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Chapter 1

OBTAINING VALUABLE PRECISION-RECALL
TRADE-OFFS FOR FUZZY SEARCHING LARGE
E-MAIL CORPORA

Kyle Porter and Slobodan Petrović

Abstract Fuzzy search is used in digital forensics to find words stringologically
similar to a chosen keyword, but a common complaint is its high rate of
false positives in big data environments. This work describes the design
and implementation of cedas, a novel constrained edit distance approx-
imate string matching algorithm which provides complete control over
the type and number of elementary edit operations that are considered in
an approximate match. The flexibility of this search algorithm is unique
to cedas, and allows for fine-tuned control of precision-recall trade-offs.
Specifically, searches can be constrained to a union of matches resulting
from any exact edit operation combination of i insertions, e deletions,
and s substitutions performed on the search term. By utilizing this flex-
ibility, we experimentally show which edit operation constraints should
be applied to achieve valuable precision-recall trade-offs for fuzzy search-
ing an inverted index of a large English e-mail dataset by searching the
Enron corpus. We identified which constraints produce relatively high
combinations of precision and recall, the combinations of edit opera-
tions which cause precision to sharply drop, and the combination of
edit operation constraints which maximize recall without greatly sacri-
ficing precision. We claim these edit operation constraints are valuable
for the middle stages of an investigation as precision has greater value
in the early stages and recall becomes more valuable in the latter stages.

Keywords: E-mail forensics, fuzzy keyword search, edit distance, constraints, ap-
proximate string matching, finite automata

1. Introduction

Keyword search has been a staple in digital forensics since its be-
ginnings, and a number of forensic tools support fuzzy search (or ap-
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proximate string matching) algorithms to match keywords which have
typographical errors or are stringologically similar to a keyword. These
algorithms may be applied to approximately searching inverted indexes,
where every approximate match is linked to a list of documents which
contain it.

Great discretion must be used when utilizing these tools in exceed-
ingly large datasets, as many strings that approximately match may be
similar in a stringolocial sense, but are completely unrelated semanti-
cally. Even exact keyword matching produces an undesirable number of
false positive documents to sift through, where maybe 80%-90% of the
returned document hits are irrelevant [2]. Nevertheless, being capable of
detecting slight textual aberrations has shown to be an important factor
in past investigations. In the 2008 Casey Anthony case, in which she was
convicted and ultimately acquitted of murdering her daughter, investi-
gators missed a Google search for a misspelling of the word suffocation,
written as “suffication” [1].

Current digital forensic tools such as dtSearch [7] and Intella [8] in-
clude methods for controlling the fuzziness of the search, and while these
tools are proprietary technology, it appears that some of the tools utilize
the edit distance [18] for their fuzzy searches to some extent. The edit
distance, or Levenshtein distance, is defined as the minimum number of
elementary edit operations to transform some string X into some string
Y , where the elementary edit operations are defined as the insertion of
a character, the deletion of a character, and substitution of a character
in a string. However, precise control of the fuzziness of search is often
limited, and it may not be clear what modifying the fuzziness of a search
actually does other than the results “looking” more fuzzy. For instance,
some tools may allow fuzziness to be assigned to a number between 0 to
10, without any indication of what these numbers represent.

This work has two contributions. The first of which describes the
design and implementation of cedas, a novel Constrained Edit Distance
Approximate Search algorithm which provides complete control over the
type and number of elementary edit operations that are considered in
an approximate match. The flexibility of this search algorithm is unique
to cedas, and allows for fine-tuned control of precision-recall trade-offs.
Specifically, searches can be constrained to a union of matches resulting
from any exact edit operation combination of i insertions, e deletions,
and s substitutions performed on the search term. Our second contribu-
tion, which is a consequence of the first, is that we experimentally show
which edit operation constraints should be applied to achieve valuable
precision-recall trade-offs for fuzzy searching an inverted index of a large
English e-mail dataset by searching the Enron corpus [6]. We consider
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valuable precision-recall trade-offs to be those with relatively high preci-
sion, since fuzzy searching typically has a high rate of false positives and
increasing recall is simply performed by conducting fuzzy searches with
higher edit distance thresholds. From our tests, we identified the con-
straints which produce relatively high combinations of precision and re-
call, the combinations of edit operations which cause precision to sharply
drop, and the combination of edit operation constraints which maximize
recall without greatly sacrificing precision. We claim these edit oper-
ation constraints are valuable for the middle stages of an investigation
as precision has greater value in the early stages and further along an
investigative timeline recall becomes more valuable [19].

