
Modeling and Dynamic Optimization in Oil
Production

Konstantin Nalum

Master of Science in Engineering Cybernetics

Supervisor: Bjarne Anton Foss, ITK

Department of Engineering Cybernetics

Submission date: June 2013

Norwegian University of Science and Technology

NTNU Faculty of Information Technology,
Norwegian University of Science and Technology Mathematics and Electrical

Engineering

Department of Engineering Cybernetics

Master project

Name of candidate: Konstantin Nalum

Subject: Engineering Cybernetics

Title: Modeling and dynamic optimization in oil production
Title (in Norwegian):

In oil and gas gathering systems there exist optimization opportunities which are not being exploited, partly due
to the lack of efficient dynamic optimization tools. In this project dynamic optimization of an oil gathering
network will be proposed. The implementation of this requires special attention to efficient algorithms to make
the application possible in real-time. This study will judge the capability of research algorithms to tackle this
problem. To this end, the model developed in [1] should be implemented in JModelica [2] and interfaced to
CasADi [3] to take advantage of standard modeling languages and automatic differentiation tools. Instances of
the dynamic optimization problem should be solved with IPOPT [4] relying on information provided by
JModelica and CasADi.

Direct methods parameterize control and states of dynamical systems to formulate a dynamic optimization
problem as a nonlinear programming (NLP) problem. The performance of direct methods such as Single
shooting, Multiple shooting and Direct collocation should be compared using the tools mentioned above.

The master project is a continuation of previous work [1].

Task description:
1. Literature review on methods for optimization and control of dynamic systems. This is an extensive area

so the review should be limited to methods of particular interest to the current study.
2. Implement the well, manifold and pipeline-riser models in JModelica.
3. Based on [1], determine a set of scenarios to test dynamic optimization algorithms.
4. Dynamic optimization of nonlinear models for real-time applications is computationally challenging.

Study alternative algorithms such as Single shooting, Multiple shooting and Direct collocation, and
assess them with respect to computation time and robustness.

5. Recommend a solution which provides a reasonable compromise between complexity, efficiency,
accuracy and robustness.

6. Make a performance comparison of the new platform and the platform used in [1,5].

The thesis report may include a draft paper to a selected conference with the main results of this work.

[1] K. Nalum. Model predictive control of well-pipeline systems . Project report 2012.
[2] J. Åkesson, K.-E. Årzén, M. Gäfvert, T. Bergdahl and H. Tummescheit. Modeling and optimization with
Optimica and JModelica.org—Languages and tools for solving large-scale dynamic optimization problems.
Computers & Chemical Engineering. 2010.
[3] J. Andersson, J. Åkesson, F. Casella and M. Diehl. Integration of CasADi and Jmodelica.org. Linkoping
University Electronic Press. 2011.
[4] A. Wächter and L. T. Biegler. On the Implementation of a Primal-Dual Interior Point Filter Line Search
Algorithm for Large-Scale Nonlinear Programming. Mathematical Programming. 2006.
[5] A. Codas, M. A. Aguiar, K. Nalum and B. Foss. Differentiation Tool Efficiency Comparison for Nonlinear

Model Predictive Control Applied to Oil Gathering Systems. Submitted to the 9th IFAC symposium on
nonlinear control systems. 2013.

Start date: 15.01.2013

End date: 11.06.2013

Co-supervisor: Andres Codas, NTNU

Trondheim, 15.01.2013

Bjarne Foss
Professor/supervisor

Preface

This master’s thesis was written during the spring semester of 2013 as a part of the
M.Sc. degree in Engineering Cybernetics at the Norwegian University of Science
and Technology (NTNU). The thesis is a continuation of my project work in the
fall of 2012.

I would like to thank my supervisor Prof. Bjarne Foss and co-supervisor Andres
Codas at the university for valuable advice and guidance throughout this last year.

Trondheim
June 7, 2013

Konstantin Nalum

Abstract

The concept of Real-Time Production Optimization is a key for improving op-
erational performance and productivity in the process industry. This includes
utilization of computational technology, combining real-time measurements with
mathematical models and optimization techniques, to offer a tool for decision sup-
port.

In this thesis, dynamic optimization is applied to a subsea oil gathering network
consisting of wells and flowlines, described by continuous-time nonlinear differential
algebraic equations. The goal is to combine modeling and optimization tools to
suggest operational conditions that optimize production over a short-term horizon.
Three different approaches for optimal control are presented and assessed: direct
collocation, single shooting and multiple shooting. These are implemented in the
JModelica.org framework coupling state of the art numerical packages for modeling
and optimization of dynamic systems. This includes IPOPT for solving nonlinear
programs, CVODES providing integration of continuous-time ordinary differential
equations with sensitivity information, CasADi offering efficient automatic differ-
entiation and Modelica as a high-level modeling language.

Experiments show that direct collocation and single shooting methods are sig-
nificantly faster than the multiple shooting implementation. A set of test scenarios
for production optimization has been assessed, indicating an increase of 0.5− 3.2%
of production rates by tracking an unreachable reference, leading to a steady-state
profile for production rates. When maximizing the objective function over 12 hours,
the suggested solution increases the objective function value by 3.4− 15%.

Sammendrag

Sanntids produksjonsoptimalisering er viktig for å bedre operasjonell drift og pro-
duktivitet i prosessindustrien. Dette inkluderer utnyttelse av teknologi for å kom-
binere sanntidsmålinger med matematiske modeller og optimaliseringsteknikker for
å tilby et verktøy for beslutningsstøtte.

I denne avhandlingen er dynamisk optimalisering anvendt på et undervanns ol-
jeproduksjonssystem bestående av brønner og produksjonslinjer, beskrevet av et
kontinuerlig-tid ulineært differensial-algebraisk system. Målet er å kombinere mod-
ellering og optimaliseringsverktøy for å foreslå operasjonelle strategier som opti-
maliserer produksjonen over en korttidshorisont. Tre ulike tilnærminger for optimal-
regulering er presentert og vurdert: direkte kollokasjon, single shooting og multi-
ple shooting. Disse er implementert i rammeverket JModelica.org som kobler nu-
meriske pakker for modellering og optimalisering av dynamiske systemer. Dette
inkluderer IPOPT for å løse ulineære programmer, CVODES for integrasjon av
kontinuerlig-tid ordinære differensialligninger med sensitivitetsanalyse, CasADi for
effektiv automatisk derivasjon, og Modelica som er et høy-nivå modelleringsspråk.

Eksperimenter indikerer at metodene direkte kollokasjon og single shooting er be-
tydelig raskere enn multiple shooting implementasjonen. Et sett av tester for pro-
duksjonsoptimalisering har blitt vurdert og tyder på en økning på 0.5−3.2% i pro-
duksjonsrater ved å følge en uoppnåelig referanseverdi, noe som leder til stasjonær
oppførsel. Ved maksimering av objektivfunksjonen over 12 timer, vil den foreslåtte
løsningen øke objektivfunksjonsverdien med 3.4− 15%.

Contents

1 Introduction 1
1.1 Production optimization in oil gathering systems 2
1.2 Dynamic optimization . 5
1.3 Scope and emphasis . 7

2 Optimization and control of dynamic systems 8
2.1 Optimal control problem formulation 9
2.2 Single shooting . 12
2.3 Multiple shooting . 16
2.4 Direct collocation . 18

2.4.1 Collocation - A numerical method for solving an ODE 19
2.4.2 NLP formulation from direct collocation 21

2.5 Automatic differentiation . 23

3 The JModelica.org framework 24
3.1 The Modelica modeling language . 25
3.2 The JModelica.org environment . 26
3.3 Optimica . 28
3.4 CasADi . 29
3.5 Example: Coupled tanks . 30

3.5.1 Direct collocation . 32
3.5.2 Single shooting . 33
3.5.3 Multiple shooting . 37

3.6 Providing an initial guess to direct collocation methods 41
3.7 Output from direct collocation . 42
3.8 Choice of elements and interpolation points 44
3.9 Scaling of models . 45

4 Modeling 46
4.1 Well . 47
4.2 Manifold . 49

i

4.3 Flowline . 50
4.4 Overall model . 52
4.5 Approximating discontinuities . 54
4.6 Modelica implementation . 55
4.7 Test simulation . 56

5 Formulation of optimal control problem 57
5.1 Objective . 58
5.2 Constraints . 59
5.3 Overall optimal control problem . 60
5.4 Alternative OCP formulations . 61

6 Performance assessment 62
6.1 Assessment description . 63

7 Discussion 65
7.1 Algorithmic performance . 66
7.2 Production optimization . 68
7.3 Platform comparison . 70

8 Conclusion 71

9 Further work 73

A Nomenclature 74

B Model equations 76
B.1 Well . 76
B.2 Flowline . 78
B.3 Single shooting NLP expressions . 81
B.4 Multiple shooting NLP expressions 82

C Parameters 83

D Optimization and simulation results 84
D.1 Table entries . 84
D.2 Coupled tanks example . 85
D.3 Test simulation of well-flowline model 86
D.4 Optimization results . 89
D.5 Well-Flowline approximation . 95
D.6 Production optimization . 97

ii

Abbreviations
AD Automatic Differentiation
AM Adams-Moulton
BDF Backward Differentiation Formula
CasADi Computer Algebra System for Automatic Differentiation
DAE Differential Algebraic Equation
DC Direct Collocation
DOP Dynamic Optimization Problem
FMI Functional Mock-up Interface
FMU Functional Mock-up Unit
IP Interior Point
IPOPT Interior Point Optimizer
IRK Implicit Runge-Kutta
IVP Initial Value Problem
JMI JModelica Model Interface
MPC Model Predictive Control
MS Multiple Shooting
NLP Non Linear Program
OC Optimal Control
OCP Optimal Control Problem
ODE Ordinary Differential Equation
RTO Real Time Optimization
SQP Sequential Quadratic Programming
SS Single Shooting

iii

Chapter 1

Introduction

This chapter gives a brief introduction to production optimization in oil gathering
systems, describing the difference between a static and dynamic approach. Im-
provement of operational performance of a plant can be achieved through utiliza-
tion of capacity and production planning. This motivates application of real-time
optimization as a decision support tool described in Section 1.1. Static real-time
optimization has been tested with excellent results [19, 20] and several commercial
products for this purpose are available [18]. In this thesis, a dynamic approach
for production optimization is explored, combining dynamic models with optimal
control to improve operational performance.

In Section 1.2, a historical overview of dynamic optimization based on [2] is given,
presenting development in this area from the 1950’s until today. Several methods
for solving optimal control problems exist, where direct methods are treated in this
thesis.

Finally, Section 1.3 provides the scope and emphasis of this thesis, giving an outline
for the work that has been done.

1

1.1 Production optimization in oil gathering sys-
tems

An oil gathering system consists of a flowline network and processing facilities used
to transport flow of oil and gas from wells to a temporary storage facility. For ex-
ample, in a subsea petroleum production plant, the fluid flow is directed from wells
through manifolds and flowlines, to the topside separator, as illustrated by Figure
1.1. Wells can be naturally flowing or artificially lifted, where the latter is necessary
when the down hole pressure is too low [15]. Among the artificial lifting techniques,
gas lift is widely used [10] and provides means to maintain or increase production
by injecting lift-gas in the bottom of the well. However, large gas injection rates
can incur in expensive operations and production loss due to excessive friction.

Lift-gas injection rates should be decided to control well flows in terms of produc-
tion rates. In addition, the routing from wells to separator leads to a non-trivial
decision problem, where the routing configuration may have a great impact on pro-
duction performance. Controlling valve openings and routing configurations are
decisions to be taken by the operator in order to maintain or improve production
rates. In large oil fields, the amount of decisions can be extensive, motivating the
implementation of an optimization tool to assist the operator to perform this task.

Separator

Manifold Manifold Manifold

Well

Gas inj

Well

Gas inj

Well

Gas inj

Well

Gas inj

...

...

Surface

Seabed

Reservoir

Figure 1.1: Cluster topology of a well-flowline network.

2

The development and operation of a petroleum field asset requires planning and
decision taking on several horizons. It is natural to divide these decisions into
their time scales according to Figure 1.2. This thesis considers Production Opti-
mization, that is decisions on a short-term time horizon. Here, decisions regarding
production and possibly injection rates as well as routing configurations have to be
taken, where the goal is to maximize daily production rates or to keep production
at specified rates [18]. For small time scales, effects such as changes in reservoir
conditions are not considered, as these are treated by higher layers in the control
hierarchy, emphasizing long term recovery strategies.

The incorporation of automatic control combined with real-time measurements
and the exploitation of data information generated from a production plant are
key procedures in what is called Integrated Operations. This seeks to improve op-
erational performance of a production plant by assisting the operator in complex
decisions by providing a decision support tool. A term covering these features is
known as Real Time Optimization (RTO), which can be described as a method
for complete or partial automation of the process of finding good (optimal) control
settings [10].

Control and automation

Production Optimization

Reservoir

Management

Asset

Management

Decision horizon

Year

Month

Week

Day

Hour

Min

Long term

Medium term

Short term

Data acquisition

 system

Control

inputs

Figure 1.2: Multi-level control hierarchy [18].

3

Optimal production strategies propose ways to utilize the oil field capacity to avoid
bottlenecks and improve overall operation. This is usually achieved through math-
ematical modeling of the plant, giving a relation between control inputs and mea-
sured outputs, enabling optimization-based control. In a RTO context, the models
used for this purpose are in most cases static, meaning that they are valid for
steady-state analysis only. However, a steady-state optimization approach has
showed industrial success through commercial products like GAP by Petroleum
Experts and MaxPro by FMC Technologies [18]. Problems that can be analyzed
using this methodology are for instance decision of production valve settings, lift-
gas injection rates and well-flowline routing configuration [14, 21]. RTO appears
as static optimization problems based on linear or nonlinear models with possibly
a mixed-integer formulation, where the latter appears in the case of well-flowline
routing decisions.

From a short-term production planning view, RTO is a decision support tool aimed
to improve operational performance, e.g. by offering optimized control settings to
the operator for bringing the overall plant closer to an optimum. RTO solutions
lacking dynamic models can propose infeasible transient operation. A dynamic
description must be used to predict this behavior and control the plant to obey
constraints and limitations. A suitable framework for this purpose can be taken
from the theory of dynamic optimization enabling optimization of dynamic models
to produce time-varying control settings, which then can be applied to the plant.
These can be applied in an open-loop manner or in closed-loop by including mea-
surement feedback, as illustrated by Figure 1.3. The latter is used in solutions such
as Model Predictive Control (MPC).

Open-loop

optimization

Closed-loop

control

Plant

Objective

MeasurementsControl inputs

Set points

(a) Open-loop optimization separated from
closed-loop control.

Optimizing

controller

Plant

Objective

Control inputs Measurements

(b) Integrated optimization and control
(closed-loop optimization).

Figure 1.3

4

1.2 Dynamic optimization
In dynamic optimization, the goal is to find solutions of optimization problems con-
strained by dynamic models represented by ordinary differential equations (ODE)
or differential algebraic equations (DAE). The optimal control problem (OCP) is
concerned with finding inputs in order to control a system where a specified ob-
jective function is optimized. These problems apply to a wide area of processes
ranging from aerospace to chemical process industry. An important application
is within MPC, where dynamic optimization is combined with a receding horizon
principle to form a closed-loop feedback controller where optimization is performed
on-line. An overview of optimal control methods is illustrated in Figure 1.4.

In 1957, the principle of optimality was formulated by R. Bellman, which also
showed that dynamic programming was applicable for deriving an optimal control
law from the solution of the Hamilton-Jacobi-Bellman equation. However, using
this approach for large OCPs, the presence of nonlinear dynamics and state or
control variable constraints may lead to computationally intractable problems.

Another approach extending results from the area of calculus of variations is the
maximum principle formulated in 1962 by L. Pontryagin and co-workers, known
as indirect methods. Although providing an analytical approach for solving the
OCP, disadvantages include difficulties for handling state bounds and large nonlin-
ear systems.

Optimal control

methods

Dynamic

programming
Direct methods Indirect methods

Single shooting

Sequential methods Simultaneous methods

Multiple shooting Direct collocation

Figure 1.4: Dynamic optimization overview.

5

Direct methods form a family that has been developed during the last two decades.
These are based on approximating the infinite dimensional dynamic optimization
problem into a finite dimensional static problem, as illustrated by Figure 1.5. Ap-
proaches within the category of direct methods differ in the way the finite dimen-
sional optimization problem is formulated.

Sequential (single shooting) methods address this problem in a reduced space treat-
ing only control inputs as decision variables. This is known as partial discretization
[13], making states implicitly defined by the control inputs. In this way, simulation
and optimization is done in a sequential manner.

Simultaneous methods formulate the optimization problem using both states and
control inputs as decision variables, leading to a full space problem. In this case, a
full discretization of all variables occurs. Although leading to a significantly larger
nonlinear program (NLP) in terms of decision variables and constraints, the prob-
lem is sparse, and structure can be exploited to improve efficiency. A simultaneous
method known as direct collocation is based on approximating variable profiles by
piecewise polynomials and solving the model equations at specific points in time.

Multiple shooting can be viewed as a combination of sequential and simultaneous
methods, discretizing both states and controls over several time segments, where
each of these are integrated independently.

Infinite dimensional

OCP

Direct collocation

Single shooting

Approximation

Finite dimensional NLP

Full discretization

Partial discretization

Multiple shooting

Figure 1.5: The infinite dimensional OCP is approximated by a finite dimensional
NLP after the application of an approximation procedure.

6

1.3 Scope and emphasis
This thesis will motivate the use of dynamic optimization applied to an oil gath-
ering system consisting of a well-flowline network. Chapter 2 presents an optimal
control problem formulation constrained by a system of continuous-time nonlinear
differential algebraic equations. This problem is approached by means of three
methods: direct collocation, single shooting and multiple shooting, all of which are
briefly described here.

In Chapter 3, an overview of the JModelica.org framework is given. Implemen-
tations of shooting and direct collocation methods are illustrated by an example.
The well-flowline model is presented in Chapter 4, summarizing the amount of
variables and equations. An optimal control problem for this model is formulated
in Chapter 5.

A performance assessment description is provided in Chapter 6 with all results
given in Appendix D. Finally, Chapter 7 presents a discussion of the results fol-
lowed by a conclusion in Chapter 8.

7

Chapter 2

Optimization and control of
dynamic systems

Dynamic optimization methods presented in this thesis are based on a direct ap-
proach. In Section 2.1, a general optimal control problem constrained by DAE
system equations is defined. Different formulations and the relation between them
are explained.

Section 2.2-2.4 presents the direct methods: single shooting, multiple shooting
and direct collocation, with theory based on [9]. These approximate the infinite
dimensional optimal control problem by a finite dimensional NLP that is suited for
numerical algorithms. Shooting methods rely on embedded integrators with sen-
sitivity capabilities for obtaining variable profiles and derivative information. The
direct collocation method is based on orthogonal collocation over finite elements
with Gauss-Radau interpolation points and Lagrange polynomials.

To improve performance of large-scale optimization algorithms, efficient deriva-
tive computations are necessary, where automatic differentiation is presented in
Section 2.5. This technique provides partial derivatives of system equations and
constraints with accuracy up to machine precision by applying the chain rule and
using pre-defined look-up tables for derivatives of elementary functions.

8

2.1 Optimal control problem formulation
Dynamic optimization problems (DOP) are concerned with the solution of decision-
making problems constrained by differential or differential-algebraic equations. A
DOP can be further categorized into parameter estimation and optimal control
problems [24], where the latter is considered here.

The process model used in this thesis can be represented by a set of fully implicit
DAEs written as an initial value problem (IVP):

F (x(t), ẋ(t), u(t), t) = 0, (2.1a)
h(x(t0)) = 0, (2.1b)

where x : [t0, tf] → Rnx are states, u : [t0, tf] → Rnu are control inputs, F :
Rnx×nx×nu×1 → Rnx are system functions and x(t0) are initial conditions. Start
and end time are given by t0 and tf respectively.

