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Problem Definition

Background

3D vision systems consist of two or more cameras used to recover
three-dimensional images. The applications are numerous, spanning
from home entertainment to industrial applications where position of
objects may be measured.
Accurate 3D reconstruction requires precise estimation of calibration
parameters. Such parameters involve rotation and translation be-
tween cameras as well as lens and camera geometry. Although an ac-
curate calibration may be performed at a given time, these parameters
are subject to drift or change due to vibration, material degradation
and misalignment. Therefore, long-term reliable operation depends
on updating the calibration data regularly or continuously.

Main tasks

• Background study
• Evaluate common methods for multi-camera calibration.
• Investigate/develop a method for continuous calibration of mul-

tiple cameras.
• Implement computer software to process multiple streams of

video.
• Perform continuous calibration.

Supervisor: Tor Engebret Onshus, ITK
Co-supervisor: Håvard Knappskog, NOV
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When I started out on this assignment, it seemed like a simple enough
task. After a few rounds of literature searches with unhelpful out-
comes and non-working system implementations, my opinions changed.
Yet with guidance and persistence, useful literature was found, good
models were developed and software implemented! My perspective
has been broadened, and I can see that the potential of improvement
is tremendous.
First of all, I would like to thank co-supervisor Håvard Knappskog
at National Oilwell Varco (NOV) for being helpful in every aspect
regarding this task. He has been discussing various methods of cali-
bration and has helped me by giving feedback on the report several
times. I am also grateful for being able to work on my system at
NOV’s offices in Trondheim and getting to meet the people there.
Thanks to my supervisor, Professor Tor Engebret Onshus, for helping
me construct a time schedule and giving me advice whenever unsus-
pected situations occurred.
Last but not least, thanks to Vivi Rygnestad Helgesen, for continu-
ously pushing me forward and helping me finalize this report.
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Abstract and Conclusion

This report is about continuous calibration of 3D camera systems. It
seeks to make it possible for two freely moving cameras to know each
others relative position as long as they are monitoring a common
frame. The short conclusion of this paper is that it is possible to
a certain extent. The system presented is capable of computing the
relative orientation of the cameras, which leaves the distance between
the cameras as a free variable to be decided by other means.
Simulations of the calibration model indicates that the relative orien-
tation of the cameras can be estimated within a 0.2 degree deviation,
while estimation of the relative position needs to be perfected. Live
system tests confirm that the relative orientation can be estimated ac-
curately. They also show that accurate estimation of relative position
will require more work. Utilizing three or more cameras is an alter-
native way of estimating relative position, since the relative position
can be calculated by using the relative orientations.
The yaw angle was estimated with high precision in the simulation,
while during the live tests the system had trouble estimating the angle
correctly about 0 degrees. This might be a field for further work, but
it is believed that having a good spread of matched features will make
the problem disappear. In the test, the feature points was not only
close to each other, they were also located in the same plane. The test
environment is believed to have affected the results negatively because
of this.
This master’s thesis was initiated by the wish of National Oilwell Var-
co to be able to estimate the relative orientation of cameras mount-
ed on their crane systems, using the output calibration for depth-
mapping the environment. This is one possible usage area, but the
continuous calibration system is not limited to this application. In
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theory, it could be applied to any multiple camera system. The sys-
tem used for testing was two initially calibrated web cameras, which
demonstrates the minimal requirements for using the continuous cal-
ibration.
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1 Introduction

People use their vision to control actions and movements in many
tasks, computer vision aims to duplicate this. How you pick up a
glass of milk is one of an endless amount of examples. You have to
know where the glass is to pick it up, the angle of the glass to ensure
that no milk is spilled and more.
Cameras get images of the three-dimensional (3D) space by projecting
it down to the two-dimensional (2D) plane. This results in a tremen-
dous loss of information. Today, there are cameras which can compute
the depth in the image by utilizing an extra array of lenses which adds
directional information to the light rays arriving at each point in the
2D plane. The cameras in question are called light-field cameras and
more can be read about them in [1]. Another way to compute the
depth of a scene is by deploying multiple cameras to get multiple per-
spectives of the same scene. When using two cameras, this is called
stereo vision. When using multiple cameras, it is possible not only
to get depth information in one image, but whole 3D objects can be
reconstructed since images from every perspective can be used.
When a multiple camera system is constructed, it has to be calibrated.
The attributes of the camera such as field-of-view and optical center
as well as the position and orientation relative to the other cameras
in the system has to be computed. This can be done accurately at
system setup, but the materials used for keeping the cameras in place
might experience degradation over time. Material degradation might
cause the orientation and position of the cameras to vary and this will
in turn affect the quality of the 3D reconstruction. The sensitivity of
3D reconstruction to erroneous camera calibration has been estimated
in [2].
To handle the drifting camera problem, a continuous calibration might
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Chapter 1 Introduction

be applied. It would be beneficial to be able to estimate new camera
positions and orientations without the need of operator interaction.
An automatic system for calibrating the drifting cameras should then
be able to estimate new positions and orientations by analyzing ordi-
nary video streams watching the same scene.
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2 Camera Theory

In order to use multiple cameras for 3D reconstruction of the scene,
it is important to have equations which relate the camera frames to
the 3D space which is pictured. These equations are affected by two
sources: the inner workings of the camera and the cameras relative
position and orientation. The parts of the equations affected by the
inner workings of the camera is typically called intrinsic parameters,
while the relative position and orientation is called extrinsic parame-
ters. Both of these will be explained further in this chapter.
Calibration of a 3D camera system is typically done by analyzing
known shapes. By using the camera models on points of which the
relative position is known, the camera model equations can be solved
to reveal both the intrinsic- and extrinsic parameters. Camera cali-
bration will also be discussed in this chapter.

