.

Now, the connection diagram for these components is illustrated in figure 4.3, where

4.4. Setup Configuration 2 60

the IP Radio / communication link can simply be a wireless network connection.
The object detection and tracking algorithm, data logger and video streaming mod-
ules are processes running in the CPU on the PandaBoard, communicating through
reading and writing to files. The data logger is responsible for logging the position
of the tracked objects to the hard drive. The video streaming module is responsible
for streaming the video from the infrared camera to the ground station through the
use of the IMC communication protocol. Notice that, in this configuration, Dune
is also running locally on the PandaBoard. Dune is responsible for communicating
with the autopilot (if any) through the RS232 port located on the PandaBoard.
Because Dune is so easily modified, it can also include a part that communicates
with the object detection and tracking algorithm. This makes it possible for the
object detection and tracking algorithm to control the UAV by sending commands
to the autopilot through the communication channel with Dune. As previously
mentioned, Dune is also responsible for communicating with the ground station,
e.g receiving commands or reporting the position, velocity and status of the UAV.

The power diagram of the payload is illustrated in figure 4.4. Note that the in-
frared camera has a VPC module connected, separating the Tau2 connection into
one power part (through USB) and one analog signal part (BNC). In addition to
this, the PandaBoard can be powered through its USB2.0 OTG connection, hence,
all of the devices are either self powered (Hero2 video camera) or powered through
USB. This makes it very easy to power the payload in an efficient way, without the
need for solutions tailor made for this specific setup. This enables the payload to
be highly modularized, and adding or removing components can be done without
too much redesign.

4.4 Setup Configuration 2

The second setup configuration is a little more feature rich, and also more robust
to single module failures than the previous setup configuration. This is achieved by
adding an Ethernet communication layer between most of the components, and also
outsourcing the navigation module of the previous setup (Dune and communication
with the autopilot) to a second single board computer. In this configuration it is the
navigation module that communicates with the ground station, now through an IP
Radio communication device as described in section 4.1.3. The navigation module
is also communicating with the payload on-board the UAV through the Ethernet
communication layer now present in the payload. By designing the total payload in

61 Chapter 4. The System

Figure 4.4: Diagram showing how the battery pack is connected to each component
for the first setup configuration. The two USB outputs from the battery pack are
wired in parallel. Note that the frame grabber and the GPS use the USB channel
as both its power source and the data communication channel

4.4. Setup Configuration 2 62

this way, a single component failure does not have to affect the total functionality
of the payload very much. E.g if the PandaBoard were to malfunction during flight
in setup configuration 1, all communication with the ground station would be lost.
Furthermore, the communication with the autopilot would be lost, in effect making
the flight operation very unsafe as there would be no way to resume control over the
UAV. If the PandaBoard were to malfunction during flight with setup configuration
2, the navigation module would still be intact, able to control the UAV in a safe
way. The connection diagram of this setup configuration is illustrated in figure 4.5.

The setup configuration described above can be realized using the following com-
ponents

• Battery (4xPowerPack)

• Single Board Computer (PandaBoard)

• Ethernet Switch (TRENDnet Switch)

• Infrared Camera (Tau2 640)

• Frame Grabber (2xAxis M7001)

• Video Camera (GoPro Hero2)

• GPS/INS

This setup weighs a total of ∼ 750g, if the weight of a GPS/INS device is excluded.
Now, in particular, this setup configuration is an enhancement of the setup config-
uration described in section 4.3 in that it relieves the PandaBoard of some work.
This is mainly because Dune is no longer running in the CPU of the PandaBoard,
but also because the Axis M7001 frame grabber does the encoding internally, while
the previous frame grabber (EasyCap), leaves that job for the PandaBoard.

To power the payload in this setup configuration, a little more work than the
USB-solution from the previous section has to be done. To be more specific, the
power interface of the Axis M7001 encoder is Power over Ethernet7 (POE), making
it necessary to inject the Ethernet cable connected to this encoder with electrical

7In 10/100 Mbps networks, there are one unused pair of conductors in the Ethernet cables.
When this pair is used to provide electrical power to a device, it is said that the device is Powered
over Ethernet

63 Chapter 4. The System

���������	

��	���

�	�	����������
�
������

���	��
��
	�����

'��	
�	��
+&,-./

�����	����
��������	

'��	
�	��
+&,-./

'��	
�	���0����

���	�����	
�

'��	
�	��+&,-./���
��

!�����������������
���1	
�	

��	��������

������
�� !�

#�1������������	�

#�1��������������	

"#�$%�� ��

"��&�����
�������������

 ����
�
'��	
�	� � #'

!��������

"&����	
�

&�)*)

!������"����

'��	
�	��������

Figure 4.5: Connection diagram for setup configuration 2. Notice that Dune now
is running on a separate computer.

4.4. Setup Configuration 2 64

Figure 4.6: Diagram showing how the battery pack is connected to each compo-
nent for the second setup configuration. Every component is wired in parallel to
supply each component with 5V. The data connection between the components are
illustrated with gray lines.

65 Chapter 4. The System

power at some point. Furthermore, the voltage needed to comply with the require-
ment of this device is in the range of 36V-48V. This in turn, means that a step-up
converter has to be present, converting an input voltage of 5V up to at least 36V.
It should be noted that the internal encoder board of the Axis M7001 requires only
1.2V, 1.8V and 3.3V (connected at different pins). However, the design of a circuit
board able to supply the encoder with these voltage inputs was out of the scope
of this thesis, hence the POE interface was kept. The Ethernet switch must also
be powered, requiring 5V power through a DC jack. The total power diagram of
this setup can be seen in figure 4.6. The power scheme for the navigation module
is not presented, as this module is assumed to already be integrated and ready for
use in the UAV.

Note that the data logger and video streaming modules are exactly the same as
earlier, but that the GPS now is connected to the navigation module. This means
that, in order to make the data available to the object detection and tracking algo-
rithm, the GPS data has to be broadcasted over the local Ethernet communication
layer. Similarly, the video streaming module does not have direct access to the IP
Radio communication channel in this setup configuration, hence it has to send the
video stream over the local network. Dune should then include a task that reads
this stream, and forwards it to the ground station through the communication
channel. Configuring Dune to do these tasks is trivial.

4.4. Setup Configuration 2 66

This page intentionally left blank.

Chapter 5

Experiments

Having designed the payload, the next step is to implement and test it together
with an object detection and tracking algorithm. Furthermore, to consider the
design and implementation successful, it was desirable to arrive at a solution that
can be used in the field for real-time multiple human detection and tracking. The
implementation should also be able to stream video, log the position trajectories of
humans and control the UAV. The last part is only required to be simulated, i.e the
payload is not required to actually communicate with the autopilot. However, the
payload should be able to decide in which direction the UAV should move to keep
track of the humans located in the field of view of the camera. Now, the process
of creating such a system was divided into the following steps.

1. Train classifiers based on either the SVM/HOG or the Boosted Cascade/Haar-
like features combination.

2. Implement and test the object tracking algorithm described in chapter 3.

3. Implement and test the following functions

• Video streaming to the ground station from the payload.

• A data logger.

• Algorithm that simulates control over the UAV.

4. Verify that setup configuration 1 is working as intended.

67

5.1. Classifier Training 68

5. Optimize the performance of the object tracking algorithm when it is running
on the SBC.

6. Field test of setup configuration 1 with the implemented object tracking
algorithm.

The following chapter is a description of the methods used and the choices made
to complete all of the above mentioned steps.

5.1 Classifier Training

Before object detection and tracking can be performed, some classifiers have to be
trained. Following the theory described in chapter 2, two fundamentally different
classifiers can be trained and evaluated. These two classifiers are a support vector
machine classifier based on the histogram of oriented gradients feature represen-
tation (SVM/HOG classifier), and a boosted cascade classifier based on Haar-like
features (BC/HL classifier). To evaluate the performance of these two classifiers
from a common ground, a training set was created. This was done by acquiring 3
long-wave infrared video sequences of pedestrians walking on a street. The video
sequences were acquired at different days, but under the same weather conditions
and temperature. This is because in thermal imaging, humans appear differently
depending on their temperature relative to the environment. In a cold winter night,
humans will appear in the image as white (hot compared to the environment), but
black (cold compared to the environment) on a warm summer day. Hence, in re-
ality this is equivalent to detecting two different objects. Now, the training set
was created by extracting positive and negative examples from each frame in the
recorded video sequences. The positive training examples consisted of 500 images
of pedestrians at an upright pose and the negative training examples were 3000
images randomly sampled from the background of the same video sequences. Fur-
thermore, a test set of 150 images was created from a fourth video sequence. This
was done because the classifier performance should be evaluated on novel data, and
not the data that were used to train the classifiers. A small sample of positive and
negative examples from the training set can be seen in figure 5.1

When a classifier is used to identify objects in an image, a search window is used.
This search window is of a fixed size, and it gradually moves from one end of the
image to the other, classifying each search window as either an object or not an

69 Chapter 5. Experiments

Figure 5.1: A small sample of both positive and negative examples from the training
set used to train the classifiers.

5.1. Classifier Training 70

Figure 5.2: (a) shows the original image, and (b) illustrates how several search
windows in the vicinity of a pedestrian usually are classified as positive (represented
by a green rectangle). (c) shows a filtered version where positive classifications close
to each other can be merged into only one classification.

object. Now, since the search window moves gradually, several search windows
in the vicinity of an object may contain the object. As illustrated in figure 5.2,
this may result in that the classifier returns several positives for the same object.
Hence, it is often a good idea to demand that the classifier classifies n number of
search windows, in a certain vicinity of each other, as positives before concluding
that an object is present. It should be clear that this will reduce the number of
false positives, as the classification of a false positive is not necessarily correlated
with a certain area of the image. However, it should also be noted that increasing
the number of positives n required for the final classification to be positive, will
reduce the percentage of objects found. In other words, by varying the number n
and performing classification on the test set, the classifier will have a varying true
positive rate (percentage of objects found) and false negatives rate (percentage of
negative examples classified as positives). By plotting the true positive rate (TPR)
against the false positive rate (FPR) for different values of n, a receiver operating
characteristic curve (ROC curve) is plotted, which is a very efficient way to com-
pare the performance of classifiers against each other.

The training and testing process for each of the two classifiers used in the present
thesis are described in the following section.

71 Chapter 5. Experiments

5.1.1 Training and Testing the SVM/HOG Classifier

The first thing that has to be decided when a SVM/HOG classifier is going to
be trained, is the size of the HOG descriptors. This is decided by the following
variables

• The resolution of the training examples

• The number of pixels within each cell

• The number of cells within each block

• The number of orientation bins

• The number of cells that neighboring blocks have in common

These variables were set to the same configuration as that which was found to work
best in [14], i.e a resolution of 64x128 pixels, 8x8 pixels in each cell, 4 cells in each
block, 9 orientation bins (evenly spaced over 0○−180○) and an overlap between each
block of 1x1 cells. This means that the HOG descriptors will have 64−16

8
+(16

8
−1) = 7

blocks in the width, and 128−16
8

+ (16
8

− 1) = 15 blocks in the height. This means in
turn that the whole descriptor will be 7 × 15 × 4 cells, and with 9 orientation bins
this means that the full descriptor will be a vector of length 7 × 15 × 4 × 9 = 3780.
This is a suitable number of dimensions for the use in conjunction with a support
vector machine for creating a classifier.

To perform the training of the classifier, the above mentioned HOG descriptor
was calculated and labeled for each example in the training set. The descriptors
were either labeled +1 (a positive example) or −1 (a negative example). Then,
the optimization problem described in equation 2.12 was set up and solved using
SVMLight [22]. This resulted in the creation of a separating hyperplane, described
as a vector of the same length as the HOG descriptors, that is 3780. To evaluate
the effect of increasing the size of the training set, two other classifiers were also
trained. One of these classifiers were trained by including the mirrored version of
the original training set in the training process. The second was also trained in
this manner, with an additional 500 negative examples.

To test the performance of the classifiers on the test data, each test image (640x512
pixels) was searched for pedestrians. This was done by using a search window of

5.1. Classifier Training 72

the same size as the resolution used for training (64x128), starting at the top left
corner (0,0) and sliding it over the test image, moving it 16 pixels at a time. At
each position, the HOG descriptor for the search window was calculated. In prac-
tice, this was done by first calculating the integral histogram image (equation 2.7)
for all of the 9 different orientation bins (this step is only done once per test image).
Then, the HOG descriptor for a given search window was constructed by calculat-
ing the total histogram of oriented gradients for all the cells that make up the total
descriptor (i.e all of the 7×15×4 cells). The total histogram for a cell was found by
summing the contribution of the integral histogram to the cell over all the orienta-
tion bins. Now, after the HOG descriptor for the search window was obtained, the
L2 distance from this descriptor to the hyperplane created in the training step was
calculated. If this distance was negative, the search window was considered not
to contain a pedestrian. A positive distance however, was assumed to imply the
presence of a pedestrian in the search window. Furthermore, the requirement that
several search windows in the vicinity of each other have to be classified as positive
windows for a pedestrian to actually be present, was introduced. This was done by
grouping together search windows that were both closer than 0.2 times the width
and height of the search windows to each other and classified as a pedestrian. After
this grouping was done, only the groups consisting of more than n rectangles were
kept. The ROC curve was then created by performing this test for different values
of n and calculating the corresponding true positive rate and false positive rate.

5.1.2 Training and Testing the BC/HL Classifier

To train a boosted cascade classifier, the following has to be decided

• The resolution of the training examples

• The number of stages

• Minimum hit rate for each stage

• Maximum false alarm rate for each stage

• The set of Haar-like features to be used

where the minimum hit rate for each stage is the minimum percentage of correctly
classified positive examples from the training set. The maximum false alarm rate

73 Chapter 5. Experiments

is the maximum percentage of negative examples being classified as positive exam-
ples. When it comes to the set of Haar-like features to be used during training,
there are two options. Either, the set of features can be limited to only vertical and
horizontal Haar-like features, or it may also be chosen to include rotated Haar-like
features as illustrated in figure 2.2.

To train the boosted cascade classifier the resolution of the training examples was
decided to be 24 × 48 pixels. The reason for the small resolution is that Haar-like
features are easy to scale to different resolutions. Hence, setting a low resolution
during training shortens the duration of the training process, with little difference
in the performance of the resulting classifier. Training a boosted cascade classifier
based on Haar-like features may take days or even weeks to complete even when the
resolution of the training data is low, hence training with larger resolutions should
be avoided. The training requires a tremendous amount of calculation because the
classifier trainer has to try an overwhelming amount of different Haar-like features
before the most discriminative feature is found. Furthermore, this process has to
be repeated for each stage. Now, the number of stages were set to 20, and the min-
imum hit rate and maximum false alarm rate to 0.995 and 0.5 respectively. This
means that the total boosted cascade classifier will have a minimum total hit rate
of 0.99520 ∼ 0.905 and a maximum total false alarm rate of 0.520 ∼ 9.6× 10−7 when
it is used used to classify the training set. Finally, the set of Haar-like features were
chosen to include the rotated variants of the Haar-like features. The choices for
these variables is a matter of balancing the time it requires to train the classifier,
and the accuracy of the classifier.

