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ABSTRACT With the ever-increasing amount of data, the world has stepped into the era of ‘‘Big Data’’.
Presently, the analysis of massive and complex data and the extraction of relevant information, have been
become essential tasks inmany fields of studies, such as health, biology, chemistry, social science, astronomy,
and physics. However, compared with the development of data storage and management technologies, our
ability to gain useful information from the collected data does not match our ability to collect the data. This
gap has led to a surge of research activity in the field of visual analytics. Visual analytics employs interactive
visualization to integrate human judgment into algorithmic data-analysis processes. In this paper, the aim is
to draw a complete picture of visual analytics to direct future research by examining the related research in
various application domains. As such, a novel categorization of visual-analytics applications from a technical
perspective is proposed, which is based on the dimensionality of visualization and the type of interaction.
Based on this categorization, a comprehensive survey of visual analytics is performed, which examines its
evolution from visualization and algorithmic data analysis, and investigates how it is applied in various
application domains. In addition, based on the observations and findings gained in this survey, the trends,
major challenges, and future directions of visual analytics are discussed.

INDEX TERMS Visual analytics, information visualization, interactive visualization, data analysis, analyt-
ical reasoning, knowledge representations, visual data mining, perception, cognition, sense-making, high-
dimensional data.

I. INTRODUCTION
We are living in the age of data and advanced analytics. With
recent advances in computing resources and data manage-
ment technologies, our ability to generate, collect and store a
wide variety of large and complex data sets continues to grow.
According to the International Data Corporation’s (IDC’s)
Digital Universe forecasts, the overall created and copied data
volume worldwide will rise to approximately 40 zettabytes
(ZB, 44 trillion GB) by 2020 [1]. This rapidly increasing
amount of data has triggered an information revolution and
enormous challenges that in turn will bring incredible scien-
tific and industrial opportunities.

Nowadays, the analysis of massive amounts of data, which
are typically messy, inconsistent and complex, as well as the
subsequent extraction of relevant information, is becoming
an essential task in numerous field of studies, such as health,
biology, chemistry, social science, astronomy, and physics
[2]. However, our ability to collect and store massive amounts
of data far outstrips our ability to analyze the collected
data [3], [4]. This has led to the well-known problem of
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‘‘information overload’’ [5] (or the so-called ‘‘data deluge’’
[6]) in the age of information.

To address this data deluge, new technologies and meth-
ods have been investigated in many disciplines, such as
visualization, statistics-based data analysis, machine learn-
ing, data mining, and perceptual and cognitive sciences,
to extract useful information and generate reliable knowledge
from unexplored data. However, it is questionable whether
these sub-specialties are adequate to simply and effectively
extract information from the ever-increasing massive data.
Keim et al. indicated that ‘‘approaches, which work either
on a purely analytical or on a purely visual level, do not
sufficiently help to filter substantial information from fast-
growing complex data sets and to communicate it to humans
in an appropriate way’’ [7].

To generate knowledge and discover hidden opportunities
from massive and complex data, James (Jim) Joseph Thomas
(March 26, 1946 – August 6, 2010) created, promoted and
established the visual-analytics field [8]–[10]. Visual ana-
lytics is ‘‘the science of analytical reasoning facilitated by
interactive visual interfaces’’, which uses visualization and
interaction techniques to integrate expert human judgment in
the data analysis process [2], [3]. Such an approach requires
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TABLE 1. Some key terms related to visual analytics.

the integration of algorithmic data analysis methods, inno-
vative interactive techniques and data visualization, which
allows decision makers to optimize the analytical-reasoning
process and make sound decisions by their human flexibility,
creativity, and background knowledge.

As information visualization has changed our view on
databases, the ways of analyzing data and filtering informa-
tion is being made transparent for an analytics discourse by
visual analytics [4]. This article presents a complete picture
of visual analytics to direct future research by examining the
related research in various application domains. It gives an
in-depth understanding of ‘‘what is visual analytics’’, ‘‘how
visual analytics is applied in various application domains’’,
‘‘the state of the art of visual analytics’’, and ‘‘what are the
challenges and opportunities of visual-analytics research’’.
There are several key terms, such as visualization,

information visualization, scientific visualization, interac-
tive visualization, human-computer interaction, data analysis,
confirmation data analysis, exploratory data analysis, visual
data mining and visual analytics, which are highly connected,
easily confused and are also the key terms widely used in this
article. Table 1 lists and explains them.

A. RECENT SURVEY STUDIES ON VISUAL ANALYTICS
Table 2 lists and compares recent surveys on visual analytics.
It shows that existing surveys mainly concentrated on one
aspect of visual analytics, such as its challenges, opportuni-
ties, techniques or applications in a specific field. This leaves
a gap between its theory and applications when applying
visual analytics in different application domains.

According to Table 2, although a few articles and ref-
erences have discussed visual analytics from a theoretical

perspective, they are generally narrowed to a single or
two specific aspects of visual analytics, such as its defini-
tion, scope or processes. Additionally, they lack a connec-
tion between the theory and its applications. For instance,
Keim et al. [20] compared the differences between visual
analytics and information/scientific visualization from sev-
eral aspects, including data analysis, perception and cogni-
tion, and human-computer interaction. However, the authors
did not discuss these differences in related applications.

On the other hand, some visual-analytics surveys mainly
focused on the techniques and applications without relat-
ing it to a theoretical background. Additionally, they are
commonly limited to a single type of data or a specific
application domain. For instance, Andrienko and Andrienko
[21] presented a survey of the state-of-the-art visual-analytics
techniques that support the analysis and understanding of
various aspects of movement data. Caban and Gotz [22]
and West et al. [23] presented systematic reviews of visual-
analytics approaches which have been proposed to explore
complex clinical data.

B. RESEARCH OBJECTIVES
Visual analytics has been applied in many different appli-
cation domains, such as economics, bioinformatics, health,
and social media. The ultimate purpose of this article is to
draw a complete picture of visual analytics to direct future
research by examining the related research in various appli-
cation domains. It aims to bridge the gap between theory and
practice when applying visual analytics in different applica-
tion domains.