2.1 Camera Modelling

Cameras project the 3D world onto a 2D plane and in the transfor-
mation there is a certain loss of information. In the work described
by this report, the pinhole camera model is used. The pinhole camera
model is a linear model of the camera. To account for non-linearities, a
non-linear pixel transform is applied in addition to the pinhole camera
model.

2.1.1 Pinhole Camera Model

Imagine a black box with a single pinhole which would let light into
the box. Each point on the opposite side of the pinhole would then
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Chapter 2 Camera Theory

be hit by light rays originating from a direction given solely by the
coordinates for that point. This is illustrated in Figure 2.1.

Figure 2.1: The object in the scene is projected to the camera lens.
The field of view of the camera is decided by the distance f . This
figure is borrowed from [3].

If we define the coordinate system with the origin at the camera po-
sition and the z-axis pointing perpendicular to the image plane out-
wards from the camera, illustrated in Figure 2.2, some equations re-
lating the object position to the pixel coordinates can be established.
If the pixel value on the x- and y-axis is defined by u and v, we can
derive the following equations:

u = f
X

Z
+ pu

v = f
Y

Z
+ pv

Where the object in the image at (u, v) is at the position given by
(XC , YC , ZC) in the camera-centered reference frame. pu and pv defines
the origin of the image frame. This can be written on matrix form,
giving the following relation:

ρm =

 f 0 pu
0 f pv
0 0 1

MC (2.1)

4



2.1 Camera Modelling

Where m =
[
u v 1

]>
is the homogenous coordinates of the pixel

value, MC =
[
XC YC ZC

]>
is the 3D point projected down to the

image plane, ρ is a scaling constant which in this equation equals ZC .

Figure 2.2: The camera-centered reference frame. Figure borrowed
from [3].

Equation 2.1 assumes that the object in the scene is given in the
camera-centered coordinate frame, this is often not practical. Usu-
ally, the camera coordinate frame and the world coordinate frame are
different, and a transformation of the object point to the camera-
centered coordinate frame is required. This is done by straightfor-
ward translation and rotation: MC = R> (M − C). If we put this
into Equation 2.1, we end up with the equation given in 2.2.

ρm = KR> (M − C) (2.2)

Where M =
[
X Y Z

]>
is the 3D world point being projected

down to 2D, C is the position of the camera in world coordinates, R
is the rotation from the camera coordinate to the world coordinate,
K is the camera matrix and ρ is a scalar value. The elements of the
K matrix is called the intrinsic parameters, and describe the focal
length, skewness and optical axis of the camera. R and C are called
extrinsic parameters.
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Chapter 2 Camera Theory

2.1.2 Nonlinear Effects on Camera Model

A camera perfectly matching a linear model is theoretically possible
to construct, but in reality all cameras have some nonlinear distortion.
Most of the distortions can be described as radial and tangential dis-
tortions.
Radial distortions are commonly known as “barrel” or “pincushion”
effects, this is caused by the fact that the camera lens is not perfectly
parabolic. This causes the pixels away from the image center to appear
either farther away or closer than they should, examples are shown in
Figure 2.3.

(a) (b)

Figure 2.3: Examples of radial distortion, (a) shows the “barrel”
effect, while (b) shows the “fish-eye” effect. Both are applied to the
test scene in Figure 3.8.

Radial distortions can be modelled mathematically by using Equation
2.3, which is borrowed from [4].

xcorrected = x (1 + k1r
2 + k2r

4 + k3r
6)

ycorrected = y (1 + k1r
2 + k2r

4 + k3r
6) (2.3)

Here, x and y are the pixel values subtracted by the origin of the
camera, r is the euclidean distance from the origin, ki, iε [1, 3] are the
radial distortion parameters and xcorrected and ycorrected are the new
pixel values without radial distortion.
Tangential distortion appears as skewed images, and is caused by the
lens not being perfectly aligned with the image sensor in the camera.

6



2.1 Camera Modelling

The effect looks similar to the effect seen when taking a picture of a
plane which is not parallel to the camera lens, examples are shown in
Figure 2.4.

(a)
(b) Source: [4]

Figure 2.4: (a) shows an example of tangential distortion applied to
Figure 3.8, while (b) shows a possible cause of tangential distortion.

Tangential distortion can be modelled mathematically using Equation
2.4, which is borrowed from [4].

xcorrected = x+ (2p1y + p2 (r2 + 2x2))
ycorrected = y + (p1 (r2 + 2y2) + 2p2x) (2.4)

As in Equation 2.3, x and y represents the pixel values subtracted by
the origin of the camera, r is the euclidean distance from the origin,
pi, iε [1, 2] are the tangential distortion parameters and xcorrected and
ycorrected are the new pixel values without tangential distortion.

2.1.3 Epipolar Constraint

When two cameras are recording the same object and the camera
parameters for both cameras are given, a point in one of the frames
has to be on a line in the second frame. This line is given by the
epipolar constraint and can be calculated by using equation 2.2.

ρ1m1 = K1R
>
1 (M − C1) , ρ2m2 = K2R

>
2 (M − C2)

7



Chapter 2 Camera Theory

Solving camera 1’s equation for M and inserting it into the equation
for camera 2 results in a new equation [3].

ρ2m2 = K2R
>
2

((
ρ1R1K

−1
1 m1 + C1

)
− C2

)
ρ2m2 = ρ1K2R

>
2 R1K

−1
1 m1 +K2R

>
2 (C1 − C2)

ρ2m2 = ρ1Am1 + ρe2e2 (2.5)

Equation 2.5 describes what is called the epipolar line. Am1 is the
vanishing point of m1 in camera 2 while e2 is the location of camera
1 in camera 2’s view. Basically, this means that a given point m1 in
camera 1 has to lie on the line between the vanishing point of m1 in
camera 2 and the epipole of camera 1 in camera 2. This is shown
graphically in Figure 2.5.

