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Abstract. The Francis-99 hydrofoil is simulated using a quasi two-way Fluid-Structure
Interaction procedure. The structural domain is reduced by the use of modal decomposition,
and solved for inside the commercial fluid solver ANSYS CFX. Both the first order Backward
Euler and second order Crank-Nicolson time discretization scheme is used in the structural
equations, with significantly different results. Several coupled fluid- structure phenomena is
observed that would be unobtainable in a normal one-way approach. The most interesting
is an ”added stiffness” effect, where the eigenfrequency of the foil increases when the flow
velocity is increased. This trend corresponds well with available experimental results. The
same phenomenon is observed in the hydrodynamic damping on the foil. Self-induced vibration
due to vortex shedding is also simulated with good results.

The implemented two-way approach allows the different forcing terms to be tracked
individually, due to the discretization of the second order structural system. This provides
insight into the underlying physics behind the different FSI phenomena seen, and helps us
explain why the damping and eigenfrequency characteristics change as the flow velocity passes
the lock-in region.

1. Introduction
In the last couple of decades, numerical simulation and Computational Fluid Dynamics (CFD)
have become one of the pillars in fluid mechanical research, alongside experiments and analytical
work. The tools are in constant development and are in need of validation and testing. In the
hydropower industry, the turbine designs are usually confidential, which makes it difficult for
academic institutions to do research on state-of-the-art geometries. The Francis-99 workshops
aims to provide an open source geometry and experimental data for validation of numerical
tools and methods [1]. The model turbine is located at the Norwegian University of Science and
Technology. The third Francis-99 workshop deals with Fluid-Structure Interaction (FSI). Two
test cases are available to the public, one case on resonance in turbine runner channels, and one
case on a more fundamental issue, hydrodynamic damping and eigenfrequencies of submerged
hydrofoils. This paper will focus on the Francis-99 hydrofoil.

As part of the validation data presented for the Francis-99 Hydrofoil, two interesting figures
are included and shown below, credit to Bergan et al [1, 2]. Figure 1a shows the hydrodynamic
damping as a function of flow velocity. There is a distinctly different trend before and after the
lock-in region. Lock-in can be defined as the frequency range where the shedding frequency of a
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(a) Damping (b) Eigenfrequencies

Figure 1: Validation data provided by [2]

body coincide and ”locks” with the natural frequency of the object in question [3]. The damping
is approximately constant before, and linearly increasing, after lock-in. This experiment has been
repeated with a different hydrofoil, but with the same outcome [4], and this was numerically
replicated with good results [5]. This numerical work however was utilizing a one-way coupling,
and although the damping was predicted, why the damping is different before and after lock-in
was not answered in the cited works. Performing a two-way simulation may give insight into
this.

The second figure, 1b, shows the natural frequency of the foil. There is a similar shifting
phenomenon before and after lock-in in this case, although a linearly increasing trend after
lock-in is not seen. The increase in eigenfrequency is not big, but definitely significant. Another
reason why this is interesting is the fact that in a simple oscillating system, an increase in
damping would correspond to a decrease in the eigenfrequency, not an increase. From classical
structural oscillating theory we have that the damped eigenfrequency, fd, is related to the natural
frequency, fn, in the following way; fd = fn

√
1− ξ2, where ξ is the damping ratio [6]. Note also

that the reduction in eigenfrequency should be very small, using the largest measured damping
value in figure 1a, ξ ≈ 0.04 will provide a frequency reduction of less than 1 ‰. From figure 1b
we see a frequency increase of 30 times that. Therefore, it seems like there is an inconsistency
between the the two figures and the classical theory. Or rather, that the above description of
the eigenfrequency, fd = fn

√
1− ξ2 is insufficient when the surrounding water is non-stationary.

The two figures, and more importantly, the physical explanation to this behaviour, is the goal
of this article. In order to obtain an understanding as general as possible, the focus will be on
trends rather than obtaining the exact values.

This will be obtained by using a two-way FSI procedure. The structural problem will be
reduced using a modal decomposition approach, and solved inside the fluid solver. This will
provide a significant speedup compared with a traditional two-way approach, as well as a
simplification of the setup.