Sun et al. [28] classified visual-analytics applications into
a set of categories, including space and time, multivariate,
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TABLE 2. Recent surveys related to visual analytics.

text, graph and network, and other applications. This classifi-
cation naturally differentiates visual-analytics applications to
a specific data type or application domain. However, visual-
analytics applications with different data types can share
a common technique. For example, Jeong et al. [30] and
El-Assady et al. [31] used the same visualization technique
(parallel coordinates plots, PCPs) within multivariate and
textual data, separately.

To avoid limiting this survey to a specific data type or
application domain, a novel categorization of visual-analytics
applications from a technical perspective is proposed, which
is based on the dimensionality of visualization and the type
of interactions. Based on this categorization, in this article
an organized overview of visual analytics is constructed,
which discusses the theory and evolution of visual analytics,
and investigates how visual analytics is applied in various
application domains. It aims to bridge the gap between the
challenges of discovering knowledge in large and complex
data sets and visual-analytics solutions by investigating state-
of-the-art visual-analytics applications. In addition, the major
challenges and future directions of visual analytics are tar-
geted. To the best of our knowledge, this article is the first
to classify visual-analytics applications from a technical per-
spective. By sharing the observations and findings gained in
this survey, it is expected that this article could direct future
research of visual analytics in different application domains.

In this survey, to demonstrate the proposed categorization
and how visual analytics is applied in various disciplines,
a careful examination of papers from premier conferences
and journals that are related to visual analytics, such as Com-
puter Graphics Forum (CGF), ACM SIGKDD Explorations,
ACM Transactions on Graphics (TOG), IEEE Transactions

on Visualization and Computer Graphics (TVCG), IEEE
Visual Analytics Science and Technology (VAST), IEEE
Information Visualization (InfoVis), EG/VGTC Conference
on Visualization (EuroVis), and IEEE Pacific Visualization
Symposium (PacificVis), is presented. The papers are filtered
and analyzed within the Web of Science and Google Scholar
according to the proposed categorization.

The remainder of the survey is organized as follows.
In Section II, the evolution of visual analytics from data anal-
ysis and visualization is tracked, which addresses the funda-
mental question: ‘‘What is visual analytics?’’. In Section III,
state-of-the-art visual-analytics techniques and applications
are introduced. In particular, these applications are classified
into eight categories according to the dimensionality of visu-
alization and the type of interaction. In Section IV, the chal-
lenges and future research directions of visual analytics are
discussed. Finally, in Section V the conclusions of this work
are summarized.

II. FROM DATA ANALYSIS, VISUALIZATION TO VISUAL
ANALYTICS
In this section, the question ‘‘What is visual analytics?’’ is
addressed by investigating the evolution of visual analytics
from visualization and algorithmic data analysis. The defi-
nition, model and process of visual analytics are discussed
as the fundamentals of the proposed categorization of visual-
analytics applications.

A. THE VISUAL ANALYTICS JOURNEY
Visual analytics is an outgrowth of the fields of scientific and
information visualization. It is likely that the first appearance
of ‘‘visual analytics’’ as a term in the literature was in the
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‘‘Guest Editors’ Introduction-Visual Analytics’’ [32] of a
special issue of IEEE Computer Graphics and Applications
(CG&A) in 2004. In that introduction, visual analytics was
defined as ‘‘the formation of abstract visual metaphors in
combination with a human information discourse (interac-
tion) that enables detection of the expected and discovery of
the unexpected within massive, dynamically changing infor-
mation spaces.’’ Recently, by the combination of algorithmic
data analysis and visualization, visual analytics started utiliz-
ing visualization as a medium and interaction as a means to
involve human judgment in the data analysis process [33].

1) VISUALIZATION
Visualization can be broadly classified into scientific and
information visualization. ‘‘Scientific visualization evolved
first in the late 1980s, while information visualization
matured in the mid-1990s’’ [34]. Scientific visualiza-
tion focuses on visual display and realistic renderings
of spatial data associated with scientific processes, for
example, three-dimensional (3D) phenomena (architectural,
meteorological, medical, biological, etc.) [35]. Information
visualization examines visual representations of abstract and
non-inherently spatial data which includes both numerical
and non-numerical data, such as textual and geographical
information [36], [37]. In information visualization, during
the last decade, novel visualization techniques, such as paral-
lel coordinates and its numerous extensions [38], tree-maps
[39], Glyph- [40] and Pixel- [41] based visual data represen-
tations, have been developed to map a variety of abstract data
to display space. Although scientific and information visu-
alization have different research focuses and priorities, both
of these subfields of visualization have the same goal: the
visual communication of valuable data with understandable
meaning. Accordingly, most research efforts in visualization
have concentrated on producing different views.

2) DATA ANALYSIS
Data analysis is a process of modeling and exploring data
with the goal of discovering useful information and sup-
porting decision making by applying statistical procedures
and/or logical techniques [16]. In statistical applications, data
analysis is divided into confirmatory data analysis (CDA)
and exploratory data analysis (EDA) [42]. CDA is a statisti-
cal process that evaluates pre-specified hypotheses (assump-
tions) on existing data sets (evidence) through a statistical
hypothesis test [43]. It uses the traditional statistical tools of
inference, significance, and confidence. In contrast, EDA is
a quantitative process of isolating patterns and features of
data, and revealing hidden and unknown information from
data when little or no statistical hypotheses exist [44]. It is
an approach which employs a variety of techniques (mostly
visual methods) to summarize characteristics of data sets.
It was first utilized in the statistics research community by
Tukey in 1977 [45].

