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Abstract

The standard observer for inertial navigation system (INS) have for many
years been the extended Kalman filter. Due to extensive research, in recent
years, on nonlinear observer applied with low-cost inertial sensors can this
possible change.

Fault-tolerance are in many applications necessary. In dynamic positioning
operations are fault-tolerance required. This thesis dealt with development
of a fault-tolerant nonlinear observer for integration of INS and Global Nav-
igation Satellite Systems (GNSS). Furthermore, the observer was applied for
dynamic positioning, by developing a simulator to obtain vessel motion and
sensor readings. The main focus were on GNSS errors and faults. Based
on this were methods used to detect and handle outlier detection, sensor
freeze, high variance of GNSS sensors and GNSS bias. Furthermore, a novel
GNSS drift detection algorithm, applicable for marine vessel, was developed.
Moreover, senor voting and sensor weighting was carried out by developing
a voting algorithm. Also a model-based observer was utilized to provide
redundant acceleration information to the INS.

The chosen INS/GNSS observer proved to be a good basis for the fault-
tolerant additions. Outliers, sensor freeze, high variance and bias of the
GNSS sensors were detected and handled accordingly. GNSS drift was de-
tected and a possible drive-off situation was prevented. Furthermore, uti-
lizing a model-based observer to obtain redundant acceleration information
was shown to be successful.
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Sammendrag

Standard estimatoren for treghetsnavigasjonssystem (TNS) har i mange år
vært det utvidede Kalman filteret. På grunn av omfattende forskning på
ulineære estimatorer, benyttet med lavkost treghetshetssensorer, kan dette
være i endring.

Feiltoleranse er i mange applikasjoner nødvendig. I operasjoner med bruk av
dynamiske posisjoneringssystemer er feiltoleranse en nødvendighet. Denne
avhandlingen omhandler utviklingen av en feiltolerant unlinærestimator for
integrering av TNS og et globalt satellittnavigasjonssystem. Videre ble esti-
matoren benyttet i dynamisk posisjonering ved å utvikle en simulator for å
simulere et fartøys bevegelser samt sensormålinger. Hovedfokueset lå på feil-
håndtering av målingene fra det globalt satellittnavigasjonssystemet. Basert
på dette, ble metoder brukt å oppdage og håndtere avvikende målinger, sen-
sor frys, høy sensorer varians og sensor bias. Videre ble en ny metode for å
oppdage drift på målingene fra satellittnavigasjonssystemet, som kan brukes
på marine farkoster, utviklet. Videre ble senor-voting og sensorvekting utført
ved å utvikle en sensor-voting algoritme. Det ble også benytte en modell-
basert estimator for å oppnå ekstra informasjon om fartøyets akselerasjon
som kunne være til bruk for TNS.

Den valgte estimatoren, basert på TNS og et global satellittnavigasjon-
ssystem viste seg å være et godt grunnlag for de feiltolerante utvidelsene.
Avvikende målinger, sensor frys, satellittmålinger med høy varians samt
målinger med bias ble oppdaget og håndtert deretter. Driftende målinger,
fra satellittnavigasjonssystemet, ble detektert og en mulig drive-off situasjon
ble forebygget. Bruken av en modellbasert estimator for å oppnå ekstra in-
formasjon om fartøyets akselerasjon viste seg å være vellykket.

v



vi



Preface

This master concludes the work done in TTK4900, the mandatory final
evaluation of the Masters program given by the Department of Engineering
Cybernetics, Norwegian University of Science and Technology.

Knowledge of ordinary differential equations and classical physics such as
kinematics and kinetics will be useful to understand this text. Also, knowl-
edge of SNAME notation and terminology of to describe motion of a marine
vessel will be useful.

I would like to thank my supervisor, professor Thor Inge Fossen, for his
guidance and enthusiasm during the course of work with this thesis. I am
deeply appreciative.

A big thanks also goes to my colleagues, at the department’s master office
D134, for providing a good working environment during the course of this
work. Of these people, a special thanks goes to Fredrik Alvenes and Andreas
R. Dahl for valuable discussions and input. Also, a thanks goes out to
Torstein Thode Kristoffersen for his feedback on this thesis.

Last, but not least. I would like to thank those three closest to me, for
their enthusiasm, encouragement and for putting everything into perspec-
tive.

Torleiv Håland Bryne
Trondheim, Norway
June 17, 2013

vii



viii



Contents

List of Figures xi

List of Tables xiii

List of Abbreviations xv

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Motivation for Nonlinear Theory and Fault-Tolerant Methods 9
1.4 Contribution and Focus of Thesis . . . . . . . . . . . . . . . . 11
1.5 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . 12

2 Preliminaries 15
2.1 Marine Craft Dynamics and Notation . . . . . . . . . . . . . . 15
2.2 Strapdown Inertial Navigation Fundamental . . . . . . . . . . 16

2.2.1 Inertial Navigation . . . . . . . . . . . . . . . . . . . . 16
2.2.2 The Strapdown Equations . . . . . . . . . . . . . . . . 17
2.2.3 INS Errors and Error Sources . . . . . . . . . . . . . . 20

2.3 Global Navigation Satellite Systems . . . . . . . . . . . . . . 20
2.3.1 GNSS Position Measurements . . . . . . . . . . . . . . 20
2.3.2 GNSS Ranging Erros and Faults . . . . . . . . . . . . 22

2.4 Fault-Tolerant Control . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Dynamic Positioning and System Requirements . . . . . . . . 27

2.5.1 The 3 DOF DP Model . . . . . . . . . . . . . . . . . . 28
2.5.2 DP Controller and the Reference Model . . . . . . . . 29
2.5.3 DP System Recommadations and Requirements . . . . 30

2.6 Signal Processing Methods . . . . . . . . . . . . . . . . . . . . 31
2.6.1 Signal Quality Check . . . . . . . . . . . . . . . . . . . 31
2.6.2 Signal Voting, Averaging and Weighting . . . . . . . . 32

2.7 Simulation Theory . . . . . . . . . . . . . . . . . . . . . . . . 33

ix



Contents

3 Vessel Simulator 35
3.1 Simulator Model of Vessel with Environmental Forces and

Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Simulating GNSS and IMU Measurements . . . . . . . . . . . 43

3.2.1 Measurement Models . . . . . . . . . . . . . . . . . . . 44
3.2.2 Choice of Sensor Parameters, Errors and Faults . . . . 46

3.3 DP Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Observer Design 53
4.1 Dynamical Formulation . . . . . . . . . . . . . . . . . . . . . 53
4.2 Nonlinear Observer for Position, Velocity and Attitude . . . . 54

4.2.1 Attitude and Gyro Bias Estimation . . . . . . . . . . . 55
4.2.2 Position and Velocity Integration Observer . . . . . . . 57
4.2.3 Accelerometer Bias Estimation . . . . . . . . . . . . . 58
4.2.4 Observer with Accelerometer Bias Estimation . . . . . 60

4.3 Implementation Aspects . . . . . . . . . . . . . . . . . . . . . 60
4.4 Observer Tuning . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Fault-Tolerant Nonlinear Observer . . . . . . . . . . . . . . . 64

4.5.1 Signal Check of Individual Sensor Measurement . . . . 66
4.5.2 Signal Check, Voting and Averaging . . . . . . . . . . 70
4.5.3 Introduction of Time-varying Gains . . . . . . . . . . . 73

4.6 Model-Based Fault-Tolerant Nonlinear Observer . . . . . . . . 76

5 Results and Discussion 81
5.1 Case 1: Accelerometer Bias Estimation and the Resulting

Effect on the Attitude Estimate . . . . . . . . . . . . . . . . . 82
5.2 Case 2: GNSS Outlier Detection . . . . . . . . . . . . . . . . 89
5.3 Case 3: Freeze of One GNSS Sensor . . . . . . . . . . . . . . 110
5.4 Case 4: Increased Variance of One GNSS Sensor . . . . . . . 120
5.5 Case 5: Horizontal Bias of One GNSS Sensor . . . . . . . . . 131
5.6 Case 6: Drift and Failure of All GNSS Sensors . . . . . . . . . 141
5.7 Case 7: Accelerometer Failure . . . . . . . . . . . . . . . . . . 153
5.8 Overall Discussion . . . . . . . . . . . . . . . . . . . . . . . . 171

6 Conclusion and Further Work 177
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

x



Contents

Bibliography 181

A Vessel and Simulator Parameters 189

B Background Theory 193
B.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
B.2 Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
B.3 Modeling of Environmental Forces and Moments . . . . . . . 203

B.3.1 Modeling of Waves . . . . . . . . . . . . . . . . . . . . 203
B.3.2 Modeling of Ocean Currents . . . . . . . . . . . . . . . 205

B.4 Assumptions Regarding the Observer of Grip et al. (2013,
Submitted) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

B.5 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
B.6 Causes of dGNSS Errors or Failures . . . . . . . . . . . . . . 211
B.7 DNV DP Class Summary . . . . . . . . . . . . . . . . . . . . 212
B.8 Gaussian Zero Mean Noise . . . . . . . . . . . . . . . . . . . . 214

C Discrete Implementation of Continuous Systems 215

D Vessel and Sensor Simulations 217
D.1 Vessel Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 217
D.2 Sensor Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 222

E Additional Results 225
E.1 Case: Fault Free System With One GNSS Measurement . . . 225
E.2 Case: Increased Variance of One GNSS . . . . . . . . . . . . . 239

F Digital Appendix 241

xi



xii



List of Figures

1.1 Guidance, navigation and control signal flow. . . . . . . . . . 1

3.1 Illustration of a semi-submersible. Vessel name: West Ven-
ture. Photo: Seadrill. . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Simulator. Overview of how the environmental forces and
moments acts on the vessel. . . . . . . . . . . . . . . . . . . . 37

3.3 Vessel Simulator. Two dimensional, constant irrational current. 38
3.4 Simulator: JONSWAP spectrum wave spectra together with

the curve fitted linear transfer function approximation of the
wave spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Simulator. Overview of how the sensor measurements where
obtained in the simulator. . . . . . . . . . . . . . . . . . . . . 44

3.6 Simulator. Overview of how the GNSS sensor faults are in-
jected in the simulator. . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Simulator. Overview of how the controller and reference model
where implemented in the simulator. . . . . . . . . . . . . . . 52

4.1 The observer of Grip et al. (2013, Sumbitted) . . . . . . . . . 55
4.2 Observer. Overview of how the Fault-tolerant observer in the

simulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Observer. Overview of the Signal Processing with three posi-

tion reference systems. . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Observer. Illustration of smoothing, done by the weighing,

when of a step in the measurements occurs. The exponential
function is utilized . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Observer. Overview of the strategy to exploit the vessel model
in a fault-tolerant observer design. . . . . . . . . . . . . . . . 78

5.1 Case 1, Accelerometer bias estimation. Estimates of gyro-
scope and acceleromter biases when accelerometer bias was
estimated correctly. . . . . . . . . . . . . . . . . . . . . . . . . 84

xiii



List of Figures

5.2 Case 1, Accelerometer bias estimation. Attitude estimate con-
verted from quaterions to Euler angles when accelerometer
bias was estimated correctly. . . . . . . . . . . . . . . . . . . . 85

5.3 Case 1, Accelerometer bias estimation. Estimates of gyro-
scope and acceleromter biases when accelerometer bias was
estimated incorrectly. . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Case 1, Accelerometer bias estimation. Attitude estimate con-
verted from quaterions to Euler angles when accelerometer
bias was estimated incorrectly. . . . . . . . . . . . . . . . . . 87

5.5 Case 3, Outlier detection. Measurements from GNSS 1 to-
gether with vessel position in the event of outlier detection is
disabled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6 Case 3, Outlier detection. Weighted variance when only one
GNSS 1 is provideing measurement Reported variance for
each GNSS when the outlier detection is ignored . . . . . . . 92

5.7 Case 2, Outlier detection. North-East position of the vessel
together with position estimates and position measurements
from GNSS 1 when outlier detection is disabled. . . . . . . . . 93

5.8 Case 2, Outlier detection. Position estimates together with
vessel position when outlier detection is disabled . . . . . . . 94

5.9 Case 2, Outlier detection. Velocity estimates together with
vessel position when outlier detection is disabled . . . . . . . 95

5.10 Case 2, Outlier detection. Attitude estimates represented in
Euler angles together with vessel attitude when outlier detec-
tion is disabled . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.11 Case 2, Outlier detection. The injection term σ̂ when outlier
detection is disabled . . . . . . . . . . . . . . . . . . . . . . . 97

5.12 Case 2, Outlier detection. ξ when outlier detection is disabled 97
5.13 Case 2, Outlier detection. Measurements provided by GNSS1.

Outliers present at time 400, 700 and 1000 seconds . . . . . . 98
5.14 Case 2, Outlier detection. Measurements provided by GNSS2.

Outliers present at time 500, 800 and 1100 seconds . . . . . . 99
5.15 Case 2, Outlier detection. Measurements provided by GNSS3.

Outliers present at time 600, 900 and 1200 seconds . . . . . . 100
5.16 Case 2, Outlier detection. Reported variance from each sen-

sor. Variance for outliers are reported to be -1 for illustrative
purposes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xiv



List of Figures

5.17 Case 2, Outlier detection. GNSS status . . . . . . . . . . . . . 102
5.18 Case 2, Outlier detection. Weighted GNSS measurement used

by the observer for position and velocity estimates . . . . . . 103
5.19 Case 2, Outlier detection. Covariance of three reported GNSS

measurement when outliers are removed . . . . . . . . . . . . 104
5.20 Case 2, Outlier detection. North-East position of the ves-

sel together with weighted GNSS measurements and position
estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.21 Case 2, Outlier detection. Position estimate when outliers in
the GNSS measurements are present and outlier detection is
applied. The estimates are shown together the actual vessel
position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.22 Case 2, Outlier detection. Velocity estimate when outliers in
the GNSS measurements are present and outlier detection is
applied. The estimates are shown together the actual vessel
velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.23 Case 2, Outlier detection. Estimation error, p̃ = pGNSS − p̂. . 108
5.24 Case 3, GNSS freeze. Zoomed section of GNSS 1. Sensor

freeze present at 1000 second and present for 10 seconds. . . . 111
5.25 Case 3, GNSS freeze. Reported status of GNSS 1. Sensor

freeze present at 1000 second and present for 10 seconds. . . . 112
5.26 Case 3, GNSS freeze. Reported status of GNSS. Sensor freeze

present at 1000 second and present for 10 seconds. . . . . . . 113
5.27 Case 3, GNSS freeze. Sensor freeze present at 1000 second

and present for 10 seconds. . . . . . . . . . . . . . . . . . . . 114
5.28 Case 3, GNSS freeze. Zoomed section of GNSS 1. Sensor

freeze present at 1000 second and throughout the simulation. 116
5.29 Case 3, GNSS freeze. Reported status of GNSS 1. Sensor

freeze present at 0 second and through out the simulation . . 116
5.30 Case 3, GNSS freeze. Reported status from the GNSS vot-

ing and weighting. Sensor freeze present at 1000 second and
throughout the simulation. . . . . . . . . . . . . . . . . . . . . 117

5.31 Case 3, GNSS freeze. Calculated covariance of the weighted
GNSS. Sensor freeze present at 1000 second and throughout
the simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.32 Case 4, Increased variance on GNSS 1 . . . . . . . . . . . . . 122

xv



List of Figures

5.33 Case 4, Increased variance on GNSS 1. Zoom of measurement
output around the event of increased variance. . . . . . . . . . 123

5.34 Case 4, Increased variance on GNSS 1. Reported variance of
the three GNSS measurements. . . . . . . . . . . . . . . . . . 124

5.35 Case 4, Increased variance on GNSS 1 . . . . . . . . . . . . . 125
5.36 Case 4, Increased variance on GNSS 1. Weighted covariance

of based on the three GNSS measurements. . . . . . . . . . . 126
5.37 Case 4, Increased variance on GNSS 1. Weighted position

measurements based on the three GNSS measurements. . . . 127
5.38 Case 4, Increased variance on GNSS 1. North-East position

estimates with the corresponding weighted GNSS measure-
ments and vessel position. . . . . . . . . . . . . . . . . . . . . 127

5.39 Case 4, Increased variance on GNSS 1. Position estimates
together with the vessel position. . . . . . . . . . . . . . . . . 128

5.40 Case 4, Increased variance on GNSS 1. Vertical GNSS bias
estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.41 Case 4, Error of position estimate error p̃ = pGNSS − p̂. . . . 131
5.42 Case 5, Detection of horizontal GNSS bias. Measurements

from GNSS 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.43 Case 5, Detection of horizontal GNSS bias. Zoomed measure-

ments from GNSS 1 . . . . . . . . . . . . . . . . . . . . . . . 134
5.44 Case 5, Detection of horizontal GNSS bias. Reported variance

from each GNSS . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.45 Case 5, Detection of horizontal GNSS bias. GNSS status . . . 136
5.46 Case 5, Detection of horizontal GNSS bias. GNSS weighted

covariance of the GNSS measurements. . . . . . . . . . . . . . 137
5.47 Case 5, Detection of horizontal GNSS bias. Weighted GNSS

measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.48 Case 5, Detection of horizontal GNSS bias. Horizontal posi-

tion estimates with horizontal weighted GNSS measurements
and the horizontal vessel position . . . . . . . . . . . . . . . . 138

5.49 Case 5, Detection of horizontal GNSS bias. Zoomed position
estimates together with the vessel position . . . . . . . . . . . 139

5.50 Case 6, Drift and Failure of All GNSS sensors. North-East:
GNSS Position measurements and position estimates . . . . . 142

xvi



List of Figures

5.51 Case 6, Drift and Failure of All GNSS sensors. North-East:
GNSS Position measurements and position estimates together
with actual position of the vessel . . . . . . . . . . . . . . . . 143

5.52 Case 6, Drift and Failure of All GNSS sensors. Estimation
error, p̃, when the weighted GNSS measurements drift . . . . 143

5.53 Case 6, Drift and Failure of All GNSS sensors. Zoomed Sec-
tion of the Measurement from GNSS 1 together with vessel’s
position when the GNSS sensors start to drift. . . . . . . . . . 144

5.54 Case 6, Drift and Failure of All GNSS sensors. Velocity es-
timates when the weighted GNSS position measurements are
drifting and the drift is not detected. . . . . . . . . . . . . . . 145

5.55 Case 6, Drift and Failure of All GNSS sensors. ξ when the
weighted GNSS measurements are drifting. . . . . . . . . . . . 146

5.56 Case 6, Drift of all GNSS sensors. Vertical GNSS bias estimate148
5.57 Case 6, Drift and Failure of All GNSS sensors. Position esti-

mates when the GNSS measurements are disabled . . . . . . . 149
5.58 Case 6, Drift and Failure of All GNSS sensors. Thrust from

the controller in surge, sway and yaw . . . . . . . . . . . . . . 151
5.59 Overview on how the detected GNSS bias could be reported

back to the receiver. . . . . . . . . . . . . . . . . . . . . . . . 153
5.60 Case 7, North East position estimate of vessel with position

measurements and actual vessel position . . . . . . . . . . . . 155
5.61 Case 7, Accelerometer vs. model acceleration when acceleromter

fault has occurred. . . . . . . . . . . . . . . . . . . . . . . . . 156
5.62 Case 7, Current velocity estimate when no acceleromter fault

has occurred. . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.63 Case 7, Relative velocity estimate when no acceleromter fault

has occurred. . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.64 Case 7, Position estimates together with vessel’s position with

no accelerometer fault. . . . . . . . . . . . . . . . . . . . . . . 159
5.65 Case 7, Estimated and actual attitude of the vessel using Eu-

ler angles as representation when no accelerometer fault has
occurred. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.66 Case 7, Utilizing acceleration from vessel model. Accelerom-
eter vs. model acceleration when acceleration from model is
utilized after 200 seconds. . . . . . . . . . . . . . . . . . . . . 163

xvii



List of Figures

5.67 Case 7, Utilizing acceleration from vessel model. Current ve-
locity estimate when when acceleration from model is utilized
after 2000 seconds. . . . . . . . . . . . . . . . . . . . . . . . . 164

5.68 Case 7, Utilizing acceleration from vessel model. Relative ve-
locity estimates from model based observer when acceleration
from model is utilized after 2000 seconds. . . . . . . . . . . . 165

5.69 Case 7, Utilizing acceleration from vessel model. Position
estimates together with vessel’s position when acceleration
from model is utilized after 2000 seconds. . . . . . . . . . . . 166

5.70 Case 7, Utilizing acceleration from vessel model. Estimated
and actual attitude of the vessel using Euler angles as repre-
sentation when acceleration from model is utilized after 200
seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.71 Case 7, Utilizing acceleration from vessel model. North-East
position estimates together with the weighted GNSS measure-
ments and the vessel’s position when acceleration from model
is utilized after 2000 seconds. . . . . . . . . . . . . . . . . . . 168

5.72 Overview of the suggested change in how the redundant ac-
celeration estimate is obtained . . . . . . . . . . . . . . . . . . 174

B.1 Distribution of the Gaussian, zero mean, GNSS measurement
noise components . . . . . . . . . . . . . . . . . . . . . . . . . 214

D.1 Generalized Position in the {n} frame . . . . . . . . . . . . . 218
D.2 Generalized Velocity in the {b} frame . . . . . . . . . . . . . 219
D.3 Generalized Control Forces in the {b} frame . . . . . . . . . . 220
D.4 Generalized Wave Forces in the {b} frame . . . . . . . . . . . 221
D.5 Simulator. Sensor simulation of accelerometer. . . . . . . . . . 222
D.6 Simulator. Sensor simulation of gyroscope. . . . . . . . . . . . 223
D.7 Simulator. Sensor simulation of GNSS 1 together with the

vessel’s position. . . . . . . . . . . . . . . . . . . . . . . . . . 223
D.8 Simulator. Sensor simulation of GNSS 2 together with the

vessel’s position. . . . . . . . . . . . . . . . . . . . . . . . . . 224
D.9 Simulator. Sensor simulation of GNSS 3 together with the

vessel’s position. . . . . . . . . . . . . . . . . . . . . . . . . . 224

E.1 Case 2. Status of GNSS 1. No fault are present . . . . . . . . 225

xviii



List of Figures

E.2 North-East position of vessel together with potions measure-
ments and position estimates when no faults are present. . . . 226

E.3 Position estimates together with actual vessel position when
no faults are present . . . . . . . . . . . . . . . . . . . . . . . 228

E.4 Velocity estimates together with actual vessel velocity when
no faults are present . . . . . . . . . . . . . . . . . . . . . . . 229

E.5 Attitude estimates, using quaterions as representation when
no faults are present . . . . . . . . . . . . . . . . . . . . . . . 230

E.6 Attitude estimates, using Euler angles as representation when
no faults are present . . . . . . . . . . . . . . . . . . . . . . . 231

E.7 Gyroscope Bias Estimates . . . . . . . . . . . . . . . . . . . . 232
E.8 The nonlinear injection term σ̂ when no faults are present . . 233
E.9 ξ when no faults are present . . . . . . . . . . . . . . . . . . . 234
E.10 Converged position estimates when no faults are present . . . 235
E.11 Converged velocity estimates when no faults are present. . . . 236
E.12 Case 2, Fault free simulation. Estimation error, e = pnGNSS−p̂n.237
E.13 Estimation error. Estimates , p̃ = p − p̂[m] when no faults

are present. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
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Chapter 1
Introduction

1.1 Background

Part of the foundation for a successful, efficient and safe marine operation is
to have access to a high quality and reliable position, velocity and attitude
(PVA) estimates. Dynamic Positioning (DP) is an example of such an oper-
ation. The PVA estimates, together with the signal processing, are provided
by the navigation system, as presented in Fossen (2011). In general such
systems consists of one or more motion sensors in combination with filtering
and observer software as, seen in Figure 1.1.

Marine
Craft Sensors

Navigation System

Observer

Control
Allocation

Motion
Control

Contol System

Trajectory
Generation

Environmental
Disturbances

Guidance System

Figure 1.1: A simplified overview of the Guidance, Navigation and Control
(GNC) signal flow. See Fossen (2011) for details.

Utilization of Global Navigation Satellite Systems (GNSS), such as the
Global Positioning System (GPS), has become the industry standard for po-
sition reference during terrestrial navigation. The success of the GPS Navs-
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tar system is part of the reason for the development of alternative satellite
navigation systems, like Glonass and Gallileo.

More complex navigation systems for obtaining PVA estimates are Inertial
Navigation Systems (INS). Such systems can be utilized to obtain PVA es-
timates without external measurements or if these measurements are not
available for a certain period of time. This is called dead-reckoning (DA)
and is performed by using inertial measurements in conjunction with a pre-
dictor or estimator. When the external measurements are lost a dynamic
navigation model, like (2.19) - (2.22), is utilized to predict the movements
of the vehicle 1. However, as mentioned by Maybeck (1979, Ch.6), the INS
position estimate will drift over time caused by integration of biased inertial
measurements. This drift is unbounded if not compensated for. To com-
pensate for such drift are external measurements, with no or low long term
error used. Hence, the need for accurate PVA estimates during DA have re-
sulted in INS to become high cost technology because of the quality demand
regarding the sensors. However, this is now changing because of advances
in low-cost MEMS based inertial sensors. An example of this is Iozan et al.
(2012), where the Earth’s rotation was measured with an MEMS gyroscope.
Details regarding INS can be found in Section 2.2.

Fault-tolerance is vital in control applications. Equipment such as sensors
can fail during operation. Hence, the control system must be able to handle
such events. This also includes other sensor changes and dropouts. The In-
ternational Maritime Organization (IMO) has proposed a number of safety
regulations and recommendations to increase safety during marine oper-
ations. Guidelines regarding vessels equipped with a DP system can be
found in e.g. Maritime Safety Commitee (MSC) Circular 645 (1994). One
of these are the redundancy requirements. According to Sørensen (2012) the
following redundancy definition can be made

1The dynamic navigation model of (2.19) - (2.22) is used for so called “flat Earth”
navigation which is useful for stationkeeping operations like Dynamics Positioning
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Definition 1.1. Redundancy means the ability of a component or system
to maintain or restore its function when a single fault has occurred. This
property can be obtained by installation of multiple components, systems, or
alternative means of performing a function.

More information regarding DP requirements can be found in Det Norske
Veritas (2011).

1.2 Previous Work

Inertial navigation for marine application is far from novel. From Fossen
(2011) one can read that the first north seeking gyrocompass was patented
as far back as 1908 by Anschutz. Whereas the Elmer Speery compass was
patented and adopted by the US Navy in 1911. INS have evolved much since
then. Nowadays, the state of the art gyroscopes are based on fiber optics and
laser. However, as mentioned in the previous Section, new low-cost MEMS
based units change the rules of the game because of the quality enhancement
of low-cost units. Nowadays INS technology is adopted in e.g. cell phones,
gaming controllers as well as in road and unmanned vehicles.

There are two types on inertial navigation systems. Gimbal systems and
strapdown systems. The former mechanical aligns the gimbal platform to
a fixed orientation in space when the body, which the Gimal platform is a
attached to, moves. Inertial measurements are obtained by readout of the
Gimbal platform’s motion. Strapdown systems on the other hand is fixed to
the body and moves with the body it is attached to. A short introduction
to inertial navigation is given by Vik (2012). A rigorous study can by found
in Britting (2010).
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Kalman Filter Based Navigation

Kalman (1960) introduced the widely known linear stochastic estimator
known as the Kalman filter (KF). The nonlinear extension, the Extended
Kalman filter (EKF) was developed by Smith et al. (1962) and Schmidt
(1966).

