
Monitoring Behaviour in a Domestic
Environment
Addressing the Needs of an Aging Population

Marte Elisabeth Bakken Skjønsfjell
Aslak Ringvoll Normann

Master of Science in Engineering Cybernetics

Supervisor: Amund Skavhaug, ITK

Department of Engineering Cybernetics

Submission date: June 2012

Norwegian University of Science and Technology

Problem Description

It is in the interest of both society and individuals that the increasingly elderly
population can live at home as long as possible.

To achieve this, the subjective feeling of security as well as the actual medical needs
of the individual must be satisfied.

The candidates shall study if this can be achieved through remote sensing technol-
ogy and monitoring.

The assignment consists of:

• Study relevant relevant background theory and, if possible, study existing
systems.

• Propose possible solutions and implement a system.

• Evaluate the implemented system and results.

What shall be done and to which degree as well as the importance of each subtask
is to be decided by the candidates.

I

Summary

An increasingly aging population will challenge the current organization of society
and will require new technological solutions for assisting as well as maintaining the
health of this demographic. In this thesis, some solutions for remote monitoring
of a domestic environment are researched, implemented in the home of an elderly
citizen, and evaluated.

Background theory related to wireless remote sensing, data interpretation and pre-
sentation is studied and presented. Some design concepts for handling a multitude
of varied sensor information together with ways to harvest information in a health
context are discussed and implemented.

A system comprised of several types of both stationary and body-worn sensors
together with a framework for collecting, interpreting and presenting the gathered
data in a useful manner is developed, and a pilot-study is conducted.

The results show that it is possible to get useful information via remote monitoring,
and that it is possible to implement a low cost monitoring system using off-the-
shelf components. Different areas of applicaton for remote monitoring are proven
or made plausible.

It is shown that such a system can have significance in assisting health personnel,
both as it is presented here as well as with suggested further work.

III

Sammendrag

Den stadige økende eldre populasjonen vil komme til å utfordre den n̊aværende sam-
funnsorganisasjonen og vil fordre nye teknologiske løsninger i forhold til assistanse
og opprettholdelse av denne helsen til dennegruppen. I denne masteroppgaven er
noen løsninger for fjernoverv̊akning av et hjemmemiljø undersøkt, implementert i
hjemmet til en eldre borger og evaluert.

Bakgrunnsteori relatert til tr̊adløs fjernoverv̊akning, informasjonstolkning og -presentering
er studert og vist. Designprinsipper for h̊andtering av en mengde variert sensor-
informasjon i tillegg til m̊ater å innhøste informasjon p̊a i en helsesammenheng er
diskutert og implementert.

Et system best̊aende av flere typer stasjonære og kroppsb̊arne sensorer er utviklet
sammen med et rammeverk for innsamling, tolkning og presentering av informasjon
p̊a en nyttig m̊ate. Dette danner tilsammen basisen for et utført pilotprosjekt.

Resultatene viser at det er mulig å f̊a en objektiv oversikt over et monitorert individ,
og ikke minst at det er mulig å implementere et billig overv̊akningssystem med lett
tilgjengelige komponenter. Forskjellige bruksomr̊ader for fjernmonitorering er b̊ade
vist og sannsynliggjort.

Det er vist at et slikt system kan ha betydning for assistanse av helsepersonell,
b̊ade i den formen den er presentert i her, s̊a vel som med foresl̊att videre arbeid.

V

Acknowledgements

The candidates would like to thank Svein Skavhaug for his cooperation and enthu-
siasm as a human guinea pig in our field trial, and for giving us unrestricted access
in installing sensors in his house. We hope he retains his good health and humor
for many years to come.

We would also like to thank Amund Skavhaug for inspiration, guidance and practial
assistance in this thesis. His coffee-fund for underfunded students is also appreci-
ated.

Norsk Automatisering must be thanked for funding parts of the system, the Depart-
ment of Engineering Cybernetics for lending us equipment and Jon Petter Skagmo
for assembling his MultiTRX device on short notice and giving us access to his
source code.

Lastly, we would like to thank the always smiling and helpful cleaning staff for
helping maintain our office a liveable place to spend most of our time for the past
months.

VII

Contents

List of Figures . XV
List of Tables . XVIII
List of Listings . XX

List of Abbreviatons XXI

I Introduction 1

1 Introduction 2
1.1 Motivation . 2
1.2 Aim of This Thesis . 2
1.3 Wireless . 3
1.4 Implementation of a Total System 3
1.5 Presentation . 4
1.6 To the Reader . 4

II Background 5

2 Welfare Technology 6
2.1 Welfare Technology in Norway . 6
2.2 Ambient Assisted Living . 6

2.2.1 Exisiting Projects . 6
H@H - Health at Home . 7
HOPE - Smart Home for Elderly People 7
CARE - Safe Private Homes for Elderly Persons 7