The training of the classifier was done by resizing the training set to 24 × 48 pix-
els, and by use of the application opencv traincascade included in the OpenCV
library. A second boosted cascade classifier which included the mirrored version
of the training set was also trained, in addition to a third classifier which was
trained with both the mirrored version and the extra 500 negative examples. Now,
opencv traincascade is a tool that takes the above mentioned parameters together
with a labeled training set as input, and outputs a data file containing the Haar-
like features and the threshold for each stage, i.e for each stage a strong classifier
of the type described in equation 2.13 is given. opencv traincascade achieves this
by applying the AdaBoost algorithm, which was described in section 2.2.2, at ev-
ery stage. It should also be noted that the number of Haar-like features at each
stage is a result of the chosen minimum hit rate and maximum false alarm rate.
With a maximum false alarm rate of 0.5, the strong classifier at the first stage is
only required to filter out half of the negative examples, which is not very much.
Hence, a small amount of Haar-like features can be used. If the maximum false

5.2. Implementing the Object Tracking Algorithm 74

alarm was set any lower, more features would have to be added in order to make
the first stage satisfy the accuracy requirement. Furthermore, if the minimum hit
rate is set high (e.g 0.9999), there are not a lot of room for mistakes, hence many
Haar-like features are required to satisfy this accuracy requirement. By the same
logic, a lower minimum hit rate will yield a lower amount of Haar-like features.

To test these classifiers, a similar procedure as for the SVM/HOG classifiers was
applied. That is, after scaling the boosted cascade classifiers to 64x128, a search
window of the same size was created. As before, sliding the search window over the
test images, moving it 16 pixels at a time, the test images were searched for pedes-
trians. This was done by applying the cascade of strong classifiers on the search
window, classifying it as a pedestrian if all the stages in the classifier were passed.
If the search window was rejected at some stage, the region was said to not contain
a pedestrian. To speed up this process, the technique of integral images described
in section 2.1.1 were used to calculate the values of the Haar-like features. Finally,
the ROC curves for each of the two classifiers were constructed in the same manner
as before.

5.2 Implementing the Object Tracking Algorithm

The implemented object tracking algorithm was heavily based on the theory from
chapter 3, and was programmed in C++. The OpenCV library was extensively
used in the process of reading images from the infrared camera, processing these
images and also in handling the classifiers. OpenCV has support for both boosted
cascade classifiers as well as SVM classifiers, which made it easy to load these
classifiers into the C++ framework. Using the classifiers for object detection and
recognition was also simplified through the use of support functions in OpenCV,
such as the inbuilt detect function. This is an algorithm that checks whether a
search window passes through all stages in a cascade classifier or not. The object
detection was implemented in the same way as in section 5.1.1 for the SVM/HOG
classifiers, and as in section 5.1.2 for the boosted cascade/Haar-like features clas-
sifiers. Furthermore, a framework for managing (e.g creating/removing/updating)
the Kalman filters was also implemented in C++. This worked as a support mod-
ule for the tracking algorithm, making it easier to track multiple objects at the
same time.

Now, the flow of the implemented object tracking algorithm can be seen in fig-

75 Chapter 5. Experiments

Retrieve Predicted
Position of Tracked

Objects

i=5?

Object Recognition
on Regions of

Interest

Use Predicted
Location as Center

of Regions of
Interest

Segmentation by
thresholding

Extract Regions of
Interest

Match
Measurements To

Kalman Filters

No Yes

Retrieve image
from camera

i = 0

Morphological
'Opening'

Connected
Components

Labeling

Kalman Filter
Manager

Kalman Filter
Manager

i = i + 1

Normalize

Figure 5.3: A flowchart of the implemented tracking algorithm. The matching of
measurements is achieved by solving the global nearest neighbor problem. The
Kalman filter manager is responsible for updating, creating and deleting Kalman
filters based on measurements from the detection algorithms.

5.2. Implementing the Object Tracking Algorithm 76

ure 5.3. As illustrated, the algorithm searches the full image for interesting regions
once every 5 frames. This is done by applying many of the techniques listed in
section 3.2.1, which results in that only the promising regions in the image is for-
warded to the detect and match part of the algorithm. Now, in the frames in
between each full search, only the regions most likely to contain already detected
objects are searched. This is achieved by predicting the position of the tracked
objects, and then creating a search window which is centered around this posi-
tion. The search region was chosen to be 20% bigger than the expected object size,
where the expected object size is the same size as the object was last time it was
observed. This process is done in order to limit the computational power required
to run the tracking algorithm smoothly on the SBC. It should noted that support
for multiple sized object detection and tracking can be added to this setup, but
that it requires much more computational power than detecting only a single, fixed
object size. Multi sized object detection is achieved by having the search window
simultaneously slide over different scaled versions of the original image. In this
way, an object of any size in the original image, will have the same size as the size
of the object the detection algorithm is searching for in at least one of the scaled
versions. Hence, the object detector becomes invariant to the object size. The
down side of this is, as mentioned, an increase in required computational power.
However, the amount of scaled versions of the original image used will affect both
the extra computation needed, and the algorithm’s ability to detect objects of dif-
ferent size.

The implemented data association (measurement matching) algorithm is a global
nearest neighbor solution, created by modifying hungarian-cpp [2], an open source
solution to the minimum assignment problem based on the Kuhn-Munkres algo-
rithm. Furthermore, the Kalman filter manager is the module responsible for ei-
ther initializing tracking of a new object (adding a Kalman filter in the case of
odd measurements), or using the predicted object position as a measurement (no
measurement available). The details of how this manager works are illustrated in
figure 5.4. In short, the manager checks every fifth processed image frame whether
a tracked object has been observed within the last five frames or not. If the object
has not been detected within these frames, the tracking of this objects is removed
from the manager. It also creates and updates the existing Kalman filters when
queried to do so.

To optimize the performance of the object tracking algorithm, it is important to
choose appropriate values for the different design parameters. The design param-
eters of the tracking algorithm are parameters such as the Q, R and P0 matrices
(as described in section 3.1.2) for the Kalman filters. Another parameter is the

77 Chapter 5. Experiments

Figure 5.4: Data flow of the Kalman filter manager. The manager supplies the
tracking algorithms with predictions, and the tracking algorithm supplies the man-
ager with measurements. This results in an estimate-and-measure tracking ap-
proach.

5.3. Implementing Additional Functions 78

number n of search windows in the vicinity of each other that has to be classified
as positive before it is concluded that a human is present. Now, some of these
parameters were decided by trying and failing. An example of this is the entries in
Q, R and P0. They were varied performing qualified guesses, and the performance
of the tracking algorithm was evaluated for each set of matrices. The performance
criteria in this case was the sum of the absolute value of the tracking error (differ-
ence between real position and estimated position) in an example video containing
a human walking around in a random pattern. The tracking error was found by
manually creating the real trajectory path for the human in the video sequence,
and then comparing the real position with the estimated position. The choice with
the lowest sum of errors was then chosen as the ’optimal’ choice. For the variable
n, the ROC curves for each classifier was used to decide at which combination of
true positive rate and false positive rate the classifier should operate at, when it is
applied in the object tracking algorithm. As this approach do not guarantee that
the parameters are chosen as a global optimum, it can only be concluded from the
tests that the performance of the tracking algorithm is good enough.

5.3 Implementing Additional Functions

With the object tracking algorithm functioning properly, real-time tracking in UAV
can be achieved. However, without any additional functions it is neither possible to
view what the payload is tracking nor review after a test flight how the algorithm
performed. This is why some additional features are needed. More specifically, the
implementation of streaming from the payload to the ground station, data logging
of the positional trajectories of the tracked objects and finally a simple navigation
algorithm was of interest.

The video streaming from the payload was implemented in two parts. The first
part was to have the object tracking algorithm draw the estimated positions of
the tracked humans as a small red box in each frame captured from the infrared
camera (one box for each Kalman filter), and then storing this sequence of images
as a motion jpeg (MJPEG) file locally on the PandaBoard. The second part was to
implement a video streamer that could stream the MJPEG file over the http pro-
tocol. The reason for choosing this protocol is that Neptus has built in support for
such video streams, which in turn makes it very easy to interface the video stream
to the ground station. Interfacing a http video stream to Neptus can be done by
simply connecting Neptus to the URL of the video stream. An illustration of how

79 Chapter 5. Experiments

Figure 5.5: The tracking algorithm writes the images that it processes (with marked
object locations) to a file stored on the SBC. The video streamer reads from this
file, and streams its content over the HTTP protocol. The control station views
the stream by connecting to the correct HTTP address.

the video streaming module works is shown in figure 5.5. The video streamer was
implemented by using the open source plugin MJPEG Streamer [3].

The data logger was implemented in a very straight forward manner. That is,
for each image frame captured from the infrared camera, object tracking is per-
formed as normal. Now, after the tracking algorithm has updated the Kalman
filters of the objects that are being tracked, the estimated position of these objects
are stored in their own respective trajectory vector. This continues as long as the
objects are being tracked. When the target is lost, or every one hundred frame,
the trajectory vector is written to a data file located on the SBC before it is reset.
In the data file located on the SBC, the object ID (one ID per Kalman filter) and
location in the image plane at each frame is stored. The frame number (counted
incrementally and reset every 231th frame)1 at each position is also stored, so that
each position is marked with a ’time stamp’. A parser that is able to extract and
display position trajectories of an object based on a given ID was implemented
and used to compare real position versus estimated position of tracked objects.
Note that the data logger should be coupled with information from the GPS, as
an object’s position in the image plane may provide limited information about the
object. Consider the case where the UAV is tracking a boat that is moving in
the same direction, and also with the exact same speed as the UAV. The boat can
appear stationary in the image plane, when in reality it is moving very fast. Hence,
interfacing the data logger to GPS data is important and should always be done
when possible. However, this was not implemented in the present thesis.

The navigation algorithm was implemented only to illustrate a ’proof of concept’,
i.e the navigation algorithm was designed so that it outputs some navigational

1The reason behind this reset is that the frame number is stored locally as an unsigned integer.
The maximum value of such a variable is 232, hence a reset is required when the frame number
approaches this value.

5.3. Implementing Additional Functions 80

Figure 5.6: A very simple navigation algorithm. If the estimated location of a
tracked object is within a red zone, the UAV should move according to the scheme
illustrated.

commands based on the location of the tracked objects. These commands are then
communicated to Dune. Now, Dune is not yet configured to do anything with these
messages, hence the UAV is not actually controlled by this navigation algorithm.
However, in future work, this is exactly how the object detection algorithm will
take over control and navigation of the UAV, and implementing such an algorithm
is therefore of great interest. The navigation algorithm implemented in the present
thesis is based on a näıve approach. It divides the image plane into nine regions as
illustrated in figure 5.6. Now, if the estimated position of a tracked object enters
one of the red regions, a message is sent to Dune indicating that the UAV should
move in order to keep the object within the field of view of the infrared camera.
The navigation algorithm also visualizes this by drawing a small green circle in the
critical region containing the tracked object on the video stream. Hence, the oper-
ator is also able to see what the navigation algorithm is communicating to Dune.
The communication between the navigation algorithm and Dune is achieved by
sending IMC data packets. In the case where Dune is running locally on the SBC
(setup configuration 1), the messages are sent over the local memory bus, while
they are sent over the local Ethernet network otherwise.

81 Chapter 5. Experiments

5.4 Field Testing

Having implemented and verified that the object detection and tracking algorithm,
the video streaming module, the data logger and the näıve navigation algorithm was
working as intended, it was of interest to evaluate the performance of the payload
in a real life scenario. However, it was still considered important to be able to
compare different choices for the parameters of the tracking algorithm from some
sort of common ground. To satisfy these seamlessly contradicting interests, the
real-time tracking was simulated on the PandaBoard. This was done by performing
object detection and tracking on already captured video sequences, while at the
same time keeping track the processing time of each image. Now, when a new
frame was to be read from the video, the tracking algorithm was programmed to
skip the amount of frames that it would have lost during object detection and
tracking, given that the test was performed in a real-time scenario. In this way,
the PandaBoard receives the exact same amount of frames and information as it
would have done if the images were capture and loaded into the tracking algorithm
in real-time. The number of frames that was skipped, was decided by the following
equation

frames to skip = ceil(time elapsed since last frame capture

frames per second in the video sequence
)

where ceil() is a function that rounds up to the nearest integer. It should be noted
that the video streaming module, Dune and the data logger were all running locally
on the PandaBoard as if the test was done in the field. By doing the tests in the
described way, the real-time performance of the tracking algorithm could easily be
evaluated for the different possible parameter choices for the tracking algorithm
(e.g the Kalman filter parameters and type of classifier). Furthermore, comparing
the choices made to each other could be done with in an unbiased manner.

All the tests were done by using a setup of the payload that was identical to setup
configuration 1, with the exception of not having a GPS/INS device. After the
payload was set up and functioning, its performance was evaluated by performing
real-time single target tracking with the payload during the following situations

• Payload has no egomotion2 and target is not moving.

• Payload has no egomotion while the target is moving.

2In computer vision, the term egomotion refers to the three dimensional movement of a camera
within an environment.

5.4. Field Testing 82

• Payload has egomotion while the target is standing still.

• Payload has egomotion and the target is moving.

Before these tests were done, an optimal set of parameters were found by apply-
ing the real-time simulation to one of the already stored video sequences. The
different parameters that were tested included the number of frames between in
each full frame search (initially it was every 5 frames), the size of the search region
created based on an object’s estimated position and the Q, R and P0 matrices for
the Kalman filters. Benchmarks of the tracking algorithm such as image frames
processed per second and tracking error were registered for each choice, and the
settings that were found to yield best performance was used in the simulated field
tests of the above mentioned scenarios. During these tests, the payload and the
command center (external computer running Neptus) were connected to the same
wireless network, and the command center was configured to display the video
stream from the payload while communicating with the Dune client in the payload
through IMC packages. This was done to verify that the connection between the
two was working as intended. Before any of the simulations tests were performed,
the software package developed for the payload was optimized for the PandaBoard.
This was achieved by making sure that the SD card connected to the PandaBoard
was of class 103 and configuring the operating system (Ubuntu) to only contain a
bare minimum of extra features, e.g by removing the graphical user interface.

3The class of a SD card represent the speed at which it can be written to or read from. Class 10
is the highest class (i.e the highest read/write speed) available for these type of storage mediums.