A more structured formulation of the DAE is given by the semi-explicit form,
where x(t) is partitioned into differential states z(t) and algebraic variables y(t).
Further, a time-invariant system is considered, such that the time variable t does
not appear explicitly in the system equations. A semi-explicit DAE is written as:

ż(t) = f(z(t), y(t), u(t)), (2.2a)
z(t0) = z0, (2.2b)

0 = g(z(t), y(t), u(t)), (2.2c)

where z : [t0, tf]→ Rnz and y : [t0, tf]→ Rny . Differential and algebraic equations
are given by f : Rnz×ny×nu → Rnz and g : Rnz×ny×nu → Rny , while z(t0) are
initial conditions.

Further, assuming invertibility of g(z(t), y(t), u(t)) or equivalently requiring that
∂g
∂y is nonsingular for all z(t), y(t), u(t), this allows implicit elimination of the alge-
braic variables y(t). In this way, the DAE may be treated as an ODE such that
(2.2) can be written as an equivalent ODE IVP:

ż(t) = f(z(t), y[z(t), u(t)], u(t)) = f(z(t), u(t)), (2.3a)
z(t0) = z0. (2.3b)

This corresponds to an index-1 property of the DAE system (2.1). Existence and
uniqueness of the solution of (2.3) can be guaranteed by Theorem 8.1 in [9].

9

A general OCP formulation based on the semi-explicit DAE system (2.2) can be
written as:

min
z,y,u

Φ(z, y, u) =
∫ tf

t0

L(t, z, y, u)dt+ E(tf , z(tf), y(tf), u(tf)) (2.4a)

s.t. ż = f(z, y, u), (2.4b)
z(t0) = z0, (2.4c)
g(z, y, u) = 0, (2.4d)
gI(z, y, u) ≤ 0, (2.4e)
zL ≤ z ≤ zU , (2.4f)
yL ≤ y ≤ yU , (2.4g)
uL ≤ u ≤ uU , (2.4h)
t ∈ [t0, tf].

DAE system equations are given as equality constraints in (2.4b)-(2.4d). The con-
straints (2.4e) are known as path inequalities, with gI : Rnz×ny×nu → RnI . Vari-
able bounds are given in (2.4f)-(2.4h). Additional point or end time constraints
may also be added. The variables z, y, u are all functions of time t even though the
explicit time argument notation is for simplicity not used further.

The objective function (2.4a) consists of two parts, namely an integral term ac-
counting for the cost throughout the horizon [t0, tf], and a terminal cost at the
final time. An objective function containing only the first part∫ tf

t0

L(t, z, y, u)dt (2.5)

leads to a Lagrange problem where L(t, z, y, u) is called a Lagrange integrand, while
the Mayer problem contains only the terminal cost

E(tf , z(tf), y(tf), u(tf)). (2.6)

A combination of these two yields a Bolza functional, and the OCP arising from
such a formulation is known as the Bolza problem. It should be noted that these
formulations are equivalent, and they may be interchanged. For instance, the Bolza
functional in (2.4a) may be written in Mayer form by defining an additional state

żc(t) = L(t, z, y, u) (2.7)

with zc(t0) = 0. In this way, integration of (2.7) leads to

zc(t) =
∫ t

t0

L(t, z, y, u)dt (2.8)

10

and by setting t = tf , the objective function (2.4a) can be written as

Φ(tf) = zc(tf) + E(tf , z(tf), y(tf), u(tf)), (2.9)

where zc(tf) may be incorporated into the function E, yielding a Mayer type cost
function. In this way, the Lagrange integrand becomes an additional state. The
resulting OCP can then be written as:

min
z,y,u

Φ(tf) = E(tf , z(tf), y(tf), u(tf)) (2.10a)

s.t. ż = f(z, y, u), (2.10b)
z(t0) = z0, (2.10c)
g(z, y, u) = 0, (2.10d)
żc = L(t, z, y, u), (2.10e)
zc(t0) = 0, (2.10f)
gI(z, y, u) ≤ 0, (2.10g)
zL ≤ z ≤ zU , (2.10h)
yL ≤ y ≤ yU , (2.10i)
uL ≤ u ≤ uU , (2.10j)
t ∈ [t0, tf].

Here, DAE system equations consist of model equations (2.10b)-(2.10d) and the
additional cost state (2.10e)-(2.10f).

As the OCP includes a dynamic constraint in the form of a continuous-time differ-
ential equation, it contains an infinite number of decision variables: z(t), y(t), u(t)
for t ∈ [t0, tf]. To solve it using a numerical optimization algorithm, it has to be
approximated by a finite dimensional NLP. An approximation procedure discretizes
the continuous-time formulation, into a discrete formulation making it suited for
numerical algorithms. The methods presented in Section 2.2-2.4 involve different
techniques of this procedure.

11

2.2 Single shooting
In the OCP (2.10), the decision variables consist of states, algebraic variables and
control inputs. However, from the DAE system equations (2.10b)-(2.10f), states
and algebraic variable profiles may be obtained by DAE integration. In this way,
states and algebraic variables can be treated as implicit functions of control inputs.
That is, given a sequence of u(t), it is possible to obtain the profiles z(t) and y(t).
These are then eliminated from the optimization problem, leaving only the control
inputs left as decision variables, leading to a reduced space problem. This method
is commonly known as single shooting.

The sequential manner of this method is in the sense that integration and op-
timization are performed sequentially. An integrator provides variable profiles to
the NLP solver, which in turn optimizes the objective function by producing a new
control input sequence, as illustrated by Figure 2.1. NLP optimization algorithms
depend on derivatives of objective and constraint functions with respect to control
inputs. These are referred to as sensitivity calculations and can be performed in
3 ways: perturbation, direct (forward) sensitivity and adjoint sensitivity. As the
perturbation method is based on a finite difference approximation, this method is
the simplest to implement. However, it leads to problems such as truncation and
round-off errors which limits the accuracy of derivatives, therefore it will not be
treated further.

The single shooting method is convenient due to its simplicity and reduced size
NLP. In addition, as the dynamic model constraints are fulfilled with high accu-
racy in each iteration, the optimization procedure can be terminated prematurely,
resulting in a suboptimal control profile, which may still be an improvement over
the initial guess [2]. However, disadvantages include difficulty of handling unstable
systems and state path constraints.

NLP SolverDAE Solver

Variable profiles

z(t),y(t)

Decision variables

u

Objective and

constraint derivatives

Figure 2.1: Sequential method strategy. DAEs are solved in an outer loop providing
variable profiles and derivative information to the NLP solver, which in turn uses
these to compute a new sequence of control inputs u.

12

Formulation of a single shooting NLP

Given the OCP (2.10), control inputs need to be discretized into a finite amount
of parameters making them decision variables in the resulting NLP. A common
parameterization for these is a piecewise constant control input given by

u(t) = ul, t ∈
(
tf (l − 1)

N
,
tf l

N

]
, l = 1, ..., N (2.11)

where N is the amount of intervals where control inputs are kept constant and tf is
final time, as illustrated by Figure 2.2. Other parameterizations may also be used,
e.g. a piecewise linear or polynomial representation. In this way, the control inputs
become discrete. The OCP (2.10) can be approximated by the following NLP with
U = {ul ∈ Rnu , l = 1, ..., N} addressing a single shooting problem:

min
U∈RNnu

ϕ(U) (2.12a)

s.t. cE(U) = 0, (2.12b)
cI(U) ≤ 0, (2.12c)

where the DAE system (2.10b)-(2.10f) is solved by an integrator making it possible
to view the objective and constraint functions in (2.12) as implicit functions of U ,
that is:

ϕ(U) = ϕ(z(U), y(U), U), (2.13)
cE(U) = cE(z(U), y(U), U), (2.14)
cI(U) = cI(z(U), y(U), U). (2.15)

The NLP arising from a single shooting formulation has Nnu decision variables,
and can be solved by an appropriate solver, e.g. algorithms based on Sequential
Quadratic Programming (SQP) or Interior Point (IP) methods. In this thesis,
IPOPT [29] is used, which is a large-scale interior point optimizer for mathematical
optimization problems of the form:

min
x∈Rn

f(x) (2.16a)

s.t. gL ≤ g(x) ≤ gU , (2.16b)
xL ≤ x ≤ xU , (2.16c)

where f : Rn → R and g : Rn → Rm are objective and constraint functions respec-
tively, with x being decision variables. Since the single shooting NLP (2.12) can
be formulated as (2.16), a local solution of the optimization problem can be found.
SQP and IP methods require derivative information of both objective and con-
straint functions. These computations are known to be the most time-consuming
part of a single shooting algorithm [22].

13

Gradient computation and sensitivity calculations

To improve efficiency of the NLP solver for finding a solution of the single shooting
problem (2.12), the gradients ∇Uϕ, ∇UcE and ∇UcI are required. Let Ψ contain
objective and constraint functions:

Ψ =
[
ϕ(U) cE(U)T cI(U)T

]
. (2.17)

Consider a single time period with only one parameterized control input u(t) =
u, t ∈ [0, tf]. By applying the chain rule together with (2.13)-(2.15) and (2.17),
the gradient can be written as:

∇uΨ =
[

∂ϕ
∂u

∂cT
E

∂u
∂cT

I

∂u

]
(2.18)

=
[

dz
du

∂ϕ
∂z + dy

du
∂ϕ
∂y + ∂ϕ

∂u
dz
du

∂cT
E

∂z + dy
du

∂cT
E

∂y + ∂cT
E

∂u
dz
du

∂cT
I

∂z + dy
du

∂cT
I

∂y + ∂cT
I

∂u

]
(2.19)

= S(tf)T ∂Ψ
∂z

+R(tf)T ∂Ψ
∂y

+ ∂Ψ
∂u

, (2.20)

where S(t) = dz

du

T

and R(t) = dy

du

T

are known as the sensitivity matrices.

Direct sensitivity methods are based on taking the derivative of DAE system equa-
tions with respect to u, that is for t0 = 0:

d

du


dz

dt
= f(z, y, u),

z(0) = z0,

g(z, y, u) = 0.

(2.21)

This leads to the sensitivity equations:

dS

dt
= ∂f

∂z

T

S(t) + ∂f

∂y

T

R(t) + ∂f

∂u
, (2.22a)

S(0) = ∂z0

∂u

T

, (2.22b)

0 = ∂g

∂z

T

S(t) + ∂g

∂y

T

R(t) + ∂g

∂u

T

, (2.22c)

resulting in (nz + ny)nu differential equations, which are linear time-variant.

Another method for obtaining the derivatives of objective and constraint functions
are adjoint sensitivity calculations, which is described in [9].

14

The direct sensitivity method is efficient with few decisions u and many constraints,
while the adjoint method is more efficient for many decision variables u and few
constraints, thus these methods complement each other. Both direct and adjoint
sensitivity methods require computation of partial derivatives related to objective
and constraint functions. For this task, it is possible to use automatic differentia-
tion presented in Section 2.5.

Efficient DAE/ODE integrators with sensitivity capabilities improve the perfor-
mance of the single shooting approach. In this thesis CVODES [28] is used, which
implements an ODE integrator providing forward and adjoint sensitivity analysis.
As the DAE system and sensitivity equations share the same Jacobian matrices,
this fact is exploited such that sensitivity equations are solved simultaneously with
the state equations. Other improvements include taking advantage of sparsity and
structure of the Jacobian, which are common features in large-scale DAE/ODE
solvers.

 t1 t2 tN-1

t0 tN=tf

z(t)

t

z0

...

 t0 t1 t2 tN-1 tN=tf

u1
...

u2
uN

t

u(t)

Figure 2.2: In single shooting, variable profiles are obtained by solving a DAE
system with parameterized control inputs.

15

2.3 Multiple shooting
The single shooting approach leads to a reduced space NLP by efficiently eliminat-
ing state and algebraic variables through an embedded integrator. However, this
strategy is not well suited for unstable dynamic systems as it can lead to unbounded
state profiles, or convergence difficulties in the NLP solver. These problems can be
avoided by including state variable information into the NLP formulation.

Multiple shooting can be viewed as an extension of the single shooting approach.
Here, the time horizon is divided into a number of segments, as illustrated in Figure
2.3. In each of these segments, the DAE system is solved independently. To enforce
continuity of the state profiles, additional state equality constraints are introduced
to ensure that the defects: dl = zl−1(tl−1) − zl

0 , l = 2, ..., N are equal to zero.
As for single shooting, control inputs are parameterized into a finite amount of
variables. In addition, states at the beginning of each segment appear as decision
variables. As integration is performed over shorter time intervals, numerical sta-
bility properties of the algorithm are improved. Additional inequality constraints
for the state variables at the grid points tl , l = 1, ..., N are also easier to include,
as these are now decision variables.

Although multiple shooting offers numerical advantages over a single shooting ap-
proach, it should be emphasized that the resulting NLP becomes larger and more
sensitivity information is required. To improve performance, exploitation of struc-
ture and parallelization should be applied.

 t0 t1 t2 tN-1 tN=tf

z0
1

z0
2 z0

N

z1(t1)
z2(t2)

zN(tN)...

1 2 N

z0
3

zN-1(tN-1)

d2
d3

dN

z(t)

t

z0

 t0 t1 t2 tN-1 tN=tf

u1 ...

u2
uN

t

u(t) 1 2 N

Figure 2.3: A multiple shooting time horizon is divided into segments where each
one is integrated separately.

16

Let the time horizon be divided into l = 1, ..., N segments, where these are con-
nected at the grid points tl. A multiple shooting approach leads to a NLP with
DAE integration solved in an outer loop, and can be formulated as:

min
V ∈Rnv

ϕ(zl(tl), yl(tl), ul) (2.23a)

s.t. zl−1(tl−1)− zl
0 = 0 , l = 2, ..., N (2.23b)

z0 − z1
0 = 0, (2.23c)

gI(zl(tl), yl(tl), ul) ≤ 0, (2.23d)
uL ≤ ul ≤ uU , (2.23e)
yL ≤ yl(tl) ≤ yU , (2.23f)
zL ≤ zl(tl) ≤ zU , (2.23g)
l = 1, ..., N,
żl = f(zl(t), yl(t), ul), (2.23h)
zl(tl−1) = zl

0, (2.23i)
g(zl(t), yl(t), ul) = 0, (2.23j)
t ∈ (tl−1, tl] , l = 1, ..., N.

Eq (2.23b) enforces continuity of state profiles between segments. Initial conditions
are defined in (2.23c), where z0 are given values. Inequality constraints (2.23d) and
variable bounds (2.23e)-(2.23g) are posed directly at grid points. In addition, the
DAE system (2.23h)-(2.23j) is solved independently for each segment in an outer
loop, thus obtaining state and variable profiles.

Here, decision variables are states at the beginning of each segment with corre-
sponding parameterized control inputs, that is:

V = {(zl
0, u

l)|zl
0 ∈ Rnz , ul ∈ Rnu , l = 1, ..., N}. (2.24)

For an equal segment and control input discretization, this lead to a total number
of nv = N(nz + nu) decision variables and Nnz additional equality constraints
from the continuity enforcement and initial condition.

17

2.4 Direct collocation
Within simultaneous methods for dynamic optimization, the direct collocation
method is based on a NLP formulation without embedding a DAE integrator.
Instead, variable profiles are approximated by piecewise polynomials throughout
the time horizon. The infinite dimensional OCP is then approximated into a finite
dimensional NLP, consisting of algebraic equations only, which can be solved by
numerical algorithms. In this representation, states, algebraic variables and con-
trol inputs are decision variables, making it straightforward to define constraints on
these. The resulting NLP for collocation is large because of its amount of decision
variables and constraints arising from the collocation equations. However, due to
its sparsity and structure, it is essential to exploit this in order to improve efficiency.

It should be noted that collocation itself is a numerical method for the solution of a
DAE system, and can be used for simulation purposes [24]. Such an approximation
scheme can be shown to be equivalent to a special class of Implicit Runge-Kutta
(IRK) methods as presented in [9], inheriting the numerical stability properties of
these.

Unlike shooting approaches that obtain variable profiles by integration of DAE
system equations, collocation is based on approximating these profiles with poly-
nomials. Collocation parameters should be chosen to yield a good approximation.
A trade-off between a fine grained vs. coarse approximation arise from the choice
of parameter values, which can have a great impact on solution time.

 t0 tf

z(t)

t

...

1 2 N

z0

 t0 tf t

u(t) 1 2 N

...

Figure 2.4: Decision variables are discrete points (interpolation points) marked by
the dots, with interpolated variable profiles based on polynomial approximations.

18

2.4.1 Collocation - A numerical method for solving an ODE
Consider the following ODE where z(t) are differential states:

ż(t) = f(z(t), t), (2.25a)
z(0) = z0. (2.25b)

Let the time horizon be divided into N elements with index i = 1, ..., N , each
with length hi, as illustrated in Figure 2.4. Within each element, there are K + 1
interpolation points1 with index k = 0, ...,K. In this way, an interpolation point
can be denoted by τk, see Figure 2.5. The solution of (2.25) can be represented as a
polynomial approximation of degree K within each element, denoted by zK(t). In
collocation methods, representations based on Lagrange interpolation polynomials
are used. In the following, consider a one-element approximation (N = 1) for
element i:

zK(t) =
K∑

j=0
`j(τ)zi,j ,

t = ti−1 + hiτ,

 t ∈ [ti−1, ti], τ ∈ [0, 1], (2.26)

where `j(τ) are called Lagrange polynomials. These are defined as

`j(τ) =
K∏

k=0,k 6=j

τ − τk

τj − τk
, (2.27)

with τ0 = 0, τj < τj+1, j = 0, ...,K − 1.

t ti,1 ti,2 ti,3 = ti ti+1,1 ti+1,2

zi,0

zi,1

zi,2
zi+1,0 zi+1,1 zi+1,2 zi+2,0

τ0 τ1 τ2 τ3 τ0 τ1 τ2 τ3

Element i Element i+1zK(t)

zi,3 zi+1,3

ti-1 ti+1,3 = ti+1

Figure 2.5: Two elements with K = 3. At the element boundaries, interpolation
points overlap, enforcing continuity of variable profiles. The value of τk depends
on K and collocation type.

1Also known as collocation points.

19

Enforcing the model equation (2.25a) at the interpolation points τk or equivalently
ti,k leads to

żK(ti,k) = f(zK(ti,k), ti,k) , k = 1, ...,K. (2.28)

Since the Lagrange polynomial representation has the property that zK(ti,j) = zi,j

where ti,j = ti−1 + τjhi, (2.28) becomes

żK(ti,k) = f(zi,k, ti,k) , k = 1, ...,K. (2.29)

Further, the following property is applied in (2.31):

dzK

dτ
= hi

dzK

dt
. (2.30)

Taking the derivative of z(t) in (2.26) w.r.t τ and inserting (2.29) and (2.30) yields:

dzK

dτ
(ti,k) =

K∑
j=0

d`j

dτ
(τk)zi,j , k = 1, ...,K (2.31)

hi
dzK

dt
(ti,k) =

K∑
j=0

d`j

dτ
(τk)zi,j , k = 1, ...,K (2.32)

hif(zi,k, ti,k) =
K∑

j=0

d`j

dτ
(τk)zi,j , k = 1, ...,K (2.33)

where (2.33) are known as the collocation equations. After determining the inter-
polation points τk, the collocation equations and initial condition (2.25b) result in
a nonlinear system of equations which can be incorporated directly into an NLP
formulation.

For multiple elements (N > 1), it is also necessary to enforce continuity of the
state profiles across element boundaries. With Lagrange interpolation profiles, this
is given as

zi+1,0 =
K∑

j=0
`j(1)zi,j , i = 1, ..., N − 1 (2.34)

where the first interpolation point in element i + 1 should be equal to the last
interpolation point in the previous element to enforce continuity. Initial conditions
are written as

z1,0 = z0. (2.35)

20

Determination of the values for τk is aimed to give the most accurate approximation
of the states and depends on the type of collocation scheme used [9]. Further in
this thesis, Gauss-Radau collocation will be used, due to the compatibility with
the NLP formulation and stability properties.