Maybeck (1979, Ch.6) illustrated how the extended Kalman filter can be
utilized for inertial navigation purposes. For this application, the EKF is
utilized to statistically minimize the error estimates of the parameters re-
lated to the navigation system. This is done by making use of the statistical
characteristics of the errors, of both the inertial and aiding measurement
components, to combine the information into one set of estimates. The
aiding component can be measurements from e.g. GNSS, hydroacoustic po-
sitioning, Doppler radar, altimeter and many others senors depending on the
given application. Maybeck (1979) presents both a direct and indirect2 nav-
igation filter strategy for incorporating the aiding reference measurements.
For indirect strategies, may error models on the form

δṗn = δvn

δv̇n = −S(δΘ)f IMU + δgn +Rn
b (Θ)eba

δΘ̇ = Rn
b (Θ)gbg

(1.1)

be utilized. System (1.1)3 is based upon the psi-angle error model of Leondes
(1963). Θ is the attitude, hence δΘ is the attitude error. Furthermore, eba
and ebg are the accelerometer and gyro errors respectively. Update the actual
PVA estimates are done indirectly based upon models such as (1.1).

One drawback of navigation based on EKF is that the GNSS solution can
be obtained with another Kalman filter. This introduces colored noise and

2Called error state space Kalman filter in Maybeck (1979).
3This error model assumes that the NED frame is inertial. For more general error

models can e.g. Britting (2010) by advised.
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hence violates the assumption that both process and measurement noise
have to be Gaussian white noise for the second filter. See Kalman (1960) for
details. One combats this problem by choosing the indirect approach since
the error dynamics of (1.1) is quite slow. Then, the navigation filter will run
at lower frequency than the GNSS filter. The chosen frequency is typically
between 1 − 10 Hz according to Vik (2012). Then, the input noise of the
navigation filter can be approximated to band limited white noise.

There exist other nonlinear extensions of the Kalman filter in addition to
EKF. Namely the Unscented Kalman filter (UKF) and the Particle filter
(PF). Theory and practical applications of both methods, utilized for navi-
gation purposes, are present by Gustafsson (2012). For further information
on stochastic systems and Kalman filter theory in general can Brown and
Hwang (2011) can be studied.

Nonlinear Observers and Attitude Resolving

The extended Kalman filter has been the standard observer for navigation
purposes however, during the last 15 years have extensive research on non-
linear observers for strapdown INS systems been carried out. The first non-
linear observer for attitude estimation was introduced as early as 1991. Sal-
cudean (1991) introduced the nonlinear attitude observer by utilizing a unit
quaternion to represent the attitude together with a Lyapunov approach to
prove exponential convergence. However, this observer is based on a direct
quaternion measurement and zero bias of the angular velocity measurements.
In real-life, the former assumption usually requires a static inertial measure-
ment to attitude mapping. From Fossen (2011) can this mapping can e.g.
be obtained as in (1.2) from the IMU measurements.

5



1.2. Previous Work

φ = arctan

(
fIMU,y

fIMU,z

)
θ = arctan

(
fIMU,x√

f2
IMU,y + f2

IMU,z

)

ψm = arctan

(
mIMU,y

mIMU,x

) (1.2)

The two former angles in (1.2) are calculated from the accelerometer, whereas
the latter is solved from the magnetometer. The latter mapping requires that
the roll and pitch angles are zero. From Vik (2012) may the heading also be
resolved from the gyroscope according to

ψ = arctan

(
−w∗IMU,y

−ω∗IMU,x

)
(1.3)

where are w∗ is solved form the mappings of φ and θ. A detailed presentation
of direct heading mapping using the magnetometer and non-zero roll and
pitch angles can be found in Fossen (2011). Furthermore, after the Euler
angle mapping is obtained, may the quaterion representation be calculated.
The algorithm, calculating the quaterion from the Euler angles, can be found
in e.g Fossen (2011).

Such attitude mapping as described above can, according to Grip et al.
(2012a), result is a different noise characteristics than the original noise
characteristics of the measurements used to produce it. For instance, the
noise characteristics are depending on how well conditioned the attitude
resolution is a given time. However, the attitude by can be calculated using
other methods. Wahba’s problem is posed as

n∑
j=1

‖v∗j −Mvj‖, n ≥ 2 (1.4)
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where the attitude is calculated by minimizing the object function of (1.4).
The attitude is given by the rotation matrixM , see Wahba (1966) for details.
The same principle is utilized by the QUEST algorithm, where a minimum
of two non parallel reference vectors are needed to compute the quaternion
estimate. See Shuster and Oh (1981) for more information. It should be
mentioned that such methods in their pure form have no filtering properties.
Hence, noisy measurements will yield a noisy attitude estimate. Crassidis
et al. (2007) presents a survey of attitude estimation techniques based on
QUEST, EKF, Multiplicative EKF, UKF and PF. The authors recommend
especially Multiplicative EKF approaches over e.g. QUEST to obtain the
attitude estimate because of better filtering properties.

A nonlinear observer for integration of Differential GPS (dGPS) was pre-
sented by Vik et al. (1999). As with the Salcudean observer, the attitude
observer was proven exponentially stable. In addition accelerometer and
gyro bias estimates were included in the observer. The position and velocity
estimates where proven to be quasi equilibrium asymptotically stable. Fur-
thermore, Vik and Fossen (2001) continued the work of Vik et al. (1999) by
proving the origin of the GNSS and INS integration observer to be globally
exponentially stable (GES) by exploiting the constraint of the quaternion,
i.e. ‖q‖ = 1 and applying Barbalat’s lemma. For more on quaternions, see
Appendix B.1. Thienel and Sanner (2003) also proved exponential stability
of the gyro bias estimates however, this required persistency of excitation
(PE).

Hamel and Mahony (2006) introduced a nonlinear attitude observer based on
passivity and inertial vector measurements to obtain attitude and gyro bias
estimates. No mapping from inertial measurements to the corresponding at-
titude measurement was needed. Mahony et al. (2008) expanded the results
of Hamel and Mahony (2006), by developing a almost GES observer utilizing
quotations. Stationary reference vectors or unbiased gyro rate measurements
where assumed. Later on Hua (2010) developed an integration observer of
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INS and GNSS velocity measurements with non-stationary reference vectors
to obtained the result of semi-global exponential stability. However, gyro
bias estimation was not considered. Batista et al. (2012) presents a GES
attitude observer with a single time varying reference vector where a rota-
tion matrix experiential converges to SO(3). The assumptions of Mahony
et al. (2008) was relaxed by Grip et al. (2012a), by utilizing a parameter pro-
jection algorithm to prove semi-global convergence of the attitude estimate
for time varying non-stationary reference vectors and biased inertial mea-
surements. Here, the rotation matrix was utilized to represent the attitude
information. Furthermore, Grip et al. (2012b) proposed a nonlinear observer
for integration of GNSS and IMU measurements with gyro bias estimation.
Here was the theory of observers for interconnected nonlinear and linear
systems, purposed in Grip et al. (2012c), utilized. The position and velocity
estimator was interconnected with the attitude observer developed in Grip
et al. (2012a). Grip et al. (2013, Submitted) takes on the attitude estima-
tion problem by utilizing quaternions. In addition to the previous results of
Grip et al. (2012b), also acceleromter bias estimation was included. These
however, requires PE in order to converge to the actual biases. Grip et al.
(2013, Submitted) also poses the navigation problem in the ECEF frame,
see Appendix B.1, making the observer useful for applications where the
navigating vehicle is not constrained to a smaller geographical area.

Vessel Model Based Navigation

Vessel model based navigation utilized for DP is far from novel. A Kalman
filter approach was presented e.g by Sælid et al. (1983). A overview of
Kalman filter applied for dynamic positioning and autopilot design was given
by Fossen and Perez (2009). An other nonlinear observer, exploiting pas-
sivity and the vessel model applied for dynamic positioning, was developed
by Fossen and Strand (1999), which guaranteed global exponential stability
(GES).
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The vessel modeled has also during recent years been utilized as aiding mea-
surement for inertial navigation systems. In Hegrenæs et al. (2008) and
Hegrenæs and Hallingstad (2011) were the velocity from the vessel model,
together with sea current estimates, utilized as a velocity aiding measure-
ments for INS. The methodology was applied on underwater vehicles. Bryson
and Sukkarieh (2004) utilized a vehicle model as aiding for INS applied on
an unmanned aerial vehicle (UAV).

1.3 Motivation for Nonlinear Theory and Fault-
Tolerant Methods

Utilizing nonlinear theory instead of e.g. the EKF can yield several advan-
tages. First the computational load can be reduced since Riccati equations
are avoided. According to Fossen (2011) will a discrete-time Kalman filter
results in n(n+ 1)/2 difference equations, where n is the number of states.
For PVA estimation, may the choice of Kalman, as navigation filter, result
in hundreds of ordinary difference equations (ODE) to be solved on-line4.
By avoiding those, online computational cost can be reduced significantly.
Furthermore, a nonlinear observer may be ran faster because the cascade of
two Kalman filters is avoided. Direct nonlinear observers can, according to
Fossen (2012b), run at 50−1000 Hz. However, this is not the biggest advan-
tages regarding a maritime application. By reducing the number of ODEs to
solve, the size of code can be reduced. Again, this could lead to more main-
tainable software. This is highly desirable in an industrial perspective since
increased maintainability can reduce the number of software induced faults
in the navigation and control system, presented in Figure 1.1. Furthermore,
by utilizing nonlinear control techniques can global stability be proven and

4At least 136 difference equation are needed if three positions, three velocities, four
attitude parameters (quaternions used for attitude representation), three gyro biases and
three accelerometer biases should be estimated.
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thus, robustness can be proven. If exponential stability is proven, a given
convergence rate is also given. Advise Khalil (2002) for more information
on asymptotic and exponential stability of nonlinear systems.

Regarding attitude representation, the unit quaternion was chosen. The
quaternion approach is singular free and only four parameters are needed to
represent a given rotation. In opposite, a rotation matrix representation can
result in nine parameters to determine online. Furthermore, trigonometric
functions are avoided. This is highly useful for integrity reasons in real-time
operations due to such functions are represented with a limited accuracy in
a computer. Furthermore, the need of a normalized quaternion can easily
be enforced in a computer control system, see (2.57) and Section 2.7 for
more.

By utilizing the results from Grip et al. (2013, Submitted) is the attitude
estimation combined with position and velocity estimates. Stability, of the
connected observers, has been proven by utilizing nonlinear feedback theory
as shown in Grip et al. (2012c).

As stated by Blanke (2001), is it not just desirable to detect faults and issue
an alarm to the operator, but also handle simple faults automatically. In
a sensor context, such faults can be indicated by sensor freeze, wild point,
increased variance. A more complicated scenario is to detect slowly varying
drift of measurements from a given sensor.

Definition 1.1 implies the need for a fault-tolerant system. One can debate
the redundancy obtained by three installed GNSS antennas on a offshore
vessel. The following cases illustrate why such a configuration is not truly
redundant.

• Ionospheric disturbances such as scintillations can kill all GNSS signals
for shorter or longer periods of time. See Section 2.3 for details,

• Faulty dGNSS links such that the differential link will bias the position
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measurements. Such incidents have resulted in drive-offs. See Section
2.3.2 for details.

• Multipath affecting all GNSS receivers. This is a possibility when a
smaller ship is in the vicinity of a e.g larger offshore installation.

Such events are highly avoidable during for instance during drilling opera-
tions. One can debate that other measurements principles such as hydroa-
coustic positioning reference (HPR) systems, can be utilized if GNSS is not
available. However, the same problems are also present with HPR systems.
The sound profile might change and effect all HPR systems. HPR signal to
noise ratio can also become worsened by e.g thruster noise.

Faults and fault-tolerance regarding dGNSS are studied and discussed in
Chen and Verhoeven (2005), Chen et al. (2008) and Chen et al. (2009). Cases
of drive-offs where investigated and concluded on. The barrier methodology
was also introduced. However, regarding the last barrier, “Barrier element
3 - dGPS quality control function”, yields complicated dGPS selves checks.
Also simpler and possibly more robust methodology should be investigated
in order to detect abnormalities that can cause drive-offs which the dGPS
selves check did not detect.

1.4 Contribution and Focus of Thesis

This thesis takes on a study of combining INS and GNSS into a fault-tolerant
system by utilizing the nonlinear observer developed by Grip et al. (2013,
Submitted) as basis. The observer was utilized for on DP scenario. A
simulator was also developed for measurement generation.

The focus of fault-tolerance was primarily on detection and handling of
GNSS sensor faults to prevent e.g undesirable sensor data to propagate in
the control system. This is motivated by “Experience from industrial appli-
cations has shown that the most frequent control system failure are caused by
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sensor failures”, Sørensen (2012) and the summary of the incidents at the
Norwegian Continental Shelf presented in Chen and Verhoeven (2005). “All
drive-offs were DP control system related. Notably, five of these six drive-
offs were initiated due to wrong position data associated with dGPS ”. Also
fault-tolerance regarding the acceleromter was studied. The contributions
related to GNSS and accelerometer fault-tolerant techniques were:

• Signal processing and senor checks for detecting outliers, freeze and
high variance.

• Development of a voting algorithm together with performing measure-
ment weighting.

• Development of a novel GNSS drift detection scheme. To the author’s
knowledge have such methods not yet been published. However, one
cannot exclude that inhouse development, at DP vendors, have tried
to battle this problem.

• Providing redundant acceleration information, in the event of accelerom-
eter failure, by exploiting an additional model based observer.

See Section 4.5 and Section 4.6 for details.

The observer of Grip et al. (2013, Submitted) is fixed gained. This was
modified by:

• Online tuning of the gain related to the position estimate. This was
done by utilizing the calculated variance of the position measurements
together with the exponential function.

See Chapter 4, Section 4.5.
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1.5 Organization of Thesis

The organization of this thesis follows as, where the respective chapters
contains:

2: The Preliminaries chapter contains background information regard-
ing marine craft dynamics and notation. The strapdown navigation
equations are addressed. Furthermore, information on GNSS, fault-
tolerances and DP systems are also presented.

3: The Vessel Simulator chapter addresses the vessel modeling including
environmental forces and moments needed to construct a basic ves-
sel simulator. Furthermore, GNSS and IMU measurements was also
modeled. These were utilized by the observer presented in Chapter 4.

4: The Observer Design chapter takes on a observer for INS and GNSS
integration developed by Grip et al. (2013, Submitted). Furthermore,
fault-tolerant methods was included to detect GNSS faults. An ad-
ditional model based observer was also utilized to provide redundant
acceleration information in the event of accelerometer failure.

5: The Results and Discussion section illustrates the findings and the
effect of the fault-tolerant framework added to the Grip et al. (2013,
Submitted) observer. Related discussions are preformed.

6: The last chapter of this thesis, Conclusion and Further Work, contains
the concluding remarks and recommendations for further studies.

Additional information, background material and results are found in Ap-
pendix A - F.
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Chapter 2
Preliminaries

This section constitute the theoretical base of this thesis. This base consist
of vessel kinematics and kinetics together with navigation, senor and filtering
relevant theory.

2.1 Marine Craft Dynamics and Notation

From Fossen (2011) the field of dynamics are divided into two parts, Kine-
matics are Kinetics. The former takes on the geometrical aspects motion,
while the latter focuses on the forces and moments causing motion. Further-
more, Fossen (2011) states the kinematics and kinetics of a marine craft can
be stated on vectorial form as

η̇ = JΘ(η)ν (2.1)

Mν̇ + C(ν)ν +D(ν)ν + g(η) = τ + τwind + τwave (2.2)

where η, ν and τ are the generalized position, velocity and force vectors
respectively given in (2.3)

η =

[
pnb/n
Θnb

]
, ν =

[
vbb/n
ωbb/n

]
, τ =

[
f bb
mb

b

]
(2.3)

From Fossen (2011) is pnb/n ∈ R3 given as the position in the NED frame,
{n}. Furthermore, Θnb ∈ S3 represents the Euler angles, i.e the attitude
of the vessel. vbb/n ∈ R3 and ωbb/n ∈ R3 represents the linear and angular

15



2.2. Strapdown Inertial Navigation Fundamental

velocity of the BODY frame, {b} with respect to NED frame, {n}. Both
decomposed in {b}. The forces and moments acting on the vessel is denoted
f bb ∈ R3 and mb

b ∈ R3 respectively. R3 denotes the Euclidean space of
dimension three. The set, S3 is sphere. JΘ(η)ν is the six degree of freedom
attitude transformation matrix. M , C(ν) and D(ν) represent the inertia,
Coriolis-Centripetal and damping matrices respectively. g(η) represents the
restoring forces and moments. Details regarding the vessel kinematics and
kinetics together and the different reference frames can be found in Appendix
B.

2.2 Strapdown Inertial Navigation Fundamental

2.2.1 Inertial Navigation

Inertial navigation utilizes fundamental principles of inertia. Mainly two
types of sensors are used in inertial navigation, accelerometers and gyro-
scopes. In conduction with electronics and software these sensor constitute
a inertial navigation system (INS). The accelerometer measures the acceler-
ation of a moving object, while the gyroscope measures the angular velocity.
A summary of the basics principles and different types of accelerometers and
gyroscopes can be found in Vik (2012). A more complete introduction to
inertial navigation can be found in Britting (2010) and Savage (1981).

Typically three accelerometers and three gyroscopes are combined to one
unit. This is called an inertial measurement unit (IMU) and measures 6
degree of freedom, see Fossen (2011) for more. The IMU measures three
orthogonal accelerations and three orthogonal angular velocities. Further-
more, acceleration measurements1 are integrated twice while the angular
velocities are integrated once respectively by the INS to obtain the posi-

1Acceleration measurements are sometimes called specific forces measurements
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tion and attitude. Some IMUs also include magnetometers and are often
incorrectly referred to as “9-DOF inertial measurement units”.

2.2.2 The Strapdown Equations

Throughout the navigation process are the strapdown equations soled by
the INS in order to compute the PVA estimates.

Be defining pn := pnb/n and pi := pib/i can (2.4) relate the position in the
{n} and {i} frame according to

pi = Ri
np

n (2.4)

as given in Britting (2010). Furthermore, Ri
n ∈ SO(3) is the rotation matrix

between the NED frame and the inertial frame. By applying the SO(3)

property, see (B.1) in Appendix B.1, can the position in the {n} frame be
written as

pn = (Ri
n)

ᵀpi = Rn
i p

i. (2.5)

To obtain the differential equation for pn one performs time derivation on
(2.5). By utilizing the chain rule the following emerges

ṗn = Rn
i ṗ

i + Ṙ
n
i p

i (2.6)

Moreover, by exploiting the relationship

Ṙ
a
b = R

a
bS(ω

b
ab) (2.7)
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from (B.6), can (2.6) as

ṗn = Rn
i ṗ

i +Rn
i S(ω

i
i/n)p

i

= ṗn −Rn
i S(ω

i
n/i)p

i

= vn −Rn
i S(ω

i
n/i)p

i. (2.8)

Furthermore, can (2.8) by written as

ṗn = vn −Rn
i S(ω

i
n/i)R

i
np

n. (2.9)

By utilizing the similarity transform, see (B.7) will (2.8) take the following
form

ṗn = vn − S(ωnn/i)p
n. (2.10)

Regarding the velocity differential equation, can v̇n be stated from Britting
(2010) in the {n} frame as

v̇n = Rn
i

(
p̈i − S(ωin/e + 2ωie/i)R

i
nv

n − S(ωie/i)
2pi
)

(2.11)

Furthermore, Britting (2010) defines the gravity vector in the {n} frames
as

gn := Gn −Rn
i S(ω

i
e/i)

2pi (2.12)

and state that
fn = Rn

e p̈
i −Gn (2.13)

whereGn is the gravity acceleration due to the Earth. By rearranging (2.12)
with respect to Gn and inserting Gn into (2.13) results in

fn = Rn
e p̈

i −
(
gn +Rn

i S(ω
i
e/i)

2
)
. (2.14)

Moreover, by rearranging (2.14) with respect to e.g Rn
e p̈

i and substitute this
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into (2.11) yields

v̇n = Rn
i p̈

i −Rn
i S(ω

i
n/e + 2ωie/i)R

i
nv

n −Rn
i S(ω

i
e/i)

2

= fn + gn +Rn
i S(ω

i
e/i)

2 −Rn
i S(ω

i
n/e + 2ωie/i)R

i
nv

n −Rn
i S(ω

i
e/i)

2

= fn + gn −Rn
i S(ω

i
n/e + 2ωie/i)R

i
nv

n. (2.15)

By applying the similarity transform again from (B.7), can (2.15) be written
as

v̇n = fn + gn − S(ωnn/e + 2ωne/i)v
n. (2.16)

As given in Section 1.4 this thesis will perform a case study with a ves-
sel operating in a confined geographical area. Thus, performing flat Earth
navigation. In this case the {n} frame is assumed to be inertial as given
in Table B.1. Hence, the S(ωii/n) and S(ωnn/e + 2ωne/i) terms will be zero.
Furthermore, by defining

ω̄bb/n =:

[
0

ωbb/n

]
(2.17)

can the attitude differential equation (B.26), utilizing quaternions as attitude
representation, be written as

q̇nb =
1

2
qnb ⊗ ω̄bb/n (2.18)

From (2.10), (2.16) and (2.18) together with fact that the all the skew-
symmetric is zero results in the following dynamic equations given in the
{n} frame

ṗn = vn (2.19)

v̇n = fn + gn (2.20)

q̇nb =
1

2
qnb ⊗ ω̄bb/n (2.21)

Equations (2.19) - (2.21) coincides with the problem formulation presented
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in Grip et al. (2013, Submitted) by assuming that the {n} frame is inertial.
For the definition of flat Earth navigation, see Appendix B.5. However, in
this thesis will

q̇nb = T q(q)ω
b
b/n (2.22)

from (B.24) be used to describe the attitude differential equation of (2.21).

2.2.3 INS Errors and Error Sources

According to Fossen (2011) will the PVA estimates from the INS drift due
to sensor biases when the one looses aiding sensors measurements such as
GNSS. Vik and Fossen (2001) states that the most dominating error sources
in an INS system are biases, scale factors, misalignment and temperature
variations. As mentioned above, the accelerometers and gyroscope mea-
surements are integrated twice and once respectively. Because of this, the
senors biases will propagate throughout the INS. Hence, the INS estimates
will drift caused by integration of errors over time. To prevent this aid-
ing measurements are needed. Maybeck (1979) give a summery of possible
reference sensors. The aiding sensor utilized in this work will be position
measurements from GNSS. For more information on GNSS can be found the
following Section.

2.3 Global Navigation Satellite Systems

Global Navigation Satellite Systems (GNSS), such as GPS, GLONASS, Bei-
dou and Galileo, calculate three-dimensional position of the GNSS receiver.
For details on the GPS systems can Parkinson and Spilker (1996a,b) be
advised.

20



Chapter 2. Preliminaries

2.3.1 GNSS Position Measurements

The three-dimensional position measurement of the GNSS receiver is based
upon raw pseudorange measurements. This is the perceived distance from
the satellite to the GNSS receiver. The pseudorange measurement for n
satellites are given, from Vik et al. (1999), as

ρi =
√
(xis − x)ᵀ(xis − x) + cτ∗ + εiρ, i ∈ [1, . . . n] (2.23)

where xis ∈ R3 is the position of satellite i and xi ∈ R3 is the position of
the ith GNSS receiver. Furthermore, c is the speed of light whereas τ∗ is
the receiver clock error. εiρ represents other smaller pseudorange errors and
noise. The position measurement is usually obtained by linearizing (2.23)
and then applying a recursive least squares (RLS) algorithm or an extended
Kalman filter.

The receiver position, x is calculated in the {e} frame. From Fossen (2011)
can the position xe this be be transformed to the {n} frame by apply-
ing

xn = Rn
ex

e (2.24)

whereRn
e is the rotation matrix between the ECEF and the NED frame.

Parkinson and Spilker (1996a) states that GPS accuracy is manly affected
by two factors. The ranging accuracy and the geometric constellation of
the satellites. Where the latter results in geometric dilution of precision
(GDOP). Furthermore, Parkinson and Spilker (1996a, Ch. 1) writes the
position root mean square error as

Position Error RMS = GDOP · RMSUERE. (2.25)

where UERE means user equivalent range error. Furthermore, (2.25) can be
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written as √
σ2
x + σ2

y + σ2
z + σ2

τ = GDOP · σUERE. (2.26)

Other Dilution of Precision parameters are Position Dilution of Precision
(PDOP), Horizontal Dilution of Precision (HDOP), Vertical Dilution of Pre-
cision (VDOP) and Time Dilution of Precision (TDOP). From the standard
one-sigma error model in Parkinson and Spilker (1996a, Ch. 11) is the HDOP
smaller than the VDOP. This indicates that the horizontal components of
the GSP measurements are more precise that then vertical components. In
Section 3.2.2 will this fact be used regarding the choice of GNSS standard
deviation. For more on Dilution of Precision can Parkinson and Spilker
(1996a, Ch. 5) be advised.

2.3.2 GNSS Ranging Erros and Faults

Parkinson and Spilker (1996a, Ch. 11) describe that GNSS systems are af-
fected by six classes of errors. There are:

• Ephemeris Errors
• Satellite Clock errors
• Ionosphere errors

• Troposphere errors
• Multipath errors
• Receiver errors

According to Parkinson and Spilker (1996a) can dual-frequency GPS re-
ceivers compensate for the ionospheric refraction which delays the pseudor-
ange measurement. Furthermore, Parkinson and Spilker (1996a) also states
that this approach is significantly better than using a model of the delay, of
the raw pseudorange measurements, introduced by the ionosphere.

Parkinson and Spilker (1996a) stats that troposphere errors are introduced
by variations in temperature, pressure and humidity in the lower part of the
atmosphere. A model can be used to reduce these effects.

Multipath errors are introduced be GNSS signals that are reflected of ob-
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jects. To reduce this problem from a vessel, one could locate the receiver as
high as possible so reflections will be minimized. For dGNSS is multipath
the main error sources.

Reciver errors will in general introduce measurement noise and bias caused
by the electronics and algorithms used to calculated the position measure-
ments.

Differential GNSS (dGNSS) can be utilized in the attempt to compensate
for the errors mentioned above. The concept is as follows; The user receives
differential corrections from fixed ground stations in order to compensate
from errors introduced in the position measurement calculation. The loca-
tion of the ground stations are known. According to Parkinson and Spilker
(1996b) the most common method to perform these differential corrections
for dGPS is that the reference station estimates the error in the pseudorange
measurement for each satellite in view. These estimates are based on a.i. the
station’s known location. Then the estimates or corrections are broadcasted
to the users in range. However, dGNSS not will be able remove multipath
and receiver noise errors.

In additions to errors can faults, like satellite clock failure, receiver failure
or differential link failure, introduce errors in the GNSS solution which can
result in dramatic consequences. Such consequences for a mobile offshore
drilling unit are described in Chen et al. (2009). Furthermore, Chen et al.
presents four failure cases for dGNSS as presented in Table 2.1. Moreover,

Table 2.1: dGNSS Failure Modes

Loss of Erroneous
Position Data Position Data

Failure of individual
dGNSS A C
Simultaneous failure
multiple dGNSS B D
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Chen et al. (2009) presents that dGNSS failure mode C and D could lead
to more significant loss of position if the erroneous position data is provided
to the DP control system. The reason for this is the case A and B will issue
and alarm to the DPO. C and D may not. Hence, situation C and D may
result in critical situations such as drive-off. The failure modes presented in
Table 2.1, according to Chen et al. (2009), be caused by both external or
internal errors and faults. The external causes are associated with the state
of the GNSS satellites, signal medium or the differential link. Regarding the
internal causes, are these introduced by GNSS equipment, differential link
equipment and the dGNSS unit. These causes are presented in Appendix
B.6. Details can be found in Chen et al. (2009).