2. Theory
The goal is to use a model order reduction scheme to reduce the structural motion such that
it can be solved for inside a fluid solver. The model order reduction scheme is based on modal
decomposition, and the fluid solver used is ANSYS CFX. The following sections will explain the
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procedure. The two-way coupling will then be used to simulate the added mass and stiffness
effects of flowing water over the Francis-99 hydrofoil.

2.1. Reduced structural model
The system we want to reduce is the usual, second order oscillating structural system [6],

Mü+ Cu̇+Ku = F (1)

Where M,C,K,F is the mass, damping, stiffness and force coefficient matrix respectively. u
denotes the deflection, and the over-dot notation indicates differentiation in time. To reduce the
above equation, the principle of modal decomposition is used. For such a technique one needs
the structural eigenmodes and eigenfrequencies, and thus, a modal analysis has to be performed
on the system. The modal analysis, which is an eigenvalue problem, can be described as follows
[7];

(−ω2M +K)Φ = 0 (2)

As in all eigenproblems, the result will be the eigenvalues (ω2) and the eigenvectors Φi.
The scaling or length of the eigenvectors is arbitrary, however the direction is unique, and all
eigenvectors are mutually orthogonal [7]. This property is used to create a modal basis Φ, a
reduced vector-space, for the system. Using the modal basis, the structural deflection can be
described as follows;

un×1 = Φn×mqm×1 (3)

The sizes of the matices/vectors are included. The superscript n denotes the degrees of
freedom in the original system, and m the number of modes in the modal basis. The variable
q is referred to as a modal amplitude, the scaling factor that multiplied with the mode shape
results in the actual, physical deflection. If the above expression is inserted in eq 1, and then
pre-multiplied with the modal basis, you get the following [8]:

ΦTMΦq̈ + ΦTCΦq̇ + ΦTKΦq = ΦTF (4)

Where the new, reduced coefficient matrices are of the following order, [ΦT ]n×mMn×nΦn×m =
Mm×m
red . This illustrates the model order reduction as m << n.
An advantage of using the eigenmodes to create a modal basis is that due to the orthogonality

of the modes, the reduced system will be diagonal, consisting of a set of linearly independent,
1-dimensional equations. This will simplify calculations, and also let us express the structural
deformation as a superposition of the different structural modes, Φi. Note that in eq. 2, the
eigenmodes were calculated without damping. To preserve the diagonal system we assume
Rayleigh/ proportional damping [6].

Let the coefficients in equation 4 still be denoted M,C,K and F for simplicity. The coefficient
of q̈ is usually normalized such that ΦTMΦ = 1 [9]. The second order system can now be written
as;

Mq̈ + Cq̇ +Kq = F (5)

Let the damping ratio ξ be defined as ξ = C/(2Mω) and the natural frequency ω =
√
K/M ,

and we can derive the following [6] (recall that the matrices are diagonal);

q̈i + 2ωξq̇i + ω2qi = fi (6)
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Note that the new second order harmonic system is now decoupled from the physical meaning
of equation 1. Equation 6 solves for the modal displacement, using the modal force. The actual
structural deformation is recovered by equation 7.

u =

m∑
i

Φiqi (7)

The big advantage of the above representation, is that the solution to the structural motion
is now reduced to solving a set of independent 1-dimensional equations for the modal amplitude,
instead of solving for the deflection in the complete solution space.

2.2. Numerical discretization in CFX
The above section reduced the structural motion to equation 6 and 7. Further modification
is needed for this to be solvable inside the commercial fluid solver ANSYS CFX. Specifically,
a time discretization method is needed, the first order backward Euler and the second order
Crank-Nicolson method will be presented here.

In both the discretization methods, the original second order system is split into two, first
order systems, one for the displacement, and one for the velocity, illustrated below using the
implicit, backward Euler scheme [10];

qi,k+1 − qi,k
∆t

= vi,k+1

vi,k+1 − vi,k
∆t

= −2ωξvi,k+1 − ω2qi,k+1 + fi,k+1

(8)

where the subscript i = 1, 2, ...,m denotes the mode, and the subscript k = 1 → ∞ denotes
the discretization in time. The forward Euler scheme is identical, except all (k+1) subscripts on
the right-hand side is replaced with (k) only.