Chapter 6

Results and Discussion

Based on the results gathered from the process described in the previous chapter,
some important conclusions can be made. At this stage in the development process,
it is still important to evaluate and question every aspect of the implementation.
The payload designed in the present thesis is not a perfect solution, hence locating
the areas which need improvement is crucial for the future development of the
payload. Now, in order to find out how the payload can be improved, the following
points were considered important

1. Evaluate the performance of the trained classifiers.

2. Evaluate which of the two object detection and recognition algorithms is best
suited for application in the implemented object tracking algorithm.

3. Evaluate the performance of the tracking algorithm when applied to already
stored video sequences.

4. Evaluate the performance of the total payload based on experience and data
gathered from the field test.

The following chapter is based on the above mentioned list, and features a review
and discussion of the most important results that were found.

83

6.1. Performance of the Classifiers 84

6.1 Performance of the Classifiers

As mentioned in the previous chapter, a good way to evaluate the performance of
a classifier, and also compare classifiers against each other, is by inspecting their
ROC curve. The resulting ROC curves for the three different SVM/HOG classifiers
are shown in figure 6.1, and for the three different BC/HL classifiers in figure 6.2.
Note that the maximum TPR and FPR of a classifier (the point on the ROC
curve located at the top right position), is equal to the case where n = 0. Hence,
increasing n is equal to moving down and left on the ROC curves. n is still defined
as the number of search windows needed to be classified as a human per actual
human being classified. This means that n = 0 is equal to the case where there are
no requirements on the amount of neighbouring search windows also needed to be
classified as positive in order to return a region of interest as positive. It should be
noted that even though the false alarm rate appears small for all of the classifiers,
the number of search windows per image must be considered. E.g consider the case
where an image of size 640x480 is searched for objects of the size 64x128. Letting
the search window move 4 pixels at a time, the number of regions that has to be
checked is equal to

(640 − 64

4
+ (64

4
− 1)) ∗ (480 − 128

4
+ (128

4
− 1)) = 18921

which means that even with a false alarm rate as small as 1.78 × 10−4 (the false
alarm rate for the original SVM/HOG classifier at n = 0) there will be an average
of ∼ 3 false alarms per image searched. This performance can be considered sub par.

Now, looking at the ROC curves for the three different SVM/HOG classifiers,
it is seen that all of them has a very high maximum true positive rate. This means
that all of the classifiers are able to find most of the humans in video sequences
that are similar to the test data. Furthermore, as seen from figure 6.1, training
the SVM/HOG classifier using the mirrored version of the training set yields a
better result. Further improvement can also be made by adding more negative
examples to the training set, i.e it is observed that adding novel data to the nega-
tive examples noticeably decreases the false alarm rate for the classifier. Moreover,
the positive effect of adding novel data is bigger than the effect of training with
the mirrored data set included. However, increasing the size of the training set
by adding only negative examples yields a poorer performance for classifying the
positive examples, when compared to the performance of the other two classifiers.
This can be seen from the fact that there is a small decrease in maximum TPR for
the classifier trained using both the mirrored data set and the 500 extra negative

85 Chapter 6. Results and Discussion

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10−4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positives Rate

T
ru
e
P
o
si
ti
ve

R
a
te

Receiver Operating Characteristic For SVM/HOG Classifiers

Original Classifier
Added Mirrored Examples
Added Additional Negative Examples

Figure 6.1: The ROC curves for the trained SVM/HOG classifiers. The required
number of positive classifications in the vicinity of each other per actual positive
classification was varied between n = 0..20.

6.1. Performance of the Classifiers 86

0 1 2 3 4 5 6

x 10−5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positives Rate

T
ru
e
P
o
si
ti
ve

R
a
te

Receiver Operating Characteristic For Boosted Cascade/Haar-like Classifiers

Original Classifier
Added Mirrored Examples
Added Additional Negative Examples

Figure 6.2: The ROC curves for the trained BC/HL classifiers. The required
number of positive classifications in the vicinity of each other per actual positive
classification was varied between n = 0..20.

examples. However, it is seen that the decrease in the TPR is small compared to
the decrease in the FPR, which yields a net increase in performance.

For the BC/HL classifiers, a similar trend to that of the SVM/HOG classifiers
is seen regarding the effect of increasing n. However, the BC/HL classifiers re-
sponds a little better to the increase of n, as the TPR remains relatively high
(at least when compared to the SVM/HOG classifiers), while the FPR approaches
zero. This gives more freedom and control when applying the classifier in the ob-
ject tracking algorithm, as the number n can be varied until (hopefully) a sufficient
tracking performance is achieved. Note that the maximum TPR and FPR of the
BC/HL classifiers are overall markedly lower than the rate for the HOG/SVM clas-
sifiers.

It should be noted that even though the trained BC/HL classifiers has a signif-
icant edge in performance over the SVM/HOG classifiers, this should in no way be

87 Chapter 6. Results and Discussion

seen as a generalization of the performance of the two. On the contrary, this was
only an evaluation of the training process of the two classifiers, and a review of the
amount of training data needed for each classifier to perform adequately well. Both
types of classifiers are classifiers known to achieve remarkable results in e.g the task
of pedestrian detection, with state-of-the-art classifiers of the type SVM/HOG ac-
tually performing better than the BC/HL classifier. However, it seems like this
classifier requires a very large and varied training set to reach the point where it
performs better than the BC/HL classifier.

6.2 Comparing the Classifiers

When different classifier types are to be compared, the first thing that has to be
decided is how they should be compared. In the present thesis, these are the
characteristics of the classifiers considered most important

• Training time

• Detection speed

• Performance on novel data

• Invariance to

– Orientation/Rotation

– Size

– Changes in intensity

Now, the difference in the training time for the two types of classifiers used in the
present thesis, is in the order of several days. In fact, the average training time
for the SVM/HOG classifiers were only 20 minutes, while it was on average three
days for the BC/HL classifiers, even though support for multiple CPU cores had
been added using the OpenMP library1. The long training time is due to the ex-
treme amount of different Haar-like features that it is possible to create within a
24x48 pixels image. It should be noted that as the BC/HL classifiers are trained
one stage at a time, it is possible to create a temporary classifier using only the

1OpenMP is an open source library which makes it easy to implement parallel computing
independent of OS and CPU architecture

6.2. Comparing the Classifiers 88

Table 6.1: The time used by different classifiers to perform object detection on a
set of 1000 images with a resolution of 720x486, moving the search window only
1 pixel at a time. The multi scale classifiers were set to detect object sizes up to±50% the original training size (64x128)

Classifier Type
Total Processing
Time in Seconds Frames per Second

HOG/SVM Single Scale 216 4.6
BC/HL Single Scale 56 17.9
HOG/SVM Multi Scale 644 1.56
BC/HL Multi Scale 123 8.2

already trained stages for detection. However, it should be self-explanatory that
the performance of these temporary classifiers may be very poor.

The detection speed of the classifiers is the rate at which the classifiers can be
used to search an image for objects. Defining the rate to be measured as images
per second, the time required by each classifier for performing detection on a set of
1000 images of the size 720x486 can be seen in table 6.12. It is clear from this table
that the BC/HL classifier is noticeably faster at detecting than the SVM/HOG
classifier. However, since the SVM/HOG has a higher TPR than the BC/HL clas-
sifier, the high TPR can be sacrificed for increased detection rate by increasing the
distance the search window is moved between each detection, effectively reducing
the number of search windows per image. This will increase the detection speed,
but also decrease the TPR. The detection time for the SVM/HOG classifier can also
be somewhat reduced by e.g reducing the number of overlapping cells per block,
but this might also affect the performance of the classifier as the HOG descriptor
will have fewer dimensions. This is also the case if the SVM/HOG classifier is
trained on positive and negative examples of a smaller resolution.

When it comes to performance on novel data, it is seen from the ROC curves
that the SVM/HOG classifier consistently has both a higher TPR and FPR for
n = 0. However, when n is increased, the BC/HL classifiers has a higher TPR
and lower FPR than the SVM/HOG classifiers. This means that which classifier is
better to use really depends on the ability (or possibility) to remove false positives
by some other means. In chapter 3 some techniques to filter out non interesting

2The computer used was a desktop computer with a quad core i5-2400 3GHz CPU

89 Chapter 6. Results and Discussion

Table 6.2: Summary of the comparison of the two classifiers. More + and − signs
indicates a larger difference.

Characteristic HOG/SVM Classifier BC/HL Classifier
Training Time + + + − − −
Detection Speed − − − + + +
Performance on Novel Data + −
Orientation Invariance + −
Size Invariance −− ++
Intensity Invariance ++ −−

regions are proposed, and will in many cases give the SVM/HOG classifier a tiny
advantage over the alternative. Furthermore, an aspect not considered in the test
set, is the ability of the SVM/HOG classifier to detect humans with significantly
different temperature than the temperature of the humans in the training set. As
previously mentioned, the temperature of humans compared to the temperature of
the environment might change their appearance in IR imaging completely, hence,
good detection for both cases based on only one classifier may be difficult. However,
the SVM/HOG classifier is partly invariant to this because it bases the detection
on contour rather than intensity values. That is, even though the color of the
humans change, their contour do not. This results in that a SVM/HOG classifier
trained using images of relatively hot humans, can also be used in some cases to
detect humans relatively cold. The BC/HL type of classifiers would have to be
trained for both cases separately, effectively having one classifier for humans that
are hot compared to the environment, and another classifier for humans that are
cold compared to the environment.

Regarding the invariance with respect to factors such as rotation, size and in-
tensity, the SVM/HOG classifier is the more robust alternative. This can be seen
from the fact that this classifier is partly rotation invariant, as objects can be ro-
tated ± 180○

2×number of bins
and the classifier will still classify correctly. This is because

when the HOG descriptor is constructed, a rotation of the mentioned order will not
affect which rotation bin the gradients are sorted into. The BC/HL classifier can
be trained to tolerate small rotations by increasing the training set and including
rotated examples of the positive training data. However, if the training set includes
a big variety of object orientations, the classifier will not perform well as the HL
features that discriminate correctly on one example is going to fail on another. The
SVM/HOG classifier is also more robust to changes in the image intensity, as the

6.3. Performance of the Tracking Algorithm 90

HOG descriptor is normalized within each block. This yields a good performance
invariant of how bright the object appears, as long as its contours are visible. The
BC/HL classifier will tolerate small changes in intensity, but if it changes markedly
from the training set, the threshold set for each HL will no longer be appropriate.

The comparison of the two classifiers are summarized in table 6.2.

6.3 Performance of the Tracking Algorithm

The tracking algorithm was implemented as described in the previous chapter, and
the performance of the algorithm given different choices for the design parameters
was evaluated using several prerecorded video sequences. The performance was
evaluated by establishing a ground truth of the location of humans in the video
sequences, i.e manually registering their actual location in the image frames. The
ground truth was then compared to the estimated position of the tracked humans.
The estimated positions of the tracked targets was available through the imple-
mented data logger module. The performance of the tracking algorithm was then
evaluated by plotting the tracking error along with the tracking characteristics for
each case in graphs such as figure 6.3 and 6.5. The absolute value of the tracking
error at time step k was defined as follows

∣ε[k]∣ = √(p[k] − p̂k∣k[k])(p[k] − p̂k∣k[k])T (6.1)

where p[k] is the ground truth (manually registered position) at time step k, and
p̂k∣k[k] is the a posteori position estimate at time step k. This was an effective
method to evaluate the performance of the tracking algorithm for different param-
eters, as it is easy to verify that a human is being correctly tracked in addition to
that it makes it easy to compare tracking errors. It should also be noted that since
the real position was made manually, the real position is inaccurate at some points.
This results in that parts of the tracking error may be due to an inaccurate mouse
click, rather than an error in estimated position. However, this error was considered
to be small compared to the tracking errors, and was disregarded in the evaluation
of the tracking performance. Furthermore, it was wanted to compare the use of the
BC/HL classifier type for detection to the case of using the SVM/HOG classifier
type instead, in a non biased way. This was achieved by applying already well
trained classifiers for object detection during the tests that were done. Specifically,
the applied BC/HL classifier was the one developed by Kruppa, Castrillion-Santana

91 Chapter 6. Results and Discussion

60 80 100 120 140 160 180 200 220
0

50

100

150

200

250

300

350

Frame Number

O
b
je
ct

L
o
ca
ti
o
n
[p
ix
el
s]

Real and Estimated Object Position (Horizontal Direction)

Estimated Position
Real Position

60 80 100 120 140 160 180 200 220
0

50

100

150

200

Real and Estimated Object Position (Vertical Direction)

Frame Number

O
b
je
ct

L
o
ca
ti
o
n
[p
ix
el
s]

Estimated Position
Real Position

60 80 100 120 140 160 180 200 220

0

5

10

15

20
Absolute Value of the Tracking Error (|ε|) vs Time

Frame Number

E
rr
o
r
|ε|

[p
ix
el
s]

Figure 6.3: The tracking performance of the implemented tracking algorithm com-
bined with a HOG/SVM classifier for the detection step. Note that the overall
tracking achieves a very small tracking error, with small spikes in the error when
the target changes velocity.

6.3. Performance of the Tracking Algorithm 92

and Schiele [21], and the SVM/HOG classifier was the one originally developed by
Navneet Dalal and Bill Triggs [14]. Both are classifiers known to perform well for
human detection in thermal imaging.

Now, the tracking error for different choices for the parameters when tracking the
same human was considered a reasonable method to compare the different choices.
The tracking error of some of the most promising choices for the matrices Q, R
and P0 that were found are summarized in figure 6.4.

From this figure, it is seen that tracking with Q = R = P = I gives relatively
large spikes in the tracking error. This is due to the fact that with a large Q ma-
trix, small differences in the measured position versus the estimated position will
yield a relatively large change in the estimate for the velocity state in the motion
model. Hence, in the absence of measurements, the Kalman filter will drift away
from the target. Only when a new measurement is available is the estimated po-
sition ”pulled back” to the real position. Since the R matrix is set equal to Q,
this results in a Kalman gain (as seen in equation 3.7) which is large enough to
make the process of correcting for a big difference between measured and estimated
position happen almost instantly.

For the choice of Q = R = I × 10−2 and P0 = I, Q and R are still equal, hence,
a very similar tracking behavior is observed. The difference is that the tracking
error now is in a smaller scale, and that the final spike in the tracking error for this
choice of parameters is actually due to the Kalman filter changing which target it
tracks. This happens because there is another human right next to the originally
tracked human, and that there is only one measurement available for both of them
at frames ∼ 185−190. Since R now is smaller than in the first example, the tracking
algorithm trusts the measurements more. This results in that the available mea-
surement, which is closer to the human not being tracked, is quickly adapted as
the real position. This results, as mentioned, in that there is a change in which
human the Kalman filter is tracking.