2. Background Theory and Algorithm
Implementation

2.1 Approximate String Matching Automata

A common method of performing approximate string matching, as is
implemented by the popular approximate string matching suite agrep [24],
is by using the Nondeterministic Finite Automaton (NFA) for approx-
imate matching as seen in Figure 1. The automaton that cedas im-
plements is an extension of this automaton, therefore we go over some
necessary components of automata theory.

A finite automaton is a theoretical machine that uses characters from
a string X as input, and can be used to determine whether the input
contains a match for some desired string Y . Any finite automaton A can
be defined with the following components. An automaton is made up of
a set of states Q that can be connected to each other via arrows called
transitions, where each transition is associated with a character or a set
of characters from some alphabet Σ. The set of states I ⊆ Q make up
the initial states that are active before reading the first character. States
which are active check the transitions originating from themselves when
a new character is being read, and if the transition includes the character
being read then the state that the arrow is pointing to becomes active.
The set of states F ⊆ Q make up the terminal states, where if any of
these states are made active then it signals that a match has occurred.
The set of strings that cause a match are considered to be accepted by
the automaton, and this set is denoted as some language L.

Figure 1 shows the nondeterministic finite automaton for approxi-
mate matching AL, where the nondeterminism implies that any number
of states may be active simultaneously. The initial state of AL is rep-
resented by the node with a bolded arrow pointing to it, where it is
always active as indicated by the self-loop, and the terminal states are
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Figure 1. NFA AL that matches the trivial pattern “that” allowing for two edit
operations.

represented by the nodes which are double-circled. Horizontal arrows
represent exact character matches. Diagonal arrows represent character
substitutions, and vertical arrows represent character insertions where
both transitions accept any character in Σ. Since this is an NFA, it also
allows for ε-transitions, where transitions are made without needing a
prerequisite character. The dashed diagonal arrows are ε-transitions,
which represent character deletions. For approximate search with an
edit distance threshold of k, this automaton has k + 1 rows.

The automaton AL is very effective for pattern matching, as it can
check for potential errors in the search pattern simultaneously. For ev-
ery character ingested by the automaton, each row checks for potential
matches, insertions, deletions, and substitutions against every position
in the pattern.

In practice, it is suggested that the edit distance threshold for ap-
proximate string matching algorithms should be limited to one, and in
most cases should never exceed two for common English text [12]. This
suggestion is well founded, as it has long been known that about 80%
of misspellings in English text are due to a single edit operation [10].
Let the languages accepted by the automaton AL with threshold k = 1
and k = 2 be Lk=1 and Lk=2 respectively. The nondeterministic finite
automaton AT provided in this work allows for different degrees of fuzzi-
ness that allow the user explore the entire space between Lk=1 and Lk=2

in terms of exact combinations of elementary edit operations applied to
the search keyword. The languages this automaton accepts we formally
define as LT , for which Lk=1 ⊆ LT ⊆ Lk=2.

The construction of this type of automaton is made possible in the
following way. The automaton accepting Lk=2 can be seen as a union of
the languages accepted by each one of its rows. For example, for an edit
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distance threshold of k = 2, the first row accepts the language of matches
that has no edit operations performed on the keyword, the second row
accepts the language of matches with one edit operation performed on
the keyword, and the third row accepts the language of matches with two
edit operations performed on the keyword. The union of these subsets is
a cover of Lk=2. We can describe an alternative cover of Lk=2 as a union
of all the languages accepted by the automata for a specific number of
insertions i, deletions e, and substitutions s performed in a match such
that i+ e+ s ≤ k. We prove the equivalence of the covers below.

Lemma 1 Let Lk be the language accepted by an automaton such that
k elementary edit operations are performed on a specified pattern and
let the language accepted by the nondeterministic finite automaton for
approximate matching be denoted Lk=n with edit distance threshold n
be equivalent to its cover Cα = ∪k=nk=0Lk. Furthermore, let L(i,e,s) be
equivalent to the language accepted by an automaton such that exactly
i insertions, e deletions, and s substitutions have been performed on a
specified pattern, and let Cβ = ∪i,e,s:0≤i+e+s≤nL(i,e,s). Then Cα = Cβ.