The Crank-Nicolson time discretization scheme is a linear combination of the forward and
backward Euler method [10];

qi,k+1 − qi,k
∆t

= 0.5(vi,k+1 + vi,k)

vi,k+1 − vi,k
∆t

= 0.5(−2ωξvi,k+1 − ω2qi,k+1 + fi,k+1 − 2ωξvi,k − ω2qi,k + fi,k)
(9)

The expression for velocity can be inserted in the expression for the acceleration, then
rearranged to isolate the unknowns qi,k+1, vi,k+1 on the left hand side, to obtain the final
Crank-Nicolson scheme:

qi,k+1 =
qi,k(1 + ωξ∆t− 1

4ω
2∆t2) + ∆tvi,k + 1

4∆t2(fi,k+1 + fi,k)

1 + ωξ∆t+ 1
4ω

2∆t2

vi,k+1 = 2
qi,k+1 − qi,k

∆t
− vi,k

(10)

The same procedure is done for the backward Euler scheme for a similar result. The final
expression for qi,k+1 consists only of known quantities, namely the eigenfrequency of that mode,
the (structural) damping, the time step size, and the modal force calculated by the fluid solver
at that time step. The old value of the modal amplitude, velocity and force needed to calculate
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the expression is stored using a Fortran script, and called upon during calculation. The modal
force has not been properly defined yet. From equation 5 to 6 the force matrix is divided by
the diagonal mass matrix to obtain fi = F/M [ N

kg·m2 ]. The forcing is decoupled into the force

projection onto the different modes and is implemented as

fi =
1

M

∫
A
p · ΦidA (11)

where p is the fluid pressure. The above (eq. 10-11) can be implemented in CFX using
the CEL expression language. The performance of the different discretization schemes will be
presented in the results section.

2.3. Reduced velocity
In order to compare results across hydrofoil geometries, experiments, and simulations, it is
desirable to use a different variable than the flow velocity. Bergan et al. [11] presents a
reduced velocity, v∗ = v/fn, defined as the flow velocity divided by the eigenfrequency of the
vibrating hydrofoil. In a way, this describes how much water that passes the foil during one
vibrational period. It was found that if the damping was expressed with respect to v∗, then
many different foils showed near identical behaviour, namely a change in damping characteristics
around v∗ ≈ 0.02. This is also seen in figure 1a, as v∗ ≈ 11.5/625 = 0.018. The reduced velocity
is similar to the inverse of the famous Strouhal number, St = fL/v, used to link the shedding
frequency of vortices in the wake of an object to the flow velocity [12, 13], but without the
characteristic length.

The simulations in this paper is 2D to speed up the process. As a consequence, the surface
area of the foil changes compared with the 3D case. This will in turn reduce the surface force
on the foil (see eq. 11), which affects the eigenfrequency. The result is as follows; in a 2D
simulation, the added mass effect is smaller than in 3D, and the loaded eigenfrequency will
therefore be closer to that of the foil vibrating in vacuum. By presenting the result using the
reduced velocity v∗ from above, the 2D simplification should not affect the results, as the flow
velocity is normalized with the eigenfrequency.

3. Method
The focus have been the Francis-99 hydrofoil, more information about the hydrofoil can be found
in the paper by Bergan et al, or the workshop website [1, 2]. For reference, the first bending mode
(trailing edge motion) of the hydrofoil is shown in figure 2, with exaggerated deformation for
illustration. Three test cases have been performed, a comparison of the discretization schemes, a
simulation of self-induced vibration, and an attempt to replicate the damping and eigenfrequency
behaviour across the lock-in region.

3.1. Discretization schemes
The first task is to assess the different discretization schemes. In this test case, a cantilever
beam has been used for simplicity. The setup is as follows; the beam has been given an initial
deflection (≈ 3% of the total length), then released. The structural damping has been set to
zero, ξ = 0, and importantly, the fluid force (fi in equation 6) have been hardcoded to be zero.
This results in a system of equations for the structural deformation that purely consists of the
structural mass and stiffness term. Theoretically, this system, given an initial deflection, should
result in the following solution: u = A · cos(ωt). That is, a perfect sinusoid with constant
amplitude and frequency.

