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Abstract  

The N-terminal domain (residues 28-165) from the glycoside hydrolase family 10 from Roseburia intestinalis 

(RiCBMx), has been isotopically labeled and recombinantly expressed in Escherichia coli. Here we report 1H, 13C 

and 15N NMR chemical shift assignments for this carbohydrate binding module (CBM). 
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Biological context 
Most of the dietary fibers in the human diet comes from the plant cell walls present in fruits and vegetables. Here we 

find complex polysaccharides such as, cellulose, pectin and xylan (Koropatkin et al. 2012). The latter has a β-1,4-

linked xylose backbone with varying degrees of polymerization and side-chain substitution (Rennie and Scheller 

2014). Xylan can be substituted with carbohydrate side-chains, e.g. arabinofuranosyl and glucuronosyl residues or 

acetyl groups. A variety of linkages to side-chain residues necessitate the deployment of different enzymes for xylan 

degradation.  

Members of the human gut microbiota (HGM) are able to ferment xylan into short-chain fatty acids (SCFAs) e.g. 

butyrate, propionate and acetate. Butyrate is known to have a beneficial effect on the host’s health by being an 

energy source for colonocytes as well as reducing the risk of colon cancer and enteric colitis (Donohoe et al. 2012; 

Morrison and Preston 2016; Xu et al. 2017). As the population of butyrate-producers are more abundant in healthy 

individuals, there is a particular interest in the role they play in the HGM (Sheridan et al. 2016). One of the key 

known butyrate-producers from the HGM is Roseburia, a common genus in the clostridial cluster XIVa within 

Firmicutes (Louis and Flint 2009). Roseburia intestinalis has shown xylanolytic activity, and is together with species 

from Bacteroides, one of the few taxa that can utilize xylan (Chassard et al. 2007; Mirande et al. 2010). The ability 

of Bacteroides to degrade xylan have been investigated in detail (Martens et al. 2011; Rogowski et al. 2015; Zhang 

et al. 2014), but insight into the strategy used by Firmicutes to harvest energy from xylan has until recently been 

lacking.  

A recent study (Leth et al. 2018) showed that R. intestinalis is able to breakdown xylan through a modular cell-

attached xylanase of glycoside hydrolase family 10 (RiGH10A) that is conserved within the species. This enzyme is 

highly upregulated when R.intestinalis is grown on xylan and comprises of four xylan-binding modules: Two 

carbohydrate binding modules (CBMs) of family 9 (CBM9), one from family 22 (CBM22) and an N-terminal of a 

previously unknown family (CBMx). This representative of a new CBM family possesses low affinity for xylan, but 

displays selectivity for arabinoxylan, which makes it an interesting candidate for both structural and functional 

characterization studies by nuclear magnetic resonance (NMR).  

Methods and experiments 

Protein expression and purification 
13C, 15N and 15N samples were expressed in Escherichia coli BL21 (DE3). Pre-culture was grown in LB medium (10 

g/L tryptone, 5 g/L yeast extract and 5 g/L NaCl) supplemented with 10 µL kanamycin (50 mg/mL) in a shaking 

incubator at 30 °C, 225 rpm overnight. From the pre-culture, 1 % (v/v) was used to inoculate 450 mL M9 media (6 

g/L Na2HPO4, 3 g/L KH2PO4, 0.5 g/L NaCl) supplemented with 500 µL kanamycin (50 mg/mL), 1 mL 1 M MgSO4, 

10 mL Trace Metal solution (0.1 g/L ZnSO4, 0.8 g/L MnSO4, 0.5 g/L FeSO4, 0.1 g/L CuSO4, 1 g/L CaCl2), 5 mL 

Gibco™ MEM Vitamin Solution (100x), 10 mL 15N Bioexpress Cell Growth Media (Cambridge Isotope 

Laboratories, Tewksbury, MA; USA), 2 g glucose (15N label)/ 98 % 13C6-D-glucose (13C, 15N label) in 20 mL 

milliQ. After inoculation the medium was supplemented 1 mL anti-foam and the cells were grown using Lex-24™ 



(Epiphyte) at 30 °C until OD600 = 0.8. The expression was induced with IPTG (isopropyl-1-thio-β-D-

galactopyranoside) to a final concentration of 1 mM, and incubated with Lex-24™ (Epiphyte) at 16 °C over night. 

The cells were harvested by centrifugation (Sorvall) at 4 °C, 6000 ×g, 5 min. The pellet was resuspended in lysis 

buffer (50 mM NaH2PO4, 50 mM NaCl and 0.05 % TritonX-100) and ½ tablet cOmpleteTM ULTRA protease 

inhibitor (Roche) in 20 mL milliQ, and sonicated using a Branson Sonifier equipped with a microtip for 10 minutes. 

Isolation of the lysate was done by centrifugation (Eppendorf) at 4 °C, 15 000 ×g, for 2.5 h. 