Proof. For all x ∈ Lk, there exists some L(i,e,s) such that x ∈ L(i,e,s)

where i + e + s = k. Therefore, Cα ⊂ Cβ. For all x ∈ L(i,e,s) such that
i+ e+ s = k, x ∈ Lk. Thus Cβ ⊂ Cα.

Q.E.D.

By constraining the possible edit operations between the rows of the
automaton AT , each row of the automaton can correspond to a specific
combination of i insertions, e deletions, and s substitutions such that i+
e+s ≤ k for edit distance threshold k rather than each row corresponding
to some number of edit operations. By this construction, we then control
the automaton’s accepted language LT by allowing terminal states f ∈ F
to remain in F or removing them from F . That is, we can choose not
to include some L(i,e,s) in Cβ = ∪i,e,s:0≤i+e+s≤nL(i,e,s).

2.2 Defining the NFA for cedas

The constrained edit distance between strings X and Y is the min-
imum number of edit operations to transform X to Y given that the
transformation obeys some prespecified constraints T [21]. In general,
constraints may be defined arbitrarily as long as they are defined in
the number and type of edit operations. Let (i, e, s) ∈ T , where T is
the set of edit operations a transformation from string X to string Y
is constrained to, and where elements (i, e, s) are defined by some exact
combination of edit operations. AT may perform approximate searches
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Figure 2. AT Automaton for the word “that”.

where matches are constrained to the allowed edit operation combina-
tions in T . For instance, we may constrain our search to approximate
matches that were derived from edit operation combinations (0, 0, 0),
(1, 0, 1), and (0, 2, 0) only. This corresponds to accepting the language
L(0,0,0) ∪ L(1,0,1) ∪ L(0,2,0).
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Figure 3. Diagram D for the partially ordered multisets (i, e, s)

Figure 2 shows the constrained edit distance NFA AT . It uses the
same symbolic conventions as the NFA from Figure 1 except now sub-
stitutions and insertions are represented by diagonal and vertical tran-
sitions respectively where the transitions may go up or down. In order
to ensure that each row R(i,e,s) of the automaton AT corresponds to
accepting the language L(i,e,s) we examine the diagram in Figure 3 of
a partially ordered set of multisets, which describes the edit operation
transpositions connecting each row. We first need the following defini-
tions.

Definition 2 [14] If X is a set of elements, a multiset M drawn from
the set X is represented by a function count M or CM defined as CM :
X → N where N represents the set of non-negative integers.

For each x ∈ X, CM (x) is the characteristic value of x in M and it
indicates the number of occurences of the elements x in M . A multiset
M is a set if CM (x) = 0 or 1 for all x ∈ X.

Definition 3 [14] Let M1 and M2 be two multisets selected from a set
X, then M1 is a sub multiset of M2 (M1 ⊆M2) if CM1(x) ≤ CM2(x) for
all x ∈ X. M1 is a proper sub multiset of M2 (M1 ⊂ M2) if CM1(x) ≤
CM2(x) for all x ∈ X and there exists at least one x ∈ X such that
CM1(x) < CM2(x).

The set of multisets we examine is composed of elements (i, e, s),
where the variables denote that the multiset contains i insertions, e
deletions, and s substitutions and furthermore the cardinality of the
multisets is less than or equal to the edit distance threshold k. The
partial ordering of this set of multisets is the binary relation ∼, where
for multisets M1 and M2, M1 ∼ M2 defines M1 is related to M2 by the
fact that M1 ⊂M2. The partially ordered multiset diagram in Figure 3,
which we refer to D, models the edit operation transitions between rows
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Table 1. Bit-masks for the word “that”.

Character tj Bit-mask B[tj ]

a 01000
h 00100
t 10010
* 00000

of AT where each multiset element (i, e, s) corresponds to row R(i,e,s) and
each row of D corresponds to a sum of edit operations. As seen from
D, every R(i,e,s) has a specific edit operation transition being sent to it
from a specific row. In this way, each row R(i,e,s) is able to determine
which and how many elementary edit operations are being considered
in a match due to the partial ordering. For example, R(1,0,0) only has
insertion transitions going to it from R(0,0,0), and R(1,1,0) only has dele-
tion transitions going to it from R(1,0,0) (where one insertion has already
taken place) and it only has insertion transitions going to it from R(0,1,0)

(where one deletion has already taken place).
Since this automaton is nondeterministic, it cannot be implemented

directly in von Neumann architecture.