Figure 2.5: On the left, the relation between the point m1 in camera
1 and the line l1 in camera 2 is shown.
On the right, the epipole of e2 and the vanishing point Am1 is
added.

Equation 2.5 can be manipulated further. That m2 lies on the line
between Am1 and e2 means that the three vectors are linearly de-
pendent. The algebraic way of expressing this is by saying that the
determinant of the matrix with these vectors as its column vectors is
equal to zero.∣∣∣ m2 e2 Am1

∣∣∣ = 0

8



2.1 Camera Modelling

By using the definition of the cross product, this can be written as:∣∣∣ m2 e2 Am1
∣∣∣ = m2 · (e2 × Am1)

Expressing the cross product as a matrix multiplication,

a× b = [a]× b

[a]× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 , a =

 a1
a2
a3


has some benefits which makes it possible to write the relation between
m1 and m2 as a linear matrix equation [3]:

m2 · (e2 × Am1) = m>2 [e2]×Am1

= m>2 Fm1 (2.6)

Where F is called the fundamental matrix. This also leads to an
alternative way of expressing the line called l1 in Figure 2.5.

l1 =

 a
b
c

 = Fm1 (2.7)

Where the line is is defined by the following equation:

m>2 l1 =
[
x y 1

]  a
b
c

 = ax+ by + c = 0

2.1.4 Triangulation

When the equations relating the camera frame to the 3D space are in
place, any point on the camera frame can be traced to a line in the 3D
space. A typical 3D camera system consists of two cameras of which
the intrinsic- and extrinsic parameters are known. When an object
can be found in these two separate camera frames, they can be traced

9



Chapter 2 Camera Theory

back to two lines in the 3D world. With a noise free measurement
and perfect equations, those two lines would intersect at the position
of the object and a 3D reconstruction is accomplished.

Figure 2.6 illustrates three points defined by the two camera positions
and the object position in a 2D drawing. The lines from the camera
positions to the object passes through the points xl and xr (called m1
and m2 in earlier equations) on the camera frames, and the position
of P (called M in the earlier equations) can be estimated. By solving
equation 2.2 with respect to M for both camera 1 and camera 2, the
following equations arise:

M = ρ1R1K
−1
1 m1 + C1

M = ρ2R2K
−1
2 m2 + C2

The unknowns in this equations are M , ρ1 and ρ2. This results in a
total of five variables and six equations which will have one solution for
data perfectly fitting the linear model, and no solution if there is noise
present. If there are no solutions to the equations, a minimization
problem can be solved to estimate an optimal solution.

min
ρ1, ρ2

∣∣∣(ρ1R1K
−1
1 m1 + C1

)
−
(
ρ2R2K

−1
2 m2 + C2

)∣∣∣

2.2 Calibration

A typical calibration uses known geometrical shapes often called cal-
ibration objects. Such calibration objects are shown in Figure 2.7. A
typical calibration algorithm follows the following steps [3]:

• Construct a calibration object (either 3D or 2D). Measure the
3D positions of the markers on this object.

• Take one or more (depending on the algorithm) pictures of the
object with the camera to be calibrated.

• Extract and identify the markers in the image.

10



2.2 Calibration

Figure 2.6: Model of triangulation. cx is the center of the image and
x is the projection of P to the image frame. Assuming noiseless
image data, Z can be computed if f is known. Figure is borrowed
from [4].

• Fit a linearized calibration model to the 3D-2D correspondences
found in the previous step.

• Improve the calibration with a non-linear optimization step.
Continuous calibration is quite different from initial calibration. A
goal of continuous calibration is to update the extrinsic parameters
of an initial calibration which may have changed due to aging. The
intrinsic parameters can also be updated by a continuous calibra-
tion method, but they can be assumed to be constant. Requiring
calibration objects would make operator interaction necessary during
calibration, which is undesired. Continuous calibration therefore use
other algorithms to find corresponding points in two or more camera
frames watching the same scene, and use these points to update the
initial calibration. Not all information about the scene can be ex-
tracted from these corresponding points. For instance, the cameras
may not know the distance between two points. This makes it neces-
sary to make some assumptions if this information cannot be gathered
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Chapter 2 Camera Theory

Figure 2.7: Left: 3D calibration object.
Right: 2D calibration object. Figure borrowed from [3].

by other means.
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3 Methods

Calibration of 3D camera systems are divided into two main cate-
gories: active and passive. Active calibration means that there are
markers in the images which are used to calibrate the camera pa-
rameters, whereas passive has to find points (called interest points or
feature points) for usage in calibration automatically.

Figure 3.1: The different steps needed for online calibration.

The method which is used in this paper is an initial active calibration,
where checkerboards are used for finding both nonlinear parameters,
intrinsic parameters and possibly initial extrinsic parameters.
The focus of this paper is the continuous calibration of extrinsic pa-
rameters which occurs after the initial calibration. A common factor

13



Chapter 3 Methods

of all the calibration methods is the system structure which is shown
in Figure 3.1. First of all, feature points has to be found. Several
algorithms for finding feature points exist, the feature finder which
is used by default in the current system is an open-source implemen-
tation of the FAST algorithm [5]. When the features are detected,
something called descriptors have to be extracted. The descriptors
distinguish the points from one another, and a descriptor matcher is
used to find the points in each camera that seems to be different per-
spectives of the same point. The default descriptor extractor used in
the current system is an open-source implementation of the BRIEF
descriptors [6]. The default descriptor matcher is a simple open-source
implementation of a brute-force matcher.

The parts of the system structure which are not common for all dif-
ferent approaches attempted in this paper is the noise suppression
and the calibration. In fact, the noise suppression was developed for
the chosen calibration approach after the initial tests. The noise sup-
pression is present because the descriptor matcher would often match
non-matching points which would corrupt the calibration. The cali-
bration part of the system structure is the main focus of this paper,
and is where most of the work have been focused.

