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Abstract—Impedance is an intuitive and effective way for 

dynamical representation of power electronics devices (e.g. VSCs). 

One of its strengths towards others is the natural association with 

circuits. However, impedances of VSCs are locally evaluated via 

linearization, a process dependent on the angle of the reference 

frame, thus the reference frame transformation (i.e. rotation) is 

required before connecting them in circuits for the purpose of 

network analysis. Although this issue was properly treated in the 

state-space modeling, a counterpart for the impedance-based 

analysis, particularly the stability impacts of this rotation have not 

been thoroughly discussed and worth being clarified. On the other 

hand, there are fundamental differences in applying the 

impedance-based stability criteria of a single-VSC system to an 

interconnected one. Several restrictions as revealed (e.g. sensitivity 

to partition points of the Nyquist-based analysis), if not properly 

considered, may lead to inaccurate stability assessments. In this 

respect, a clarification of three commonly employed impedance-

based stability criteria is achieved.  At last, the capability of the 

Nyquist-based analysis in identifying the system’s weak point and 

in facilitating better network design and planning is presented. All 

the models and analyses are verified by frequency-scanning and 

time-domain simulations in PSCAD/EMTDC. 

 
Index Terms—converter, criterion, impedance, network, 

stability 

I. INTRODUCTION  

OWADAYS, power electronics devices, e.g. the voltage 

source converter (VSC), have been widely adopted for the 

grid-integration of renewable energies [1] as well as the 

interconnection of asynchronous AC grids by means of high-

voltage-dc (HVDC) technologies [2]. In addition to the bulk 

systems, power electronics devices in micro-grids [3] also 

exhibit superior capability in improving overall efficiency and 

flexibility. Due to such a fast growth of power electronics 

devices in modern electrical systems, new dynamics and 

stability issues are emerging. The most commonly encountered 

one would be the small-signal stability, typically occurred in a 
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manner of wide-band oscillations [4] as reported in the wind 

parks [5] and solar power plants [6].  

To study this small-signal stability issue, either the state-

space model-based (e.g. [4], [7] and [8]) or the impedance-

model-based analysis (e.g. [9]-[14]) can be applied. Recently, 

the impedance-based method is prevailing since it can be 

obtained through either analytical modeling or measurement. 

Also, the interpretation of dynamics could be easier since the 

concept of impedance is closely and physically related to 

circuits. There are various techniques to derive the VSC’s 

impedance. In this regard, a thorough review is given in [9], 

where the dq impedance modeling (e.g. [10]-[12]) and the 

sequence-domain impedance modeling (e.g. [13] and [14]) are 

most commonly employed. Other impedance modeling 

methods, e.g. the  -based [15], the phasor-based [16], and 

the modified sequence-domain (MSD)-based ([17] and [18]) are 

also very useful particularly for gaining the insights into the 

impedance properties, e.g. the mirror-frequency-coupling 

(MFC) effect [17]. Once the VSC’s impedance is derived, 

small-signal stability issues due to the interaction between the 

VSC and the grid can be studied (e.g. [19] and [20]) with the 

(Generalized) Nyquist criterion [21]. A further overview of this 

respect will be shown in section III.A. 

The above-analyses regarding the impedance modeling and 

stability assessment are extensively discussed for a single-VSC 

system. When it comes to an interconnected system composed 

of multiple converters, one could easily associate them (i.e. 

each converter’s impedance) with basic circuit laws to 

formulate the impedance-network or its equivalents for 

analysis. For example, [22] and [23] analyzed the sub/super 

synchronous oscillation of wind farms, whereas in [24] the 

harmonic resonance issue of wind farms is forcused. However, 

it should be noted that, since the impedances are locally 

evaluated via linearization, they are dependent on the angle of 

the local reference frame where this linearization is performed. 
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Therefore, a rotation (i.e. reference-frame transformation) is 

required before connecting them in circuits. Although this issue 

was properly treated in the state-space modeling (e.g. [8]), a 

counterpart for impedance-based analysis, particularly the 

stability impacts of this rotation have not been thoroughly 

discussed and worth being clarified.  

On the other hand, once the rotation issue for accurately 

formulating the impedance network is addressed, impedance-

based stability criteria (e.g. the Nyquist criterion [20], the loop 

impedance-based criterion [22], etc.) can be applied for stability 

assessments. However, there are fundamental differences in 

applying the impedance-based stability criteria of a single-VSC 

system to the interconnected one. The restrictions of which, as 

will be revealed and clarified in this work, if not properly 

addressed, may lead to inaccurate stability assessments as well.  

Therefore, this work aims to address those two concerns, thus 

is naturally composed of two parts: 1) the first part is section II, 

which is dedicated to the accurate formulation of the impedance 

network. In which, the properties and impacts of the rotation on 

aggregated impedances and stability are discussed and clarified. 

2) The second part is composed of section III and section IV, 

which are dedicated to the stability analysis of the impedance 

network. First, in section III, three types of commonly 

employed stability criteria are compared regarding their 

restrictions and conditions. Then, section IV opens the 

discussion on the identification of the system’s weak point, 

which is one of the main objectives of stability assessments and 

is crucial for network design and planning when new 

components are going to be connected to the existing networks. 

II. ACCURATE IMPEDANCE NETWORK MODELING AND 

IMPACTS OF ROTATION ON IMPEDANCE CHARACTERISTICS 

A. Brief introduction of the VSC impedance model 

Fig. 1 shows a typical grid-tied VSC system with an inner 

current-control-loop (CCL), a phase-locked loop (PLL), and an 

outer control loop. The CCL and PLL are fundamental controls 

for a grid-synchronized VSC, whereas the outer loop can be 

freely designed as e.g. the dc voltage or power control. 

Recently, extensive works are dedicated to the PLL 

dynamics, particularly under a weak ac grid. Its effects on either 

small-signal [25] or large-signal [26] stability are discussed in 

depth. One of the PLL effects on impedance is the occurrence 

of dq-asymmetry [27], e.g. for a typical dq impedance [12]: 

( )

( )

( ) ( )

( ) ( )

( )

( )
( )

( )

( )
d dd dq d d

dq

q qd qq q q

=
U s Z s Z s I s I s

s
U s Z s Z s I s I s

       
=       

       
Z   (1) 

the dq symmetry [27] or the Y-symmetry (as proposed in an 

early work [28]) is stated as the condition 𝑍𝑑𝑑(𝑠) = 𝑍𝑞𝑞(𝑠) , 

and 𝑍𝑑𝑞(𝑠) = −𝑍𝑞𝑑(𝑠), otherwise, it is dq asymmetric. 

Intuitively, most of the linear passive elements are dq 

symmetric systems, whereas the VSCs are not due to the 

unequal impacts of VSC controls (e.g. the PLL/dc 

voltage/active and reactive power) on the d- and the q-axis. 

Also, the properties of the dq asymmetry could be better 

illustrated if the MSD impedance [17] is used. In fact, the MSD-

impedance can be transformed from the dq impedance by 

applying the concept of symmetrical decomposition [29] as 

( ) ( )
( ) ( )

( ) ( )
pp pn1

pn sym dq sym

np nn

Z s Z s
s s

Z s Z s

−
 

=  =  
 

Z T Z T    (2) 

where the linear transformation is 𝑻𝑠𝑦𝑚 =
1

2
[
1 𝑗
1 −𝑗

] . The 

notation “pn” of lower-case denotes the modified sequence-

domain different from the original one [13].  

Besides, it is seen that one of the merits using the MSD 

impedance is the intrinsic associations with the dq symmetry or 

diagonality of the matrix. One may easily verify that 𝑍𝑝𝑛(𝑠) =

𝑍𝑛𝑝(𝑠) = 0 if it is dq symmetric. 

B. Properties and impacts of the impedance rotation on the 

AC coupled systems 

A simplified but representative AC coupled system is shown 

in Fig. 2 (a), where all the VSCs are PQ controlled (see 

appendix for the models). Since the impedances of the VSCs 

are locally developed, they only characterize the local behavior 

of currents and voltages (e.g.∆𝒖𝑑𝑞1, ∆𝒖𝑑𝑞2 in Fig. 2 (b)). To 

allow the circuit operations, variables should be in a unified 

domain, which means they should be transformed into a 

global/common reference frame. In this study, the global frame 

is chosen as the infinite bus-bar, i.e. the dqs frame in Fig. 2 (b). 