The confusion of which human to track is also the reason for the large spike in
the tracking error starting at frame 185 for the next choices of parameters, i.e
Q = I × 10−2 and R = P0 = I. For these values, Q is chosen relatively small com-
pared to R and P , resulting in a smaller Kalman gain. This yields a smoother
tracking characteristic compared to that of the previous choices. Furthermore,
when the measurement that is matched to the Kalman filter is the measurement
of the position of the second human instead of the tracked human, and in addition
this happens several frames in a row, the Kalman filter adapts based on the wrong

93 Chapter 6. Results and Discussion

60 80 100 120 140 160 180 200 220 240
0

10

20

30

40
Absolute Value of the Tracking Error for Q = R = P0 = I

Frame Number

E
rr
o
r
|ε|

[p
ix
el
s]

50 100 150 200

0

5

10

15

20
Absolute Value of the Tracking Error for Q = R = I × 10−2 and P0 = I

Frame Number

E
rr
o
r
|ε|

[p
ix
el
s]

60 80 100 120 140 160 180 200 220

0

5

10

15

20
Absolute Value of the Tracking Error for Q = I × 10−2 and R = P0 = I

Frame Number

E
rr
o
r
|ε|

[p
ix
el
s]

60 80 100 120 140 160 180 200 220

0

5

10

15

20
Absolute Value of the Tracking Error for Q = I × 10−4, R = I × 10−2 and P0 = I

Frame Number

E
rr
o
r
|ε|

[p
ix
el
s]

Figure 6.4: The tracking error for various choices of the Q, R and P0 matrices
of the Kalman filter. Note that all tracking errors are based on the same video
sequence.

6.3. Performance of the Tracking Algorithm 94

measurement. Hence, when measurements of the human actually being tracked are
available again, it is too late to change the course of the estimated motion model
states of the Kalman filter. This results in that the human being tracked changes
also for this configuration.

Lastly, the parameters Q = I × 10−4,R = I × 10−2 and P0 = I was tested. Since
Q now is chosen small compared to R, but R still is chosen relatively small, the
tracking characteristic appears smooth, but not as smooth as for the case where
R = I. However, as seen from figure 6.4, this appear to be a good combination of
parameters, as the average tracking error is low, and the tracked human is neither
lost nor confused with the second human in the vicinity of the one being tracked.
This means that these parameters results in a Kalman filter that is well suited for
tracking objects in scenarios similar to the one tested. Hence, the matrices Q, R
and P0 were chosen as

P0 =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 × 10−4 0 0 0
0 1 × 10−4 0 0
0 0 1 × 10−4 0
0 0 0 1 × 10−4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
R = [1 × 10−2 0

0 1 × 10−2
]

(6.2)

Having made a choice for these parameters, it should be emphasized that there
probably is no universal best set of parameters. This is because the best choice
depends on the velocity and motion of the targets being tracked. In most of the
video sequences that were recorded, the humans are not moving especially fast
by the means of pixels per frame. More importantly, they were moving at very
similar speeds (if moving at all), hence the parameters should be subject to change
when applied to different scenarios. Furthermore, considering the motion model
described in equation 3.3, it is reasonable to model the process noise as an ever
present acceleration ak which is normally distributed with E[ak] = 0 and standard
deviation of σa, i.e Gaussian white noise. Now, with this assumption, we can
rewrite the linear model using Newton’s laws of motion such that it takes the
following form

x[k + 1] =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

x[k + 1]
y[k + 1]
vx[k + 1]
vyx[k + 1]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

x[k] +ΔTvx[k] + 1
2
ΔT 2ak

y[k] +ΔTvy[k] + 1
2
ΔT 2ak

vx[k] +ΔTak
vy[k] +ΔTak

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= Ax[k] +Kak

95 Chapter 6. Results and Discussion

where K is the matrix

K =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

ΔT 2

2
ΔT 2

2
ΔT
ΔT

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Noting that Kak is the term wk in the linear motion model derived in equation
3.3, together with the fact that the matrix Q for the Kalman filter is equal to
cov(wk,wj) (equation 3.7), the result is the following

Q = cov(wk,wj) = (Kσa)(Kσa)T =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔT 4

4
ΔT 2

4
ΔT 2

2
ΔT 2

2
ΔT 2

4
ΔT 2

4
ΔT 2

2
ΔT 2

2
ΔT 2

2
ΔT 2

2
ΔT ΔT

ΔT 2

2
ΔT 2

2
ΔT ΔT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
× σ2

a (6.3)

which strongly suggest not only that the process variance of the states are depen-
dent on each other, but that the entries of Q should be scaled accordingly to this
result. Tests based on this result were not researched to any significant extent, but
should be considered in the future when searching for good values for Q.

Having established some settings for the Kalman filter that yields good track-
ing characteristics, and also a low tracking error, the overall performance of the
tracking algorithm must be evaluated. From figure 6.3 it is seen that the tracking
error starts off relatively high. This is reasonable, as the Kalman filters are initi-
ated with initial velocity 0, but the human is actually moving. This means that
the estimated states of the motion model initially are wrong. Because of this, the
quality of the prediction step is poor, and this results in a relatively high track-
ing error. It is seen that after ∼ 20 frames, the measurements have changed the
estimated states, and the predicted position is almost equal to the real position.
The next spike in the tracking error (at frame ∼ 110) was due to an occlusion, and
was the result of tracking without any available measurements. It is readily seen
that the estimated position in frames 90 − 110 is the result of the Kalman filter
assuming that the human continues to move at the same speed as the estimated
velocity at the time of the last measurement. However, the choice made for the
values in Q keeps the estimated position in the vicinity of the real position, and
when a measurement becomes available at frame ∼ 110, the estimated states are
corrected. The final spike in the tracking error (at ∼ 200) is a good example of
the negative sides of choosing a relatively small Q. Since the estimated veloc-
ity is ∼ 0, the estimated position lags behind the real position when the human
suddenly starts to move. This illustrates that choosing Q is a matter of balanc-
ing good predictions and adaptability. In this example, the tracking error spikes at

6.3. Performance of the Tracking Algorithm 96

110 and 210 are almost equal, which means that the chosen Q was a decent choice.

Looking at figure 6.5, another aspect of the performance of the tracking algorithm
is illustrated. Initially, at frames 910 − 940 there are two humans in the image
frames, but the distance between them is so small that both of these measure-
ments are considered to be associated with the same Kalman filter. This results in
that only one of the humans is being tracked. However, when the tracked human
moves a little bit further away from the other human in the image, the Kalman
filter manager realizes that there are actually two humans present. This results in
that another Kalman filter is initiated, and tracking of both humans is commenced.
Notice that even though tracking two humans standing next to each other is no
extraordinary feat, it must be specified that for this to be possible, it is a re-
quirement that there is no mix up of the two measurements. This illustrates that
the implementation of the GNN matching algorithm was successful. Note that a
NNSF probably would have failed at this task, as both measurements are within
the vicinity of each other, resulting in the occasional mix up described in figure 3.8.

The final parameters to evaluate for the tracking algorithm is both the size of
the search regions, and at which point on the ROC curve the classifiers should
operate at. By varying these parameters and performing tracking on the video
sequences, it was found that a high TPR, i.e n = 0 (at the cost of a relatively high
FPR), combined with a relatively large search region (± ∼ 1 × object size), yielded
good tracking performance, but also a significant number of Kalman filters initi-
ated based on false positives. Most of these were quickly removed due to the lack
of continued measurements, but in some cases the tracking based on these mea-
surements could lasts for as much as up to 20 − 30 frames. Hence, for this to work
properly, some other means of weeding out false positives must be implemented. A
simple approach where the search region in the thresholded image was required to
contain at least 40% high intensity pixels was implemented and verified to reduce
the number of false positives. However, this requires extra computational power,
and should therefore be avoided if possible. An alternative solution is to decrease
the size of the search region created based on the predicted object location, but
this is usually not a very good idea. Decreasing this region should generally be
avoided, since the predicted location may differ from the real position by up to
20 − 30 pixels. Hence, decreasing the size of the search region increases the chance
of not capturing the region where the tracked human is present. Now, increasing
n, effectively moving the operating point of the classifiers downwards and left on
the ROC curves, proved to increase the performance of the tracking algorithm.
This is reasonable, because as the Kalman filter manager only removes or creates a
Kalman filter every 5 frames, one measurement of an object within these 5 frames

97 Chapter 6. Results and Discussion

920 930 940 950 960 970 980 990 1000 1010 1020
0

50

100

150

200

250

300

350

Frame Number

O
b
je
ct

L
o
ca
ti
o
n
[p
ix
el
s]

Estimated Position for Tracked Targets (Horizontal Direction)

Estimated Position Human 1
Estimated Position Human 2

920 930 940 950 960 970 980 990 1000 1010 1020
0

50

100

150

200

Frame Number

O
b
je
ct

L
o
ca
ti
o
n
[p
ix
el
s]

Estimated Position for Tracked Targets (Vertical Direction)

Estimated Position Human 1
Estimated Position Human 2

920 930 940 950 960 970 980 990 1000 1010
−2

0

2

4

6

8

10
Absolute Value of the Tracking Error (|ε|) vs Time

Frame Number

E
rr
o
r
|ε|

[p
ix
el
s]

Tracking Error Human 1
Tracking Error Human 2

Figure 6.5: A test scenario where there are two humans present in the video se-
quence. At the beginning, the distance between them is so small that the two
measurements are associated with the same Kalman filter. However, when the dis-
tance between them increases, the tracking of the second humand is also initiated.
After both Kalman filters are initiated, the tracking algorithm manages to track
both humans by correctly matching the measurements to the Kalman filters. This
is achieved by using the global nearest neighbor approach.

6.4. Performance of the Total System 98

is enough for the tracking algorithm to keep tracking the object. Hence, a low FPR
is more important than to have a TPR in the region of ∼ 0.9. Note that increasing
n is only beneficial up until some point, because with a too low TPR, tracking will
be lost and re-initiated from time to time due to the lack of measurements. For the
well trained classifiers used during these tests, the optimal value for n was found
to be 1 for both classifiers.

A final note regarding the performance of the tracking algorithm is the perfor-
mance of the process of normalizing, thresholding and extracting components that
has the shape of a human. This was found to be a process that required some
tuning before functioning properly. That is, there was no universal threshold and
normalization factor that yielded optimal detection of human blobs in all of the
video sequences tested. This resulted in that these parameters had to be tuned
for each video sequence to achieve an acceptable performance, which is not ideal,
as the payload ideally should be able to perform tracking without interaction of
an operator tuning the parameters. An alternative method to extract promising
regions is to base the search on contours rather than intensity, as this is more
robust to intensity changes. However, this approach was not tested. Furthermore,
normalization was found to increase the detection rate when it was applied to every
frame, and not only every fifth frame, i.e when the full image is searched.

6.4 Performance of the Total System

With the tracking algorithm implemented and the classifiers trained, it was of
significant interest to test the payload in a real life, real-time scenario, as this is
more like the scenarios it is intended to be applied to. However, interfacing the
infrared camera to the SBC proved to be a big challenge. The frame grabber used
in setup configuration 1 of the payload (EasyCap), has a community created driver
for the Ubuntu operating system, but requires a Linux kernel version not currently
available for the PandaBoard. Now, there exists software for the PandaBoard that
enables the user to capture the raw data stream3 coming from the infrared camera
with the EasyCap device, hence it is not a problem to record thermal imaging
videos through the use of this frame grabber. The problem occurs when the im-
ages are to be interfaced to OpenCV. OpenCV requires the frame grabber to be

3The raw data stream refers to the uncompressed and non-encoded data coming directly from
the EasyCap device, containing metadata that enables the user to encode the raw data stream
into a reasonable format, e.g an .avi movie file in this case.

99 Chapter 6. Results and Discussion

Figure 6.6: (a) illustrates an example where the implemented image capture library
has successfully captured an image from the raw video stream, and has loaded it
into the data structure used to store images in OpenCV. (b) illustrates that there
are occasional synchronization problems between the image capture library and the
raw video signal, resulting in a heavily occluded image.

registered as a capturing device in the operating system, which requires the drivers
for the capturing device to be installed. However, as mentioned, the driver was not
supported on the PandaBoard. This resulted in that the standard image reader
functions in OpenCV was rendered useless. Hence. an implementation of a small
library able to read the raw video, convert it to gray scale images and load it into
the data structure used to store images in OpenCV was written in C++. The result
from this work is seen in figure 6.6. This figure illustrates that the implemented
library has some occasional problems with synchronization of the raw video signal,
resulting in that some frames are heavily occluded. As no documentation for the
software extracting the raw video stream from the EasyCap was available, the im-
plementation of the image reader library was not an easy task, and does not work
perfectly. It should be noted that further studies of the raw video signal coming
from the EasyCap software will solve this problem.

Now, before the simulation of the real-time tests described in section 5.4 could
commence, a set of parameters for the tracking algorithm yielding a good real-time
tracking performance had to be found. The first parameter that had to be decided
was which type of classifier that should be applied for optimal performance. To an-
swer this question, a real-time simulation test of the two classifiers was performed.
The result of this simulation is given in figure 6.8, and it is readily seen that apply-

6.4. Performance of the Total System 100

Figure 6.7: (a) shows a case where it is not possible to see that the image consists
of two different parts, while (b) shows an illustration of interlacing effects. Since
the target in (b) is moving relatively fast, the two parts that the image consists
of are describing two different scenes, resulting in that the image countour of the
human is occluded.

ing the BC/HL classifier in the detection step of the tracking yields a lower tracking
error than using the SVM/HOG classifier. Now, the explanation for this is divided
in two parts. Firstly, the detection time for the SVM/HOG classifier is much larger
than the detection time for the alternative (BC/HL classification). This results in
that the tracked target is able to move more during the time required for the
SVM/HOG classifier to perform object detection. This means that the distance
between the actual target location and the estimated target location may become
relatively large in each processed frame. Furthermore, since the detection time for
the SVM/HOG classifier is larger than that of the BC/HL classifier, fewer mea-
surements are obtained per second, which yields a longer transition period. That
is, the estimated target location does not converge as fast to the real position when
using the SVM/HOG classifier compared to using the BC/HL classifier. This is
mainly due to the difference in measurement rate that occurs because of the differ-
ence in the time used to detect objects. Now, the other part that plays a role in the
observed tracking error is a concept referred to as interlaced video. Interlacing is
the concept of doubling the perceived frame rate by dividing an image into the data
contained in every even pixel, and the data contained in every odd pixel. These
two parts are then updated only one at a time, meaning that only half of the pixels
in an image needs to be transfered to the viewing application before a new frame
is created. As mentioned, this increases the perceived frame rate, as a new image

101 Chapter 6. Results and Discussion

100 200 300 400 500 600 700 800 900 1000 1100

0

5

10

15

20

25

30

35

40

45

50
Absolute Value of the Tracking Error (|ε|) of Stationary Target and No Egomotion

Frame Number

E
rr
o
r
|ε|

[p
ix
el
s]