As presented above can faulty dGNSS measurement can result in drifting
dGNSS position measurements. Jumps may also occur as shown presented
in Chen et al. (2009). Chen et al. (2009) states that erroneous position data
may result in

• Position jump

• Slow position drift

• Fast position drift

There is reported incidents with position jump of 65 meters. Regarding the
slow drift of measurements reported in Chen et al. (2009) was a result of the
position measurements indicated a fixed position, however the vessel was ac-
tually moving. Chen et al. (2009) also mentions two cases where the position
measurement drifted 10 to 20 meters in a few sampling intervals.

The purpose of this thesis is develop a fault-tolerant observer and not to
develop a satellite simulator. Therefore are just some of the errors above
and in Appendix B.6 tried to be replicated in Chapter 3 and not simulated.
This is further motivated by the fact that the observer should handle faults
and failure regardless of cause. Therefor was a a full GNSS simulator not
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developed. For details of the simulated GNSS measurements, faults and
failures can Section 3.2.2 be advised.

2.4 Fault-Tolerant Control

According to Blanke (2001), does fault-tolerant control (FTC) employs soft-
ware to monitor behavior of redundant components within the system. If a
fault has occurred, appropriate actions are taken to prevent critical damage
or failure. The overall goal, in contrast to fail-safe systems, is to keep the
system operational, preferable a normal performance. The main goal of fail-
safe systems are to perform a safe performance reduction to a fail-safe state
or shutdown when a critical fault is detected.

Regarding the FTC can, according to Isermann (2006) the following defini-
tions be stated:

Definition 2.1. Fault Detection: Determination of faults present in a
system and time of detection;

Definition 2.2. Fault Isolation: Determination of kind, location and time
of detection of a fault by evaluating symptoms. Follows fault detection;

Definition 2.3. Fault Identification: Determination of the size and time-
variant behavior of a fault. Follows fault isolation;

Definition 2.4. Fault Diagnosis: Determination of kind, size, location
and time of detection of a fault by evaluating symptoms. Follows fault de-
tection. Includes fault detection, isolation and identification;

Frank et al. (1999) presents can a nonlinear system can be written as

ẋ = f(x,u,θf ,θd) (2.27)

y = h(x,u,θfs) (2.28)
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where x ∈ Rn, u ∈ Rm is the state vector and input vector respectively.
Further, the y ∈ Rp is the output vector. The system parameters is described
by θf ∈ Rl when no faults are present. θd represents the model mismatch,
i.e θd = 0 if the model is an exact representation of the real-life system.
θfs ∈ Rls represented the output parameters. If θfs deviates from the
nominal values, a sensor fault has occurred. Moreover, from Frank et al.
(1999) can the two following definitions be stated

Definition 2.5. Residual Generation is the construction of signals that
are accentuated by the changes is the parameter vector (faults).

Definition 2.6. Residual Evaluation is the decision and isolation of the
occurrence of changes in the parameter vector.

Previous results regarding fault-tolerant control applications be found in
Frank (1990).

The fault-tolerance methodology applied in this thesis will primarily focus
of fault detection regarding GNSS. From Frank (1990) can the measurement
part of such a model be written in continuous time as

y(t) = Cx(t) + Fd(t) +Gf(t) (2.29)

where x(t) is the state vector. In this case, x is given as

x =

[
pnb/n
vnb/n

]
, x ∈ R6. (2.30)

d(t) is unknown inputs vector, e.g measurements noise. f(t) are the respec-
tive sensor faults. The C, F and G matrices are in this case the same, given
as

C = F = G =
[
I3×3 03×3

]
(2.31)

and describe how the actual position, measurement noise and sensor faults
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effects the measurement, y.

The linear observer dynamics can be written as

˙̂x = (A−KC)x̂+Bu+Ky (2.32)

ŷ = Cx̂. (2.33)

whereK is given in (4.19). Since GNSS faults are to be studied in this thesis,
the linear part of the dynamical model of (2.19) - (2.21) can be utilized in
a fault-tolerant design. Then the input u can be stated as

u = f̂
n
+ gn (2.34)

where f̂
n
nonlinear acceleration estimate in the {n} frame and gn is gravity

given in {n}. Furthermore, from Chapter 4 f̂
n
is given as

f̂
n
= R̂

n
b (f IMU − ba + σ̂) (2.35)

which result u to be nonlinear. Hence, the system matrix A and the input
allocation matrix, B is given as

A =

[
03×3 I3×3

03×3 03×3

]
, B =

[
03×3

I3×3

]
. (2.36)

This however requires that the neither the IMU measurements f bIMU and
ωbIMU or the gyro and acceleration bias estimates, bbg and bba, fail or provide
erroneous bias estimates.

Furthermore, the estimation error can be defined as

e := y − ŷ = C(x− x̂) + Fd+Gf (2.37)

and can according to Frank (1990) be used as the residual presented above
in Definition 2.5. Moreover, Blanke (2001) proposes that the residual could
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be obtained by filtering the estimation error with a filter, W (s). Then, the
residual, r, can be written as

r =W (s)e. (2.38)

This can be useful since the estimation error, e, also is sensitive to other
disturbances and noise which is not necessarily fault induced. Furthermore,
Blanke (2001) states that W should be designed such that the residual,
r, is sensitive to faults and minimizing the sensitivity to noise effects. In a
maritime application such errors and disturbance can be sensor measurement
noise and wave-induced motion.

2.5 Dynamic Positioning and System Requirements

This section will present the DP model together with the DP controller and
DP requirements.

2.5.1 The 3 DOF DP Model

Fossen (2011) states that ships and semi-submersibles are controlled in 3
DOF of motion. The controllable degrees of freedom is described by motion
in surge, sway and yaw and is deemed sufficient for control purposes since the
roll and pitch angles usually are small and heave is generally uncontrollable
for floating vessels. The state vectors of the reduced model then take the
form of

η =
[
xn yn ψn

]ᵀ
, ν =

[
ub vb rb

]ᵀ
(2.39)

whereas the control inputs are given as

τ control =
[
τ bx τ by τ bψ

]ᵀ
(2.40)
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and decomposed in the {b} frame. Furthermore, as presented in Appendix
B.1, is the full rotation matrix (B.9) reduced to one principal rotation around
the z-axis. Hence, rotation matrix Rn

b (Θnb) reduces to

Rn
b (ψ) =

cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 . (2.41)

From Sørensen (2012) is the 3 DOF DP control plant model (CPM) for
non-anchored vessels given as

η̇n = R(ψ)νb (2.42)

Mν̇b +Dνb = τ +Rᵀ(ψ)bb (2.43)

where M is the inertial matrix, D is the linear damping matrix, b ∈ R3

is the bias vector and R(ψ) is the rotation matrix in yaw. This model
is valid for w = p = q = 0, which implies that the dynamics in heave,
roll and pitch are negligible. The bias consist of non-modeled dynamics
such as e.g. current, wind and Coriolis forces and moments. Also coupled
effects from the neglected roll and pitch dynamics might are also included
here. Furthermore, the bias is usually estimated with a first-order model as
described in Fossen (2011)

˙̂
b = −T−1b̂+Kỹ (2.44)

or just with integration of the injection term given as

˙̂b =Kỹ (2.45)

where T is the time constant matrix, K is some positive gain, and ỹ =

y − ŷ is the discrepancies between the measured position of the vessel and
the position estimate. For information regard position measurements and
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estimates, see Section 2.3 and Chapter 4.

2.5.2 DP Controller and the Reference Model

From Fossen (2011) can the DP controller be stated in the following man-
ner

τ controller = −Rn
b (ψ)

ᵀ(Kpη̃
n +Kdν̃

n +Ki

t∫
0

η̃n(τ) dτ
)

(2.46)

where η̃ = η̂ − ηd and ν̃ = ν̂ − νd. Usually is νd = 0 because of the
controller, (2.46), is mostly used for stationkeeping.

ηd and νd can also be obtained from a reference model, such as (2.47)

η
(3)
d + (2Λ + I)Ωη̈d + (2Λ + I)Ω2η̇d + Ω3ηd = Ω3rn (2.47)

where rn is the desired position reference, to avoid abrupt changes in η̃
and ν̃. Such abrupt changes in the position and velocity error can result in
unnecessary use of thrust. Saturating, effects of the desired velocity is also
recommended by Fossen (2011). This is so to prevent the desired velocity,
η̇d = νd, to exceed the physical limitation of the craft. For details regarding
reference models can Fossen (2011) be advised.

2.5.3 DP System Recommadations and Requirements

The classification society Det Norske Veritas (2011) states a general com-
mendation that the accuracy of the position reference data is generally to
be within:

• A radius of 2% of water depth for bottom-based systems

• Within a radius of 3 m for surface-based systems.
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In moderate weather Det Norske Veritas (2011) gives the following recom-
mendation which also incorporates heading: “(...) in moderate weather con-
ditions and with a fully operational DP system the vessel should generally
be able to demonstrate position keeping accuracy typically within a 3 meter
radius and ±1◦ of heading, given sufficient accurate position and heading
reference input.”

Regarding fault-tolerance, Det Norske Veritas (2011) states several require-
ments as follows:

107 When several systems are combined to provide a mean reference, the
mean value used shall not change abruptly by one system being selected
or deselected.

108 Failures in a positioning reference system that might give degraded qual-
ity, loss of position signal or loss of redundancy shall initiate an alarm.

110 If a positioning reference system can freeze or otherwise produce cor-
rupt data output, a method shall be provided to enable rejection of the
data.

111 When more than one positioning reference system is required, then each
shall be independent with respect to signal transmission and interfaces.

– Guidance note 1: In order for two satellite based systems to be
considered as independent it must be possible to set them up with
different differential correction signals.

2.6 Signal Processing Methods

In order increase the fault-tolerance of the Grip et al. (2013, Submitted)
observer are the signals from the respective measurements needed to be
monitored and processed. This Section will presents methods utilized such
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that the observer will be in compliance with the DNV requirements stated
above.

2.6.1 Signal Quality Check

The variance of a sensor measurements can indicate the quality of the mea-
surements. Sørensen (2012) states that er very low or vary high variance of
a sensor might indicate a faults or failure. A very low variance might indi-
cate freeze, whereas high variance might be a symptom of a sensor failure
or an inaccurate measurement. Hence variance testing must be applied to
check if the respective measurements should be trusted. Other signal pro-
cessing methods can be utilized to detect errors like measurement jumps and
wild-points. See Section 2.3.2 for details on GNSS error and fault.

Wild-Point Testing

According to Sørensen (2012) can measurement outliers such as spikes and
wild-points be excluded by the state estimator by assuming that the sampled
measurement measurement, y[k], should lie within an upper and lower limit.
The reasonable check can be implemented such that only measurements
fulfilling

y[k] ∈ [ȳk − aσ, ȳk + aσ] (2.48)

are made available to the state estimator in the control system. ȳk and
σ are the average and standard deviation of the previous measurements
respectively. Furthermore ±aσ is the outlier threshold. Sørensen (2012)
states that a should be in the interval between 3 and 9.
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Signal Variance and Freeze testing

Sørensen (2012) states that the variance of a given signal, y[k], can be
calculated from historic data like

σ2[k] =
1

n− 1

(
k∑

i=k−(n−1)

y[i]−, ȳ2
k

)
(2.49)

where n is the size of the moving window or buffer containing the data
history and ȳ is the mean of the moving window at a given time, k.

2.6.2 Signal Voting, Averaging and Weighting

If multiple sensors are used to obtain redundancy, see Section 2.4 from more
on redundancy, should voting and weighting be performed to produce the
best possible measurement to the user.

Voting can be performed to detect discrepancies between the individual sen-
sors or detect that one sensor is bias by comparing it to the others. The first
situation is possible with two sensors. The latter case is only possible with
three or more sensor available. If so, can a given sensor can be rejected if the
sensor deviates from the others by more than a predefined threshold.

Weighting of redundant sensor measurements can be done according to
Gustafsson (2012) where fusion of independent measurements e.g are per-
formed by utilizing a special case of weighted least-squares. Gustafsson
present the following loss function

V WLS(x) =

N∑
k=1

(yk −Hkxk)
ᵀR−1

k (yk −Hkxk). (2.50)
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By choosing, N = 3 and H = I3×3, can ŷWLS be written as

ŷWLS = P
(
R−1

1 y1 +R
−1
2 y2 +R

−1
3 y3

)
(2.51)

where, P , is the covariance matrix given as

P =
(
R−1

1 +R−1
2 +R−1

3

)−1 (2.52)

and Ri are the covariance of the individual sensors. Regarding the sensor,
the following are assumed sensor model are assumed from position measure-
ments

y1 = x+ e1, e1 ∼ N(0,R1)

y2 = x+ e2, e2 ∼ N(0,R2)

y3 = x+ e3, e3 ∼ N(0,R3).

(2.53)

Then Ri is given as

Ri =

σ
2
GNSS,xi

0 0

0 σ2
GNSS,yi

0

0 0 σ2
GNSS,zi

 . (2.54)

2.7 Simulation Theory

In the implementation of the nonlinear observer the corrector and predictor
paradigm of the discrete Kalman filter is exploited. From Fossen (2011) the
corrector and predictor equations can be written as

Corrector x̂(k) = x̄+Kd[y(k)− ȳ(k)]
Predictor x̄(k + 1) = x̂(k) + hf(x̂(k),u(k))

(2.55)
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where the injection term is given as Kd(y − ŷ). Furthermore, Kd = hK,
where h is the sampling time. If no measurements are available, the predictor
takes the form of

x̄(k + 1) = x̄(k) + hf(x̂(k),u(k)) (2.56)

This is dead-reckoning. A general corrector-predictor algorithm for observers
is presented in Fossen (2011).

According to Section B.1 may the quaternion no longer be unity caused by
numerical integration, in a computer, of the quaterion differential equation,
(B.24). This problem can be compensated be renormalizing the quaternion
according to

qnb (k + 1) =
qnb (k + 1)

‖qnb (k + 1)‖
(2.57)

for each time step as given in (B.27).
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Chapter 3
Vessel Simulator

The purpose of the simulator was to generate a complete 6 DOF motion of
a vessel exposed to environmental forces. Using the vessel model as a basis,
a so called 9 DOF, IMU and GNSS measurements where obtained from
the simulated kinetics and kinematics such that the respective inertial and
position measurements can be provided to the user and the observer.

Regarding the vessel type a semi-submersible was chosen. Such a vessel
is illustrated in Figure 3.1. The vessel parameters where obtained from
rig.m provided by the MSS Toolbox, see MSS. Marine Systems Simulator
(2010).

Figure 3.1: Illustration of a semi-submersible. Vessel name: West Venture.
Photo: Seadrill.

A fault injection method was also constructed in order to simulate sensor
faults.
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3.1 Simulator Model of Vessel with Environmental
Forces and Moments

In order to obtained some degree of real-life motion of the vessel due to
weather condition, wave and current forces and moments was taken in ac-
count when designing the simulator. Hence, both oscillatory and drifting
motion of the simulated vessel were obtained. From this, the total simula-
tion modeled of the vessel with environmental forces can be written as

η̇ = JΘ(η)νr +

[
vnc

0

]
(3.1)

Mν̇r +C(νr)νr +D(νr)νr + g(η) = τ control + τwave (3.2)

according to (B.55) - (B.56) as stated in Appendix B.3.2. η ∈ R6 is the gen-
eralized position of the vessel whereas νr ∈ R6 is the relative velocity

νr = ν − νc. (3.3)

Moreover, νc is the current velocity. Since relative velocity was utilized in the
vessel simulator was the Coriolis matrix, C(νr), parameterized independent
of linear velocity. See Appendix B.3.2 for details.

Wind forces and moments was discarded in construction of the simulator.
Both oscillatory and drifting environmental forces and moments was ob-
tained from the inclusion of first-order wave and forces and moments together
with the respective current. Because of this was wind forces and moments
not included in the simulator mode,l of 3.1 - (3.2), since the second-order
environmental forces was obtained be the inclusion of current. Figure 3.2 il-
lustrates of the environmental disturbances are introduced in the simulator.
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Figure 3.2: Simulator. Overview of how the environmental forces and mo-
ments acts on the vessel.

Current

As seen above and in Appendix B.3.2 can the current be added in the kinetics
be exploiting that the kinetics can be simulated with relative generalized ve-
locity, νr. The current, vnc , in the simulator model of (3.1) is given as

vnc =

Vc cos(αc) cos(βc)Vc sin(βc)

Vc sin(αc) cos(βc)

 (3.4)

from (B.59). Furthermore, the angle of attack, αc was chosen to zero. Hence,
the current only has horizontal components. The speed current speed, Vc
was chosen to 1 [m/s] and the side slip angle, βc was chosen to βc = −30◦.
Hence, the current was given as

vnc =

0.5 · cos(−30
◦)

0.5 · sin(−30◦)
0

 . (3.5)

The simulation of the current (3.5) is shown in Figure 3.3.
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Figure 3.3: Vessel Simulator. Two dimensional, constant irrational current.

Wave-Induced Forces and Moments

The wave-induced forces and moments where calculated by utilizing linear
wave theory as presented in Appendix B.3.1.

The JONSWAP spectra was chosen to obtain a wave spectra values for the
North Sea was chosen as presented in Section B.3.1. According to Sørensen
(2012) are wave periods in the range of 5 to 20 seconds quite common.
Hassani et al. (2012) and reference therein presents that a high sea state
usually lies within ω0 ∈ [0.45 rad

s − 0.67 rad
s ] and Hs ∈ [2.69m − 9.71m].

Based on this the chosen wave frequency was w0 = 0.5. This result in a
wave period of

T0 =
2π

w0
= 12.5664 (3.6)

Furthermore, significant wave height was chosen to be Hs = 7. By utilizing
the wavespec.m the in the MSS Toolbox, was the JONSWAP spectra was
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calculated as following

S = wavespec(7,[H_s, w_0, gamma], w, 1);

For more on MSS Toolbox, see MSS. Marine Systems Simulator (2010).

From Fossen (2011) can the first-order wave frequency induced forces and
moments, τwave 1st, be approximated as second-order transfer function driven
by a Gaussian, zero mean process. For each degree of freedom can the fol-
lowing transfer function

h(s)wave,i(s) =
K
{i}
w s

s2 + 2λ{i}ω
{i}
0 σ +

(
ω
{i}
0

)2 (3.7)

model the wave frequency motion according to Fossen (2011). Furthermore,
the parameters of (3.7) was found. σ was calculated according to (B.44)
as (

σ{i}
)2

= max
o<ω<∞

S(ω). (3.8)

Whereas, λ was found by was calculated by curve fitting the spectra, Pξξ(ω),
of the linear transfer function, h(s), to the JONSWAP spectra, S(ω). The
resulting wave spectra together with the linear approximation can be seen in
Figure 3.4. This resulted in σ = 2.7592 and λ = 0.107. However, λ = 0.10

was chosen since this is recommended by Fossen (2011).

Moreover, can (3.7) can be written in state-space form(B.45) - (B.46) such
as

ξ̇w = Awξw +Eww (3.9)

ywave = Cwξw. (3.10)

which again can be utilized in a computer simulation. Furthermore, as
given in Appendix B.3.1, can the total wave forces and moments can be
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Figure 3.4: Simulator: JONSWAP spectrum wave spectra together with the
curve fitted linear transfer function approximation of the wave spectra

approximated by
τwave ≈KHs(s)w(s). (3.11)

In the simulator, the scaling matrix, K, was chosen equal to inertia matrix,
M , to obtain a realistic wave-induced motion of the simulated vessel.

In order to simulate (3.9) - (3.10) in MATLAB® a numerical integration
method had to be chosen. First, the eigenvalues of Aw was calculated.
This resulted in complex conjugated eigenvalues of

− 0.2245± 0.4468i (3.12)

in each degree of freedom. Because of the complex eigenvalues with small
real part, Euler integration was deemed to not be the best choice because of
the lack of stability for under-damped systems, see Egeland and Gravdahl
(2002) for details. Instead, The Explicit Runge Kutta numerical integration
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method of order four (RK4) was used. For more on RK4, see Appendix C.
The eigenvaules of the 6 DOF wave model is given in Appendix A. Chosen
step time, h, was chosen to be 0.01. w is a Gaussian, zero mean, processes.
The standard deviation of w was chosen as

σw = [1, 1, 1, 1, 1, 1]ᵀ. (3.13)

Simulation result of the wave-induced forces and moments can be found in
Appendix D.

Model Parameters and State-Space Model

The M , D and G are provided from rig.m provided by the MSS Tool-
box, see MSS. Marine Systems Simulator (2010). Hence, g(η) have to be
calculated from the G matrix. From (B.37) is g(η) given a

g(η) = Gηn (3.14)

since G is linearized around φ = θ = 0. Then, g(η) is independent of the
heading angle, ψ.

The Coriolis matrix, C(νr), calculated by the function
MRB_and_Omega_b2Coriolis.m as

C_r = M_RB_and_Omega_b2Coriolis(M_RB, omega_b_bn, r_g_2_b);

in MATLAB® at every iteration of the simulator. Then, Cr is obtained in-
dependently of a the linear velocity. See Appendix B.3.2 for details. As
presented in the beginning of Section 3.1 were wind forces and moments
not considered in the simulator. The same goes for 2nd-order wave forces
and moments. Hence, for simulation purposes (3.1)-(3.2) can be written in
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state-space form as[
η̇n

ν̇br

]
=

[
06x6 JΘ(η)

−M−1G −M−1(C +D)

][
ηn

νbr

]
+[

06x6

−M−1

]
τ control +

[
06x6

−M−1

]
τwave 1st. order

(3.15)

where

ηn = [xn, yn, zn, φ, θ, ψ]ᵀ, νbr = [ubr, v
b
r, w

b
r, p

b, qb, rb]ᵀ (3.16)

and JΘ(η) is given by (B.28) as

JΘ(η) =

[
Rn
b (Θnb) 03x3

03x3 TΘ(Θnb)

]
. (3.17)

The vessel was simulated in MATLAB® with step length, h = 0.01 with com-
bined forward and backwards Euler. Regarding the step length, h = 0.01

was chosen in order to obtain 100 Hz IMU measurements. Combined forward
and backwards Euler was chosen to ensure a stable integration in a event
of oscillatory wave input because of the highly underdamped eigenvalues of
the second-order system (3.15). An example with zero generalized position
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and velocity angular velocity gives in the following eigenvaules

Λ =



0

0

0

−0.0651± 0.6214i

0

0

−0.0651± 0.6214i

−0.0050
−0.0125

−0.0752± 0.7482i

−0.0358± 0.3566i

−0.0100



. (3.18)

In order to show the wave-induced motion of the vessel, (3.15) was simulation
without control input. The results can be found in Appendix D, Figure
D.4.

3.2 Simulating GNSS and IMU Measurements

Four different measurements was proved by the simulator. The position
measurements were obtained from the simulated GNSS, while the latter
three measurement were provided by an IMU. I.e acceleration, angular rate
and magnetic field measurements from an accelerometer, a gyroscope and
a magnetometer respectively. How the measurements where obtained from
the simulator can be seen in Figure 3.5.

45



3.2. Simulating GNSS and IMU Measurements

VesselController

Current

Wave
Generator

GNSS

IMU

Signal
Processing

PVA
Observer

Fault Injector

Reference+ −

Figure 3.5: Simulator. Overview of how the sensor measurements where
obtained in the simulator.

3.2.1 Measurement Models

GNSS Measurements

The GNSS measurements was obtained from NED the position of the vessel
by utelizing the simulator model as basis. Then, measurement noise and
possibly bias or drifting terms was added before provided to the user. Hence,
the simulated GNSS measurements are model as

pnGNSS = pnb/n +w
n + bnGNSS (3.19)

where pnb/n = [xn, yn, zn], wn is zero mean, Gaussian measurement noise
and bnGNSS is an given bias or drifting term. pnb/n is provided directly from the
simulated vessel instead of simulating a total satellite range space solution
based upon (2.23), from Section 2.3.

IMU Measurements

The IMU measurements was, provided by extracting the acceleration, angu-
lar velocity from the simulator model. The magnetometer measurement, on
the other hand, was obtained by finding the magnetic field at a given loca-
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tion before transforming it to the {b} and adding noise and bias terms. From
Mahony et al. (2008) the following measurements model are utilized

f bIMU = Rb
n(Θ)(v̇nb/n − g

n) + bbacc +w
b
acc (3.20)

ωbIMU = ωbb/n + b
b
gyro +w

b
gyro (3.21)

mb
IMU = Rn

b (Θ)mn + bbmag +w
b
mag. (3.22)

ωbb/n and mn together with the Euler angles, Θ, was extracted directly
from the simulator. Values of mn need to be predefined in advance of any
simulation. Furthermore, mn was assumed constant since all simulation
was carried with vessel motion constrained to a smaller geographical area.
However,the term Rb

nv̇
n
b/n has to be calculated in order to obtain the ac-

celerometer measurements since only v̇br and R
b
n are provided directly from

the simulator.

From (B.60) is the irrational current defined as

v̇nc := 0 (3.23)

Furthermore, the velocity of the irrational current, vbc, in the {b} frame is
then given as

vbc = R
b
n(Θnb)v

n
c (3.24)

Moreover, v̇bc is given as

v̇bc = Ṙ
b
n(Θnb)v

n
c +R

b
n(Θnb)v̇

n
c (3.25)

by applying the chain rule. Then, because of (3.23), v̇bc will be given as

v̇bc = Ṙ
b
n(Θnb)v

n
c = −S(ωbb/n)v

b
c (3.26)

from the Definition B.1 of irrational currents. Furthermore, since the current
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is given in the {n} frame, must the former results be calculated from

v̇bc = −S(ωbb/n)R
b
nv

n
c (3.27)

Finally, v̇b is given as
v̇b = v̇br + v̇

b
c (3.28)

by rearranging the definition of relative velocity from (B.36), i.e

νr := ν − νc ⇒ νb = νbr + ν
b
c. (3.29)

Hence, the acceleration measurement of (3.20) was then implemented as

f bIMU = v̇br − S(ωbb/n)R
b
nv

n
c −Rb

n(Θ)gn + bbacc +w
b
acc

= v̇br + v̇
b
c −Rb

n(Θ)gn + bbacc +w
b
acc

= v̇bb/n −R
b
n(Θ)gn + bbacc +w

b
acc. (3.30)

The rotation matrix, Rb
n, and the skew-symertic matrix, S(ωbb/n), were cal-

culated with the Rzyx.m and Smtrx.m functions respectively. Both provided
by the MSS Toolbox.

3.2.2 Choice of Sensor Parameters, Errors and Faults

Sampling Time

Three 5 Hz GNSS units together with one 100Hz IMU was simulated. This
resulting a the sampling a sampling time of

fGNSS = 5 Hz⇒ TGNSS = 0.2 s

fIMU = 100 Hz⇒ TIMU = 0.01 s
(3.31)

for both type of sensors.
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In order simulate realistic sensor measurements both white noise and sensor
biases was included. White noise for both sensor was added by using the
normrnd.m function in the Statistics Toolbox in MATLAB® .

The magnetic field was chosen to

mn =
[
16836.0 nT −176.3 nT 47137.8 nT

]ᵀ
(3.32)

which is the magnetic field from the offshore installation Ekofisk on the
Norwegian continental shelf in the North Sea. The magnetic field of (3.32)
was calculated by utilizing the service of National Geophysical Data Center
(2013). Data from 1th of January 2013 was utilized.

IMU Errors

The standard deviation of white noise accelerometer, gyroscope and magne-
tometer can be found in Table 3.1 whereas the biases of the IMU measur-
ments in found Table 3.2. The gyro biases was chosen different from the gyro
bias presented in Grip et al. (2013, Submitted), however they were chosen
in the same order of magnitude.