3) JOURNEY TO VISUAL ANALYTICS
As data volumes grow dramatically in a wide variety of fields,
knowledge discovery in databases (KDD) was proposed at
the first ‘‘Knowledge Discovery and DataMining’’ workshop
in 1989 [46]. KDD is the process of discovering understand-
able patterns in data, which emphasizes that knowledge is the
end-product of the process [47]. With the goal of extracting
useful information (knowledge) from data, KDD has evolved
from the intersection of many research fields including statis-
tics, pattern recognition, machine learning, artificial intelli-
gence, and data visualization.

Before EDAwas proposed, ‘‘data analysis techniques such
as statistics and data mining developed independently from
visualization and interaction techniques’’ [48]. Unlike CDA
where visualization is used to present results, EDA employs
visualization to interact with data. Therefore, moving from
CDA to EDA is one of the most important steps in forming
the research field of visual analytics.

In the information-visualization research community, with
improvements in graphical user interfaces, ‘‘they recognized
the potential of integrating the user in the KDD process
through effective and efficient visualization techniques, inter-
action capabilities and knowledge transfer leading to visual
data exploration or visual data mining’’ [48]. This implies a
certain overlap between interactive visualization and visual
analytics. However, interactions in interactive visualization
are mainly used to present different views by manipulating
graphical elements. In interactive visualization, much less has
been discussed on interactions with data itself rather than
interactions with graphical elements because data analysis is
not ‘‘a must’’. To explore the relationship between visual data
representation, data analysis and the knowledge discovery
process, visual data mining was proposed and defined as
‘‘a step in the KDD process that utilizes visualization as a
communication channel between the computer and the user
to produce novel and interpretable patterns’’ [49]. Visual data
mining is the process of interaction and analytical reasoning
based on data visualization to discover understandable pat-
terns (knowledge) in data [18].

Visual data mining considerably widened the scope of
both the information-visualization and data-mining research
fields. More importantly, as an important technique for
visual analytics, visual mining data supports the formation
of visual analytics by combining a collection of information-
visualization metaphors and techniques with algorithmic
data analyses through human information discourses (inter-
actions) [50]. In 2004, visual analytics was first proposed
by Wong and Thomas [32]. A year later, visual analytics
was defined, illustrated and discussed in the book ‘‘Illu-
minating the path: The research and development agenda
for visual analytics’’ [19]. More recently, visual analytics
has become a multidisciplinary field that combines vari-
ous research fields including visualization, human-computer
interaction, data analysis, statistics, perception and cognition,
and analytical reasoning. Figure 1 summarizes the visual
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FIGURE 1. Visual analytics journey with respect to key events.

analytics journey. It presents the evolution of visual analytics
in terms of representative moments, events and major aspects
of its disciplinary development.

B. DEFINITION OF VISUAL ANALYTICS
Visual analytics was proposed to turn the information over-
load into an opportunity by creating tools and techniques
to facilitate human judgment in the KDD process. In the
book ‘‘Illuminating the path: The research and develop-
ment agenda for visual analytics’’, visual analytics was first
defined as:
Definition 1: Visual analytics is ‘‘the science of analytical

reasoning facilitated by interactive visual interfaces’’ [19].
Nowadays, visual analytics, as an integrated approach

combining visualization, algorithmic data analysis, human-
computer interaction, and analytical reasoning, has attracted
increasing interest from a wide range of domains and disci-
plines.With its development, researchers from different back-
grounds have given detailed definitions of it with different
focuses:
Definition 2: Visual analytics is ‘‘a method to synthe-

size information and derive insight from massive, dynamic,
ambiguous, and often conflicting data; detect the expected
and discover the unexpected; provide timely, defensible, and
understandable assessments; and communicate assessment
effectively for action’’ [3].

Definition 3: Visual analytics ‘‘combines automated anal-
ysis techniques with interactive visualizations for an effective
understanding, reasoning and decision making on the basis of
very large and complex data sets’’ [20].

Built on the evolution of visual analytics from visualiza-
tion and data analysis, a more detailed and comprehensive
definition of visual analytics to emphasize its research goals
is presented in this review:
Definition 4: Visual analytics is a multidisciplinary

research field mainly based on visualization, algorithmic data
analysis and analytical reasoning, which takes advantage of
visualization and interactions as suitable tools to integrate
human judgment into the KDD process to visually discover
explainable patterns (knowledge) and to gain insight into
large and complex data sets.

According to Definition 4, visual analytics has the same
ultimate research goal as EDA, which is to discover
knowledge and gain insight from data sets. However, visual
analytics exploits visualization as a tool to integrate human
cognition, perception abilities, and human intelligence into
the data-analysis process to obtain explainable results. Rela-
tive to visualization, visual analytics places higher priority on
analyzing data and discovering knowledge in data, rather than
just presenting and understanding the data. Meanwhile, based
on visualization, visual analytics addresses the challenge in
data analysis that the discovered complex patterns could be
hard to interpret in an intuitive and meaningful manner.
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C. HUMAN INFORMATION DISCOURSE IN VISUAL
ANALYTICS
According to Definition 1, as a science of analytical reason-
ing, the core idea of visual analytics is to integrate human cog-
nitive, perceptual and reasoning abilities, and their knowledge
into an analysis process to gain insight from data that is diffi-
cult to explore with pure visualization or analysis techniques.
Analytical reasoning encompasses different kinds of reason-
ing, such as deductive, inductive, and analogical, which is
based on a rational, logical analysis and evaluation of data
[51]. Pohl et al. [52] discussed several theories, including
sense-making theories, gestalt theories, distributed cogni-
tion, graph comprehension theories and skill-rule-knowledge
models, and their relevance to visual analytics. In visual ana-
lytics, analytical reasoning is facilitated by creating appro-
priate visualizations and interactions that maximize human
capacity to perceive and explore data. It adapts existing analy-
sis processes by integrating visualization and algorithmic data
analysis, which was discussed by [48].