Tracking Error for BC/HL
Tracking Error for SVM/HOG

Figure 6.8: The real-time simulation tracking error for the two types of classifiers
used in the present thesis. Note that the tracking error when using the HOG/SVM
classifier for detection is on average larger than the tracking error when the BC/HL
classifier is used for detection instead.

can be created by only exchanging half of the information otherwise necessary, i.e
the case where every pixel in the image must be transferred before a new frame is
created. The latter case is referred to as progressive video. Now, the NTSC signal
coming from the infrared camera is an interlaced video signal, which is not ideal
for the object detection and tracking algorithms. This is because the two different
parts in the interlaced video are not taken at exactly the same time, which in turn
introduces problems referred to as interlacing effects. An illustration of how this
effect is perceived in an image is seen in figure 6.7. The interlacing effects occur
when there is relatively large movements in the image because, under this circum-
stance, the two parts that make up the whole image has registered two different
scenes. The interlacing effects can be seen to affect the contour of the target more
than the intensity. Hence, the interlacing effects affects the SVM/HOG classifier
more than it affects the BC/HL classifier, as the HOG descriptor is built from the
contours of an object. This results in that the detection on frames with the inter-
lacing effects will be poor when the SVM/HOG classifier is applied, resulting in an
even bigger difference in the rate of the measurements coming from the SVM/HOG

6.4. Performance of the Total System 102

classifier compared to the BC/HL classifier. It should be noted that the interlacing
effects can be greatly reduced by a process called deinterlacing. This process re-
quires additional computation power, which is already scarce in the PandaBoard,
hence it was not tested. The Axis M7001 frame grabber proposed for application
in setup configuration 2 actually has an internal deinterlacing function, and should
therefore be used in the payload when possible. Now, to make sure that the dif-
ference in the tracking error found for the two classifiers was not only due to the
interlacing effects, a real-time simulation test was done both on the PandaBoard
and on a desktop computer on a video sequence containing interlacing effects. The
result from this test is given in figure 6.9. From the tracking result in this test, it
is revealed that even with the interlacing effects present, the SVM/HOG classifier
can be used to successfully track humans in real-time. This implies that the biggest
obstacle of using the SVM/HOG classifier for the detection step in target tracking
during relatively large movement is the required amount of time to perform detec-
tion on the PandaBoard. In tests performed, the PandaBoard processed an average
of 3.4 frames per second with the use of the SVM/HOG classifier in the detection
step. Now, this is a reasonable amount of frames processed per second, but when
interlacing effects are present, this may become a problem. If the classifier fails to
classify a human in about half of all cases due to interlacing effects, the net sup-
ply of measurements are in the range of ∼ 1 measurement per second. This is, as
the results indicate, too low to perform efficient object tracking in the presence of
large displacements in the actual object location. However, in situations where it
is known that the target that is being tracked is slow moving in terms of pixels per
second, the use of the SVM/HOG classifier should be encouraged. This is because
even though the tracking error is noticeably larger than when the BC/HL classifier
is used, the ability to detect the target under a large variety of circumstances (i.e
changes in intensities) outweighs the importance of having a ∼ 10% smaller tracking
error. In addition to this, the interlacing effect in such cases is small.

Having established that the BC/HL classifier type performs better than the SVM/HOG
classifier in scenarios similar to those described in section 5.4, this was the classifier
type that was used in the remainder of the simulated tests. Now, to finally test
the performance of the payload in simulated real-time scenarios, the payload was
setup according to configuration 1 (minus the GPS/INS) and verified to function
properly. Then, video sequences according to the scenarios described in 5.4 were
recorded. The payload did not malfunction even once during video recording and
simulated real-time tracking. This is a good indicator of that the PandaBoard
received a stable 5V input, in addition to receiving a sufficiently large electrical
current. The infrared camera also worked flawlessly, supplying the frame grabber
with a continuous stream of images with the exception of small occasional freezes

103 Chapter 6. Results and Discussion

100 200 300 400 500 600 700 800 900 1000 1100
0

50

100

150

200

250

300

350

Frame Number

O
b
je
ct

L
o
ca
ti
o
n
[p
ix
el
s]

Real and Estimated Object Position (Horizontal Direction) on the PandaBoard

Estimated Position
Real Position

100 200 300 400 500 600 700 800 900 1000 1100
0

50

100

150

200

250

300

350

Frame Number

O
b
je
ct

L
o
ca
ti
o
n
[p
ix
el
s]

Real and Estimated Object Position (Horizontal Direction) on Desktop Computer

Estimated Position
Real Position

Figure 6.9: A simulated real-time tracking test with the SVM/HOG classifier used
for the detection step. Notice that when the tracking algorithm is running on a
desktop computer, the object location is tracked almost perfectly, while the track-
ing algorithm fails when it is used with the PandaBoard. This illustrates the
importance of a regular supply of measurements to achieve good target tracking.

6.4. Performance of the Total System 104

due to the camera refocusing the lens. Having verified that the payload was work-
ing as intended in addition to having recorded the necessary video sequences, the
real-time simulation tests was performed. To evaluate the performance of different
parameter choices, the results from the simulation tests are presented in a similar
way to the results in the previous section. Different settings for the PandaBoard
and the tracking algorithm was tested and compared. The settings for the Kalman
filter was based on the results found in the previous section, and the optimal per-
formance was found to be at values where the relative order between the matrices
are similar to the optimal result found in section 6.3. That is, the following Kalman
filter parameters were chosen as

P0 =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 × 10−2 0 0 0
0 1 × 10−2 0 0
0 0 1 × 10−2 0
0 0 0 1 × 10−2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
R = [1 × 10−1 0

0 1 × 10−1
]

(6.4)

The reason for increasing Q is that in the simulated real-time tracking case, the
actual position of the tracked object changes more per measurement than in the
case where each frame in the video sequence was processed. This means that the
prediction step should include more insecurities, as moving too much in one direc-
tion may easily lead to that the tracking of target is lost. Furthermore, the increase
in the measurement noise is due to the fact that even though the target is observed
at some location, this may very well be a terrible estimate for the object position
only one or two frames after the observation was done. Hence, care should be taken
not to update the states of the motion model too fast. Increasing R results in a
smaller Kalman gain, which in turn yields slower convergence to the measured state.

Having chosen some values for the Kalman filter parameters, the performance of
the tracking algorithm was evaluated for several real-time scenarios. The tracking
error of a stationary target and no egomotion of the camera can be seen in figure
6.11. For this test, the search region that is created from the estimated object
location was made unnecessarily large. It was set to include 2.5 times the width
of the object, and 2 times the height of the object. This was done both to enable
the tracking algorithm to handle large displacements in the actual object location,
but also to evaluate the computational power of the PandaBoard. A large search
window yields a more computationally heavy tracking algorithm, which in turn
can result in fewer processed frames per second. It should be noted that since the
video sequences were recorded simply by holding the infrared camera in the hand,

105 Chapter 6. Results and Discussion

Figure 6.10: This screen shot is taken during a simulated real-time tracking test.
The video stream sent from the payload is interfaced through a HTTP-streaming
module in Neptus. The small blue circle located in the far right of the streamed
video, is the visual queue that the navigation algorithm draws on every processed
image when it wants the payload to move. The UAV status is showing CPU load,
battery life and free storage space of the payload. The navigation control to make
the UAV follow the path laid out in the mission plan was simulated and performed
by Dune while the payload was performing object tracking.

6.4. Performance of the Total System 106

100 200 300 400 500 600 700 800 900 1000 1100
0

50

100

150

200

250

300

350

Frame Number

O
b
je
ct

L
o
ca
ti
o
n
[p
ix
el
s]

Real and Estimated Object Position (Horizontal Direction) for Stationary Target and No Egomotion

Estimated Position
Real Position

100 200 300 400 500 600 700 800 900 1000 1100
0

50

100

150

200

Real and Estimated Object Position (Vertical Direction) for Stationary Target and No Egomotion

Frame Number

O
b
je
ct

L
o
ca
ti
o
n
[p
ix
el
s]

Estimated Position
Real Position

100 200 300 400 500 600 700 800 900 1000 1100
0

10

20

30

40

50
Absolute Value of the Tracking Error (|ε|) vs Time

Frame Number

E
rr
o
r
|ε|

[p
ix
el
s]

Figure 6.11: Simulated real-time tracking of a stationary target and no egomotion
of the camera. It is observed that even though the estimated position lags behind
the real position by some pixels, the tracking of the target is successful through
the whole video sequence.

107 Chapter 6. Results and Discussion

this introduced some vibrations to the location of the target. This is the reason for
the appeared movement of the target by looking at the graph for the real position.
These apparent vibrations are, however, not a problem for the tracking algorithm.
The target is being tracked through the whole video sequence, making the test
successful. In addition to this, the number of Kalman filters initiated based on
false positives were zero. The video stream and communication with the ground
station/Neptus was also working as intended during this test, and a screen shot of
how this was observed can be seen in figure 6.10. It was also interesting to see that
the tracking algorithm running on the PandaBoard processed frames at an average
rate of 7.2 frames per second (FPS). This is, of course, due to the fact the whole
image is only searched every 5 frames, but is still a remarkable detection speed.
As seen in appendix D, the FLIR Tau2 IR camera has an upper limit on 7.5 FPS
on cameras exported out of the United States. This means that even though the
signal is up-sampled to 30 fps, the tracking algorithm makes use of almost 100% of
the images taken from the camera. This means that increasing the rate at which
the tracking algorithm operates will normally not increase the performance of the
tracking by any significant amount. However, it should be emphasized that this
was the average detection speed. As illustrated in chapter 5, the whole image is
searched for new interesting regions every fifth frame. This search is more resource
demanding than the intermediate frames where only a small part of the image is
searched. Hence, this means that the object may move a large distance during this
time, resulting in a large tracking error in spite of an average processing rate of 7.2
FPS. Finally it should be noted that the simulated real-time tests were performed
using the Tau2 336 camera, which has a lower resolution than the Tau2 640. This
means that the processed image rate for the latter IR camera will be a bit lower.

Moving on to the next test scenario, the simulated real-time test for the case where
the object is moving and the camera has no egomotion is illustrated in figure 6.12.
It is readily seen that also this test can be regarded as successful in terms of being
able to track the target throughout the whole video sequence. However, it is seen
that the estimated position lags behind the real position, especially in the situa-
tions where the target changes direction. This is to be expected, as the estimator
bases its estimate on a linear motion model, while a sudden change in velocity is a
very non linear process. Furthermore, some of the tracking error can be attributed
to that the detection algorithm had some problems with detecting the human while
he was in the process of making a step, effectively staying in the vicinity of the
last observed location until the step was completed and a new measurement was
supplied to the tracking algorithm. This did not lead to especially large tracking
errors, and since the tracking was successful this was considered unproblematic. As
a final note, it is seen that the human is moving from horizontal pixel value 50 to

6.4. Performance of the Total System 108

100 200 300 400 500 600 700 800 900
0

50

100

150

200

250

300

350

Frame Number

O
b
je
ct

L
o
ca
ti
o
n
[p
ix
el
s]

Real and Estimated Object Position (Horizontal Direction) for Moving Target and No Egomotion

Estimated Position
Real Position

100 200 300 400 500 600 700 800 900
0

50

100

150

200

Real and Estimated Object Position (Vertical Direction) for Moving Target and No Egomotion

Frame Number

O
b
je
ct

L
o
ca
ti
o
n
[p
ix
el
s]

Estimated Position
Real Position

100 200 300 400 500 600 700 800 900
0

10

20

30

40

50
Absolute Value of the Tracking Error (|ε|) vs Time

Frame Number

E
rr
o
r
|ε|

[p
ix
el
s]

Figure 6.12: The result from the simulated real-time tracking test where the tracked
target is moving and no egomotion of the camera. It is seen that the results are
very similar to that of the previous stationary target tracking, with a small increase
in the average tracking error.

109 Chapter 6. Results and Discussion

a pixel value of 300 in the matter of ∼ 340 frames. With a video sequence that has
30 FPS, this corresponds to 300−50 pixels

340
30 seconds

= 22pixels/second, which again is equal to

a rate of 22
350

= 6.3%/second. Being able to track a target moving at such speeds
is only possible due to the high amount of processed images per second, and the
HOG/SVM classifier would probably have failed at this stage.

The next test was a bit more interesting. This test was based on a video se-
quence where there is relatively large egomotion of the camera. In addition to this,
the video sequence was recorded while walking, introducing a small high frequency
change in the actual position of the target, in addition to the large slow frequency
movement due to the camera actually moving about in an environment. From this
test, it is not as clear as for the previous examples whether the test was a success
or not. It is observed that for ∼ 90% of the time, the target tracking is more or less
correctly tracking the target. However, the problem arises when the camera makes
an abrupt and quick change in position. This is seen at frame 200, and then again
on frame 1000. It should be emphasized that not only does the object tracking
cease to track the target, but maybe more importantly, a re-initialization of the
tracking is not achieved until the target more or less appears stationary. This is
due to the fact that the whole image is only searched every fifth frame, hence the
tracking algorithm only gets the chance to re-initiate the tracking once every fifth
frame. Now, the classifier correctly classifies the human as a human at all almost
every opportunity in the frames 200-300 and 1000-1100, but since the egomotion
of the camera is large, the search region created by the predicted position of the
target (which is a rather poor prediction, since P is initiated large) does not con-
tain the target, hence the tracking algorithm does not receive confirmation that
there actually is a human present there. This may be fixed in a number of ways,
where one solution would be to simply enlarge the search window created based on
the estimated position. However, this is not a very efficient approach, and the best
solution is probably some sort of adaptive algorithm. That is, an algorithm that
makes the search window initially large, and then reduces the size of this window
as the certainty of the predicted estimate increases. Furthermore, when no target
is being tracked, every frame can be fully searched (instead of every fifth), effec-
tively increasing the chance of finding and commencing tracking of a target if it
is present in the image plane. These are things that was not tested, and the size
of the search window was not increased any further, as it was already considered
large enough (2.5×width and 2×height of the object) and increasing it further beats
the purpose of using the search window in the first place. The focus should be to
develop a good and efficient way to avoid this problem. Now, during the rest of the
tracking, it is seen that with the exception of a drift of the estimated position at

6.4. Performance of the Total System 110

100 200 300 400 500 600 700 800 900 1000 1100
0

50

100

150

200

250

300

350

Frame Number

O
b
je
ct

L
o
ca
ti
o
n
[p
ix
el
s]

Real and Estimated Object Position (Horizontal Direction) for Stationary Target With Egomotion

Estimated Position
Real Position

100 200 300 400 500 600 700 800 900 1000 1100
0

50

100

150

200

Real and Estimated Object Position (Vertical Direction) for Stationary Target With Egomotion

Frame Number

O
b
je
ct

L
o
ca
ti
o
n
[p
ix
el
s]

Estimated Position
Real Position

100 200 300 400 500 600 700 800 900 1000 1100
0

20

40

60

80

100
Absolute Value of the Tracking Error (|ε|) vs Time

Frame Number

E
rr
o
r
|ε|

[p
ix
el
s]

Figure 6.13: Simulated real-time tracking with egomotion of the camera and a
stationary target. It is seen that the overall tracking performance is good, with
the exception of tracking when the egomotion of the camera makes an abrupt and
large change. This is considered reasonable as the estimator is based on a linear
motion model.