2.3 Bit-parallel Implementation of AT

Bit-parallelism allows for an efficient form of NFA simulation. This
method uses bit-vectors to represent each row of the automaton, where
the vectors are updated via basic logical bitwise operations which cor-
respond to the automaton’s transition relations. As bitwise operations
update every bit in the bit-vector simultaneously, it is likewise updating
the states in the row of an automaton simultaneously. If the lengths
of the bit-vectors are less than or equal to the number of bits w in a
computer word, then this parallelism reduces the number of operations
a search algorithm performs at most by w [13].

For our bit-parallel NFA simulation, we require that each row of the
automaton for search pattern X is represented as a binary vector of
length |X|+ 1, and this also requires that our input characters are rep-
resented by vectors of the same size. Input characters tj are handled by
bit-masks, where we create a table of bitmasks B[tj ], and each bit-mask
represents the positions of the character tj in the pattern X. For exam-
ple, when X = “that”, the bit-masks are shown in Table 1. Characters
which are not present in the pattern are represented by the * symbol.

Our bit-parallel algorithm for simulating the AT automaton, seen in
Algorithm 1, is an extension of the simulation of the NFA for approx-
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imate string matching using the unconstrained edit distance, first im-
plemented by Wu and Manber [25]. Therefore, the components of the
simulation of AT are similar, the primary changes being the transition
relationships between rows and the number of rows. The rows of the au-
tomaton are represented by bit vectors R(i,e,s) and their updated values

are denoted by R′(i,e,s). R
B
(i,e,s) represents Boolean values for whether or

not row R(i,e,s) will report a match, which simulates if R(i,e,s) has a ter-

minal state. For some i, e, and s, the value RB(i,e,s) is true if (i, e, s) ∈ T .

Each row is updated by first checking if the input character is an exact
match for that row by calculating ((R′(i,e,s) << 1) & B[t]). This value is

then bitwise OR’d with potential transition relationships. R(i,e,s) checks
for insertions, (R′(i,e,s) << 1) checks for deletions, and (R(i,e,s) << 1)

checks for substitutions from some row R(i,e,s). As mentioned previ-
ously, incoming transitions for any row R(i,e,s) may be determined by
checking against the incoming relations to the multiset (i, e, s) of dia-
gram D from Figure 3. After updating all rows, matches are checked
by bitwise AND’ing each of the allowed rows and determining if any bit
representing the terminal states is set to 1.

2.4 Complexity Performance Evaluation and
Limitations

The additional flexibility in specifying fuzziness comes at a cost in
terms of speed and space. The time and space complexities of cedas can
be defined in the number of multisets in D for an edit distance thresh-
old k. This number is equal to the number of rows in our algorithm,
which is f(k) = 1

6(k+ 1)(k+ 2)(k+ 3). Therefore, for keyword searches
shorter than 64 characters on an x64 architecture, its worst-case space
complexity is cubic in k and the worst-case time complexity is O(k3n),
where n is the length of the text searched. Obviously, this implies that
this algorithm should not be applied to extremely time sensitive tasks
with massive throughput such as intrusion detection, or applied to a
live search of massive forensic data with high edit distance thresholds k.
However, this is sufficient for specifying the fuzziness approximate search
over an index of e-mails, as the values of k should be low and the index
has acted as a type of data reduction. We show in the experimentation
that our algorithm runs approximately six times slower than agrep with
an edit distance threshold of k = 2.
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Algorithm 1: cedas NFA update algorithm

Initialize all rows R′ to 0 except R′(0, 0, 0)← 0|p|1;
for each input character t do

R(0,0,0) ← R′(0,0,0);

R′(0,0,0) ← ((R′(0,0,0) << 1) & B[t]) | 0|p|1;

R(1,0,0) ← R′(1,0,0);

R′(1,0,0) ← ((R′(1,0,0) << 1) & B[t]]) | R(0,0,0);

R(0,1,0) ← R′(0,1,0);