Visual analytics is built upon an understanding of the rea-
soning process, as well as an understanding of the underlying
cognitive and perceptual principles when applying human
judgment to reach conclusions from data [3]. Human judg-
ment is an integral part of the visual-analytics process, which
relies on human-in-the-loop (HITL, a model that requires
human interaction [53]) based interactions. In visual analyt-
ics, the interaction is not only a means to an end of finding
a good representation of data, but also a valuable exploration
process to apply human judgment and reveal insight from data
[54]. Since interactions affect users’ understanding of visu-
ally presented data, human-factor-based designs are the basis
of visual analytics [55]. To study human factors in visual ana-
lytics, Green et al. [56] proposed a modeling framework of
human ‘‘higher cognition’’.Miksch andAigner [57] proposed
a design triangle for visual-analytics methods that focused on
time and time-oriented data. Dasgupta et al. [58] proposed
a trust-augmented design of the visual-analytics system that
explicitly took into account domain-specific tasks, conven-
tions, and preferences.

Furthermore, recent work has emphasized that visual-
analytics theories must move beyond HITL to ‘‘human-is-
the-loop’’ analytics in order to integrate human cognition and
reasoning process with analytics [59]. Figure 2 illustrates how
human cognition, perception, and reasoning are employed in
visual analytics. It shows that human judgment (perceptive
skills, cognitive reasoning and domain knowledge) and algo-
rithmic data analyses are effectively coupled through interac-
tive visual representations in the visual-analytics process to
gain insight from data.

D. THE VISUAL-ANALYTICS PROCESS
Shneiderman’s celebrated mantra ‘‘Overview first, Filter and
zoom, Details on demand’’ clearly emphasized the role
of visualization in the knowledge-discovery process [60].
As visual analytics is an outgrowth of the fields of scientific

FIGURE 2. Visual analytics as the interplay between data analysis,
visualization, and human analytical reasoning.

and information visualization, to give an overview of the
visual-analytics process, inspired by Shneiderman’s mantra,
a mantra is created here that focuses toward visual analyt-
ics: ‘‘Analyze/Overview first, interaction and visualization
repeatedly, insights into data’’.

Based on the observations gained in this survey, the typ-
ical steps in the visual-analytics process are summarized as
follows:
Step 1 Preprocess (clean, transform, integrate) the data in

order to prepare it for further processing.
Step 2 Apply algorithmic analysis methods to the data.
Step 3 Visualize the (processed) data with appropriate visu-

alization techniques.
Step 4 Users generate insightful knowledge through human

perception, cognition, and reasoning activities.
Step 5 Users make new hypotheses and integrate the newly

generated knowledge into the analysis and visualiza-
tion through interactions.

Step 6 Regenerate an updated visualization based on the
interactions to reflect the user’s understanding of the
data.

In many visual-analytics scenarios, heterogeneous data
sources need to be integrated before algorithmic analysis
methods or visualization can be applied. Therefore, the first
step of the visual-analytics process is to preprocess data.
The typical tasks in Step 1 could be data cleaning, normal-
ization, transformation, grouping, and/or integration of the
heterogeneous data into a common schema. In the visual-
analytics process, knowledge can be gained from each step.
However, the initial algorithmic analysis (Step 2) and visu-
alization (Step 3) of the data are often not sufficient for
problem-solving and decision making. Accordingly, human
perception, cognition and reasoning activities are performed
in Step 4 to generate insightful knowledge. Meantime,
the knowledge is used for making new hypotheses. In Step 5,
new knowledge and hypotheses are integrated into the data-
analysis and visualization processes through interactions
made by the user. Then, the data-analysis algorithms and
visualizations are updated according to the user’s interactions
in Step 6. After the first loop of the visual-analytics process,
it continuously iterates from Step 4 to Step 6 until enough
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FIGURE 3. The visual-analytics process as a sense-making loop.

insight has been gained into the data for making decisions
or solving the problems associated with the data. In some
visual-analytics applications, Step 2 may be removed since it
is not a must for all types of data and scenarios. This iterative
process well illustrates the ‘‘human-is-the-loop’’ philosophy
described in Section II-C. The generated knowledge is stored
in the visual-analytics process through the feedback loop in
Step 5, which enables the user to continuously draw faster and
better conclusions and gain insight from the data. Figure 3
illustrates this visual-analytics process as a sense-making
loop, in which each step is labeled. Figure 3 is composed
and adapted from several diagrams, including analytical pro-
cesses in visual analytics [61], visualization models [62],
knowledge conversion processes [63] and knowledge gener-
ation models for visual analytics [64].

E. TRENDS IN THE FIELD OF VISUAL ANALYTICS
To discuss the trends in the field of visual analytics,
the related academic papers in theWeb of Science andGoogle
Scholar, which are well-known academic database and search
engine, are analyzed. In the Web of Science, all the papers
which took visual analytics as the topic were counted and
grouped by publication years from 2004 to 2018. Within
Google Scholar, all the papers which discussed ‘‘visual ana-
lytics’’ as a term were searched, counted and grouped by
publication years from 2004 to 2018.

Figure 4 illustrates the search results of the Web of Sci-
ence and Google Scholar. Although the analysis of published
papers in visual analytics does not reflect the full picture
of the field, Figure 4 indicates the following: (1) Visual
analytics is a relatively new research (it was created in 2004)
area compared to other research fields, such as data analysis
and visualization. (2) Visual analytics is a continuously and
rapidly growing research field. In the field of visual analytics,
the number of published papers in 2018 was six times larger
than the corresponding number a decade previous.

The papers in the Web of Science were also analyzed
according to the Web of Science Categories, as shown
in Figure 5 as a tree-map. The figure shows that visual
analytics is widely applied in different disciplines such
as telecommunications, optics, cybernetics, geography,

FIGURE 4. Trends in visual-analytics research based on the statistics of
related papers. Note: The data were collected on 26 December 2018.

mathematical computational biology, education, medical
informatics, remote sensing, etc.

III. VISUAL-ANALYTICS TECHNIQUES AND
APPLICATIONS
Visual analytics has been applied in many different applica-
tion domains, such as economics, bioinformatics, health, and
social media. In this section, state of the art in visual-analytics
applications are examined.