111 Chapter 6. Results and Discussion

frames ∼ 390− 400, the overall tracking performance is good. Most impressive feat
of the tracking algorithm in this test is its ability to maintain good tracking char-
acteristics when the egomotion of the camera changes direction at frames 550−650.
The difference between this situation and the situation at frames 200 and 1000 is
that the change is smooth, rather than abrupt. Since we are estimating using an
linear model, there is a big difference in the two scenarios. It should be noted that
between frames 600 and 720, the perceived target location in the image plane is
moving at 62.3 pixels per second, or alternatively 17.8% of the total image width
per second. Being able to track the target with a small tracking error at such
speeds, and not drift away from the target location when the perceived movement
of the target suddenly changes direction, indicates that the choices made for R, Q
and P were appropriate for this scenario.

The last and final test was the scenario where both the target and the camera
is moving. During this test, the most important thing to evaluate was the tracking
algorithm’s ability to track the target when the camera was moving in one direction,
and the target in another. To not mix up the tracking errors due to the small high
frequent changes in actual location and the slow but large change in actual position,
this video sequence was recorded without walking with the camera. Hence, it was
only turned from side to side, and up and down. The target was moving from side
to side at all times, in effect introducing the same problem as with the test where
only the target was moving. That is, the classifier did not recognize the human
in the cases where he was in the process of making a step. Hence, this scenario
can be considered a test on how the tracking algorithm performs with a limited
measurement rate, and a significant rate of change in the real object position. It
should be noted that in this case, to achieve tracking at all, the normalization
factor had to be changed in order for the BC/HL to classify the target correctly.
This illustrates one of the weaknesses of the BC/HL classifier, and why the use
of SVM/HOG is not always a bad idea. Another solution may be to implement
some sort of adaptive normalization. However, this was out of the scope of the
present thesis. Hence, the normalization factor was changed, and the performance
of the tracking algorithm was logged. It is readily seen from figure 6.14 that the
overall tracking can be considered successful also in this case. There is a loss of
target tracking in frames 580-650 due to the fact that the target is standing so
close to the border of the image, that it is occluded by not being entirely within
the image. This is where the navigation algorithm would have been of great use.
However, as mentioned, the navigation algorithm plays only a passive part in this
case. The visual queue that the navigation algorithm gives in order to warn the
control operator of that the orientation of the camera should be changed, can be
seen in figure 6.10. This visual sign appears before the tracking of the object is lost,

6.4. Performance of the Total System 112

100 200 300 400 500 600 700 800 900
0

50

100

150

200

250

300

350

Frame Number

O
b
je
ct

L
o
ca
ti
o
n
[p
ix
el
s]

Real and Estimated Object Position (Horizontal Direction) for Moving Target with Egomotion

Estimated Position
Real Position

100 200 300 400 500 600 700 800 900
0

50

100

150

200

Real and Estimated Object Position (Vertical Direction) for Moving Target with Egomotion

Frame Number

O
b
je
ct

L
o
ca
ti
o
n
[p
ix
el
s]

Estimated Position
Real Position

100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

60
Absolute Value of the Tracking Error (|ε|) vs Time

Frame Number

E
rr
o
r
|ε|

[p
ix
el
s]

Figure 6.14: Simulated real-time test where both the camera and the target is
moving. The camera movement is restricted to turning from side to side, or up and
down. The target is moving from side to side. It is seen that with the exception
of the case where the target is very close to the border of the image, the target
tracking may be considered successful.

113 Chapter 6. Results and Discussion

illustrating that if the navigation algorithm was able to send control signals to a
camera position controller or alternatively the UAV autopilot, the loss of tracking
would probably have been avoided.

The video streams that were sent to the command station during these tests, in ad-
dition to a real-time simulation on a desktop computer is attached to the electronic
version of the present thesis.

6.4. Performance of the Total System 114

This page intentionally left blank.

Chapter 7

Conclusion

The following chapter provides a brief overview of the process and main results
of implementing the payload and the object detection and tracking algorithms.
Subsequently, it reviews the most important findings from training and testing the
two classifiers described in chapter 2. Finally, it concludes the thesis by stating the
most important contributions and limitations of the work that was done.

7.1 Overview

In the present thesis, the main objective was the design and implementation of
a small, light weight and power efficient payload system for UAVs. The payload
should be able to perform real-time multiple object tracking based on thermal
imaging while communicating with a ground station. The design and implemen-
tation of a ground station that was able to display a live video stream from the
payload, along with important payload information such as CPU load and battery
life was also of great interest.

Now, a payload was designed by initiating dialogs with firms specializing within
the field of UAVs and robotics, as well as searching the Internet extensively for
suitable components. Each component that was found to be suitable for use in

115

7.1. Overview 116

the payload, was subject to an evaluation process. This evaluation was based on
criteria considered important for such components. The infrared camera module
was especially emphasized in this process, as it was one of the most important
components in the payload. After the components or component type for each
module in the payload was decided, connection diagrams for both the data flow as
well as power connections was specified. Finally, two different configuration setups
for the payload was proposed, where each setup is intended for different scenarios.
The first setup is intended for use in small UAVs where the allowed weight of the
payload is small. The second setup configuration is for use in larger UAVs, where
the allowed payload weight is in the range of 1kg or more. A software package
for the payload was also proposed, where the focus was that the software should
be reliable, easy to modify and up to date. This resulted in a generalized payload
which can be easily modified, hence also be of use in a large variety of applications
and different scenarios.

Having designed a payload suitable for the use in UAVs, the implementation and
testing of a real-time tracking algorithm was important. The implemented object
tracking algorithm is based on estimating the position of the tracked objects based
on measurements of their actual position, resulting in an estimate-and-measure
tracking approach. Since the payload, in spite of having limited computational
power available, should be able to track objects in real-time, simple and efficient
solutions were preferred. The simpler solutions may not track objects as efficient
as state-of-the-art solutions within the field of computer vision, but advanced algo-
rithms were not suited for implementation in the payload. This resulted in that the
estimations were based on a linear motion model, and the estimation step of the
tracking was performed by the implementation of a standard Kalman filter. Ac-
tions were taken to reduce the required computation power further, which consisted
of manipulating the processed thermal images in such a way that the interesting
objects could be localized without the need of performing object detection on the
whole image. This was done by applying standard image processing functions such
as normalization, thresholding and connected components labeling. Finally, the data
association problem of the tracking algorithm (which measurements originates from
which objects) was solved using a global nearest neighbor approach. This resulted
in a fast tracking algorithm suitable for use in the payload.

To supply the tracking algorithm with measurements of the current location of
the tracked objects, two different types of object detection and recognition algo-
rithms were implemented. The first approach was based on a combination of the
histogram of oriented gradients feature representations, and applying a support
vector machine algorithm in a training process. The second object detection and

117 Chapter 7. Conclusion

recognition algorithm consisted of a boosted cascade of classifiers, combined with
the Haar-like feature representation. To test the effect of the training process for
the two different approaches, a training set was acquired. This set consisted of 500
positive examples and 3000 negative examples, together with a test set which con-
sisted of 150 images. The test images contained anywhere from 0 to 4 instances of
the object that was to be recognized. Based on the training set, several classifiers
were trained for each of the two object detection algorithms, and the performance
of these classifiers was tested. Finally, a brief review of the results from this process
was made by comparing the two classifier types to each other.

Having implemented the tracking algorithm and verified that the payload was
working as intended, some extra features were also implemented. A video streaming
module, whose job is to send the processed images (with included visualization of
the Kalman filters and measurements) from the payload to the ground station was
designed and implemented. The video stream is sent over the HTTP protocol, and
interfaced to the ground station through the ground station software Neptus. Fur-
thermore, a data logger module, which logs the position trajectories of the tracked
objects was created. The trajectories are stored locally on the payload’s storage
unit, but can be viewed in programs such as Matlab after a tracking test is per-
formed. This is achieved by storing the position of the objects in the image plane
at each processed frame. Each point is also matched to a frame number, effectively
making it easy to compare the tracked position trajectory to the content of the
video stream received at the command station. Finally, as a ’proof-of-concept’, a
näıve navigation algorithm was implemented, simply to test if the communication
between the tracking algorithm and the navigation software Dune was working.
This navigation algorithm should be made more advanced to achieve better con-
trol of the UAV, but the communication between the navigation algorithm and the
auto pilot software will remain the same.

7.2 Evaluation of the Two Classifiers

From the evaluation of the performance of the classifiers described in chapter 6,
some conclusions can be made. Specifically, given a test set of the same size as
the one used in the present thesis, the BC/HL classifier will typically have both
a smaller TPR and FPR compared to that of the SVM/HOG classifier. Now,
since the tracking algorithm initiates tracking based on any measurement likely
to originate from a target currently not being tracked, a large FPR yields a large

7.2. Evaluation of the Two Classifiers 118

number of initiated Kalman filters. This, in turn, results in a large amount of
regions that have to be searched and less computational power available to track
actual objects. This is why it is very important that the FPR of the classifiers
used in the detection step of the tracking algorithms is fairly low (e.g ≤ 0.5 false
positives per frame). Of the classifiers trained, none of the SVM/HOG classifiers
satisfy this criterion, hence they are not suited for use in the detection step of the
tracking. For the BC/HL classifiers, it is seen that even though the TPR is not
especially high, the FPR is very low. Since the tracking algorithm only requires
one measurement every 5 frames to maintain tracking, this classifier may be used
to achieve a reasonable tracking performance. Furthermore, from the results found
during the classifier training, it is reasonable to conclude that the mirrored test
set should be included in the training process. This can be seen from the ROC
curves of the trained classifiers. However, it is also seen that adding novel data is a
more efficient way to increase the classifier performance. Finally, it was found that
training the classifiers having all available data included in the training set, yielded
the best result for both classifiers. This is readily seen from the large decrease in
FPR compared to the decrease in TPR. This means that the net change in perfor-
mance is for the better. Furthermore, it should be noted that a larger training set
would increase the performance of both classifiers, and that well trained classifiers
of both types exist. Having evaluating the performance of the classifiers trained
in the present thesis, it is reasonable to conclude that more training data should
be added to the training set. This will increase their performance and create clas-
sifiers more suited for application in the detection step of the tracking algorithm.
However, if restricted to a test set of similar size to that which was used in the
present thesis, a BC/HL classifier should be the type of classifier that is trained.

A comparison of the two implemented detection algorithms irrespective of their
TPR and FPR was also performed in the interest of future work. In the previous
chapter, it became apparent that both algorithms have their weak and strong sides.
However, the SVM/HOG classifier was proven to require too much computation to
supply the tracking algorithm with a sufficiently high measurement rate in some
of the simulated real-time scenarios. Specifically, while using the SVM/HOG clas-
sifier for the detection step, the real-time tracking algorithm could not keep track
of the targets that were moving at a relatively high speed. This means that in the
case where it is expected that there will be large variations in the actual object
position, the BC/HL classifier is preferred for detection and tracking. Now, in the
case where there are slowly moving targets that are tracked, the SVM/HOG should
actually be used. The reason for this is that this classifier is more robust to changes
in orientation and intensities. This makes the detection (not considering the de-
tection speed) based on this classifier superior to that of the BC/HL classifier. To

119 Chapter 7. Conclusion

extend this argument, the BC/HL classifier can only perform decent classification
on objects very similar to the positive examples in the training set. This implies
that it can only be used successfully in the tracking algorithm in scenarios where
the appearance of the image always is the same. For many objects, this is not
the case. Hence, this classifier becomes useless in some scenarios. To conclude
this evaluation, it is clear that they are both useful, and the detection algorithm
that should be applied is completely dependent on the test scenario. It should
be noted that by minimizing interlacing effects in the thermal images, the perfor-
mance of the SVM/HOG classifier will be increased. This can be done either by
extra computation in the SBC, or alternatively internally in some frame grabbers.

7.3 Contributions

The main contributions of the present thesis is the design and implementation of
a payload system, in addition to an efficient real-time tracking algorithm based on
thermal imaging. The payload is heavily modularized, making it easy to change or
modify one module without affecting others. This results in that the payload can
be used for many different applications, and supplies the user with enough compu-
tational power to perform tasks such as real-time object tracking online from the
UAV. The tests that were performed indicate that the total payload system was
in many cases able to perform almost perfectly simulated real-time tracking of a
human. However, it should be noted that during fast, abrupt and relatively large
displacement rates in the actual position of the tracked targets, the tracking algo-
rithm occasionally fail to keep track of the object. This is very reasonable, as the
estimates are based on a linear motion model. The observed movement does not
correspond to a linear motion, hence the abrupt change in velocity is not expected.
Now, when the tracking is lost, reinitiation of the tracking often took some time
due to the fact that tracking of new objects is initiated with a velocity estimation
of 0. This resulted in a very inaccurate initial estimation of the object position,
hence, the tracking algorithm ended up searching for the object at the wrong place.
In the cases where the tracked target had more smooth movements, the real-time
tracking performance was very good, having an average tracking error in the range
of only ∼ 30 pixels. This illustrates that even though the actual movement do
not correspond to the motion model used for estimation (linear movement), good
tracking can still be achieved. This is because of the fact that the Kalman filter,
when its parameters are set appropriately, can be said to be very forgiving when
it comes to inaccuracies in the motion model. It is clear that the only require-

7.3. Contributions 120

ment of the motion model is that it is accurate enough. Furthermore, consistent
tracking (i.e target is never lost) was achieved in almost all of the test cases where
the change in actual location of the tracked target was smooth, failing only in the
rare case of occlusions of the target (e.g when the real position is almost outside
the image frame). Finally, the video streaming, data logger and the navigation
algorithm were all working as intended, and the payload did not malfunction even
once during testing. Considering this and the simulated real-time performance of
the system as a whole, the design and implementation of the payload and its soft-
ware can be concluded to be a success. However, there are definitely improvements
that can be made. This is especially true for the process of making the tracking
algorithm more robust with respect to changes in the average intensity value of
the pixels in an image. Even though manually varying the normalization factor
for each test scenario resulted in improved tracking performance, a more robust
approach to this problem should be evaluated.