Table 3.1: IMU Noise

Std. Accelerometer Std. Gyro Std. Magnetometer

x 0.2 m/s2 0.1 deg/s 1.25 · 10−3 nT

y 0.2 m/s2 0.1 deg/s 1.25 · 10−3 nT

z 0.2 m/s2 0.1 deg/s 1.25 · 10−3 nT

The reason for the choice of zero accelerometer bias and magnetometer bias
is shown and discussed in Chapter 5, Section 5.1. The accelerometer and
magnetometer was assumed to be pre-calibrated. The validity of this as-
sumption is discussed in 5.8.
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Table 3.2: IMU Bias

Accelerometer Gyro Magnetometer

x 0 m/s2 0.17 deg/s 0 nT

y 0 m/s2 −0.18 deg/s 0 nT

z 0 m/s2 0.14 deg/s 0 nT

GNSS Errors and Faults

The chosen standard deviation of the GNSS white measurement noise can
be found in Table 3.3. Both normal operation and fault induced noise is
presented. The normal operation column is, in Table 3.3, is based upon to
assumptions

• Use of dual frequency receiver to cancel ionospheric disturbances, see
Section 2.3.

• dGNSS is utilized.

From Parkinson and Spilker (1996a,b) can such assumptions yield a position
measurement with better accuracy than 1 meter standard deviation (1σ).
Moreover, Section 2.3.2 presents i.a. that VDOP is larger than HDOP. This
is why the chosen white noise standard deviations of the vertical measure-
ment components are set higher. The latter type is activated in the simulator
by the fault injection method illustrated in Figure 3.6.

In Table 3.4 can one find the GNSS bias types and magnitude. Table 3.5
shows the chosen wild-points utilized in the simulator. 12 different wild-
points were chosen such that each of the wild-point could be replicated for
each simulation and still yield different values throughout each simulation.
The motivation for this is that robustness of the fault-tolerant methods
utilized in this thesis could be tested since the wild-point for each sensor
would not be same for each wild-point occurrence.
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Figure 3.6: Simulator. Overview of how the GNSS sensor faults are injected
in the simulator.

Table 3.3: GNSS Measurement Noise

Std. White Noise Std. White Noise
Normal Operation Fault Induced

pnx 1 m 10 m

pny 1 m 10 m

pnz 1.2 m 12 m

From the statements above can these faults can present them selves as

• Single antenna bias. Cause might be multipath and a receiver error.

• All antennas will be biased from e.g. multipath, bad GDOP or Differ-
ential link error.

• Abrupt changes in the measurement such as wild-points or jumps.

• Loss of position reference from e.g. atmospheric scintillation.

• Freeze from e.g. a fault in software or electronics failure.

• Drift from e.g. differential link error or satellite clock failure.
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Table 3.4: GNSS Measurement Biases

GNSS Bias GNSS Bias
Jump Fast Drift

pnx 5 m 0.1 m/s

pny −5 m 0.15 m/s

pnz 0 m 0.25 m/s

Table 3.5: GNSS Measurement Wild-points

Number 1 Number 2 Number 3 Number 4

pnx 21.0078 m 16.6023 m −23.9294 m 15.5738 m

pny −19.0980 m 15.0930 m −21.7540 m 14.1580 m

pnz −23.8725 m −18.8663 m −27.1925 m 17.6975 m

Number 5 Number 6 Number 7 Number 8

pnx −13.3694 m −16.3493 m 19.4711 m 13.4695

pnx 12.1540 m −14.8630 m −17.7010 m 12.2450 m

pnz −15.1925 m 18.5787 m −22.1262 m −15.3062 m

Number 9 Number 10 Number 11 Number 12

pnx −14.3440 m −19.8792 m −31.0398 m 29.0444 m

pny −13.0400 m 18.0720 m 28.2180 m 26.4040 m

pnz 16.3000 m −22.5900 m 35.2725 m −33.0050 m
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Regardless of the underlying causes should the fault-tolerant methods handle
errors or faults. Because of this, the fault-tolerant observer was subjected
to multiple error and fault scenarios, related to the use of GNSS as position
reference. These were

• Wild-point of multiple GNSS measurements.

• Freeze of single GNSS antenna measurements.

• Increased variance of a single GNSS antenna measurements.

• Jump in measurement (constant bias).

• Drift of all GNSS antenna measurements.

The corresponding results can be found in Chapter 5.

3.3 DP Controller

The DP controller was chosen as

τ controller = R
n
b (ψ)

ᵀKpη̃
n−Rn

b (ψ)
ᵀKdν̃

n−Rn
b (ψ)

ᵀKi

t∫
0

η̃n(τ) dτ (3.33)

and sampled at 10 Hz. The integral
∫ t

0 η̃
n(τ) dτ was calculated by utilizing

Forward Euler with step length hcontrol = 0.1 according to

ηint(k + 1) = ηint(k) + hcontrol · η̃. (3.34)

Moreover, this resulted in the following controller at time step, k

τ controller(k) = −Rn
b (ψ)

ᵀ(k)

[
Kpη̃

n(k) +Kdν̃
n(k) +Kiηint(k)

]
. (3.35)
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Any given change in control set-point was filter through a third-order refer-
ence model, as presented in Section 2.5.2. How the controller and reference
model was implemented in the simulator is illustrated in Figure 3.7

VesselController
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Wave
Generator

GNSS

IMU

Signal
Processing

PVA
Observer

Fault Injector

Reference+ −

Figure 3.7: Simulator. Overview of how the controller and reference model
where implemented in the simulator.
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Observer Design

The chosen observer for this thesis is the INS/GNSS integration observer
proposed by Grip et al. (2013, Submitted). Section 4.1 and 4.2 present the
basis for the observer together with the observer equation. Furthermore, Sec-
tion 4.3 takes on the aspects regarding the implementation of the observer in
discrete time. Section 4.4 follows with the observer tuning, whereas Section
4.5 and Section 4.6 takes on the fault-tolerance additions to the observer
developed by Grip et al. (2013, Submitted).

4.1 Dynamical Formulation

A special condition of the problem formulation in Grip et al. (2013, Submit-
ted) follows from Section 2.2.2 as

ṗn = vn (4.1)

v̇n = fn + gn(pn) (4.2)

q̇nb = T q(q)ω
b
b/n (4.3)

ḃ
b
g = 0 (4.4)

where the NED frame is assumed inertial. Hence, flat earth navigation is
assumed. The definition of Flat Earth navigation is found in Appendix B.5,
Definition B.2. This is a safe assumption of for a stationkeeping applications
utilized by marine vessels. Hence, the rotation of the earth is neglected in
opposite of Grip et al. (2013, Submitted). By knowledge of the longitude and
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latitude can the gravity vector, gn(pn), can be calculated according to Hsu
(1996). However, here a constant gravity vector, gn(pn) = [0, 0, 9.81]ᵀ, is
assumed because the observer will be applied in a stationkeeping operation.
Hence, the vessel is contained to a small geographical area and thus the
gravity can be assumed constant during the operation.

Sensor Configuration

The nonlinear PVA observer to be presented in this chapter is based upon the
following sensor configuration based on IMU and GNSS measurements:

1. Position measurement: pnGNSS = pn

2. Velocity measurement(full or partial): vnGNSS = Cvv
n, where Cv may

be a zero matrix, identify matrix or some other constellation. In this
thesis will not GNSS velocity be utilized.

3. Angular Velocity measurement: ωbnb,IMU = ωbnb + b
b
g

4. Acceleration measurement: f bIMU = f b + bba.

5. Magnetic field measurement: mb
IMU =mb

Furthermore, the magnetic field, mn is assumed to be known.

4.2 Nonlinear Observer for Position, Velocity and
Attitude

As presented in Chapter 1 was the observer proposed in Grip et al. (2013,
Submitted) was chosen. The observer with the corresponding sensor is illus-
trated in Figure 4.1. The assumptions posted by Grip et al. (2013, Submit-
ted) regarding the basis the observer can be found in Appendix B.4.
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Figure 4.1: The observer of Grip et al. (2013, Submitted). In this case the
position reference system is GNSS. Furthermore, the velocity measurement
is optionally. The attitude observer estimates a quaterion, q̂, and the gyro
bias, b̂

b
gryo. From the acceleration measurement together with attitude and

accelerometer bias estimates, b̂
b
acc, is an acceleration estimate in the {n}

frame calculated. Furthermore, f̂
n
is feed back to the attitude observer

where it is utilized in the attitude and gyro bias estimation. The integration
filter estimates position and velocity in the {n} frame.

4.2.1 Attitude and Gyro Bias Estimation

By applying the attitude differential equation from Section 4.1 can the atti-
tude observer from Figure 4.1 be written as

˙̂q
n
b = T (q̂nb )(ω

b
b/n,IMU − b̂

b
g + σ̂) (4.5)

Moreover, the gyro bias estimate is written as

˙̂
b
b

g = Proj(b̂
b
g,−kIσ̂) (4.6)
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Furthermore, in this case is the nonlinear injection term, σ̂, provided by
Grip et al. (2013, Submitted), is defined as

σ̂ := k1m
b ×R(qnb )

ᵀmn + k2f
b ×R(qnb )

ᵀf̂
n

(4.7)

where, kI , k1 and k2 are scalar constants larger than zeros. The injection
term is given as in Mahony et al. (2008), where the normalized magnetometer
and accelerometer output, mb and f b, respectively are used as reference
vectors. Furthermore, the reference vectors are constructed as

f b :=
f bIMU − b̂

b
a

max{‖f bIMU − b̂
b
a‖, δ}

mb :=
mb

IMU

‖f bIMU‖
(4.8)

with the corresponding magnetic field in the {n} frame, mn, given as

mn :=
mn

‖mn‖
. (4.9)

The latter is assumed to be known as stated in Section 4.1. Moreover, b̂
b
a

and f̂
n
are provided by the acceleration bias estimator and integration filter

blocks from Figure 4.1, respectively. f̂
n
and f̂

n
are addressed in Section

4.2.2, whereas b̂
b
a is addressed Section 4.2.3.

Grip et al. (2012a) continued the work Mahony et al. (2008) by including
a gyroscope bias estimate projection algorithm. By doing so almost global
stability was obtained for the case of non-stationary reference vectors. The
gyro bias estimate update law can be given as

˙̂
bg = Proj(b̂g,−kIσ) (4.10)

where
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Proj(b̂g,−kIσ) =



(
I − c(b̂g)

b̂gb̂
ᵀ
g

b̂
ᵀ
g b̂g

)
(−kIσ) b̂

ᵀ
g b̂g > 0 and

b̂
ᵀ
g(−kIσ) > 0

−kIσ otherwise

(4.11)

and

c(b̂g) = min

(
1,
b̂
ᵀ
g b̂g −M2

b

M̂2
b −M2

b

)
. (4.12)

The projection algorithm (4.11) will coincide with the second projection
algorithm in Krstic et al. (1995, App. E) by choosing the adaptation gain,
Γ = kI , where kI is scalar.

4.2.2 Position and Velocity Integration Observer

From Grip et al. (2013, Submitted) and the flat Earth navigation assumption
can the position and velocity estimate equations be written as

˙̂p
n
= v̂n + θKpp(p

n
GNSS − p̂n) +Kpv(v

n
GNSS −Cvv̂n) (4.13)

˙̂v
n
= f̂

n
+ gn(p̂n) + θ2Kvp(p

n
GNSS − p̂n)

+ θKvv(v
n
GNSS −Cvv̂n)

(4.14)

˙̂
ξ = −R(q̂nb )S(σ̂)f

b
IMU

+ θ3Kξp(p
n
GNSS − p̂n) + θ2Kξv(v

n
GNSS −Cvv̂n)

(4.15)

f̂
n
= R(q̂nb )(f

b
IMU − b̂

b
a) + ξ (4.16)

According to Grip et al. (2013, Submitted) describes ξ the discrepancy be-
tween the attitude estimate and position measurement. ξ should theroticaly
zero mean when the estimates have converged. Moreover, regarding the
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reference vectors in the Section 4.2.1, it follows that

f̂
n
:=

f̂
n

max{‖f̂n‖, δ}
(4.17)

where δ where added in the case where f̂
n
is small. Furthermore, δ is given

as
0 < δ < mf . (4.18)

The choice of mf is explained in Assumption B.2. Moreover, Grip et al.
(2013, Submitted) states that the gain matrices of (4.19) should be chosen
such that A−KC is Hurwitz.

A =

03×3 I3×3 03×3

03×3 03×3 I3×3

03×3 03×3 03×3

 C =

[
I3×3 03×3 03×3

03×3 Cv 03×3

]

K =

Kpp Kpv

Kvp Kvv

Kξp Kξv


(4.19)

θ ≥ 1 is a tuning parameter chosen to ensure stability.

4.2.3 Accelerometer Bias Estimation

This section will address the bias estimation of the accelerometer. The goal
is to obtain

b̂
b
a → bba. (4.20)

According to Mahony et al. (2008) the specific force measured by the ac-
celerometer can be modeled according to

abimu = Rb
n(Θ)(v̇nm/b − g

n) + bba +w
b
a (4.21)
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In order to obtain the estimate of the bias, bba the following acclerometer
reading is defined

f bIMU := f b + bba (4.22)

Hence, the specific force is given as

f b = f bIMU − bba. (4.23)

As with the gyro bias estimates is a parameter projection utilized. This is
based on the algorithm developed in Grip et al. (2012a). A over-parenthesized
vector w is defined according to

w :=

[
‖bba‖
bba

]
(4.24)

as in Grip et al. (2013, Submitted). The regressor φ1 is defined as

φ :=

[
1

−2f bIMU

]
. (4.25)

It follows that the adaptive projection algorithm is stated as

˙̂w = Proj(ŵ, Γφ(ŷ − φᵀ)ŵ) (4.26)

where
ŷ = min{‖f̂n‖2,M2

f} − ‖f bIMU‖2 (4.27)

The projection is determined be first following definition of a compact set
of the estimates of p̂n and p is made

ŵ :=

[
p̂n

b̂ba

]
(4.28)

1Should not be mistaken for the roll angle, φ
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According to Grip et al. (2013, Submitted) it is assumed that the knowledge
of Mw is known which bound the magnitude of w where ŵ is bonded by
Mŵ as

‖ŵ‖ ≤Mŵ (4.29)

The assumptions regarding Mŵ can be found in Appendix B.4.

4.2.4 Observer with Accelerometer Bias Estimation

Based on the inclusion of accelerometer bias estimation in the previous Sec-

tion, is the dynamics of ξ modified by adding R(q̂nb )
˙̂b
b

a on the right-hand
side of (4.15). Then, the total observer take the form of

˙̂p
n
= v̂n + θKpp(p

n
GNSS − p̂n) (4.30)

˙̂v
n
= f̂

n
+ gn(p̂n) + θ2Kvp(p

n
GNSS − p̂n) (4.31)

˙̂ξ = −R(q̂nb )S(σ̂)(f
b
IMU − b̂

b
a)

+R(q̂nb )
[
03×1 I3×3

]
Proj(ŵ,Γ(ŷ − φᵀŵ))

+ θ3Kξp(p
n
GNSS − p̂n) + θ2Kpv(v

n
GNSS −Cvv̂n)

(4.32)

˙̂q
n
b = T (q̂nb )(ω

b
b/n,IMU − b̂

b
g + σ̂) (4.33)

˙̂b
b

g = Proj(b̂
b
g,−kIσ̂) (4.34)

˙̂w = Proj(ŵ,Γ(ŷ − φᵀŵ)) (4.35)

4.3 Implementation Aspects

The observer is implemented with combined Forward Euler and Backwards
Euler for the position and velocity estimates of (4.30) - (4.31). Whereas
for the attitude update is Euler integration utilized. The reason for the
former choice is that Forward Euler and Backwards Euler are also stable for

62



Chapter 4. Observer Design

underdamped second-order systems as stated in Fossen (2011). For more on
Euler integration and numerical integration methods, see Appendix C.

From Section 2.7 it follows that utilizing corrector-predictor is useful when
implementing continuous observers in discrete time. The is especially so
for a given sensor with relatively slow sampling time like GNSS. Hence,
the observer of (4.30)-(4.35) is implemented as follows, with the positions
estimates are updated according to

p̂n(k) = p̄n(k) + h kGNSS θKpp(p
n
GNSS(k)− p̄n(k)) (4.36a)

p̄n(k + 1) = p̂n(k) + h v̂(k). (4.36b)

The update of the velocity estimate takes the following form

v̂n(k) = v̄n(k) + h kGNSS θKvp(p
n
GNSS(k)− p̄n(k)) (4.37a)

v̄n(k + 1) = v̂n(k) + h(f̂
n
(k) + gn(k)). (4.37b)

The update of ξ̂ is given as

ξ̂(k) = ξ̄(k) + h kGNSS θ
3Kξp(p

n
GNSS − p̂n) (4.38a)

ξ̄(k + 1) = ξ̂(k)− hR(q̂nb )S(σ̂)(f
b
IMU − bba)

+ hR(q̂nb )
[
03×1 I3×3

]
˙̂w

(4.38b)

where kGNSS is given as

kGNSS =
fIMU

fGNSS
=

100 Hz
5 Hz

= 20 (4.39)

Furthermore the corrector-predictor attitude update is given as

q̂nb (k) = q̄
n
b (k) + h

1

2
q̂nb ⊗ (ω̄bnb,IMU −

¯̂
b
b

g + ¯̂σ) (4.40a)

q̄nb (k + 1) = q̂nb (k) (4.40b)
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since the attitude observer run at the same frequency as the IMU providing
the measurements. Still, the methodology is also quite useful if some of the
IMU measurements are discarded by my signal processing methods. Then,
the attitude estimate k+ 1 will be equal to the kth estimate. After the pre-
dictor estimate is obtained, the quaternion, q̄nb (k+1), has to be normalized
to ensure it has the unity length (‖q̄‖ = 1). This can be done according
to

q̄nb (k + 1) =
q̄nb (k + 1)

‖q̄nb (k + 1)‖
. (4.41)

as given in (2.57). Furthermore, the the bias estimates are updated in the
same manner as the attitude estimate. The gyro bias adaptation are given
as

b̂
b
g(k) = b̄

b
g(k) (4.42a)

b̄
b
g(k + 1) = b̂

b
g(k) + h

˙̂
b
b

g (4.42b)

as described in Section 4.2.1, whereas the accelerometer bias estimate ac-
cording to

ŵ(k) = w̄(k) (4.43a)

w̄(k + 1) = ŵ(k) + h ˙̂w. (4.43b)

4.4 Observer Tuning

This Section will address the different tuning aspects of the Grip et al. (2013,
Submitted) observer and presents the chosen tuning parameters.

From Grip et al. (2013, Submitted) is the projection tuned in the following
manner

‖b̂bg‖ ≤Mb̂ = 0.51
rad
s
, ‖b̂ba‖ ≤Mŵ = 1.1

m

s2
(4.44)

Regarding the accelerometer bias projection algorithm was the following

64



Chapter 4. Observer Design

parameters chosen

Mf = 1.1‖gn‖
m

s2
, mf = 0.9‖gn‖

m

s2
, δ = 0.9 ·mf

m

s2
(4.45)

The adaptation gain of the acceleromter bias estimate, Γ, was chosen to

Γ = 10−4 · diag
(
[1, 56, 56, 0.25]

)
(4.46)

and
Γ = 10−4 · diag

(
[1, 12.5, 12.5, 0.25]

)
(4.47)

for two separate cases studies. The results regarding these are found in
Section 5.1.

Since the observer is implemented in discrete time the condition of A−KC
to be Hurwitz then means that eigenvaules of A−KdC lies within the unit
circle, where Kd = h kGNSSK. Kd is the discrete time gain from Section
2.7. The observer sampling time, h = 0.01 which is the same frequency as
the IMU provides measurements. kGNSS is given as

kGNSS =
fobsv

fGNSS
=

100Hz

5Hz
= 20 (4.48)

With the following gains and their respective values

Kpp = 0.6I3×3, Kpv = 0.11I3×3

Kvp = 2.737I3×3, Kvv = 2.363I3×3

Kξp = 0.006I3×3, Kξv = 1.068I3×3

(4.49)

as stated in Grip et al. (2013, Submitted). This resulted in
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4.5. Fault-Tolerant Nonlinear Observer

the eigenvalues given as

λ = eig
(
A−KdC

)
=



−0.0274 + 0.1329i

−0.0274− 0.1329i

−0.0274 + 0.1329i

−0.0274− 0.1329i

−0.0274 + 0.1329i

−0.0274− 0.1329i

−0.0651
−0.0651
−0.0651


(4.50)

when Cv = 03×3, implying no velocity measurements are used. Hence,
meeting the Hurwitz requirement.

4.5 Fault-Tolerant Nonlinear Observer

This thesis proposes additions to the observer presented by Grip et al. (2013,
Submitted). The purpose is to increase fault-tolerance and exploit possible
performance improvements if multiple sensors are utilized. These additions
are illustrated in the grayed area of Figure 4.2 and in Figure 4.3.

Figure 4.2 shows the total system where the fault-tolerant observer is a
combination of signal processing and the observer of Grip et al. (2013, Sub-
mitted). Moreover, Figure 4.3 shows the signal processing block with three
position reference sensors. These modifications were introduced since the
Grip et al. (2013, Submitted) observer does not perform online quality check
of the sensors system. Furthermore, the Grip et al. (2013, Submitted) ob-
server have no embedded functionality to weight multiple sensor measure-
ments directly such as the discrete Kalman filter, see Kalman (1960). The
Kalman filter also weight new measurements based on the quality of the

66



Chapter 4. Observer Design

measurements, the process noise and the covariance of the estimates. Such
functionality should be integrated in observer of Grip Grip et al. (2013, Sub-
mitted) for performance issues, but also for industrial reasons. Redundancy
is in many cases required. In DP operations are sensor redundancy one of
many requirements. For a semi-submersibles, as simulated in this thesis, are
tipple redundancy regarding the position reference required. See Appendix
B.7 and Det Norske Veritas (2011) for details. To benefit from the redun-
dancy provided by three position sensors must each sensor be monitored
for error and faults. Otherwise may such neglect result in degraded perfor-
mance, damages or even critical situations. Drive-off is an example of such
incidents.

VesselController

Current

Wave
Generator

GNSS

IMU

Signal
Processing

PVA
Observer

Fault Injector

Reference+ −

Fault-Tolerant Observer

Figure 4.2: Observer. Overview of on how the Signal Processing and the
PVA Observer of Grip et al. (2013, Submitted) constitute the Fault-tolerant
observer in the simulator.

The addition and modification made to observer of Grip et al. (2013, Sub-
mitted) consist manly of three parts. These are given as

• Individual signal check of each sensor.

• A total signal check with voting and weighting of the available sensors.

• Time-varying gain,Kpp, to atone for the changes in the reported qual-
ity of the available measurements.

Details are regarding these methods are presented in Section 4.5.1 - 4.5.3.
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Positioning
reference
system 1

Signal Check

Positioning
reference
system 2

Signal Check

Positioning
reference
system 3

Signal Check

Signal Check
voting and
averaging

pnw

P n
w(σ)

Figure 4.3: Observer. Overview of the Signal Processing with three position
reference systems. The signal for each sensor is monitored by a signal check-
ing procedure. Afterwards the sensors that is reported healthy are compared
to each other by utilizing a voting mechanism. Finally, the procedure weights
the measurements and provides a weighted position measurement together
with calculated covariance to the PVA observer.

4.5.1 Signal Check of Individual Sensor Measurement

The signal checking procedure monitors the measured provided by each
GNSS receiver. The monitoring consist of outlier detection, freeze and high
variance monitoring. A high variance may be a result of a failure or might
mask other underlying errors such as bias measurements. To detect drifting
GNSS measurements are also monitoring of the vertical GNSS measurements
performed.

From Section 2.6 can the outlier detection be obtained from (2.48) as

y[k] ∈ [ȳk − aσ, ȳk + aσ] (4.51)

ȳk is the average of the previous measurements whereas ±aσ are the wild
point thresholds. Sørensen (2012) states that a should be in the interval

68



Chapter 4. Observer Design

between 3 and 9. To reduce the amount of false alarms was a chosen to

a = 7.

Sørensen (2012) states that the variance of a given signal, y[k], can be
calculated from historic data according to

σ2[k] =
1

n− 1

(
k∑

i=k−(n−1)

y[i]− ȳ2
k

)
(4.52)

as given in (2.49), where n is the size of the window containing the historic
data. Since the weighting formula from (2.51)

ŷWLS = P
(
R−1

1 y1 +R
−1
2 y2 +R

−1
3 y3

)
(4.53)

requires non biases measurements with Gaussian, zero mean measurement
noise such as

yi = x+ ei, ei ∼ N(0,Ri), i ∈ {1, 2, 3}. (4.54)

This implies that all noise, ei, not satisfying ei ∼ N(0,Ri) must be de-
tected, and the corresponding measurement excluded, in order for (4.53) to
be valid.

Since this master thesis only utilizes one type of position sensor will such
bias in the horizontal components be impossible to estimate correctly. This
is due to the fact that no other direct information regarding the position
exist. However, the vertical position can be assumed known since the mean
height of a floating vessel over time is zero or any other constant value pro-
vided from the WGS-84 reference ellipsoid National Imagery and Mapping
Agency (2000). Utilizing this as basis, was the a concept of detecting slowly
varying changes in the vertical component of the GNSS measurements out-
lined.
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Outline of GNSS Bias and Drift Detection

Since the height of the marine vessel is close to constant over time the is the
vertical position defined as

pz := 0. (4.55)

This, however neglects the heave motion of the vessel. Even thought (4.55)
is not absolutely valid, especially in rough weather conditions, is the mean
of the vessel’s height expected to be zero over time. Furthermore, a bias
estimation is purposed as

bGNSS,z =

T∫
t0

− 1

Tb
bGNSS,z + k(p̂z − pz) dt (4.56)

resulting the following bias estimation update

ḃGNSS,z = −
1

Tb
bGNSS, z + kb (pGNSS, z − pvessel, z)

= − 1

Tb
bGNSS,z + kb pGNSS,z (4.57)

where Tb is a time constant and kb is a positive gain larger than zero. A
large kb reduces detection time, whereas a small gain suppresses noise from
the GNSS measurements. Since the algorithm is supposed to detect drift the
time constant, Tb should not be chosen to large since any bias bGNSS could
vary significantly over time. A large Tb will introduce a significant phase
lag. Regarding the magnitude of kb will a very large value amplify the heave
motion. This again can yield a false alarm if the corresponding GNSS bias
alarm threshold is chosen to low.

What also should be mention is that the ξ state in the Grip et al. (2013,
Submitted), see Section 4.2.2 can pick up deviations in the GNSS measure-
ments. However, it can be observed in Section 5.6 that a slowly drifting
GNSS will not be picked up by the ξ estimate.
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Choosing kb = T−1
b results in (4.57) to coincide with a first-order Butter-

worth filter. Tb and kb was chosen to

Tb = 4, kb =
1

4
.

This yield a Butterworth filter with cutoff frequency

ωc = 2π/Tb

=
1

2
π [rad/s] (4.58)

Status Provided by The Signal Check Procedure

The signal check procedure provides a status variable to the voting and
weighting procedure to report the health of each GNSS sensor. The status
variable can take six different values. The possible status is presented in
Table 4.1.

Table 4.1: Status provided by the individual signal check procedure.