2.3 Safety and Privacy . 7
2.3.1 Electronic Patient Journals 8

IX

3 Wireless Technologies 9

3.1 Physical Layer . 10

3.1.1 Frequency Bands . 10

3.1.2 Modulation Techniques . 11

Amplitude Shift Keying . 11

Frequency Shift Keying . 12

Phase Shift Keying . 12

Direct Sequence Spread Spectrum 13

Frequency Hopping Spread Spectrum 13

3.2 Media Access Layer . 13

3.3 Network Layer . 14

3.4 Security . 14

3.4.1 Encryption . 14

Limitations of Symmetric Encryption 15

Out of Band . 15

3.4.2 Privacy . 15

4 Existing Wireless Communication Solutions 16

4.1 ZigBee . 16

4.2 System NEXA . 18

4.3 Z-Wave . 18

4.4 Efergy . 19

4.5 Bluetooth . 19

4.5.1 Classic Bluetooth . 19

4.5.2 Bluetooth 4.0 . 20

5 Sensors 24

5.1 Indoor Positioning . 24

5.1.1 Positioning with Ambulant/Body-Worn Transceivers 24

Determining Position . 25

5.1.2 Positioning with Stationary Transceivers 25

Video . 25

Motion detectors . 25

Magnet Switches . 26

Pressure Mats . 26

5.2 Other Means of Tracking Activity 26

5.2.1 Body-Worn Sensors . 26

5.2.2 Gait Speed . 27

5.2.3 Interaction with the Environment 28

5.3 Characteristics of Reported Location 28

5.3.1 Precision and Accuracy of Sensors 29

6 Context-Aware Processing 30
6.1 Interpretation . 31
6.2 Context Extraction . 32

6.2.1 Context Toolkit . 32
Components of the “Context Toolkit” 33

6.2.2 Henricksen/Indulska framework 34
Framework Components . 35

6.3 Considerations . 35

7 Automated Reasoning 36
7.1 Pattern and Behaviour . 36
7.2 Anomaly detection . 37

8 Mobile Development 39
8.1 iOS . 39

8.1.1 Objective-C . 40
Properties . 40
ARC . 41

8.1.2 Application Life Cycle . 41
8.1.3 Intra-Application Communication 42

Protocols and Delegates . 42
Notifications . 42
Passing Data Between Scenes 42

8.1.4 Application Files . 42
Application Delegate . 43
View Controller . 43
Storyboard . 43

8.1.5 Bluetooth in iOS . 44
8.1.6 Health in iOS . 45

III Implementation 47

9 Sensor Types and Wireless Stack Selection 49
9.1 Sensor Type Selection . 50

9.1.1 Location . 50
Stationary . 50
Body-Worn . 50

9.1.2 Activity Level . 51
Stationary . 51
Body-Worn . 51

9.1.3 Environment Interaction/Activity 51
9.2 Wireless Properties of the Stacks . 51

9.2.1 Diversity and Cost . 52
9.2.2 Availability and Ease of Integration 52

ZigBee . 52

Z-Wave . 52

Nexa/Efergy . 53

9.3 Final System . 53

9.3.1 Discussion . 53

10 KeyFob “Smart Sensor” 55

10.1 KeyfobDemo Project . 56

10.2 Modifications and Additions . 56

10.2.1 “Movement” GATT Profile 56

10.2.2 Movement Detection . 57

10.3 Discussion . 58

11 Test-Case Setup 59

11.1 Test Subject . 59

11.1.1 Description of the House . 60

11.2 Placement of Sensors . 60

11.2.1 Motion Detectors . 62

11.2.2 Magnet Switches . 62

11.2.3 Efergy . 64

11.3 Discussion . 65

12 Local Concentrator and Communication Node 66

12.1 Getting Started . 67

12.1.1 Linux Distributions . 68

12.1.2 Software Packages . 68

12.2 Concentration and Storage . 68

12.3 Communication . 69

12.3.1 Maintaining a Persistent Connection 70

13 Sensor Data Reception 71

13.1 Nexa PIR and Magnet Using MultiTRX 71

13.1.1 MultiTRX . 71

13.1.2 PIR . 72

Waveform . 72

Parsing . 73

13.1.3 Magnet . 74

13.1.4 Concentration and Storage 74

13.2 Efergy e2 Wireless Electricity Monitor 75

13.2.1 Attempted RF Interception 75

13.2.2 Implemented Interception . 76

Waveform . 76

Parsing . 77

13.3 Bluetooth LE Dongle . 78

14 Interpretation of Sensor Data 84

14.1 Framework . 85

14.1.1 Observer Pattern . 85

14.1.2 Database . 86

Sensor Logs . 86

Metadata . 86

Parsed Data . 87

14.2 Classifiers . 87

14.2.1 Location Classifiers . 88

Characteristics of the Sensor Sata and Placement 88

Interpreting Location Data 89

InZoneClassifier . 90

DoorClassifier . 91

Discussion . 92

14.2.2 Appliance Classifier . 92

Clustering . 94

Classifying Sample Series . 94

Discussion . 94

14.2.3 Movement Classifier . 95

14.3 Aggregators . 96

14.3.1 Context History . 96

14.3.2 Combination Aggregators . 97

SubjectTracker . 97

TranquilityAggregator . 97

14.4 Discussion . 97

15 iOS Application - bHome 99

15.1 Network Connection . 101

15.2 BHAppDelegate . 101

15.3 Real Time Tab . 102

15.4 History Tab . 105

15.4.1 BHBarView . 106

15.4.2 BHActivityView . 109

15.5 Stats Tab . 110

15.6 Python GUI Server . 112

15.6.1 SocketListener . 112

15.6.2 TCPConnection . 113

15.6.3 MessageProcessor . 113

Real Time Data . 113

History Data . 114

Stats Data . 115

15.6.4 Stats . 115

15.7 Discussion . 117

15.7.1 Detecting Outliers . 117

IV Results 119

16 Results 120
16.1 Produced Code . 120
16.2 Wireless Network Performance . 121

16.2.1 Nexa . 121
16.2.2 Efergy . 122
16.2.3 Keyfob . 123

16.3 Information from Accelerometer vs PIR 124
16.4 Appliance Classification . 124
16.5 Zone Occupance . 126
16.6 Orientation and Pedometer Data . 127
16.7 Presentation . 128

16.7.1 Statistics . 128
16.8 Experience of the Test Subject . 130

V Discussion, Further Work and Conclusion 131

17 Discussion 132
17.1 Wireless Solution . 132
17.2 Data Concentration . 133
17.3 Privacy . 133
17.4 Event Routing and Interpretation Framework 133
17.5 Presentation . 134
17.6 Usefulness in a Health Context . 134

18 Further work 135

19 Conclusion 136

VI Appendix 143

A Enclosed CD 144
A.1 Contents . 144
A.2 Deploying the Code . 144

A.2.1 bHome . 144
A.2.2 Concentrator . 144
A.2.3 Interpreter . 145
A.2.4 KeyFob . 145

B Android 146
Android Platform . 146
Application Building Blocks 147
Activity Lifecycle . 149
Resources . 151

C Cost of the System 153

List of Figures

1.1 Simplified overview of the developed system 3

3.1 Important parts of a wireless sensor node 9

3.2 OSI network layer model . 10

3.3 Illustrations of ASK and FSK signals. 12

4.1 ZigBee Stack system requirements, from [60] 17

4.2 ZigBee network model . 17

4.3 Nexa wall outlet plugs with remote control and light switch 18

4.4 Efergy e2 Energy-Now Powermeter 19

4.5 BLE Protocol Stack[39] . 21

5.1 Areas most fitting for wearable sensors 26

5.2 Probability distribution for reported location 28

5.3 Possible problematic situation with active triangulation of position. . . . 29

5.4 Relationship between real value and the accuracy and precision of mea-

surements. (c©Wikimedia Commons) 29

6.1 Overview of transformation of data to knowledge 30

6.2 Processing magnet switch sensor data 31

6.3 Processing body-worn accelerometer data 31

6.4 TEA Model. Figure adapted from Schmidt 1999. 32

6.5 Overview of “Context Toolkit” as described by Dey[48] 33

6.6 Java framework presented as an approach to developing context-aware

applications. 34

7.1 Flow chart for implementing many-outlier procedure. From [49] 38

XVI

List of Figures

8.1 Life cycle states of an iOS app [26] . 41
8.2 Storyboard in Xcode . 44
8.3 General structure of data flow from sensor nodes through a concentrator,

through an internet gateway, through an interpreting mechanism to a

presentation platform. 48

9.1 Generic Wireless Sensor Node . 49

10.1 Texas Instruments’ Bluetooth LE evaluation kit 55
10.2 Design of step detection . 57

11.1 3D model of test subject’s house . 59
11.2 Floor plan of test subject’s house . 61
11.3 Floor plan of house with sensors . 63
11.4 Motion detector in bathroom . 64
11.5 Magnet switch on bedroom door . 64
11.6 Efergy transformer clamp attached to extension cord 65

12.1 PandaBoard . 66
12.2 Concentrator as deployed . 67
12.3 Connecting to the PandaBoard externally 69
12.1 Arguments force background mode and creates a reverse tunnel socket on

the remote host. 69

13.1 General signal path for the intercepted OOK and FSK sensor node data . 71
13.2 MultiTRX wireless 433.92 MHz OOK Tranceiver 72
13.3 Nexa Code Wheel bit-patterns . 73
13.4 A bitstream translated to hexadecimal 0xA. 73
13.5 Flowchart describing the parsing routine for Nexa Code Wheel. 73
13.6 A complete packet as received from the sensor. 74
13.1 Nexa message formats . 74
13.7 e2 Power Meter and RFM12B tranceiver connected to Xplained board 75
13.8 Diagram of the connection between the Efergy e2 display-unit and

an Xplain board . 76
13.9 Output from the Efergy receiver IC displayed by Saleae Logic 77
13.10End of sync sequence and two first bytes. Low duty cycle is around 34-38%

and high is around 70-74% . 77
13.2 i: node identifier(assumed), p: transmit period (6, 12 or 18 seconds), f:

fraction, e: exponent, c: checksum . 78
13.11HCI packet types, image from [40] . 78
13.12Command packed, image from [40] . 79
13.13Event packet, image from [40] . 79
13.14Main state machine of bledongle.py . 80
13.15Message receiving state machine of bledongle.py 81

14.1 Overview of framework class interconnections 84

14.2 Observer pattern class inheritance . 85
14.3 Database table overview . 87
14.4 Graph of rooms and doors automatically generated from available meta-

data, rendered with GraphViz. 88
14.5 Communication and connection between Zone- (location) and door

classifiers . 89
14.6 States a Zone-classifier may take . 90
14.7 Two sample runs of each appliance 93
14.8 Vertically zoomed view of only microwave and coffe-brewer. 93
14.9 Series characteristics; average power vs standard deviation 93
14.10Chest-worn sensor . 95
14.11Using the influence of ~g on accelerometer values to determine tilt . . 96

15.1 iPad running the bHome application . 99
15.2 Communication methods between the main classes 101
15.3 Structure of packets . 101
15.4 Screenshot from Real Time Tab . 103
15.5 Screenshot from real time tab with historical data from a room 104
15.6 Views inside the BHTrendViewController 106
15.7 Screenshot from the history tab a presentation of 9 days 107
15.8 Screenshot from history tab with extended info about a day 108
15.9 Screenshot from stats tab . 111
15.10Overview of classes in the server . 112
15.11Outside zone outliers . 118