2.4.2 NLP formulation from direct collocation
As the derivation in Section 2.4.1 is based on an ODE, a further generalization
treating a semi-explicit DAE can be done by representing algebraic variables and
control inputs by Lagrange interpolation profiles:

y(t) =
K∑

j=1
`j(τ)yi,j , (2.36)

u(t) =
K∑

j=1
`j(τ)ui,j , (2.37)

where

`j(τ) =
K∏

k=1,k 6=j

τ − τk

τj − τk
. (2.38)

That is, given points zi,j , yi,j and ui,j , the interpolation equations (2.26), (2.36)
and (2.37) are used to construct interpolated variable profiles.

For a DAE system, collocation equations and algebraic system equations can be
written as:

K∑
j=0

d`j

dτ
(τk)zi,j − hif(zi,k, yi,k, ui,k) = 0, (2.39)

g(zi,k, yi,k, ui,k) = 0, (2.40)

i ∈ 1, ..., N , k ∈ 1, ...,K.

21

In this way, an infinite dimensional OCP can be approximated into a finite di-
mensional NLP with a total number of nw = (nz + ny + nu)NK + Nnz decision
variables being:

zi,k ∈ W i = 1, ..., N , k = 0, ...,K (2.41)
yi,k , ui,k ∈W i = 1, ..., N , k = 1, ...,K (2.42)

where W ∈ Rnw is the set of decision variables.

In addition, the collocation equations (2.39), algebraic system equations (2.40)
and continuity equations (2.34) adds a number of NK(nz +ny) + (N −1)nz equal-
ity constraints. The resulting NLP from direct collocation can be formulated as:

min
W∈Rnw

ϕ(W) (2.43a)

s.t.
K∑

j=0

d`j

dτ
(τk)zi,j − hif(zi,k, yi,k, ui,k) = 0, (2.43b)

g(zi,k, yi,k, ui,k) = 0, (2.43c)
gI(zi,k, yi,k, ui,k) ≤ 0, (2.43d)
zL ≤ zi,k ≤ zU , (2.43e)
yL ≤ yi,k ≤ yU , (2.43f)
uL ≤ ui,k ≤ uU , (2.43g)
k ∈ 1, ...,K , i ∈ 1, ..., N

zi+1,0 =
K∑

j=0
`j(1)zi,j , i = 1, ..., N − 1 (2.43h)

z1,0 = z0. (2.43i)

Eq (2.43b) are the collocation equations for the DAE, together with the algebraic
system equations (2.43c). Path inequalities are posed at the interpolation points in
(2.43d). Variable bounds are given as (2.43e)-(2.43g). Continuity of state profiles
is enforced by (2.43h), while initial conditions are finally defined in (2.43i), where
z0 are given values.

Alternative NLP formulations based on direct collocation may yield a different
amount of decision variables and equality constraints. The collocation algorithm
in JModelica.org as presented in [24] has: (2nz + ny + nu)(1 + NK) + (N − 1)nz

decision variables and (1 +NK)(2nz + ny) + (N − 1)nz + nu equality constraints
from DAE system and collocation equations.

22

2.5 Automatic differentiation
Automatic differentiation (AD) is a technique for evaluating derivatives of com-
puter represented functions up to machine precision [7]. AD exploits the fact that
every computer represented function can be given as a sequence of elementary arith-
metic operations such as addition, subtraction and multiplication, as illustrated in
Figure 2.6. By breaking the problem down to these operations, it is trivial to dif-
ferentiate each of these elementary functions using pre-defined look-up tables and
then applying the chain rule. Two main approaches are available for AD, that is
the forward and reverse mode [26].

A software implementation of AD can be viewed as a semantic transformation
problem, namely to convert a code for computing a function into a code that com-
putes the derivatives of that function [12]. Two approaches exist:

• Operator overloading: Redefinition of elementary operators. For example,
the multiplication operator ∗ can be redefined to not only compute the expres-
sion z = x ∗ y, but also its derivative according to the product rule. That is,
each occurrence of a multiplication operator would produce∇z = x∇y+y∇x.

• Source code transformation: Rewriting the code explicitly. A transfor-
mation procedure may traverse the code and augment it with derivatives of
its expressions. An assignment z = x∗y would result in adding an expression
∇z = x∇y + y∇x.

x2

x3

x1

x4

x5
x6

x7

cos

*

exp

f(x)
*

Figure 2.6: A function f(x) = x1e
cos(x2)x3 may be decomposed into auxiliary

variables x4, x5, x6 and x7 and elementary operations between these illustrated by
a graph. For computing the gradient of a function f : Rn → Rm, the forward mode
is best suited when m > n, while the reverse mode is better for the opposite [26].

23

Chapter 3

The JModelica.org
framework

This chapter introduces the JModelica.org framework. Section 3.1-3.3 presents
JModelica.org, the Modelica modeling language and its extension Optimica used
to formulate dynamic optimization problems [2, 3]. Tools that are integrated in
the framework include CVODES from the Sundials suite for solving differential
equations, CasADi for providing efficient automatic differentiation and the interior
point optimizer IPOPT for solving large-scale NLPs. Further, Python is used as a
glue language between the different tools.

In Section 3.5, an example illustrates how to solve an OCP using the tools from
JModelica.org. This includes modeling and formulating an OCP with Modelica
and Optimica respectively. The OCP is solved by means of direct collocation, sin-
gle shooting and multiple shooting methods. Implementations are given in Section
3.5.1-3.5.3. The presentation of the shooting methods is based on [5, 7, 27].

In addition, important remarks regarding the use of direct collocation methods
are provided in Section 3.6-3.8. These include improvement of numerical efficiency
and robustness through providing initial guess profiles, and specification of inter-
polation points for the collocation procedure. These have proven to be crucial for
improving convergence and performance of the direct collocation method [1]. The
performance of the three methods is also affected by scaling, which is discussed in
Section 3.9.

24

3.1 The Modelica modeling language
Modelica is a high-level, object-oriented, equation-based language for modeling
complex physical systems. Originated in the mid nineties, the first version of the
Modelica language specification was published in 1997 by the Modelica Association.
Being an object-oriented language, it supports concepts such as packages, classes,
inheritance and components, which enables structuring and reuse of models. It is
based on acausal equations, rather than assignment statements, which means that
the order of computations is not decided at modeling time.

Models are defined by differential and algebraic equations, resulting in an ODE or
DAE. In addition to equations and derivatives, discrete events may be formulated
using functions and logic statements, offering a wide area of application, including
hybrid systems. Built-in libraries include electrical, thermal, fluid and mechanic
subcomponents where such components are coupled by connectors representing an
input-output syntax between them. A graphical user interface for block diagram
modeling is supported, enabling the user to construct models in a drag-and-drop
manner.

Code written in the Modelica language is transformed to a suitable model code,
which can be interfaced with a simulation algorithm in a procedure illustrated by
Figure 3.1. Flattening of the model refers to transforming the hierarchical Mod-
elica code into a representation consisting of variables and equations. Afterwards,
symbolic manipulation is performed to represent the model as a structured hybrid
DAE of index-1. The final step includes generation of efficient code that is suitable
for integration with numerical algorithms for simulation; see [3, 4] for an overview
of the compilation process.

Flattening
Symbolic

Manipulation

Code

Generation
Modelica

Code
C/XML

Code

Flat

Modelica

Hybrid

DAE

Figure 3.1: Modelica compilation process [3].

25

3.2 The JModelica.org environment
As Modelica offers a broad platform for modeling and simulation of systems, it
does not support optimization of these. A framework incorporating this feature is
JModelica.org, which is an "extensible Modelica-based open source platform for op-
timization, simulation and analysis of complex dynamic systems"1. JModelica.org
integrates state of the art algorithms for simulation, optimization and automatic
differentiation. Further, it provides an interface for dynamic optimization of models
written in the Modelica language using Python as a glue language for interacting
between the different components. Some of the different components included in
JModelica.org are shown in Figure 3.2.

JModelica.org

Sundials

(CVODES)
IPOPT CasADi

Modelica/

Optimica

compiler

Built-in

optimization

algorithms

Python

Figure 3.2: JModelica.org components.

After the user expresses a model using Modelica, a dynamic optimization problem
may be formulated using the Modelica-extension Optimica. A built-in compiler in
JModelica.org offers compilation of Modelica and Optimica code, which can gen-
erate C and XML files to be used for numerical simulation and optimization. An
XML output consists of model meta data such as names, attributes and type for
variables. The XML output follows a structure according to the Functional Mock-
up Interface2 (FMI), which is a standardized interface used in computer simulation.
In practice, this enables the compiler to create Functional Mock-up Units (FMU),
which are suited for numerical packages.

JModelica.org links sophisticated packages, such as CVODES [28] for simulation,
and CasADi [6] for efficient automatic differentiation. A complete overview of the
platform architecture, and the component relations is illustrated in Figure 3.3.

1JModelica.org http://www.jmodelica.org
2FMI https://www.fmi-standard.org

26

 http://www.jmodelica.org
https://www.fmi-standard.org

Modelica

Optimica

Compiler

C

XML

DLL

Generated Code

JMI Runtime Library

ODE DAE
DAE

Init
Opt

Python Algorithms

User scripts/code

Figure 3.3: JModelica.org platform architecture [3].

The current edition of JModelica.org (version 1.9) includes 4 different built-in op-
timization algorithms, namely dynamic optimization of DAEs using direct collo-
cation with CasADi, direct collocation with CppAD, pseudospectral optimization
and derivative-free optimization.

The direct collocation method results in a NLP that is solved using IPOPT. It
applies to continuous-time DAEs that do not contain functions representing dis-
crete/hybrid behavior. IPOPT is prepared for solving large-scale NLPs and pro-
vides heuristics for exploitation of the sparsity structure [5].

JModelica.org uses CasADi or CppAD to compute derivatives based on AD. Since
CasADi is included in the JModelica.org framework, this also enables efficient im-
plementation of other algorithms for optimization based on direct (or indirect)
approaches, e.g. shooting methods. In addition, CasADi provides interfacing be-
tween the Sundials and IPOPT packages, making it well suited for this purpose.
An overview of the algorithms for dynamic optimization is given in Figure 3.4.

Built-in algorithms

- Direct collocation using CppAD

- Direct collocation using CasADi

- Pseudospectral optimization

- Derivative-free optimization

Implementable

through CasADi

- Single shooting

- Multiple shooting

JModelica.org

Figure 3.4: JModelica.org and CasADi algorithms for dynamic optimization.

27

3.3 Optimica
In order to formulate a dynamic optimization problem using the JModelica.org
framework, the user needs to supply a model and an optimization formulation.
Having the model code written in Modelica, an optimization formulation at a high
abstraction level may be defined using the Optimica extension [2]. Optimica in-
cludes new language constructs enabling the user to express the dynamic optimiza-
tion problem. This includes specifying optimization variables, objective function
and constraints.

Although the formulation of the problem is expressed in Optimica, there is no
information provided regarding how to solve it, i.e. approximation of the infinite
dimensional optimization problem into a finite dimensional NLP. This is specified
in the Python script, where the user can choose to use the built-in collocation
algorithm or implement a shooting method. The approximation procedure that
transforms the dynamic optimization problem into a NLP based on a simultaneous
approach is done automatically by specifying this method in Python. It is also pos-
sible to specify additional options for the approximation procedure, e.g. number
of elements and interpolation points for direct collocation.

Approximation of the OCP results in a NLP, which is solved by IPOPT. Here,
algorithmic parameters for the NLP solver may be specified, e.g. tolerances and
termination criteria. Figure 3.5 illustrates the workflow of importing Modelica/Op-
timica code through Python.

Modelica code

- Parameters

- System equations

- Functions

Optimica code

- Objective

- Constraints

- Weights

Python

Algorithms

- Simulation

- Approximation

- Optimization

O
C

P
M

o
d
el

Figure 3.5: Modelica and Optimica relation in the JModelica.org platform.

28

3.4 CasADi
A package for automatic differentiation contained in JModelica.org is CasADi, best
described as a minimalistic Computer Algebra System for Automatic Differentia-
tion. CasADi can be viewed as a framework for efficient implementation of deriva-
tive based algorithms for dynamic optimization. It enables AD in forward and
reverse mode by implementing a hybrid operator overloading/source code trans-
formation approach. Expressions can be represented in two ways, either as scalar
expressions (SX) or matrix expressions (MX), which have different properties in
terms of efficiency and generality. The reader is referred to [5, 6, 7, 8] for a com-
prehensive description of CasADi.

In JModelica.org’s built-in collocation algorithm LocalDAECollocationAlg,
CasADi is interfaced to IPOPT, enabling AD for computing derivatives of objec-
tive and constraint functions. CasADi also provides a quick way for implementing
shooting algorithms. Some main features are model import from Modelica/Op-
timica and symbolic manipulation, e.g. transformation from a DAE to ODE. In
addition is has an interface to integrators such as CVODES and IDAS, both pro-
viding sensitivity information and NLP solvers like IPOPT and KNITRO as shown
in Figure 3.6.

For shooting problems implemented with a Sundials integrator, CasADi automat-
ically formulates forward and adjoint sensitivity equations and provides Jacobian
information needed by the linear solvers [5]. In this way, the user needs only
to instantiate the approximation procedure, e.g. control input discretization and
construction of objective and constraint functions.

Sundials

CVODES

IDAS

NLP solvers

IPOPT

KNITRO

CasADi

Figure 3.6: CasADi provides an interface to numerical integrators with sensitivity
capabilities from Sundials: CVODES and IDAS, for ODE and DAE respectively,
and NLP solvers: IPOPT and KNITRO.

29

3.5 Example: Coupled tanks
To illustrate the use of the JModelica.org framework, an example of performing
dynamic optimization applied to a simple nonlinear system is given. Consider a
model of two coupled liquid tanks, where the inflow is given as a control input, as
shown in Figure 3.7. Let the model be described by the ODE:

ż1 = −

w1︷ ︸︸ ︷
a1

A1

√
2gz1 +

w2︷ ︸︸ ︷
a2

A2

√
2gz2, (3.1a)

ż2 = − a2

A2

√
2gz2︸ ︷︷ ︸

w2

+ k

Au
u︸ ︷︷ ︸

win

, (3.1b)

where z1 and z2 are liquid levels and u is liquid inflow. The parameters ai, Ai, k, g
and Au are given. This model is written in Modelica according to Listing 3.1.
An OCP describing the objective of controlling the liquid level z1 to a constant
reference value zr

1 can be formulated as the Mayer problem (3.2) with (3.2b) being
system equations (3.1). An additional cost state zc for the objective function (3.2d)
is included. The OCP (3.2) is written in Optimica according to Listing 3.2.

min
z,u

zc(tf) (3.2a)

s.t. ż = f(z, u), (3.2b)
z(0) = z0, (3.2c)
żc = (z1 − zr

1)2 + u2, (3.2d)
zc(0) = 0, (3.2e)
zmin ≤ z ≤ zmax, (3.2f)
umin ≤ u ≤ umax, (3.2g)
t ∈ [0, tf].

win

w2

w1

z2

z1

Figure 3.7: Coupled tanks.

30

Listing 3.1: Modelica code for coupled tanks example.
1 model tank
2 import SI = Modelica.SIunits;
3 parameter SI.Area a1=0.03;
4 parameter SI.Area a2=0.02;
5
6 parameter SI.Area A1=8.4;
7 parameter SI.Area A2=7.1;
8 parameter SI.Area A_u=1;
9

10 parameter SI.Acceleration g = 9.81;
11 parameter Real k = 0.4; // [.]
12
13 Real z1(start=0.4,fixed=true); // State z1 with initial value [m]
14 Real z2(start=3,fixed=true); // State z2 with initial value [m]
15
16 parameter Real u_initGuess = 0.1;
17 input Real u(start=u_initGuess,fixed=true); // Control input with initial guess

[m^3/s]
18
19 equation
20 der(z1) = -(a1/A1)*sqrt(2*g*z1)+(a2/A2)*sqrt(2*g*z2);
21 der(z2) = -(a2/A2)*sqrt(2*g*z2)+(k/A_u)*u;
22 end tank;

Listing 3.2: Optimica code for coupled tanks example.
1 optimization ocp(objective=zc(finalTime),startTime=0,finalTime=600)
2 extends tank; // Include tank model equations
3 Real zc(start=0,fixed=true);
4 constant Real z1r = 2; // Reference value
5 equation
6 // Cost function state
7 der(zc) = (z1-z1r)^2+u^2;
8 constraint
9 // State bounds z_min <= z <= z_max

10 z1<=5;
11 z1>=0.1;
12
13 z2<=5;
14 z2>=0.1;
15
16 // Control input bounds u_min <= u <= u_max
17 u<=0.3;
18 u>=0;
19 end ocp;

31

3.5.1 Direct collocation
When using JModelica.org’s built-in algorithm for solving the OCP (3.2) with di-
rect collocation, the model and OCP needs to be imported through Python. In
this example, both model and OCP are given in the same file although these can
be separated.

In Listing 3.3, the model code is compiled to a FMU. Further, this is scaled and
imported through CasadiModel(), which creates an object suitable for optimiza-
tion with CasADi. The function optimize() uses this scaled model to solve the
OCP using the algorithm LocalDAECollocationAlg, which is direct colloca-
tion utilizing CasADi for automatic differentiation. Approximation of the infi-
nite dimensional OCP and solving the resulting NLP with IPOPT is done by the
optimize() function.

Listing 3.3: Direct collocation implementation.
1 from pymodelica import compile_fmux,compile_fmu
2 from pyjmi import CasadiModel
3
4 fmux = compile_fmux("ocp", "tank.mop")
5 model = CasadiModel(fmux, scale_variables=True)
6
7 res = model.optimize(algorithm="LocalDAECollocationAlg")

32

3.5.2 Single shooting
The single shooting implementation assessed in this thesis is based on [5]. Some
main remarks from the code given in Listing 3.4 are:

• The file containing Modelica and Optimica code is imported through Python
by the SymbolicOCP() class in lines 7-12. The ocp object instantiated
from this class contains all information related to the OCP, e.g. states,
variables and equations. On line 32, an ode object is instantiated as a
SXFunction(), which is a CasADi-type function suited for automatic dif-
ferentiation. This results in a symbolic expression for the ODE.

• A CVodesIntegrator is instantiated in lines 34-37 by supplying it with
the ode object. Notice that the integration interval is set to tf

N , such that
integration occurs for each parameterized control input ui , i = 1, ..., N .

• In lines 52-55, a relation between control inputs and the states is constructed
using the call() function of the integrator object. For each ui, integration
occurs over [ti−1, ti] according to Figure 3.8. This results in a completely
symbolic representation of the states as a function of the control inputs.

• Finally, IpoptSolver is provided with the objective function, state con-
straint functions, variable bounds and initial guess in lines 65-75, leading to
a NLP formulation similar to (3.3).

The NLP solved by IPOPT in the single shooting implementation can be written
as:

min
U∈RNnu

f(U) (3.3a)

s.t. gL ≤ g(U) ≤ gU , (3.3b)
uL ≤ U ≤ uU , (3.3c)

where the expressions in (3.3) are given in Appendix B.3. Constraints on control
inputs can be directly cast into the variable bounds (3.3c). State constraints how-
ever must be written in terms of U in (3.3b).

It should be noted that formulation of sensitivity equations and AD is done auto-
matically by CasADi. These computations are implicit in the example code. In
particular, CasADi provides an interface between the CVodesIntegrator and
IPOPT. In this way it is possible to work with symbolic expressions to construct
objective and constraint functions.

33

Constructing objective and constraint functions

The most important part of the single shooting implementation given in Listing 3.4
is the recursive integrator call construction in lines 52-55. This procedure can be
illustrated by a graph consisting of nodes and edges as shown in Figure 3.9. Nodes
correspond to a specific variable, e.g. states or control inputs at time points. On
the left side, inputs are given by initial conditions z0 and the set of all parame-
terized control inputs U , the latter being decision variables. Thus, it is possible
to propagate the variables through the graph to obtain objective and constraint
functions f and g respectively.

t ti-1 ti

ui

z(t)

z(ti-1) z(ti)

Figure 3.8: Integrator call from z(ti−1) to z(ti).