Status Description

1 Normal. No errors detected.

2 Indication of wild point detected. Sensor reported erro-
neous.

3 Indication of sensor freeze detected. Sensor reported erro-
neous.

4 Indication of high variance detected. Sensor reported erro-
neous.

5 Indication of drift in vertical axis detected. Sensor reported
erroneous.

−1 No measurement available for the use. Environmental dis-
turbances or failure of electronics might be cases.
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4.5.2 Signal Check, Voting and Averaging

The need of signal monitoring, voting and averaging is motivated by the
DNV requirements, presented in Section 2.5.3, related to the utilization of
multiple position reference sensors.

To detect if a sensor is deviating from the other GNSS measurements can
voting be applied. The voting algorithm, developed in this thesis, is listed
in pseudocode and presented in Algorithm 4.1. It was developed by utilizing
three GNSS sensor measurements together with a threshold describing how
much a sensor can deviate from an other sensor. The nominal threshold was
set to 2.5. The basic concept of Algorithm 4.1 is to utilize the threshold
as a radius in circles where the horizontal measurement components from
each GNSS is the receptive origins. A deviation is detected if the circles
do not intersect. If the circle based upon one sensor’s measurements do
not intersect with the two other circles will the sensor be disabled. After

Algorithm 4.1 Voting Procedure with three GNSS measurements
1 procedure Voting(GNSS1, GNSS2, GNSS3, threshold)

2 sensorcircles = create circles for each sensor with horizontal com-
ponents as the center and the threshold as radius ( GNSSi, threshold
)

3 if the ith sensor circle intersects with the other circle then

4 voting status ← appropriate status

5 else

6 voting status ← appropriate status

7 return voting status

the voting, mentioned in Algorithm 4.1, follows the weighing procedure.
The weighting procedure is based the upon (2.51) where each sensor and
covariance is multiplied with a variable taking two values. 1 if the sensor
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is reported and verified by the voting produce to be healthy. 0 if not. The
total voting and weighting Algorithm is presented in Algorithm 4.2.

Algorithm 4.2 GNSS Voting and Weighting Algorithm with three GNSS
measurements.

1 procedure Voting and weighting(GNSS1, GNSS2, GNSS3,
threshold, time since GNSS was available)

2 status sensors = obtaining individual sensor state( )

3 [status vote, new sensor status] = preform vote( GNSSi, sensor
status, threshold)

4 Weighted GNSS meas, covariance] = perform weighting ( GNSSi,
status vote )

5 if sensor have been disabled then

6 smooth/fuse previous weighted position measurement with the
new weighted position

7 return Weighted GNSS meas, GNSS status, covariance

According to Sørensen (2012) is it necessary to lowpass filter the voted signal
if a sensor has been disabled. This should be done to prevent step in the
position data provided to the state estimator. However, the filtering should
be performed with care in order to prevented significant lag of filter’s out-
put. When a sensor is enabled or if no sensor reconfiguration has occurred
states Sørensen (2012) that such filtering is not necessary. The same filter-
like smoothing effect can also be obtained by utilizing the exponentiation
function such as

yw(t) = (1− e−αt) · ywnew
(t) + e−αt · ywold

(t0), t ∈ [t0,∞] (4.59)

where α > 0 is a tuning parameter to decide how long the specific weighting
should occur. t0 is the time when a sensor was disabled. When a sensor is
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not disabled will t be zero and (4.59) can be modified to

yw(t) = (1− e−αt) · ywnew
(t) + k · e−αt · ywold

(t0), t ∈ [t0,∞] (4.60)

where k = 1 if a sensor is disabled and, k = 0 if a sensor is not disabled.
After some appropriate time or if the sensor is re-enabled should be k and t
be set to k = 0 and t = 0. By choosing α = 1.2 will a change in one meter
from the new weighted signal be carried out 99.95% smoothly in 5 seconds.
An illustration of this is shown in Figure 4.4.
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Figure 4.4: Observer. Illustration of smoothing, done by the weighing, when
of a step in the measurements occurs. The exponential function is utilized

The status provided by Algorithm 4.2 to the observer is presented in Table
4.2.
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Table 4.2: Status provided by the voting, weighing and signal check proce-
dure

Status Description

1 Normal. Three sensors enabled.
2 Reduced redundancy. Two sensor operational. One sensor

reported erroneous.
3 Reduced redundancy. One sensor operational. Two sensor

reported erroneous.
4 Reduced redundancy. Two sensor operational. One sensor

discarded in voting.
5 Reduced redundancy. Two sensor operational. Discrepancy

between sensors detected.
−1 No position reference available.

4.5.3 Introduction of Time-varying Gains

The observer presented by Grip et al. (2013, Submitted) are tuning with
fixed gains. Thus, the initial tuning is not changed online if not gain schedul-
ing is applied. This however requires that the gains are pre-calculated.
Another strategy would be to determine gains online based on the current
knowledge of the measurement noise and the estimate accuracy. Utilizing
this a motivation, this thesis proposes that the gain tuning, described in
Section 4.4, is extended to include a time-varying component.

In this work only a time-varying gain based in the calculated sensor variance
is pursued. And since the thesis focus on a semi-submersible applying DP
for station-keeping purposes is only the gain, Kpp, correcting the position
estimate made time-varying nominally. However, most of the gains were
made time-varying during the initialization phase of the observer.

The magnitude of the time-varying gain, Kpp, was chosen to be relatively
large when the variance of the GNSS measurements were low and corre-
spondingly low when the variance was reported to be high. The varying
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structure of the gain was chosen similar to

K = βe−ασ
2
, α > 0, β > 0, (4.61)

resulting
0 ≤ K ≤ β. (4.62)

Since the observer should correct the position estimate even when relative
high sensor variance is reported was the structure of Kpp chosen to have
two components as, one fixed and one time-varying yielding

Kpp0 =Kpp,fixed +Kpp,varying. (4.63)

where, Kpp0 , is the nominal gain after the initialization phase. By utilizing
a time-varying gain component with same properties as (4.61) resulted in
the time-varying component of Kpp to become

Kpp,varying = diag
(
β
[
exp(−ασ2

x), exp(−α, exp(−ασ2
z)
])

(4.64)

where σ2 = diag([σ2
x, σ

2
y , σ

2
z ]) is the reported covariance. From the relations

stated above will Kpp be bounded above and below as given by

03×3 <Kpp0,fixed ≤Kpp0 ≤Kpp0,fixed + β · I3×3. (4.65)

By choosing Kpp,varying in such a manner will result in the varying com-
ponent of Kpp that decreases exponentially with increasing variance of the
position measurement. Hence, the observer will correct the position estimate
more when the senor measurements contains low amount of noise. In the
opposite case will the observer correct less if the measurements are noisy.
Furthermore, by keeping parts ofKpp fixed, will the Hurwitz requirement of
A−KC posed by Grip et al. (2013, Submitted) will always be fulfilled since
Kpp is always positive and bounded below and above. The gain related to
the correction of the velocity and the ξ estimates are not changed in this
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thesis.

Initial Observer Gains

In the initialization are the gains related to the attitude estimates also made
time-varying. Grip et al. (2013, Submitted) stated that the initial gains of
k1 and k2 should be set higher in the start up phase of the observer to
speed up the converges of the attitude and the gyro bias estimates. Grip
et al. (2013, Submitted) performed a gain scheduling strategy where the
gains, k1, k2 and kI , where reduced after 60 seconds. This thesis utilizes the
exponential function instead. Instead of using the measurement variance as
the decaying term, the time was utilized instead. This to increase observer
speedup to ensure fast convergence without rapid changes of the gains, such
a gain scheduling would imply. k1, k2 will then take the following form

k1 = k10(1 + βrefe
−αref t) (4.66)

k2 = k20(1 + βrefe
−αref t) (4.67)

where αref = 0.2 and βref = 3 were chosen. Regarding the nominal gains
were k10 and k20 chosen to

k10 = 1, k20 = 0.55 (4.68)

as in Grip et al. (2013, Submitted). The gain, kI was fixed all this during
this work and chosen to kI = 0.008 as stated in Section 4.4.

The same strategy was chosen to increase the converges time for the position
and velocity estimates as well. Accordingly, the following initial tuning
strategy was chosen

Kpp =Kpp0(1 + βpve
−αpv t) (4.69)

Kvp =Kvp0(1 + βpve
−αpv t). (4.70)
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The corresponding tuning parameters where chosen as αpv = 0.1 and βpv =
2. The nominal gains were chosen to as Kpp = Kpp0 where Kpp0 is time-
varying gain presented in (4.63) above. Kvp0 where chosen toKvp0 = 0.11·I3

as originally purposed by Grip et al. (2013, Submitted). From this is k1, k2,
Kpp and Kvp is bounded below as seen in

0 < k10 ≤k1 ≤ k10(1 + βref ) (4.71)

0 < k20 ≤k2 ≤ k20(1 + βref ) (4.72)

03×3 <Kpp0 ≤Kpp ≤Kpp0(1 + βpv) (4.73)

03×3 <Kvp0 ≤Kvp ≤Kvp0(1 + βpv) (4.74)

4.6 Model-Based Fault-Tolerant Nonlinear Observer

The previous section dealt with fault-tolerance regarding managing posi-
tion reference errors, faults and failures. This section will deal the event
of acceleromter failure. Redundant acceleration information was obtained
through a model based approach.

The redundant acceleration information was based on a observer applying a
3 DOF DP model from Section 2.5.1

η̇n = R(ψ)νb (4.75)

Mν̇b +Dνb = τ +Rᵀ(ψ)bb (4.76)

However changes were made. In previous work, utilizing model based ap-
proaches, such as Fossen and Strand (1999), is the current modeled as bias
in kinetics. In this thesis is the current moved to the kinematics, as shown
in Appendix B.3.2 and expressed as a velocity. Thus, the model with linear
dampingD, wave-induced motion ξ, relative velocity and constant irrational
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current is given in (4.77) - (4.81). The model follows as

ξ̇
n
= Awξ

n (4.77)

η̇n = R(ψ)νbr + v
n
c (4.78)

v̇nc = 0 (4.79)

Mν̇br = −Dνbr + τ b (4.80)

y = η +Cwξ
n (4.81)

During operation is the current in (4.79) in general not known, as presented
by Fossen (2011). Thus, is have to be estimated based on the model, sensor
measurements and the control inputs. The chosen strategy was to utilize
the a nonlinear observer based upon Fossen and Strand (1999) where the
bias estimation was performed in the kinematics. The reason for this choice
is motivated by the fact that the current velocity can be extracted from the
simulator and compared with the estimate afterwards in order to determine
the estimation quality. In this respect was the additional observer, utilizing
the vessel model, given as

˙̂
ξ
n
= Awξ̂

n
+K1ỹ (4.82)

˙̂η = R(ψ̂)ν̂br + b̂
n
+K2ỹ (4.83)

˙̂
b
n
= −T−1

b b̂
n
+K3ỹ

(
alt. ˙̂

b
n
=K3ỹ

)
(4.84)

M ˙̂ν
b
r = −Dν̂br + τ +RT (ψ̂)K4ỹ (4.85)

ŷ = η̂n +Cwξ̂
n

(4.86)

where, b̂ represents the current estimate together with any unmodeled dy-
namics. In this context the unknown current. Here, as in the Fossen and
Strand (1999) observer is T the time constant matrix, whereas ỹ = yn− η̂n

are the discrepancies between the measured position and heading related to
the model based nonlinear passive observer’s estimates for surge, sway and
yaw. Ki are some positive gains designed to fulfill the passivity require-
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ments of the observer and inherently guaranteeing GES or GAS stability
depending of the choice of bias estimation in (4.84). See Fossen and Strand
(1999) for details.

The chosen update for the bias estimate, estimating the current velocity was
chosen as

˙̂b
n
=K3ỹ (4.87)

since the current was modeled irrational and constant in the simulator.

Since no direct heading measurement, e.g. a compass, was available in this
thesis, was the heading from the attitude observer, given by (4.33) and
(4.34), utilized as heading reference for the 3 DOF model based observer
presented above in (4.82)-(4.86). Moreover, just as for the observer pre-
sented in Section 4.2 is GNSS utilized as position reference. Together with
the heading estimate and GNSS measurements are the control inputs are
assumed to be known through measurements. Together will this constitute
the information to obtain an estimate of the acceleration. The model based
approach will provide redundant acceleration information as illustrated in
Figure 4.5

Vessel

Vessel
Model

τ
IMU

Attitude
Observer

Switching
mechanism

abVessel Model

abIMU Integration
filter

Quality signal

Attitude estimate, q̂

Figure 4.5: Observer. Overview of the strategy to exploit the vessel model
in a fault-tolerant observer design. If quality of the IMU is reported to
incorrect or if the IMU measurements are reported to be of reduced quality
a switching from the accelelerometer to the acceleration from ths vessel
model is performed.
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The equation for the accelerometer measurements are given in 3.30 as fol-
low

f bIMU = Rb
n(Θ)(v̇nb/n − g

n) + bbacc +w
b
acc. (4.88)

Hence, the acceleration estimate, provided by the vessel model observer,
should yield the same. However, one simplification have to be made for a
3 DOF model approach. The 3 DOF model have no information regarding
the height of the vessel since this is assumed to be zero over time. Hence, is
the estimate of v̇nb/n assumed to have the following structure

˙̂v
n
b/n =

[
˙̂vnb/n,x

˙̂vnb/n,y 0
]ᵀ
. (4.89)

Since the acceleromter does not provide relative acceleration measurements
implies that (4.91) does not provide a sufficient acceleration information.
This is due to the constant, irrational current is not taken in account when
the vessel rotates, as can be seen in (4.91). ˙̂v

b
r is extracted accordingly

M ˙̂ν
b
r = −Dν̂br + τ +RT (ψ̂)K4ỹ (4.90)

⇒ ˙̂ν
b
r =M

−1
(
−Dν̂br + τ +RT (ψ̂)K4ỹ

)
. (4.91)

In the simulator the acceleration component from the current was added by
(3.27) given as

v̇bc = −S(ωbb/n)R
b
nv

n
c (4.92)

The current is estimated in the {n} frame as b̂
n
. By utilizing the same

relations as in the simulator can the horizontal acceleration provided by the
current estimate, based on the vessel model, be written as

˙̂b
b
= −S(ωbIMU − b̂

b
g)R

b
n(ψ̂)b̂

n
. (4.93)

where ωbIMU is provided by gyroscope. b̂
b
g and ψ̂ are, on the other hand,

provided by the attitude observer block seen in Figure 4.1. Thus, the to-
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tal horizontal acceleration provided by the model based observer is given
as

˙̂ν
b
= ˙̂ν

b
r +

˙̂
b
b
. (4.94)

Then, gravity component must be atoned for. The known gravity vector,
gn, from Section 4.1 have to be given in the {b} and added to horizontal
acceleration as

f bvessel model =

 ˙̂νbx
˙̂νby

0

−Rn
b (Θ̂)ᵀgn (4.95)

where Θ̂ is the attitude estimate. However, since the roll and pitch angles
are assumed to be zero for the 3 DOF model. Because of this is the following
assumed

Rn
b (Θ̂) ≈ Rn

b (ψ̂). (4.96)

Thus, can (4.95) to be simplified to

f bvessel model
φ=θ=0
=

 ˙̂νx
˙̂νy

−g

 =

 ˙̂νx
˙̂νy

−9.81

 (4.97)

since

Rn
b (ψ̂)

ᵀgn =

 cos(ψ̂) sin(ψ̂) 0

− sin(ψ̂) cos(ψ̂) 0

0 0 1


00
g

 =

00
g

 (4.98)

where g = 9.81 as assumed in Section 4.1.
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Chapter 5
Results and Discussion

This chapter will present the result related to the fault-tolerant observer
described in the former chapter and how the observer coped with the sensor
errors, fault and failur, stated in the Section 3.2.2. The observer was sub-
jected the following scenarios regarding sensor error, faults and single point
failures:

• Outlier detection of GNSS measurements.

• Freeze of GNSS measurements.

• Increased variance of on a GNSS measurements.

• Jump in measurement (constant bias).

• Slow drift of all GNSS antenna measurements.

• Loss of acceleration measurements.

Results will be shown and discussed. Both the magnetometer and ac-
celeromter are assumed pre-calibrated for biases. The reasons for the latter
are presented and discussed in Section 5.1. The first-order wave forces and
moments were pre-calculated and reused for every simulation. This chapter
is organized as follows

• Section 5.1: Case 1, Effect of acceleromter bias estimates.

• Section 5.2: Case 2, Outlier detection.

• Section 5.3: Case 3, GNSS sensor freeze.

• Section 5.4: Case 4, Increased noise of one sensor.
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5.1. Case 1: Accelerometer Bias Estimation and the Resulting Effect on
the Attitude Estimate

• Section 5.5: Case 5, Constant Biased GNSS measurements.

• Section 5.6: Case 6, Drift of all GNSS sensors.

• Section 5.7: Case 6, Utilizing vessel model as additional acceleration
information.

• Section 5.8: Overall Discussion. Summarizing the discussions for each
of the case studies.

5.1 Case 1: Accelerometer Bias Estimation and the
Resulting Effect on the Attitude Estimate

The following Section will present results related to the accelerometer bias
estimates and how these will effect the attitude estimate. This case in pre-
sented first due the effect choices and tuning regarding the accelerometer
bias estimates effects have on the attitude estimate. To illustrate these ef-
fects was two simulation ran with different accelerometer bias estimation
gain, Γ. Both of gyro bias and attitude estimates where obtained by the
nominal gains of

k1 = 1, k2 = 0.55, kI = 0.008 (5.1)

after the initialization phase when the exponential terms have become zero.
See Section 4.4 and Section 4.5 for details. The control objective, in both
simulations, was set to ψd = 0.

The bias estimation was started after 100 seconds. This was due to Grip
et al. (2013, Submitted) recommends that the attitude estimates should have
converged some such that the estimated acceleration in {n} frame

f̂
n
= Rn

b (q̂)(f
b
IMU − bba) (5.2)

would have had the time to settle before the accleleromter bias should be
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started.

The first simulation was ran with accelerometer bias gain as

Γ = 10−4 · diag
(
[1, 56, 56, 0.25]

)
. (5.3)

Figure 5.1 presents gyroscope and accelerometer bias estimates. One can
observe that the gyro biases estimates converge nicely to their true values.
The accelerometer bias estimates converges at a slower rate, than the gyro
bias. Furthermore, the accelerometer bias estimates are more rugged than
the former estimates and converges with less accuracy. This might be ex-
pected since the acceleration bias estimates require PE, as stated in Section
4.2.3. In Figure 5.2 on can see the resulting attitude estimates when Γ was
chosen according to (5.3).

The gyro and accelerometer bias estimate obtained by choosing Γ according
to

Γ = 10−4 · diag
(
[1, 12.5, 12.5, 0.25]

)
is shown in Figure 5.3. From Figure 5.3b one can clearly observe that the
accelerometer biases did not not converge to the correct values. The conse-
quence of this can be seen in Figure 5.4 where the attitude and especially
the yaw estimate are estimated incorrectly. This is due to the acceleromter
bias effects on the innovation, σ̂ of the attitude estimate seen in

˙̂q
n
b = T (q̂nb )(ω

b
b/n,IMU − b̂

b
g + σ̂) (5.4)

where σ̂ is given as

σ̂ = k1m
b ×R(qnb )

ᵀmn + k2f
b ×R(qnb )

ᵀf̂
n

(5.5)

from (4.7). Since the attitude estimate in Figure 5.2.
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(a) Gyroscope Bias Estimates. Dotted lines are the fixed biases. Fixed
lines are the online estimates.
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(b) Acceleromter Bias Estimates. Dotted lines are the fixed biases.
Fixed lines are the online estimates.

Figure 5.1: Case 1, Accelerometer bias estimation. Estimates of gyroscope
and acceleromter biases when accelerometer bias was estimated correctly.
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Figure 5.2: Case 1, Accelerometer bias estimation. Attitude estimate con-
verted from quaterions to Euler angles when accelerometer bias was esti-
mated correctly.
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(a) Gyroscope Bias Estimates. Dotted lines are the fixed biases. Fixed
lines are the online estimates.

0 500 1000 1500
−0.06

−0.04

−0.02

0

0.02

0.04

Time [s]

b̂b a
[m

/s
2
]

x
y
z

(b) Acceleromter Bias Estimates. Dotted lines are the fixed biases.
Fixed lines are the online estimates.

Figure 5.3: Case 1, Accelerometer bias estimation. Estimates of gyroscope
and acceleromter biases when accelerometer bias was estimated incorrectly.
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Figure 5.4: Case 1, Accelerometer bias estimation. Attitude estimate con-
verted from quaterions to Euler angles when accelerometer bias was esti-
mated incorrectly.
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Discussion and Preliminary Conclusion

The attitude is estimated correctly with correct acceleromter bias estimation
as stated above. From these simulation can it be observed that the attitude
estimate are quite sensitive for accelerometer bias. Furthermore, the quality
of the accelerometer bias estimates are also quite sensitive to adaptation
gain, Γ. This is due to the adaptation gain also effects the asymptotic
values of the estimate, not just the transient behavior. Because of this, the
rest of the case studies in this thesis are not acceleration bias compensated
for online. Hence, the accelerometer is assumed pre-calibrated to atone for
sensor bias.

The obtained result indicate that further investigation in acceleration bias
estimates should be performed to yield a better performance of the accel-
eration bias estimates. For instance could the observer be ran on a smaller
vessel with faster dynamics to see if this will yield changes regarding the
quality of the acceleration bias estimates. The same goes for changes in the
sea state. This will yield a different wave-induces vessel motion and hence
could effect the excitation. This again can change the quality of the bias
estimates.

What also should mentioned is that the gyro bias estimates are robust related
to erroneous reference vector measurements. Even in the event of erroneous
acceleration bias estimates does the gyro bias converge to the correct biases.
This is seen from Figure 5.1a and Figure 5.3a. This can be due to the fact
that the acceleromter bias estimate is a common denominator in both f b

and f̂
n
. This will however not necessarily be so for a given magnetometer

bias since the sensor bias will not effect actual magnetic field mn.
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5.2 Case 2: GNSS Outlier Detection

The following case study will present the results regarding the outlier de-
tection and how this will effect the position estimates. First will the effects
without outlier detecting in the event of the outlier no outleir detection is
enabled. Afterwards will the outlier detection be enabled and the corre-
sponding results will be presented.

Both cases studies was simulated with three outliers per GNSS. Further-
more, both cases was simulated with the same outliers so comparison of
performance will be based on the same outliers. Gaussian, zero mean noise
will however change, but not change magnitude. Outlier were enabled for
the respective sensors as described in Table 5.1

Table 5.1: Overview of GNSS outliers

GNSS Number Time of outlier [s]

GNSS 1 400, 700 and 1000
GNSS 2 500, 800 and 1100
GNSS 3 600, 900 and 1200

The magnitude of the wild-points is presented in Table 3.5 in Section 3.2.2.
The desired generalized position was set to

ηd =
[
0 0 0

]ᵀ
. (5.6)

The controller was enabled after 25 seconds.

Outlier Detection Disabled

In this illustration of how outliers effect the system only GNSS 1 is used as
position reference. Figure 5.5 show the measurements provided by GNSS 1.
Figure 5.6 show the reported variance which is utilized in to calculated the
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time varying gainKpp, see Section 4.5 for details regarding the time varying
gain Kpp.
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Figure 5.5: Case 3, Outlier detection. Measurements from GNSS 1 together
with vessel position in the event of outlier detection is disabled.

Figure 5.7 show the North-East position of the vessel together with the mea-
surements from GNSS 1 and the postion estimates. One can see that the
vessel first drifts before the controller is enabled. Then, the vessel returns
to the desired position. Moreover, one can also seen the position estimates
need some time to converge to the correct state even when utilizing higher
exponetial decaying gains in the initial phase. Furthermore, 5.7 shows that
the position estimate are drawn slightly towards the spikes of the measure-
ments. However, the magnitude of the change in the estimate is Even tough
the position estimates are not significantly affected by the spikes in position
measurements, can increased ripples can be observed at time 400, 700 and
1000. The lack of large changes in the position estimate can partly be ex-
plained by this thesis change of Kpp from fixed to time-varying based on
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variance. Figure 5.6 clearly shows that the calculated variance is increasing.
Hence, resulting a smaller Kpp.

Regarding the velocity estimate a larger fluctuation is observed as seen in
Figure 5.9. The can be explained by the fact that Kvp is still fixed hence
measurements with large variance will not be attenuated as much compared
to the position estimate.

The attitude estimates shown in Figure 5.10 display little impact by outliers
even though the injection term, σ̂ shows spikes at the time of the GNSS
outliers. This is shown in Figure 5.11. The reason for these spikes are
introduced by f̂n which is utilized in the calculation of the injection term σ̂

as stated in Section 4.2.2. These spikes are again introduced by ξ bacause
of f̂

n
= R(q̂nb )(f

b
IMU− b̂

b
a)+ξ and since ξ additional fluctuates in the event

of outliers in the GNSS measurements as seen in Figure 5.12. The latter is
cased by the injection term Kξp(pGNSS−phat). As in the correction of the
velocity estimates is Kξp fixed. The additional fluctions seen in Figure 5.12
might have been smaller if also Kξp had been time varying.
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Figure 5.6: Case 3, Outlier detection. Weighted variance when only one
GNSS 1 is provideing measurement Reported variance for each GNSS when
the outlier detection is ignored
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Figure 5.7: Case 2, Outlier detection. North-East position of the vessel
together with position estimates and position measurements from GNSS 1
when outlier detection is disabled.
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Figure 5.8: Case 2, Outlier detection. Position estimates together with vessel
position when outlier detection is disabled
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Figure 5.9: Case 2, Outlier detection. Velocity estimates together with vessel
position when outlier detection is disabled
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Figure 5.10: Case 2, Outlier detection. Attitude estimates represented in
Euler angles together with vessel attitude when outlier detection is disabled
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Figure 5.11: Case 2, Outlier detection. The injection term σ̂ when outlier
detection is disabled
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Figure 5.12: Case 2, Outlier detection. ξ when outlier detection is disabled
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Outlier Detection Enabled

Now will the results of the outlier detection be shown. Furthermore, three
GNSS sensors will be utilized to show the advantages of multiple sensors.
In Figure 5.13 - 5.15 are the GNSS the measurements shown.
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Figure 5.13: Case 2, Outlier detection. Measurements provided by GNSS1.
Outliers present at time 400, 700 and 1000 seconds

These measurements resulted in the GNSS status seen in Figure 5.17. Three
outliers can be observed for each sensor. Moreover, Figure 5.18 presents the
resulting weighted GNSS measurements. One can see that the outliers are
detected and prevented from propagating to the weighted GNSS measure-
ments. The weighted GNSS measurements are furthermore utilized in be
the observer. Hence, the outliers are prevented from propagating to the es-
timator and inherently to the control system. This connection was shown
in Figure 1.1 on page 1.