16.1 Activity logged on May 2nd 2012 . 125
16.2 Appliance use shown on iPad . 126
16.3 iPad screenshots. Location summary per day for May 25th until June 11th.127
16.4 Activity from May 28th to June 6th. Circles marks days of special interest 129
16.5 Detailed overview of June 1st . 129
16.6 Sensor event count vs time spent outside for April 25th to May 12th 130

B.1 Emulator . 147
B.2 The Android Platform. From Android Wireless Application Development[47]148
B.3 Activity life cycle . 150

List of Tables

3.1 Some frequency bands commonly used in off-the-shelf wireless devices. 11

5.1 Our considerations on accelerometer placement. By ~gb is meant
direction of gravity with respect to the body-axis system which a
sensor is assumed to represent. 27

9.1 Sample component costs from various vendors 52

10.1 KeyfobDemo GATT profile parameters relevant to accelerometer . . 56
10.2 Values available in the developed Movement GATT profile 57

11.1 Room description . 60

13.1 Byte sequence sent to BLE dongle to read characteristic values . . . 82

14.1 Appliance cluster centroids found during offline analysis. 94

15.1 Some of the main classes comprising the bHome Application 100

16.1 Produced code lines calculated by a free utility called CLOC. Lan-
guages are scaled to third generation (C/++, Java, Fortran) equiv-
alents to show the expressiveness of e.g. Python. 120

16.2 Logged events, total packets received and their origin. 121
16.3 Events logged per Nexa-sensor. 122
16.4 Packets received from each Nexa-sensor 123
16.5 Appliance use . 124
16.6 Location errors . 126

C.1 Price of the implemented system . 153

XIX

Listings

8.1 Class interface . 40
13.1 Initialization of BLE dongle . 82
14.1 Example usage of ObserverPattern.py 86
14.2 Hinting algorithm . 91
15.1 Code snippet from didFinishLaunchingWithOptions 102
15.2 Registration for and posting of notifications after connect message

is received . 102
15.3 Updating a door view . 104
15.4 React to touches on screen . 105
15.5 Detecting a touch event in the barView 106
15.6 Drawing of a BHBar . 109
15.7 Drawing of lines in BHActivityView 110
15.8 Mapping a message to the right view in BHStatsViewController . . . 111
15.9 Receipt of messages in TCPConnection 113
15.10Sending a message . 113
15.11Real time request received . 114
15.12Sending of real time data to application 114
15.13Sending of history data to application 115
15.14Implementations of outlier algorithm 116

XX

List of Abbreviatons

AAL Ambient Assited Living

AAL JP Ambient Assistant Living Joint Programme

ADT Android Development Tools

AM Amplitude Modulation

AMP Alternate MAC/PHY

API Application Programming Interface

ARC Automatic Reference Counting

ASK Amplitude Shift Keying

AVD Android Virtual Device

BLE Bluetooth Low Energy

BR Basic Rate

EDR Enhanced Data Rate

EU European Union

GAP Generic Access Profile

GATT Generic Attribute Profile

HCI Host Controller Interface

IAR Intertransaction Association Rules

XXI

ICT Information and Communication Technology

IDE Integrated Development Environment

ISM Industrial Scientific Medical

L2CAP Logical Link Control and Adaptation Protocol

LE Low Energy

LL Link Layer

MAC Media Access Control

NDK Native Development Kit

OOK On-Off Keying

OQPSK Offset Quadrature Phase Shift Keying

PHY Physical

RF Radio Frequency

RFID Radio Frequency Identification

SDK Software Development Kit

SIG Special Interest Group

SMP Security Manager protocol

TCP/IP Transmission Control Protocol/Internet Protocol

TDD Time-Division Duplex

UI User Interface

UWB Ultra Wide Band

WLAN Wireless Local Area Network

WSN Wireless Sensor Network

Part I

Introduction

1
Introduction

1.1 Motivation
As the population ages, we are now facing a shift in demographics where more
people enter their golden years, live longer, and are entitled to their due welfare
benefits. With this shift, the neo-traditional institutionalization of elderly is no
longer tenable on the scale we will need in a few years.

Welfare technology is an emerging field of research which therefore is becoming
more and more relevant. One of the key areas of application for welfare technology
is to assist elderly living at home longer, in safety and comfort, as well as assisting
primary caregivers in identifying potential health issues, both developing trends
and acute illness. Signs of deteriorating health can include appetite loss, insomnia
and reduced activity level.

Remote activity monitoring can give health personnel indicators on the condi-
tion of the patients and give an objective overview of how their days have been.
As health personnel may only come by once a day or less, it is beneficial to be able
to supervise the patients’ condition when they are alone.

1.2 Aim of This Thesis
There are many ailments specific to elderly, such as dementia, chronic obstructive
pulmonary disease, heart conditions, Parkinson’s, restricted movement, generally
poor constitution and others. Each of these have their own set of parameters which
may need monitoring and assessment.

In the candidates’ specialization project, Normann/Skjønsfjell 2011[66], a body-
worn sensor platform for monitoring a few such parameters was developed and
integrated with a mobile device for display.

As mentioned in [66] and discussed further in this thesis, many types of sensors
are of interest for monitoring the condition of a subject under observation, and

2

1.3. Wireless

Figure 1.1: Simplified overview of the developed system. Analysis can be performed
on-site to increase privacy.

a combination of heterogenous sensor data may be required to assess a subject’s
condition. Our aim in this thesis will therefore be to show how information from
various sources may be handled and combined, develop a framework for collecting,
interpreting and presenting heterogenous data and finally to realize and test such
a system.

An entire monitoring system, as opposed to focusing on smaller details, has
been realized to get a broad insight into the different aspects of creating a platform
for welfare monitoring, as well as to be able to present a more overall picture of
how a monitored environment can be used and developed further.

1.3 Wireless

Body-worn sensors must necessarily be wireless if they are to give a live feed of the
wearer’s condition without restricting movement or otherwise demanding undue
mental effort. Stationary sensors also benefit from communicating wirelessly, the
main advantages being modularity and cost savings both for installation and for
maintainance throughout the lifetime of a sensor network.

Considerations with regards to wireless technologies and characteristics of wire-
less communication will therefore be covered in the background chapters and affect
the implementation of our realized system.

1.4 Implementation of a Total System

A subject’s condition may be sensed either directly via e.g. cardio-pulmonary
monitors, or indirectly via the subject’s activity level, mobility and interaction with
the environment. The advent of “Smart Houses” as ever more mature commercial

3

CHAPTER 1. INTRODUCTION

products which by their nature monitor activity in a home makes the latter indirect
method a promising venue for exploiting synergies, lowering costs and risks.

Both an ambulant and a stationary platform will be implemented and dis-
cussed. The system will be implemented in a domestic environment and monitor
a volunteered test subject.

Part III of this thesis details the implemented system. First, an overview will
be presented, and component choices will be explained and discussed. Second,
the test-environment, deployment of the stationary sensor nodes used for “Smart
House” location- and activity tracking, and the development of a body-worn sensor
will be described.

Then the capture of sensor data and our interpretation framework and as well as
its components will be presented, followed by a description of an iPad application
used for presenting the gathered data. The system presented in this report is
illustrated in Figure 1.1.

1.5 Presentation
Presentation of the aggregated data is a crucial part of making the implemented
system available for health personell, relatives or others without them needing to
know the particularities of the system. The presentation will need to be easy to
comprehend and not be cluttered with data.

To achieve this, an iPad application will be developed as a means to giving users
an intuitive way of getting an objective overview of a monitored person’s activity
in the domestic environment.

1.6 To the Reader
This thesis is intended as an in-depth presentation of the development of such a
system, but parts of it may also be of interest to health personnel or relatives who
would like an understanding of the topic of monitoring elderly.

A CD including all source code, sensor data logged during this pilot project
and some background material is enclosed with this thesis.

4

Part II

Background

Chapter 2 . 6
Current state of welfare technology

Chapter 3 . 9
Overview of wireless technologies, their differences and indi-
vidual advantages

Chapter 4 . 16
Existing commercial wireless sensor systems

Chapter 5 . 24
A selection of sensor types, their use and application

Chapter 6 . 30
Context-aware processing, ways of handling heterogenous data
from many sources

Chapter 7 . 36
Methods for mining data and classifying anomalities

Chapter 8 . 39
Mobile application development on the Apple iOS platform

2
Welfare Technology

Welfare technology is technology assisting users in their daily life. This can con-
tribute to an increase in life quality and help users become more independent.
Examples of welfare technology include cleaning robots, smart house technology,
positioning technology (GPS) as well as body-worn sensor systems and means of
increasing the comfort of health care patients.