In this chapter, the three calibration methods which were a part of
the initial test will be briefly mentioned. The method which was
chosen after the initial testing will be explained in further details.
The system implementation and test procedures will be explained. A
short analysis of the videos which the calibration system originally
was made for is also included.

3.1 Choice of Continuous Calibration
Method

The background search done during the initial phase of the work did
not lead to a conclusion concerning the choice of calibration method,
this resulted in a trial period where three different approaches were
attempted. One method is based on approximating the fundamental
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3.2 Details of Chosen Calibration Method

matrix, a second method is based on triangulation and the third is
based on minimizing the distance between a point on the camera frame
and its corresponding epipolar line.
The first method approximated the fundamental matrix based on the
feature points, Festimate, and seeked to minimize the difference be-
tween Festimate and Fcalibration. Fcalibration is the fundamental matrix
computed using the calibration.

min
extrinsic parameters

|Festimate − Fcalibration|

It ran well on tests, but was abandoned due to noisy results on live
data.
The second method needed a correct calibration to start with. It
would compute 3D points based on the feature point matches and the
current calibration. The next time step it would try to find these
stored 3D points and update the calibration based on the movement
since the last time step. This worked well on paper, but testing it on
live data wasn’t successful and the method was shelved. In retrospect,
the reason why these methods failed on live data may have been caused
by nothing but erroneously matched points which was passed to the
calibration algorithm.
The last method, based on minimizing the distance between feature
points and its epipolar lines, was chosen due to better performance
than the other two. It performed well in initial simulations, and test-
ing it on live data seemed to output correct data. It was discovered
that as soon as the descriptor matcher started passing non-matching
points to the calibration algorithm, the algorithm would fail and the
calibration would be corrupted. This made it necessary to construct
a simple noise suppression algorithm, which is described in chapter
3.2.

3.2 Details of Chosen Calibration Method

The chosen calibration method relies heavily on the epipolar con-
straint which is described in section 2.1.3. The epipolar constraint
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Chapter 3 Methods

states that a point in camera frame 1 will appear somewhere on a line
in camera frame 2. The feature detector and -matcher will compute
a list of corresponding points in camera frame 1 and camera frame 2.
By using this list of points, it is then possible to minimize the sum of
distances from points to corresponding epipolar lines.
First of all, the equations for the epipolar line has to be established.
This has been done in chapter 2.1.3, where equation 2.7 is repeated
here:

l1 =

 a
b
c

 = Fm1

ax+ by + c = 0

The fundamental matrix in this case is calculated from the calibration
parameters. Equation 2.6 defines that F = [e2]×A, and the following
equation is obtained by inserting matrices from equation 2.5.

F =
[
K2R

>
2 (C1 − C2)

]
×
K2R

>
2 R1K

−1
1

Here, K1 and K2 is intrinsic parameters, which are assumed constant.
C1 − C2 is defined to be [−d, 0, 0]>, where d is the distance between
camera 1 and camera 2. This makes it possible to define the funda-
mental matrix as a function of R1 and R2.

Fcal
(
R1, R2

)
=
[
K2R

>
2 (C1 − C2)

]
×
K2R

>
2 R1K

−1
1

The definition of C1 − C2 above is caused by the choice of world
coordinate system. The x-axis is chosen to be parallel to the baseline
from camera 1 to camera 2 while the z-axis is chosen to have the same
pitch angle as camera 1. This makes the relative position from camera
1 to camera 2 always be parallel to the x-axis. The rotation matrix
for camera 1 can also be computed by two angles, roll and yaw, since
the pitch is defined to be 0 degrees. This world coordinate system is
pictured in Figure 3.2. This can easily be translated to orientation
and position relative to the orientation and position of camera 1:

Rrel = R>1 R2

16



3.2 Details of Chosen Calibration Method

Figure 3.2: The world coordinate system is defined to have its origin
in C1, the x-axis parallel to the baseline from C1 and C2 and the
z-axis is defined such that the pitch of camera 1 is zero.

Crel = R>1 (C2 − C1)

When the epipolar line for a given point is defined, the distance from
the point to the line has to be calculated. When the line is defined as
it is in equation 2.7, the shortest distance from the point to the line
can be computed by using the following expression

d (x, y) = |ax+ by + c|√
a2 + b2

We can rewrite this equation to define a function which accepts the
line and point in vector form.

d
([

a, b, c
]>
,
[
x, y

]>)
= |ax+ by + c|√

a2 + b2

When the equation for the epipolar line and the distance from a line
to a point is in place, a optimization problem can be defined. In this
implementation, the sum of the distances is used. Each point pair
(m1, m2) contributes to the sum with the distance from m2 to its
epipolar line.

min
R1, R2

f (R1, R2) =
∑

m1, m2

d (Fcal (R1, R2)m1,m2)

17



Chapter 3 Methods

For solving the optimization problem, a open-source solver is used [7].
The solver used estimates the gradient of the function to be optimized
and runs until it reaches a local minima. This might be a problem if
the problem has multiple local minima.

No feature matcher is perfect, and the method had to include som kind
of filter to remove obvious mismatches. This was done by assuming
that the deviation from the previous calibration was small. Any point
which was farther away from the epipolar line than a certain threshold
would be invalidated. The epipolar line was calculated by using the
rotation matrices most recently estimated.

3.3 Software Implementation

The implementation is a part of a greater framework, and its output
is shown in a graphical user interface except for debug prints. The
controlling class is called “FeatureStream”, and it calls the appropriate
functions in the member objects “featureFinder” and “optimizer” to
run the continuous calibration. A shallow class overview is shown in
Figure 3.3.

Figure 3.3: A shallow class diagram showing the important member
objects and public functions.