From Figure 5.17 one can observe that the outlier detection algorithm pre-
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Figure 5.14: Case 2, Outlier detection. Measurements provided by GNSS2.
Outliers present at time 500, 800 and 1100 seconds

sented in Section 4.5 detecting the wild points when they occur. This is
also indicated in Figure 5.16 where variance of minus one is reported when
an outlier is detected. As stated in Section 4.5, is status 2 provided by the
individual GNSS signal checking procedures in the event of an outlier. What
can also be seen from Figure 5.17 is at 1089 seconds the voting and weight-
ing procedure yielded status 4. Table 4.2 states that status 4 means that
one sensor has been discarded because it was deemed to deviate from the
two others. In this case was GNSS 2 excluded. Since no outlier nor bias or
other drifting terms were injected by the fault generator at this time in the
simulator, is the cause of this removal due to Gaussian measurement noise of
GNSS 2. More precisely a Gaussian noise component in the outer regions of
the noise distribution shown in Appendix B.8, Figure B.1. Moreover, in Fig-
ure 5.21 and Figure 5.22 are the respective position and velocity estimates
shown when the outlier detection is enabled. The position estimate error,
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Figure 5.15: Case 2, Outlier detection. Measurements provided by GNSS3.
Outliers present at time 600, 900 and 1200 seconds

p̃ = pGNSS− p̂ is shown in Figure 5.23. In neither of the estimates are large
rapid changes or spikes present. One can see after the initial converges that
the position estimates error fluctuates around zero. Furthermore, it can be
seen in Figure 5.20 that the observer, also for this simulation, need some
time to obtain the correct position estimate.
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Figure 5.16: Case 2, Outlier detection. Reported variance from each sensor.
Variance for outliers are reported to be -1 for illustrative purposes.
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Figure 5.17: Case 2, Outlier detection. GNSS status
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Figure 5.18: Case 2, Outlier detection. Weighted GNSS measurement used
by the observer for position and velocity estimates
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Figure 5.19: Case 2, Outlier detection. Covariance of three reported GNSS
measurement when outliers are removed
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Figure 5.20: Case 2, Outlier detection. North-East position of the vessel
together with weighted GNSS measurements and position estimates
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Figure 5.21: Case 2, Outlier detection. Position estimate when outliers in
the GNSS measurements are present and outlier detection is applied. The
estimates are shown together the actual vessel position
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Figure 5.22: Case 2, Outlier detection. Velocity estimate when outliers in
the GNSS measurements are present and outlier detection is applied. The
estimates are shown together the actual vessel velocity
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Figure 5.23: Case 2, Outlier detection. Estimation error, p̃ = pGNSS − p̂.
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Discussion

From results above, one can argue that applying both outlier detection from
each sensor together with voting can increase the total signal processing
system ability to handle outlier detection. Even if the outlier detection
mechanism where set with a high threshold to avoid false alarms are outliers
excluded because of the voting, given that not all GNSS are exposed to the
same interference yielding wild points for all sensor simultaneously.

By studying Figure 5.21 and Figure 5.22 can one observe that the respective
estimates are fluctuating less that without outlier detection enabled. The
velocity estimates are clearly better than in the event of wild point measure-
ments are utilized by the observer. Furthermore, because of the time-varying
gains and weighting of multiple measurements utilized for correction yields
this less fluctuation of the estimates compared with the fault-free benchmark
with fixed gains and only one GNSS sensor as seen in Appendix E.

What can be observed from the North-East position, shown in Figure 5.20,
where the outlier detection is enabled are the position estimates closer to the
vessel’s actual position of the vessel when the control objection of horizontal
position at (0, 0) is met. The reason for this is that the outliers are totally
removed. Thus, yield a less abrupt in the position estimate. In this thesis
was a outlier detected if the measurement exceeded ±aσ, where a = 7.
Since the chosen wild-points in this thesis had a large amplitude might a
lower value be more appropriate in in order to detect smaller outliers.

Even though the position estimate error seen in Figure 5.23 seems quite large
can one observer that the GNSS zero mean Guassian noise from the GNSS
is attenuation significantly as seen in Figure 5.20. If a smaller amplitude of
the position estimate is needed one should explore how wave filtering could
be embedded in the Grip et al. (2013) observer. The amplitude of p̃ will
probably also be affected by the sea state since the also the GNSS sensor
is affected by. The GNSS should also be roll and pitch compensated in a
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real-life operation where the sensors are not directly given in the CG as in
this thesis.

From Figure 5.7 and Figure 5.20, presenting the horizontal position estimates
can it be seen that estimates in general need some time to converge to
the correct state. This could have been combated by increasing the gain,
Kpp, associated with the position estimate. However, at the price of more
wave-induced motion and measurement noise propagating to the position
estimates. More aggressive tuning could be more feasible if wave filter was
added to the observer of Grip et al. (2013, Sumbitted).

5.3 Case 3: Freeze of One GNSS Sensor

This section with take on the event of a GNSS sensor freeze and detecting
it. Thus, avoiding faulty sensor outputs to propagate to the observer and
control system. Two types of sensor freezes was tested. One where the
freeze was short and present for 10 second. The other freeze was inserted to
last for the remainder of the simulation. For both cases where the desired
generalized position was set to

ηd =
[
0 0 0

]ᵀ
. (5.7)

The controller was enabled after 25 seconds.

Short Freeze of GNSS 1 at 1000 Seconds

Figure 5.24 illustrates a 10 second freeze of GNSS 1 at time equals 1000
seconds. In Figure 5.25 can see the signal checking of GNSS 1 detects the
freeze by reporting sensor freeze indicated by status 3. Furthermore, as
seen in Figure 5.26 this is reported to the GNSS voting since the resulting
voting status was 2 at the given time. Table 4.2, states the possible status
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from the voting. Furthermore, is status 2 means that as two sensors are in
operation and one is reported erroneous from the senors’s signal checking
procedure. Moreover, one can also see from Figure 5.26 that the voting
procedure also ruled out one GNSS at four other occasion. This is indicated
by status 4 were reported from the GNSS voting at four occasion. Moreover,
the resulting covariance can be seen in Figure 5.27. One can observe the
resulting covariance is not significantly affected the shorter outtakes of one
of the three GNSS sensors during the simulation.
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Figure 5.24: Case 3, GNSS freeze. Zoomed section of GNSS 1. Sensor freeze
present at 1000 second and present for 10 seconds.
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Figure 5.25: Case 3, GNSS freeze. Reported status of GNSS 1. Sensor freeze
present at 1000 second and present for 10 seconds.
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Figure 5.26: Case 3, GNSS freeze. Reported status of GNSS. Sensor freeze
present at 1000 second and present for 10 seconds.
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Figure 5.27: Case 3, GNSS freeze. Sensor freeze present at 1000 second and
present for 10 seconds.
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Permanent Freeze of GNSS 1 at 1000 Seconds

A larger sensor failure where one GNSS freezes at a longer of period of time
is shown in Figure 5.28 - Figure 5.31. Figure 5.28 show the measurements
provided by GNSS 1. In can be seen that sensor freeze occurred at time
equals 1000 seconds. Furthermore, the status provided by GNSS 1 is pre-
sented in Figure 5.29. It can be seen that the sensor status was reported to
be 3 after 1000 seconds of simulation. This indicated that a sensor freeze
was detected.

Moreover, the combined status of all three GNSS sensor is given in Figure
5.30. Before time equals 1000 seconds was status 1 reported from the voting
algorithm expect from one occurrence of status 4. The former indicates
that all sensors are healthy and available. The latter indicated that one
senor was deviating from the two others. Thus, the deviating GNSS was
discarded from the voting before re-enabled shortly afterwards. After the
sensor freeze was reported by the signal processing, associated with GNSS 1,
was status 2 mostly reported by the voting algorithm. This indicated that
two sensors were available and one sensors was reported erroneous and hence
not included in sensor voting and weighting. At four occasions however, was
status 5 reported. This was a result of the two available sensors reported
that they were deviating from each other.

The covariance of the combined weighted GNSS measurements is given in
5.31. One can see that the covariance increased after 1000 seconds of simu-
lation.

117



5.3. Case 3: Freeze of One GNSS Sensor

950 1000 1050

0

10

20

Time [s]

x
n
[m

]
GNSS1
Vessel

1000 1100 1200 1300 1400 1500

−15
−10
−5

0

Time [s]

y
n
[m

]

1000 1100 1200 1300 1400 1500

−4
−2

0
2

Time [s]

z
n
[m

]

Figure 5.28: Case 3, GNSS freeze. Zoomed section of GNSS 1. Sensor freeze
present at 1000 second and throughout the simulation.
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Figure 5.29: Case 3, GNSS freeze. Reported status of GNSS 1. Sensor freeze
present at 0 second and through out the simulation
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Figure 5.30: Case 3, GNSS freeze. Reported status from the GNSS voting
and weighting. Sensor freeze present at 1000 second and throughout the
simulation.
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Figure 5.31: Case 3, GNSS freeze. Calculated covariance of the weighted
GNSS. Sensor freeze present at 1000 second and throughout the simulation.
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Discussion

As can be seen from both simulation that both shorter and longer sensor
freeze is detected by the freeze detection algorithm. The algorithm is also
able to enable a sensor when deemed healthy, however if the freeze detection
threshold is set to low can this yield unwanted side effects. This is so because
then the diversity in the moving window of historic data can get a variance
close close to zero. This can again lead to problems when the sensor is
deemed healthy and hence re-enabled . When the healthy measurements
again are provided will all of these be deemed as wild points since these lies
outside of the range of ±aσ. This is so because 1-sigma of the previous
frozen measurements have become close or equal to zero. Setting the freeze
detection threshold higher will possibly result in a false alarms. This be
combated by disabling the wild point detection for five measurements to
increase the standard deviation in the moving average.

GNSS 1 is permanently discarded by the fault detection in the latter sim-
ulation. How this affects the calculated covarience can be seen in Figure
5.31 from 1000 seconds where the covarience is seen to increase significantly.
This is not unexpected since covariance grows larger with fewer measure-
ments available and visa versa. Furthermore, this covariance will affect the
tuning of the observer’s position estimate because of the addition of the
time-varying, Kpp, gain. When the covariance increases, the gain will be
reduced quite significantly because of the exponential decay form the fact
that the varying part of the gain is given as

Kpp,varying = βe−ασ
2 · I3×3 (5.8)

This strategy might be efficient for very accurate measurements with corre-
sponding low convenience, but can reduce the gain to much if the measure-
ments are still accurate when the covarience have increased due to the loss
of one measurement. This is so even though the quality of the remaining
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sensors have not changed. An other tuning strategy might have been to
utilize a gain like

Kpp,varying =
σ

σ2 + ε
· I3×3 (5.9)

where ε is small number to avoid the gain Kpp,varying to grow towards in-
finity when reported variance is very quite small. Adaptive gains utilizing
a update law is also another possible a strategy to investigate. The time-
varying tuning in this thesis do not incorporated the quality of the respective
estimates as the Kalman filter does by utilizing the variance estimate P (k)

in the gain calculation. Similar tuning schemes could also be introduced in
a time-varying tuning strategy.

Since this thesis also employs a GNSS bias detection by filtering, the vertical
component of the, GNSS measurement can also a sensor freeze be picked up
by the GNSS bias estimation. This will happen when the GNSS freezes
outside of the GNSS bias threshold. When the filter has the same output
as the fixed measurement, provides to the filter, will an alarm be raised.
This will provide addition capability in detecting sensor freeze. However,
this can also increase the difficulty of differentiating the respective sources
of the fault.

5.4 Case 4: Increased Variance of One GNSS Sen-
sor

This section will address the case where a GNSS sensor changes noise char-
acteristics significant by a increase in the variance. From 2.6 can this be an
indication of senor failure or an inaccurate measurement. Neither the fault
or the inaccurate sensor data should propagate to the observer.

At time equals 1000 seconds is the standard deviation of the zero mean,
Gaussian noise of GNSS 1 multiplied with 10. Also for the case is the
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desired generalized position was set to

ηd =
[
0 0 0

]ᵀ
. (5.10)

The controller was enabled after 25 seconds.

The corresponding measurement together with the vessel position is shown
in Figure 5.32. Figure 5.33 show the zoomed version of the measurements
around the time of significant increase in noise. The reported variance of
each GNSS is shown in Figure 5.34 while the weighted covariance is shown
in Figure 5.36. Furtermore, the weighted position measurement is shown
in Figure 5.37. The resulting position estimates are shown in Figure 5.38
and Figure 5.39 where Figure 5.38 show the horizontal position estimates
with the corresponding weighted position measurements and the horizontal
vessel position. Figure 5.39 show the position estimates together with vessel
position.

Form Figure 5.32 and Figure 5.33 can one clearly see the increased variance
at time equals 1000 seconds. This is picked up by the variance calculation
seen in Figure 5.34 where the variance for GNSS 1 is dramatically higher
than the previous calculated variance and the calculated variance of GNSS
2 and GNSS 2 shortly after the possible failure event at time 100 seconds.
Because of this is deemed as high variance since status 4 is reported by the
signal checking procedure associated with GNSS 1. This is seen in Figure
5.35. What also can be seen from the reported status of GNSS 1 is that it
changes between status 4 and 5 continuously in the remaining time of the
simulation. This is due to fact that the vertical GNSS measurements are
fluctuating with such large amplitude that the increased variance is picked
up as vertical GNSS bias. This can be seen from Figure 5.40 where the bias
of GNSS 1 exceeds the preset threshold related to the vertical GNSS bias
estimate. Because GNSS 1 shortly after time equals 1000 seconds is reported
to be erroneous result in only GNSS 2 and 3 is utilized measurements.
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Regarding the quality of the position estimate it can be seen from Figure
5.38 that the horizontal position estimate in a large extent coincide with
Figure E.2 in Appendix E where the fault free scenario with only one GNSS
is shown. However, by comparing the horizontal estimates to north-east
estimates Figure 5.20, where outliers where detected, can it be seen that the
estimates are deviating some in northeastern direction from the weighted
position measurements.
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Figure 5.32: Case 4, Increased variance on GNSS 1
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Figure 5.33: Case 4, Increased variance on GNSS 1. Zoom of measurement
output around the event of increased variance.
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Figure 5.34: Case 4, Increased variance on GNSS 1. Reported variance of
the three GNSS measurements.
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Figure 5.35: Case 4, Increased variance on GNSS 1
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Figure 5.36: Case 4, Increased variance on GNSS 1. Weighted covariance of
based on the three GNSS measurements.
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Figure 5.37: Case 4, Increased variance on GNSS 1. Weighted position
measurements based on the three GNSS measurements.
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Figure 5.38: Case 4, Increased variance on GNSS 1. North-East position
estimates with the corresponding weighted GNSS measurements and vessel
position.
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Figure 5.39: Case 4, Increased variance on GNSS 1. Position estimates
together with the vessel position.
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Figure 5.40: Case 4, Increased variance on GNSS 1. Vertical GNSS bias
estimate.
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Discussion

The reason for the increased weighted GNSS covariance, seen in Figure 5.36,
is the result of GNSS 1 reported erroneous to the GNSS voting and weighting
algorithm. This is reasonable since one less sensor is part of the co variance
calculation. The reason for this can be found be studying the formula for
covariance (2.52), stated in Section 2.6.

As seen in Figure 5.35 is status 4 provided by the voting algorithm three
times before the signal check picks up the increased variance of GNSS 1.
From Table 4.2 is this stated that status means that one of the sensors has
been discarded by the voting algorithm. As in previous cases this is due to
noise components are in the outer regions of the Gaussian distribution at this
given time and therefore is not compliant with the two other measurements.
After the increased variance of GNSS 1 has occurred reports the voting
algorithm status 5 four time. From Table 4.2 is this status given as an
indication that the two operational sensors are deviating at the given time.
However, since no third measurement is deemed correct is it impossible to
determine which one of the GNSS measurements is erroneous at the given
times.

The reported status from GNSS 1 fluctuates between status 4 and 5. As
stated above this means that both high variance and vertical GNSS bias is
detected simultaneously. If the user is not familiar with the system might
such fluctuating reported status be confusing. In a stressful situation should
all data be provided to the operator in such a manner that the decision
making process is simplified in largest possible extent. By having this in
mind such fluctuating statuses should be picked up and handled by the
signal processing system and presented to the operator in a more suitable
manner.

The reason for the deviation of position estimate in northeastern direction
seen in Figure 5.38 can be contributed too the fact the eastern position
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estimates hadn’t converge to the correct values even at time equals 100
seconds. In Figure 5.39 can it be seen that the position estimate in sway is a
bit to the east of the actual vessel position at from the start of the simulation
to around 100 seconds of simulation. Therefore is deviation of the estimates
in the eastern direction probably not induced by the high variance of GNSS
1. This statement is further justified be Figure 5.41 where p̃y, assassinated
with the eastern direction, does not change significantly after the variance
of GNSS 1 increase. One can seen the northern and vertical estimation error
changes more than the eastern after time equals 1000 seconds.
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Figure 5.41: Case 4, Error of position estimate error p̃ = pGNSS − p̂.

5.5 Case 5: Horizontal Bias of One GNSS Sen-
sor

The following results will show the voting algorithm’s ability to detect long
term errors of one position sensor. This is needed since the measurement
weighing is based the assumption that the measurement only having zero
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mean, Gassian error. See Section 4.5 for more. Thus, must the biased
position measurements be excluded from sensor weighting to prevent any
bias from propagating to the position estimates.

The bias was injected by the simulator at time equals 1000 seconds with a
component of

bnGNSS =
[
6.5 −7 0

]ᵀ
as given in Table 3.4. The desired generalized position was set to a

ηd =
[
0 0 0

]ᵀ
. (5.11)

The controller was enabled after 25 seconds.

The biased GNSS measurements are given 5.42. A close up of the measure-
ments data around the event of bias at time equals 1000 seconds is found in
Figure 5.43. The reported variance from the three GNSS sensors are given
in Figure 5.44. Furthermore, Figure 5.45 show the respective GNSS sta-
tus. Moreover, the weighted covariance is given in Figure 5.46, whereas the
weighted GNSS measurements are given in Figure 5.47. Figure 5.48 shows
the horizontal position estimates together with GNSS measurements and the
vessel’s position.

It can be seen form Figure 5.42 and Figure 5.43 that the horizontal measure-
ments of GNSS 1 deviates from the vessels position at time equals 1000 to
the end of the simulation. From Figure 5.44 can it be seen that the variance
of GNSS 1 spikes at the time of event of the bias. When the bias is detected
by the voting algorithm the variance is reduced stabilizes soon after. The
GNSS status presented in Figure 5.45 shows that the voting algorithm dis-
cards GNSS 1 during the entire simulation after the bias is first picked up.
At six times GNSS 1 is enabled before discarded again. Furthermore, bu
studying the GNSS covariance is this not significantly affected by the spike
of the variance of GNSS 1. The weighted GNSS measurements in Figure
5.47 can be seen to become more oscillatory occasionally after the bias was
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injected into the measurements of GNSS 1 by the simulator. This also effects
the position estimates seen in Figure 5.49.
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Figure 5.42: Case 5, Detection of horizontal GNSS bias. Measurements from
GNSS 1
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Figure 5.43: Case 5, Detection of horizontal GNSS bias. Zoomed measure-
ments from GNSS 1
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Figure 5.44: Case 5, Detection of horizontal GNSS bias. Reported variance
from each GNSS
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Figure 5.45: Case 5, Detection of horizontal GNSS bias. GNSS status
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Figure 5.46: Case 5, Detection of horizontal GNSS bias. GNSS weighted
covariance of the GNSS measurements.
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Figure 5.47: Case 5, Detection of horizontal GNSS bias. Weighted GNSS
measurements
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Figure 5.49: Case 5, Detection of horizontal GNSS bias. Zoomed position
estimates together with the vessel position
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Discussion

The position measurement weighing is based on the variance of the available
GNSS sensors. A sensor with low variance will be given trusted where a
noisy measurement will be given little credit. Therefor would the spike in
the variance of GNSS 1 yield that GNSS 1 is not trusted in the weighing
process if the voting algorithm do not detect the bias.

The reason for the increased oscillations seen in the weighted GNSS position,
after the bias was introduced, can be explained by the voting algorithm dis-
cards and re-enables GNSS 1 multiple times. Since the GNSS is re-enabled
and disabled six times is the weighted measurements inherently changed
twelve times. Every time a GNSS sensor is disabled is the new weighted
position measurement weighted by utilizing the exponential function to en-
sure smoothness of the calculated position reference. These twelve changes
where a biased measurement is utilized six times is the probable the cause
weighted GNSS measurements.

This varying weighted GNSS measurements has also other side effects. The
increased oscillations in the position estimate, shown in Figure 5.49, is due
to the increased oscillations of the weighted changes in the GNSS measure-
ments. The additional phase lag and smoother estimates, on the other hand,
is a result of the increased covarince shown in Figure 5.46. This again yield
a more restraint correction by the injection term since the gain, Kpp, is
dependent on the reported covariance. The reduced amplitude of the verti-
cal position estimate after GNSS 1 was discarded is due to the same cause.
The more restraint correction yield that predicted vertical position estimate
is given more credit compared to before the measurement bias was intro-
duced.

If only the horizontal position estimates drift the voting the only possible
for this thesis to detect this before the measurements enters the observer of
Grip et al. (2013, Submitted). If the vertical measurement is biased would
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also the vertical GNSS bias estimates pick up changes yield a discrepancy
between the height of the vessel and the height measurements.

5.6 Case 6: Drift and Failure of All GNSS Sen-
sors

This section will study slowly drifting GNSS measurements and the effects
such errors entail on the position estimates and the actual vessel position. In
order to prevent a drive-off during an DP operation must such sensor drift
be detected and kept from propagating to position estimates.

Drifting of all GNSS sensors was enabled after 700 seconds of simulation.
The enabled drift rate was set to

d =

dxdy
dz

 =

 0.1m/s
0.15m/s
0.25m/s

 . (5.12)

The desired generalized 3 DOF position, as in the previous case studies, was
set to

ηd =
[
0 0 0

]ᵀ
. (5.13)

The controller was enabled after 25 seconds.

GNSS Drift Without Vertical GNSS Bias Estimation

From Figure 5.50 one can see that the horizontal position estimates follows
the GNSS measurements after the initial phase of convergence. This is also
indicated by the estimation error as seen in Figure 5.52. The estimation
error can been seen to oscillate around zero after the position estimates have
converged after approximately 300 seconds. Nevertheless, the estimates are
faulty after 700 seconds of simulation. This can be seen in Figure 5.53 where
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the GNSS measurement is beginning to deviate from the vessel’s position.
Figure 5.51 shows that the GNSS measurements, together with the position
estimates, drifts. This drift is so slow that neither the velocity estimates
nor the, observer integral effect, ξ show indication of spikes or other rapid
changes seen in Figure 5.55.
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Figure 5.50: Case 6, Drift and Failure of All GNSS sensors. North-East:
GNSS Position measurements and position estimates
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Figure 5.51: Case 6, Drift and Failure of All GNSS sensors. North-East:
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Figure 5.53: Case 6, Drift and Failure of All GNSS sensors. Zoomed Section
of the Measurement from GNSS 1 together with vessel’s position when the
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Figure 5.54: Case 6, Drift and Failure of All GNSS sensors. Velocity esti-
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Figure 5.55: Case 6, Drift and Failure of All GNSS sensors. The threshold
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Discussion

Frank (1990) stated that the estimation error, e = pGNSS − p̂, could be
used as residual. However, what can be seen from Figure 5.51 and 5.52 that
certain sensor errors can be present without the estimation error or inno-
vation sequence indicate this directly. Moreover, the GNSS drift is so slow
that the velocity estimates in Figure 5.54 seems to be unaffected by these
errors regard less of the injection termKvp(pGNSS− p̂). This can proably de
explained by the fact that Kvp = 0.11I3×3. Thus, is very small. When the
drift slow too will no prominent effect of the injection term,Kvp(pGNSS−p̂),
present it selves in the velocity estimate. As explain above is ξ estimate seen
in Figure 5.55 oscillating around zero as expected when the observer of Grip
et al. (2013, Sumbitted) has converged. ξ is far from the threshold of ±0.05,
stated by Grip et al, after initial convergence. If the threshold is exceeded
is this an indication of discrepancy between the attitude estimates and the
position reference. From the fact that the drift was not detected is this in-
dication that additional improvements have to be made to atone such slow
sensor drift. In Section 4.5 a filtering of the vertical GNSS measurements was
proposed, in the signal check procedure, to combat the problem of drifting
GNSS measurements.

GNSS Drift With Vertical GNSS Bias Estimation

By applying the vertical GNSS bias detection algorithm from Section 4.5 the
resulting the vertical GNSS bias estimates shown where obtained according
to Figure 5.56.

Moreover, Figure 5.56 shows that the GNSS drift is detected for all sen-
sors at simulation time 717.2 seconds. When the vertical GNSS drift was
detected were all GNSS measurements where disabled since all sensor was
deemed unreliable. The INS position and velocity observer requires aiding
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Figure 5.56: Case 6, Drift of all GNSS sensors. Vertical GNSS bias esti-
mate. 21.7 seconds after the GNSS drift was introduced is the vertical drift
detected.

measurements to prevent drifting estimates as stated in Section 2.2. Figure
5.57 shows this drift due to lack of correction measurements.

One can observer that the horizontal position estimates coincide with the
desired reference position, while the actual vessel positions drifts.
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Figure 5.57: Case 6, Drift and Failure of All GNSS sensors. Position esti-
mates when the GNSS measurements are disabled
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Discussion

The reason for the drifting position estimates shown in Figure 5.57 is prob-
ably due to the inaccuracies in the system. One of these inaccuracies is the
attitude estimates and especially the heading estimate. Even as the heading
estimates are of a high qulaity as shown in Figure E.6 when no fault are
present will even the smallest error propagate to position estimate trough
two numerical interrogations at 100 Hz since

p̈n = Rn
b (q̂)(f

b
IMU − bba) + gn (5.14)

when no observer injection is utilized.

The probable reason for the total control system to maintain the position es-
timates at north-east position (0, 0) is due to the controller increases thrust
quite drastically. This is supported by the thrust forces and moments shown
in Figure 5.58. In fact, the thrust in surge is increased from approximately
±2 ·10kN to the region of ±1.6 ·104kN. This drastic increase in commanded
thrust, seen in Figure 5.58 would probably not be possible to realize in a
real-life position system due to physical constraints posed on the propulsion
system. At least not is such short time frame. From this it might be of
interest to monitor the propulsion and power managements system and uti-
lized this in a fault-tolerant observer design to increase the robustness and
the fault detection capability in event of a drifting position references.

These result also indicates that automatic control is not possible when all
position references are lost. At least not for this 100 Hz INS based observer.
Hence, manual control is the only option if all GNSS sensors seems to be
drifting given that no other position reference is available such as HRP sys-
tems. In Det Norske Veritas (2011) is one the following requirements for DP
control systems stated: 402: Manual thruster control mode shall be available
at all times, also during all failure conditions in dynamic positioning or in-
dependent joystick control systems(...). Thus, this recommendation would
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Figure 5.58: Case 6, Drift and Failure of All GNSS sensors. Thrust from
the controller in surge, sway and yaw

comply with current rules and regulation related to DP operations.

Instead of only detecting the GNSS drift (fault detection) could one also
hope to atone for error directly by estimating the drift in all three degrees of
freedom. Since one cannot necessarily predict the horizontal drift when no
other measurements are available one have to rely on the vertical drift esti-
mates since this degree of freedom averages around zero for floating vessels.
The vertical GNSS bias estimate could in theory be utilized to correct all
DOFs if the vertical horizontal measurements drifted with the same amount.
A.i the GNSS drift rate was the same same in all three degrees of freedom.
This is not necessarily so. The coupling of between the vertical accuracy and
the horizontal accuracy of GNSS can be obtained from the GDOP stated
in Section 2.3. However, since the GDOP parameter is reported by the
receiver can this also be faulty. Grip et al. (2013, Submitted) stated that
the HDOP parameter is a lagging indicator of a potential GNSS problem.
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Hence, was it deemed unsafe to assume that the GNSS drift had the same
rate in all DOFs. Because of the sensor drift was simulated with different
drift rate for each degree of freedom. Furthermore if such drift is caused
by multipath, differential link errors or even satellite clock failure, as de-
scribed in Section 2.3.2, can the drift be a unpredictable and hence difficult
to monitor. According to Vik (2012) is the dominate error source for dGPS
system multipath. All in all it would seem difficult to estimate the drift of
horizontal GNSS measurements without any other independent source for
position reference.