2.1 Welfare Technology in Norway
Several technologies are already put into use in the Norwegian health care system.
Bærum kommune in cooperation with SINTEF and Abilia AS has a project called
“Welfare technology for elderly living at home”[42]. This project has created a
showroom apartment[45] with technical solutions to enable elderly to live at home
as long as possible. The solutions include aids to help the user remember dates,
appointments and medicines, keep in contact with family and health personnel as
well as automatic lighting and alarms.

A few nursing homes use a robotic seal for social stimulation of patients with
dementia[55] and “Hjelpemiddelsentralen” distributes fall sensors1 with GPS[15].

2.2 Ambient Assisted Living
Ambient Assisted Living (AAL) is the form of welfare technology focusing only on
the eldery part of the population.

2.2.1 Exisiting Projects
The European Union has a project called Ambient Assistant Living Joint Pro-
gramme (AAL JP) that focuses on technological solutions for enhancing the life

1Fallofon from Cognita AS

6

2.3. Safety and Privacy

quality of elderly in Europe. Focus of the project in spring 2012 is “ICT2-based So-
lutions for (Self-) Management of Daily Life Activities of Older Adults at Home”[2]

Earlier, three other focuses have resulted in funding of several projects under
development:

• ICT based solutions for Prevention and Management of Chronic Conditions
of Elderly People

• ICT based solutions for Advancement of Social Interaction of Elderly People

• ICT-based Solutions for Advancement of Older Persons Independence and
Participation in the “Self-Serve Society”

A few of these projects are presented below, but as they are still under development,
more information on their technology and methods was not found.

H@H - Health at Home

The H@H[19] project focuses on elderly with Cronic Heart Failure by remotely
monitoring cardiovascular and respiratory parameters by automatic systems as well
as health personnel. The aim is to reduce re-hospitalization by detecting situations
that might become critical at an early stage. Total budget is e2,699,799.

HOPE - Smart Home for Elderly People

The HOPE[20] project is focusing on giving elderly with Alzheimer’s disease a more
independent life. This is achieved through a smart home solution with functionality
for fall detection, security and communication. The budget is e2,019,199.

CARE - Safe Private Homes for Elderly Persons

CARE “aims to realise an intelligent monitoring and alarming system for indepen-
dent living of elderly persons”[14]. This is to be accomplished by automatically
detecting critical sitations such as a fall or immobility, by using stationary sensors.
The total budget is e2,380,000.

2.3 Safety and Privacy
One of the main concerns when it comes to ICT solutions in health care is the
issue of privacy and safety of patients. It is illegal for handlers of personal data
to distribute or use this in a way not approved by the individual source of the
data. The Norwegian Data Inspectorate (Datatilsynet), recommends that sensitive
information about a user is stored as close to the user as possible, as opposed to in
a central server system, to ensure privacy of the user.

The law of personal data (Personopplysningsloven[32]) states how personal data
should be handled and has as an objective to protect the individual right to privacy.
Information about a persons’s health condition is considered to be sensitive, and

2Information and Communication Technology

7

CHAPTER 2. WELFARE TECHNOLOGY

is subject to strict regulation when it comes to harvesting and use of data. One
can not gather sensitive personal data without the knowledge and approval of the
affected person.

Considering these rules and regulations, it is obvious that the collecting and
storing of personal data needs to be thoroughly evaluated to make sure the data is
secure to unauthorized access. This include hackers as well as overly curious health
personnel.

2.3.1 Electronic Patient Journals
The introduction of electronic patient journals in the Norwegian health care sys-
tem has led to a public debate. Concerns regarding the protection of privacy of
individuals has proven to be legimate. An example was when two NTNU students
working on electronic journal software was given access to 110,000 journals from
their professor[38] without the approval or knowledge of the involved patients. An-
other example is of health personnel having accessed electronic journals of patients
out of curiosity, which have resulted in several being fired[38].

This debate and these incidents have led to a greater focus on the handling of
sensitive information in the public health service, which will be more and more
relevant as health services shift into a more electronic manner.

8

3
Wireless Technologies

Wireless technology has in recent years seen a revolution in terms of size, qual-
ity and cost of components to the point where it’s a viable replacement for wired
communication. A significant advantage is the ease of deployment and installa-
tion without the need for existing infrastructure or costly modifications to existing
buildings.

A wireless sensor node consists primarily of three parts: The sensor hardware,
data processor and communication interface, and it’s the latter that will be the
focus in this chapter.

Figure 3.1: Important parts of a wireless sensor node: Communication, processing and
sensing.

Wireless solutions on the market differ in many ways and this chapter will
describe the most fundamental ways solutions can differ, before the next chapters
will look closer at a selection of vendor-specific wireless communication solutions.

When considering different wireless sensor network technologies, it is helpful
to consider them with regards to the layers in the OSI communication systems
model seen in Figure 3.2 on the following page. In the following, the three media
layers will be discussed in a wireless context as they are what most sets wireless
communication apart from wired communication.

9

CHAPTER 3. WIRELESS TECHNOLOGIES

Figure 3.2: OSI network layer model

3.1 Physical Layer
Implementation of the physical layer is the most distinguishing factor betweeen
wireless technologies. This is how a wireless unit modulates electromagnetic fields
in the ether to set up corresponding oscillations in a receiving module.

Thus, there are two key factors differentiating how such signals traverse the
intervening space:

• Base frequency of the oscillations

• Modulation technique

Higher signal carrier frequencies are more susceptible to attenuation when trav-
elling through a medium, but offer higher throughput because they can be mod-
ulated at a proportionally higher frequency. Within a given wireless standard, a
pre-determined list of base frequencies can sometimes be referred to as channels.

Conversely, the modulation technique can be said to determine how robust a
signal transmission will be, at the cost of transmission speed and spectral1 prop-
erties.

3.1.1 Frequency Bands
Commercial wireless sensor nodes usually operate in the Unlicensed Industrial Sci-
entific and Medical (ISM) bands which are harmonized across the members of the
International Telecommunication Union.

In Norway, this is embedded in the regulation Forskrift om generelle tillatelser
til bruk av frekvenser (fribruksforskriften)[18]. This regulation stipulates which

1Said simply, how much space a signal takes

10

3.1. Physical Layer

bands are free to use, the spectral properties of the signals and the allowable duty
cycle of transmitters. Table 3.1 shows some frequency bands commonly used in off
the shelf wireless devices. Some popular wireless sensor systems such as Insteon
sold in the US use frequencies around 315 MHz, but these devices are not allowed
for use in Norway as they clash with reserved NATO bands.

Band Type[18] Regulatory limits[18]

312-322 MHz NATO Not free to use
433.050-434.790 MHz ISM 1 mW transmit effect
434.040-434.790 MHz ISM 10 mW. 10% DSa if > 250kHz bandwidth
868.6-869.7 MHz Alarms 10-25 mW. < 25kHz. DS 0.1, 1 or 10%.
2400.0-2483.5 MHz ISM 10 mW

Table 3.1: Some frequency bands commonly used in off-the-shelf wireless devices.

aDuty Cycle: active transmission period

3.1.2 Modulation Techniques
Some modulation techniques will be covered briefly to aid later discussion. Popular
modulation techniques for wireless networks include:

• ASK - Amplitude Shift Keying

• FSK - Frequency Shift Keying

• PSK - Phase Shift Keying

• DSSS - Direct Sequence Spread Spectrum

• FHSS - Frequency-hopping Spread Spectrum

Each of the three first exist in several derived and combined forms, such as Binary
Phase Shift Keying, 2-FSK, QAM-4, QAM-16, BPFSK, OQPSK etc. ASK and
FSK will receive som extra attention as they are relevant to the implementation
chapters.

Amplitude Shift Keying

ASK works by varying the amplitude of the transmitted signal between a finite
number of amplitude levels corresponding to data symbols. In the case of On/Off
Keying2 (OOK), a variation of ASK used in the implementation in this thesis, the
symbol size is 1 bit and bits are represented by the presence or absence of a carrier
wave.