Sun et al. [28] identified five categories of visual-analytics
applications according to the type of considered data. In their
research, visual-analytics applications were classified as
space and time, multivariate, text, graph and network, and
other applications. However, they did not provide a compre-
hensive classification. Firstly, it is difficult to categorize a
visual-analytics applicationwhich deals with several different
types of data at the same time. For example, Chen et al. [65]
proposed a visual-analytics system to analyze and explore
multiple types of data and correlate them for intelligence
analysis. The data analyzed in their system included GPS
logs, which contained spatial and temporal data, news and
email headers, which are textual data, and transaction logs
which contained network data. Secondly, a complex data
set may have two or more characteristics so that the cor-
responding visual-analytics application will be classified
into two or more categories simultaneously. For example,
Andrienko et al. [66] analyzed streaming-tweets data which
consisted of geographical coordinates, time of tweeting, and
the tweet text itself in their visual-analytics system. Accord-
ing to the classifications of [28], this visual-analytics applica-
tion can be classified into the category space and time as well
as the category text. Furthermore, with the rapid development
of visual analytics in different domains, increasing numbers
of visual-analytics applications can be classified into the
category other applications.
To address the challenges arising from the limitations of the

classification scheme of [28], and direct the future research
of visual analytics, in this survey, a new comprehensive
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FIGURE 5. Application domains of visual analytics based on the statistics of related papers. Note: The data were collected on
26 December 2018.

categorization of visual-analytics applications from a techni-
cal perspective is proposed. According to the process of visual
analytics summarized in Section II-D and the ‘‘human-is-the-
loop’’ philosophy described in Section II-C, two technical
components of visual analytics are identified: visualization
and interactions. To integrate human judgment into the data-
analysis process in visual analytics, users gain insight from
data through visualization and apply their judgment to the
data through interactions, such as zooming in different visual-
ization areas, changing visualization methods, modifying the
parameters of data models, and investigating different visual
views on data. Therefore, visual-analytics applications can be
categorized according to the dimensionality of visualization
and the type of interaction.

A. VISUALIZATION-BASED CLASSIFICATION
According to the dimensionality of the data and visualization
techniques, four categories of visual-analytics applications
are identified: 2D-to-2D, multi-dimensional-reduction-2D,
multi-dimensional-to-2D, and multi-dimensional-to-3D.

1) 2D-TO-2D
Two-dimensional (2D) visualization is themost commonway
to visualizing data in information visualization. Within 2D
visualization, binary data is naturally visualized in 2D space
through the Cartesian coordinate system. A visual-analytics
application will be classified as 2D-to-2D if it fulfills the
following requirements:
− The data is 2D.
− The data are visualized in 2D visualization.

For visual-analytics applications in this category, users
will gain insight from data by performing analytical rea-
soning on 2D data through 2D visualization. For exam-
ple, Bögl et al. [67] developed a 2D-to-2D visual-analytics

application (TiMoVA) to guide domain experts in model-
selection tasks based on user stories and iterative expert
feedback on users experiences. It closely combined human
perception and analytical reasoning and automated computa-
tion. Figure 6 shows an overview of TiMoVA.

In addition, 2D-to-2D visual analytics are commonly used
for another type of 2D data: movement data. The research
of [21], [68] used different visualization techniques, such as
mapping and clustering movement data on 2D maps, to ana-
lyze and explore various aspects of movement through visual
analytics.

2) MULTI-DIMENSIONAL-REDUCTION-2D
With the ever-increasing amount of data sets, multi-
dimensional data show up in numerous fields of study, such as
economics, biology, chemistry, political science, astronomy,
and physics [69]. In this survey, multi-dimensional data are
defined as:
Definition 5: A data set that has more than three dimen-

sions/attributes.
However, the high dimensionality of amulti-dimensional data
set represents a critical obstacle: humans are biologically
optimized to see the world and the patterns in it in three
dimensions [70]. This challenge and the wide availability
of multi-dimensional data have led to new opportunities for
visual analytics.

A visual-analytics application will be classified as
multi-dimensional-reduction-2D if it fulfills the following
requirements:

− The data is multi-dimensional.
− The dimensionality of the data is reduced by algorithmic

approaches to two dimensions.
− The processed data are visualized in 2D

visualization.
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FIGURE 6. TiMoVA Overview. A 2D-to-2D visual-analytics application for finding an adequate model for a given time-oriented
data set [67].

To break the physical limitations of the human visual
system, a variety of analysis-centric dimension-reduction
methods have been investigated for reducing the dimen-
sions of multi-dimensional data, such as principal compo-
nent analysis (PCA), multi-dimensional scaling (MDS) and
linear discriminant analysis. However, it is usually diffi-
cult to understand and interpret the result of these algo-
rithmic approaches in an intuitive and meaningful manner.
To address this challenge, multi-dimensional-reduction-2D
visual-analytics applications integrate dimension-reduction
approaches into the human analytical reasoning process to
reduce the data items presented in the visualization. For
example, Choo et al. [71] presented a multi-dimensional-
reduction-2D visual-analytics system (iVisClassifier) for
classifications based on a supervised dimension-reduction
approach, which is shown in Figure 7.

Wu et al. [72] introduced a multi-dimensional-reduction-
2D visual-analytics system (OpinionFlow) to empower
analysts to detect opinion-propagation patterns and glean
insights, which is shown in Figure 8. OpinionFlow uses an
information diffusion model to reduce the dimension of the
social-media data.

3) MULTI-DIMENSIONAL-TRANSFORMATION-2D
Another category of visual-analytics applications is
multi-dimensional-transformation-2D, which visualizes
multi-dimensional data without analysis-centric dimension-
reduction approaches. A visual-analytics application will be
classified asmulti-dimensional-transformation-2D visualiza-
tion if it fulfills the following requirements:

− The data is multi-dimensional.
− The multi-dimensional data is transformed and mapped

in 2D visualization.
− The dimension of the data is not reduced by algorithmic

approaches.