R′(0,1,0) ← ((R′(0,1,0) << 1) & B[t]]) | (R′(0,0,0) << 1);

R(0,0,1) ← R′(0,0,1);

R′(0,0,1) ← ((R′(0,0,1) << 1) & B[t]]) | (R(0,0,0) << 1);

R(0,1,1) ← R′(0,1,1);

R′(0,1,1) ← ((R′(0,1,1) << 1) & B[t]) | (R(0,1,0) << 1) |
(R′(0,0,1) << 1);

R(1,0,1) ← R′(1,0,1);

R′(1,0,1) ← ((R′(1,0,1) << 1) & B[t]) | (R(1,0,0) << 1) | R(0,0,1);

R(1,1,0) ← R′(1,1,0);

R′(1,1,0) ← ((R′(1,1,0) << 1) & B[t]) | R(0,1,0) | (R′(1,0,0) << 1);

R(2,0,0) ← R′(2,0,0);

R′(2,0,0) ← ((R′(2,0,0) << 1) & B[t]) | R(1,0,0);

R(0,2,0) ← R′(0,2,0);

R′(0,2,0) ← ((R′(0,2,0) << 1) & B[t]) | (R′(0,1,0) << 1);

R(0,0,2) ← R′(0,0,2);

R′(0,0,2) ← ((R′(0,0,2) << 1) & B[t]) | (R(0,0,1) << 1);

if (((R′(0,0,0)&R
B
(0,0,0))|(R

′
(0,0,1)&R

B
(0,0,1))|(R

′
(0,1,0)&R

B
(0,1,0))|

(R′(1,0,0)&R
B
(1,0,0))|(R

′
(0,1,1)&R

B
(0,1,1))|(R

′
(1,0,1)&R

B
(1,0,1))|

(R′(1,1,0)&R
B
(1,1,0))|(R

′
(2,0,0)&R

B
(2,0,0))|(R

′
(0,2,0)&R

B
(0,2,0))|

(R′(0,0,2)&R
B
(0,0,2)))&(0x00000001 << n− 1)) then

Match is Found;
end

end



Porter & Petrović 11

Table 2. Keyword List

Word Length Keywords

6 Cuiaba
7 BlueDog, BobWest, corrupt, illegal, launder, Sarzyna, scandal
8 bankrupt, Backbone, Fishtail, Margaux1, Shutdown, subpoena,

Velocity, unlawful
9 collusion, Whitewing, Yosemite
10 Catalytica, conspiracy, KennethLay, litigation, reputation, sus-

picious
>10 ArthurAndersen, illegitimate, talkingpoints

3. Experiment Methodology

We tested cedas’s flexibility in specifying fuzziness in the context of
an investigation into the Enron e-mail dataset [6], and evaluate the ef-
fectiveness of different constraints. We converted the e-mails to their
mbox format to make processing them easier, and only examined their
body content.

To search the data, we created an inverted index of the e-mails to ob-
tain a database of index tokens using the mkid1 program. After dedupli-
cating the tokens in the index, we output all tokens into a single text file
which we searched with cedas. It is important to note that the choice of
indexing algorithm will affect the list of tokens since they may interpret
delimiters differently, and therefore will affect any search. Our list of
tokens amounted to 460800 different words.

We used 28 different keywords related to the 2001 Enron scandal.
This list of keywords was not compiled by a digital forensic investiga-
tor, so the choice of keywords could still be improved. Keywords were
chosen that were relevant to the case, but would not obviously produce
an overwhelming number of false positives. Furthermore, no keyword
was chosen that contained less than six characters. Unconstrained fuzzy
searching with an edit distance threshold of k = 2 for small keywords
produced massive lists of words to manually analyze, oftentimes exceed-
ing 10000 words. This can be seen as a limitation of our research. The
list of search keywords may be found in Table 2 (many of which were ob-
tained from Rodger Lepinsky’s webpage on data science and the Enron
corpus [17]).