Figure 3.3a from a Maxim Application Note[34] shows how an OOK signal is
received and interpreted by a typical receiver. For generic ASK, the low bit is not
necessarily the absence of a carrier, but any lower amplitude. This increases noise
immunity compared with OOK, at the cost of higher power consumption.[34]

2Keying is a remnant from CW/Morse code, meaning an actual key was pressed

11

CHAPTER 3. WIRELESS TECHNOLOGIES

OOK is relatively inexpensive hardware-wise compared with other techniques, is
purely a modulation technique, and therefore not subject to any industry standard
and is popular in cheap off-the-shelf radio devices operating in unlicensed frequency
bands. But like analog AM, ASK is sensitive to atmospheric fading3, and OOK in
particular is sensitive to transient fading and noise.

(a) Envelope detection of OOK signal.
Digital output (yellow), carrier (blue)
and internal comparators (pink/green)

(b) Modulation of data onto a carrier
wave using FSK. (GNU FD Licence)

Figure 3.3: Illustrations of ASK and FSK signals.

Frequency Shift Keying

FSK works by changing the frequency of the carrier instead of the amplitude.
FSK is comparable with analog FM, and is more robust against noise and almost
immune to fading as the decoding is independent of the received signal amplitude.
However, the spectral efficiency is much lower than for ASK and hence needs 150%
of the bandwidth and the energy cost is 200% that of OOK, as the transmitter
must always be powered when transmitting[16].

Figure 3.3b shows how a bit-stream is encoded onto the carrier wave, resulting
in a FSK signal. The modulated signal from Figure 3.3b corresponds to the blue
signal in Figure 3.3a.

Phase Shift Keying

PSK transmits information by letting a number of discrete phase offsets from a
common reference signal represent symbols, and the signal is then modulated by
discontinuously changing the phase of the carrier. A decoder can rely either on

3Temporary increase in signal attenuation

12

3.2. Media Access Layer

comparison with a reference signal or changes within the received signal (Differen-
tial PSK).

An advantage of PSK over FSK is that the bandwidth that is needed for trans-
mission is as low as half (for binary symbols) and the main advantage over ASK
is fading resistance, but these advantages come at the expense of complexity and
cost.

Direct Sequence Spread Spectrum

Spreading is the process of multiplying a data-signal with a pseudorandom sequence
PN of {1,-1} at a much higher rate than the data-rate before digitally modulating
and transmitting the data. On the receiving end, the signal is demodulated and
de-spread with the same sequence PN.

This makes the signal spectrally much wider, ideally comparable to gaussian
white noise, and achieves a higher signal-to-noise ratio as the de-spreading can be
seen as band-pass or autocorrelation with PN.

The technique is used among other things in GPS, CDMA, IEEE 802.15.4
and IEEE 802.11b. A further advantage is that on the Media Access layer, the
autocorrelation reduces co-channel interference when applications use different PN.
This is most readily seen in the cellular CDMA standard.

Frequency Hopping Spread Spectrum

In FHSS, the spectrum is spread uniformly by frequently re-tuning the carrier wave
of the transmitter and receiver. The channel cohabitation advantages are the same
as for direct sequence.

From a regulatory perspective, FHSS and DSSS are allowed to use higher trans-
mit effect, because the spreading reduces harmful interference with other applica-
tions.

3.2 Media Access Layer
A protocol determining who has access to the transmission medium and when is
important for wireless networks, as all nodes operating on the same frequency in a
vicinity share the same medium.

Sharing of the medium can be achieved in several ways, but the following are
common in wireless networks[57]:

Carrier Sense Multiple Access w/ Collision Avoidance Devices check for
clear channel before transmitting. If an acknowledgement is not received, a collision
is assumed to have taken place, and an exponentially increasing delay is inserted
before the device tries again.

Code Division Multiple Access As described in the previous section, this is the
same as Spread Spectrum Multiple Access.

13

CHAPTER 3. WIRELESS TECHNOLOGIES

Time Division Multiple Access Devices may only transmit in appointed time-
slots.

Frequency Division Multiple Access Devices transmit in separate frequency
bands (channels) with little or no overlap.

No Access Control / Spray and Pray Devices transmit whenever they need to,
without regards to the wireless environment. For cheap uni-directional transmitters
this is the only option. For some measure of robustness, packets are repeated a
finite number of times.

3.3 Network Layer

Common services afforded by wireless sensor node stacks are:

Broadcast The most basic form of routing, typically used during integration of
a node into a network.

Master/Slave Nodes have different roles, and slaves may not interconnect.

Point to Point Any node can address any node if it’s within reach.

Mesh A routing algorithm is in place to allow any node to address any node even
without a direct radio-link.

3.4 Security

All radio transmissions are easily interceptable. The only thing that needs to be
known is the operating frequency and the modulation technique. For open stan-
dards such as Bluetooth and IEEE 802.15.4 this is true even with pseudorandom
spectrum-spreading, because the spreading sequences are known or can be obtained
by listening to channel setup. Projects at NTNU have even shown how to intercept
and decrypt mobile GSM communications[63].

3.4.1 Encryption

Hence, applications must rely on encryption instead of obscurity. Because wireless
nodes are often severly limited in capacity, symmetric encryption such as AES
is often used, for instance in IEEE 802.15.4 or an algorithm called SAFER+ for
Bluetooth.

14

3.4. Security

Limitations of Symmetric Encryption

Because asymmetric encryption is too computationally expensive, both the sender
and receiver must use the same encryption key. When using only radio for com-
munication, this key can either be pre-stored or exchanged in the clear.

Even though the encryption itself may be considered safe, the practice is in-
trinsically unsafe because a dedicated attacker can always dump the memory of a
device or snoop the exchange and thus gain access to the entire network[53].

Out of Band

A viable solution is to exchange keys through some other means that are com-
plementary to the RF communication and may not be intercepted via RF, such
as:

• Infrared or light

• Inductive communication

• Electrical contact

• Push-buttons

These methods require extra hardware-components and in some cases physical
proximity, but will guarantee secure communication as long as:

• The encryption scheme is secure

• The OOB exchange is not eavesdropped

• Nodes use different keys between different peers

The last item is important because otherwise a fully integrated node could be
tampered with and expose the whole network[53].

3.4.2 Privacy
Even with encryption it should be noted that the location of a transmitter is easily
detectable via triangulation. Additionally, the fact that a transmission takes place
can in many cases be enough to infer the characteristics of the node, thereby
guessing what data must have been transmitted.

The only solution to this would be to periodically transmit data even if no new
information is sent and accepting the resulting drop in battery life and possible
increase in latency.

15

4
Existing Wireless Communication Solutions

4.1 ZigBee
The ZigBee standard is based on the IEEE 802.15.4 standard[60]. ZigBee fea-
tures low power consumption and simple implementation, link-layer mechanisms
for implementing security encryption, and supports a and high density of nodes
per network. This technology is marketed as suited for sensor- and control net-
works. Operation is at 2.4 GHz and 868/915 MHz and the data rates offered are
respectively 250 kbps, 20 kbps and 40 kbps.

The ZigBee stack is shown in Figure 4.1, and we can see the physical and media
access layers which use OQPSK1, direct sequence spread spectrum and CSMA/CA
mentioned in the previous chapter. In the middle we see the network layer which
supports a number of routing topologies and at the top, the ZigBee Device Object, a
special application endpoint present on all Zigbee devices, which keeps Application
Objects – similar to the concept of device profiles seen in Bluetooth – that are
defined by the ZigBee Alliance.

There are two different device types that can be implemented in a ZigBee net-
work:

• Full function device (FFD) — Can function in any topology and talk to
any other device. It is also capable of being the network coordinator and a
function as a routing device.

• Reduced function device (RFD) — Has a very simple implementation and
can only function in a star topology. It is only capable of talking with an
FFD.

Supported network topologies are star, peer-to-peer and mesh and an example
of a ZigBee network can be seen in Figure 4.2.

In a star topology, at least one FFD is required in the network to function as a
network coordinator. The other devices could be RFDs, which have the advantage

1Offset Quadrature Phase Shift Keying, a variation of PSK with two bits per symbol.