Within multi-dimensional-transformation-2D visual-
analytics applications, multi-dimensional data is transformed
and mapped in 2D space, which encodes data to differ-
ent representations, such as PCPs and coordinated multi-
ple views (CMVs). PCPs align axes parallel to each other
and data points are mapped to lines intersecting the axes
at the respective values. They allow the simultaneous dis-
play of a number of dimensions by embedding the cor-
responding number of parallel axes into a plane to reveal
trends and patterns in the data. CMVs encompass a specific
exploratory visualization technique that uses two or more dis-
tinct views to support the investigation of a single conceptual
entity [73]. Guo et al. [74] presented a multi-dimensional-
transformation-2D visual-analytics system, Triple Perspec-
tive Visual Trajectory Analytics (TripVista), for exploring
and analyzing complex traffic trajectory data, which was
mainly based on a parallel coordinate plot and coordinated
multiple views. TripVista is shown in Figure 9.

4) MULTI-DIMENSIONAL-TO-3D
Three-dimensional (3D) visualization was developed for con-
verting 3D objects/phenomena into 2D images through a
computer-graphics process. Presently, 3D visualization is
widely used in scientific visualization to graphically illus-
trate scientific data, which enables scientists to understand
and illustrate the data. Moreover, 3D visualization is often
integrated with a variety of approaches to visually analyze
multi-dimensional data. For example Achtert et al. [75] and
Johansson et al. [76] visualized parallel coordinates in 3D
space to explore the complicated relationships between the
axes, which arranged more than two neighboring axes around
the central attribute.
Multi-dimensional-to-3D visual-analytics applications are

based on the 3D visualization of multi-dimensional data.
A visual-analytics application will be classified as multi-
dimensional-to-3D if it fulfills the following requirements:
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FIGURE 7. An overview of iVisClassifier [71].

FIGURE 8. Three major parts of OpinionFlow: (a) Data preprocessing, (b) diffusion modeling, and
(c) interactive visualization [72].

− The data is multi-dimensional.
− The multi-dimensional data is transformed and mapped

in 3D visualization.

For example, Kurzhals andWeiskopf [77] introduced amulti-
dimensional-to-3D visual-analytics method to analyze eye-
tracking data recorded for dynamic stimuli such as video or
animated graphics, which is shown in Figure 10.

B. INTERACTION-BASED CLASSIFICATION

In visual analytics, the analytical-reasoning process is facil-
itated by interactive visual exploration of data through vari-
ous interaction techniques. According to the visual-analytics
process (II-D), users can directly interact with data, algo-
rithms, and visualization [78]. Heer and Shneiderman [79]
gave a taxonomy of interactive dynamics for visual analysis,
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FIGURE 9. TripVista overview [74].

FIGURE 10. A multi-dimensional-to-3D visual-analytics application for eye-tracking data [77].

which included data and view specifications (filtering, sort-
ing, deriving values or models from source data, etc.),
view manipulations (selecting, navigation, etc.), and pro-
cesses and provenances (recording, guiding or sharing, etc.).
Endert et al. [80] divided interactions into two categories
exploratory and expressive from observation-level.

In this survey, the taxonomy of [79] and the classifica-
tions of [80] are combined to classify visual-analytics appli-
cations from the interaction perspective. Visual-analytics
applications are classified into two categories: exploratory-
oriented and expressive-oriented, based on their interactions.
An application will be classified as exploratory-oriented if

its interactions are designed to explore data and visualiza-
tion space. For example, the interactions of selecting differ-
ent encoding, modifying zoom levels and of filtering data
are considered as exploratory-oriented. Within exploratory-
oriented visual-analytics applications, users gain insight from
data by observing how data reacts during interactions in a
dynamic visual representation.

An application will be classified as expressive-oriented
if its interactions are designed to change the algorithms for
rendering the visualization or the underlying models for data
analysis. The interactions of modifying the parameters of
the underlying mathematical models or rendering algorithms,
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FIGURE 11. The complete classification of visual-analytics applications.

and deriving values or models from source data, are con-
sidered as expressive-oriented. Within expressive-oriented
visual-analytics applications, interactions are therefore
commonly coupled with the statistics-based data-analysis
process. For example, Interactive Principal Component
Analysis (iPCA) [30] changes the weight for each dimen-
sion in calculating the direction of projection using multiple
sliders through user interactions. Also, for visual-analytics
applications using MDS [81], the dissimilarities in the calcu-
lation of the stress function can be weighted through visual
controls.

C. A COMPLETE CATEGORIZATION OF VISUAL-ANALYTICS
APPLICATIONS
For the visualization-based classification of a visual-analytics
application, 3D data are not considered for two reasons: 1)
3D data can be naturally classified as multi-dimensional data,
and 2) 3D data can be easily visualized in several 2D visual-
izations. Therefore, it is not necessary to create a category
for 3D data. Furthermore, both types of interaction can be
used by an application at the same time. Accordingly, there
is an overlap between the categories of exploratory-oriented
and expressive-oriented in the interaction-based classifica-
tion scheme.

From a technical perspective, visualization- and
interaction-based classifications form a complete categoriza-
tion of visual-analytics applications. Figure 11 illustrates
the relationship of two classifications of visual-analytics
applications. It covers all technical components of state-
of-the-art visual-analytics applications, including 2D- and
3D-visualization techniques, algorithmic dimension reduc-
tion and data-analysis methods, and exploratory and expres-
sive interactions. Therefore, this categorization can direct
researchers toward selecting the appropriate techniques for
applying visual analytics and building an application on
complex data sets. Table 3 shows the categorizations of the
visual-analytics applications examined in this survey.

IV. VISUAL ANALYTICS: CHALLENGES AND FUTURE
DIRECTIONS
Visual analytics has made great progress over the past
15 years. The inevitable trend of visual analytics brought us
not only opportunities but also challenges. In this section,
these challenges characterized by the scalability, interac-
tion, infrastructure, and evaluation from both technical and
application perspectives are discussed. In addition, the future
directions accompanying these challenges in an effort to pro-
vide a stimulus for research are presented.