As a bi-product of the work performed in the present thesis, another contribu-
tion is that of a software bundle. This bundle contains software for many of the
subtasks that had to be done during the work that is presented. These are tasks
such as creating ROC curves for both the SVM/HOG and the BC/HL classifier
types, and extracting positive and negative example images from a video sequence.
Software to create the actual position trajectory of the tracked targets in a video
sequence was also needed, along with a software able to extract the estimated
position trajectories of the tracked target from the payload. Furthermore, this
software proceeds to compare the two trajectories, and plots the tracking error in
a graphical plot. All of this was done to make the process of comparing different
parameter values in the tracking algorithm as autonomously as possible, and will
probably be used to a great extent in future applications. The image capturing
library used to read images from the raw video signal originating from the USB
frame grabber is also something of practical use, even though it must be corrected
for synchronization problems.

As a final note, it should be emphasized that the real-time tracking algorithm
can be viewed as a mere framework for future development. Since it is based on an
estimate-and-measure approach, it does not care whether the measurement origi-
nates from a SVM/HOG classifier, a BC/HL classifier, or any other technique able
to obtain the measurement of the location of an object. In practice, this means that
the tracking algorithm can be used to compare the performance of many different
object detectors, novel as well as old. Furthermore, this framework can be used
to track a large variety of different objects with a large variety of motions, sim-
ply by changing the object detection approach to something suitable for detecting

121 Chapter 7. Conclusion

the object that is being tracked. The main limitation of this framework is that
it bases its estimated target positions on a linear motion model. As shown in the
presented test scenarios, this is in some situations an inaccurate motion model for
the perceived target motions, which in turn inhibits the tracking performance.

7.3. Contributions 122

This page intentionally left blank.

Chapter 8

Future Work

The payload, object detection and tracking algorithms presented in this thesis can
be developed further in a number of ways. The payload provides flexibility with
respect to the number of modules included in the setup, which means that new
modules can be added without too much redesign. Furthermore, the object de-
tection and tracking algorithms are subject to change, and can be modified or
extended to increase the real-time tracking performance.

The following chapter features a review of the advantages of realizing setup config-
uration 2, and proceeds with suggestions on how the object detection algorithms
can be extended. Finally, the chapter ends with a review of how the tracking al-
gorithm can be improved, and how its functionality can be extended to be of more
practical use.

8.1 Realization of Setup Configuration 2

The functionality of the payload can be extended by realization of the proposed
setup configuration 2, and should be of a high priority in future work. One example
of the extended functionality is the ability of the Axis M7001 image frame grabber
to perform deinterlacing before the signal is broadcasted over the local network.

123

8.2. Extending the Object Detection Algorithms 124

This will increase the performance of the classifiers, and by doing so also increas-
ing the performance of the tracking algorithm. Furthermore, in chapter 4 it was
mentioned that it is possible to develop a circuit board which provides the frame
grabber with the correct voltages directly, avoiding the PoE interface. This should
be kept in mind, as the step up converter from 5V to ∼ 40V was not tested, and
may not be an optimal solution to the integration of the Axis M7001 encoder. Now,
since the Axis frame grabber streams the capture video over the HTTP protocol,
this video can be directly interfaced to the Neptus software located at the command
station. This means that the control operator will have access to the video stream
at two different HTTP addresses, where one stream is the processed images, and
the other is the full video stream. This means that the stream coming directly
from the axis encoder will be a 30fps stream, while the stream coming from the
SBC in the payload will have as many fps as it has images processed per second.
This results in a redundancy of the video stream which is not available in setup
configuration 1. Now, in addition to this, the visible light video stream will also
be made available at the ground station in the same manner as the infrared video.
This is because the visual video camera can also be connected to an Axis M7001
encoder. Another advantage of introducing the M7001 frame grabber is that the
SBC in the payload does not have to worry about processing the image stream
coming from the cameras any more. This, in addition to that Dune is not running
on the SBC in this setup, frees some computational power on the SBC. The extra
computational power can be utilized by the object detection and tracking algo-
rithms by introducing parallel computing. This allows for more complex detection
and tracking algorithms, which in turn may yield a better tracking performance.

8.2 Extending the Object Detection Algorithms

With extra computational power available, the detection algorithms can become
more advanced, and still be able to supply the tracking algorithm with a suitable
rate of measurements. The first change of the object detection algorithm that
should be researched, is the use of contour extraction rather than thresholding and
connected-components labeling for the step of localizing promising regions in an
image. The latter approach requires some fine tuning to work properly, and is
therefore not very robust with respect to changes in the intensity values of the
pixels. Now, a contour based approach is the principle of detecting the edges in
an image, and localizing contours that are similar to those of the object that is
to be detected. This requires more computational power than the thresholding

125 Chapter 8. Future Work

approach, but not more than what is available on the PandaBoard. This is es-
pecially true if parallel computing is used. In this case, there can be two parts
of the object tracking algorithm running at the same time. This means that the
process of finding the contours (edges) in an image, and localizing objects with
similar size and shape to that of the object being tracked, can be performed in
one CPU core. The process of tracking and estimating can then be done simulta-
neously by dedicating the other CPU core for this task. This will create a more
continuous stream of measurements, and will probably increase the rate at which
measurements are supplied to the tracking algorithm. To build further on the idea
of parallel computing, the use of a graphical processing unit (GPU) for the detec-
tion step is a good idea. Implementing the object detection in the GPU allows
for a great amount of parallelization, which would result in the ability to perform
multi scaled object detection in the same time as the CPU use to perform single
scale object detection. The PandaBoard has a GPU that is able to compute HOG
descriptors and check the value of Haar-like features, but the developer of the SoC
on the PandaBoard has not yet released the required drivers to the public. This
means that if GPU programming is to be introduced, the SBC in the payload must
be changed. However, in the third quarter of 2013, the Tegra4 platform is due to
be launched. Tegra4 is an ARM platform with a CUDA GPU, effectively making
it easy to implement GPU support in the payload. Hence, this is something that
will be reviewed at a later time.

Another idea is to include multi-class classification. This can be introduced in
various ways, but is intended for use in two different scenarios. One of the scenar-
ios is the case where it is wanted to track different types of objects. The second
scenario is the case when a BC/HL classifier is used for detection, but it is neces-
sary to detect e.g cars oriented in different ways, i.e horizontally and vertically. To
implement multi-class classification in the second case, separate BC/HL classifiers
can be trained for each orientation, and then both of the classifiers can be used
to classify the processed images. Each classifier will then return measurements for
their respective orientation. In this way, in effect, an orientation invariant classifier
is made.

Another interesting field is the field of sensor fusion. Sensor fusion in the case
of the payload, refers to the concept of merging information from the thermal im-
ages with the information from the visual light video images. Since the IR camera
is a LWFLIR camera, the IR camera and the video camera has complementary in-
formation. This results in that in some cases, the information can be combined to
achieve a synergy effect. One such application is i.e the case where two humans are
standing close to each other, continuously changing positions. If they are wearing

8.3. Increasing Performance of the Object Tracking Algorithm 126

different colored clothes, the information from the video camera can easily be used
to identify which human is which, while the tracking is based on the thermal images.

Finally, having established the weak and strong sides for each classifier type,
an object detection algorithm that combines the SVM/HOG classifier with the
BC/HL classifier could be of interest. The main problem with the application of
the SVM/HOG classifier in the real-time tracking algorithm was the processing
time during the detection step. Now, consider the case where the SVM/HOG clas-
sifier and the BC/HL classifier are alternating between being used for the detection
step. This may result in a high enough rate of processed images, while still pro-
viding the tracking algorithm the benefit of being robust with respect to changes
in intensities, and also to some degree object orientation.

8.3 Increasing Performance of the Object Track-
ing Algorithm

As discussed in chapter 6, the performance of the object tracking algorithm may
be increased by using a more scientific method to determine the parameters of
the Kalman filter. Several methods have been proposed to do this in the litera-
ture, but no universal best approach exists. Now, a method that may produce a
promising result regarding the choice of Q, is to define this matrix according to
equation 6.3. Having done this, the choice for σa can be posed as an optimization
problem. I.e, by running a simulated real-time tracking test on a video sequence,
and by registering the resulting tracking error, an optimization algorithm will be
able to iterate towards the global optimum. However, it should be noted that do-
ing such an optimization problem using only one video sequence will only find the
optimal choice for Q for that specific sequence. To get a more generalized result,
the optimization should be run over the course of 20 − 30 different sequences all
describing the same scenario. In this way, the bias from each video sequence may
be reduced (or eliminated), and a better estimate of the global optimum is found.
This approach can be extended to included the parameter choices for both P and
R, which is also a case that should be studied.

The simulated real-time tracking tests performed in the present thesis revealed
that there is a problem with that the initial predicted position and corresponding
search region may not be very accurate. A way to solve this problem would be
to introduce an adaptive scaling of the search region. An adaptive scaling of the

127 Chapter 8. Future Work

search region should function in such a way that the search region is chosen very
large if the predicted state is uncertain. Similarly, if the certainty of the predicted
location increases, the search region should decrease in size. The use of the matrix
S(k) as introduced in equation 3.14 should be considered as a candidate for this,
but should probably be somewhat modified to correspond to the actual appeared
object size.

As a general note, it should be a priority to make the tracking algorithm more
autonomous with respect to the choices of the parameters such as the normaliza-
tion factor and the number of frames between each full image search, as these are
crucial parameters achieving successful tracking. For example, if the tracking al-
gorithm currently is not tracking any objects, there are no reason for the tracking
algorithm to completely skip the intermediate frame between each fifth frame. On
the contrary, performing a full image search in every frame in such cases will prob-
ably increase the tracking performance, as (re)initiation of the Kalman filter will
occur faster. Furthermore, in situations where the predicted estimates are very un-
certain, a solution would be to increase the rate at which the full image is searched,
in effect removing the problem of having a badly predicted estimate of the object
position.

8.4 Extending the Object Tracking Algorithm

An extension of the object tracking algorithm that should be implemented and
tested is the implementation of a particle filter based estimator. This is an estima-
tor type which has proven useful in the estimation of non-Gaussian and non-linear
processes. The particle filter has become a popular way of tracking objects in com-
puter vision in recent years, but it also requires a lot more computational power
than the linear Kalman filter. However, as previously mentioned, the SBC has
more free computational power when the payload is realized with setup configura-
tion 2. Splitting the tracking algorithm into two separate threads, such that each
thread can be run in separate CPU cores, it should be tested if the PandaBoard
has sufficient computational power for estimation when using the particle filter in
an efficient way. The effect of introducing the particle filter on the measurement
rate should also be evaluated.

Now, the most interesting extension of the object tracking algorithm, would be
to extend the predicted location from two dimensional to the three dimensional

8.4. Extending the Object Tracking Algorithm 128

space. That is, instead of estimating the target position in the image frame, the
real world coordinates of the targets are estimated. It should be noted that to still
achieve good tracking performance in the image plane, it may be necessary to keep
two separate estimates. That is, having one estimator for the position in the image
plane, and then another estimator for the real world coordinate. The first thing
required for this to function properly is a GPS/INS device. As it already is a part
of the suggested payload design in chapter 4, this process is reduced to finding a
suitable component. After this is done, some synchronization algorithm has to be
implemented, effectively synchronizing the GPS/INS measurements to specific pro-
cessed image frames. Once this is done, the estimation of the real world coordinates
of the tracked objects can commence. Using a simple approach, it can be assumed
that the tracked target is positioned at the ground. Furthermore, the ground can
be estimated as a flat plane, effectively leaving all the tracked objects in the same
attitude coordinate. Now, having an estimate for the image position of the object,
together with an estimate of the attitude of the UAV, the process of estimating the
real world coordinates of the human is a simple problem of triangulation. After
having calculated the real world coordinates of a tracked object with this approach,
these coordinates can be passed on from a measurement to an estimator that is
responsible for estimating the real world coordinates of the target. It should be
noted that this approach relies on accurate measurement of the attitude. Hence,
methods to acquire the most precise attitude measurements should be looked into.
One of the key advantages of estimating the real world coordinates of the tracked
objects, is that if the tracking of the object is lost, the estimate of the last known
real world position is still known. This makes the process of regaining tracking of
the object easier, as the UAV now is more aware of where it should search for the
missing target.

Appendices

129

Appendix A

Discrete Convolution

In the discrete case, convolution is a mathematical operation on two functions f
and g, which produce a third function that can be viewed as the sum over all
space of the function g at m times the function f at n −m. That is, the result of
convolution is a function c[n] which can be defined as

c[n] = (f ⋆ g)[n] ∶= ∞∑
m=−∞

f[n −m]g[m] (A.1)

And when g has finite support in the set {−M,−M + 1, ...,M − 1,M} a finite sum-
mation may be used:

c[n] = (f ⋆ g)[n] ∶= M∑
m=−M

f[n −m]g[m] (A.2)

130

Appendix B

Focal Length and Perceived
Object Size

The focal length f of a lens, is the distance between the center of the lens element
to the image sensor surface. This distance is illustrated in figure B.1. Now, the
relationship between the focal length f , the object size A, the distance d between
the lens and the object, and the resulting projected object size so on the image

Figure B.1: An illustration of the relative position between the focal length and
the image sensor.

131

132

sensor is
f ×A

d
= so (B.1)

And to find the perceived object size in terms of pixels in the image, the following
relation holds true

so
stot

× ptot = po (B.2)

where so is as previously defined, stot is the total size of the image sensor, and po
is the object size in image pixels. Combining equations B.1 and B.2 we get

po = ptot × f ×A

d × stot
(B.3)

Notice that doubling the focal length f has the same effect in terms of perceived
object size, as halving the distance between the lens and the object.

Now, consider the case where an UAV is flying at an altitude of 50m, with an in-
frared camera mounted on the side of the plane, pointing 45○ downwards. Assume
further that the infrared camera is the Tau2 640, described in appendix D, with a
13mm focal length lens. Now, assuming that a human of height 1.8m = 1800mm
and width 0.5m = 500mm is present, and that the human is projected exactly at
the center of the lens. Then, the distance d from that human to the camera lens is
equal to

d = 50m

cos(45○) ∼ 70m = 70000mm

Now, from appendix D, it is seen that the size of the image sensor in the vertical
direction is equal to 17μ × 512 = 8.7mm. The total image height in pixels ptot is
equal to 512. Putting everything together, it is readily seen that the perceived
object size in the terms of pixels in the vertical direction is equal to

13mm × 1800mm

70000mm × 8.7mm
× 512 pixels ∼ 20 pixels

Performing the same calculations for the horizontal direction yields a value of 11
pixels, effectively making the perceived object size 11x20 pixels. By the same logic,
the same human would be 8x16 pixel if the infrared camera was changed to Tau2
336 with a 9mm focal length lens.

Appendix C

Single Board Computer

The single-board computer used in the present thesis is the PandaBoard. The
PandaBoard is based on the Texas Instruments OMAP4430 SoC, and is a mobile
software development platform. Following is some of its most important properties.

133

134

Figure C.1: The PandaBoard and its most important specifications.