16

4.1. ZigBee

Figure 4.1: ZigBee Stack system requirements, from [60]

Figure 4.2: ZigBee network model

of being able to spend a lot of time in sleep, thereby reducing power consumption.
Any topology requires a network coordinator which is responsible for setting

up the network, transmitting network beacons, managing network nodes and route
messages between nodes. The network nodes search for available networks, transfer
data when needed and request data from the network coordinator. If the topology
is not star, FFDs are needed to act as routing devices as well.

Several home automation systems that use the ZigBee standard exist today,

17

CHAPTER 4. EXISTING WIRELESS COMMUNICATION SOLUTIONS

examples include the AlertMe[1] system, along with as a wide variety of single
units that can be included in a self-made system.

4.2 System NEXA
System NEXA is a brand of Swedish-produced home automation products that
operate at 433.92Mhz. These are available for purchase from Clas Ohlson at low
cost. The system is based on point-to-point communication from a transmitter to a
receiver where one receiver can be controlled by several transmitters. Transmitters
include motion detectors, magnetic contacts and light switches, while receivers are
mainly on/off relays or dimmers for light sources.

The System NEXA receivers have implemented what is called self-learning code.
When a receiver is set in self-learning mode and the unit it should listen to must
be activated. This pairs the units, and lets the transmitter control the receiver.

Wall outlet plugs that can be controlled by a remote control or a wireless wall-
mounted light switch which can be seen in Figure 4.3.

aImages from www.nexa.se

Figure 4.3: Nexa wall outlet plugs with remote control and wireless light switcha

4.3 Z-Wave
Z-Wave is a home automation network with low bandwidth designed for low cost
networks[44]. It has a mesh topology and operates at 868MHz with data rates of
9600bit/s or 40 kbits/s. A Z-Wave network consists of two types of devices:

• Controlling devices that initiate control commands and send these to other
nodes in the network.

• Slave devices that execute the commands. Slave devices are also capable of
forwarding commands to other nodes out of reach of the controlling device.

18

www.nexa.se

4.4. Efergy

PC software can communicate with the controlling devices via a serial interface
using a dongle. Nodes are added to a network by simply pressing a button which
pairs the devices. The same procedure can be used for the removal of nodes.

The protocol of Z-Wave is used by many home automation software solutions
such as IP Symcon, Homeseer, Embedded Automation, 4HomeMedia and Control-
Think.

4.4 Efergy
Efergy is a company that sells wireless energy consumption meters to markets
all over the world. Their meters are sold as pairs of receiver and transmitter,
and are not affiliated with or integrated in any other wireless system. Figure 4.4

aProduct shot from www.efergy.eu

Figure 4.4: Efergy e2 Energy-Now Powermeter retailed at Clas Ohlson. Features
wireless transmission of recorded power consumptiona

shows a display unit and remote sensor with a transformer clamp intended for
attachment to three-phase leads inside a consumer fuse-box. The display unit can
store historical data and transfer this to a computer via an USB connection, but
only in summarized form, and cannot transfer live data this way.

4.5 Bluetooth
This section is an excerpt from Normann/Skjønsfjell[66].

4.5.1 Classic Bluetooth
Bluetooth is a wireless technology standard which is used for transfer of data over
short distances. Invented by Ericsson in 1994[13], the radio technology operates

19

www.efergy.eu

CHAPTER 4. EXISTING WIRELESS COMMUNICATION SOLUTIONS

in the globally unlicensed industrial, scientific and medical band (ISM) at 2.4 to
2.485 GHz.

Bluetooth uses adaptive frequency-hopping spread spectrum. This is a method
of transmitting signals by switching a carrier wave among many frequency chan-
nels, and gives resistance to radio frequency interference by using only available
frequencies. The signal appears as full-duplex through a Time-Division Duplex
(TDD) scheme. The range can be from 1 - 100 meters, but a 10 meter minimum
range is mandated by the Core Specification[12].

The Bluetooth protocol is packet-based and has a master-slave structure. One
master can communicate with up to seven slaves in what is referred to as a piconet,
and all the devices share a radio channel hop list and are synchronized to the
master’s clock. The frequency-hopping pattern is determined by the Bluetooth
address and clock of the master.

Transmission of data between devices is divided into packages, which are placed
into time slots in the time-multiplexed channel.

The Bluetooth core system consists of a Host and one or more Controllers. A
Host is “..a logical entity defined as all of the layers below the non-core profiles and
above the Host Controller Interface (HCI).”[12] A Controller is “..a logical entity
defined as all of the layers below HCI.”[12]

Classic Bluetooth includes Basic Rate (BR) and Enhanced Data Rate (EDR)
and it offers data rates of 721.2 kbps for BR and 2.1 Mbps for EDR. There is also
an Alternate Media Access Control (MAC) and Physical (PHY) layer extension
which offers data rates up to 24 Mbps with the 802.11 AMP2 (High Speed).

4.5.2 Bluetooth 4.0

The 4.0 specification was adopted June 30th, 2010. This includes the Classic
Bluetooth and Bluetooth High Speed as well as the new edition: Bluetooth Low
Energy (BLE). As Bluetooth Low Energy is more interesting than Classic Bluetooth
and Bluetooth High Speed in a health sensor aspect, the rest of this section will
focus on this specification.

Bluetooth Low Energy BLE is designed for applications with lower data rates,
lower current consumption and lower complexity and cost than Classic Bluetooth
devices. BLE has lower transfer rates than Classic Bluetooth, but lower latencies
and power consumption makes it ideal for use in sensor devices.

The BLE Protocol stack is illustrated in figure 4.5. The LE Protocol stack
consists of controller and host, as BR. The different layers in the stack will be
presented here:

• PHY: The physical layer of BLE also operates in the 2.4 GHz ISM band
and uses frequency hopping. To minimize transceiver complexity, a shaped,
binary frequency modulation is used. BLE supports data rates of 1 Mbps.

There are two LE physical channels defined:

2Alternate MAC/PHYs (AMP)

20

4.5. Bluetooth

Figure 4.5: BLE Protocol Stack[39]

– LE piconet channel: Used for communication between connected de-
vices.

– LE advertisement broadcast channel: Used for broadcasting advertise-
ments to devices.

A device can only use one of these channels at a time, and time-division mul-
tiplexing between the channels is used to support concurrent operations. In
contrast to a BR channel, an LE channel is divided into events, where packets
are placed for transmission. There are two types of events, Advertising and
Connection events.

• Link Layer (LL) : The LL controls the RF3 state of the device. There are five
different states a device can be in: Standby, advertising, scanning, initiating
and connected.

3Radio Frequency

21

CHAPTER 4. EXISTING WIRELESS COMMUNICATION SOLUTIONS

Transmitters of advertising packets are called advertisers and devices receiv-
ing advertising without connecting to the advertiser are called scanners, and
these are in advertising and scanning state.

Devices listening to connectable advertising packets with the purpose of form-
ing a connection to another device are called initiators and are in the initiat-
ing state. Upon receipt of a connectable advertising event on an advertising
PHY channel, the initiator can make a connection request using the same
channel. If the advertiser accepts the request, a connection is established
and connection events take the place of advertising events. Now, the initia-
tor becomes the master device and the advertiser the slave device, and they
are both in the connected state.

• Host Controller Interface (HCI): The HCI layer provides a standardized in-
terface for the host and controller to communicate. The separation is that
between logical and physical layers, and can be seen in Figure 4.5

• Logical Link Control and Adaptation Protocol (L2CAP): The L2CAP layer
“..provides data encapsulation services to the upper layers, allowing for logical
end-to-end communication of data”[39]. L2CAP channels are used for general
purpose communication.

• Security Manager protocol (SMP): This protocol is used to implement secu-
rity functions between devices. Uses a fixed L2CAP channel.

• Generic Access Profile (GAP): GAP is a base profile which all Bluetooth
devices must implement. GAP service includes device discovery, connection,
security and authentication. GAP defines four different roles for LE: Broad-
caster, Observer, Peripheral and Central.

• Attribute Protocol (ATT): This is the peer-to-peer protocol between attribute
server and client, and it provides a method to communicate small amounts
of data and to determine services and capabilities of other devices. Uses a
fixed L2CAP channel.