In fact, the global frame can be arbitrarily chosen as will be 
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Fig. 1 Schematic of a typical grid-tied VSC system 
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Fig. 2 A simple interconnected AC power electronics system  
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further discussed in section II.C. Based on this definition, 

variables of dq1 e.g.  ∆𝒖𝑑𝑞1 can be related to the ones of dqs 

through this equation: 

d_dq1 1 1 d_dqs

q_dq1 1 1 q_dqs

cos sin
-domain :

sin cos

u u
t

u u

 

 

     
=    

 −        

       (3) 

where 𝜃1 is the angle difference between dq1 and dqs (can be 

obtained from the load flow analysis). Due to the time-

invariance of this transformation, it is valid for s-domain 

analysis, hence the following equations are obtained: 
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where 𝑻𝑟𝑜𝑡(𝜃1) is the rotation matrix in the MSD. Applying 

𝑻𝑑𝑞(𝜃1) and  𝑻𝑟𝑜𝑡(𝜃1) to (1) and (2), the rotated impedances 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

global local

pn rot 1 pn rot 1

global local

dq dq 1 dq dq 1

:

:

MSD s s

dq s s

 

 

= −

= −

Z T Z T

Z T Z T
   (5) 

in the global frame are found, where 𝒁𝑝𝑛
𝑙𝑜𝑐𝑎𝑙(𝑠) and 𝒁𝑑𝑞

𝑙𝑜𝑐𝑎𝑙(𝑠) 

are the local ones. Based on this, some relevant properties of 

the rotation in view of MSD-impedances are revealed:  

P.1  The MSD-impedance is invariant in terms of the rotation 

if it is dq-symmetric; 

P.2  If it is not dq-symmetric, the rotation only affects the 

off-diagonal phase of a single MSD-impedance;  

P.3  Eigen-loci of a single MSD-impedance is not affected 

by the rotation, this may not be true for aggregated impedances.  

These properties are easily proven by expanding (5), i.e. 

( )
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from which P.1 and P.2 are verified directly. P.3 is justified by 

further calculating det(𝜆𝑰 − 𝒁𝑝𝑛
𝑔𝑙𝑜𝑏𝑎𝑙

) = 0, where 

( ) ( ) ( )( )

( )

local

rot 1 pn rot 1

local

pn

det 0

det 0

s  



− − =

→ − =

I T Z T

I Z
   (7) 

Next, the rotation effects on an aggregated impedance will 

be analyzed, for which the impedances seen from the point-of-

common-coupling (PCC, in Fig. 2 (a)) with and without the 

rotation are first calculated, they are  

( ) ( )

( ) ( )

global global global

pn_pcc 1 pn_vsc1 2 pn_vsc2

local local local

pn_pcc 1 pn_vsc1 2 pn_vsc2

||

||

= + +

= + +

Z Z Z Z Z

Z Z Z Z Z
    (8) 

where 𝒁𝑝𝑛_𝑣𝑠𝑐1,2
𝑔𝑙𝑜𝑏𝑎𝑙

=  𝑻𝑟𝑜𝑡(−𝜃1,2)𝒁𝑝𝑛_𝑣𝑠𝑐1,2
𝑙𝑜𝑐𝑎𝑙 𝑻𝑟𝑜𝑡(𝜃1,2) . Line 

impedances (𝒁1,2) are invariant of rotation according to P.1. 

Clearly, 𝒁𝑝𝑛_𝑝𝑐𝑐
𝑔𝑙𝑜𝑏𝑎𝑙

≠ 𝒁𝑝𝑛_𝑝𝑐𝑐
𝑙𝑜𝑐𝑎𝑙  if  𝜃1,2 ≠ 0. And, if  the load angles 

of VSC1 and VSC2 are different, i.e. 𝜃1 ≠  𝜃2, the rotation will 

affect all the entries of the aggregated impedance matrix.  

In order to see the effects clearly, impedance plots of 

𝒁𝑝𝑛_𝑝𝑐𝑐
𝑔𝑙𝑜𝑏𝑎𝑙

,  𝒁𝑝𝑛_𝑝𝑐𝑐
𝑙𝑜𝑐𝑎𝑙  in comparison with the simulation frequency-

scanning results are shown in Fig. 3. Overall, the impedances 

with the rotation are consistent with the frequency-scanning 

results, whereas the ones without the rotation exhibit some 

errors, justifying the necessity of the rotation and the accuracy 

of the analytical models. 

In detail, since the VSC1 and VSC2 are loaded differently in 

this case (i.e. 𝜃1 ≠  𝜃2), it is seen that the rotation affects all the 

entries of the aggregated impedances as expected. By 

comparing Case I and Case II, one may further observe that the 

rotation effect of Case I is less evident than that of the Case II. 

This is due to the small load angles resulting from the small line 

impedances for Case I. If 𝜃1 ≠  𝜃2  and they are large in 

magnitudes, the rotation impacts on all the four entries will be 

evident as illustrated in Case II. This also implies a fact that the 

eigen-loci of the local and global aggregated impedance will be 

different, thus leading to different stability conclusions.  

However, there exists a special case that the rotation may not 

affect the stability conclusion. For instance, if VSC1 and VSC2 

are loaded identically i.e. 𝜃1 =  𝜃2 , the rotation will merely 

affect the off-diagonal phases of the aggregated impedances, 

see Fig. 4 (a), where the off-diagonal phases are oppositely 

   
         (a) Case I:  under a small line impedance (Z1 = Z2 = 0.05 j p.u )                                   

     
(b) Case II: under a large line impedance (Z1 = Z2 = 0.2 j p.u) 

Fig. 3 The rotation effect on the aggregated impedance of the AC coupled 

system  (Pvsc1  = 1.0 p.u.; P vsc2 = -0.5p.u.; Zs = 0.125 j p.u; PLL = 20 Hz, CC = 

400 Hz, PQ = 20 Hz; frequency-scanning is from 1 to 100 Hz with 20 points in 

logarithmic space) 
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shifted by an identical magnitude (this is also easily checked by 

imposing the condition  𝜃1 =  𝜃2  on (8)). Under such a 

condition, the eigen-loci (with and without rotation) will be 

identical according to P.3, as a result of which stability 

conclusions with and without rotation will be identical as well, 

this is further justified by the Nyquist plots in Fig. 4 (b). 

        
(a) Comparison of the impedance plots 

 
(b) Comparison of the Nyquist plots  

Fig. 4  A special case that the rotation does not affect the stability (Pvsc1  = Pvsc2 
=1.0 p.u.; Z1 = Z2 = 0.1 j p.u ; Zs = 0.125 j p.u; VSC1: CC = 400, PLL = 20 Hz, 

PQ = 20 Hz; VSC2: CC = 200, PLL = 10, PQ = 10) 

However, it should be noted that the case study in Fig. 4 is 

not general; for general studies, the rotation should always be 

included since it will affect both the aggregated impedances and 

stability conclusions, more discussion will be shown later. 

C. Properties and impacts of the impedance rotation on the 

AC/DC coupled systems 

In this section, an AC/DC coupled system as shown in Fig. 5 

(a) will be analyzed. Typically, the sending-end VSC of the 

HVDC-link imposes a constant voltage and frequency control 

(i.e. V/f), whereas the receiving-end VSC controls the dc 

voltage of the HVDC. In order to derive the rotation matrix in 

a more general way, the voltage angles e.g. 𝜃1,2,3,ℎ𝑣𝑑𝑐1  are 

initially referred to an arbitrary common reference frame. Also, 

for compact representations of the HVDC-link, it is modeled as 

three-port modules [30], e.g. for the sending-VSC (AC currents 

flow into the VSC is positive, dc current flows into the dc-link 

is positive, see appendix for the models): 

( )

( )

( )

( ) ( )

( ) ( )

( )

( )

( )

local local

p_hvdc1 p_hvdc1
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I s U s
s s

I s U s
s Y s

I s U s





   
    

=    
     
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Y a

b
  (9) 

where 𝑰𝑝𝑛_ℎ𝑣𝑑𝑐1
𝑙𝑜𝑐𝑎𝑙 , 𝑼𝑝𝑛_ℎ𝑣𝑑𝑐1

𝑙𝑜𝑐𝑎𝑙  are local variables with respect to 

the local reference frame provided by∠𝜃ℎ𝑣𝑑𝑐1.  

Since the dc-side variables are irrelevant to reference frames, 

the AC/DC rotation matrix 

( )
( )rot hvdc1 2 1

rot_hvdc hvdc1

1 2 1


 



 
=  

 

T 0
T

0
    (10) 

is obtained by modifying the AC one, e.g. 𝑻𝑟𝑜𝑡(𝜃1) . Applying 

this matrix on both sides of (9) yields: 

( ) ( ) ( )

( )

local hvdc

rot hvdc1 pn_hvdc1 rot hvdc1 rot hvdc1 2 1global

HVDC1

1 2 rot hvdc1 dc_hvdc1Y

  







 − −
=  

  

T Y T T a
Y

b T
(11) 

clearly, all the elements of the matrix are affected by this 

rotation matrix except the dc_hvdc1Y .  