In CasADI, integrators are considered to be functions that can be embedded in an
optimization formulation. Let F (.) be an integrator such that:

z(ti) = F (ti−1, ti, z(ti−1), ui) , i ∈ 1, ..., N (3.4)

where ti−1 and ti are time points and ui are parameterized control inputs as illus-
trated by Figure 3.8. By providing these arguments to the integrator, it performs
integration in the time interval [ti−1, ti] and outputs the state at end time ti. These
integrator calls can be embedded in the integrator call construction, which can be
visualized by a directed acyclic graph shown in Figure 3.9.

z0

U

z(t1)

u1 u2

z(t2)

...

z(tN)

uN

F(.) F(.) F(.)

zc(tf)

f

g

Figure 3.9: Computational graph for constructing f and g in the single shooting
example. The only decision variables are ui, i = 1, ..., N .

34

Listing 3.4: Single shooting implementation.
1 import numpy as NP
2 from pymodelica import compile_jmu
3 from casadi import *
4 import zipfile
5
6 # Import Modelica and Optimica code
7 jmu_name=

compile_jmu("ocp","tank.mop",'optimica','ipopt',{'generate_xml_equations':True})
8 sfile = zipfile.ZipFile('ocp.jmu','r')
9 mfile = sfile.extract('modelDescription.xml','.')

10
11 ocp = SymbolicOCP()
12 ocp.parseFMI('modelDescription.xml',{'scale_variables':True,'sort_equations':False})
13
14 tf=ocp.tf # Final time
15 N=60 # Control input discretization
16
17 # Assign states, control inputs and model equations from ocp object
18 # to symbolic variable names: z,u,f_rhs
19 def toArray(v, der=False):
20 ret = []
21 for i in v:
22 if der:
23 ret.append(i.der())
24 else:
25 ret.append(i.var())
26 return NP.array(ret,dtype=SX)
27 ocp.makeExplicit()
28 z = toArray(ocp.xd) # States
29 u = toArray(ocp.u) # Control inputs
30 f_rhs = ocp.ode # Right hand side of ODE: f(z,u)
31
32 ode=SXFunction(daeIn(z,[],u,[],[]),daeOut(f_rhs)) # Define ODE: f=(z,u)
33
34 odeInt = CVodesIntegrator(ode) # Instantiate a CVodesIntegrator
35 odeInt.setOption("tf",tf/N) # Integration length for each u^i
36 odeInt.setOption("steps_per_checkpoint",1000) # Additional options
37 odeInt.init()
38
39 # Initial conditions z0 (numerical values)
40 C0 = 0; # Init. value for cost function state
41 z10 = ocp.variable('z1').getStart() # Init. value for state z1
42 z20 = ocp.variable('z2').getStart() # Init. value for state z2
43
44 U = msym("U",N) # Symbolic control input vector
45 Z = msym([C0,z10,z20]) # Symbolic state vector
46
47 # Local expressions for state variables
48 Z1 = MX("Z1",N) # Symbolic state z1 vector
49 Z2 = MX("Z2",N) # Symbolic state z2 vector
50
51 # Build up a graph of integrator calls
52 for k in range(N):
53 [Z,_,_,_] = odeInt.call([Z,U[k]]) # Integrator call
54 Z1[k] = Z[1] # State z1
55 Z2[k] = Z[2] # State z2
56
57 # Z[0] contains cost state zc at final time t_N
58 f = MXFunction([U],[Z[0]]) # NLP Objective function f
59 g = MXFunction([U],[vertcat((Z1,Z2))]) # NLP Constraint function g
60

35

61 # IpoptSolver with formulation:
62 # min f(U)
63 # s.t g_L <= g <= g_U
64 # u_L <= U <= u_U
65 solver = IpoptSolver(f,g)
66 solver.setOption('tol',0.1)
67 solver.init()
68
69 solver.setInput(0*NP.ones(N), NLP_LBX) # u_L
70 solver.setInput(0.3*NP.ones(N), NLP_UBX) # u_U
71
72 solver.setInput(NP.ones(N)*0.1,NLP_X_INIT) # Initial guess
73
74 solver.setInput(vertcat((NP.ones(N)*0.1,NP.ones(N)*0.1)),NLP_LBG) # g_L
75 solver.setInput(vertcat((NP.ones(N)*5,NP.ones(N)*5)),NLP_UBG) # g_U
76
77 solver.solve()

36

3.5.3 Multiple shooting
An implementation of a multiple shooting method is given in Listing 3.5. On line 49,
V is defined to be the vector containing all decision variables, i.e. zi

0, u
i, i = 1, ..., N .

Decision variables are partitioned into local expressions from V in lines 52-55.
Variable bounds vL and vU are defined in lines 58-68. The NLP solved by IPOPT
in the multiple shooting implementation becomes:

min
V ∈Rnv

f(V) (3.5a)

s.t. gL ≤ g(V) ≤ gU , (3.5b)
vL ≤ V ≤ vU , (3.5c)

where nv = N(nz + nu) and the expressions in (3.5) are given in Appendix B.4.
Here, state and control input constraints can be directly cast into the variable
bounds (3.5c). Continuity constraints and initial condition are contained in (3.5b).

Constructing objective and constraint functions

For each time segment [ti−1, ti] , i = 1, ..., N , an integrator call is made. A single
call can be represented by Figure 3.10. For the last time segment, zN (tN) = z(tf)
is obtained. This consists of states at the final time point, including the cost state
zc(tf). The objective function f is defined on line 105 by providing the decision
variable vector V as input, and the cost state zc(tf) at the final time as output.

V z0
i

ui

zi(ti)F(.)

t ti-1 ti

ui

z(t)

z0
i

zi(ti)
Segment i

Figure 3.10: Computational graph for an integrator call. A state variable zi
0 with

a control input ui in segment i are used to compute the state at the end of the
segment denoted by zi(ti). This is done by the integrator call F (.) as presented in
(3.4), with zi

0 as input argument for initial state instead of z(ti−1). The procedure
is repeated for all segments i = 1, ..., N . The only decision variables here are
zi

0, u
i , i = 1, ..., N which are contained in V , while zi(ti) is the integrator output.

37

The initial condition g1 is posed on line 89, while continuity of state profiles across
segments gi, i = 2, ..., N is defined on line 101. A vector-function g containing these
constraints is then composed on line 106. Figure 3.11 illustrates the procedure of
constructing f and g.

V

z0

z0
1

g1
-

z0
2

z0
1

u1 z1(t1)

g2

F(.)

-

.

.

.

z0
N

uN
zN(tN)

F(.) zc(tf)

g

f

z0
N

z0
N-1

uN-1
zN-1(tN-1)

gN

F(.)

-

Figure 3.11: Computational graph for constructing f and g. At the top, initial
conditions g1 are defined from a numerical value z0 and the decision variable z1

0 .
Continuity constraints are given as: gi = zi

0 − zi−1(ti−1) , i = 2, ..., N . A complete
constraint is then assembled as g. At the bottom, states at the final time give
zc(tf), which is defined as the objective function.

38

Listing 3.5: Multiple shooting implementation.
1 import numpy as NP
2 from pymodelica import compile_jmu
3 from casadi import *
4 import zipfile
5
6 # Import Modelica and Optimica code
7 jmu_name =

compile_jmu("ocp","tank.mop",'optimica','ipopt',{'generate_xml_equations':True,
'generate_fmi_me_xml':False})

8 sfile = zipfile.ZipFile('ocp.jmu','r')
9 mfile = sfile.extract('modelDescription.xml','.')

10
11 ocp = SymbolicOCP()
12 ocp.parseFMI('modelDescription.xml',{'scale_variables':True,'sort_equations':False})
13 ocp.sortType()
14
15 tf=600 # Final time
16 N=60 # Control input discretization and number of segments
17
18 nz=2+1 # State dimension (differential states + cost state)
19 nu = 1 # Control input dimension
20
21 # Assign states, control inputs and model equations from ocp object
22 # to symbolic variable names (z,u,f)
23 def toArray(v, der=False):
24 ret = []
25 for i in v:
26 if der:
27 ret.append(i.der())
28 else:
29 ret.append(i.var())
30 return NP.array(ret,dtype=SX)
31 ocp.makeExplicit()
32 z = toArray(ocp.xd) # States
33 u = toArray(ocp.u) # Control inputs
34 f_rhs=ocp.ode # Right hand side of ODE: f(z,u)
35
36 ode=SXFunction(daeIn(z,[],u,[],[]),daeOut(f_rhs)) # Generate ODE: f_rhs=(z,u)
37
38 odeInt = CVodesIntegrator(ode) # Instantiate a CVodesIntegrator
39 odeInt.setOption("tf",tf/N) # Integration length for each u^i
40 odeInt.setOption("steps_per_checkpoint",1000) # Additional options
41 odeInt.setOption("abstol",1e-5)
42 odeInt.setOption("reltol",1e-5)
43 odeInt.init()
44
45 nv = N*(nz+nu) # Total amount of decision variables
46
47 # Decision variable vector [u,z] has the form:
48 # V = [u_1 ... u_N zc_1 z1_1 z2_1 ... zc_N z1_N z2_N]
49 V = msym("V", nv)
50
51 # Local expressions for state variables and control inputs
52 U = V[0:N*nu] # Symbolic control input vector
53 ZC = V[N*nu+0:nv:nz] # Symbolic zc vector
54 Z1 = V[N*nu+1:nv:nz] # Symbolic z1 vector
55 Z2 = V[N*nu+2:nv:nz] # Symbolic z2 vector
56
57 # Variable bounds v_L and v_U
58 v_L = (-inf)*NP.ones(nv)
59 v_U = (inf)*NP.ones(nv)

39

60
61 v_L[0:N*nu] = 0 # u_min = 0
62 v_U[0:N*nu] = 0.3 # u_max = 0.3
63
64 v_L[N*nu+1:nv:nz] = 0.1 # z1_min = 0.1
65 v_L[N*nu+2:nv:nz] = 0.1 # z2_min = 0.1
66
67 v_U[N*nu+1:nv:nz] = 5 # z1_max = 5
68 v_U[N*nu+2:nv:nz] = 5 # z2_max = 5
69
70 # Initial conditions z0 (numerical values)
71 C0 = 0 # Init. value for cost function state
72 z10 = ocp.variable('z1').getStart() # Init. value for state z1
73 z20 = ocp.variable('z2').getStart() # Init. value for state z2
74
75 # Initial guess vector has the form:
76 # VINIT = [u_g ... u_g C0 z10 z20 ... C0 z10 z20]
77 u_g = 0.3
78 initU = NP.ones(N*nu)*u_g
79 initV2 = NP.transpose(NP.tile([C0,z10,z20],(N)))
80 initVec = NP.concatenate((initU,initV2))
81 VINIT = initVec
82
83 # Constraint functions g_L <= g <= g_U
84 g_i = [] # g_i
85 g_L=NP.zeros([N,nz]) # g_L
86 g_U=NP.zeros([N,nz]) # g_U
87
88 # First constraint (initial conditions): g1 = z1 - z0
89 g_i.append(vertcat((ZC[0],Z1[0],Z2[0]))-vertcat((C0,z10,z20)))
90
91 # Build up a graph of integrator calls
92 for k in range(N):
93 Zk = vertcat((ZC[k],Z1[k],Z2[k]))
94
95 if k!=N-1:
96 Zk_next = vertcat((ZC[k+1],Z1[k+1],Z2[k+1]))
97
98 Zk_end = odeInt.call([Zk,U[k]])[0] # Integrator call
99

100 if k!= N-1:
101 g_i.append(Zk_next - Zk_end) # Continuity constraints
102
103
104 # Zk_end[0] contains cost state zc at final time t_N
105 f = MXFunction([V],[Zk_end[0]]) # NLP Objective function f
106 g = MXFunction([V],[vertcat(g_i)]) # NLP Constraint function g
107
108 # IpoptSolver with formulation
109 # min f(V)
110 # s.t g_L <= g(V) <= g_U
111 # v_L <= V <= v_U
112 solver = IpoptSolver(f,g)
113 solver.setOption('tol',0.1)
114 solver.init()
115
116 solver.setInput(v_L, NLP_LBX)
117 solver.setInput(v_U, NLP_UBX)
118 solver.setInput(VINIT, NLP_X_INIT)
119
120 solver.setInput(vertcat((NP.concatenate(g_L))),NLP_LBG)
121 solver.setInput(vertcat((NP.concatenate(g_U))),NLP_UBG)
122 solver.solve()

40

3.6 Providing an initial guess to direct collocation
methods

For the NLP resulting from direct collocation, it is necessary to provide an initial
guess for states, algebraic variables and control inputs. For collocation methods, a
good initial guess can improve convergence and robustness for the algorithm [1]. A
straightforward way of doing this is by simulating the system with an initial guess
of the control inputs, thus getting state and algebraic variable profiles, which then
can be used as the initial guess profile as shown in Figure 3.12.

Simulationuguess

zguessyguessuguess
Optimization Optimized result

Figure 3.12: Initial guess simulation in JModelica.org.

In JModelica.org’s built-in collocation algorithm, this may be done according to
Listing 3.6. As the OCP (3.2) is formulated as a Mayer problem, an initial simula-
tion provides state profiles for z1, z2 and the cost state zc, given an initial guess for
the control input u. A dedicated model for this initial simulation purpose is given
in Listing 3.7.

Listing 3.6: Providing initial guess. Python code segment.
1 from pymodelica import compile_fmux,compile_fmu
2 from pyjmi import CasadiModel
3 from pyfmi import FMUModel
4
5 fmux = compile_fmux("ocp", "tank.mop")
6 model = CasadiModel(fmux, scale_variables=True)
7
8 # Simulate tank_init_optimization
9 init_sim_fmu = compile_fmu("tank_init_optimization","tank.mop")

10 init_sim_model = FMUModel(init_sim_fmu)
11 init_res = init_sim_model.simulate(start_time=0, final_time=600)
12
13 opt_opts = model.optimize_options()
14 opt_opts['init_traj'] = init_res.result_data # Provide initial guess trajectory
15
16 res = model.optimize(algorithm="LocalDAECollocationAlg",options=opt_opts)

Listing 3.7: Providing initial guess. Modelica code segment.
1 model tank_init_optimization
2 extends tank;
3 Real cost(start=0,fixed=true);
4 equation
5 der(cost) = (z1-2)^2+u^2;
6 end tank_init_optimization;

41

3.7 Output from direct collocation
Direct collocation leads to a NLP given in Section 2.4.2, where the decision variables
are discrete points in time. For the tank example, which does not contain algebraic
variables, these are given by:

zi,k , i = 1, ..., N , k = 0, ...,K (3.6)
ui,k , i = 1, ..., N , k = 1, ...,K. (3.7)

Solving the NLP results in a sequence of these points shown in Figure 3.13.

t [s]

L
iq
u
id

le
v
e
l
[m

]

0 100 200 300 400 500 600

1

2

3

4

5

t [s]

V
o
lu
m
e
fl
o
w

[m
3
/
s]

0 100 200 300 400 500 600
0

0 .1

0 .2

0 .3

z1
z2

u

Figure 3.13: Optimized sequence of states and control inputs from the direct col-
location algorithm are discrete points in time, here using N=50 and K=3.

By applying the Lagrange interpolation equations (2.26) and (2.37) to these points,
it is possible to obtain interpolated variable profiles as shown in Figure 3.14. Here,
interpolated variable profiles are shown together with their interpolation points at
the beginning of each element. Finally, the result of the collocation procedure can
be given as interpolated variable profiles for the entire horizon as shown in Figure
3.15.

It should be noted that the collocation method offered by JModelica.org enables
to choose the output form, either as a sequence of interpolation points, or as inter-
polated variable profiles.

42

0 20 40 60 80 100 120 140 160 180 200

t [s]

0

2

4

6
L
iq
u
id

le
ve
l
[m

]

0 20 40 60 80 100 120 140 160 180 200

t [s]

0

0.1

0.2

0.3

0.4

V
o
lu
m
e
fl
ow

[m
3
/
s]

z1 int pts

z2 int pts

z1 interp

z2 interp

u int pts

u interp

Figure 3.14: Interpolation points at the beginning of each element (int pts) with
their interpolated profiles (interp). A closer look.

t [s]

L
iq
u
id

le
v
e
l
[m

]

0 100 200 300 400 500 600

1

2

3

4

5

t [s]

V
o
lu
m
e
fl
o
w

[m
3
/
s]

0 100 200 300 400 500 600
0

0 .1

0 .2

0 .3

z1
z2

u

Figure 3.15: Interpolated variable profiles. The final output from direct collocation.

43

3.8 Choice of elements and interpolation points
When using the direct collocation algorithm, decreasing N and K results in less
decision variables and constraints, which can lead to a reduction of running time.
These two parameters decide the approximation accuracy of state variable profiles,
such that increasing them will often lead to a better approximation, while a de-
crease can lead to a worse. From this it can be argued that there is a trade-off
between running time and accuracy.

This trade-off motivates the comparison of collocation outputs in terms of approxi-
mated state and algebraic variable profiles with the output of numerical integration
when applying an optimized control profile. Let the optimized profiles from a col-
location algorithm be denoted by zopt and uopt, as illustrated by Figure 3.16. This
corresponds to optimized state and control profiles respectively. When applying
uopt to a numerical integrator, the result is an output denoted by zsim and usim

being simulated state and control input profiles respectively. Clearly uopt = usim,
but this is not the case for zopt and zsim.

To illustrate the effect of varying N, Figure D.1 shows optimized control inputs
uopt and their corresponding state profiles zopt for different values of N, together
with simulated state profiles from an integrator. For N=2, the approximation is
poor. For a low number of elements, it is also clear that the resulting variable pro-
files can violate constraints. These issues also apply to DAE systems with algebraic
variables.

Direct

collocation

algorithm

Integrator

zopt

uopt

zsim

usim

Figure 3.16: The output of a direct collocation algorithm consisting of interpolated
variable profiles and control inputs should be compared to an integrator provided
with the optimized control inputs.

44

3.9 Scaling of models
The performance of an optimization algorithm depends crucially on how the prob-
lem is formulated, e.g. scaling of functions and variables. A problem is said to be
poorly scaled if changes in a variable x to a certain direction produce much larger
variations in the value of a function f than any other direction [26].

Poorly scaled functions arise from physical and chemical systems having a number
of processes taking place at very different rates. Scaling issues can also arise when
some decision variables differ by many orders of magnitude from each other, far
from an order of one. Consider for instance the function

y =
√
x− c, (3.8)

where c is a constant in the order of 106, while decision variables y and x are in
the order of 100 and 106 respectively. This may lead to numerical problems in an
optimization algorithm.

In JModelica.org it is possible to enable scaling of models by using rough estimates
for the numerical value of their variables. That is, given an a priori knowledge of
which order of magnitude a specified variable operates in, it is possible to provide
this information in Modelica through the nominal attribute. Eq. (3.8) can be
scaled in Modelica by providing a nominal attribute for the variable x as shown in
Listing 3.8.

Listing 3.8: Nominal attribute for the variable x in Modelica.
1 Real x(nominal=10^6);

This implies that each variable is divided by its nominal value, such that from an
algorithm point of view they will take on values close to one, which is desirable.
In order to ensure that the model equations are fulfilled, the nominal value needs
to be multiplied with the scaled variable in the model equations. For (3.8) this
corresponds to a scaled variable and function given as:

xscaled = x

106 , (3.9)

y =
√

106xscaled − c, (3.10)

such that the new decision variable xscaled is in the order of one, while maintaining
the same model equation as before.

45

Chapter 4

Modeling

In this chapter, a model of a subsea petroleum production plant consisting of wells,
manifolds and flowlines is presented, based on previous work done in [17], [11] and
[25]. A summary of all equations used to construct the well-flowline model is given
in Appendix B, with a nomenclature of some of the main variables in Appendix A.

Section 4.1-4.4 present a component-based approach of constructing an overall
model, by defining an input-output relationship for each component. A description
on how these components are implemented and connected in Modelica is provided
in Section 4.6. Finally, a test simulation of the complete model, comparing it to a
similar one in Matlab [25] is given in Section 4.7.