The “FeatureFinder” class implements the first three steps from Fig-
ure 3.1: feature detection, descriptor extraction and descriptor match-
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3.4 Test Procedure for Continuous Calibration

ing. The “Optimizer” class implements the last two steps: noise sup-
pression and calibration.
The software implementation uses two third-party libraries which are
open-source: OpenCV [8] and Dlib [7]. The feature finding algorithms
of OpenCV is used, and Dlib is used for solving the optimization.
The workflow for the application is basic. It runs continuously as fast
as the hardware allows it to, looping through the different steps of
the system structure. The graphical user interface allows the user to
choose various options, and a short user manual is written in Appendix
6.

3.4 Test Procedure for Continuous
Calibration

The test procedure is split up in two parts, a simulation and a live
test using web cameras. The simulation creates virtual feature points
based on calculated intrinsic camera parameters and camera rotation
based on user input. The live test, on the other hand, uses live images
in which it detects and matches features before finally calculating
camera rotations.

3.4.1 Simulation Procedure

Simulating a real system is a good way of checking the correctness
of the application. A simulation successfully removes the unwanted
random variables which is applied by the real world. This means that
the negative effects of bad feature detection, feature matching, image
noise and more is non-existent.
Thirty-two 3D points which are spread out in box-like shape are gen-
erated and equation 2.2, the pinhole camera model, is used to generate
simulated feature points for both the cameras. The feature points will
appear slightly different in each of the camera frames based on their
position and orientation. Figure 3.4, 3.5, 3.6 and 3.7 show how the
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Chapter 3 Methods

different rotations affect the perspective for eight points in a box-like
shape.

Figure 3.4: Simulation: No camera rotation, the points represent
corners of a 20cm cube. The translation of camera 2 can be seen
by looking at the perspective of the cube.

Figure 3.5: Simulation: The points represent corners of a 20cm cube.
The roll angle of camera 2 is about 10 degrees.
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3.4 Test Procedure for Continuous Calibration

Figure 3.6: Simulation: The points represent corners of a 20cm cube.
The pitch angle of camera 2 is about 10 degrees.

Figure 3.7: Simulation: The points represent corners of a 20cm cube.
The yaw angle of camera 2 is about 10 degrees negative.

For example, if the camera matrixK2 and camera position C2 is given:

K2 =

 100 0 60
0 100 40
0 0 1

 , C2 =

 1
0
0


This camera could for example have 120 times 80 pixels, and the opti-
cal center is at (60, 40). To calculate the pixel value of a 3D point M
when the camera is rotated 30 degrees about z axis (roll rotation), the
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rotation matrix have to be calculated and pinhole camera equations
applied.

Rz (30◦) =


√

3
2 −0.5 0

0.5
√

3
2 0

0 0 1



m = 1
ρ2
K2R

>
2 (M − C2)

= 1
ρ2

 100 0 60
0 100 40
0 0 1




√
3

2 0.5 0
−0.5

√
3

2 0
0 0 1



 1

1
2

−
 1

0
0




= 1
ρ2

 170
167
2

 =

 85
83
1


Without rotation, the point would have been [60, 90, 1]>.
The simulated test is a part of the FeatureFinder algorithm, and is
activated through setting the “Use simulated values” option. When
the simulated test is activated, the “Euler angle” x, -y and -z values,
which are changed under the FeatureFinder algorithm, sets the pitch,
yaw and roll angles used for making simulated feature points.
The test was done by manually setting the simulated roll, pitch and
yaw angles using the mechanics described in the last paragraph. The
test was done for individually for each axis. The roll was first set to
0◦, then gradually moved to 45◦ , −45◦ and back to 0◦ again. This
was repeated for pitch and yaw axis.

3.4.2 Live Test Procedure

The objective of the test procedure is to verify that the calibration ap-
plication is able to calibrate the cameras. The calibration application
consists of multiple steps described in Figure 3.1, and the test proce-
dure should minimize the effect of poor feature detection, description
and matching.
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3.4 Test Procedure for Continuous Calibration

A way of minimizing the effect of feature detection performance is by
making a scene consisting of good features. In this case, it was decided
to use a checkerboard. Figure 3.8 shows the kind of checkerboard used.
The test was first designed to use two checkerboards, the reason for
this was to avoid having all feature points in the same plane in space.
When all the feature points are in the same plane, the calibration may
be less accurate. In this case, the hardware was too weak for running
tests with two checkerboards, which caused excessive computation
time. The tests therefore consist of only one checkerboard in the
scene, which is pictured in Figure 3.8.

Figure 3.8: The test scene. Camera 2 is placed about 15 cm to the
right of camera 1.

The camera setup consisted of two cameras which were called camera
1 (left) and camera 2 (right). Camera 1 was stationary while camera
2 was rotated in a controlled fashion. There was a lack of time to
set up positioning for the cameras, therefore the cameras was moved
by hand and detailed error analysis could not be made of the results.
The results did however give a good visualization of the calibration
problems local convexity and the correctness of the output calibration.
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Figure 3.9: Screenshots of the test procedure showing roll angle ro-
tation.

There was one test for each of the axes: roll, pitch and yaw. For
each test, camera 2 started at 0 degrees and was rotated to either
45 degrees or −45 degrees, depending on which direction kept the
checkerboard in sight. It was then rotated back to 0 degrees. For the
roll test, the angle of the camera was estimated visually by looking
at the orientation of the checkerboard. In the pitch test, the angle of
camera 2 was taken picture of and estimated after the test. In the
yaw test, a piece of paper with a 45 degree angle drawn on it was
used to guide the movement of camera 2. These various methods are
pictured in Figure 3.12.
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Figure 3.10: Screenshots of the test application showing pitch angle
rotation.
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Figure 3.11: Screenshots of the test application showing yaw angle
rotation.
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3.4 Test Procedure for Continuous Calibration

(a) Roll angle visual estimation. When looking at the checkerboard, angles of 45
degrees increment can be estimated quite well.

(b) The camera pitch angle was pictured at the start of the test and at max
pitch angle. A graphical measurement tool was used to measure the relative
angle.