Usually, when an AC/DC coupled system is analyzed, the ac-

side impedance can be integrated to the dc-side by circuit 

operations. First, the aggregated admittance of the sending area 

(see Fig. 5 (a))  is written as 

 
( ) ( )( )

( ) ( )( )

1
global local

pn_pcc1 1 rot 1 pn_vsc1 rot 1

1
local

1 rot 2 pn_vsc2 rot 2

 
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−

−

= + − +

+ −

Y Z T Z T

Z T Z T
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Then, substituting it into (11) yields 

( )
1

local local

dc_hvdc1 1 2 pn_pcc1 pn_hvdc1 2 1 dc_hvdc1 dc_hvdc1

hvdc1

dc_hvdc1 dc_port dc_hvdc1

I Y U

I Y U

−

 
 = − + 
  

→ − = 

b Y Y a
(13) 

where 𝒀𝑝𝑛_𝑝𝑐𝑐1
𝑙𝑜𝑐𝑎𝑙 =  𝑻𝑟𝑜𝑡(𝜃ℎ𝑣𝑑𝑐1)𝒀𝑝𝑛_𝑝𝑐𝑐1

𝑔𝑙𝑜𝑏𝑎𝑙
𝑻𝑟𝑜𝑡(−𝜃ℎ𝑣𝑑𝑐1) , it is 

noticed that the global admittance of the sending area 

(i.e.  𝒀𝑝𝑛_𝑝𝑐𝑐1
𝑔𝑙𝑜𝑏𝑎𝑙

) is re-transformed into the local frame of the 

sending-VSC (i.e. ∠𝜃ℎ𝑣𝑑𝑐1).  

Therefore, the effective global reference frame is actually the 

local reference frame of the sending-VSC (i.e. ∠𝜃ℎ𝑣𝑑𝑐1) rather 

than the arbitrary one as initially defined. This means, the 

effective rotation matrix for the ith ac-side impedance of the 

sending-area is 𝑻𝑟𝑜𝑡(𝜃𝑖 − 𝜃ℎ𝑣𝑑𝑐1) , which is obtained by 

expanidng 𝒀𝑝𝑛_𝑝𝑐𝑐1
𝑙𝑜𝑐𝑎𝑙  using (12). 

Besides, if further include the dc side capacitor, the total dc-

side admittance seen from the sending-end VSC is obtained 

( ) ( )hvdc1

dc_send dc_port cap1Y s Y s sC= +       (14) 

For the receiving-end VSC’s analysis, a similar process can 

be done, where the global reference frame can be initially 

chosen as the voltage angle of the Thevenin grid, i.e. ∠𝜃𝑠 = 0. 

Likewise, the three-port module of the receiving-VSC is written 

as (ac currents flow out of VSC is positive, dc current flows into 

the VSC is positive, see appendix for the models): 
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local local

p_hvdc2 p_hvdc2
local

pn_hvdc2 2 1local local

n_hvdc2 n_hvdc2

1 2 dc_hvdc2

dc_hvdc2 dc_hvdc2

I U

I U
Y

I U





   
    

=    
     

      

Y c

d
   (15) 

By introducing the global ac-side admittance of the receiving 

area (i.e. seen from PCC2) 
global

pn_pcc2Y , the dc-side impedance of 

the receiving-end VSC is obtained as:  

( )
1

local local

dc_hvdc2 1 2 pn_pcc2 pn_hvdc2 2 1 dc_hvdc2 dc_hvdc2

hvdc2

dc_hvdc2 dc_port dc_hvdc2

I Y U

I Y U

−

 
 = − + 
  

→ = 

d Y Y c
(16) 

where 𝒀𝑝𝑛_𝑝𝑐𝑐2
𝑙𝑜𝑐𝑎𝑙 =  𝑻𝑟𝑜𝑡(𝜃ℎ𝑣𝑑𝑐2)𝒀𝑝𝑛_𝑝𝑐𝑐2

𝑔𝑙𝑜𝑏𝑎𝑙
𝑻𝑟𝑜𝑡(−𝜃ℎ𝑣𝑑𝑐2)  is the 

admittance with respect to the local reference frame provided 

by ∠𝜃ℎ𝑣𝑑𝑐2.  

Besides, if further includes the dc-side capacitor, the total dc-

side admittance seen from the receiving-VSC is 

( ) ( )hvdc2

dc_rec dc_port cap2Y s Y s sC= +       (17) 

Based on the above derivation, for the receiving-end VSC’s 

analysis, the effective rotation matrix for the jth ac-side 

impedance within the sending-area is 𝑻𝑟𝑜𝑡(𝜃𝑗 − 𝜃ℎ𝑣𝑑𝑐2), which 

is a similar result as the sending-end VSC’s analysis. 

In addition to the above dc-side analysis, the AC/DC coupled 

system can also be analyzed at one of the ac-side, for which the 

ac-side admittances seen from the sending- or the receiving-

VSC can be derived, e.g. (18) and (19). For instance, if the 

analysis is at the ac-side of the sending-VSC, then the dc-side 

admittance/impedance of the opposite side (i. e. 𝑌𝑑𝑐_𝑟𝑒𝑐  (𝑠)) is 

first developed in its own reference frame based on (16) and 

(17). Afterward, circuit analysis and operation are performed to 

derive the final ac-side admittance (18) for analysis. A similar 

process can be done for the ac-side of the receiving-VSC. 

In summary, the HVDC decouples the ac systems in terms of 

reference frames. For each ac system, the ac impedances in that 

area should be transformed into a reference frame provided by 

the corresponding AC/DC interface, e.g. the sending- or 

receiving-VSC. Once it has been done, all the impedances are 

unified and they can be connected via basic circuit laws, the 

resulting circuit model is shown in Fig. 5 (b).  

VSC1

VSC2

HVDC -link

Thevenin grid

1 1U 

2 2U 

3 3U 

hvdc1 hvdc1U 

Lines

1Z

2Z

3Z PCC 1

s sU 

sZ

hvdc2 hvdc2U 

Sending VSC Receiving VSC PCC 2

Sending Area

PQ contorl

PQ contorl 

V/f  contorl Edc and Q  contorl

Receiving Area  
(a)  Schematic of the AC/DC coupled system 

local

pn_hvdc1Y

local

pn_hvdc1U

2 1 dc_hvdc2Uc

local

pn_hvdc2Y

local

1 2 pn_hvdc1b U

dc_hvdc1Y
dc_hvdc2Y

local

1 2 pn_hvdc2d U

local

pn_hvdc2Ulocal

pn_pcc1Y
local

pn_pcc2Y

PCC 1 PCC 2local

pn_hvdc2I

2 1 dc_hvdc1Ua

local

pn_hvdc1I

dc_cabZ

Sending Area Receiving AreaSending VSC Receiving VSC

cap1C
cap2C

dc_hvdc1I
dc_hvdc2I

 
(b)  Circuit representation of the AC/DC coupled system 

Fig. 5 A simple interconnected AC/DC power electronics system for the study 

    
(a) The dc-side admittance seen from the sending-VSC                          

 
            (b) The dc-side admittance seen from the receiving-VSC 

Fig. 6 Impedance comparisons of the AC/DC coupled system with and 

without the rotation (for VSC1 and VSC2: PQ control = 10 Hz, PLL = 
20 Hz, CC = 300 Hz, P = 1.0. p.u.; for VSC-HVDC, dc voltage control 

= 50 Hz, Q control = 10 Hz, PLL = 10 Hz, ac grid SCR = 4; Z1 = Z2 = 

Z3 = 0.1 j p.u.; frequency is swept from 1 to 100 Hz in logarithmic 

space)  
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To further illustrate this rotation effects, the dc-side 

admittances e.g. (14) and (17) are calculated with and without 

the rotation when using the circuit operations. And, they are 

compared with the simulated frequency-scanning results. 

As shown in Fig. 6 (a) and (b), overall, the dc-side 

admittances with the rotation are consistent with simulations, 

whereas the ones without the rotation also exhibit some errors. 

Furthermore, it is noted that the dc-side admittance of the 

receiving-VSC seems not affected by the rotation, see Fig. 6 

(b). This is because the receiving area of this study only 

contains a Thevenin equivalent grid, whose impedance is dq 

symmetric and thus is invariant in terms of the rotation 

(according to P.1). In general, the rotation will affect both the 

magnitude and phase response like the plots in Fig. 6 (a). 