46

4.1 Well
A simple model of a 2-phase artificially gas lifted well was presented in [17], which
is known as the Eikrem model. Further development in [11] has led to a 3-phase
model with gas, oil and water as separate phases. The primary aim of this model is
to capture the dynamic behavior of a phenomenon known as casing-heading, which
leads to oscillating production for low gas injection rates.

Referring to Figure 4.1, the well geometry is modeled as a vertical cylinder, consist-
ing of two concentric inner cylinders being the tubing and annulus. The injected
gas flow is controlled by a gas lift choke at the wellhead. This gas flows along the
annulus to the bottom of the well, through the injection valve and into the tubing,
helping to enhance the production [25].

Tubing

Annulus

Gaslift

Reservoir

Injection
valve

choke

Gas

Production
choke

Casing

Packer

Gas
Oil
Water

Gas
Oil
Water

Annulus

Tubing

Casing

Packer

Injection
 valve

Gas lift
 choke

Gas

Production
 choke

Reservoir

ugi

upc
Manifold
pm

Figure 4.1: Production well with gas-lift [17].

47

Model structure

The well model is based on a first-principle approach. The governing state equa-
tions are written as mass balances. Liquid fluids oil and water are assumed to be
incompressible, whereas gas follows the ideal gas law. Differential states are mass
of gas in annulus mga, mass of gas in tubing mgt and mass of liquid in tubing mlt.

States: zw =

mga

mgt

mlt

 . (4.1)

Further, there are two variables that are used to control the well. These are the
production choke valve setting upc and the mass flow of lift-gas into the annulus ugi.
By adjusting these, it is possible to control outflow of the well. Here, the production
choke valve setting will not be used as a control input, and will in practice be set
to 1 (fully open). It is therefore not shown in the subsystem description.

Control input: ugi. (4.2)

The well model can be viewed as a subsystem illustrated by Figure 4.2 with inputs
ugi and pm, which is lift-gas injection rate and manifold pressure respectively.
Outputs are mass flow of gas, oil and water, denoted by wgp, wop and wwp. From
the well model equations given in Appendix B.1, it can be written as:

żw = fw(zw, yw, ugi, pm), (4.3a)
0 = gw(zw, yw, ugi, pm), (4.3b)

where zw ∈ R3 are states, yw ∈ R18 are algebraic variables (not including pm) and
ugi ∈ R is the control input. Manifold pressure pm ∈ R is here represented as an
external input, although not a controlled one. Differential and algebraic equations
are given by the mappings fw and gw respectively.

Wellugi

pm

wgp

wop

wwp

Figure 4.2: Well subsystem.

48

4.2 Manifold
The subsea manifold is a hydraulic component that regulates fluid flow between
several inputs and one output. As illustrated by Figure 4.3, inputs are flows from
wells, while the output is connected to a flowline.

Well

Manifold

Well Well

Flowline

(a) Hydraulic manifold.

Manifold

Well Well Well

(b) Simplified manifold topology.

Figure 4.3

In this thesis, a constant routing between wells and flowlines is assumed. The
manifold can be viewed as a subsystem connecting wells with flowlines. Inputs are
flow of gas, oil and water from each well, and pressure pm at the flowline inlet.
Outputs are the sum of all well flows and routed pressures back to the wells as
shown in Figure 4.4. Let j ∈ J be the set of wells that are connected to a single
flowline such that the manifold equations becomes:

wg,in =
∑
j∈J

wgp,j , wo,in =
∑
j∈J

wop,j , ww,in =
∑
j∈J

wwp,j , (4.4)

win =
[
wg,in wo,in ww,in

]T
. (4.5)

Manifold

win

pm

wgp

wop

wwp
pm

Figure 4.4: Manifold subsystem.

49

4.3 Flowline
A flowline consisting of a long horizontal pipeline connected to a vertical riser is
modeled as two cylindrical volumes connected at a low point referring to Figure
4.5. Inlet mass flows: wg,in, wo,in and ww,in are assumed to be stratified, which
means that gas is covering the top layer with the liquids oil and water below. At
the low point, these phases become mixed, yielding a mixture of gas, oil and water
at the flowline outlet [25]. This flowline model is based on a two-phase gas-liquid
model from [23] with modifications done in [25].

win

wg,out

Horizontal pipeline

R
is

er

Lp

Lr

pm

plp,p
plp,r

pr,t ps

Low point

wo,out
ww,out

Figure 4.5: Flowline geometry consisting of a horizontal pipeline and a vertical
riser with lengths Lp and Lr respectively.

Referring to Figure 4.5, flows are driven by pressures, which are:

• pm : Pressure at the flowline inlet. This is the same pressure as in the
manifold that is connected to the flowline.

• plp,p : Pressure at low point in the horizontal pipeline.

• plp,r : Pressure at low point in the riser.

• pr,t : Pressure at top of the riser.

• ps : Separator pressure, given as a constant boundary condition.

50

Model structure

The governing state equations for the flowline model are mass balances for each
phase in pipeline and riser. Differential states are mass of each phase in the pipeline
and riser part, where nomenclature is given in Appendix A.

States: zf =


mgp

mop

mwp

mgr

mor

mwr

 . (4.6)

All differential and algebraic equations for the flowline model are given in Appendix
B.2. These can be written as:

żf = ff (zf , yf , win), (4.7a)
0 = gf (zf , yf , win), (4.7b)

where zf ∈ R6 are flowline states and yf ∈ R40 are algebraic variables (not in-
cluding win). The inlet flows of gas, oil and water contained in win ∈ R3 are here
treated as external inputs. Differential and algebraic equations are given by the
mappings ff and gf respectively.

The flowline model can be viewed as a subsystem with inputs being inlet flows
of each phase from the manifold connected to the specific flowline. Outputs are
pressure at the flowline inlet and outlet flows at the topside according to Figure
4.6.

Flowline

win

pm

wg,out

wo,out

ww,out

Figure 4.6: Flowline subsystem.

51

4.4 Overall model
By connecting the well and flowline subsystems through manifolds, it is possible to
construct a general model of a subsea production plant consisting of a well-flowline
network. Well and flowline model equations are both represented as semi-explicit
DAEs, and by coupling these together, an overall model can be formed. In this
way, the external inputs for well and flowline can be coupled according to Figure 4.7.

For a general number of wells and flowlines, let:

z =



zw,1
...

zw,J

zf,1
...

zf,L


, y =



yw,1
...

yw,J

yf,1
...

yf,L


, u =

ugi,1
...

ugi,J

 , (4.8)

be states, algebraic variables and control inputs for the full model, indexed accord-
ing to Table 4.1. It is then possible to write the overall well-flowline network as a
semi-explicit DAE of index-1. In the overall model, algebraic variables pm and win

are not treated as external inputs. The overall model is written as:

ż = f(z, y, u), (4.9a)
0 = g(z, y, u), (4.9b)

where z ∈ R3J+6L, y ∈ R19J+43L and u ∈ RJ are states, algebraic variables
and control inputs respectively. External inputs pm and win have been added as
algebraic variables, increasing the dimension of y to (18 + 1)J and (40 + 3)L. An
equal number of algebraic equations is also the result of adding manifold equations.
A complete overview of dimensions related to system equations and variables can
be seen in Table 4.2. A general well-flowline model is illustrated in Figure 4.8.

Wellugi

wgp

wop

wwp

pm

Manifold

win

pm

Flowline

wg,out

wo,out

ww,out

Figure 4.7: Connecting a single well to a flowline through the manifold.

52

Well 1ugi,1

Well 2ugi,2

Well Jugi,J

.

.

.

Manifold

1

Flowline

1

wgp,1

wop,1

wwp,1

pm,1

pm,1

pm,L

pm,1 pm,1

wg,out,1

wo,out,1

ww,out,1

wgp,2

wop,2

wwp,2

wgp,J

wop,J

wwp,J

win,1

.

.

.

Manifold

L

Flowline

L

pm,L pm,L

win,L
wg,out,L

wo,out,L

ww,out,L

Figure 4.8: An overall model consists of connected subsystems. Sets of wells are
connected to a flowline through its manifold. All wells connected to the same
manifold meet the same manifold pressure pm.

Set Index Description
J = {1, ..., J} j Wells
L = {1, ..., L} l Flowlines

Table 4.1: Sets and indices for a general well-flowline model.

Well Flowline Overall (J wells, L flowlines)
Differential states 3 6 3J + 6L
Algebraic variables 18 40 19J + 43L
Control inputs 1 0 J
External inputs 1 3 0
Differential equations 3 6 3J + 6L
Algebraic equations 18 40 19J + 43L

Table 4.2: Dimensions of system equations and variables. External inputs for each
subsystem become algebraic variables in the overall model.

53

4.5 Approximating discontinuities
When using JModelica.org’s direct collocation algorithm and the CasADi pack-
age for automatic differentiation, there is currently no support for hybrid/discrete
behavior. In the well-flowline model, valve equations are modeled using max(.)
functions, which are not supported by CasADi. To handle this, a smooth approxi-
mation is used, that is

max(x, y) ≈ f(x, y) =
√

(x− y)2 + ε2

2 + x+ y

2 , (4.10)

where the parameter ε determines the approximation error. In the model equa-
tions (B.6)-(B.7) and (B.62)-(B.67), a function max(0, y) is used such that (4.10)
becomes

f(y) =
√
y2 + ε2

2 + y

2 , (4.11)

where f ∈ C2,∀ε 6= 0. This can be visualized for different values of ε shown in
Figure 4.9. The maximum absolute value of the error occurs at y = 0 and is given
as

|max(0, y = 0)− f(y = 0)| = |0− ε

2 | =
ε

2 . (4.12)

−0 .2 −0 .15 −0 .1 −0 .05 0 0 .05 0 .1 0 .15 0 .2
y

0

0 .05

0 .1

0 .15

0 .2

f
(y
)

m ax (0 , y)
ε = 0 .1
ε = 0 .05
ε = 0 .01

Figure 4.9: Comparison of max(0, y) and the smooth approximation.

54

4.6 Modelica implementation
A well-flowline network as presented in Section 4.4 has a structure that is suited
for an object-oriented implementation approach. Both well and flowline can be
treated as independent subsystems, which may be connected through a manifold.
An implementation in the Modelica language is done by defining each subsystem
with its parameters and equations and connecting them through the connector
primitive which is a feature used to describe interactions between subsystems in
Modelica. The connector will in this case represent the manifold linking flow and
pressure between a well and flowline as illustrated by Figure 4.10.

Well

model

Flowline

model
Connectorugi

wg,out

wo,out

ww,outpm pm

wgp

wop

wwp
win

Figure 4.10: A well and flowline model interacts through a connector.

A general model can be made by using multiple connectors to connect each well
with a flowline as shown in Figure 4.11. The connector will provide necessary model
equations for routing flows and pressures between a connected well and flowline.

Well

model
Flowline

model

Connector

Well

model

Well

model

Connector

Connector

.

.

.

.

.

.

ugi

ugi

ugi

Flowline

model

.

.

.

wg,out

wo,out

ww,out

wg,out

wo,out

ww,out

Figure 4.11: Multiple wells and flowlines interact through several connectors. Each
one connecting a well with the corresponding flowline.

55

4.7 Test simulation
A previous well-flowline model consisting of 5 wells and 2 flowlines has been im-
plemented in Matlab [25]. Here, a comparison of ODE solvers from Matlab and
JModelica.org is given in Table 4.3. The ODE solver included in JModelica.org is
CVODE, using Backward Differentiation Formula (BDF) or Adams-Moulton (AM)
multistep methods.

In Matlab, the semi-explicit DAE is solved by first obtaining a solution of the
algebraic equations for a given set of states and control inputs, and then solving
the differential equations. In this way, it is possible to use one of the built-in ODE
solvers. In JModelica.org, when importing a model as a FMU for simulation, the
DAE is automatically converted into an equivalent ODE enabling use of CVODE.

Matlab
Solver Abstol Reltol Time [s] Steps Function evaluations Remark
ODE45 1.E-06 1.E-06 4.098 1194 7702
ODE15s 1.E-06 1.E-06 0.3995 343 693
ODE23t 1.E-06 1.E-06 0.861 733 1291
ODE23s 1.E-06 1.E-06 5.2891 492 14770
ODE113 1.E-06 1.E-06 2.776 2582 5459

JModelica.org
Solver Abstol Reltol Time [s] Steps Function evaluations Remark

CVODE BDF

1.E-06 1.E-06 0.8146 481 669
1.E-05 1.E-05 0.5905 341 495
1.E-04 1.E-04 0.3652 199 279
1.E-03 1.E-03 0.2633 135 190 Unstable

CVODE AM
1.E-06 1.E-06 1.1494 696 971
1.E-05 1.E-05 0.7713 481 631
1.E-04 1.E-04 0.5701 339 479 Unstable
1.E-03 1.E-03 0.4261 234 359 Unstable

Table 4.3: Comparison between ODE solvers in Matlab and JModelica.org. Abstol
& Reltol are absolute and relative tolerance respectively. Time horizon is set to 5
hours.

Simulations are given in Figure D.2-D.5. Here, ODE23t from Matlab and CVODE
with BDF is compared, each with absolute & relative tolerance set to 1.E-06.

56

Chapter 5

Formulation of optimal
control problem

In this chapter, an optimal control problem is proposed. This is based on the well-
flowline model in Chapter 4.

In Section 5.1, two different objective functions are given: maximization of pro-
duction and reference tracking. The first seeks to maximize oil production over a
given time horizon. For reference tracking, a constant unreachable reference value
is used. In this case, the objective aims to minimize deviation between production
and the reference. Both objective functions include a cost of lift-gas usage. A more
general objective may include a profit function formulation to reflect income from
oil and gas, and a cost of water treatment [14].

Further, a description of bounds and total lift-gas constraint are presented in Sec-
tion 5.2. The OCP consists of all wells and flowlines, coupled by a total gas capacity
constraint. Without this constraint, the full problem can be divided into subprob-
lems depending on routing configuration, treating each set of wells connected to a
single flowline as a subproblem.

The overall OCP is cast as a DAE-constrained Lagrange problem in Section 5.3.
Formulation into a Mayer problem and DAE to ODE transformation is described
in Section 5.4.

57

5.1 Objective
An objective function for the well-flowline network is formulated to reflect income
from production and cost of using lift-gas injection. Here, short-term production
planning is considered with two types of objective functions, i.e. maximize oil
production and reference tracking as illustrated by Figure 5.1. In addition, a cost
of total lift-gas usage is included. For a set of wells and flowlines with indices
according to Table 4.1, the objective functions may be defined as:

Φmax(y, u) =
∫ tf

t0

−
∑
l∈L

qw2
o,out,l +

∑
j∈J

ru2
gi,jdt, (5.1)

Φref (y, u) =
∫ tf

t0

∑
l∈L

q(wo,out,l − wr
o,out)2 +

∑
j∈J

ru2
gi,jdt, (5.2)

where (5.1) aims to maximize oil production and (5.2) seeks to track a reference.
The weights q and r represent the relative importance between production and
lift-gas usage. In this thesis, a reference is not known a priori, such that a constant
high value of wr

o,out is used, which in practice leads to an unreachable reference.

 t0

Total production rate

Time tf

Maximize production

 t0

Reference
Total production rate

Time tf

Reference tracking

Figure 5.1: Maximize production and tracking objectives. The first seeks to max-
imize accumulated production as illustrated by the grey area. For tracking, the
objective attempts to minimize the accumulated deviation between an unreachable
reference and production as illustrated by the red area. Each objective includes a
cost of total lift-gas usage.

58

5.2 Constraints
For multiple wells, there are constraints related to the total lift-gas usage and
bounds on lift-gas injection for each well. These are written as:

umin ≤ ugi,j ≤ umax , j ∈ J , (5.3)

Utot,min ≤
∑
j∈J

ugi,j ≤ Utot,max, (5.4)

where (5.3) are bounds on lift-gas injection for each well and (5.4) is a constraint
on total lift-gas usage.

From an optimization point of view, (5.4) is the only constraint coupling all wells
together, thus forming a full optimization problem consisting of all wells and flow-
lines. Without this constraint, it would be possible and probably more efficient to
divide the full problem into subproblems, with each subproblem consisting of a set
of wells connected to a flowline, as illustrated by Figure 5.2. This is possible due
to the assumption of a constant separator pressure ps.

Wellugi

Wellugi

Wellugi

Wellugi

Wellugi

Wellugi

Wellugi

Flowline

Flowline

Flowline

Subproblem 1

Subproblem 2

Subproblem 3

Full problem

Separator

ps = constant

Figure 5.2: The full problem consists of subproblems linked by the total lift-gas
usage constraint. Subproblems can be formed according to the routing configura-
tion.

59

5.3 Overall optimal control problem
The optimal control problem for a well-flowline network can be formulated as:

min
z,y,u

Φ(y, u) (5.5a)

s.t. ż = f(z, y, u), (5.5b)
z(t0) = z0, (5.5c)
g(z, y, u) = 0, (5.5d)

Utot,min ≤
∑
j∈J

ugi,j ≤ Utot,max, (5.5e)

umin ≤ ugi,j ≤ umax , j ∈ J , (5.5f)
t ∈ [t0, tf],

where the well-flowline model is given as a semi-explicit DAE in (5.5b)-(5.5d). Con-
trol inputs being lift-gas injection rates are constrained by total lift-gas usage and
bounds for each well in (5.5e)-(5.5f).

One of two different objectives can replace (5.5a), that is:

Φmax(y, u) =
∫ tf

t0

−
∑
l∈L

qw2
o,out,l +

∑
j∈J

ru2
gi,jdt, (5.6)

Φref (y, u) =
∫ tf

t0

∑
l∈L

q(wo,out,l − wr
o,out)2 +

∑
j∈J

ru2
gi,jdt, (5.7)

where (5.6) seeks to maximize oil production during the time horizon and (5.7)
represents a tracking problem using an unreachable reference.

As (5.5) is given as a Lagrange problem, a reformulation into a Mayer problem
is done in Section 5.4. For the performance assessment, all methods use the Mayer
formulation. In addition, as shooting methods depend on the ODE integrator
CVODES, it is also necessary to transform the DAE system equations to equiva-
lent ODEs; see Section 5.4.

60

5.4 Alternative OCP formulations
The well-flowline OCP (5.5) is reformulated into a Mayer problem by introducing
the cost state zc and following the procedure in Section 2.1 yielding:

min
z,y,u

zc(tf) (5.8a)

s.t. ż = f(z, y, u), (5.8b)
z(t0) = z0, (5.8c)
g(z, y, u) = 0, (5.8d)
żc = Φ̇(y, u), (5.8e)
zc(t0) = 0, (5.8f)

Utot,min ≤
∑
j∈J

ugi,j ≤ Utot,max, (5.8g)

umin ≤ ugi,j ≤ umax , j ∈ J , (5.8h)
t ∈ [t0, tf],

where (5.8b)-(5.8d) is the well-flowline DAE, while (5.8e) is the additional cost
state including the objective function.

Problem (5.8) is suited for the direct collocation algorithm, which handles DAE-
constrained OCPs. For shooting methods using the ODE integrator CVODES, the
DAE system needs to be transformed into equivalent ODEs. This transformation
is non-trivial and is performed by CasADi functions located in the SymbolicOCP
class. These eliminate all algebraic variables and transform (5.8) into:

min
z,u

zc(tf) (5.9a)

s.t. ż = f(z, u), (5.9b)
z(t0) = z0, (5.9c)

żc = Φ̇(z, u), (5.9d)
zc(t0) = 0, (5.9e)

Utot,min ≤
∑
j∈J

ugi,j ≤ Utot,max, (5.9f)

umin ≤ ugi,j ≤ umax , j ∈ J , (5.9g)
t ∈ [t0, tf],

where the algebraic variables y have been eliminated, as these are functions of
states z and control inputs u. System equations f(z, u) and objective Φ(z, u) are
now functions of z and u only. The transformation is possible due to the invertibility
of g(z, y, u) in (5.8d).