This test case is natural to use as it will reveal if any of the discretization schemes exhibit
any unwanted numerical damping. The simulations were performed using 100 timesteps per
oscillatory period.
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Figure 2: First bending mode of Francis-99 hydrofoil

3.2. Self-induced vibration
The coupled physics phenomenon of self-induced vibration will be simulated next. Fluid
flow across an object will, at certain Reynolds numbers, induce an oscillatory pressure and
velocity field. This field creates vortices trailing the body, and the body itself will experience
periodic forces perpendicular to the flow direction [14]. If these periodic forces are close to the
eigenfrequency of the structure, resonance can occur in the worst case. The structural vibration
can also magnify the shedding of vortices and can therefore have a self-magnifying effect.

A phenomenon called ”lock-in” is also something that can be observed during vortex shedding.
In general, the frequency at which the vortices are shedded is linearly dependent on the flow
velocity [3, 15]. If the flow velocity however, is such that the shedding frequency is close to
the eigenfrequency of the structure, then the shedding frequency will ”lock” to the structural
frequency rather than increase linearly. For reference, Particle Image Velocimetry and CFD
simulations have been used on this geometry in a previous study [16]. The simulations in that
study was pure CFD, meaning no structural motion.

The hydrofoil was subjected to flow velocities in the range v∗ = [0.12− 0.25]m, and the SST
turbulence model was used in all simulations.

3.3. Damped Vibration
The final task is to assess the added damping and stiffness effects of the flowing water. This is
done by the use of damped vibration. The solution to a system of damped vibration without
external forces is in the most general form the following [6];

x(t) = A · e−ξωt · cos(ωdt+ φ) (12)

In essence, this is a sinusoid enveloped by an exponential decay. The sinusoid contains the
oscillating part of the solution, i.e. the eigenfrequency, and the exponential decay contains the
damping part of the solution. This representation is used when the results are analyzed.

The analysis was set up as follows; the hydrofoils was given an initial deflection, and the
structural damping was set to ξ = 0. Any damping of the foil will therefore originate in
hydrodynamic forces. All simulations were performed with approximately 150 timesteps per
oscillatory period, and was allowed to oscillate for at least 20 periods. This ensures that the
error in estimating the damping and the submerged, loaded eigenfrequency was minimized.
The error in the damping was estimated to be ≈ 1.5% (using a 95% confidence interval of the
exponential fit), and the error in the eigenfrequency, ≈ 0.6[Hz].
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4. Results and discussion
4.1. Discretization schemes
Figure 3 shows the normalized structural deformation of the beam using Euler and Crank-
Nicolson discretization scheme. Recall that in the test of discretization schemes, the structural
damping and the fluid damping is set to zero to highlight any unwanted numerical damping.
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Crank-Nicolson

Euler

Figure 3: Comparison of the different discretization schemes

Clearly the performance of the Crank-Nicolson scheme is superior, with no numerical damping
under the given conditions. The numerical damping in the Euler scheme is estimated using
exponential decay to be ≈ 3%. This is not a large number, it is no larger than what is
expected from the surrounding fluid flow [2, 17], however the effect on the displacement over
time is significant. It is larger than can be accepted for subsequent simulations. The number
of timesteps per period, 100, is considered sufficient and in the order of what would be used
in a normal simulation. Based on the above it is therefore concluded that the Crank-Nicolson
scheme should be used, especially as it carries no additional computational cost.

The Euler scheme displayed some unwanted numerical damping, compared with Crank-
Nicolson. Evaluating the scheme using a Taylor expansion;

uk = uk+1 −∆t

(
du

dt

)
k+1

+
∆t2

2!

(
d2u

dt2

)
k+1

+H.O.T. (13)

where H.O.T denotes higher order terms. Rearranging will give the following;

uk+1 − uk
∆t

=

(
du

dt

)
k+1

− ∆t

2!