A case-insensitive fuzzy search for each keyword was conducted on
the list of index tokens, and each search was done under 64 different
constraints. A match occurs if a keyword is found as a substring of
an index token with an allowed tolerance of edit operations as specified
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by the constraints defined in terms of (i, e, s) ∈ T . All approximate
matches found in the index were returned in a list to the user. The
elements (i, e, s) that were possibly not included in T were those in
which the sum i+ e+ s was equal to the edit distance threshold k = 2.
Specifically, the automaton accepts L(0,0,0), L(1,0,0), L(0,1,0), L(0,0,1), but
we potentially allow the inclusion of all possible combinations of lan-
guages L(i,e,s) such that i + e + s = 2. The effectiveness of a search for
each constraint on each keyword was measured in terms of precision and
recall derived from the list of returned approximate matches. To under-
stand the overall effectiveness of each constraint, we took the average
precision and recall results for all keywords under each constraint using
the harmonic mean. The harmonic mean was chosen as the arithmetic
mean tended to produce overly optimistic results for what one should
expect for fuzzy searches under the various chosen constraints.

3.1 Interpreting Match Results

Precision and recall have been used to gauge the effectiveness of ap-
proximate string matching algorithms before [3] [22]. Precision is defined
as the proportion of retrieved items that are relevant, and recall is the
proportion of total relevant items retrieved [15]. As recall increases,
precision tends to decrease, and they may be expressed as follows:

Precision =
|(retrieved items) ∩ (relevant items)|

|(retrieved items)|
(1)

Recall =
|(retrieved items) ∩ (relevant items)|

|(relevant items)|
(2)

These statistics are useful, but not perfect since the concept of relevance
is subjective. We define relevant terms as being either variations of the
original term (such as obtaining litigating when searching for litigation),
closely related to the original term in a semantic sense (such as obtaining
legalese when searching for illegal), or misspellings of the original term.
However, if the keyword is a substring in the examined index token and
is clearly unrelated, then it is not considered relevant. For example, if
the search term is “audit” and we get a hit for “AudiTalk”, then that
hit is irrelevant. It was for this reason that the classification of relevant
versus irrelevant hits for approximate hits was a manual process.

One more shortcoming of our statistics is that we cannot exactly cal-
culate the true precision and recall for each keyword since the number
of relevant words for each keyword in the Enron dataset is simply un-
known. Our compromise is the following: we let the number of total
relevant items be equal to the ones we identified for each keyword for
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Table 3. Shorthand for which (i, e, s) ∈ T .

(i,e,s) Label

(1, 1, 0) ie
(1, 0, 1) is
(0, 1, 1) es
(2, 0, 0) ii
(0, 2, 0) ee
(0, 0, 2) ss

unconstrained approximate matching at edit distance threshold k = 2.
This means that for our calculations, unconstrained approximate match-
ing with k = 2 produces 100% recall, which is not necessarily true.

Lastly, it is important to note that approximate string matching re-
sults are highly dependent on the specific data being matched and the
keywords being used [9]. Therefore, utilizing cedas on an inverted in-
dex which was not derived from an English e-mail corpus may produce
different results.

4. Experimental Results

4.1 Precision and Recall

The results in this section reflect how effective each set of constraints
T was for search in terms of precision and recall, and furthermore which
constraints produce valuable results for investigating an English e-mail
corpus. Figure 4 shows the precision-recall trade-off curve derived from
our experiments. Data points labeled k = 1 and k = 2 represent the
results for unconstrained fuzzy searching with edit distance thresholds
set 1 and 2 respectively. Table 3 provides further notation for inter-
preting results where the labels in the right column represent if some
(i, e, s) ∈ T . All data points with the labels shown in the table assume
that (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) ∈ T .

As was to be expected, the application of constraints for fuzzy search-
ing the Enron inverted index obtained a combination of higher recall
than an unconstrained fuzzy search with an edit distance threshold at
k = 1 and better precision than an unconstrained fuzzy search with an
edit distance threshold at k = 2. However, we are primarily interested in
precision-recall trade-offs which are useful in an investigation. As men-
tioned in the introduction, a common complaint is the number of false
positives that fuzzy searching produces, and also that early on in an
investigation precision is valued more than recall [19]. This implies that
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Figure 4. Precision-recall tradeoff curve applying various constraints

the constraints that produced results with relatively high precision are
most useful for an investigation, as increasing recall is easily performed
by increasing the edit distance threshold.