An Econo-Column® (Bio-Rad) containing 2 mL Ni-NTA Agarose (QIAGEN) was equilibrated with 20 column 

volumes WEB (50 mM Na2HPO4, 300 mM NaCl), pH 8.0. The lysate was incubated in the column for 45 minutes, 

and eluted with WEB with an increased amount of imidazole: 10 mM, 15 mM, 20 mM, 100 mM, 200 mM and 400 

mM. Fractions containing CBMx were collected and purity confirmed with SDS-PAGE. To remove imidazole, the 

fractions were dialysed (MWCO 3.5 kDa) against 5 mM NaH2PO4, pH 5.5 over night.  

To cleave the His-tag of the fraction containing CBMx, TEV-protease was added in 1/100 (w/w) and dialysed 

(MWCO 3.5 kDa) against 20 mM sodium phosphate, 1 mM DTT, 0.5 mM EDTA, pH 8.0. Purification of CBMx 

was done using a gravity flow column containing 2 mL cOmplete His-tag purification resin (Roche) equilibrated 

with the dialysis buffer. The dialyzed sample was applied to the column and the flow through was collected. The 

resin was washed with 1-5 column volumes of the same buffer and the sample was collected by combining this 

fraction with the flow through. Regeneration of the column was done with dialysis buffer containing 50 mM 

imidazole. An SDS-PAGE was run to confirm the separation and purity of the mature CBMx. 

The CBMx containing fractions were concentrated and buffer exchanged into the NMR-buffer (50 mM sodium 

phosphate, pH 6.5. Samples for NMR was made with CBMx in NMR-buffer with D2O added to a final ratio of 90 % 

H2O/10 % D2O) by centrifugation using Vivaspin® 6 protein spin concentrators (MWCO 5 kDa, Sartorius) at 10 °C, 

7000 ×g.  

 

NMR spectroscopy 
All CBMx NMR samples were prepared in 50 mM sodium phosphate buffer and 10 % D2O, pH 6.5.  

All spectra were recorded at 25 °C on a Bruker Ascend 800 MHz spectrometer Avance III HD Bruker Biospin 

equipped with a 5 mm Z-gradient CP-TCI (H/C/N) cryoprobe at the NV-NMR-Centre/Norwegian NMR Platform at 

NTNU Norwegian University of Science and Technology, Trondheim, Norway. 1H shifts were referenced internally 

to HDO, while 13C and 15N chemical shifts were referenced indirectly to HDO, based on the absolute frequency 

ratios (Zhang et al. 2003). Backbone and side-chain assignments of CBMx were elucidated using 15N-HSQC, 13C-

HSQC, HNCA, HNcoCA, HNCO, HNcaCO, HNCACB, HNcoCACB, HNHAHB, HNcoHAHB and HcCH-

TOCSY. The NMR data were recorded and processed with TopSpin version 3.5 and the data was analyzed with 

CARA version 1.5 (Keller 2004). Secondary structure elements were evaluated using TALOS-N 

(https://spin.niddk.nih.gov/bax/software/TALOS-N/) (Shen and Bax 2013) and chemical shits of N, HN, Cα, Cβ, Hα, 

Hβ and C’. 

   

Assignment and data deposition 
Here we report the backbone and side-chain assignment of CBMx. Fig.1 shows the 15N-HSQC spectrum of CBMx 

together with the assigned resonances. The backbone assignment is essentially complete (N, HN, Cα, Hα and C’ > 98 

%). The mature protein contains two extra amino acids (Gly-Ala) at the N-terminus (for purification purpose) that 

were only partially assigned. Side-chain assignment is almost complete (H and C side-chains >78 %). The overall 

percentage of completion is affected by the missing assignment of exchangeable side-chain protons of Arg, Lys, Asn 

and Gln as well as aromatic residues. Chemical shift data have been deposited at the Biological Magnetic Resonance 

Data Bank (BMRB) under the accession number 27536. 

 

 

https://spin.niddk.nih.gov/bax/software/TALOS-N/


 

Analysis of the secondary structure elements (Fig. 2) indicates three α-helices and ten β-sheets. A high degree of β-

sheets is consistent with previously reported structures of carbohydrate binding modules. The typical β-sheet 

scaffold support the evolution of a variety of binding specificities and affinities in xylan-specific CBMs which 

merits further analyses. 
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Fig. 1  
1H, 15N HSQC spectrum of 13C, 15N-labeled CBMx (1.7 mM) from the glycoside hydrolase family 10 xylanase from 

Roseburia intestinalis (RiXyn10A) in 50 mM sodium phosphate, pH 6.5 with D2O added to a final ratio of 90 % 

H2O/10 % D2O. Residue number and type are indicated on the figure 

 

  



 

 

Fig. 2  

Secondary structure probability of CBMx using TALOS-N. The probability of helical structure is shown as positive 

values, while negative values are used for the probability of an elongated structure 
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