(
d2u

dt2

)
k+1

+H.O.T. (14)

Where we see that the scheme produces the time derivative we seek (it is consistent), and
that the scheme is first order accurate, as predicted. Interestingly, the first order error term

is related to a d2u
dt2

- acceleration operator. The damping seen in figure 3 is likely to originate
in this term. This might indicate that structures with high eigenfrequencies, and thus high
acceleration, will be more sensitive to discretization error. The structure in this case does have
a fairly high eigenfrequency, however a sensitivity study on this have not been performed.
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Figure 4: Frequency content during simulations of self-induced vibration

4.2. Self-induced vibration
Figure 4 shows the frequency spectrum of the vibration of the hydrofoil. The magnitude is
normalized such that the different flow velocities can be compared. Interestingly, we see a
component of the structural eigenfrequency (f = 1 in the figure) in all the simulations, along
with another frequency component. The other component is the shedding frequency.

Figure 5 shows on the left axis the dominating frequency component as a function of the
reduced velocity. The relation is close to linear as expected, however there is some discrepancy
around the point where the eigenfrequency of the foil matches the shedding. This is signs of the
lock-in phenomenon, although not as clear as was shown in other experimental works [16, 3].
On the right axis, the normalized amplitude of the self-induced vibration is plotted. It is clear
that the effect of resonance is extreme.

Another finding is that the reduced velocity at which these phenomena occur is exactly where
Bergan et. al [11] predicted, v∗ ≈ 0.018 − 0.02, even though this is a 2D representation of the
foil, with changed eigenfrequency. This is a great justification of the use of the reduced velocity.
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Figure 5: Shedding frequency and lock-in effect
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Figure 6: Numerical simulation of damping and eigenfrequency across lock-in

4.3. Damping and Eigenfrequency
Figure 6 shows the damping and natural frequency of the Francis-99 hydrofoil. The x-axis shows
the reduced velocity rather than the absolute velocity, due to the 2D representation of the foil.
The scale on the y-axis is purposely omitted as the changes are fairly small and should not be
compared with figure 1 in terms of absolute values, again due to the 2D representation, however
the relative change is clear. The shaded areas represent the ”lock-in” area where the change in
characteristics changed in the experiments.

Comparing figure 6 to figure 1 it is clear that similar trends are seen. The change in damping
across the ”lock-in” is simulated before, but the fact that it is observed here as well verifies the
methods used. More interesting is the figure showing the eigenfrequencies. Similar as for the
damping, a clear change is observed when crossing the ”lock-in” region. Such a shift would be
impossible to obtain in a one-way coupled simulation, as the vibration frequency would be an
input to the simulation, see i.e. [5].

The primary goal of the paper is to be able to simulate the shift in damping and
eigenfrequency seen in the experiments. This was done in this section. Equally important
is to understand why such phenomena occur. The following section will try to use one of the
inherent advantages in the presented two-way procedure, the ability to separate the different
terms in the second order oscillatory system, and track them over time.

If we start with the second order equation for structural oscillating motion, eq. 1, we can
label the terms as inertial, damping, restoring and external forcing.

inertial forces︷︸︸︷
Mü +

damping forces︷︸︸︷
Cu̇ +

restoring forces︷︸︸︷
Ku =

external forces︷︸︸︷
F (15)

An observation; the structural damping in all simulations have been set to zero, yet damping
is still observed. However, if the external forcing is also set to zero, as in section 4.1 where the
discretization schemes was tested, there was no damping at all. This indicates that the damping
originates in the external forcing. The next question is how.

One hypothesis is that the external force can have a phase shift relative to the structural
deformation. If the force has such a phase shift, it can be decomposed into the different order
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derivatives of the structural motion, u, u̇. An equivalent or additional damping can then be
found as the u̇ component. This is a normal way of looking at the damping, see i.e. [5], as only
the velocity-proportional term in eq. 1 is energy dissipative.

Assume that the deflection can be expressed as u = a1sin(ωt) and the forcing on the blade
F = aF sin(ωt+ φ). This means that the two are similar in shape and frequency, but separated
by a phase shift. Now assume that the forcing can be decomposed into two terms;

aF sin(ωt+ φ) = ausin(ωt) + au̇cos(ωt) (16)

one term following the structural motion u, and one term following its derivative u̇. This
decomposition was done in MATLAB by solving a set of coupled equations for different phase
shifts on a generic sinusoidal force. Figure 7 shows how the amplitudes of the decomposition
changes with the phase shift. On closer inspection we see that the amplitude of the u-term follows
the relation au = cos(φ), and the amplitude of the u̇-term follows the relation au̇ = sin(φ). For
small values of φ, sin(φ) is linear. This might explain why the damping is linearly increasing
after lock-in, if the phase shift is also linearly increasing. This representation will not however,
explain why the eigenfrequency increases, as figure 7a shows a strictly decreasing u-component
of the force, going away from the lock-in region.
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(a) Force decomposition in u-direction
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Figure 7: Force decomposition