What is immediately apparent from the data is that there are several
distinct clusters of data points, where each cluster is associated with
different edit operation combinations. The cluster with the highest pre-
cision is made up of all the data points near data point k = 1, where
(0, 1, 1), (0, 0, 2), (0, 2, 0) /∈ T . This means that matches under these con-
straints did not include edit operations with exactly two substitutions, a
substitution and deletion, or two deletions performed on the keyword to
determine an approximate match. It follows that in order to preserve the
precision of a fuzzy search to be near the unconstrained case of an edit
distance threshold of k = 1, one would constrain their fuzzy searches to
edit operations which do not include the previously mentioned edit oper-
ation combinations. Furthermore, the data points in the cluster mostly
show a marked improvement of recall. We claim the constraints in this
cluster are useful for the middle stages of an investigation, as they have
relatively high precision and recall.

Data points in this cluster that include a single insertion and deletion
(ie) have very beneficial precision-recall tradeoffs. To ensure that the
fuzzy search with these constraints was simply not due to transposition
edit operations, for which adjacent characters may be swapped, we per-
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Table 4. Run Time for cedas compared to agrep.

Average Runtime agrep Average Runtime cedas

0.0477142857 0.2795714286

formed the same tests but used the nrgrep [20] algorithm to perform an
unconstrained fuzzy search allowing transpositions with an edit distance
threshold of k = 1. These results are represented by data point t, and
we can see that ie and t do not correspond to the same results.

4.2 Run-Time

To evaluate the speed of cedas, we timed the unconstrained fuzzy
search with an edit distance threshold of k = 2 for every keyword on
the Enron inverted index. The average of these results were taken and
compared to the results of the same tests using agrep.

From the results in Table 4 , it can be seen that cedas runs nearly
six times slower than agrep at edit distance threshold k = 2. It is
important to note that the cedas implementation has not been optimized,
so therefore it has a potential to become faster. For comparisons between
cedas and agrep regarding flexibility of applying constraints see Section
5.

4.3 Analysis and Suggestions

The gap in precision between the higher and lower data clusters is po-
tentially shaped by the statistics of the English language. To be certain
of this would require additional testing, but one can see that it is quite
easy to transform words into other words by using many substitutions
or deletions. By limiting the application of deletion and substitution
edit operations we preserve much of the structure of the original word.
For this reason, if somewhat high precision is needed, we would suggest
using a fuzzy search that does not include the edit operations of two
deletions, two substitutions, or a single deletion and single substitution.

To maximize the recall for the fuzzy searching results without sacri-
ficing precision as seen by applying many of the edit operation combi-
nations, we would suggest that the set of constraints T should contain
(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (2,0,0), where for the
sake of brevity we refer to the language accepted by this automaton to
be L−(ee,ss,es). The precision and recall of this language corresponds
to data point ie,is. If more precision is needed, with nearly as much
recall, the set of constraints T should contain (0,0,0), (0,0,0), (1,0,0),
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(0,1,0), (0,0,1), (1,1,0), (2,0,0) (whose precision and recall corresponds
to data point ie). Ultimately, users of cedas should choose constraints
accordingly for precision-recall trade-offs they are willing to tolerate.

5. Related Work

Applications of fuzzy search algorithms to digital forensic can be found
in such products as dtSearch [7] and Intella [8]. In these tools, the vari-
ables for setting the tolerated fuzziness do not always directly correlate
with the edit distance threshold. Whether or not these algorithms used
a constrained edit distance algorithm to achieve these results is unknown
since the technology is proprietary, and could possibly be combining the
edit distance measure with other types of distance measures, natural
language processing, or information retrieval techniques.

The open source tools which have been used for fuzzy searching in
digital forensics are agrep [24] and nrgrep [20]. These tools are suites
of approximate matching algorithms, which do not only include edit
distance based approximate matching, but also prefix matching, regular
expression matching, amongst other options. They can be considered as
the cutting edge of bit-parallel NFA implementations for approximate
matching in terms of speed and utility. cedas’s advantage over their
edit distance matching algorithms is its flexibility in constraining edit
operations. agrep cannot implement any specific type of constraints,
therefore specifying its fuzziness in terms of edit distance operations is
limited to setting the edit distance threshold. nrgrep is more flexible in
that it allows the user to not only set an edit distance threshold, but
also allows for transpositions, and lets the user define a subset of the
edit operations the search will permit. This last factor can be seen as an
application of constraining edit operations, which produces a subset of
the possible edit operation constraints as cedas. For instance, this type
of matching cannot return matching results equivalent to L−(ee,ss,es).