A. CHALLENGES
1) SCALABILITY
The explosion of data presents a significant challenge for
exploring large and complex data sets. Visual-analytics tech-
niques need to be able to scale with both the size and
dimension of the data. However, there is a growing mis-
match between data size/complexity and the human ability
to explore and interact with the data [144], which makes
scalability a fundamental challenge of visual analytics.

The scalability of visual analytics is defined as ‘‘its capabil-
ity to effectively display large data sets in terms of either the
number or the dimension of individual data elements’’ [145].
Presently, most research in improving the scalability of visual
analytics is primarily focused on investigating visualization
devices [146]. For example, with the growing availability
of large-scale high-resolution displays, large high-resolution
displays [147], [148] and power wall display [149] have been
investigated to displaymore overview and detail for large data
sets in visual-analytics research. However, compared with the
amount of data which is continuously growing at a rapid pace,
the number of pixels on current displays has remained rather
constant. In this case, the amount of data still commonly
exceeds the limited amount of pixels of a display by sev-
eral orders of magnitude. In addition, although it is possible
to build ever-larger and higher-resolution displays, human
visual acuity is limited to match the extreme large-screen
approach. Meantime, algorithmic dimension-reduction tech-
niques have been investigated to improve the scalability of
visual analytics, especially for multi-dimensional data sets.
For example, both linear and non-linear dimension-reduction
algorithms, such as PCA [150] and MDS [151], have been
applied to visualize multi-dimensional data sets. However,
the use of these algorithms has been somewhat limited in
visual analytics because they have been too slow for inter-
active use when the number of dimensions is scaled up [144].
This significantly hinders the integration of human judg-
ment into the data-analysis process. More importantly, more
dimension reduction and a higher rate of compression of data
on displays mean more abstract representations and more lost
details [152], which requires additional interpretation when
performing analytical reasoning.

The scalability challenge of visual analytics involves both
human and machine limitations. It is expected that the
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TABLE 3. Complete categories of the examined papers.

integration of algorithms and visualization techniques for
large data in visual analytics can help reduce the mismatch
between data size/complexity and human ability.

2) INTERACTION
Interaction is a fundamental component of visual analytics.
The grand challenge of interaction is to develop a taxonomy
to describe and clarify the interaction design space since there
is hardly ever an explanation of what the benefits of inter-
action actually are as well as how and why they work [19],
[153]. There are several taxonomies [154]–[156] that have
been devised for describing and structuring interaction space.
However, it is still a challenge to develop a comprehensive
taxonomy that captures all possible interactions that may be
performed, which includes an explication of the cognitive and
perceptual impact of each individual interaction [157].

In this survey, interaction methods in visual analytics
are classified into two categories: exploratory-oriented and
expressive-oriented. Both of them are equally important to
visual analytics. However, according to Table 3, compared
with exploratory-oriented interactions, expressive-oriented
interactions are used much less in recent visual-analytics
applications. Only a few applications have tried to use these
two different kinds of interactions together, such as [71], [77],
[110], [142]. One of most possible reasons for this situation
is that expressive-oriented interactions are associated with
the modification of the underlying mathematical models or
rendering algorithms, which may delay the response of the
interactions when the size and complexity (dimension) of the
input data are scaled up.

In addition, there have been rapid advances in interaction
technologies; however, their advantages have not been fully
investigated as most visual-analytics applications are still
based on the traditional desktop, mouse, and keyboard setup
of WIMP (Windows, Icons, Menus, and a Pointer) interfaces
[158]. A few researchers have focused on new possibilities
in interaction technologies in visual analytics; however, they
have only been tested with simple data sets and scenarios.
For example, PaperLens [159] uses a handheld lens and a

tracked sheet of paper to navigate the 3D virtual informa-
tion spaces above a tabletop. Interactive Whiteboards [160]
leverages hand-drawn input for exploring data through simple
charts. Ball and North [147] discussed embodied interactions,
such as physical navigation, by physically interacting with
large-scale visualizations for improving performance times
on analytics tasks through an empirical study.

Therefore, in visual analytics, the challenge of interaction
is to investigate its cognitive and perceptual impacts for inte-
grating human judgment in the data-analysis process, as well
as developing novel interactions by taking advantage of new
algorithms and devices.

3) INFRASTRUCTURE
Based on the observation gained in this survey, in the field
of visual analytics, there is an urgent need for a common
framework to accelerate the research and development of new
techniques. This has neither been fully valued nor discussed
in recent research.

A few frameworks have been proposed for various pur-
poses in visual analytics. For example, Aigner et al. [161]
proposed a conceptual visual-analytics framework specif-
ically for time and time-oriented data. Garg et al. [162]
describe a visual analytic framework which uses logic pro-
gramming as the underlying computing machinery to encode
the relations as rules and facts and compute with them.
Chen et al. [95], Brennan et al. [99] and Aragon et al. [163]
proposed three frameworks for collaborative visual ana-
lytics with different focuses. However, these frameworks
were designed for a specific domain/problem or data type.
None of them can be reused as a common framework,
which hinders the rapid development of visual-analytics tech-
niques, and communications in the visual-analytics research
community.

More importantly, the lack of a visual-analytics framework
that works on high-performance computing platforms, such
as Elasticsearch [164], Apache Kafka [165], and Apache
Spark [166], is especially frustrating for visual analytics of
large-scale data.
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Therefore, in visual analytics, the infrastructure challenge
is to develop reusable libraries and frameworks for com-
mon research questions, such as heterogeneous-data fusion,
collaborative analytics, information sharing, and large-scale
data processing, to accelerate the research of visual analytics,
and facilitate communications in the research community.
Such libraries and frameworks must support multiple levels
of abstraction, including unwrapping the logic within the
products, adding new reasoning and facts, and turning the
results into new products.