(c) Guide lines was drawn on a piece of paper to estimate
the yaw angle during tests.

Figure 3.12: Various methods used to estimate the actual angle ro-
tated during live test.
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3.5 Analysis of the Example Video

Videos monitoring an offshore installation by cameras mounted on a
crane was provided by National Oilwell Varco. The video was provided
to show the challenges which are present in the target usage area. By
analysing the example video, a few problem areas were easily spotted.
This analysis is included due to being the systems target area, even
though no system tests have yet been run on the example video.
Firstly, the cameras were mounted to a crane which was mobile. This
makes the timing of the images extremely important. If the system
starts matching a 500 milliseconds old image from camera 1 with a
fresh image from camera 2, great errors may arise. The crane itself
might have rotated 5 degrees and the calibration will then be 5 degrees
off.
Another problem which was identified by the footage was waterdrops
on the lens. This will not affect the calibration algorithm directly, but
it will affect the feature detection, -description and -matching, which
is a difficult problem already!
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4 Results

The calibration software was run through two different tests. One
test used simulated values with no noise and the other used live video
streams.

4.1 Test Results from Simulated Test

The simulated test was run as described in Chapter 3.4.1. In this
section, figures with plots of the test results will be presented. There
are three rotation axes: roll, pitch and yaw (rotation about z-, x- and
y-axis, respectively). For each rotation axis, there are three figures:
plot of simulated and estimated angles, plot of estimation error of
camera 2 and a plot of estimation error of the angle between camera
2 and camera 1.

4.1.1 Roll Simulation

Figure 4.1 plots the simulated versus the estimated angles. The esti-
mates follow the simulated angles closely, but some deviation can be
noticed. The fact that the estimates of camera 1 is non-zero impli-
cates that the relative position estimation is incorrect. The relative
orientation error is shown in Figure 4.2 and it seems to be within 0.2
degrees. The orientation error relative to the baseline between the
cameras can be seen in Figure 4.3, it is about 3 degrees off. This ori-
entation error indicates that the relative position is poorly estimated,
which is discussed in chapter 5.
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Figure 4.1: Simulation output for each time step, “Sim” values are
the simulated angles for camera 2, “Estimate” values are the esti-
mated values for camera 1 and camera 2.

Figure 4.2: Estimation error of the relative orientation from camera
1 to camera 2.
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4.1 Test Results from Simulated Test

Figure 4.3: Error in the estimated orientation for both camera 1 and
camera 2 relative to the baseline between the cameras.

4.1.2 Pitch Simulation

The plot of the estimated orientation in Figure 4.4 shows that the
estimates follow the simulated angles fairly well. It can though be
seen that the pitch simulation peaks at about ±27 degrees, where the
estimates suddenly stops following the simulated angle. This is due
to the noise suppression algorithm and will be discussed further in
chapter 5.
The pitch simulation results shows the same tendencies as the roll
simulation results. The relative orientation estimate is quite accurate,
and Figure 4.5 shows that it deviates by less than 0.2 degrees when
not counting the situations where the noise suppression algorithm
invalidates all the points. The orientation relative to the baseline
between the cameras is in this case just as accurate since the pitch
angle of camera 1 is defined to be 0 degrees.

4.1.3 Yaw Simulation

The results from the yaw simulation is similar to the results from both
roll and pitch simulation. Figure 4.7 plots the simulated orientation
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Figure 4.4: Simulation output for each time step, “Sim” values are
the simulated angles for camera 2, “Estimate” values are the esti-
mated values for camera 1 and camera 2.

Figure 4.5: Estimation error of the relative orientation from camera
1 to camera 2.
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Figure 4.6: Error in the estimated orientation for both camera 1 and
camera 2 relative to the baseline between the cameras.

versus the estimated, and it can be seen in Figure 4.8 that the relative
orientation estimate is mostly within ±0.05 degrees. The orientation
relative to the baseline between the cameras, shown in Figure 4.9, like
the roll simulation also states, is less accurate and suggests a deviation
in the relative position estimate.
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Figure 4.7: Simulation output for each time step, “Sim” values are
the simulated angles for camera 2, “Estimate” values are the esti-
mated values for camera 1 and camera 2.

Figure 4.8: Estimation error of the relative orientation from camera
1 to camera 2.
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Figure 4.9: Error in the estimated orientation for both camera 1 and
camera 2 relative to the baseline between the cameras.
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4.2 Test Results from Live Video Streams

The results from the live tests are presented in figures. Each test has
two figures. One figure plots all the camera angles individually, and
the other plots the relative angles between camera 2 and camera 1.
A total of four tests are shown, one pitch test, one roll test and two
yaw tests. All the live tests output noisy calibrations while moving
the camera, this is because the camera was moved by hand.

4.2.1 Roll Test

In the roll test, camera 2 was rolled to an angle of a little less than
45 degrees in negative direction. The reason why it was not rotated
to fully 45 degrees was because of limitations in the software when
detecting the checkerboard. The checkerboard would be processed
erroneously when passing 45 degrees and result in corrupted estima-
tion. Figure 4.10 shows that even though only camera 2 is rolled, it is
estimated that both camera 1 and camera 2 is actuated. Figure 4.11
indicates that the relative roll angle is correct. This means that, yet
again, the relative orientation is estimated with good precision, but
the relative position is not.

4.2.2 Pitch Test

In the pitch test, camera 2 was pitched to about 15 degrees. This
was because it had to keep the checkerboard in sight, which would
be more complicated if tested with larger pitch angles. Other than
the fact that the rotation is not continued to 45 degrees, the results
shown in Figure 4.12 and 4.13 seem to be correct. Notice that the
pitch angle of camera 1 is defined to be 0 degrees, which makes the
relative pitch angle between the cameras the same as the pitch angle
relative to the baseline.
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Figure 4.10: The estimated orientations relative to the baseline be-
tween the cameras is plotted for each time step.