61

Chapter 6

Performance assessment

The well-flowline OCP presented in Chapter 5 is solved by means of direct optimiza-
tion methods: direct collocation (DC), single shooting (SS) and multiple shooting
(MS). In this chapter, a description of the performance assessment is given. This
consists of:

• Algorithmic performance: A comparison of running times, number of itera-
tions and robustness in terms of varying algorithm parameters. The param-
eters that will be varied are: number of elements, number of interpolation
points within each element (polynomial approximation degree), integrator
tolerance and control input discretization.

• Production optimization: Assessment of productivity increase by applying
dynamic optimization. Scenarios for a diversity of constraints are presented.

Complete simulation and optimization results are presented in Appendix D.

62

6.1 Assessment description
The methods to be assessed are:

• Direct collocation (DC) : JModelica.org’s algorithm for direct collocation
using CasADi for automatic differentiation (LocalDAECollocationAlg).

• Single shooting (SS) : The single shooting implementation presented in
Section 3.5.2.

• Multiple shooting (MS) : The multiple shooting implementation presented
in Section 3.5.3.

These methods are applied to the well-flowline system presented in Chapter 4 using
J = 5 wells, L = 2 flowlines and a constant routing configuration according to Table
6.1. Model parameters are given in Table C.1-C.2.

Flowline 1 Well 1 Well 2
Flowline 2 Well 3 Well 4 Well 5

Table 6.1: Routing configuration used for all OCPs and simulations.

DC solves the DAE-constrained Mayer problem given in (5.8). SS and MS solve
the ODE-constrained Mayer problem (5.9). As both problems are formulated in
Mayer form, an additional cost state is added, resulting in 3J + 6L+ 1 differential
states and equations. According to Table 4.2, this leads to a number of variables
and equations given in Table 6.2. For SS and MS methods, DAEs are transformed
into ODEs, eliminating all algebraic variables y.

Differential states 28
Algebraic variables 181
Control inputs 5
Differential equations 28
Algebraic equations 181

Table 6.2: Dimensions of system equations and variables for the well-flowline OCP.

Operating system Windows 7
Processor Intel Core i5 2500 3.30 GHz
RAM 8 GB
System type 64-bit

Table 6.3: Computer specifications for solving the optimization problem.

IPOPT tolerance (tol) is set to 0.1 and maximum iterations (max_iter) is set
to 150. All other options are set to default values.

63

Initial conditions and guess
• DC: A random uniform number in the interval [1, 10] as a constant profile

for the whole time horizon for all control inputs is used to simulate an initial
guess profile, which is then supplied as initial guess to the DC algorithm
according to Section 3.6.

• SS: A random uniform number in the interval [1, 10] as a constant profile for
the whole time horizon for all control inputs is used as initial guess.

• MS: A random uniform number in the interval [1, 10] as a constant profile for
the whole time horizon for all control inputs and initial conditions for states
at grid points are used as initial guess.

Initial conditions are obtained from the steady-state solution of the well-flowline
DAE with ugi,j = 1 ,∀j ∈ J . A weight of q = 1 and r = 0.1 is used by default.

• Algorithmic performance: Results for DC, SS and MS are given in Table
D.4-D.6 for various algorithm parameters. Each row corresponds to average
values of 10 runs for DC and SS, and 1 run for MS. For each run, a different
initial guess is chosen. All running times and iterations for DC and SS are
shown in Figure D.6-D.7. A comparison of optimized profiles for the methods
is shown in Figure D.8-D.9. The time horizon is set to 6[h].

• DC approximation: A comparison between approximated and simulated
profiles for various N and K in the DC algorithm is shown in Figure D.10.
Corresponding profiles for control inputs are given in Figure D.11.

• Reference tracking: Production increase after applying SS with reference
tracking for various Utot,max is shown in Figure D.12. The same Utot,max is
used before and after applying optimized control inputs at t = 6 [h].

• Maximize production: Figure D.13 shows SS applied with maximize pro-
duction objective for various Utot,max, comparing the cost state zc(t) through-
out the time horizon (indicating productivity increase).

• Unconstrained optimum: Figure D.14 shows SS applied with maximize
production objective with zero weighting (r = 0) on lift-gas usage for an
increasing Utot,max. The intention is to show that production rates reach
an unconstrained optimum even if Utot,max increases further, i.e. the total
lift-gas capacity constraint becomes inactive after a certain point.

• Varying bounds: Figure D.15-D.17 shows SS applied with maximize pro-
duction objective for various bounds and total lift-gas capacities.

• Time-varying total lift-gas capacity: Figure D.18 shows SS applied with
maximize production objective for an increasing Utot,max.

64

Chapter 7

Discussion

In this chapter, main points from the performance assessment in Chapter 6 are
given. Algorithmic performance of the three methods is treated in Section 7.1.
This includes an analysis of running times, iterations and robustness in terms of
varying algorithm parameters.

Section 7.2 provides an analysis from a production optimization view. Different
scenarios are assessed; comparing production increase by applying optimized con-
trol inputs with the case of using constant control settings. For reference tracking,
a steady-state behavior is obtained, providing a way of comparing production rates.
The maximization objective is compared using the cost state zc(t), which includes
the objective function. Using this, it is possible to measure the objective function
value throughout the time horizon.

Finally, a qualitative comparison of the JModelica.org framework and Matlab plat-
form is given in Section 7.3.

65

7.1 Algorithmic performance
Direct collocation

Solving the well-flowline OCP by means of DC is fast according to Table D.5.
The vast amount of decision variables and constraints puts high demands on the
underlying numerical packages, i.e. IPOPT and CasADi. The problem is efficiently
solved using automatic differentiation and heuristics such as exploitation of spar-
sity structure of the NLP, which are all features of the DC algorithm. Decreasing K
and N results in faster running times, which can also be seen in Figure D.6. This is
expected as the NLP becomes smaller in terms of decision variables and constraints.

For the variable profile approximation of DC, Figure D.10-D.11 shows the effect
of varying N and K. Decreasing the value of these parameters, leads to a worse
approximation when comparing the approximated profiles to similar ones obtained
from numerical integration. For K=2, algebraic variable profiles and control inputs
become piecewise linear functions, i.e. Lagrange polynomials of degree K-1, as
would be expected from the interpolation equations (2.36)-(2.37). From the results
it can be argued that there is a trade-off between a good approximation and fast
running time. For this comparison, a low capacity constraint is used to obtain
oscillating production rates, which makes it easier to see the difference between
approximated and simulated variable profiles.

DC is sensitive to initial guess in terms of running times and number of itera-
tions; see Figure D.6. In particular, for this problem it is necessary to provide an
initial guess profile. Without this, the algorithm fails at the first iteration. Further,
scaling of model equations and variables improves running time. A comparison be-
tween optimization with and without scaling is given in Table D.3. Here, it can
be seen that the running time for DC is approximately 3 times greater for the
case without scaling, and 10 out of 10 runs terminate due to exceeding maximum
iterations. However, scaling requires a priori knowledge of the nominal values for
each variable to be scaled.

Single shooting

SS leads to the smallest NLP with decision variables being the control inputs only.
For the parameters tested here, average running times are less than 11 seconds,
with a corresponding low number of iterations; see Table D.6 and Figure D.7. A
high integrator tolerance often leads to faster running times compared to a low tol-
erance. However, a too high tolerance can yield slow running times, e.g. reference
tracking with Tol=1.E-02.

66

R
u
n
n
in
g
ti
m
e
[s
]

DC

10 20 30 40 50 60 70
0

5

10

15

20

25
SS

20 40 60 80 100120140
0

2

4

6

MS

20 40 60
0

500

1000

N

It
e
r

10 20 30 40 50 60 70
25

30

35

40

45

K=4
K=3
K=2

N

20 40 60 80 100120140
6

7

8

9

10

Tol=1.E-05
Tol=1.E-04
Tol=1.E-03
Tol=1.E-02

N

20 40 60
0

100

200

300

Tol=1.E-06
Tol=1.E-05
Tol=1.E-04
Tol=1.E-03

Figure 7.1: Average running times and iterations for DC, SS and MS with maxi-
mization objective.

Decreasing the control input parameterization N leads to faster running times,
which is expected since the NLP becomes smaller in terms of decision variables.
The number of iterations seems to be slightly unaffected by N, except for the case
of reference tracking with Tol=1.E-02, which also leads to a somewhat different
objective value.

SS is the most efficient algorithm and seems to be almost unaffected by the initial
guess according to running times and number of iterations in Figure D.7, as each
run uses a different guess. Further, SS leads to running times of approximately 17
times greater for the case without scaling; see Table D.3. Here, 9 out of 10 runs
terminate due to exceeding the maximum iterations and one due to restoration
failed.

Multiple shooting

MS leads to a larger NLP than SS, but smaller than DC. However, the running
times do not indicate an efficient algorithm implementation; see Table D.4. For
this reason, only 1 run is performed for each parameter combination. For higher
tolerances, the algorithm terminates due to exceeding maximum iterations. It may
be expected that MS lead to lower performance because of the increased NLP size
and the need for more sensitivity information. MS is also sensitive to scaling as it
terminates 10 out of 10 times with exitflag: Invalid number in NLP, for the case
without scaling, as seen in Table D.3.

Solution profiles from DC, SS and MS indicate almost similar shapes as shown
in Figure D.8-D.9. Table D.4-D.6 are also visualized in Figure 7.1.

67

7.2 Production optimization
Reference tracking

Figure D.12 shows production increase after applying optimized control inputs
yielding an approximate steady-state response in total production rates. It can
be seen that the increase in oil production rates is highest when the total lift-gas
capacity Utot,max is low. Table 7.1 shows total oil production rates before and after
applying optimized control with the corresponding percentage change. Reference
tracking is used here because it leads to profiles resembling a steady-state behavior.

Total oil production rate
Utot,max[kg/s] Before [kg/s] After [kg/s] Percentage change [%]

5 21.58 22.26 3.15
6 22.32 22.98 2.96
7 22.88 23.54 2.88
8 23.37 23.84 2.01
9 23.59 23.89 1.27
10 23.77 23.89 0.50

Table 7.1: Total oil production rates at t = 4[h] (before) and t = 9[h] (after).

Varying bounds and total lift-gas capacity

Figure D.15-D.17 shows production rates and control inputs for diverse bounds
umin and total lift-gas capacity Utot,max. From these it can be seen that low
bounds and/or low gas capacity leads to oscillatory behavior in both production
rates and control inputs. Figure D.18 shows similar behavior when keeping the
bounds constant, while increasing capacity Utot,max.

Unconstrained optimum

By letting r = 0 in the objective function for maximization, this corresponds to
only maximizing oil production without adding a cost of lift-gas usage. SS using
this objective function over a time horizon with an increasing Utot,max is shown in
Figure D.14. Here, it is seen that for Utot,max ≥ 13 the total lift-gas constraint
becomes inactive. That is, even if there is no cost of using lift-gas, production has
reached an unconstrained optimum where further lift-gas injection will not increase
production anymore.

68

Maximize production

Maximization of production is performed over a 12-hour time horizon for a range
of Utot,max as shown in Figure D.13. For low lift-gas capacity, an oscillating pro-
duction is observed. However, increasing capacity leads to stable production.

To measure productivity increase over a time horizon, the cost state zc(t) is used.
For the maximization objective, this is written as

zc(t) = Φmax(y, u) =
∫ tf

t0

−
∑
l∈L

qw2
o,out,l +

∑
j∈J

ru2
gi,jdt. (7.1)

The optimization formulation used in this thesis is stated as a minimization prob-
lem, aiming to make the objective function value zc(tf) as negative as possible.

Optimized control inputs are applied at t = 2.4[h] and Utot,max is kept constant.
The cost state zc(t) decreases more when applying optimized control inputs, com-
pared to not doing it. For the latter case, control inputs are set to be the same as
before. In Table 7.2 it is seen that zc(tf) decreases with higher capacity Utot,max,
but the percentage change of zc(tf) is greatest for a low capacity when comparing
the objective values with and without optimal control.

Cost state: zc(tf) for tf = 12[h]
Utot,max Without OC With OC Percentage change [%]

5 -10,138,432 -11,654,389 14.95
6 -10,889,610 -11,544,917 6.02
7 -11,467,704 -11,939,498 4.11
8 -11,904,728 -12,310,983 3.41

Table 7.2: Comparison of zc(tf) with and without using optimal control (OC). The
objective is to maximize production over a 12-hour time horizon.

The result of applying optimal control leads to a potential gain when considering the
objective function value. However, in practice, the oscillating behavior of control
inputs and production rates are considered to be non-desirable solutions. The
oscillating behavior seems to appear for low gas capacities and low bounds on lift-
gas injection. Further constraints on production rates may stabilize production
and eliminate the oscillations.

69

7.3 Platform comparison
Using the JModelica.org framework, optimal control problems can be solved effi-
ciently through moderate implementation effort. There are several advantages of
this approach:

• A state of the art algorithm for direct collocation solves OCPs with models
formulated in Modelica and Optimica. Performance can be improved by sup-
plying initial guess profiles, scaling of models and adjustment of algorithmic
parameters.

• CasADi enables a quick way for implementing optimization-based algorithms
with moderate effort, e.g. shooting methods. In particular, derivative in-
formation including sensitivity analysis is automatically supplied to IPOPT.
Additional features include DAE to ODE transformation, model import from
Modelica and scaling of models.

• Direct collocation, single shooting and multiple shooting methods use auto-
matic differentiation with CasADi, which includes heuristics for improving
efficiency of the AD computations.

• CVODES and IPOPT are well-established numerical packages for simulation
and nonlinear programming respectively.

• The Modelica language is well suited for implementing large-scale models
and includes a rich set of features that have been utilized in this thesis, e.g.
object-orientation, scalability and acausal modeling.

Utilization of existing numerical packages can result in efficient algorithms com-
pared to implementing these from scratch. In particular, nonlinear optimization in
Matlab using the built-in function fmincon is by default using a finite difference
approach for computing derivatives related to the NLP, which can greatly reduce
performance and robustness. Additional disadvantages are the lack of methods for
sensitivity analysis and automatic differentiation, which are not standard packages
in the Matlab platform. These features are crucial for implementing efficient dy-
namic optimization solvers.

However, the Matlab platform is well known in the academic community and pro-
vides an easy user interface for debugging code. Implementation of direct collo-
cation and shooting methods on this platform may require a tremendous effort
due to the lack of underlying numerical packages. However, implementations may
be easier to understand in terms of code complexity compared to JModelica.org,
which is based on Python or C as standard languages.

70

Chapter 8

Conclusion

In this thesis, dynamic optimization is applied to an oil gathering system consisting
of a well-flowline network. The model is written in the Modelica language by using
an object-oriented approach, treating wells and flowlines as subsystems. A general
model is constructed by connecting the subsystems, thus promoting scalability and
flexibility for further usage.

An optimal control problem is defined to maximize production or tracking a ref-
erence with an additional cost related to the use of lift-gas injection. This opti-
mization problem is constrained by continuous-time nonlinear differential algebraic
equations representing the well-flowline network. The Modelica-extension Optim-
ica is used to formulate the optimal control problem on a high abstraction level. To
this end, three approaches have been explained, implemented and assessed. These
are direct collocation, single shooting and multiple shooting.

JModelica.org’s built-in algorithm for direct collocation solves optimal control
problems constrained by differential algebraic equations. The shooting methods
solve optimal control problems constrained by ordinary differential equations, us-
ing the CVODES integrator. For the latter case, the differential algebraic equations
are transformed into an equivalent set of ordinary differential equations. This is a
non-trivial task, and CasADi-functions are used to perform this transformation.

Direct collocation using automatic differentiation with CasADi has proven to be
efficient, leading to running times from 1.6-23.6 seconds, depending on algorithm
parameters such as number of elements and interpolation points. However, it is
sensitive to scaling and requires an initial guess profile.

71

Single and multiple shooting methods are implemented in Python using CasADi
for automatic differentiation, CVODES for integration and IPOPT for solving the
NLP. Single shooting is the fastest method with running times from 0.7-10.7 sec-
onds, depending on control input discretization and integrator tolerance. Multiple
shooting is significantly slower with running times from 71-1015 seconds, depending
on control input and segment discretization as well as integrator tolerance. Both
shooting methods are sensitive to scaling.

An increase of 0.5 − 3.2% in total oil production rates is achievable by apply-
ing optimized control inputs with an objective of reference tracking, leading to
solutions resembling a steady-state behavior. Further, maximization of production
over a 12-hour time horizon has shown to increase the objective function value by
3.4−15%. It is also observed that for low lift-gas capacities and bounds, an oscillat-
ing production rate is obtained. Finally, an unconstrained optimum for production
has been indicated, where injecting more lift-gas does not produce more oil.

72

Chapter 9

Further work

This thesis explores the JModelica.org framework for implementing optimization-
based algorithms with models formulated in the Modelica language. Single and
multiple shooting methods use the CVODES integrator for solving ODEs and
IPOPT for solving NLPs. Here, the DAE system is transformed into an equiv-
alent ODE system. Another approach may be to use the DAE integrator IDAS
from Sundials. The NLP can also be solved by KNITRO, or a SQP-type algorithm.

The multiple shooting method implemented here is not particularly efficient in
terms of running time. Further exploration of how to implement this method is
suggested, in particular parallelization of the algorithm.

The well-flowline model used here is based on previous work and should be consid-
ered as a simplified model of a subsea production plant. Further work may include
using more advanced models for multiphase flow that describe phenomena such as
slug flow. In particular, the built-in component library provided with Modelica
should be considered as an opportunity to construct realistic physical models. A
comparison against a high-fidelity dynamic multiphase flow simulator or physical
measurements may also increase credibility of such a model.

73

Appendix A

Nomenclature

General

z Differential state
y Algebraic variable
u Control input
nz Number of differential states in DAE system
ny Number of algebraic variables in DAE system
nu Number of control inputs in DAE system
nI Number of path inequalities in OCP

N

DC: Number of elements
SS: Control input discretization
MS: Control input and segment discretization

K Polynomial approximation degree for states in DC.