4) EVALUATION
As cognition, perception and analytical reasoning are sig-
nificant factors in the visual-analytics process, human infor-
mation discourse constitutes a challenge for evaluating the
utility, effectiveness, and trustworthiness of visual-analytics
applications. Some methods have been investigated for
evaluating visual-analytics applications, for example, insight-
and task-based methodologies for evaluating spatiotempo-
ral visual-analytics applications [167]. However, in various
application domains, the complexity of a visual-analytics
application still makes its evaluation a challenge.

For visual-analytics applications in different problem
domains, such as biology, medical, astrophysics, and geog-
raphy, three methods that adapted from the field of infor-
mation visualization are used, including case studies, user
studies based on controlled experiments, and expert reviews.
However, each of these methods has its own strengths and
weaknesses. For example, Tory and Moller [168] indicated
that expert reviews can quickly assess usability, however,
they may miss important issues in their evaluations due to a
lack of user involvement. More importantly, these methods
are mainly focused on evaluating the usability and effec-
tiveness of the visualization components of visual-analytics
applications, which lack an evaluation of the data analysis
components, such as accuracy and efficiency.

In addition, during the visual-analytics process, the uncer-
tainties in data may arise, propagate and compound, which
results in impaired decision making, misleading analysis
results, and misinterpretations [169]. This challenges the
trustworthiness of visual-analytics applications, which is one
of the most important evaluation criteria. Sacha et al. [170]
illustrated the relationship between human’s perceptual and
cognitive biases and the trustworthiness of visual-analytics
applications, in which the user’s awareness of the uncertain-
ties in the data is influenced by their perceptual and cognitive
biases. Presently, techniques, such as uncertainty modeling
and visualization, have been proposed to quantitatively char-
acterize and intuitively display the uncertainty information in
data sets [171], [172]. However, due to the complexity of the
visual-analytics process, there are still no widely accepted
evaluation techniques to ensure the trustworthiness of the
visual-analytics process.

Therefore, we need science, support structures and data
to perform encompassing evaluations of visual-analytics

applications. The challenge of proposing a theoretically
founded evaluation framework for visual analytics is
expected to gain more interest in the field.

B. FUTURE DIRECTIONS
In spite of all the challenges, the rapid development of visual
analytics will lead to numerous opportunities for making
progress in many fields. Several future directions are dis-
cussed in this section to tackle many challenges and open
issues with visual analytics.

To address the scalability challenge of visual analytics,
investigating novel visualization algorithms and methods for
large-scale data is one significant research direction. In the
field of information visualization, most methods are focused
on relatively small data sets. For example, various stud-
ies [173]–[175] on PCPs for visualizing high-dimensional
data are limited when the size of the data is scaled up.
Therefore, re-designing these methods specifically for large-
scale data would be a potential solution for visual analytics of
large-scale data. In addition, since there are no strict bound-
aries among the proposed categorization of visual-analytics
applications, combining techniques from different categories
is a potential research direction. For example, combining
algorithmic dimension-reduction methods and parallel coor-
dinates would be a possible way for visual analytics of high-
dimensional data.

To facilitate collaboration and information sharing in
visual analytics, building a web-based framework for visual
analytics is a potential research direction. A web-based
framework could break temporal and spatial constraints in
communication and collaboration. Moreover, it could also
facilitate the integration of visual-analytics applications with
other big data platforms, since most recent big-data plat-
forms provide web services for accessing and processing the
data stored within them [176]. This will not only address
the scalability challenge of visual analytics but also will
accelerate the research and development of visual analytics.
Another future research direction of visual analytics is to
extend it into immersive and stereoscopic visualization (vir-
tual reality) environments. Although several devices, such as
consumer-grade 3D displays and immersive head-mounted
displays enable immersive and stereoscopic visualization
environments, the related visualization techniques have not
been explored extensively for information visualization and
visual analytics [177]. Investigating these new devices and
related visualization techniques could provide potential solu-
tions that address the scalability and interaction challenges of
visual analytics. In addition, to address the evaluation chal-
lenges, developing evaluation standards for visual analytics
by selecting and combining proper evaluation methods from
the fields of visualization and algorithmic data analysis [178]
is another possible direction.

The challenges and future directions discussed in this
section were selected based on the observations made in
this survey. For the entire field of visual analytics, there are

81568 VOLUME 7, 2019



W. Cui: Visual Analytics: Comprehensive Overview

many more challenges and opportunities than what have been
discussed in this section. Readers are hence encouraged to
use these as guides to deeper investigation and prospective
thinking toward future possibilities of visual analytics.

V. SUMMARY
Visual analytics is a fast-growing field of research combin-
ing strengths from visualization, data analysis, knowledge
discovery, data management, analytical reasoning, cognition,
perception, and human-computer interaction. Its goal is to
discover knowledge and gain insight from large and complex
data sets through integrating human judgment into the data-
analysis process.

This survey has drawn a complete picture of visual ana-
lytics to direct future research by examining the related
research in various application domains. To avoid limit-
ing this survey to a specific data type or applications
domain, a novel categorization of visual analytics applica-
tions from a technical perspective was proposed. Based on
this categorization, an organized overview of visual analyt-
ics in over 200 publications was constructed, which dis-
cussed the theory, evolution, and trends of visual analytics,
and how visual analytics is applied in various application
domains was investigated. To better understand visual ana-
lytics, the human-information discourse of visual analytics
was discussed, a formal model of the visual analytics pro-
cess was summarized, which provided a detailed definition
of visual analytics, and the visual analytics mantra ‘‘Ana-
lyze/Overview first, interaction and visualization repeatedly,
insights in data’’ was presented. Under the proposed cat-
egorization, state-of-the-art techniques and applications of
visual analytics in different application domains that can
bridge the gap between the challenges of discovering knowl-
edge in large and complex data sets and visual analyt-
ics solutions were presented. Finally, an overview of the
major challenges and future directions of visual analytics
was given.
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