Therefore, the accuracy of stability assessments will be affected 

as well if the rotation is not properly considered. This will be 

shown in the next case study, where the stability of the AC/DC 

coupled system is evaluated at the dc side via Nyquist plots.  

The respective dc-side impedances (with the rotation) seen 

from the sending- and the receiving-VSC have been developed 

in (14) and (17), by further including the dc-side cable model, 

the dc-side source and load model (with the rotation) can be 

obtained and defined, e.g. the source impedance is  𝑍𝑑𝑐_𝑆(𝑠) =

𝑌𝑑𝑐_𝑟𝑒𝑐
−1 (𝑠) ,  and the load admittance is as 𝑌𝑑𝑐_𝐿(s) =

(𝑌𝑑𝑐_𝑠𝑒𝑛𝑑
−1 (𝑠) + 𝑍𝑐𝑎𝑏(𝑠))−1 . On the other hand, the dc-side 

source and load model without the rotation can be derived 

similarly, where 𝑍𝑑𝑐_𝑆  and 𝑌𝑑𝑐_𝐿  are calculated without 

considering the rotation, i.e. all the ac impedances using the 

locally defined ones. After this, impedance-ratio (i.e. the minor 

loop gain) can be formulated, e.g. 𝐿 =  𝑍𝑑𝑐_𝑆𝑌𝑑𝑐_𝐿 , then the 

Nyquist plots with and without the rotation can be compared. 

It should be noted that before inspecting the Nyquist plots, 

the open-loop poles of the impedance-ratio should be evaluated 

to see if there are right-half-plane (RHP) poles. As discussed 

before, since the source impedance of this study is not affected 

by the rotation (see Fig. 6 (b)), only the poles of the load 

admittance with and without rotation are calculated. As shown 

in Fig. 7 (a), there is a pair of RHP pole in the source 

impedance, whereas the load admittance does not have any 

RHP poles. Based on this RHP poles evaluation and the Nyquist 

plots in Fig. 7 (b), it is obtained that without the rotation it 

concludes a stable system, whereas with the rotation it 

concludes an unstable system. Further, time domain simulation 

in Fig. 7 (c) proves that the stability conclusion without the 

rotation is incorrect. This case study clearly shows the 

importance of the rotation on accurate stability analysis. 

The above sections discuss the rotation operation and 

emphasize its importance in accurate impedance network 

( )

( )
( )

( ) ( )

( ) ( )( ) ( )

( )

( )

local local

p_hvdc1 p_hvdc12 1 1 2local

pn_hvdc1 1local local1
n_hvdc1 n_hvdc1dc_rec dc_cab dc_hvdc1

+
I s U ss s

s
I s U sY s Z s Y s

 

−
−

    
 =   
    + −    

a b
Y         (18) 

( )

( )
( )

( ) ( )

( ) ( )( ) ( )

( )

( )

local local

p_hvdc2 p_hvdc22 1 1 2local

pn_hvdc2 1local local1
n_hvdc2 n_hvdc2dc_send dc_cab dc_hvdc2

+
I s U ss s

s
I s U sY s Z s Y s

 

−
−

    
 =   
    + −    

c d
Y        (19) 

 

   
(a) Open-loop RHP poles check                                                                   

 
(b) Nyquist plots comparison 

 
(c) Time domain simulation (a small step change of the active power 

reference is applied to VSC1) 
Fig. 7 A case study of the stability effects of the rotation on the AC/DC 

coupled system (VSC1 and VSC2: PLL = 20 Hz, CC = 300 Hz, PQ = 10 

Hz, output power = 1 p.u. VSC-HVDC receiving end: PLL = 20 Hz, dc 
voltage control = 45 Hz, reactive power control = 10 Hz, Z1= Z2= 0.1 j p.u. 

Z3 = 0.1 j p.u., Zs = 0.125 j p.u., Zdc_cab = 0.05 j p.u.) 
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modeling and stability assessment. It lays the foundation for the 

forthcoming analyses, where the restrictions and conditions of 

different stability criteria when applied to impedance networks 

will be discussed. And, without special indication, all the 

impedance models will be calculated with the rotation. 

III. COMPARATIVE STUDIES OF THE STABILITY CRITERIA FOR 

IMPEDANCE NETWORK STABILITY ASSESSMENTS 

A. Overview of impedance-based stability criteria 

Impedance-based stability criteria for either ac and dc 

systems have been extensively discussed before (e.g. [10] and 

[19]). Typically, for a single-VSC and grid system, a source and 

load equivalent system partitioned at the grid connection point 

can be established [20]; then the impedance-ratio (i.e. minor 

loop gain) of this equivalent system is analyzed and plotted in 

a complex plane (i.e. the eigenloci); afterward, by counting the 

number of encirclement of the eigenloci, overall stability of the 

equivalent system can be concluded according to the (inverse) 

Nyquist criterion [31], this method is referred to as the 

“Nyquist-based stability analysis” in this work. It has been 

noticed that, aside from the impedance-ratio, the source and 

load model can be formulated in different ways according to the 

control characteristics of converters, e.g. the “Z+Z” type and 

“Z+Y” as presented in [32], it claims that the typical 

impedance-ratio-based criterion may not be sufficient for this 

“Z+Z” type system, where the encirclement of the denominator 

impedance (a term in [32]) should also be counted. In fact, this 

modified criterion is related to the RHP poles issue of the 

impedance-ratio-based methods. And this RHP poles issue on 

accurately evaluating stability through the Nyquist criterion is 

further emphasized in [33] and [34]. In which, [33] shows that 

the RHP poles of multi-converter systems can be easily found 

due to interconnections and equivalents. Therefore, careful 

attention should be paid here if the Nyquist criterion and 

impedance-ratio are applied. Later, it will be shown that the 

Nyquist-based analysis is also sensitive to the partition points.  

On the other hand, one way may avoid this RHP poles issue 

is to employ the closed-loop types of stability criteria, e.g., 

recent applications of wind farm analysis (e.g.[22]-[24]) show 

that the stability of an interconnected system can be evaluated 

by the loop impedance and the Norton admittance, which are 

all obtained from the impedance network model. 

Since there are fundamental differences in applying those 

stability criteria of a single VSC and grid system to an 

interconnected one, a clarification on this regard is necessary. 

To fulfill this task, comparative studies of stability criteria will 

be conducted in this section, from which several issues, e.g. the 

order-cancellation and the sensitivity to partition points, etc., 

are revealed and clarified. For a better presentation, those 

stability criteria aimed at comparing are briefly introduced. 

B. Introduction of the three types of stability criteria 

Once the rotation issue is addressed, impedance network of 

an interconnected system can be accurately formulated via 

basic circuit laws or systematically by the Norton admittance 

matrix, e.g., for the AC coupled system in Fig. 8 (a) it is  

( )

( )

( )

( )

( )

( )

( )

sub2sub1
syssys

sub4
sub3

sys
sys

sys

vsc1 1 2 2 1

1 12 2 vsc2 2 2

2 2

1 2 1 2 ss 3

s

s s

s s

s s





    + −
       + −   

   
 =  
 

  
  − − + +       
  

YY

YY

Y

Y Y 0 Y

I U0 Y Y Y

I U

Y Y Y Y YI U





(20) 

where 𝒀𝑣𝑠𝑐1, 𝒀𝑣𝑠𝑐1  are VSC1’s and VSC2’s MSD admittance, 

𝒀1, 𝒀2  are the line admittances. 𝑰𝑠 = 𝒀𝑠𝑼𝑠  is the Norton 

equivalent of the ac grid. 𝑰1, 𝑰2  are the independent current 

sources of VSC1 and VSC2. It is noted that, since all the 

converters are designed to be stable under an ideal grid 

condition,  thereby 𝑰1, 𝑰2 are stable (e.g. [20], [33]).  

1) Nyquist-based stability analysis 

For this criterion, a partition point is first defined for finding 

the source and load equivalents, usually, the PCC, see the 

equivalent system in Fig. 8 (b), where the source subsystem of 

this case is the grid impedance, which is  𝒁𝑆𝑜𝑢𝑟𝑐𝑒 = 𝒁𝑠, and the 

load subsystem is found from (20) by replacing the grid branch 

with an injection 𝑰𝑖𝑛𝑗, the resulting model is 

( )

( )

( )

( )

( )

( )

1 1
sub1 sub2

sys sys

2 2sub3 sub4

sys sys s

inj 3

s s

s s

s s

   
    

=    
−     

      

I U
Y Y

I U
Y Y Y

I U

    (21) 

by setting 𝑰1 =  𝑰2 =0 

( ) ( )( )
( )

( )

Load

1
sub4 sub3 sub1 sub2

inj sys s sys sys sys 3

s

s s
−

= − − 

Y

I Y Y Y Y Y U   (22) 

thus 𝒀𝐿𝑜𝑎𝑑  is obtained and corresponding Norton current 

source is obtained from (21) by setting 𝑼3 = 𝟎  and 

measuring −𝑰𝑖𝑛𝑗 , i.e. 𝑰𝐿𝑜𝑎𝑑 = −𝒀𝑠𝑦𝑠
𝑠𝑢𝑏3(𝒀𝑠𝑦𝑠

𝑠𝑢𝑏1)−𝟏 [
𝑰1

𝑰2
] 𝒀𝐿𝑜𝑎𝑑 . 