In fact, if we insert the ”damping” from figure 7b into the classical formula for damped
eigenfrequency, fd = fn ·

√
1− ξ2 we get exactly figure 7a. Additional information is therefore

needed to separate the eigenfrequency component of the force.
From classical vibration we have that the eigenfrequency can be defined as ωn =

√
k/m,

proportional to the stiffness and inversely proportional to the mass. Note as well that the above
decomposition of the force does not separate between the u and ü components, as the two are
the negative of each other (180◦ phase). This means that the u-component above really contains
information regarding both. Or in other words, even if the sum is reduced, the ratio r = k/m
may not do so. An increase in this ratio would in theory increase the eigenfrequency. The next
section will try to split the u-component into an acceleration and stiffness component.

Here we will use the inherent advantage of the two-way approach, the possibility to track
the different forcing terms. Let us again start with the second order equation for structural
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oscillating motion, with damping set to zero. If one during the derivation of equation 10 keeps
the different forcing terms separated, we get discretized terms representing the inertial, restoring
and external forces:

inertial forces︷ ︸︸ ︷
2(
vi,k+1 − vi,k

∆t
) +

restoring forces︷ ︸︸ ︷
ω2(qi,k+1 + qi,k) =

external forces︷ ︸︸ ︷
(fi,k+1 + fi,k) (17)

These terms, and their ratio can be tracked throughout the simulation as a way of quantifying
the shift in eigenfrequency.

Figure 8a shows the approximate phase shift of the external forces with respect to the
structural deformation. The phase shift is manually extracted from a time-series of the force and
deflection, and will therefore be somewhat uncertain, however there seems to be an increasing
trend across the lock-in region, although not as clear as in figure 6a.
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(a) Phase shift across lock-in
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Figure 8: Analysis of phase shift between force and deflection (left), and ratio between restoring
and inertial forces (right)

Figure 8b shows the approximate ratio between the restoring and inertial forces for the
different flow velocities. Interestingly there is a change in this ratio across the lock-in region.
It is dangerous to draw conclusions based on such a limited number of data points, however
it seems like the r-ratio is about 1 before lock-in, but increases a couple of percent after. As
discussed above, this change might be a reason for the added stiffness effect seen across the
lock-in region.

4.4. Future work
In this paper, a modal decomposition-based model order reduction method was used. Some
limitations apply, namely symmetric matrices such that a diagonal system can be created. This
is then solvable inside CFX as simple expression evaluations. If a more sophisticated model
order reduction technique was used, i.e. a Krylov based model, used on a similar geometry
in [18], then this would allow for inclusion of phenomena such as gyroscopic effects, arbitrary
damping and more. The simulation time would be the same, but as the reduced system is no
longer simple evaluations, it would have to be solved by i.e. a Fortran script.
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5. Conclusion
The hydrodynamic damping of a hydrofoil changes significantly across the lock-in region. The
same is true for the eigenfrequency, there is actually a stiffening effect observed in experiments
when the flow velocity is increased. Both effects are successfully simulated in this paper using
a quasi-two-way FSI approach.

The hydrodynamic damping is approximately constant before the lock-in region and linearly
increasing after, something shown numerically and experimentally earlier. This behaviour may
be explained by the fact that the fluid load on the foil changes its phase relative to the foil, and
thus dissipates more energy. The simulation of the added stiffness is new, and may be explained
by tracking the inertial and restoring forces on the hydrofoil during the simulations. The ratio
of the two is non-constant, and can be the reason for the changed behaviour.

Even though the test geometry in this case was fairly simple, the modal decomposition based
two-way approach is shown to provide a great way of adding a layer of information to the
simulations. Especially cases where there is a risk of significant fluid structure interaction could
easily be investigated using this approach.
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