135 Appendix C. Single Board Computer

Overview PandaBoard ES
CPU 1.2GHz Dual Core
Processor Type ARM Cortext-A9
RAM 1GB - GPU
GPU 304 MHz PowerVR SGX540
Physical Attributes
Size 11.4cm × 10.1cm × 3cm
Weight 82g
Interfacing
Display Port HDMI
Power DC Jack / USB OTG - 5V ∼ 1A
Storage SD Card - Ethernet WiFi
Ethernet RJ45 and WiFi
Environment
Operating Temperature −20○ − 70○

Humidity N/A

Appendix D

Thermal Imaging Camera

Figure D.1: The FLIR Tau2 Thermal Imager

136

137 Appendix D. Thermal Imaging Camera

Overview FLIR Tau 640
Analog Video Display Formats 640 x 480 (NTSC); 640 x 512 (PAL)
Pixel Pitch 17μm
Spectral Band 7.5 − 13.5μm (LWIR)
Frame Rates 7.5 Hz NTSC; 8.3 Hz PAL
Sensitivity ≤ 50 mK at f/1.0
Scene Range -25○C to +100○C
Physical Attributes
Size (w/o lens) 1.75” x 1.75” x 1.18”
Weight 72g
Interfacing
Input Power 4.0 - 6.0 VDC
Power Dissipation, steady state ∼ 1.2 W
Environmental
Operating Temperature Range −40○C to +80○C
Temperature Shock (5○/min) Yes
Operational Altitude Up to 12km
Humidity Non-condensing between 5% - 95%
Vibration 4.3g three axis, 8 hr each
Shock 200g shock pulse w/ 11 msec sawtooth

138

Overview FLIR Tau 336

Analog Video Display Formats
640 x 480 (NTSC); 640 x 512 (PAL)
(Up-sampled from 336 × 256)

Pixel Pitch 17μm
Spectral Band 7.5 − 13.5μm (LWIR)
Frame Rates 7.5 Hz NTSC; 8.3 Hz PAL
Sensitivity ≤ 50 mK at f/1.0
Scene Range -25○C to +100○C
Physical Attributes
Size (w/o lens) 1.75” x 1.75” x 1.18”
Weight 72g
Interfacing
Input Power 4.0 - 6.0 VDC
Power Dissipation, steady state ≤ 1.0 W
Environmental
Operating Temperature Range −40○C to +80○C
Temperature Shock (5○/min) Yes
Operational Altitude Up to 12km
Humidity Non-condensing between 5% - 95%
Vibration 4.3g three axis, 8 hr each
Shock 200g shock pulse w/ 11 msec sawtooth

Appendix E

Video Camera

Figure E.1: The GoPro Hero2 Video Camera

139

140

Overview GoPro Hero2
Analog Video Display Format 848x480 pixels
Frame Rate 30
Field of View 127○ × 90○

Physical Attributes
Dimensions 4.2cm × 6.0cm × 3.0cm
Weight 96g
Interfacing
Power Internal Battery
Output 1 HDMI and Analog
Output 2 Combo stereo audio and composite video

Appendix F

Frame Grabbers

Figure F.1: Two different frame grabbers, with two different interfaces.

141

142

Overview Axis M7001
Video Compression H.264 or MJPEG
Resolutions 720 × 576 to 76 × 144
Frame Rate 30/25 (NTSC/PAL)
Video Streaming Both H.264 and MJPEG

Supported Protocols
IPv4/v6, HTTP, HTTPS, FTP, SMTP, UPnP, TCP,
UDP, RTCP, DHCP ++

Physical Attributes
Weight 82g
Dimensions 10,1 × 8.6 × 3.7cm3

Interfacing
Power Power over Ethernet (Class 2 ∼ 5W)
Connectors (Input) Analog composite video (BNC input)
Connectors (Output) Ethernet (RJ45)
Envoirmental
Operating Conditions 0○ − 50○ C
Humidity 20-80%

Overview EasyCap DC60
Video Compression AVI or MPEG
Resolutions 720 × 576 to 76 × 144
Frame Rate 30/25 (NTSC/PAL)
Video Streaming Both AVI and MPEG
Supported Protocols USB
Physical Attributes
Weight 57g
Dimensions 8.8 × 2.8 × 1.8cm3

Interfacing
Power 2.5W
Connectors Input Analog composite video (RCA)
Envoirmental
Operating Conditions N/A
Humidity N/A

Appendix G

Battery

Figure G.1: Biltema PowerPack, with and without the chassis

143

144

Overview Biltema PowerPack
Battery Type Litium-Polymer
Capacity 2000mAh
Maximum Current Output 1A
Physical Attributes
Size 9,3cm × 5,0cm × 1,7cm
Weight 75g
Weight w/o chassis 45g
Interface
Input 5V Micro-USB
Output 5V USB
Envoirmental
Temperature 0○ − 50○ C
Humidity Max. 90%

Appendix H

Ethernet Switch

Figure H.1: The TRENDnet TE100-S5 Switch, with and without its chassis

145

146

Overview TRENDnet TE100-S5 5 Port Switch

Standard

IEEE 802.e 10Base-T
IEEE 802.3u 100Base-TX
IEEE 802.3x Flow Control

Network Media
Ethernet
Fast Ethernet

Data Rates
Ethernet: 10Mbps/20Mbps
Fast Ethernet: 100Mbps/200Mbps

Physical Attributes
Weight 128g (59g with no chassis)
Dimensions 10cm × 7.8cm × 3.1cm
Interfacing
Input/Output 5 Ethernet Ports (RJ-45)
Power 2.8W
Envoirmental
Temperature 0○ − 50○ C
Humidity Max. 90%

Bibliography

[1] Imc protocol documentation. https://www.lsts.pt/imc/doc/master/. Ac-
cessed: 15/06-2013.

[2] Minimum assignment problem solver. https://code.google.com/p/hungarian-
cpp/. Accessed: 15/06-2013.

[3] Mjpeg streamer plugin. http://mjpg-streamer.sourceforge.net/. Accessed:
15/06-2013.

[4] M. A. Aizerman, E. A. Braverman, and L. Rozonoer. Theoretical foundations
of the potential function method in pattern recognition learning. In Automa-
tion and Remote Control,, number 25 in Automation and Remote Control,,
pages 821–837, 1964.

[5] Ahmed Ali and Kenji Terada. A general framework for multi-human tracking
using kalman filter and fast mean shift algorithms. 16(6):921–937, mar 2010.

[6] Saad Ali and Mubarak Shah. Cocoa - tracking in aerial imagery. In Proc. Int.
Conf. on Computer Vision, 2005.

[7] Saad Ali and Mubarak Shah. Cocoa - tracking in aerial imagery. In Proc. Int.
Conf. on Computer Vision, 2005.

[8] Plamen Angelov, Chirag Gude, Pouria Sadeghi-Tehran, and Tsvetan Ivanov.
Artot: Autonomous real-time object detection and tracking by a moving cam-
era. In Intelligent Systems (IS), 2012 6th IEEE International Conference,
pages 446–452. IEEE, 2012.

[9] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training
algorithm for optimal margin classifiers. In Proceedings of the 5th Annual

147

Bibliography 148

ACM Workshop on Computational Learning Theory, pages 144–152. ACM
Press, 1992.

[10] Christopher A. Brooks and Karl Iagnemma. Visual detection of novel terrain
via two-class classification. In Proceedings of the 2009 ACM symposium on
Applied Computing, SAC ’09, pages 1145–1150, New York, NY, USA, 2009.
ACM.

[11] José Carlos Castillo, Juan Serrano-Cuerda, Antonio Fernández-Caballero, and
Maŕıa T. López. Segmenting humans from mobile thermal infrared imagery.
In Proceedings of the 3rd International Work-Conference on The Interplay
Between Natural and Artificial Computation: Part II: Bioinspired Applications
in Artificial and Natural Computation, IWINAC ’09, pages 334–343, Berlin,
Heidelberg, 2009. Springer-Verlag.

[12] A. Cesetti, E. Frontoni, A. Mancini, P. Zingaretti, and S. Longhi. A vision-
based guidance system for uav navigation and safe landing using natural land-
marks. J. Intell. Robotics Syst., 57(1-4):233–257, January 2010.

[13] Chi-Tsong Chen. Linear System Theory and Design. Oxford University Press,
Inc., New York, NY, USA, 3rd edition, 1998.

[14] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In In CVPR, pages 886–893, 2005.

[15] Weidong Ding, Jinling Wang, Songlai Han, Ali Almagbile, Matthew A. Gar-
ratt, Andrew Lambert, and Jack Jianguo Wang. Adding optical flow into the
gps/ins integration for uav navigation, 2009.

[16] P. Dollár, Z. Tu, P. Perona, and S. Belongie. Integral channel features. In
BMVC, 2009.

[17] Xi Bin Wang et al. Obstacles avoidance for uav slam based on improved
artificial potential field. Applied Mechanics and Materials, 241-244:1118–1121,
2012.

[18] David A. Forsyth and Jean Ponce. Computer Vision: A Modern Approach.
Prentice Hall Professional Technical Reference, 2002.

[19] A. Gaszczak, T. P. Breckon, and J. Han. Real-time people and vehicle de-
tection from UAV imagery. In Society of Photo-Optical Instrumentation En-
gineers (SPIE) Conference Series, volume 7878 of Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series, January 2011.

149 Bibliography

[20] A. Gaszczak, T.P. Breckon, and J.W. Han. Real-time people and vehicle
detection from UAV imagery. In Proc. SPIE Conference Intelligent Robots and
Computer Vision XXVIII: Algorithms and Techniques, volume 7878, 2011.

[21] Modesto Castrillon-Santana Hannes Kruppa and Bernt Schiele. Fast and ro-
bust face finding via local context.

[22] T. Joachims. Making large-scale SVM learning practical. In B. Schlkopf,
C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support
Vector Learning. MIT Press, Cambridge, MA, USA, 1999.

[23] Thorsten Joachims. Advances in kernel methods. chapter Making large-scale
support vector machine learning practical, pages 169–184. MIT Press, Cam-
bridge, MA, USA, 1999.

[24] Rudolph Emil Kalman. A new approach to linear filtering and prediction
problems. Transactions of the ASME–Journal of Basic Engineering, 82(Series
D):35–45, 1960.

[25] Pavlina Konstantinova, Alexander Udvarev, and Tzvetan Semerdjiev. A study
of a target tracking algorithm using global nearest neighbor approach. In Pro-
ceedings of the 4th international conference conference on Computer systems
and technologies: e-Learning, CompSysTech ’03, pages 290–295, New York,
NY, USA, 2003. ACM.

[26] Jing Li and Nigel M. Allinson. A comprehensive review of current local features
for computer vision. Neurocomput., 71(10-12):1771–1787, June 2008.

[27] Rainer Lienhart, Er Kuranov, and Vadim Pisarevsky. Empirical analysis of de-
tection cascades of boosted classifiers for rapid object detection. In In DAGM
25th Pattern Recognition Symposium, pages 297–304, 2003.

[28] Yuping Lin, Qian Yu, and Gérard Medioni. Efficient detection and
tracking of moving objects in geo-coordinates. Mach. Vision Appl., 22(3):505–
520, May 2011.

[29] Gellért Máttyus, Csaba Benedek, and Tamás Szirányi. Multi target tracking
on aerial videos. In ISPRS Istanbul workshop 2010 on modeling of optical
airborne and space borne sensors, WG I/4., pages 1–7, Istanbul, 2010. IAPRS.

[30] Ram Nevatia. Unsupervised incremental learning for improved object detec-
tion in a video. In Proceedings of the 2012 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), CVPR ’12, pages 3298–3305, Wash-
ington, DC, USA, 2012. IEEE Computer Society.

Bibliography 150

[31] J. Fernandez P. Wilson. Facial feature detection using haar classifiers. JCSC
21, 4:127–133, April 2006.

[32] Andrew Price, Jacob Pyke, David Ashiri, and Terry Cornall. Real time object
detection for an unmanned aerial vehicle using an fpga based vision system.
In ICRA, pages 2854–2859. IEEE.

[33] Ashraf Qadir, Jeremiah Neubert, and William Semke. On-board visual track-
ing with unmanned aircraft system (uas). CoRR, abs/1203.2386, 2012.

[34] Mohammad J. Saberian and Nuno Vasconcelos. Boosting classifier cascades.
In In NIPS, 2010.

[35] D. A. Sadlier and N. E. O’Connor. Evaluation of a vehicle tracking system for
multi-modal uav-captured video data. pages 76680X–76680X–12, 2010.

[36] Taek Lyul Song, Dong Gwan Lee, and Jonha Ryu. A probabilistic nearest
neighbor filter algorithm for tracking in a clutter environment. Signal Process.,
85(10):2044–2053, October 2005.

[37] Rainer Stiefelhagen, Rachel Bowers, and Jonathan G. Fiscus, editors. Multi-
modal Technologies for Perception of Humans, International Evaluation Work-
shops CLEAR 2007 and RT 2007, Baltimore, MD, USA, May 8-11, 2007,
Revised Selected Papers, volume 4625 of Lecture Notes in Computer Science.
Springer, 2008.

[38] F. Suard, A. Rakotomamonjy, and A. Bensrhair. Pedestrian detection using
infrared images and histograms of oriented gradients. In in IEEE Conference
on Intelligent Vehicles, pages 206–212, 2006.

[39] Richard Szeliski. Computer Vision: Algorithms and Applications. Springer-
Verlag New York, Inc., New York, NY, USA, 1st edition, 2010.

[40] Peter van Blyenburgh. Uavs: an overview. Air & Space Europe, 1(56):43 – 47,
1999.

[41] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade
of simple features. pages 511–518, 2001.

[42] Antti Vyrynen and Justin Salminen. Lithium ion battery produc-
tion. The Journal of Chemical Thermodynamics, 46(0):80 – 85, 2012.
¡ce:title¿Thermodynamics of Sustainable Processes¡/ce:title¿.

[43] Weihong Wang, Jian Zhang, and Chunhua Shen. Improved human detection
and classification in thermal images. In ICIP, pages 2313–2316, 2010.

151 Bibliography

[44] Jiangjian Xiao, Changjiang Yang, Feng Han, Hui Cheng, and Sarnoff Corpo-
ration. Vehicle and person tracking in uav videos. In Classification of Events,
Activities, and Relationships Evaluation and Workshop, 2007.

[45] Alper Yilmaz, Omar Javed, and Mubarak Shah. Object tracking: A survey.
ACM Comput. Surv., 38(4), December 2006.

[46] Yudong Zhang and Lenan Wu. Classification of fruits using computer vision
and a multiclass support vector machine. Sensors, 12(9):12489–12505, 2012.

[47] Haibin Zhu, MengChu Zhou, and Rob Alkins. Group role assignment via
a kuhn-munkres algorithm-based solution. IEEE Transactions on Systems,
Man, and Cybernetics, Part A, 42(3):739–750, 2012.