Other constrained edit distance search algorithms exist as well. Chi-
trakar and Petrović have produced multiple constrained edit distance
search algorithms utilizing row-based bit-parallelism. The first described
edit operation constraints in terms of the maximum number of allowed
indels [4], the sum insertions and deletions, and the second algorithm
described edit operation constraints in terms of the maximum allowed
number of specific insertions, deletions, and substitutions permitted in a
match [5]. These algorithms also produce a subset of possible constraints
that cedas can produce, where constraints cannot be specified to return
the language L−(ee,ss,es). Their experiments show these algorithms to be
nearly as fast as agrep.
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6. Conclusion

In this work we presented our novel algorithm cedas, a constrained
edit distance fuzzy search algorithm for which we mathematically showed
can perform approximate search where possible transformations on the
search term are constrained to any set of edit operation combinations in
the form of exactly i insertions, e deletions, s substitutions. The algo-
rithm is a bit-parallel simulation of a nondeterministic finite automaton,
in which the rows of the automaton are not defined by the number of el-
ementary edit operations considered, but by both the number and types
of edit operations. This flexibility in defining edit operation constraints
to approximate search is unique to cedas.

Using this algorithm, we performed constrained edit distance fuzzy
searches for a list of keywords in an inverted index of the Enron e-
mail corpus where approximate matches were returned. The average
precision and recall resulting from searches applying each edit operation
combination constraint showed which constraints were the most valuable
for fuzzy searching an English e-mail dataset. As a common complaint of
fuzzy searching is the number of false positives it produces, we considered
edit operation constraints that allowed for high precision to valuable.

From our experiments, we found that to avoid the drop in precision
which is commonly perceived in unconstrained fuzzy searching at an
edit distance threshold of k = 2, one should constrain the fuzzy search
to not include any matches in which two deletions, two substitutions,
or a substitution and deletion have been performed on the approximate
match of a keyword. Fuzzy searches with an edit distance threshold
of two and whose constraints did not include the previously mentioned
edit operation combinations produced relatively high combinations of
precision and recall, where the precision is somewhat reduced from fuzzy
searching at an unconstrained edit distance threshold of k = 1 while
also improving recall. To maximize the recall of fuzzy searching without
experiencing a significant reduction in precision, for the combination
of edit operations (i insertions, e deletions, s substitutions), the fuzzy
search should be constrained to (0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0),
(1,0,1), and (2,0,0). These findings should be useful for the middle stages
of an investigation as precision has greater value in the early stages and
recall becomes more valuable further along an investigative timeline [19].

The flexibility of cedas comes at a cost. Its worst-case space complex-
ity is cubic in k and worst-case time complexity is O(k3n) for searching
keywords of length less than 64 characters on an x64 architecture, where
k is the edit distance threshold and n is the length of the searched text.
During our experimentation, we found that the average time it took to
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perform an unconstrained approximate search with edit distance thresh-
old k = 2 on the inverted index of the Enron dataset and return the
list of approximate matches increased from about 0.0477 seconds using
agrep to about 0.2796 seconds using cedas. It is important to note that
the implementation of cedas has not been optimized, and ways to re-
duce the space and time consumption would be to dynamically generate
the rows of the automaton which were necessary as opposed to simply
removing terminal state from specific rows.

Alternatively, if the automaton cedas simulates was implemented into
hardware architecture such as the Automata Processor [11], which can
directly implement NFA’s, it could potentially run in linear time. Tracy
et. al. [23] found that the NFA for approximate matching (Figure 1)
can run in worst-case linear time on the Automata Processor where the
hardware could maximally contain an NFA with a search pattern length
of 2730 characters with an edit distance threshold of 4. The fastest bit-
parallel NFA simulations of the same type of automaton require that the
search pattern lengths do not exceed lengths of about thirty characters
to preserve optimal results with a worst-case time complexity of O(d(m−
k)(k + 1)/wen) [16], where m is the length of the search pattern, k is
the edit distance threshold, and n is the length of the input.

Other improvements that can be made to cedas, which can be found in
other search tools, are to allow for prefix matching or character specific
fuzziness.
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