• Generic Attribute Profile (GATT): GATT is built on top of ATT, and rep-
resents the functionality of the attribute server. It is used for BLE profile
service discovery and defines server and client roles. Both GATT and ATT
are mandatory in BLE as they are used for discovering services. A GATT
server accepts commands and confirmations from a GATT client. It also sends
asynchronous notifications to a client when preconfigured event types occur.
As characteristics and descriptors from the server are available to clients, a
client does not have to implement a specific profile to access information from
the GATT server.

A profile describes services, characteristics and attributes used in the at-
tribute server and provides interfaces for discovering, reading and writing
these.

22

4.5. Bluetooth

Some characteristics and GATT profiles are already adopted by the Bluetooth
SIG4. The adopted profiles are Alert Notification, Find Me, Health Thermometer,
Heart Rate, Phone Alert Status, Proximity and Time. There are characteristics for
blood pressure measurement, body sensor locations, time and date, heart rate mea-
surement, temperature and many others. The adopted profiles and characteristics
gives a clear indication that BLE is intended for use in health monitoring.

For a more thorough explanation of BLE, see the Bluetooth Core Specification[12]
and Using Bluetooth Low Energy in Sensor Devices[46].

4Bluetooth Special Interest Group. Profiles and characteristics can be found at http:

//developer.bluetooth.org/gatt/Pages/default.aspx

23

http://developer.bluetooth.org/gatt/Pages/default.aspx
http://developer.bluetooth.org/gatt/Pages/default.aspx

5
Sensors

To track the activity patterns in a domestic environment, several types of informa-
tion can be interesting. Examples of information types include position inside the
house and amount of movement together with gait speed, which will be presented
in the following sections.

5.1 Indoor Positioning
For determining indoor positioning, two main approaches can be distinguished;
Stationary and ambulant/body-worn systems. The ambulant systems consist of
body-worn transceivers in combination with beacons, while stationary systems rely
exclusively on stationary transceivers.

5.1.1 Positioning with Ambulant/Body-Worn Transceivers

More or less any kind of receiver/transmitter can be used, for instance RFID,
WLAN, UWB1 and Bluetooth.

For this type of positioning system, four topologies exist[62]:

• Remote positioning system - Includes a mobile signal transmitter as well
as several stationary units receiving the signal. The position of the mobile
transmitter is calculated in a central unit based on the results from all the
receiving units.

• Self-positioning systems - The receiving unit is mobile, and computes its own
location based on signals from several stationary transmitters.

• Indirect remote positioning system - The receiving unit of a self-positioning
system sends its results to a central unit, which calculates the position.

1Ultra Wide Band

24

5.1. Indoor Positioning

• Indirect self-positioning - The results from the stationary receivers are sent
to the mobile device and the position is calculated in the mobile device.

Determining Position

Proximity Algorithms When a mobile unit is detected by one base station, it is
presumed to be in the near vicinity of this. If the mobile unit is detected by several
base stations, the mobile unit is presumed to be in the vicinity of the base station
detecting the strongest signal.

Triangulation Classic triangulation determines location by using the geometric
properties of triangles. A location is found as the last point of a triangle with one
known side and two known angles.

There are two types of triangulation; lateration and angulation. Lateration
measures distance directly by using signal strength, time of arrival or time difference
of arrival. Angulation estimates a location by somehow measuring the angles to it
from two known points attached to a fixed baseline.

Scene Analysis/Location Fingerprinting A collection of signal strength mea-
surements (“fingerprints”) between different locations is created before starting the
analysis. The location is later determined by comparing the current measurement
with the characteristics of the fingerprints and finding the closest match[58].

5.1.2 Positioning with Stationary Transceivers

A stationary system may for example use cameras or motion detectors to determine
position in certain zones. These systems depend upon the sensing devices being
placed at appropriate locations in the indoor environment.

Video

For surveillance of poultry, a video tracking system that can track several birds
exists[70]. The video tracking software distinguishes objects to be tracked and
analyzes the bird’s behavior such as position, movement speed and time spent in
areas of interest. Video tracking systems such as this can monitor more than one
tracking subject, but usually in only one room at a time.

Motion detectors

Other surveillance techniques include using motion detectors or other types of sta-
tionary sensors that provides information about activity in a certain zone. Normal
motion detectors are not able to distinguish several subjects, and should therefore
only be used for application designed for tracking one subject.

Motion detectors are normally active or passive, with passive sensors not emit-
ting any energy. The most common type of sensor is PIR (Passive Infra-Red)
sensors, which detect body heat.

25

CHAPTER 5. SENSORS

Magnet Switches

Stationary transceivers can also include magnet switches on doors or closets to
detect opening and closing of these. In a context aware system, as described in the
next chapter, this information can be used to estimate the position of a subject,
such that opening and closing an entrance door with no following activity in the
house could be an indication of the subject being outside.

Pressure Mats

Pressure sensor mats[36] can also be used, e.g. to detect whether a person is lying
in a bed, or sitting in a chair. These could also be placed on either side of a door,
to directly detect a subject moving in or out of a zone with more confidence than
magnet switches.

5.2 Other Means of Tracking Activity

5.2.1 Body-Worn Sensors

Figure 5.1: Areas most fitting for wearable sensors: (a) collar area, (b) rear of upper
arm, (c) forearm, (d) rear, side and front ribcage, (e) waist and hips, (f) thigh, (g) shin,
(h) top of the foot. Figure adapted from [51].

An accelerometer on a test subject can be used to get information about the
amount of movement and body orientation. The quality and consistency of any
body-worn sensor is very dependent on the test subject, as wearing the sensor is
crucial to getting information from it.

26

5.2. Other Means of Tracking Activity

For body-worn sensors, an important aspect is where to place them. A study
on the topic[51] has determined the best placement for body-worn sensors, which
is presented in Figure 5.1.

Pros and cons for different placements for an accelerometer on a person can be
seen in Table 5.1.

Placement Pros Cons

Belt Easy to fasten Ambiguous result from sit-
ting and standing

Well defined ~gb Does not catch direction of
upper body

Good mechanical connec-
tion

Pocket Easy to wear Varying what position is
down, difficult to determine
body position
Does not catch direction of
upper body
Not so good mechanical
connection

Sown into shirt Good mechanical connec-
tion

Same shirt needs to be
worn every day

Catches direction of upper
body

Might be uncomfortable

Well defined ~gb

Around ankle Can compute stride length Might be uncomfortable
Necklace Can be worn regardless of

clothing
Not so good mechanical
connection

Well defined ~gb if the neck-
lace is not dangling
Easy to wear

Table 5.1: Our considerations on accelerometer placement. By ~gb is meant direction of
gravity with respect to the body-axis system which a sensor is assumed to represent.

5.2.2 Gait Speed

In a health aspect, measuring the gait speed of a subject can be of great interest, as
a study[68] shows that gait speed can be associated with survival of older adults.
This study states that deteriorating health leads to a declining gait speed, and
measuring gait speed over time, can therefore give an indication of the health of a
test subject.

27

CHAPTER 5. SENSORS

5.2.3 Interaction with the Environment
Monitoring how a subject interacts with the environment can also be beneficial.
Examples of such interaction could be use of kitchen appliances and washing ma-
chines, use of hot water for e.g. showering etc. Interaction with electrical appliances
could for instance be detected by monitoring energy use.

5.3 Characteristics of Reported Location
Ambulant and stationary systems differ in the characteristics of their reported
position. Stationary systems can only detect activity within a specific zone, but
this with a high accuracy. They have a low precision in that they can’t determine
where in the zone the activity has taken place.

The probabilities for tracked objects being in a given location for the two types
of systems are illustrated in Figure 5.2. Here, it can be seen that in a stationary
system, the probability is uniform over the entire zone, while for an ambulant
sytem, the probability is distributed around a point.

Figure 5.2: Probability distribution for reported location

Ambulant systems can locate the activity more precisely, but may not be able
to map the location directly to a zone. This is illustrated in Figure 5.3, where the
subjects are located close to a wall. The subjects’ positions can thereby wrongly
be interpreted as being in the same room, or in the room which they are not in.

In a health aspect, the classification of activity into certain zones may be crucial,
as whether a subject for instance is in the bedroom or in the bathroom (if these
are located next to each other) can lead to different information being extracted.