1U

2U

3U

1I

2I

sI

1Z

2Z

sY

vsc1Y

vsc2Y

    Load subsystem Source subsystem

PCC

( )Load sI

( )Load sY

( )Source sZ

( )Source sU

   

( )ptb sU

Loop circuit

( )Source sZ

( )Load sY

 
           (a) Norton admittance model for SC3                              (b) Source and load model at PCC  for SC1                        (c) Closed-loop circuit for SC2 

Fig. 8 Circuit representations of the AC coupled system for stability analysis 
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Consequently, the impedance-ratio is derived as 𝑳𝐴𝐶 =
𝒁𝑆𝑜𝑢𝑟𝑐𝑒𝑳𝐿𝑜𝑎𝑑  and based on which the Nyquist criterion states: 

Stability criterion 1(SC1): if 𝑳𝐴𝐶  does not contain any right 

RHP poles, then the closed-loop system is stable if and only if 

the eigen-loci of 𝑳𝐴𝐶  does not encircle the critical point (-1, 0 

j). If 𝑳𝐴𝐶  has RHP poles, the system is stable if and only if the 

number of counterclockwise encirclements of the (-1,0 j) equals 

to the number of the RHP poles of 𝑳𝐴𝐶 , otherwise, it is unstable. 

Remark: Since the impedance-ratio is essentially an 

equivalent model derived from circuit operations on the 

impedance network, improper circuit operations (e.g. operation 

on identical branches) may result in inaccurate equivalent 

models and stability conclusions. On the other hand, physically, 

the impedance-ratio can be regarded as a metric of the 

interactive stability of two subsystems at a given point, and the 

intensity of this interaction could vary if a different partition 

point is inspected. This feature, in this work, is referred to as 

the “sensitivity to partition points” that will be explored later. 

2) Loop impedance-based stability analysis 

As noticed before, the loop impedance is a closed-loop model 

of an impedance network, characterizing the system’s response 

seen from one point, see Fig. 8 (c), the loop impedance is 

( ) ( ) ( )

( ) ( )

1

Loop Load Source

1 vsc1 2 vsc2 s||

s s s−= +

= + + +

Z Y Z

Z Z Z Z Z
     (23) 

where 𝒁𝑣𝑠𝑐1,2 =  𝒀𝑣𝑠𝑐1,2
−1 , 𝒁1,2 =  𝒀1,2

−1, and 𝒁𝑠 =  𝒀𝑠
−1.  

Based on the circuit properties, the current response is stable 

if 𝒀𝐿𝑜𝑜𝑝 does not have any RHP poles. Since 𝒀𝐿𝑜𝑜𝑝 = 𝒁𝐿𝑜𝑜𝑝
−1 =

𝑎𝑑𝑗(𝒁𝐿𝑜𝑜𝑝)

det (𝒁𝐿𝑜𝑜𝑝)
, this stability criterion can be stated as: 

Stability Criterion 2 (SC2): The closed-loop system is stable 

if and only if there are no RHP poles of  𝒀𝐿𝑜𝑜𝑝, or equivalently 

there are no RHP zeros of  det (𝒁𝐿𝑜𝑜𝑝). 

Remark:  Compared to the impedance-ratio of SC1, this 

criterion employs a model resembling the impedance-sum. 

However, the stability criterion is different, where SC2 directly 

evaluates the stability through the closed-loop poles.  

Therefore, SC2 is absent of the RHP poles issue. Nevertheless, 

since the loop impedance is derived by imposing the circuit 

operations on the impedance network, it is an equivalent model 

that is sensitive to improper circuit operations as well. 

3) Norton admittance-based stability analysis  

Rather than using the equivalents, the Norton admittance 

(20) can be directly employed for stability analysis. Since the 

Norton admittance is obtained through current injections, the 

voltage responses are stable if 𝒁𝑠𝑦𝑠  does not have any RHP 

poles. Also, due to 𝒁𝑠𝑦𝑠 =  𝒀𝑠𝑦𝑠
−1 =

𝑎𝑑𝑗(𝒀𝑠𝑦𝑠)

det (𝒀𝑠𝑦𝑠)
, this criterion can 

be stated as: 

Stability Criterion 3 (SC3): The closed-loop system is stable 

if and only if there are no RHP poles of 𝒁𝑠𝑦𝑠, or equivalently 

there are no RHP zeros of det (𝒀𝑠𝑦𝑠). 

Remark: Clearly, the Norton admittance model preserves the 

overall system’s structure, therefore it is less sensitive to the 

circuit operations compared to SC1 and SC2. Also, it is a 

closed-loop type of criterion since it calculates and evaluates all 

the closed-loop poles of the system directly. 

C. Comparative studies of SC1, SC2, and SC3 on stability  

This section selects the AC coupled system (e.g. Fig. 2) for 

the analysis. Notice that all the models are accurately derived 

with the rotation, thus stability impacts are only associated with 

the stability criteria aimed at comparing. 

1) Case I: A case to show the consistency of SC1-SC3 

First, a marginally unstable case is selected (known as the 

critical case) to show the model accuracy and the consistency 

of those criteria in stability assessments.  

As shown in Fig. 9 (a), the Nyquist plot (SC1) predicts an 

unstable system, more specifically, a marginally unstable 

system since the clockwise encirclement is close to the critical 

point (-1,0 j). In Fig. 9 (b), a similar conclusion is drawn 

according to the results of SC2 and SC3, where a pair of RHP 

zeros close to the imaginary axis is presented. To justify the 

stability predictions of SC1, SC2, and SC3, time domain 

simulation with a small perturbation applied to the VSC1 is 

shown in Fig. 9 (c). From which it is seen that the system is 

indeed a marginally unstable one. Besides, the oscillation 

frequency of the active power is around 19 Hz, which is close 

to the predicted frequency of SC2 and SC3, i.e. 
111.7

2𝜋
≈18.6 Hz, 

this again justifies the model accuracy. 

   
(a) Nyquist plots at PCC                                      (b) zeros-plots of SC2 and SC3                        (c) Time domain simulation 

Fig. 9 Case I (VSC1-PLL = 15 Hz, VSC2-PLL = 40 Hz, others: PQ = 20 Hz, CC = 300 Hz, P = 1.0 p.u.; Z1 = Z2 = 0.1 j p.u., Zs = 0.125 p.u.) 
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The above case study shows that for general studies those 

criteria seem consistent, however, there does exist some special 

cases where the inconsistency may occur. This is because the 

models of SC1 and SC2 are derived from circuit equivalents, 

thus conveying some restrictions, e.g. sensitive to circuit 

operations as mentioned before. 

2) Case II: A case to show the inconsistency of SC1-SC3 

To provoke the issue of concern, the same study system, 

however, with the presence of identical branches is constructed. 

This is fulfilled by imposing the condition: 𝒀𝑣𝑠𝑐1 = 𝒀𝑣𝑠𝑐2  and 

𝒁1 = 𝒁2 . As a result, the “order-cancellation” issue will be 

unintentionally provoked (see appendix. C for more 

illustration), and it will affect the models of SC1 and SC2 since 

they are derived from circuit equivalents. For example, the 

impedance of the load branch under such a condition is 

simplified to 𝒁𝐿𝑜𝑎𝑑 =  0.5 ∙ (𝒁𝑣𝑠𝑐1 + 𝒁1), clearly, the order of 

which is reduced by half.  
Table I ZEROS OF SC2 AND SC3 UNDER CASE II 

SC2 (*102) SC3(*102) 

Zeros of det (ZLoop) (*102) Zeros of det (Ysys) (*102) 

-0.1298 + 0.0132i 
-0.1298 - 0.0132i 

-0.2115 - 0.1411i 
-0.2115 + 0.1411i 

-0.0367 + 0.3796i 

-0.0367 - 0.3796i 
-4.9087 + 3.3301i 

-4.9087 - 3.3301i 

-0.1088 - 0.0142i 
-0.1088 + 0.0142i 

-0.1298 + 0.0132i 
-0.1298 - 0.0132i 

-0.2115 - 0.1411i 

-0.2115 + 0.1411i 
-0.2131 - 0.1713i 

-0.2131 + 0.1713i 

 

-0.0367 + 0.3796i 
-0.0367 - 0.3796i 

0.0004 + 0.6515i 

0.0004 - 0.6515i 

-1.1954 + 3.7302i 

-1.1954 - 3.7302i 
-4.9087 + 3.3301i 

-4.9087 - 3.3301i 

Predict a stable system Predict an unstable system 

To show its stability impacts, SC2 and SC3 are first 

compared in Table I. From which it is seen that SC2 loses half 

of the modes compared to SC3, more importantly, one of the 

missing modes is unstable (e.g. 0.04 ± 65.15 j), thus the SC2 

will draw an opposite stability conclusion as the SC3. Next, the 

stability result of SC1 evaluated at the PCC is further shown in 

Fig. 10 (a), it is seen that the number of counterclockwise 

encirclements is the same as the number of the RHP poles (the 

evaluation is omitted), thus SC1 concludes a stable system.  