Even though the vertical GNSS bias estimates was not deemed sufficient to
correct the drift of the horizontal measurements can on still see from Figure
5.56 that the vertical GNSS drift is estimated correctly with the purposed
Butterworth filter. A possibility to increase downtime when the GNSS is
deemed inaccurate could be reduced by feedback both the estimated drift
and GNSS status calculated by the fault-tolerant observer the back to GNSS,
as shown in Figure 5.59. Then appropriate fault-accommodation software
could discard, for instance, differential corrections to check if these are the
error sources. Starting to calculate a new position, based on other satellites
in view, is also an other possibility when vertical GNSS bias is detected. The
latter strategy might remove clock errors, or other error sources, provided
by one specific satellite.

An other possibility is to monitor the GNSS measurments by applying fault
detection methods directly to the Kalman fitler calculated GNSS solution.
Such methods as Receiver Autonomous Integrity Monitoring (RAIM) can
be utilized. The common denominator for RAIM-based methods consist of
some kind of self-constancy check. For more on RAIM can Parkinson and
Spilker (1996b) be advised.

The robustness of the bias estimate of the vertical component of the GNSS
measurement is also dependent on the heave motion of the vessel. Thus, the
threshold must by regarded as a tuning parameter. Utilizing the accelerom-
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Figure 5.59: Overview on how the detected GNSS bias could be reported
back to the receiver.

eter measurements for on-line tuning of this threshold might be a possible
field of study to introduce a adaptive threshold to increased robustness and
reliability while false alarms are avoided.

5.7 Case 7: Accelerometer Failure

This section will cover the event of the accelerometer failure. Such event
requires another source of acceleration information when utilizing INS. This
is due to the fact that these measurements are utilized in both the attitude
and integration observer of Grip et al. (2013, Submitted) as reference vector
and acceleration information respectively. As presented in Section 4.6 is the
nonlinear passive observer of Fossen and Strand (1999) utilized as basis to
obtain a estimates of the acceleration according to

f̂model =
[
ˆ̇νbx ˆ̇νby −g

]ᵀ
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The acceleration estimate is a.i based upon the relative acceleration estimate,
˙̂ν
b
r, and the acceleration component from the current estimate

˙̂ν
b
c = −S(ωbb/n)(R

n
b (ψ̂))

ᵀb̂
n
. (5.15)

Together, these two estimates yield the total acceleration estimate as stated
in Section 4.6.

The case study involved first a change in position at 1500 seconds according
to

ηd =

00
0

 t=1500→ ηd =

100100

0

 . (5.16)

Then, at 2500 seconds, a change in heading was performed according to

ηd =

100100

0

 t=2500→ ηd =

100100

40◦

 (5.17)

to see if such changes of position and heading would effect the current ve-
locity estimate and hence change the acceleration provided by the nonlinear
passive observer. The controller, as in the previous case studies, was enabled
after 25 seconds.

Fault Free Accelerometer

First an fault free case will be shown for benchmarking purposes. The
resulting horizontal position estimates were obtained and is shown shown in
Figure 5.60 together with the GNSS measurements and the vessel’s position.

Figure 5.61 shows the measured acceleration versus the estimates. One can
observer that the acceleration estimates from the vessel model based observer
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Figure 5.60: Case 7, North East position estimate of vessel with position
measurements and actual vessel position

lies around the mean of the acceleration measurements provided by the IMU.
However, the vessel model provides an acceleration with considerably lower
amplitude. Figure 5.62 shows the estimates of the model uncertainty is
present in the kinematics. One can see that estimates slowly converge to
the actual current.

The relative velocity estimates are presented in Figure 5.63. One can see
that the velocity in surge and sway is estimated to be non-zero, while the yaw
rate estimate, r̂ fluctuates around zero degrees per second when the vessel
is not rotating. A change in the estimates are observed when the vessel
changes horizontal position at time equals 1500 seconds. Moreover, the
relative velocity estimates also changes at time equals 2500 seconds.

Also in this case the position and heading estimates from the observer based
upon Grip et al. (2013, Submitted) are presented. The estimates can be
found in in Figure 5.69 and Figure 5.70 respectively. These are of the same
quality as in previous cases. One can observe from the position estimates
that these follows the vessel’s position well even in the event of change in
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Figure 5.61: Case 7, Accelerometer vs. model acceleration when ac-
celeromter fault has occurred.
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Figure 5.62: Case 7, Current velocity estimate when no acceleromter fault
has occurred.
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Figure 5.63: Case 7, Relative velocity estimate when no acceleromter fault
has occurred.

160



Chapter 5. Results and Discussion

0 500 1000 1500 2000 2500 3000
−100

0

100

200

Time [s]

p
n x
[m

]

p̂x

px

0 500 1000 1500 2000 2500 3000
−100

0

100

200

Time [s]

p
n y
[m

]

p̂y

py

0 500 1000 1500 2000 2500 3000
−2

0

2

Time [s]

p
n z
[m

]

p̂z

pz

Figure 5.64: Case 7, Position estimates together with vessel’s position with
no accelerometer fault.
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Figure 5.65: Case 7, Estimated and actual attitude of the vessel using Euler
angles as representation when no accelerometer fault has occurred.
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Discussion

A reason for the lower amplitude of model based acceleration might be that
the measured control input was obtained without any measurement noise.
The model based estimator of Fossen and Strand (1999) also employs wave
filtering. Thus, much of the oscillatory motion is suppressed by the passive
observer. In opposite will the accelerometer measurements has white noise
components and picks up acceleration from wave-induced forces.

The slow dynamics of the estimates from the nonlinear passive observer is
not unexpected because of the chosen bias model was model as

ḃ = 0 (5.18)

equivalent to
v̇c = 0. (5.19)

Furthermore, this was how the current was model in the simulator. See,
Chapter 3 for details. Moreover, one can observe that the current estimate
is not significantly affected by the change of position. This is probably due
to the position estimate of the nonlinear passive observer coincides with
the GNSS measurements. However, the current estimates changes when
the vessel rotates. This can possibly be explained by the change in esti-
mated relative velocity at the given time, since both the relative velocity
and current estimates are utilized in the update of the position estimate,
of the nonlinear passive observer. When the relative velocity estimates in
Figure 5.63 stabilizes, at time approximately equal to 2600 seconds, can it
be seen from Figure 5.62 that the current estimates again begin to converge
to the correct values. This however, happens slowly. A possible way to
combat this problem is to increase the gain associated with the current/bias
estimate.

Figure 5.63 shows that the relative velocity estimated non-zero velocities in
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surge and sway even while the vessel was stationary. This is not unexpected.
When the vessel is stationary the combined relative and current velocity
should be equal to zero. On the other hand was the relative angular velocity
estimate in yaw fluctuated around zero degrees per seconds. This is also
not unexpected since the current applied by the simulator is irrationality.
Thus, only affects the vessel in surge and sway. The change in the estimated
relative velocity at time equals 1500 is due to the vessel changes horizontal
position. The change in the relative velocity estimates at 2500 seconds is
due to the rotation of the vessel. In surge and sway will this effect how the
current yields velocity contribution in respective BODY frame axis. The
estimated relative velocity is yaw, r̂r peeks when the vessel rotates. This is
as expected.

Fault in Accelerometer at Time Equals 2000 Seconds

The same observer was ran in parallel when an accelerometer failure oc-
curred at time equals 2000 seconds. The results are shown in Figure 5.66 -
Figure 5.68. From Figure 5.66 can one observe that at time 2000 seconds
was the acceleration from model based estimator utilized as the accelera-
tion measurement. The current estimate and relative velocity estimates are
shown in Figure 5.67 and Figure 5.68 respectively. Comparing Figure 5.67
with 5.62 can one see the current / bias estimates are very similar both with
and without accelerometer failure. Furthermore, by comparing Figure 5.68
and Figure 5.63 one can also observe a striking resemblance of the relative
velocity estimates with or with fault accelerometer.

The position and heading estimates from the Grip et al. (2013, Submitted)
are presented in Figure 5.64 and 5.65 respectively whereas the position es-
timate when the acceleration from the vessel model is utilized is shown in
Figure 5.69. The estimated attitude, utilizing Euler angles as attitude rep-
resentation, is shown in Figure 5.70. One can see that the position estimates
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are unaffected by utilizing the estimated acceleration. This is also shown in
Figure 5.71 where the position estimates coincides well with actual vessel
position. However, the magnitude of angle roll angle, ψ, as increased both
before and after the rotation compared with the fault free simulation above.
Not only have the estimates changed, but also the actual roll of the vessel
is fluctuating more in this simulation.
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Figure 5.66: Case 7, Utilizing acceleration from vessel model. Accelerometer
vs. model acceleration when acceleration from model is utilized after 200
seconds.
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Figure 5.67: Case 7, Utilizing acceleration from vessel model. Current ve-
locity estimate when when acceleration from model is utilized after 2000
seconds.

166



Chapter 5. Results and Discussion

0 500 1000 1500 2000 2500 3000
−2

−1

0

1

Time[s]

u
[m

/
s]

0 500 1000 1500 2000 2500 3000
−1

0

1

2

Time[s]

v
[m

/
s]

0 500 1000 1500 2000 2500 3000
−1

0

1

2

Time[s]

r
[d
eg

/
s]

Figure 5.68: Case 7, Utilizing acceleration from vessel model. Relative ve-
locity estimates from model based observer when acceleration from model is
utilized after 2000 seconds.
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Discussion

The result from both simulations above show that the acceleration estimates
from a vessel model based observer can be utilized as redundant accelera-
tion information in an INS system for marine vessels. This substantiated
by the fact that the estimates from the model based observer do not change
even when the acceleration information, utilized by the INS/GNSS observer,
changes. This is because the position estimates of the Grip et al. (2013)
observer is little affected by those changes. The controller inputs are cal-
culated base upon these position estimates in feedback. Since the position
estimates are not effected by the change in the acceleration information, will
no changes propagate to the vessel model based observer, where the control
input is utilized.

Even though the position estimates are quite similar in both simulation is
an increase in both actual and estimated pitch observed when the estimated
acceleration is utilized. The changes in roll may be induced by the controller.
There exist an sway-roll and yaw-roll coupling in the 6 DOF inertia matrix,
seen in Appendix D, utilized in the vessel simulator. Sway and yaw are
parts of the control objective. The change in the acceleration information
could yield some changes in the velocity estimates. These again could affect
the computed controller input since the estimated velocity also is utilized
by the DP controller, posed in (2.46). It should be mentioned that the
observed changes in roll are so small that these would probably not inflict
any problems regarding operational use of the semi-submersible. This is
backed up by the fact that the roll angle never exceeds ±1 degree, as seen
in Figure 5.70.

The estimated acceleration provided good quality estimates when the current
was estimated in the NED frame. In real life this would not necessarily
work so well. The result might be affected by wind forces and moments
acting on the vessel. Because of this, it might be better to estimate the
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current and wind forces in the kinetics as original proposed by Fossen and
Strand (1999). Also possible uncertainties in the available 3 DOF inertia
and damper matrices might affect the quality of the estimated acceleration.
In this thesis was the 3 DOF matrices extracted directly from the 6 DOF
matrices utilized in the vessel simulator.

Measurement of actual control inputs also difficult to obtain accurate. In
this thesis was it assumed that the calculated thrust was measurable and
provided as calculated by the controller. Since no thrust-losses are not taken
in account, in this thesis, is it difficult to conclude on the robustness of the
quality regarding the acceleration estimates. The model based acceleration
should be tested in multiple weather conditions and other situations where
thrust-losses might change, before such methodology is used as redundancy
regarding the accelerometer in an INS context.

Because of all the uncertainties regarding the 3 DOFmatrices and the control
input, τ , might the change of acceleration information result in unwanted
transient behavior, even though this was not observed during the simulations
of this thesis. In a real-life operation should such changes be done with care.
One possible strategy to pursue is bumpless transfer, such as Zaccarian and
Teel (2002), from acceleration measurements to the estimated acceleration
provided by the model based observer.

In this thesis is the change of acceleration source performed when the ac-
celerometer reports a fault. In a real-life operation should this change also
be done when a larger bias or sensor freeze is detected. Therefor could ac-
celerometer bias estimation be utilized in a fault detection strategy. One
should also work on freeze detection, as done in Section 4.5 where GNSS
monitoring was carried out.
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5.8 Overall Discussion

In real life none one the GNSS antennas would provide measurements in CG
as model in the simulator in thesis. Hence, these measurements have to be
transformed to a given CO, such as the CG and compensated for the roll
and pitch motion. This can be done be utilizing theory from Fossen (2011,
Ch. 3.2 and 7.5.4) and the attitude estimates from Mahony et al. (2008) or
Grip et al. (2012a).

The assumption regarding pre-calibration of the accelerometer and magne-
tometer might not be valid over time. For instance might the magnetic field
change due to induced magnetic field from electric components in the vicin-
ity of the IMU. A semi-submersible rig is a large electric consumer, thus this
is very likely to happen if not handled properly. Hence, it would be recom-
mended to utilize a compass in conjunction with the heading estimate, from
the Grip et al. (2012a) attitude observer, to obtain a heading estimate to be
utilized for feedback purposes. This is also required, as seen in Appendix
B.7 where at least two gyro compasses are required to fulfill the DP-class 3
requirements.

At start up of the attitude observer or after failure scenarios can for instance
the QUEST algorithm be utilized to obtain initial values. By doing so, one
may provide a warm start to the observer and hopefully will the correct
attitude be determined faster since the initial attitude error is low.

Time-varying Observer Gain

The choice of exponential decaying gains during start up of observer would
seems beneficial to speed up the convergence of the PVA estimates. In an
event of sensor failure will such tuning results in lower converges time than
without such functionality. This can for instance increase recovery time of
the DP system if all GNSS sensors are lost e.g. in event of scintillations. A
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general increase in the nominal gains could be feasible if wave filtering was
added to the observer of Grip et al. (2013). This to prevent the wave-induced
motion of the vessel to propagate to the position estimates. However, this
would require addition research.

As discussed in previous section had the variance dependent gain, related to
the position estimates, several advantages. However, more work should be
put into such strategies in order improve the performance and fault-tolerance
even more. Stability analysis of the Grip et al. (2013, Submitted) observer
with time-varying gains should also be carried out.

Voting

The voting algorithm developed in this thesis could be extended to include
the position estimate to validate this GNSS measurements. Utilizing statisti-
cal methods to determine the likeness of a correct or erogenous measurement
may also be an possibility.

Low Pass Filtering of the Vertical GNSS Measurements

As seen in the Section 5.6 can low-pass filtered GNSS measurement provided
extra capability in detecting drifting GNSS measurements. Even though
only the vertical measurements drift’s are detected, could such detection
prevent an drive-off. However, the complexity of the fault-tolerant observer
increases with such functionality. Differentiating between an sensor freeze
must be done so the operator have the correct information available. The
sea state also has to be taken in account when the drift detection threshold
is set. Methods for changing this threshold online dependent on the heave
motion should be investigated.
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Utilization of the Vessel Model in a Fault-tolerant Design

The results related to the redundant acceleration provided by vessel model
seen in Section 5.7 was good, but the robustness of the method is question-
able. The model parameters might be erroneous. The same goes for the
control input, τ , as explained in Section 5.7. Another possible weakness of
the methods can be seen from Figure 4.5. The weakness comes from fact that
the accelerometer affects the heading estimate thought the injection term,
σ̂. This can be seen from the attitude estimate differential equation

˙̂q
n
b = T (q̂nb )(ω

b
b/n,IMU − b̂

b
g + σ̂) (5.20)

as given by (4.33). Since σ̂ might be biased by an erroneous accelerometer.
This may result in an erroneous attitude estimate. This attitude estimate is
further utilized as heading reference in the model based observer. The end
result of this can yield an erroneous acceleration in sway caused by sway-yaw
coupling in the mass matrix, M1, as seen in Appendix A. Therefor should
another source of heading information be utilized. An possible solution is
shown in Figure 5.72 where a gyro compass is introduced. Since a compass
is required by Det Norske Veritas (2011) will this not yield additional cost
if the total system is supposed to be utilized in a DP operation.

Monitoring of the acceleration measurements should include bias estima-
tion, freeze and wild-point detection. This might done by accelerometer
bias estimation and monitoring the changes in ξ, since the accelerometer
measurements and bias estimates directly effects the change in ξ, as can be

1Sway-yaw coupling often exist in the linear damper matrix, D, as seen in Fossen
(2011). However, not her as shown in Appendix A where the damper matrix is a diagonal.
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Figure 5.72: Overview of the suggested change in how the redundant ac-
celeration estimate is obtained. Some heading fusion should be performed
based upon the attitude estimate and some external sensor providing head-
ing information. This sensor could be a gyro compass.

seen from (4.32) and

˙̂
ξ = −R(q̂nb )S(σ̂)(f

b
IMU − b̂

b
a)

+R(q̂nb )
[
03×1 I3×3

]
Proj(ŵ,Γ(ŷ − φᵀŵ))

+ θ3Kξp(p
n
GNSS − p̂n) + θ2Kpv(v

n
GNSS −Cvv̂n)

. (5.21)

However, this requires that the signal processing monitoring the GNSS to
provides correct information at all times since the GNSS measurement also
is included as a correction in (5.21). The magnetometer may also effect the
change of ξ since

σ̂ = k1m
b ×R(qnb )

ᵀmn + k2f
b ×R(qnb )

ᵀf̂
n

(5.22)

where the reference vectorm is the normalized magnetometer measurements
and σ̂ is a component in ξ’s differential equation.
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Other Possibilities to Increase Robustness and Reliable

Regarding extended robustness can hybrid theory be utilized in together
with the INS. The navigation observer of Grip et al. (2013, Submitted)
might been synchronized with a parallel observer based the vessel model.
Information on obsever synchronization is found e.g. in Nijmeijer and Fossen
(1999, Part IV)

This model could be change depending on the control objective. Tow differ-
ent operating scenarios for a vessel could be transit and stationkeeping. A
supply ship may navigate with, for instance, a Nomoto model

ψ̇ =
K

1 + Ts
δ (5.23)

where δ is the rudder angle to the operational site. At site, or in the vicinity
on the site, is a model change performed and the 3 DOF DP model is utilized.
Also her should bumpless transfer, such as in Zaccarian and Teel (2002), be
performed when the parallel observer is substituted.
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Chapter 6
Conclusion and Further Work

6.1 Conclusion

This master thesis has considered a fault-tolerant observer by exploiting
INS and GNSS. Methods for signal quality checks where chosen. Multiple
GNSS single-point failure scenarios were simulated by constructing a vessel
simulator in MATLAB®. These where outlier detection, GNSS sensor freeze,
high sensor variance, constant bias and GNSS drift. Also one scenario related
to accelerometer failure where an estimated acceleration, based on the vessel
model, was carried out. Errors, faults and failures were detected and handle
appropriately by by through fault isolation. This thesis did not focus of
magnetometer and gyroscope failure.

This thesis concludes with

• The chosen signal quality methods for fault-tolerance worked well in
detecting and handling GNSS sensor errors and faults. Outliers, freeze,
high variance and bias was detected and handle accordingly. Such er-
rors were prevented from propagating to the observer and the corre-
sponding estimates.

• The developed voting algorithm was able to detect discrepancies among
the individual sensor measurement, also when no faults were injected
into the system.

• The developed GNSS drift detection algorithm was no only able to
detect the drift, but also the magnitude of the fault at a given time.
A possible drive-off was prevented.
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• Sensor weighting yield good results. The same goes for the time-
varying tuning of the gain associated with the position estimates. Even
when the fault-tolerant methods was not applied was outliers attenu-
ated since the calculated variance increased, thus decreasing the gain
because of the variance dependent tuning. Time varying gains should
also be utilized for the remaining gains in the observer.

• If drift of all position reference sensors are detected to be erroneous
should automatic control be switch off. Manual control should be
carried out until the sensor fault is accommodated.

• Utilizing an estimated acceleration, from a model-based approach, as
redundant acceleration information was successful. The results yielded
no noticeable changes in the position estimates. Increased roll motion
was however observed.

Regarding the overall performance of the system does this thesis conclude
with

• The observer of Grip et al. (2013, Sumibtted) is a good basis for devel-
oping a fault-tolerant observer by exploiting INS and position reference
sensors, however many respects still remains to be resolved in order to
make the observer applicable for dynamic positioning.

• Performance of the overall system is improved with the fault-tolerance
additions compared to the original observer of Grip et al. (2013, Sub-
mitted) when system is exposed to error, fault and failure situations
regarding the position sensors. Especially so with respect to the de-
tection of the drifting GNSS measurements.

• Time-varying gains seems promising. Performance of the position mea-
surements are increased when the variance associated with the position
measurements changes.

• Estimating vertical GNSS bias works well and estimates the drift cor-
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rectly. However, the drift may not be the same for the horizontal
measurements since the error source is not necessarily know. Hence,
vertical bias estimation, as purposed in this thesis, can only be used
as fault detection, not fault accommodation.

6.2 Further Work

Even though a fault-tolerance observer was successfully developed are there
many remaining aspects to be studied. These are aspects are related to
faulty inertial sensors, online observer tuning, adaptive gains and proving
stability of the total observer. This thesis recommends that the work related
to the following items should be performed or investigated.

• Use QUEST or similar methods for initializing the attitude observer,
so the correct attitude estimates could be obtained faster.

• Studying possible failure scenarios regarding the inertial sensors. Pre-
processing and voting should looked into. Signal quality checks re-
garding inertial measurements should be carried out. Fault-detection
may be preformed according to e.g. Gustafsson (2007).

• An other heading reference, such as a gyro compass should be included.
Fusion of the attitude estimates and the heading from the gyro compass
should be performed.

• Further study related to the tuning of the signal processing associ-
ated with the measurements. Adaptive tuning for changing ambient
conditions is worth looking into.

• Further study related to the position reference voting algorithm is
needed. Use of the position estimate and statistical methods is worth
considering. Inclusion of other sensors, such as HPR systems, should
also be carried out.
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• Realistic simulation of sensors including GNSS antenna location should
be carried out, such that the roll and pitch movements will be embed-
ded in the GNSS measurements. Associated effects should be compen-
sated before utilized by the observer.

• Study how the control input affects the model-based acceleration es-
timation when the control input cannot be directly measured due to
thrust losses. The same should be done regarding the model insecuri-
ties.

• Ensuring bumpless transfer when the acceleration measurements are
switched out and replaced with the estimated acceleration.

• Adaptive gains of the observer, taking in account the measurement
accuracy and the estimates for position, velocity and attitude, should
be studied.

• Stability analysis of the total observer with switching and adaptive
gains should be performed.

• Study how wave filtering can be incorporated into the observer of Grip
et al. (2013, Submitted).
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Appendix A
Vessel and Simulator

Parameters

Semi-Submersible Kinetic Parameters

rig.m in the GNC Toolbox, see MSS. Marine Systems Simulator (2010),
was utilized to provide the MRB, M , D and G matrices. From these a
6 DOF rig model was made and used as the basis for the simulator. The
matrices MRB, M , D and G matrices are specified on the two following
pages.
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Wave Simulator

When the wave induced forces and moments are computed by utilizing the
linear states-space model presented in Section B.3.1, the eigenvaules of the
wave linear state space system is given as.

eigenvaules =



−0.2245± 0.4468i

−0.2245± 0.4468i

−0.2245± 0.4468i

−0.2245± 0.4468i

−0.2245± 0.4468i

−0.2245± 0.4468i


(A.5)

From (A.5) it can be seen that this model is quite oscillatory. Hence, a nu-
merical solver need to be stable for critically stable systems. Therefore RK-4
was chosen to compute the wave induced forces and moments. RK-4 is sta-
ble of for system with considerably higher complex conjugated eigenvaules.
For more on RK-4 please Appendix C or Egeland and Gravdahl (2002) can
be advised.
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Appendix B
Background Theory

B.1 Kinematics

Rotation Matrices and Transformation Between Reference Frames

A rotation matrix describes the rotation between two given reference frames
{a} and {b}. According to Fossen (2011, Ch. 2.2), the rotation matrix
Ra
b ∈ SO(3). The special orthogonal group, SO(3), implies the following

relations
detRa

b = 1, (Ra
b )
TRa

b = I, (Ra
b )
−1 = (Ra

b )
T (B.1)

From Fossen (2011, Ch. 2.2), the skew symmetric matrix is given with the
following identity

S(a) = −Sᵀ(a) (B.2)

where S ∈ SS(n) and n is the order of the matrix. The 3×3 skew symmetric
matrix is defined as

S(a) :=

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 (B.3)

and can be used to calculate cross products as shown in (B.4)

a× b = S(a)b. (B.4)

A vector ~p decomposed in the frame {b}. pb can then be rotated to the
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B.1. Kinematics

coordinate system, {a} by the rotation matrix, Ra
b

pa = Rb
ap

b (B.5)

The derivative of the rotation matrix can be stated

Ṙ
a
b = R

a
bS(ω

b
ab) (B.6)

from Fossen (2011, Ch. 2.2.1).

The skew symmetric matrix can S(ωaab) be transformed to the reference
frame {b} by a similarity transform

S(ωbab) = R
b
aS(ω

a
ab)R

a
b (B.7)

which will be utilized in Section 2.2.2.

Reference Frames

The motion and position of a marine craft is described in 6 degrees of free-
dom (DOF). In navigation of a such a craft, reference frames can by applied.
By doing it can often be convenient to define several reference frames. Rel-
evant coordinate system for this thesis are summarized in Table B.1. For
a more detained explanation of these reference frame can Fossen (2011) by
advised.
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Appendix B. Background Theory

Table B.1: Thesis Relevant Coordinate Systems

Name Notation Definition
Inertial {i} An internal coordinate system (non accelerated).

Newton’s law of motion apply in this frame.
This frame is approximately space fixed.

Earth
Centered
Earth
Fixed
(ECEF)

{e} Earth fix coordinate system. The origin is located
at the center of the Earth. The x-axis points north,
the y-axis points 90 degrees in longitudinal di-
rection and the yz-plane constitute the equatorial
plane. E.g, GNSS measurements are provided in
the {e} frame, see Section 2.3.

North,
East,
Down
(NED)

{n} From Fossen (2011) is the origin, on, located on
the Earth surface relative the Earth’s reference
ellipsoid. The x-axis point towards true North,
y-axis to the East while the z-axis points down
towards the center of the Earth.

For Flat Earth navigation, the {n} is assumed to
be an internal coordinate system.

Body {b} Hull or Body fixed coordinate system. Origin is
located at the craft’s Center of Gravity (CG).

The environmental and actuator forces and
moments will present them selves in the {b}
frame. Accordingly it will be useful to state the
measurements of the motion sensors in this frame.
In this thesis, two global frames are defined in
conjunction with three geographical frames.

Flow {f} Flow fixed coordinate system. The {f} frame is
useful to model lift and drag forces.

The transformation from FLOW axis to a
given reference frame is done be to principal rota-
tions according to Fossen (2011). R = Rᵀ

z,−αR
ᵀ
y,β

where the α is the angle of attack and −β is the
negative sideslip angle.
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B.1. Kinematics

Transformation from the {b} to {n} Frame

Θnb from (2.3) is the generalized coordinates in Euler angles, describing the
orientation of the {n} frame related to the {b} frame of the craft. Further-
more, (2.1) can be written as

η̇ =

[
ṗnb/n
Θ̇nb

]
=

[
Rn
b (Θnb) 03x3

03x3 TΘ(Θnb)

][
vbb/n
ωbb/n

]
(B.8)

The upper differential equation of (B.8) describes the linear velocity of the
craft. vbb/n and ṗnb/n is the body fixed velocity and NED composed velocity
vector respectively. Whereas Rn

b is the rotation matrix from {b} to {n}.
For the angular velocity differential equation, ωbb/n is the angular velocity
of the {b} frame with respect the {n}. TΘ(Θnb) is the angular velocity
transformation matrix.