Figure 4.11: The estimated relative orientation between camera 1
and camera 2 is plotted for each time step.
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Figure 4.12: The estimated orientations relative to the baseline be-
tween the cameras is plotted for each time step.

Figure 4.13: The estimated relative orientation between camera 1
and camera 2 is plotted for each time step.
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4.2.3 Yaw Tests

There are two yaw tests shown. The yaw test was especially sensitive
and there was therefore a need of showing the different results. In
Figure 4.14 and 4.15 the results of the first test is graphed. Here, the
estimate doesn’t return completely to 0 degrees relative yaw angle, but
ends up at about −6 degrees. Figure 4.16 and 4.17 shows the second
test, where the estimate of relative angle “overshoots” and ends up
at 10 degrees. These tests also show the same problem with relative
position estimates as the simulations and roll test.

Figure 4.14: The estimated orientations relative to the baseline be-
tween the cameras is plotted for each time step.
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Figure 4.15: The estimated relative orientation between camera 1
and camera 2 is plotted for each time step.

Figure 4.16: The estimated orientations relative to the baseline be-
tween the cameras is plotted for each time step.
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Figure 4.17: The estimated relative orientation between camera 1
and camera 2 is plotted for each time step.
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5 Discussion

Overall, the chosen calibration model based on minimizing the dis-
tances between points and their corresponding epipolar lines seemed
to be working well. The tests have proved the model to be quite
precise in some aspects, while weaknesses in others have been high-
lighted. This chapter will be divided into sections of discussions on
these weaknesses.

5.1 Sensitivity of the Estimated Angles

The simulation results clearly states that all angles can be estimated
with good accuracy. The relative angle between the two cameras can
be estimated with as low as 0.2 degrees deviation. The simulation
also shows that the difference in position contributes less to the op-
timization function than the difference in angle of the two cameras.
Even with simulated measurements with close to no noise the position
is not estimated perfectly, the only noise present would be caused by
the precision of the C++ float type. As shown in chapter 3.2, the rel-
ative position is closely related to the angle of camera 1. The angles
of camera 1 should be stationary at 0 degrees during the simulation,
yet they deviate by up to 3 degrees, as shown in Figure 4.3, 4.6 and
4.9. This corresponds to a deviation of the relative position by 5% of
the distance between the cameras, which is discussed in section 5.2.
Looking at the simulation results of the pitch it can be seen that
the noise suppression part of the calibration application, which is de-
scribed in section 3.2, invalidated all the feature points at about ±27
degrees. This makes sense since rotating the camera in the pitch
angle moves the feature points further away from the epipolar lines
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compared to rotating the camera in roll- or yaw angles. The points
move further when at high angles because the Z-value of the point rel-
ative to the camera frame decreases at an increasing rate. This most
likely not be a problem in live setups since the feature point would
disappear out of the camera frame before this effect appears. A re-
lated problem with this noise suppressing algorithm should though be
kept in mind: it will be highly effective at invalidating noise which
is perpendicular to the epipolar line, while not removing any noise
which is parallel to it.
Another weakness of the chosen calibration model is the yaw sensitiv-
ity. Rotating the camera in yaw angle will not affect the optimization
function as much as rotating the camera in any other angle. This
is a problem which can be observed in the live tests, where the yaw
estimates deviate by 5 to 10 degrees when the camera yaw angle is
returned to 0 degrees. This effect might be reduced by using more
spread feature points. The live test utilizes no more than nine points
which are all on the same plane in the 3D space. Using points in one
plane when calibrating means that we are missing information [4].
Only one plane was used in this test to ensure good features using
a checkerboard, and the lost information should not be crucial since
the application is updating a given calibration instead of computing a
new one. It is possible to detect two checkerboards in different planes,
this was originally done in the test application, but was omitted due
to slow computation on the laptop used for testing.

5.2 Relative Position Estimation

The roll-, pitch- and yaw angles of camera 1 is easily converted to get
the relative position between the cameras based on the orientation of
camera 1. Figure 4.3, 4.6 and 4.9 show that the estimated orientation
of camera 1 in the simulation deviates from the correct value. This
is believed to be caused by dominating effects from the angle error
in the optimization problem. The relative position of the cameras is
still a major part of the calibration, and further work needs to be
done to ensure that the relative position can be calculated with good
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accuracy. Ideas for solving this problem is presented in chapter 6.
The angular direction which seems to produce the most relative po-
sition error is the roll angle. In the simulation, the roll error is up
to 3 degrees, which corresponds to a deviation of relative position of
about 5% compared to the distance between the cameras. The roll
test results, shown in Figure 4.10, also suggest that the calibration
application is having a hard time estimating relative position when
the roll angle is varying.

45





6 Further Work

The calibration system presented in this report is far from finished!
The areas of improvement are summarized by the following list.

• Enhancing the relative position estimation

• Improving the noise suppression algorithm

• Testing with different feature detection and -matching algo-
rithms

• Adding functionality for estimating the distance between cam-
eras to remove the last free variable