74

Well-Flowline OCP

umin Minimum lift-gas injection rate for a well [kg
s]

umax Maximum lift-gas injection rate for a well [kg
s]

Utot,min Minimum total lift-gas capacity rate [kg
s]

Utot,max Maximum total lift-gas capacity rate [kg
s]

q Weight for oil production rate from a flowline (income) [−]
r Weight for lift-gas usage in a well (cost) [−]
wr

o,out Reference value for oil production rate [kg
s]

z0 Steady-state values for well-flowline DAE [kg]

Well

mga Mass of gas in annulus [kg]
mgt Mass of gas in tubing [kg]
mlt Mass of liquid in tubing [kg]
ugi Lift-gas injection rate (control input) [kg

s]

Flowline

mgp Mass of gas in pipeline [kg]
mop Mass of oil in pipeline [kg]
mwp Mass of water in pipeline [kg]
mgr Mass of gas in riser [kg]
mor Mass of oil in riser [kg]
mwr Mass of water in riser [kg]
wg,in Mass flow of gas at pipeline inlet [kg

s]
wo,in Mass flow of oil at pipeline inlet [kg

s]
ww,in Mass flow of water at pipeline inlet [kg

s]
wg,lp Mass flow of gas at low point [kg

s]
wo,lp Mass flow of oil at low point [kg

s]
ww,lp Mass flow of water at low point [kg

s]
wg,out Mass flow of gas at riser outlet [kg

s]
wo,out Mass flow of oil at riser outlet [kg

s]
ww,out Mass flow of water at riser outlet [kg

s]
ps Separator pressure [Pa]

75

Appendix B

Model equations

B.1 Well
Differential state equations: Mass balances

ṁga = wgl − wgi (B.1)
ṁgt = wgr + wgi − wgp (B.2)
ṁlt = wlr − wlp (B.3)

76

Algebraic equations:

Mass flows:

mt = mgt +mlt (B.4)
wgl = ugi (B.5)

wgi = Civ

√
ρgi max{0, pai − pti} (B.6)

wp = Cpc

√
ρp max{0, pp − pm}upc (B.7)

wgp = mgt

mt
wp (B.8)

wlp = mlt

mt
wp (B.9)

wwp = rwcwlp (B.10)
wop = (1− rwc)wlp (B.11)

wlr = ρlQmax

(
1− (1− C)

(
pbh

pr

)
− C

(
pbh

pr

)2
)

(B.12)

wgr = rglrwlr (B.13)
rglr = (1− rwc)rgor (B.14)

Densities:

ρgi = Mg

RTa
pai (B.15)

ρp = ρlMgppmt

ρlRTtmlt +Mgppmgt
(B.16)

ρl = rwcρw + (1− rwc)ρo (B.17)

Pressures:

pai =
(
RTa

VaMg
+ g

2Aa

)
mga (B.18)

pp = RTtmgt

MgVt −Mgνlmlt
− gmt

2At
(B.19)

pti = pp + gmt

At
(B.20)

pbh =

(
1 + rglr + rglrMggLw

2RTt

)
pti + ρlgLw

1 + rglr − rglrMggLw

2RTt

(B.21)

77

B.2 Flowline
Differential state equations: Mass balances

ṁg,p = wg,in − wg,lp (B.22)
ṁo,p = wo,in − wo,lp (B.23)
ṁw,p = ww,in − ww,lp (B.24)

ṁg,r = wg,lp − wg,out (B.25)
ṁo,r = wo,lp − wo,out (B.26)
ṁw,r = ww,lp − ww,out (B.27)

Algebraic equations:

Horizontal pipeline:

Vg,p = Vp −
mop

ρo
− mwp

ρw
(B.28)

ρg,p = mgp

Vg,p
(B.29)

ρl,p = ρoρw

ρwmop + ρomwp
(mop +mwp) (B.30)

pm = ρg,pRTp

Mg
(B.31)

αl,p = ρwmop + ρomwp

ρoρwVp
(B.32)

Us,l,p = ρwwo,in + ρoww,in

ρoρwπr2
p

(B.33)

µl,p = mop

mop +mwp
µo + mwp

mop +mwp
µw (B.34)

Rep = 2ρl,pUs,l,prp

µl,p
(B.35)

f1/2
p = 1

−1.8 log[(εp
3.7Dp

)1.11 + 6.9
Rep

]
(B.36)

∆Pf,p =
αl,pLpρl,pfpU

2
s,l,p

4rp
(B.37)

78

Riser:

Vg,r = Vr −
mor

ρo
− mwr

ρw
(B.38)

ρg,r = mgr

Vg,r
(B.39)

ρl,r = ρwρo

ρwmor + ρomwr
(mor +mwr) (B.40)

ρm,r = mgr +mor +mwr

Vr
(B.41)

ρt = αl,tρl,r + (1− αl,t)ρg,r (B.42)

pr,t = ρg,rRTr

Mg
(B.43)

αl,r = ρwmor + ρomwr

ρoρwVr
(B.44)

αl,t = 2(mor +mwr)
Vrρl,r

− AL,p

πr2
p

(B.45)

Us,l,r = ρwwo,in + ρoww,in

ρwρoπr2
r

(B.46)

Us,g,r = wg,in

ρg,rπr2
r

(B.47)

Um,r = Us,l,r + Us,g,r (B.48)

µl,r = mor

mor +mwr
µo + mwr

mor +mwr
µw (B.49)

Rer = 2ρm,rUm,rrr

µl,r
(B.50)

f1/2
r = 1

−1.8 log[(εr
3.7Dr

)1.11 + 6.9
Rer

]
(B.51)

∆Pf,r =
αl,rfrρm,rU

2
m,rLr

4rr
(B.52)

79

Connection between pipeline and riser:

plp,p = pm −∆Pf,p (B.53)
plp,r = pr,t + ∆Pf,r + ρm,rgLr (B.54)

AG,p = Vg,p

Vp
Ap (B.55)

AL,p = Ap −AG,p (B.56)

zo,p = mop

mgp +mop +mwp
(B.57)

zw,p = mwp

mgp +mop +mwp
(B.58)

zg,r = mgr

mgr +mor +mwr
(B.59)

zo,r = mor

mgr +mor +mwr
(B.60)

zw,r = mwr

mgr +mor +mwr
(B.61)

wg,lp = KG,pAG,p

√
ρg,p max{0, plp,p − plp,r} (B.62)

wo,lp = KL,pAL,p

√
ρo max{0, plp,p − plp,r}zo,p (B.63)

ww,lp = KL,pAL,p

√
ρw max{0, plp,p − plp,r}zw,p (B.64)

wg,out = KG,r

√
ρt max{0, pr,t − ps}zg,r (B.65)

wo,out = KL,r

√
ρt max{0, pr,t − ps}zo,r (B.66)

ww,out = KL,r

√
ρt max{0, pr,t − ps}zw,r (B.67)

80

B.3 Single shooting NLP expressions
Decision variables are contained in U ∈ RNnu on the following form:

U =

u
1

...
uN

 . (B.68)

State constraints on z1 and z2 are stacked in g with their corresponding bounds:

g =



z1(t1)
...

z1(tN)
z2(t1)

...
z2(tN)


, gL =



z1,min

...
z1,min

z2,min

...
z2,min


, gU =



z1,max

...
z1,max

z2,max

...
z2,max


. (B.69)

The objective function is given by

f = zc(tN) = zc(tf). (B.70)

Variable bounds are given as:

uL =

umin

...
umin

 , uU =

umax

...
umax

 . (B.71)

Local expressions for state variables are defined to enable construction of g. These
contain state variables at time points, which are obtained by the integrator calls.

Z1 =

 z1(t1)
...

z1(tN)

 , Z2 =

 z2(t1)
...

z2(tN)

 . (B.72)

81

B.4 Multiple shooting NLP expressions
Decision variables are contained in V ∈ RN(nz+nu) on the following form:

V =



u1

...
uN

z1
0
...
zN

0


, (B.73)

where zi
0 =

[
zi

c,0 zi
1,0 zi

2,0
]T

, i = 1, ..., N .

Initial conditions and continuity constraints are stacked in g:

g =


g1
g2
...
gN

 =


z1

0 − z0
z2

0 − z1(t1)
...

zN
0 − zN−1(tN−1)

 , gL = gU =


0
0
...
0

 . (B.74)

The objective function f is given by

f = zN
c (tN) = zN

c (tf). (B.75)

Variable bounds are given as:

vL =
[
uT

min . . . uT
min zT

min . . . zT
min

]T
, (B.76)

vU =
[
uT

max . . . uT
max zT

max . . . zT
max

]T
, (B.77)

where zmin =
[
zc,min z1,min z2,min

]T and zmax =
[
zc,max z1,max z2,max

]T .
Local expressions for control inputs and states in the example are defined to make
formulation of continuity constraints easier. These are given by:

U =


u1

u2

...
uN

 , ZC =


z1

c,0
z2

c,0
...
zN

c,0

 , Z1 =


z1

1,0
z2

1,0
...
zN

1,0

 , Z2 =


z1

2,0
z2

2,0
...
zN

2,0

 . (B.78)

82

Appendix C

Parameters

Well
Parameter Value Unit
Civ 0.00016 [m2]
Cpc 0.0014 [m2]
R 8.3145 [J

molK]
Ta 350 [K]
Tt 350 [K]
Mg 0.0195 [kg

mol]
g 9.81 [m

s2]
ρo 930 [kg

m3]
ρw 1030 [kg

m3]
Aa 0.02 [m2]
At 0.012 [m2]
C 0.8 [-]
pr 250 [bara]
ε 0.1 [-]

Flowline
Parameter Value Unit
Lp 13 000 [m]
rp 0.1 [m]
Tp 330 [K]
Tr 330 [K]
µw 8.94 · 10−4 [Pa · s]
µo 1 · 10−4 [Pa · s]
ps 50 [bara]
Lr 600 [m]
rr 0.1 [m]
ε 2.8 · 10−5 [m2]
KG,p 0.03 [-]
KL,p 1 [-]
KG,r 0.0034 [m2]
KL,r 0.0014 [m2]

Table C.1: Well and flowline general parameters.

Parameter Well 1 Well 2 Well 3 Well 4 Well 5 Unit
Va 30 30 25 30 25 [m3]
Vt 18 18 15 18 15 [m3]
Lw 400 400 800 600 500 [m]
rwc 0.4 0.7 0.2 0.5 0.5 [-]
rgor 0.08 0.07 0.07 0.09 0.06 [-]
Qmax 0.025 0.05 0.035 0.10 0.02 [m3

s]

Table C.2: Well specific parameters.

83

Appendix D

Optimization and simulation
results

D.1 Table entries

Entry Description

N
DC: Number of elements.
SS: Control input discretization.
MS: Control input and segment discretization.

K Polynomial approximation degree for states in DC.
Tol Integrator absolute and relative tolerance.
DV Total number of decision variables in NLP.
Eq Total number of equality constraints in NLP.
Ineq Total number of inequality constraints in NLP.
Running time Time spent in NLP solver including function evaluations.
Iter Number of iterations.
Obj.Val Unscaled objective function value at optimal point.
Max.Iter IPOPT termination with exitflag: Maximum iterations exceeded
Rest.Failed IPOPT termination with exitflag: Restoration failed
Inv.Number IPOPT termination with exitflag: Invalid number in NLP

Table D.1: Description of table entries for optimization results.

84

D.2 Coupled tanks example

N
=

1
1
0

0 200 400 600
0

2

5

States: Liquid level [m]

N
=

9
0

0 200 400 600
0

2

5

N
=

7
0

0 200 400 600
0

2

5

N
=

5

0 200 400 600
0

2

5

N
=

2

t [s]

0 200 400 600
0

2

5

zopt1

zsim1

zopt2

zsim2

z2,max

0 200 400 600

0

0 .3

Control inputs: Volume flow [m3/s]

0 200 400 600

0

0 .3

0 200 400 600

0

0 .3

0 200 400 600

0

0 .3

t [s]

0 200 400 600

0

0 .3

uopt

umax

umin

Figure D.1: Simulated profiles compared to approximated profiles from the DC
algorithm when varying the number of elements N, with K=3. Corresponding
control inputs are given to the right.

85

D.3 Test simulation of well-flowline model
W

e
ll
1

Mass [kg]

0 0 .5 1 1 .5 2 2 .5 3 3 .5 4 4 .5 5
0

5000

10000

W
e
ll
2

0 0 .5 1 1 .5 2 2 .5 3 3 .5 4 4 .5 5
0

5000

10000

W
e
ll
3

0 0 .5 1 1 .5 2 2 .5 3 3 .5 4 4 .5 5
0

5000

W
e
ll
4

0 0 .5 1 1 .5 2 2 .5 3 3 .5 4 4 .5 5
0

2000

4000

t [h]

W
e
ll
5

0 0 .5 1 1 .5 2 2 .5 3 3 .5 4 4 .5 5
0

5000

10000

mga Matlab

mga CVODE

mgt Matlab

mgt CVODE

mlt Matlab
mlt CVODE

Figure D.2: Well states from test simulation of well-flowline model.

86

Mass [kg]
F
lo
w
li
n
e
1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5000

10000

15000

20000

25000

t [h]

F
lo
w
li
n
e
2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5000

10000

15000

20000

25000

mgp Matlab

mgp CVODE

mop Matlab

mop CVODE

mwp Matlab

mwp CVODE

mgr Matlab

mgr CVODE

mor Matlab
mor CVODE

mwr Matlab
mwr CVODE

Figure D.3: Flowline states from test simulation of well-flowline model.

F
lo
w
li
n
e
1

Mass flow [kg/s]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

t [h]

F
lo
w
li
n
e
2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

wgp Matlab

wgp CVODE

wop Matlab

wop CVODE

wwp Matlab

wwp CVODE

Figure D.4: Flowline outlet flows (algebraic variables) from test simulation of well-
flowline model.

87

t [h]

Mass flow [kg/s]

C
o
nt
ro
l
in
p
u
ts

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50.8

1

1.2

1.4

1.6

1.8

2
ugi,1
ugi,2
ugi,3
ugi,4
ugi,5

Figure D.5: Control input profile from test simulation of well-flowline model.

88

D.4 Optimization results

Description umin umax Utot,min Utot,max q r tf [h]
Value 1 2 1 7 1 0.1 6

Table D.2: Time horizon, constraint and weighting values used for algorithmic
performance assessment in Appendix D.4.

DC (N=50, K=3) SS (N=60, Tol=1.E-05) MS (N=60, Tol=1.E-05)
Scaled Unscaled Scaled Unscaled Scaled Unscaled

Running time [s] 11.5 32.6 2.6 45.2 144.4 300.2
Iter 36.1 50 6.2 49.0 17.0 15.0
Obj.Val -6.06 -5.05E+06 -6.06 -6.06E+06 -6.33 N/A
Max.Iter 0 10 0 9 0 0
Rest.Failed 0 0 0 1 0 0
Inv.Number 0 0 0 0 0 10

Table D.3: Performance of DC, SS and MS methods when using scaled and unscaled
DAE system. Running time, Iter and Obj.Val corresponds to average values of 10
runs. Maximum iterations are set to 50. The maximize production objective is
used in this comparison.

MS
Maximize production Reference tracking

N Tol DV Eq Ineq Running time [s] Iter Obj.Val Running time [s] Iter Obj.Val

60
1.E-06 1980 1680 60 280.0 16.0 -6.06 334.8 17.0 14.34
1.E-05 1980 1680 60 71.0 4.0 -5.69 286.8 21.0 14.34
1.E-04 1980 1680 60 447.8 49.0 -6.06 593.0 69.0 14.34
1.E-03 1980 1680 60 1015.1 150.0 -6.06 1005.5 150.0 14.34

40

1.E-06 1320 1120 40 179.0 14.0 -6.06 177.0 14.0 14.34
1.E-05 1320 1120 40 119.5 12.0 -6.06 170.2 19.0 14.34
1.E-04 1320 1120 40 373.1 58.0 -6.06 906.3 150.0 14.34
1.E-03 1320 1120 40 713.3 150.0 -6.06 698.5 150.0 14.35

20

1.E-06 660 560 20 100.2 14.0 -6.06 104.0 15.0 14.34
1.E-05 660 560 20 78.8 14.0 -6.06 101.1 20.0 14.34
1.E-04 660 560 20 154.4 41.0 -6.06 507.7 150.0 14.34
1.E-03 660 560 20 387.3 150.0 -6.06 384.0 150.0 14.35

Table D.4: MS optimization results. Values of 1 run.

89

DC
Maximize production Reference tracking

K N DV Eq Ineq Running time [s] Iter Obj.Val Running time [s] Iter Obj.Val

4

70 69934 68534 3372 23.6 32.0 -6.05 19.4 30.5 14.35
60 59974 58774 2892 13.6 25.8 -6.06 18.2 31.6 14.35
50 50014 49014 2412 12.7 29.4 -6.06 12.8 30.0 14.35
40 40054 39254 1932 11.7 32.9 -6.06 10.5 30.2 14.35
30 30094 29494 1452 7.7 28.2 -6.06 7.1 26.2 14.35
20 20134 19734 972 5.8 31.9 -6.06 7.1 37.4 14.35
10 10174 9974 492 4.3 44.5 -6.06 3.0 32.7 14.34

3

70 52994 51944 2532 9.7 25.9 -6.06 10.5 27.5 14.35
60 45454 44554 2172 9.2 26.1 -6.06 9.1 26.9 14.35
50 37914 37164 1812 8.6 28.3 -6.06 9.5 29.0 14.35
40 30374 29774 1452 9.1 31.0 -6.06 9.1 32.9 14.35
30 22834 22384 1092 6.6 30.2 -6.06 5.0 24.4 14.35
20 15294 14994 732 4.5 30.9 -6.06 4.2 29.3 14.34
10 7754 7604 372 2.6 36.0 -6.07 1.6 26.0 14.34

2

70 36054 35354 1692 7.7 26.6 -6.06 7.7 25.5 14.35
60 30934 30334 1452 8.4 30.4 -6.06 6.1 25.0 14.35
50 25814 25314 1212 7.7 31.7 -6.06 9.6 36.7 14.35
40 20694 20294 972 6.7 33.8 -6.06 6.3 31.6 14.35
30 15574 15274 732 5.2 32.5 -6.06 3.7 25.7 14.34
20 10454 10254 492 3.2 29.3 -6.06 2.7 28.0 14.34
10 5334 5234 252 1.9 33.2 -6.06 2.0 40.0 14.34

Table D.5: DC optimization results. Average values of 10 runs.

SS
Maximize production Reference tracking

N Tol DV Eq Ineq Running time [s] Iter Obj.Val Running time [s] Iter Obj.Val

140
1.E-05 700 0 140 5.7 6.0 -6.04 5.6 6.0 14.33
1.E-04 700 0 140 4.1 6.1 -6.04 4.3 6.0 14.34
1.E-03 700 0 140 3.7 6.9 -6.01 3.5 6.7 14.34
1.E-02 700 0 140 3.8 7.1 -5.94 5.5 8.6 14.45

120

1.E-05 600 0 120 5.2 6.0 -6.06 4.9 6.0 14.36
1.E-04 600 0 120 4.2 6.0 -6.05 3.8 6.2 14.36
1.E-03 600 0 120 3.0 6.5 -6.03 2.9 6.7 14.37
1.E-02 600 0 120 2.7 6.2 -5.98 10.7 10.2 14.54

100

1.E-05 500 0 100 4.1 6.0 -6.06 4.0 6.0 14.35
1.E-04 500 0 100 3.3 6.0 -6.05 3.2 6.1 14.36
1.E-03 500 0 100 2.4 6.5 -6.04 2.7 6.8 14.36
1.E-02 500 0 100 2.2 6.8 -6.01 4.1 8.8 14.43

80

1.E-05 400 0 80 3.5 6.0 -6.06 3.5 6.0 14.35
1.E-04 400 0 80 2.7 6.1 -6.05 3.1 7.0 14.35
1.E-03 400 0 80 2.2 6.4 -6.05 2.5 7.2 14.35
1.E-02 400 0 80 3.0 8.0 -5.95 3.6 9.6 14.42

60

1.E-05 300 0 60 2.6 6.2 -6.06 2.7 6.7 14.35
1.E-04 300 0 60 2.1 6.0 -6.06 2.1 6.8 14.35
1.E-03 300 0 60 1.7 6.5 -6.05 1.8 7.0 14.35
1.E-02 300 0 60 1.5 7.1 -5.99 4.7 10.1 14.55

40

1.E-05 200 0 40 1.6 6.1 -6.06 1.9 7.0 14.35
1.E-04 200 0 40 1.6 6.8 -6.06 1.5 7.0 14.35
1.E-03 200 0 40 1.4 7.2 -6.06 1.3 7.3 14.35
1.E-02 200 0 40 1.5 7.9 -6.02 3.4 13.0 14.40

20

1.E-05 100 0 20 1.3 7.5 -6.06 1.2 7.8 14.35
1.E-04 100 0 20 1.0 7.0 -6.06 0.9 7.0 14.35
1.E-03 100 0 20 0.8 7.3 -6.06 1.1 9.5 14.35
1.E-02 100 0 20 0.7 8.4 -6.03 1.5 12.2 14.37

Table D.6: SS optimization results. Average values of 10 runs.

90

M
a
x
im

iz
e
p
ro
d
u
ct
io
n

10 20 30 40 50 60 70

N

0

50

100

10 20 30 40 50 60 70
0

50

100

10 20 30 40 50 60 70
0

50

100
Iterations

10 20 30 40 50 60 70

N

0

20

40

K
=
2

10 20 30 40 50 60 70
0

20

40

K
=
3

10 20 30 40 50 60 70
0

20

40
K
=
4

Running time [s]
R
ef
er
en
ce

tr
a
ck
in
g

10 20 30 40 50 60 70

N

0

50

100

10 20 30 40 50 60 70
0

50

100

10 20 30 40 50 60 70
0

50

100
Iterations

10 20 30 40 50 60 70

N

0

20

40

K
=
2

10 20 30 40 50 60 70
0

20

40

K
=
3

10 20 30 40 50 60 70
0

20

40

K
=
4

Running time [s]

Figure D.6: All running times and iterations for the DC method.