Attitude Representation: Euler Angles

From Fossen (2011, Eq. (2.18)) one can utilize Euler angles, Θnb to represent
attitude by a rotation matrix, Rn

b (Θnb), presented previously. The rotation
matrix is given as

Rn
b (Θnb) =

cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ

 (B.9)

where the Euler angles are given as

Θnb =
[
φ θ ψ

]ᵀ
. (B.10)
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Appendix B. Background Theory

The transformation matrix TΘ(Θnb) from (B.8) is given as

TΘ(Θnb) =

1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

 . (B.11)

Hence, (B.11) and the lower part of (B.8) is singular at θ = ±90◦.

Attitude Representation: The Unit Quaternion

A singular free approach in describing the kinematics can be based on the
unit quaternion.

According to Fossen (2011) the quaternion q is a complex number containing
a four parameters. One real η, and three imaginary, ε. From Fossen (2011)
the following set, Q, of the unit quaternion is defined as

Q := {q|qᵀ q = 1, q = [η, εᵀ]ᵀ, ε ∈ R3 and η ∈ R} (B.12)

From Fossen (2011) and the references therein the real and imaganery part
of the unit quaternions are defined according to

η := cos

(
β

2

)
(B.13)

ε = [ε1, ε2, ε3]
ᵀ := λ sin

(
β

2

)
(B.14)

where λ = [λ1, λ2 λ3]
ᵀ is the vector which the rotation, β, is rotated about

an object. λ is a unit vector satisfying

λ = ± ε√
εT ε

if
√
εT ε 6= 0 (B.15)
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B.1. Kinematics

Hence, the unit quaternion can be expressed in the following manner

q =


η

ξ1

ξ2

ξ3

 =

[
cos
(β

2

)
λ sin

(β
2

)] ∈ Q, 0 ≤ β ≤ 2π (B.16)

given by Fossen (2011), where β is the rotation angle. From the given
parameterization, the unit quaternion satisfy the following constraint

qᵀq = 1 (B.17)

or
η2 + ε21 + ε22 + ε23 = 1 (B.18)

From Egeland and Gravdahl (2002, Ch. 6.7) can the quaternion product
between two quaternion vectors, q1 and q2, be defined as

q1 ⊗ q2 :=

[
η1η2 − εᵀ1ε2

η1ε2 + η2ε1 + ε2 × ε2

]
(B.19)

where η1 and η2 is the two respective real parts as in (B.13) whereas the two
imaginary vectors, ε1 and ε2, as in (B.14).

The coordinate transformation for the unit quaternion is defined as

Rn
b (q) := Rη,ε (B.20)

where Rn
b (q) is obtained by inserting (B.13)-(B.14) into the rotation

Rn
b = Rα,β

= I3×3 + sin(β)S(λ) + [1− cos(β)]S2(λ) (B.21)
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Appendix B. Background Theory

decried by among others Kane et al. (1983). This yields

Rn
b (q) = Rη,ε = I3x3 + 2ηS(ε) + 2S2(ε) (B.22)

where

Rn
b (q) =

1− 2(ε22 + ε23) 2(ε1ε2 − ε3η) 2(ε1ε3 + ε2)η

2(ε1ε2 + ε3η) 1− 2(ε1
2 + ε3

2) 2(ε2ε3 − ε1η)
2(ε1ε3 + ε2η) 2(ε2ε3 + ε1η 1− 2(ε21 + ε22)

 . (B.23)

Now, the angular velocity transform in (B.8) can be described in quater-
nion form by substituting (B.23) into (B.6). After some calculation this
yields

q̇ = T q(q)ω
b
b/n (B.24)

as given in Fossen (2011). Hence, the angular transformation matrix, T q is
given as

T q(q) =
1

2


−ε1 −ε2 −ε3
η −ε3 ε2

ε3 η −ε1
−ε2 ε1 η

 . (B.25)

According to Egeland and Gravdahl (2002) can (B.24) can be written with
a quaternion product as

q̇ =
1

2
q ⊗

[
0

ωbb/n

]
. (B.26)

(B.19) and (B.26) are relevant for the relationship between the quater-
nion differentiation equation proposed in Grip et al. (2013, Submitted) and
(B.24), which will be studied in Section 2.2.2.

Furthermore, Fossen (2011, Ch. 2.2.2) states that (B.24) can violate the unit
the quaternion constraint, i.e. ‖q‖ = 1, when (B.24) is integrated numeri-
cally. Hence, normalization is needed. Fossen (2011) present a normalization
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B.2. Kinetics

strategy when (B.24) is implemented in discrete time. Then the normaliza-
tion can be preformed directly for each step of the integration according
to

qbb/n(k + 1) =
qbb/n(k + 1)√(

qbb/n(k + 1)
)ᵀ
qbb/n(k + 1)

(B.27)

where qbb/n(k+ 1) can be obtained by e.g Euler integration. See Section 2.7
For more on other numerical integration techniques, see Appendix C.

The quaternion, q, can be calculated from the Euler angles, Θnb, and visa
versa. These algorithms can be found in Fossen (2011, Ch. 2.2.3) and Fossen
(2011, Ch. 2.2.4) respectively.

B.2 Kinetics

The vessel simulator in Chapter 3 is based on the six Degree of Freedom
DOF kinetic vessel model of (2.2) is given as

Mν̇ + C(ν)ν +D(ν)ν + g(η) = τ + τwind + τwave. (B.28)

From Fossen (2012a) can the kinetics of a marine craft be written as

MRBν̇ +C(ν)RBν = τRB (B.29)

where

τRB = τ hydrodynamic + τ hydrostatic + τwind + τwave + τ . (B.30)

Hence, the kinetics consist of rigid-body, hydrodynamic and hydrostatic
components. The hydrodynamics forces and moments can be written as

τ hydrodynamic = −MAν̇ −CA(νr)νr −D(νr)νr (B.31)
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Appendix B. Background Theory

while the restoring forces comes from the hydrostatic forces and moments
as

τ hydrostatic = −g(η). (B.32)

The total mass, Coriolis, damping and restoring matrices, utilized in (B.28),
can be written as

M =MRB +MA

C = CRB +CA

D =D(νr)

(B.33)

where the added mass, added Coriolis and damping matrices have subscript
A. comes from the hydro dynamical forces and moments. The rigid-body
terms have subscript, RB. By substituting (B.30) into (B.29) and inserting
for the hydrodynamic and hydrostatic forces and moments is

MRBν̇ +C(ν)RBν = −MAν̇ −CA(νr)νr −D(νr)νr − g(η)

+ τwind + τwave + τ
(B.34)

obtained. By rearranging (B.34) results in the following kinetics

Mν̇r +C(νr)νr +D(νr)νr + g(η) = τ + τwind + τwave. (B.35)

stated with relative generalize velocity, νr. This is done by exploiting prop-
erty 8.1 in Fossen (2011). From Fossen (2011) the relative velocity is defined
as

νr := ν − νc (B.36)

where νc is the generalized current velocity. For more of kinetic modeling
Fossen (2012a, Ch. 5, 6 and 7) can be advised.

g(η) in (B.34) can be approximated according to Fossen (2011) as

g(η) ≈ P (ψ)ᵀGη (B.37)
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B.2. Kinetics

which is valid for small roll and pitch angles, φ and θ, respectively. η and
g(η) are given in the NED and BODY frame respectively. G is the linearized
restoring forces matrix. Furthermore, P (ψ) is given as

P (ψ) =

[
R(ψ) 03×3

03×3 I3×3

]
(B.38)

This result is
g(η) ≈ P (ψ)ᵀGη = Gη (B.39)

because of the structure of G, which can found in Appendix A.
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B.3 Modeling of Environmental Forces and Mo-
ments

The thesis relevant environmental forces and moments not presented in the
formed Section are wave forces and moments together with current. Hence,
these will be presented in the following Section. Modeling of wind forces and
moments will not be described in this thesis since the simulator constructed
in Chapter 3 will not include wind. See Chapter 3 for details.

B.3.1 Modeling of Waves

The JONSWAP wave spectra is a result of a measurement program carried
out in the North Sea in 1968 and 1969. The spectra describes, according to
Fossen (2011), nonfully develop sea.

According to Fossen (2011), the spectral density function of JONSWAP is
written as

S(ω) = 155
H2
s

T 4
1

ω−5 exp

(
−944
T 4

1

ω−4

)
γY (B.40)

It is common to chose γ = 3.3 and

Y = exp

[
−
(
0.191ω T1 − 1√

2σ

)2
]

(B.41)

According to Sørensen (2012) the typical wave period for the North Sea is i
range of 5 to 20 seconds yielding

ωi =
2π

T
, ωi ∈ [0.3142, 1.2566].

An examples of the JONSWAP spectra can be observed in Figure 3.4 in
Chapter 3.

Other wave spectra are Nuemann, Bretschneider, Pierson-Moskowitz and
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B.3. Modeling of Environmental Forces and Moments

Torsethaugen. For more on wave spectra, see Fossen (2011, Ch. 8.2) and
references therein.

From Fossen (2011) can the first-order wave frequency induced forces and
moments, τwave 1st, be approximated as second-order transfer function driven
by a Gaussian, zero mean process. For each degree of freedom the following
transfer function can model the wave frequency motion according to Fossen
(2011, Ch. 8)

h(s)wave,i(s) =
K
{i}
w s

s2 + 2λ{i}ω
{i}
0 σ +

(
ω
{i}
0

)2 (B.42)

where
K{i}w = 2λ{i}ω

{i}
0 σ{i} (B.43)

Furthermore, σi is given as

(
σ{i}

)2
= max

o<ω<∞
S(ω). (B.44)

Moreover, Sørensen (2012) writes each of the transfer functions, for each
DOF, given in (B.42) on state space form as

ξ̇w = Awξw +Eww (B.45)

ywave = Cwξw. (B.46)

where w is the Gaussian, zero mean process. For a 6 DOF system, Aw, Ew

and Cw are given as

Aw =

[
06×6 I6×6

−Ω2 −2ΛΩ

]
, Ew =

[
06×6

Kw

]
, Cw =

[
06×6 I6×6

]
(B.47)
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where

Ω = diag{ω{1}0 , ω
{2}
0 , ω

{3}
0 , ω

{4}
0 , ω

{5}
0 , ω

{6}
0 }

Λ = diag{λ{1}, λ{2}, λ{3}, λ{4}, λ{5}, λ{6}}

Kw = diag{K{1}w ,K{2}w ,K{3}w ,K{4}w ,K{5}w ,K{6}w }.

(B.48)

Moreover, Fossen (2011) states that in order to obtain a realistic wave in-
duced motion of the vessel, the first-order wave forces and moments are
approximated as

τwave 1st ≈KHs(s)w(s) (B.49)

whereK is a constant tunable gain. K is chosen such that the amplitude of
the wave induced generalized position, ηnwave, of the vessel will be realistic.
Hs is the multivariable system of (B.45)-(B.46) presented in the frequency
domain.

B.3.2 Modeling of Ocean Currents

From Fossen (2012a) can forces moments of ocean currents acting on a ma-
rine craft be incorporated in the vessel model of (2.1) and (2.2) by replacing
the ν with the relative velocity given from (B.36) as

νr = ν − νc. (B.50)

As mentioned in Section B.2 is the generalized current velocity given as
νc ∈ R6. Moreover, Fossen (2011) presents that irrational current, νc, can
be expressed as

νc =
[
uc vc wc 0 0 0

]ᵀ
(B.51)

where νc is given in {b}. The linear current velocity from (B.51) is given
as

vbc =
[
uc vc wc

]ᵀ
. (B.52)
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Hence, the relative velocity, νr, is given as

νr =

[
vb − vbc
ωbb/n

]
. (B.53)

The definition of constant irrational current can found in Definition B.1
below.

A parameterization of the rigid-body Coriolis matrix, CRB, presented by
Fossen (2011) and reference therein, not including linear velocity can be
applied to make the following identity

MRBν̇ +CRB(ν)ν =MRBν̇r +CRB(νr)νr (B.54)

valid. See, Property B.1, Fossen (2011) or Fossen (2012a) for details. Then,
a vessel model including ocean current can be given by substituting the gen-
eralized rigid-body velocity in (B.8) and (B.28) with the generalized relative
velocity, νr. Furthermore, from Fossen (2012a) is the current added to the
kinematics of (B.8). Then, then total kinematic and kinetic model then
takes the form of

η̇ = JΘ(η)νr +

[
vnc

0

]
(B.55)

Mν̇r +C(νr)νr +D(νr)νr + g(η) = τ + τwind + τwave. (B.56)

The current velocity in the {n} and {b} frames is given by the following
relationship

vnc = Rn
b v

b
c. (B.57)

Moreover, from Fossen (2011) can a 3-D Irriational current can be obtained
by transforming the current speed, Vc, from the FLOW axis, {f}, see Section

208



Appendix B. Background Theory

B.1, to {n} according to

vnc = Rᵀ
y,αcR

ᵀ
z,−βc

Vc0
0

 . (B.58)

Furthermore, (B.58) can be expanded to

vnc =

Vc cos(αc) cos(βc)Vc sin(βc)

Vc sin(αc) cos(βc)

 . (B.59)

where αc and βc are the angle of attack and the negative sideslip of the
current respectively. The magnitude of the current velocity, Vc can accord-
ing to Fossen (2011) be has high as 2 − 3 m/s in fjords caused by tidal
components.

Irrational Constant Ocean Currents

Fossen (2011) present the definition of a constant irrational constant ocean
current as

Definition B.1. Irrational Constant Ocean Current
An constant irrational ocean current in {n} is defined by

v̇nc = Ṙ
n
b (Θnb)v

b
c +R

n
b (Θnb)v̇

b
c := 0 (B.60)

where
Ṙ
n
b (Θnb) = R

n
b (Θnb)S(ω

b
b/n). (B.61)

Consequently,
v̇bc = −S(ωbb/n)v

b
c. (B.62)
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Submitted)

From Fossen (2011) is Property 8.1 in given as:

Property B.1. Irrational Constant Ocean Current
If the Coriolis and centripetal matrix CRB(νr) is parameterized independent
of linear velocity ν1 = [u, v, w]ᵀ, for instance by using (B.65), and the ocean
current is irrational and constant, Definition B.1, the rigid-body kinetics
satisfy

MRBν̇ +CRB(ν)ν =MRBν̇r +CRB(νr)νr (B.63)

with

νr =

[
vb − vbc
ωbb/n

]
. (B.64)

Furthermore, the linear velocity independent rigid-body Coriolis parameter-
ization mention in Property B.1 is given as

CRB(νr) =

[
mS(ωbb/n) −mS(ωbb/n)S(r

b
g)

mS(rbg)S(ω
b
b/n) −S(Ibωbb/n)

]
. (B.65)

For more details, see Fossen (2011).

B.4 Assumptions Regarding the Observer of Grip
et al. (2013, Submitted)

The assumptions listed below are stated based upon the special condition of
the observer by Grip et al. (2013, Sumbitted) presented in Section4.1.

Grip et al. (2013, Sumbitted) makes the following assumption to ensure
uniformly observability
Assumption B.1. There exist a constant cobs > 0 such that, for all t ≥
0, ‖f b ×mb‖ ≥ cobs
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where f b = f b/‖f b‖ and mb =mb/‖mb‖.

Assumption B.2. Knowledge of the constant Mf > 0 and mf > 0 such
that mf ≤ ‖f b‖ ≤Mf and a bound on Mbg > 0 such that ‖bbg‖ ≤Mbg .

Assumption B.3. ḟb and ωbb/n are uniformly bounded.

Assumption B.4. The gravity, g(pn), is given as by a Lipchitz continuous
function of the position pn.

According to Grip et al. (2013, Sumbitted) can the PE assumption be written
as
Assumption B.5. There exist a constant ε > 0 and T > 0 such that, for
all t ≥ 0,

∫ T
t φ(τ)φ

ᵀ(τ)dτ ≥ εI.
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B.5 Terminology

From Fossen (2011) is the following definition of Flat Earth Navigation is
stated.

Definition B.2. Flat Earth Navigation: For marine craft operating in
a local area, approximately constant longitude and latiude, an Earth-fixed
tangent plane on the surface is used for navigation. This is usually referred
to as flat Earth navigation and will be denoted {n} for simplicity. For flat
Earth navigation one can assume that {n} is inertial such that Newton’s laws
still apply.
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B.6 Causes of dGNSS Errors or Failures

Chen et al. (2009) writes that possible external error and failure sourcescan
be:

• Low number of available
satellites

• Poor satellite constella-
tion

• Failure of GPS satellites

• Failure at reference or uplink
stations

• Failure of differential link com-
munication satellites

• Failure of IALA radio station

According to Chen et al. (2009), possible causes could be:

• Mechanical failures
• Short circuit
• Computer failures

• Antenna masking
• Cable interference
• Erroneous software configura-

tion

Hence, there are many sources for fault dGNSS measurements.
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B.7. DNV DP Class Summary

B.7 DNV DP Class Summary

On the following page is page 19 of Det Norske Veritas (2011) included.
Page 19 includes Table C.1 of Det Norske Veritas (2011) which consist of
DNV’s minimal retirements for different DP class notations.
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 Rules for Ships, January 2011
  Pt.6 Ch.7 Sec.2  –  Page 19

DET NORSKE VERITAS

102    In general additional requirements to achieve higher availability and robustness will apply to the
DYNPOS- series as compared to the DPS-series of notations. An overview of the main differences between
the two series are summarised in Table C2 for quick reference. Specific requirements for each subsystem are
presented under the respective section headings.

Table C1 System arrangement

Subsystem or component

Minimum requirements for class notations
DYNPOS-

AUTS
DYNPOS-

AUT
DYNPOS-

AUTR
DYNPOS-
AUTRO

DPS 0 DPS 1 DPS 2 DPS 3

Electrical 
power system

Electrical system No-
redundancy 3)

No-
redundancy 

3)

Redundancy in 
technical 
design

Redundancy in 
technical design and 
physical separation 

(separate 
compartments)

Main switchboard 13) 13) 1 2 in separate 
compartments

Bus-tie breaker 03) 03) 1 2, 1 breaker in each 
MSB

Distribution system Non-
redundant3)

Non-
redundant 3) Redundant Redundant, through 

separate compartments

Power management No No AUTR: Yes
DPS 2: No

AUTRO: Yes
DPS 3: No

Thrusters
Arrangement of thrusters No-

redundancy
No-

redundancy
Redundancy in 

technical 
design4)

Redundancy in 
technical design and 
physical separation 

(separate 
compartments)

Single levers for each thruster 
at main DP-control centre Yes Yes Yes Yes

Positioning 
control system

Automatic control; number of 
computer systems 1 1 2 2 + 1 in alternate 

control centre
Manual control; independent 
joystick system with 
automatic heading control 2)

No Yes Yes Yes

Sensors

Position reference systems 1 2 3 3 whereof 1 in alternate 
control centre 

External 
sensors

Wind 1 1 2 2 whereof 1 in alternate 
control centre 

Gyro 
compass 1 1 31) 31) whereof 1 in 

alternate control centre 
Vertical 
reference 
sensor (VRS)

1 1 AUTR: 3
DPS 2: 25)

3 whereof 1 in 
emergency control 

centre 

UPS 0 1 2 2 + 1 in separate 
compartment

Printer Yes Yes Yes Yes
Alternate control centre for dynamic 
positioning control back-up unit No No No Yes

1) One of the three required gyros may be replaced by a heading device based upon another principle, as long as this heading device 
is type approved as a TDH (Transmitting Heading Device) as specified in IMO Res. MSC.116 (73). For notation DYNPOS-
AUTRO and DPS 3 this is not to be the gyro placed in the alternate control centre.

2) The heading input may be taken from any of the required gyro compasses.
3) When this is part of the ship normal electrical power system (i.e. used for normal ship systems, not only the DP system), then 

Pt.4 Ch.8 applies.
4) For DPS 2 see also B202.
5) Where necessary for the correct functioning of position reference systems, at least three vertical reference sensors are to be 

provided for notation DPS 2. If the DP-control system can position the ship within the operating limits without VRS corrections, 
only 2 VRSs are required.



B.8. Gaussian Zero Mean Noise

B.8 Gaussian Zero Mean Noise

All measurement noise in this thesis is Gaussian, zero mean, white noise.
This noise have to following distribution function, according to Walpole
et al. (2007)

p(x) =
1√
2πσ

x2∫
x1

e−
1

2σ2
(x−µ)2dx (B.66)

where µ is the mean and σ is the standard deviation. By calculating zero
mean noise with standard deviation, σ = 1 yield the distribution shown in
Figure B.1.
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Figure B.1: Distribution of the Gaussian, zero mean, GNSS measurement
noise components
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Appendix C

Discrete Implementation of
Continuous Systems

A computer implementation of a system on the form of

ẋ = f(x,u, t) (C.1)

requires numerical methods. The control input, u is assumed constant over
the sampling interval, h, as stated in Fossen (2011, App. B.2).

A simple method for numerical integration is forward Euler and is given
as

x(k + 1) = x(k) + hf(x,u, tk) (C.2)

However forward Euler is not stable for undamped section-order systems. A
stable numerical integration methods for such systems are combined forward
and backwards Euler and can be described as following for simulating a
mass-damper-spring-system, x = [x1, x2]

ᵀ

x2(k + 1) = x2(k) + h ẋ2(k) (C.3)

x1(k + 1) = x1(k) + hx2(k + 1) (C.4)

where
ẋ1 = x2, ẋ2 = m−1(−dx2 − kx1 + τ) (C.5)

A more complex numerical integration method is the Explicit Runge-Kutta
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method of order 4 (RK4). From Fossen (2011) is the method given as

k1 = hf(x(k),u(k), tk)

k2 = hf(x(k) + k1/2,u(k), tk + h/2)

k3 = hf(x(k) + k2/2,u(k), tk + h/2)

k4 = hf(x(k) + k3/2,u(k), tk + h)

x(k + 1) = x(k) +
1

6
(k1 + 2k2 + 2k3 + k4).

(C.6)

For more on numerical integration methods can Egeland and Gravdahl
(2002) be advised.
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Appendix D
Vessel and Sensor Simulations

D.1 Vessel Simulation

Figure D.1 - D.4 show how the vessel response of the control based on the
PVA estimates from the observer. The generalized position is shown in Fig-
ure D.1, the generalized velocity is shown in Figure D.2. The control input
is shown in Figure D.3, whereas the first-order wave forces and moments
acting on the vessel are shown in Figure D.4.
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D.1. Vessel Simulation
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Figure D.1: Generalized Position in the {n} frame
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Figure D.2: Generalized Velocity in the {b} frame
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Figure D.3: Generalized Control Forces in the {b} frame
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Figure D.4: Generalized Wave Forces in the {b} frame
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D.2. Sensor Simulation

D.2 Sensor Simulation

During one simulation the sensors readout is shown in Figure D.5-D.8. The
accelerometer readout is given in D.5 whereas the gyroscope readout is given
in D.6. Regarding the simualted GNSS measurements are these shown in
FigureD.8 - Figure D.9.
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Figure D.5: Simulator. Sensor simulation of accelerometer.
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Figure D.6: Simulator. Sensor simulation of gyroscope.
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Figure D.7: Simulator. Sensor simulation of GNSS 1 together with the
vessel’s position.

225



D.2. Sensor Simulation
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Figure D.8: Simulator. Sensor simulation of GNSS 2 together with the
vessel’s position.
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Figure D.9: Simulator. Sensor simulation of GNSS 3 together with the
vessel’s position.
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Appendix E
Additional Results

E.1 Case: Fault Free SystemWith One GNSSMea-
surement

This case will present the nominal estimate quality with one GNSS system
sensor faults have occurred.

Figure shows that the signal check associated with E.1 reports no error or
fault during the entire simulation since the reported status is 1.
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Figure E.1: Case 2. Status of GNSS 1. No fault are present

The vessel position is shown in Figure E.2 with the corresponding position
measurements and estimates. One can observe the filtering properties of
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E.1. Case: Fault Free System With One GNSS Measurement

the observer since the position estimates clearly lies within the GNSS raw
measurements after the observer has converged.
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Figure E.2: North-East position of vessel together with potions measure-
ments and position estimates when no faults are present.

The attitude estimates, using quaterions as representation, are given in Fig-
ure E.5, whereas the Euler representation of the estimates are shown in
Figure E.6. After the initial time where the observers need to converge to
the actual attitude of the vessel. The gyro biases estimates are shown in
Figure E.7. Furthermore, the nonlinear injection term σ̂ is shown in Figure
E.7. Moreover, Figure E.9 shows the time evolution of the ξ. The attitude
estimates shown with Euler angles representation in Figure

By studying Figure E.3 and Figure E.4 can one observe that the respective
position and velocity estimates are fluctuating periodically with the respec-
tive vessel position and velocity. Zoomed versions E.3 and E.4 are given
shown in Figure E.10 and Figure E.11. From Figure E.10 one can observer
quite clearly that the horizontal position estimate follow the vessel position
quite well with some larger amplitude. The same can be seen reading the
velocity estimates E.10 where the estimates also have larger amplitudes than
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the actual vessel velocity. This is probably caused by the measurement noise
of the GNSS which is utilized in the observer correction as given in (4.30)
and (4.31). The injection terms Kpp(p

n
GNSS − p̂n) and Kvp(p

n
GNSS − p̂n)

are fluctuating around the vessel’s respective position and velocity from the
fluctuation position error p̃ seen in Figure E.12. These fluctuations in p̃ is
caused by the Gaussian, zero mean noise component in the position mea-
surements.
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Figure E.3: Position estimates together with actual vessel position when no
faults are present
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Figure E.4: Velocity estimates together with actual vessel velocity when no
faults are present
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Figure E.6: Attitude estimates, using Euler angles as representation when
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Figure E.7: Gyroscope Bias Estimates
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Figure E.8: The nonlinear injection term σ̂ when no faults are present
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Figure E.9: ξ when no faults are present
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Figure E.10: Converged position estimates when no faults are present
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Figure E.11: Converged velocity estimates when no faults are present.
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Figure E.12: Case 2, Fault free simulation. Estimation error, e = pnGNSS −
p̂n.

0 500 1000 1500
−4

−3

−2

−1

0

1

2

Time [s]

p̃
n x
[m

]

p̃x

p̃y

p̃z

Figure E.13: Estimation error. Estimates , p̃ = p− p̂[m] when no faults are
present.

239



E.1. Case: Fault Free System With One GNSS Measurement
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ṽx

ṽy
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E.2 Case: Increased Variance of One GNSS

The measurements from the two GNSS sensors which stay healthy are shown
in Figure E.15 and E.16
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Figure E.15: Additional result regarding case 4. Measurements from GNSS
2
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E.2. Case: Increased Variance of One GNSS
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Figure E.16: Additional result regarding case 4. Measurements from GNSS
3
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Appendix F
Digital Appendix

The digital appendix consist of a zip file with the MATLAB®scripts functions
made during the work with this thesis.

A simulation is stated by running the main.m script file in MATLAB®. Sim-
ulation length, sensor and observer sampling time can be adjusted in the
rig simuation.txt configuration file. Sensor parameters are adjusted in the
GNSS config.txt and the IMU config.txt file configuration files respectively.

The zip file also contains the following configurations files:

• rig simuation.txt

• GNSS config.txt

• IMU config.txt

Change of injected sensor fault is done be opening the fault generator.m

function and enabled and disabled faults there, by setting the horizon of a
given fault.

Some functions from the MSS. Marine Systems Simulator (2010) toolbox
were utilized. The MSS toolbox must be located in the MATLAB®path in
order to run any simulations. This toolbox may be downloaded, free of
charge, at http://www.marinecontrol.org/.
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