Based on the stability tests, so far, SC1 and SC2 predict a 

stable system whereas SC3 predict an unstable one. To show 

which stability criterion is correct, time domain simulation with 

a small perturbation on VSC1 is conducted and the results are 

shown in Fig. 10 (b), clearly, it is a small-signal unstable 

system. Therefore, only SC3 succeeds in this stability test.  

This comparison clearly reveals that the improper circuit 

operations (e.g. the order-cancellation) may result in inaccurate 

models for stability analysis, and finally leads to inaccurate 

stability assessments. This issue mostly affects the stability 

criteria using equivalent models e.g. SC1 and SC2, thus careful 

attention should be paid on that.  

To address this issue, one could 1) calculate a new loop 

impedance defined at a different branch for SC2; and 2) define 

a new partition point and calculate the new source and load 

equivalent for SC1. For the former one, a simple justification is 

shown in the appendix. D; for the latter one, the Nyquist plot is 

re-evaluated at VSC1(the terminal of which is the new partition 

point) and shown in Fig. 10(c), since there are no RHP poles, 

the clockwise encirclements of (-1,0 j) indicate an unstable 

system, which is the correct conclusion as identified before. 

Besides, from Fig. 10 (b) one may observe that the VSC1 and 

VSC2 within the identical branch are oscillating against each 

other (see the opposite phase of active power), which implies 

that this oscillation cannot be seen by the grid. This physically 

explains why the modes from SC2 are all stable. 

Lastly, by comparing the Nyquist plots of different partition 

points (i.e. at PCC and VSC1), it is identified that SC1 is 

“sensitive to partition points”, thus a stable conclusion of one 

partition point is merely a necessary but not sufficient condition 

for a stable system. Therefore, a scanning of all the partition 

points (i.e. multiple Nyquist plots) is suggested to assure a 

precise stability conclusion. Although this process complicates 

the stability assessments of SC1, it could be an advantage in 

identifying the system’s weak point that will be presented in the 

next section. Besides, a brief summary of SC1, SC2, and SC3 

on stability analysis is shown in Table II. 

   
 

         (a) Nyquist plots at PCC                                             (b) Time domain simulation                      (c) Nyquist plots at VSC1 terminal 
Fig. 10 Case II (VSC1 and VSC2 are identical: CC = 150 Hz, PLL = 20 Hz, PQ = 10 Hz, P = 1.0 p.u.; Z1 = Z2 = 0.15 j p.u.; Zs = 0.15 p.u., in this case the 

grid impedance is pure resistive to better show this effect) 
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IV. DISCUSSION ON THE SYSTEM’S WEAK POINT 

IDENTIFICATION AND ITS APPLICATION TO THE NETWORK 

DESIGN AND PLANNING  

A. Identification of the system’s weak point  

This section will analyze the AC coupled system under a 

stable condition. By scanning the partition points, multiple 

Nyquist plots can be obtained, from which the relative stability 

margins of each partition point can be extracted and compared 

so that the relative weak point is found. 

First, stability predictions of SC2 and SC3 are shown in Fig. 

11 (a). Since there are no identical branches of this study, it will 

be absent of the order-cancellation issue as encountered in a 

previous case study, thus the number of zeros of SC2 and SC3 

under this case is identical, and they all predict a stable system.  

Then, a scanning of partition points with SC1 will be 

performed. Before this, the source and load equivalents 

partitioned at the VSC1’s and VSC2’s terminal can be derived 

in a similar way as the one at the PCC (see Fig. 8 (b)). After 

this, multiple Nyquist plots are obtained and compared in Fig. 

11 (b). Notice that, in this study, there are no RHP poles at those 

partition points, meanwhile, only the dominant eigenloci are 

shown. From the multi-Nyquist plots, it is seen that the partition 

point at VSC1 exhibits the highest relative margin, followed by 

the one at the PCC, whereas the partition point at the VSC2 has 

the lowest relative margin. Therefore, the partition point at the 

VSC2’s terminal is the identified vulnerable point. 

To verify if this identified weak point is correct or not, small 

perturbations at VSC1, VSC2, and PCC are applied 

respectively to provoke the small-signal dynamics from 

different parts of the system. In which, perturbations at VSC1 

and VSC2 are fulfilled by a small change of active power 

reference (i.e. 0.01p.u.), whereas the perturbation at PCC is 

fulfilled by a small magnitude change of grid voltage (i.e. 

0.01p.u.). The results are shown in Fig. 11 (c), it is seen that 

regardless of the location of the perturbations, the VSC2 always 

exhibits the most intensive oscillatory behavior, indicating it is 

the system’s weak point.  

In summary, this study successfully shows the capability of 

the Nyquist-based analysis in the identification of the system’s 

weak point. This knowledge is useful for the network design 

and planning if new components are going to be connected, this 

benefit will be shown in the next case study. 

B. Stability-oriented network design and planning  

This section will show how the knowledge of identified weak 

point can help the network planning from the stability point of 

view if a new VSC is going to be connected. A same study 

system as the previous one is employed, and the schematic 

diagram is shown in Fig. 12 (a), where the node U2 is the 

identified weak point as the last case study has shown, and 

VSC3 is the new component going to be connected. To show 

the effects, simulations of two choices for placing VSC3 are 

compared, i.e. connected to U1 (i.e. choice 1) and connected to 

U2 (choice 2). 

             
                      (a) Zeros-plot of SC2 and SC3                                       (b) Nyqusit plots of SC1 at different partition points 

 
(c) Time domain simulations 

Fig. 11 Nyquist-based analysis of system’s weak point (VSC1: CC = 300 Hz, PLL = 10 Hz, PQ = 10 Hz,  P = 1.0 p.u.; VSC2: CC = 220 Hz, PLL = 10 Hz, 

PQ = 10 Hz, P = 1.0 p.u; Z1 = 0.1 j, Z2 = 0.2 j p.u., Zs = 0.125 j p.u.) 
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In the simulation, before the VSC3 is connected, the current 

controller of VSC2 is initially set to 300 Hz to assure a good 

overall margin. After the VSC3 is connected and the system is 

in steady state (around 7 s), the current controller of VSC2 is 

then reduced to 220 Hz (a value used in Fig. 11). Based on this 

process, simulation results are shown in Fig. 12 (b). It is clearly 

observed that if VSC3 is connected to the node U1, the resulting 

system is still stable; whereas if it is connected to the node U2, 

the resulting system is unstable. The mechanism behinds this is 

clear, which is due to the fact that the node U2 is the identified 

weak point (i.e. Fig. 11) of the system, thus it is susceptible to 

be unstable when new components are connected here. 

Therefore, from a stability-oriented network planning point of 

view, the node U1 is the preferable place for adding new 

components. 

V. CONCLUSION 

Impedance is a linear concept with clear physical 

implications. Typically, the impedance of a VSC is locally 

evaluated via linearization, a process which is dependent on the 

reference frame where the linearization is performed, thus an 

operation of matrix rotation is required before connecting them 

in circuits for the purpose of network stability analysis. This 

paper revealed three major properties associated with the 

rotation, and the rotation impacts on stability assessments are 

analyzed and clarified. It turns out that under a certain condition 

the rotation though will affect the shapes of an aggregated 

impedance, it may not affect the corresponding stability 

conclusion; however, the condition justifying the above 

statement is not general, also may not be useful from a practical 

viewpoint since it imposes a condition on all the VSCs that they 

should have identical load angles. Therefore, for the purpose of 

general and precise impedance network modeling and stability 

analysis, the operation of rotation should always be included. 