91

M
a
x
im

iz
e
p
ro
d
u
ct
io
n

20 40 60 80 100 120 140

N

0

10

20

20 40 60 80 100 120 140
0

10

20

20 40 60 80 100 120 140
0

10

20

20 40 60 80 100 120 140
0

10

20
Iterations

20 40 60 80 100 120 140

N

0

5

10

15

T
o
l
=

1
.E
-0
2

20 40 60 80 100 120 140
0

5

10

15

T
o
l
=

1
.E
-0
3

20 40 60 80 100 120 140
0

5

10

15

T
o
l
=

1
.E
-0
4

20 40 60 80 100 120 140
0

5

10

15

T
o
l
=

1
.E
-0
5

Running time [s]

R
ef
er
en
ce

tr
a
ck
in
g

20 40 60 80 100 120 140

N

0

10

20

20 40 60 80 100 120 140
0

10

20

20 40 60 80 100 120 140
0

10

20

20 40 60 80 100 120 140
0

10

20
Iterations

20 40 60 80 100 120 140

N

0

5

10

15

T
o
l
=

1
.E
-0
2

20 40 60 80 100 120 140
0

5

10

15

T
o
l
=

1
.E
-0
3

20 40 60 80 100 120 140
0

5

10

15

T
o
l
=

1
.E
-0
4

20 40 60 80 100 120 140
0

5

10

15

T
o
l
=

1
.E
-0
5

Running time [s]

Figure D.7: All running times and iterations for the SS method.

92

0 3 6

5

10

15

F
lo
w
li
n
e
1

DC (N=20,K=3)

0 3 6

5

10

15

SS (N=60,Tol=1.E-05)

0 3 6

5

10

15

MS (N=60,Tol=1.E-05)
F
lo
w
li
n
e
2

0 3 6

4

6

8

10

12

14

0 3 6

4

6

8

10

12

0 3 6

4

6

8

10

12

14

T
o
ta
l
p
ro
d
u
ct
io
n

0 3 6

10

15

20

25

0 3 6

10

15

20

25

0 3 6

10

15

20

25

C
o
nt
ro
l
in
p
u
ts

0 3 6

1

1.5

2

0 3 6

1

1.5

2

0 3 6

1

1.5

2

T
o
ta
l
li
ft
-g
a
s
in
j

0 3 6

t [h]

1

3

5

7

0 3 6

t [h]

1

3

5

7

0 3 6

t [h]

1

3

5

7

wg,out

wo,out

ww,out

ugi,1
ugi,2
ugi,3
ugi,4
ugi,5
umax

umin

Total
Utot,max

Utot,min

Figure D.8: Comparison of optimized control input profiles from DC, SS and MS
with their corresponding simulated variable profiles. Here, the objective is to max-
imize production.

93

0 3 6

5

10

15

F
lo
w
li
n
e
1

DC (N=20,K=3)

0 3 6

5

10

15

SS (N=60,Tol=1.E-05)

0 3 6

5

10

15

MS (N=60,Tol=1.E-05)

F
lo
w
li
n
e
2

0 3 6

5

10

0 3 6

5

10

0 3 6

5

10

T
o
ta
l
p
ro
d
u
ct
io
n

0 3 6

10

15

20

25

0 3 6

10

15

20

25

0 3 6

10

15

20

25

C
o
nt
ro
l
in
p
u
ts

0 3 6

1

1.5

2

0 3 6

1

1.5

2

0 3 6

1

1.5

2

T
o
ta
l
li
ft
-g
a
s
in
j

0 3 6

t [h]

1

3

5

7

0 3 6

t [h]

1

3

5

7

0 3 6

t [h]

1

3

5

7

wg,out

wo,out

ww,out

ugi,1
ugi,2
ugi,3
ugi,4
ugi,5
umax

umin

Total
Utot,max

Utot,min

Figure D.9: Comparison of optimized control input profiles from DC, SS and MS
with their corresponding simulated variable profiles. Here, the objective is reference
tracking with wr

o,out = 30.

94

D.5 Well-Flowline approximation
N
=
2
0
,
K
=
3

0 2 4 6

0

10

20
Flowline 1

0 2 4 6

0

10

20
Flowline 2

N
=
1
0
,
K
=
3

0 2 4 6

0

10

20

0 2 4 6

0

10

20

N
=
5
,
K
=
3

0 2 4 6

0

10

20

0 2 4 6

0

10

20

N
=
2
0
,
K
=
2

0 2 4 6

0

10

20

0 2 4 6

0

10

20

N
=
1
0
,
K
=
2

0 2 4 6

0

10

20

0 2 4 6

0

10

20

N
=
5
,
K
=
2

0 2 4 6

t [h]

0

10

20

0 2 4 6

t [h]

0

10

20

w
opt
g,out

wsim
g,out

w
opt
o,out

wsim
o,out

w
opt
w,out

wsim
w,out

Figure D.10: Simulated profiles (dashed lines) compared to approximated profiles
(solid lines) from the DC algorithm when varying N and K. Here, the objective is
to maximize production.

95

N
=
2
0
,
K
=
3

0 1 2 3 4 5 6

0.8

2

Control inputs

N
=
1
0
,
K
=
3

0 1 2 3 4 5 6

0.8

2

N
=
5
,
K
=
3

0 1 2 3 4 5 6

0.8

2

N
=
2
0
,
K
=
2

0 1 2 3 4 5 6

0.8

2

N
=
1
0
,
K
=
2

0 1 2 3 4 5 6

0.8

2

N
=
5
,
K
=
2

0 1 2 3 4 5 6

t [h]

0.8

2

ugi,1
ugi,2
ugi,3
ugi,4
ugi,5
umax

umin

Figure D.11: Approximated profiles for control inputs from the DC algorithm when
varying N and K, together with upper and lower bounds. Here, the objective is
to maximize production. The following values are used for capacity and bounds:
Utot,min = 1, Utot,max = 6, umin = 0.8 and umax = 2.

96

D.6 Production optimization

t [h]

M
a
ss

fl
ow

[k
g/

s]
Total oil production rate

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
20

20.5

21

21.5

22

22.5

23

23.5

24

24.5

25

Utot,max = 5
Utot,max = 6
Utot,max = 7
Utot,max = 8
Utot,max = 9
Utot,max = 10

C
o
nt
ro
l
in
p
u
ts

4 5 6 7 8 9
0.2

1

2

Utot,max = 5

4 5 6 7 8 9
0.2

1.2

2

Utot,max = 6

C
o
nt
ro
l
in
p
u
ts

4 5 6 7 8 9
0.2

1.4

2

Utot,max = 7

4 5 6 7 8 9
0.2

1.6

2

Utot,max = 8

C
o
nt
ro
l
in
p
u
ts

4 5 6 7 8 9

t [h]

0.2

1.8
2

Utot,max = 9

4 5 6 7 8 9

t [h]

0.2

2

Utot,max = 10

ugi,1
ugi,2
ugi,3
ugi,4
ugi,5
umax

umin

Figure D.12: Total oil production rates before and after applying optimized control
inputs for different Utot,max that are kept constant throughout the time horizon.
Corresponding control input profiles are given with their upper and lower bounds.
Here, the objective is reference tracking with wr

o,out = 30. SS (N=120, Tol=1.E-06).

97

0 6 12

5

10

15

F
lo
w
li
n
e
1

Utot,max = 5

0 6 12

5

10

15

Utot,max = 6

0 6 12

8

10

12

Utot,max = 7

0 6 12

10

11

12

Utot,max = 8

0 6 12

10

20

F
lo
w
li
n
e
2

0 6 12

8

10

12

14

16

18

0 6 12

12

14

0 6 12

12

13

14

0 6 12

20

25

T
o
ta
l
p
ro
d
u
ct
io
n

0 6 12

18

20

22

24

0 6 12

22

24

0 6 12

22

24

26

0 6 12

0.3

1

2

C
o
nt
ro
l
in
p
u
ts

0 6 12

0.3

1.2

2

0 6 12

0.3

1.4

2

0 6 12

0.3

1.6

2

0 6 12

t [h]

−10

−5

0

z c
(t
)/
1
0
6

0 6 12

t [h]

−10

−5

0

0 6 12

t [h]

−10

−5

0

0 6 12

t [h]

−10

−5

0

With OC
Without OC

wo,out

ugi,1
ugi,2
ugi,3
ugi,4
ugi,5
umax

umin

Figure D.13: Production rates, control inputs with bounds and cost state profile for
various Utot,max. Here the objective is to maximize production. With OC refers to
using optimized control inputs. Without OC refers to using: ugi,j = Utot,max

5 ,∀j ∈
J for Utot,max = {5, 6, 7, 8}. SS (N=120, Tol=1.E-06).

98

T
o
ta
l
p
ro
d
u
ct
io
n

5 10 15 20 25 30 35 40 45
22

24

26

C
o
nt
ro
l
in
p
u
ts

5 10 15 20 25 30 35 40 45

1

2

3

4

T
o
ta
l
li
ft
-g
a
s
in
j

5 10 15 20 25 30 35 40 45

t [h]

5

7

9

11

13

15

wo,out

ugi,1
ugi,2
ugi,3
ugi,4
ugi,5
umax

umin

Total
Utot,max

Utot,min

Figure D.14: Total production rates, control inputs and total lift-gas injection when
increasing Utot,max from 7 to 16. Here, the objective is to maximize production
without adding a cost of lift-gas usage, i.e. r = 0. SS (N=120, Tol=1.E-06).

99

0 6 12

5

10

15

u
m
in

=
0
.2

Flowline 1

0 6 12

10

20

Flowline 2

0 6 12

16

18
20

22

24

26

Total production

0 6 12

0.2

1

2

Control inputs

0 6 12

5

10

15

u
m
in

=
0
.4

0 6 12

8
10
12
14
16
18

0 6 12

18

20

22

24

0 6 12

0.4

1

2

0 6 12

6

8

10

12

14

u
m
in

=
0
.6

0 6 12

10

15

0 6 12

20

22

0 6 12

0.6

1

2

0 6 12

t [h]

8

10

u
m
in

=
0
.8

0 6 12

t [h]

11

12

13

0 6 12

t [h]

21

22

0 6 12

t [h]

0.8
1

2

wo,out

ugi,1
ugi,2
ugi,3
ugi,4
ugi,5
umax

umin

Figure D.15: Production rates and control inputs for various umin. A constant
capacity of Utot,max = 5 is used. Here, the objective is to maximize production.
SS (N=120, Tol=1.E-06).

100

0 6 12

5

10

15

u
m
in

=
0
.2

Flowline 1

0 6 12

5

10

15

20

Flowline 2

0 6 12

15

20

25

Total production

0 6 12

0.2

1.2

2

Control inputs

0 6 12

5

10

15

u
m
in

=
0
.4

0 6 12

10

15

0 6 12

20

22

24

0 6 12

0.4

1.2

2

0 6 12

6

8

10

12

14

u
m
in

=
0
.6

0 6 12

10

15

0 6 12

20

22

0 6 12

0.6

1.2

2

0 6 12

t [h]

8

10

12

u
m
in

=
0
.8

0 6 12

t [h]

12

14

0 6 12

t [h]

21.5

22

22.5

23

23.5

0 6 12

t [h]

0.8

1.2

2

wo,out
ugi,1
ugi,2
ugi,3
ugi,4
ugi,5
umax

umin

Figure D.16: Production rates and control inputs for various umin. A constant
capacity of Utot,max = 6 is used. Here, the objective is to maximize production.
SS (N=120, Tol=1.E-06).

101

0 6 12

8

10

12

u
m
in

=
0
.2

Flowline 1

0 6 12

12

14

Flowline 2

0 6 12

22

24

Total production

0 6 12

0.2

1.4

2

Control inputs

0 6 12

8

10

12

u
m
in

=
0
.4

0 6 12

12

14

0 6 12

22

24

0 6 12

0.4

1.4

2

0 6 12

10

12

u
m
in

=
0
.6

0 6 12

12

13

14

0 6 12

22

24

0 6 12

0.6

1.4

2

0 6 12

t [h]

9

10

11

u
m
in

=
0
.8

0 6 12

t [h]

12

13

14

0 6 12

t [h]

22

24

0 6 12

t [h]

0.8

1.4

2

wo,out
ugi,1
ugi,2
ugi,3
ugi,4
ugi,5
umax

umin

Figure D.17: Production rates and control inputs for various umin. A constant
capacity of Utot,max = 7 is used. Here, the objective is to maximize production.
SS (N=120, Tol=1.E-06).

102

t [h]

F
lo
w
li
n
e
1

0 5 10 15 20
8

10

12

14

t [h]

F
lo
w
li
n
e
2

0 5 10 15 20
11

12

13

14

t [h]

T
o
ta
l
p
ro
d
u
ct
io
n

0 5 10 15 20

22

24

26

C
o
nt
ro
l
in
p
u
ts

0 5 10 15 20

1

1.5

2

t [h]

T
o
ta
l
li
ft
-g
a
s
in
j

0 5 10 15 20

5

6

7

8

wo,out

ugi,1
ugi,2
ugi,3
ugi,4
ugi,5
umax

umin

Total
Utot,max

Utot,min

Figure D.18: Production rates and control inputs for a time-varying Utot,max with
bounds: umin = 1 and umax = 2. Here, the objective is to maximize production.
SS (N=120, Tol=1.E-06).

103

Bibliography

[1] JModelica.org User Guide Version 1.9.1. Modelon AB, 2013.

[2] Åkesson, J. Languages and Tools for Optimization of Large-Scale Systems.
PhD thesis, Department of Automatic Control, Lund University, 2007.

[3] Åkesson, J., Årzén, K. E., Gäfvert, M., Bergdahl, T., and
Tummescheit, H. Modeling and optimization with Optimica and JMod-
elica.org - Languages and tools for solving large-scale dynamic optimization
problems. Computers & Chemical Engineering 34 (2010), 1737–1749.

[4] Åkesson, J., Ekman, T., and Hedin, G. Implementation of a Modelica
compiler using JastAdd attribute grammars. Science of Computer Program-
ming 75 (2010), 21–38.

[5] Andersson, J., Åkesson, J., Casella, F., and Diehl, M. Integration of
CasADi and JModelica.org. In 8th International Modelica Conference (2011),
Modelica Association, pp. 218–231.

[6] Andersson, J., Åkesson, J., and Diehl, M. CasADi: A Symbolic Package
for Automatic Differentiation and Optimal Control. In Recent Advances in
Algorithmic Differentiation, vol. 87 of Lecture Notes in Computational Science
and Engineering. Springer Berlin Heidelberg, 2012, pp. 297–307.

[7] Andersson, J., Åkesson, J., and Diehl, M. Dynamic optimization with
CasADi. In 51st IEEE Conference on Decision and Control (2012), pp. 681–
686.

[8] Andersson, J., Houska, B., and Diehl, M. Towards a Computer Algebra
System with Automatic Differentiation for use with Object-Oriented modeling
languages. In 3rd International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools, October 2010, Oslo, Norway (2010), pp. 99–
105.

104

[9] Biegler, L. T. Nonlinear Programming: Concepts, Algorithms and Applica-
tions to Chemical Processes. MOS-SIAM Series on Optimization. Mathemat-
ical Optimization Society and the Society for Industrial and Applied Mathe-
matics, 2010.

[10] Bieker, H. P., Slupphaug, O., and Johansen, T. A. Real Time Produc-
tion Optimization of Offshore Oil and Gas Production Systems: A Technology
Survey. SPE Intelligent Energy Conference and Exhibition (2006).

[11] Binder, B. J. T. Production Optimization in a Cluster of Gas-Lift Wells.
Master’s thesis, Norwegian University of Science and Technology, 2012.

[12] Bischof, C., and Bücker, M. Computing Derivatives of Computer Pro-
grams. In Modern Methods and Algorithms of Quantum Chemistry (2000),
John von Neumann Institute for Computing.

[13] Cervantes, A., and Biegler, L. T. Optimization Strategies for Dynamic
Systems. Chemical Engineering Department, Carnegie Mellon University,
2000.

[14] Codas, A., and Camponogara, E. Mixed-integer linear optimization for
optimal lift-gas allocation with well-separator routing. European Journal of
Operational Research 217 (2012), 222–231.

[15] Devold, H. Oil and Gas Production Handbook. ABB, 2006.

[16] Diehl, M., Andersson, J., Gillis, J., and Åkesson, J. CasADi: A Tool
for Automatic Differentiation and Simulation-Based Nonlinear Programming,
2012.

[17] Eikrem, G. O., Aamo, O. M., and Foss, B. A. On Instability in Gas Lift
Wells and Schemes for Stabilization by Automatic Control. SPE Production
& Operations 23 (2008), 268–279.

[18] Foss, B. Process control in conventional oil and gas fields - Challenges and
opportunities. Control Engineering Practice 20 (2012), 1058–1064.

[19] Foss, B., Gunnerud, V., and Díez, M. D. Lagrangian Decomposition
of Oil-Production Optimization Applied to the Troll West Oil Rim. SPE 14
(2009), 646–652.

[20] Gunnerud, V., and Foss, B. Oil production optimization - A piecewise
linear model, solved with two decomposition strategies. Computers & Chemical
Engineering 34 (2010), 1803–1812.

[21] Gunnerud, V., Foss, B. A., McKinnon, K. I. M., and Nygreen, B.
Oil production optimization solved by piecewise linearization in a Branch &
Price framework. Computers & Operations Research 39 (2012), 2469–2477.

105

[22] Imsland, L., Kittilsen, P., and Schei, T. S. Model-based optimizing
control and estimation using Modelica models. Modeling, Identification and
Control: A Norwegian Research Bulletin 31 (2010), 107–121.

[23] Jahanshahi, E., and Skogestad, S. Simplified Dynamical Models for
Control of Severe Slugging in Multiphase Risers. In 18th IFAC World Congress
(2011), pp. 1634–1639.

[24] Magnusson, F., and Åkesson, J. Collocation Methods for Optimization in
a Modelica Environment. In 9th International Modelica Conference, Munich,
Germany (2012), pp. 649–658.

[25] Nalum, K. Model Predictive Control of Well-Pipeline Systems. Project report
, Norwegian University of Science and Technology, 2012.

[26] Nocedal, J., and Wright, S. J. Numerical Optimization, 2 ed. Springer,
2006.

[27] Rantil, J., Åkesson, J., Führer, C., and Gäfvert, M. Multiple-
Shooting Optimization using the JModelica.org Platform. In Proceedings of
the 7th Modelica Conference, Como, Italy (2009), pp. 757–764.

[28] Serban, R., and Hindmarsh, A. C. CVODES: An ODE Solver with Sen-
sitivity Analysis Capabilities. ACM Transactions on Mathematical Software,
2003.

[29] Wächter, A., and Biegler, L. T. On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming. Math-
ematical Programming 106 (2006), 25–57.

106

	Introduction
	Production optimization in oil gathering systems
	Dynamic optimization
	Scope and emphasis

	Optimization and control of dynamic systems
	Optimal control problem formulation
	Single shooting
	Multiple shooting
	Direct collocation
	Collocation - A numerical method for solving an ODE
	NLP formulation from direct collocation

	Automatic differentiation

	The JModelica.org framework
	The Modelica modeling language
	The JModelica.org environment
	Optimica
	CasADi
	Example: Coupled tanks
	Direct collocation
	Single shooting
	Multiple shooting

	Providing an initial guess to direct collocation methods
	Output from direct collocation
	Choice of elements and interpolation points
	Scaling of models

	Modeling
	Well
	Manifold
	Flowline
	Overall model
	Approximating discontinuities
	Modelica implementation
	Test simulation

	Formulation of optimal control problem
	Objective
	Constraints
	Overall optimal control problem
	Alternative OCP formulations

	Performance assessment
	Assessment description

	Discussion
	Algorithmic performance
	Production optimization
	Platform comparison

	Conclusion
	Further work
	Nomenclature
	Model equations
	Well
	Flowline
	Single shooting NLP expressions
	Multiple shooting NLP expressions

	Parameters
	Optimization and simulation results
	Table entries
	Coupled tanks example
	Test simulation of well-flowline model
	Optimization results
	Well-Flowline approximation
	Production optimization