Enhancing the relative position estimation is probably the most im-
portant point, and a few ideas of how to do it is presented in this
section. Adding an extra camera is one of the ideas. By using an extra
camera, the relative orientation between each of the three cameras
can be used to calculate relative positions as long as one of the dis-
tances is known. Adding an extra camera is perhaps the easiest, and
is likely to give good estimates without much work. A downside of
this is the need of increased computation power, since it has to up-
date three calibrations as opposed to one. The other idea is to add an
extra optimization problem, or perhaps modifying the existing one.
The existing one looks for a local minimum, which is not guaranteed
to take it to the global minimum. An algorithm for finding the global
minimum may be applied to the current optimization problem, but it
might be more effective to split the problem in two. This can be done
by using the relative orientation output by the current optimization
algorithm to formulate a similar problem. This new problem would
consist of three variables instead of the original six, which might low-
er the computational costs.
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The current noise suppression algorithm, which is described in chap-
ter 3.2, calculates the distance from the point to the corresponding
epipolar line and invalidates any points farther away than a given
threshold. This means that non-matching points may be considered
valid by as long as they are close to the epipolar line. Reducing the
threshold would help, but this would again possibly invalidate valid
points caused by movement of the camera frame perpendicular to the
epipolar line.
During the work on this calibration system the weight has been on the
calibration model, which has left little attention to testing different
feature detection and -matching algorithms. The features have a huge
impact on the quality of the calibration, and achieving good features
might even make the need for a noise suppression algorithm fade away.
The distance between the cameras can be calculated by knowing a sin-
gle distance in the scene. If an initial distance is known, existing cal-
ibrations can be used to calculate distances between all matched fea-
ture points. These distances and points could be stored and matched
with future features to calculate the updated distances between the
cameras. If this is attempted, a paper from 1995 about self-calibration
of extrinsic parameters might be interesting [9]. Although the paper
is old, it presents a relevant method of calibration which uses a known
distance in the scene.
While working on the system, a relevant paper from 2009 was found
[2]. The problem described in the article share great commons to the
problem described in this report. The paper from 2009 had a more
complex problem than presented here due to less simplification. The
algorithm described also had a more complex optimization problem.
The paper claimed less than 5% 3D reconstruction error. There was
no comparison of actual- and estimated extrinsic camera parameters.
This paper was discovered too late to take into account when imple-
menting the calibration system, which is why it is commented here as
further work.
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Startup procedure

1. The application is started by running continuous calibration.exe
2. The user is then asked about the kind of input to use. Either

“Web cameras” or “Files” can be chosen
3. In case of “Web cameras”...

a) A new box will ask for camera 1 ID, this is usually a number
between 0 and 2 depending on the system setup. Trying 0
or 1 usually works

b) Another box asks for camera 2 ID. This cannot be the same
as camera 1 ID. Try incrementing the last answer

4. In case of “Videos”...
a) A file browser will pop up asking for camera 1 video file.

Locate the video file for camera 1 and open it (If running
test videos, this would be the file ending with “_1”)

b) A file browser will pop up asking for camera 2 video file.
Locate the video file for camera 2 and open it (If running
test videos, this would be the file ending with “_2”)

5. A file browser will now pop up asking for a calibration file, locate
the .xml file which has stored the calibration data (If running
the test videos, this will be cameracalibration.xml)

6. A box will appear asking for “Run mode”. The available options
will be “9x9 Checkerboard”, “Simulation” and “Free”. Notice
that this can be altered by modifying parameters while appli-
cation is running (If running the test video, the correct option
would be “9x9 Checkerboard”)
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7. The application should now load the appropriate input and at-
tempt updating the calibration

Altering application parameters

To start altering parameters, select “View”->”Parameter window”
while running the application. The parameters are stored in a tree
structure under “Feature”.

Use simulated points This option enables feature point simulation,
the “Euler angle” options will then be used for control-
ling simulated points. This option should not be enabled
at the same time as “Find calibration patterns”.

Euler angle: * X: control the simulated rotation about the
world X axis (pitch) for camera 2. Y: control
the simulated rotation about the world Y axis
(yaw) for camera 2. Z: control the simulated
rotation about the world Z axis (roll) for cam-
era 2.

Find calibration patterns This option makes the FeatureFinder look
for a 9x9 checkerboard instead of ordinary feature points.
This option should not be enabled at the same time as
“Use simulated points”

Max feature point matches The max number of feature point match-
es which should be sent to the Optimizer. The N closest
matches will be kept.

DescriptorExtractor: * Change the algorithm for extracting descrip-
tors, default is BRIEF.

GoodFeaturesToTrack detector Enable the GFTT detector, if unchecked,
the FAST feature detector will be used. Default is FAST.

Feature point threshold How far away a feature point can be from
its corresponding epipolar line before being invalidated.
Default is 100.
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Run continuous Unchecking this will pause the application, allowing
for taking screenshots or setting parameters without cali-
bration running.
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Contents Overview of CD

A CD is stuck to the cover of the physical edition of the thesis. It
contains the following;

• A compiled version of the continuous calibration application
• Test videos used for the live test
• System debug output prints from the live tests and simulations
• Python scripts for processing the output prints from tests and

simulations
• The source files of the application which are relevant for the

thesis
• An .xml file which contains the calibration of the cameras used

for the test
The structure of the CD is as follows
app l i c a t i o n

cont inuous c a l i b r a t i o n . exe
[ p lus the needed . d l l s f o r running the app l i c a t i o n ]

source code
FeatureFinder . cpp
FeatureFinder . h
FeatureStream . cpp
FeatureStream . h
Optimizer . cpp
Optimizer . h

t e s t r e s u l t s
l i v e

app l i c a t i o n output
process_l ive_output . py
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[ 6 output . txt f i l e s ]
v ideos

[ 6x2 v ideos o f t e s t s ]
c ameraca l i b ra t i on . xml

s imu la t i on
process_sim_output . py
[ 4 output . txt f i l e s ]

If cameras are to be used with the application, they would have to
be initially calibrated in advance. The structure of the calibration
file can be seen in “cameracalibration.xml”. However, by running the
application with the given input videos, the correct initial calibration
is stored in “cameracalibration.xml”, and that file should be selected
when prompted by the application.
The python scripts utilize the matplotlib module of python, which will
have to be installed in addition to python 2.7 or later. The system
debug output prints are there to allow the python scripts to make
plots, and may not make much sense if read in a text editor.
The source files include the files of the application which consist of the
calibration algorithms. They rely on a framework which was provided
by National Oilwell Varco for running the graphical user interface, yet
the files can easily be ported to a standalone project.
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