On the other hand, even if the rotation operation is properly 

applied when formulating the impedance network, still, stability 

assessments of the impedance network may not be accurate if 

directly applying the stability criteria of a single VSC and grid 

system to an interconnected one. In this regard, three types of 

commonly employed stability criteria are compared and 

clarified regarding their restrictions and conditions, the major 

findings are: 

1) The Nyquist-based (SC1) and the loop impedance-based 

(SC2) criteria are sensitive to circuit operations. Improper 

circuit operations, e.g. parallel operation on identical branches, 

may lead to wrong stability conclusions (i.e. the order-

cancellation issue discussed in this work). The Norton 

Table II A SUMMARY OF SC1, SC2, SC3 ON STABILITY ANALYSIS 

Items  SC1 SC2 SC3 

Description Open-loop model resulting from 

circuit operation and equivalent  

i.e. Impedance-ratio 

Closed-loop model resulting from 

circuit operation and equivalent 

i.e. Loop impedance  

Closed-loop model with overall system 

structure 

i.e.  Norton admittance 

Stability criterion Nyquist criterion  Zeros of det (ZLoop) Zeros of det (Ysys) 

Need RHP  

open-loop poles check? 

Yes No No 

Need or sensitive 
to partition point? 

Yes No No 

Need or sensitive to  

circuit operations? 

Yes Yes No 

Able to identify the 
system’s weak point?  

Yes No Could be (need further analysis)  

Summary and Remarks  1)  A stable conclusion of one 

partition point is only a necessary 

but not sufficient condition of a 
stable system (e.g. Case II); 

2) A scanning of partition points (i.e. 

multi-Nyquist plots) is suggested to 
draw a precise stability conclusion  

locate system’s vulnerable points. 

1) Sensitive to circuit operations 

(e.g. the order cancellation issue 

in Case II may lead to inaccurate 
stability predictions); 

2) One way may address this issue 

is to re-calculate the loop 
impedance from another branch 

and evaluate the stability. 

1) In this work, SC3 exhibits fewer 

restrictions than SC1 and SC2 with 

respect to circuit operations; 
2) Although its capability in weak 

point identification is not discussed in 

this work, there is a possibility to 
associate the vulnerable modes from 

the branch and node information. 

 

VSC2

Line 1

Grid 

Line 2

VSC1

UPCC

U1

U2

Identified weak point 

Plans to connect 
a new VSC

Choice 1

Choice 2

 
(a) Schematic diagram of adding a new VSC to the existing system 

 
(b) Time domain simulations 

Fig. 12 A case study on better network planning with the knowledge of 

identified weak point (VSC3: PQref = 0 p.u. since the control impacts are 

focused. PQ = 10 Hz, PLL = 10 Hz, CC = 500 Hz. Configurations of the 

rests are identical to Fig. 11 ) 
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admittance-based criterion (SC3) exhibits fewer restrictions on 

this regard since it preserves the overall system structure; 

2) In addition to the above issue, stability analysis with SC1 

is also sensitive to the partition points. It turns out that a stable 

conclusion of one partition points is merely a necessary but not 

sufficient condition for a stable system; 

3) Countermeasures to address the above issues could be 

performing a scanning of partition points for SC1 (i.e. multiple 

Nyquist plots evaluation), and re-calculating the loop 

impedances from a different branch for SC2.  

4) Specific to SC1, although the partition-points-scanning 

complicates the stability assessments, the process and the result 

of which is proven to be an advantage in identifying the 

system’s weak point. Also, a further case study shows that this 

knowledge of the system’s weak point can better facilitate the 

stability-oriented network design and planning when now 

components are going to be connected to the existing system, 

and in turn, making it a promising counterpart to the sensitivity 

analysis of the state-space models. 

Lastly, in this work, SC3 exhibits fewer restrictions than 

SC1 and SC2 with respect to circuit operations, this does not 

necessarily imply that SC3 is a general criterion on all aspects. 

Its generality, as well as the capability in system’s weak point 

identification, are worth being explored in future works. 

APPENDIX 

Appendix A and B will present the MSD employed for the 

analysis of the AC coupled and the AC/DC coupled system. 

Generally, they can be linearly transformed from the well-

known dq impedances. One may refer to [11] for the dq 

impedance modeling, [17] for the concept and method of MSD 

impedance,  and [18] for the MSD impedance modeling of 

control blocks. Overall, VSCs of this work are controlled with, 

i.e. the PQ, the Edc/Q, and the V/f control. 

A. MSD Impedance model of the PQ controlled VSC 

The MSD admittance model of VSC1,2 is derived as: 

𝒀𝑝𝑛_𝑣𝑠𝑐1,2
𝑙𝑜𝑐𝑎𝑙 =

[
𝐻𝑐(1 + 1.5𝑈𝑔0

∗ 𝐻𝑠) + 𝑍𝑓𝑝 0

0 𝐻𝑐(1 + 1.5𝑈𝑔0𝐻𝑠) + 𝑍𝑓𝑝

]

−1

∙

[
1 − 𝐺𝑝𝑙𝑙𝑝 𝐺𝑝𝑙𝑙𝑝 + 1.5𝐻𝑠𝐻𝑐𝐼𝑐0

𝐺𝑝𝑙𝑙𝑛 + 1.5𝐻𝑠𝐻𝑐𝐼𝑐0
∗ 1 − 𝐺𝑝𝑙𝑙𝑛

]                      (A.1) 

where 𝐺𝑝𝑙𝑙𝑝 =
0.5(𝑈𝑐0+𝐻𝑐𝐼𝑐0)𝐻𝑝𝑙𝑙

𝑠+𝑈𝑔𝑑0𝐻𝑝𝑙𝑙
. 𝐻𝑐 , 𝐻𝑠   are the PI controllers 

for PLL and PQ control. 𝑍𝑓𝑝 = (𝑠 + 𝑗𝜔𝑠)𝐿𝑓 + 𝑅𝑓 . 𝑍𝑓𝑝(𝑠) =

(𝑍𝑓𝑛(−𝑠))∗ and 𝐺𝑝𝑙𝑙𝑛(𝑠) = (𝐺𝑝𝑙𝑙𝑝(−𝑠))∗ . 𝑈𝑐0, 𝐼𝑐0  are the 

voltage and current phasors of VSC. 𝑈𝑔𝑑0is d-axis grid voltage. 

B. MSD Impedance model of HVDC-link (V/f and Edc/Q) 

The VSCs of the HVDC are represented by three-port 

modules. Here only presents the models within the modules.  

1) The sending-end VSC (i.e. the V/f controlled VSC) 

 

where Hv is the ac voltage PI controller, 𝑍ℎ𝑣𝑑𝑐_𝑓𝑝 = (𝑠 +

𝑗𝜔𝑠)𝐿ℎ𝑣𝑑𝑐_𝑓 + 𝑅ℎ𝑣𝑑𝑐_𝑓. D0 is the normalized ac voltage phasor 

of sending-VSC. I0_hvdc1 is the current phasor. 𝜃0  is the voltage 

angle between the PCC1 and the sending-VSC 

terminal. 𝑉𝑑𝑐0
ℎ𝑣𝑑𝑐is the nominal dc voltage. 

2) The receiving-end VSC (i.e. the Edc/Q controlled VSC) 

where 
𝑨(𝑠) =

 [
𝐻𝑐 ∙ (1 +

3𝐻𝑄

4
𝑈𝑔0_ℎ𝑣𝑑𝑐

∗ ) + 𝑍ℎ𝑣𝑑𝑐𝑓𝑝
−

3𝐻𝑄𝐻𝑐

4
𝑈𝑔0_ℎ𝑣𝑑𝑐

−
3𝐻𝑄𝐻𝑐

4
𝑈𝑔0_ℎ𝑣𝑑𝑐

∗ 𝐻𝑐 ∙ (1 +
3𝐻𝑄

4
𝑈𝑔0_ℎ𝑣𝑑𝑐) + 𝑍ℎ𝑣𝑑𝑐_𝑓𝑛

]; 

𝑩(𝑠) =  [
1 − 𝐺𝑝𝑙𝑙𝑝 − 

3𝐻𝑄𝐻𝑐

4
𝐼0_ℎ𝑣𝑑𝑐

∗ 𝐺𝑝𝑙𝑙𝑝 + 
3𝐻𝑄𝐻𝑐

4
𝐼0_ℎ𝑣𝑑𝑐

𝐺𝑝𝑙𝑙𝑛 + 
3𝐻𝑄𝐻𝑐

4
𝐼0_ℎ𝑣𝑑𝑐

∗ 1 − 𝐺𝑝𝑙𝑙𝑛 −  
3𝐻𝑄𝐻𝑐

4
𝐼0_ℎ𝑣𝑑𝑐

]; 

 𝐺𝑝𝑙𝑙𝑝 =
0.5(𝐷0𝑉𝑑𝑐0

ℎ𝑣𝑑𝑐+𝐻𝑐𝐼0_ℎ𝑣𝑑𝑐)𝐻𝑝𝑙𝑙

𝑠+𝑈𝑔𝑑0_ℎ𝑣𝑑𝑐𝐻𝑝𝑙𝑙
. 𝐻𝑐 , 𝐻𝑑𝑐 , 𝐻𝑄 , are the current, 

dc voltage and reactive power PI controller. 𝑈𝑔𝑑0_ℎ𝑣𝑑𝑐  d-axis 

PCC2 voltage phasor. 𝐷0, 𝐼0_ℎ𝑣𝑑𝑐 , 𝑉𝑑𝑐0
ℎ𝑣𝑑𝑐 have the same meaning 

as the sending-VSC. In addition, the dc cable is modeled as: 

𝑍𝑑𝑐_𝑐𝑎𝑏 = 𝑠𝐿𝑐𝑎𝑏 + 𝑅𝑐𝑎𝑏 .  

C. Illustration of the order-cancellation issue   

The loop impedance of the AC coupled system  can be 

derived as, 𝒁𝐿𝑜𝑜𝑝 =  (𝒁𝐵𝑅1
−1 + 𝒁𝐵𝑅2

−1 )−1 + 𝒁𝑠 , where 𝒁𝐵𝑅1 =

𝒁𝑣𝑠𝑐1 + 𝒁1 , and 𝒁𝐵𝑅2 = 𝒁𝑣𝑠𝑐2 + 𝒁2 . For better illustration, 

taking a scalar circuit as an example, where the loop impedance 

is simplified as 𝑍𝐿𝑜𝑜𝑝 =
𝑍𝐵𝑅1∙𝑍𝐵𝑅2

𝑍𝐵𝑅1+𝑍𝐵𝑅2
+ 𝑍𝑠 , if the branch 

impedances are presented as polynomials and they are identical, 

then the loop impedance is written as 

𝒀𝑝𝑛_ℎ𝑣𝑑𝑐1
𝑙𝑜𝑐𝑎𝑙 = [

𝑍ℎ𝑣𝑑𝑐_𝑓𝑝 0

0 𝑍ℎ𝑣𝑑𝑐_𝑓𝑛
]

−1

∙

[
1 + 0.5𝑒−𝑗𝜃0𝑉𝑑𝑐0

ℎ𝑣𝑑𝑐𝐻𝑣 0.5𝑒−𝑗𝜃0𝑉𝑑𝑐0
ℎ𝑣𝑑𝑐𝐻𝑣

0.5𝑒𝑗𝜃0𝑉𝑑𝑐0
ℎ𝑣𝑑𝑐𝐻𝑣 1 + 0.5𝑒𝑗𝜃0𝑉𝑑𝑐0

ℎ𝑣𝑑𝑐𝐻𝑣

]; 

𝒂2×1 = [
0.5𝐷0

∗𝑒−𝑗𝜃0

𝑍ℎ𝑣𝑑𝑐_𝑓𝑝

0.5𝐷0𝑒𝑗𝜃0

𝑍ℎ𝑣𝑑𝑐_𝑓𝑛
]

𝑇

; 

𝑌𝑑𝑐_ℎ𝑣𝑑𝑐1 = 1.5 ∙ [𝐷0𝑒𝑗𝜃0 𝐷0
∗𝑒−𝑗𝜃0] ∙ 𝒂2×1; 

𝒃1×2 = 1.5 ∙ [𝐷0𝑒𝑗𝜃0 𝐷0
∗𝑒−𝑗𝜃0] ∙ 𝒀𝑝𝑛_ℎ𝑣𝑑𝑐1

𝑙𝑜𝑐𝑎𝑙 − 1.5 ∙

𝐻𝑣𝑅𝑒(𝐼𝑐0𝑒𝑗𝜃0) [
1
1

]
𝑇

                                                 (A.2) 

𝒀𝑝𝑛_ℎ𝑣𝑑𝑐2
𝑙𝑜𝑐𝑎𝑙 = 𝑨(𝑠)−1𝑩(𝑠); 

𝒄2×1 = 𝑨(𝑠)−1 [
𝐻𝑑𝑐𝐻𝑐𝑉𝑑𝑐0

ℎ𝑣𝑑𝑐 + 𝐷0

𝐻𝑑𝑐𝐻𝑐𝑉𝑑𝑐0
ℎ𝑣𝑑𝑐 + 𝐷0

∗
] ; 

𝒅1×2 =
1.5

𝑉𝑑𝑐0
ℎ𝑣𝑑𝑐 ∙ [𝐼0_ℎ𝑣𝑑𝑐

∗ 𝐼0_ℎ𝑣𝑑𝑐] −
3

2
∙

[
𝐼0_ℎ𝑣𝑑𝑐

∗ 𝑍ℎ𝑣𝑑𝑐_𝑓𝑝

𝑉𝑑𝑐0
ℎ𝑣𝑑𝑐 + 𝐷0

∗ 𝐼0_ℎ𝑣𝑑𝑐𝑍ℎ𝑣𝑑𝑐_𝑓𝑛

𝑉𝑑𝑐0
ℎ𝑣𝑑𝑐 + 𝐷0 ] ∙ 𝒀𝑝𝑛_ℎ𝑣𝑑𝑐2

𝑙𝑜𝑐𝑎𝑙 ; 

  𝑌𝑑𝑐_ℎ𝑣𝑑𝑐2 = −
1.5

𝑉𝑑𝑐0
ℎ𝑣𝑑𝑐 ∙

[
𝐼0_ℎ𝑣𝑑𝑐

∗ 𝑍ℎ𝑣𝑑𝑐𝑓𝑝

𝑉𝑑𝑐0
ℎ𝑣𝑑𝑐 + 𝐷0

∗
𝐼0_ℎ𝑣𝑑𝑐𝑍ℎ𝑣𝑑𝑐𝑓𝑛

𝑉𝑑𝑐0
ℎ𝑣𝑑𝑐 + 𝐷0

] ∙ 𝒄2×1 −
𝑃0

(𝑉𝑑𝑐0
ℎ𝑣𝑑𝑐)2       

                                                                                        (A.3)    
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𝑍𝐿𝑜𝑜𝑝 =
(

𝑁𝐵𝑅1(𝑠)

𝐷𝐵𝑅1(𝑠)
)

2

2
𝑁𝐵𝑅1(𝑠)

𝐷𝐵𝑅1(𝑠)

+
𝑁𝐵𝑅𝑠(𝑠)

𝐷𝐵𝑅1𝑠(𝑠)
     (A.4) 

It is noted that, for SC2, zeros of 𝑍𝐿𝑜𝑜𝑝 determine the stability 

(i.e. the numerator). If the impedance of such parallel-

connected branch in (A.4) are canceled ahead of deriving the 

total numerator, it will lead to a wrong numerator 

𝑁𝑐𝑎𝑛𝑐𝑒𝑙 = 𝑁𝐵𝑅1(𝑠)𝐷𝑠(𝑠) + 2𝐷𝐵𝑅1(𝑠)𝑁𝑠(𝑠)  (A.5) 

whereas the correct one should be: 

𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 𝑁𝐵𝑅1(𝑠)𝑁𝑐𝑎𝑛𝑐𝑒𝑙(𝑠)     (A.6) 

Clearly, the modes from  𝑁𝐵𝑅1(𝑠) characterizing the parallel 

branch are lost.  

D. A simple way for addressing the order-cancellation issue  

To avoid the order-cancellation issue, one may calculate 

the loop impedance from another non-identical parallel branch, 

e.g. from BR1, the parallel branch will be 𝑍𝑠||𝑍𝐵𝑅2. Since 𝑍𝑠 is 

not identical to 𝑍𝐵𝑅2 , the order-cancellation issue will not 

present. It is seen from the new loop impedance: 

𝑍𝐿𝑜𝑜𝑝 =  𝑍𝐵𝑅1 +
𝑍𝐵𝑅2𝑍𝑠

𝑍𝑠+𝑍𝐵𝑅2
      (A.7) 

By substituting the numerators and denominators, the 

numerator of this new loop impedance is: 

𝑁𝑛𝑒𝑤 = 𝑁𝐵𝑅1(𝑠)(𝑁𝐵𝑅1(𝑠)𝐷𝑠(𝑠) + 2𝐷𝐵𝑅1(𝑠)𝑁𝑠(𝑠)) (A.8) 

which is the same as (A.6), i.e. 𝑁𝑛𝑒𝑤 =  𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡 . As a result, 

the order-cancellation issue is mitigated, however, to achieve 

this, prior knowledge of the branches is required. 
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