28

5.3. Characteristics of Reported Location

Figure 5.3: Possible problematic situation with active triangulation of position.

An example is if a location-based system interprets a user getting up in the middle
of the night and going to the bathroom as all happening inside the bedroom. This
could lead to prolonged immobility in the bathroom being incorrectly considered
as the person being in bed instead of giving an alert of what might be a critical
situation.

5.3.1 Precision and Accuracy of Sensors
We have here made a distiction borrowed from statistics between the precision and
the accuracy of sensor measurements. By precision is understood the degree of
detail provided by the sensor, as well as the degree to which repeated measure-
ments show the same results. Accuracy is understood as whether the measurement
reported is actually true.

Figure 5.4: Relationship between real value and the accuracy and precision of
measurements. (c©Wikimedia Commons)

29

6
Context-Aware Processing

Raw sensor output doesn’t give much information if it is not evaluated in a context.
For instance, what is the scale of the data, what is the accuracy and precision, what
does it imply?

In many classic control systems, an IO function maps these raw values explicitly
according to the application. This quickly becomes unwieldy if we have several
sensors of a different physical nature or from different vendors giving information
on the same thing in different ways, as is often the case in so called Cyber-physical
Systems.

Figure 6.1: Overview of transformation of data to knowledge

A distinction can be made between data, information and knowledge[54], such
that:

• Data is the lowest level of sensor output, and cannot be interpreted without
knowledge of units, reference systems etc.

• Information can be understood by humans.

• Knowledge is information in combination with theories of the applicable sys-
tem.

Thus, a knowledge based system is able to react to and understand input at a higher
level of abstraction more aligned with human cognition. It is therefore desirable
to abstract away sensor details from higher order processing. Figure 6.1 shows a

30

6.1. Interpretation

generic data-path from sensor data via abstraction and processing to contextual
knowledge.

Below, two real-world examples will be mapped to this model to better explain
the meaning of the different parts.

Figure 6.2: Processing magnet switch sensor data

Figure 6.2 shows how a door sensor event is translated to usable knowledge. In
the first abstraction layer by knowing how to interpret the value from the sensor,
and in the second by using knowledge of the sensor placement and some assump-
tions about the physical world.

Figure 6.3: Processing body-worn accelerometer data

Figure 6.3 shows a similar case where metadata is taken from a device datasheet
in the first layer of abstraction, and knowledge of the body coordinate system and
some thresholds is used to say something on a more narrative/cognitive level about
the orientation of the subject.

6.1 Interpretation
The transformation of raw data to information can be as simple as scaling the raw
data, but information can also result from a combination of raw data sources or
some aggregation of raw data. Schmidt et. al[69] have presented something called
the TEA1 model.

1Technology for Enabled Awareness

31

CHAPTER 6. CONTEXT-AWARE PROCESSING

Figure 6.4: TEA Model. Figure adapted from Schmidt 1999.

In this model, a sensor is a “Smart Sensor” and can emit cues which can be
anything from an event taking place to an average value or a more complex function
such as machine learning classification.

A simple example is that of an accelerometer reporting only a sliding standard
deviation as a measure of the activity level. An advantage of using aggregated cues
in this fashion is a significant reduction of transmitted data - a desirable property
for wireless sensor nodes.

6.2 Context Extraction
“Context: any information that can be used to characterize the

situation of entities (i.e., whether a person, place, or object) that are
considered relevant to the interaction between a user and an application,
including the user and the application themselves. Context is typically
the location, identity, and state of people, groups, and computational
and physical objects.” - Dey 2001

A few practical software models have been developed for gathering context
information and presenting them to an application. Two of these, the “Context
Toolkit” presented by Dey et. al. and a Java framework developed by Henricksen
and Indulska will be briefly described to give a feeling for the work in this field.

6.2.1 Context Toolkit
In their 2001 paper, Dey et al[48] describe some requirements for a framework
dealing with context. These are inspired by traditional GUI toolkits, and can be
summarized as follows:

Separation of Concerns Sensor data acquisition methods should be hidden
from higher layers.

Context Interpretation If a certain context needs several layers of interpretation,
these layers should be transparent to the application.

32

6.2. Context Extraction

Figure 6.5: Overview of “Context Toolkit” as described by Dey[48]

Transparent, Distributed Communications Input should be able to come from
any of several interconnected concentrator nodes.

Constant Availability of Context Information Widgets holding context infor-
mation should be running constantly, as it is not known when this information is
needed by an application.

Context Storage and History A repository of historical context states should
be available independent of any application.

Resource Discovery Instead of hardcoding addresses of sensors, an application
should be able to request what type of context is needed and be provided with
appropriate component references.

Components of the “Context Toolkit”

Figure 6.5 shows the interconnection between the component classes of their frame-
work:

Widget Provides the separation of concern mentioned in the requirements, hiding
complexity of sensors and providing abstracted context information such as loca-
tion. Widgets provide callback notification of context changes to an application
and can be polled.

Interpreter Reasoning engine, responsible for raising the level of abstraction - for
instance activity, noise and many occupants might suggest a meeting.

33

CHAPTER 6. CONTEXT-AWARE PROCESSING

Aggregator Facilitates the requirement of distributed communication, collects
and aggregates context cues that may be of a different nature, but relate to a single
logical entity.

6.2.2 Henricksen/Indulska framework

Figure 6.6: Java framework presented as an approach to developing context-aware
applications.

Henricksen and Indulska point out that context can originate from a variety of
sources resulting in heterogenity in terms of quality and persistence[59]. Further
they point out that context may be:

• Sensed, i.e. highly dynamic and subject to noise.

• Derived, similar to aggregated / raised in Dey.

• User-supplied, initially reliable but degrades.

• Static.

It is also mentioned that context information is often imperfect because of

34

6.3. Considerations

sensing errors and noise, but it may also happen that sources of information report
conflicting data or none at all, resulting in ambiguous or unknown situations.

They then argue that as a parameter describing the quality of extracted context
information, it is not sufficient to supply only a confidence attribute, but that an
additional ternary attribute of True, Possibly true and False is required to
better represent ambiguity.

Framework Components

The components as shown in Figure 6.6 on the preceding page are designed as
loosely coupled, and a content-based routing scheme is used. A loosely coupled
structure increases failure tolerance and facilitates expansion.

Context Gathering Layer Sensor, Interpreter and Aggregator form the lowest
layer, responsible for raw data mapping, interpretation and data fusion.

Context Reception Layer Receptors map queries from the context manager to
appropriate components and translates lower layer inputs into fact-based represen-
tations.

Management Layer Maintains models and relationships between instances of
these models. This layer is also responsible for handling and inserting static, pro-
filed (through machine learning) or user-inserted context cues.

Higher Layers Relate to query routing and repositories of situations, event trig-
gers and user preferences.

6.3 Considerations
Reviewed papers on the subject of machine intelligence and context extraction put
a varying degree of emphasis on expressing rules and knowledge in terms of formal
logic. For this thesis and in the preceding framework summaries we have ignored
this aspect somewhat, as generalizing and reasoning about knowledge of the world
by artificial intelligence is a field unto its own.

35

7
Automated Reasoning

7.1 Pattern and Behaviour

The motivation for using automatic reasoning is to establish models of the ex-
pected behavior of a human being. An approach to detect behavior patterns of
occupants of a smart home is presented in Lühr[61]. This article proposes the use
of intertransaction association rules (IAR) mining for behaviour analysis.

Classic association mining is a method of distinguishing sets of items that se-
quentially occur together in a database, whereas non-sequential relationships of
events are allowed to be captured with IAR. Other ways of detecting patterns in-
clude episode mining, where partial ordering of items are found without considering
time intervals.

IAR consider the associative relationships between items within certain time
intervals, without focusing on the ordering of them. This makes sense as human
behaviour is usually not sequentially predictable due to interruptions etc., but
certain actions must nevertheless occur together.

IAR consider the associative relationships between items within certain time
intervals, without focusing on the ordering of them. This makes sense as human
behaviour is usually not sequentially predictable, but certain actions must never-
theless occur together.

For example, the rule A0, B0, C1, D3 ⇒ E3 says that if A and B is encountered
in the current transaction interval, C is encountered in the next interval and D in
the third interval, this implies that E also will occur in the third interval. This
means that When A, B, C and D has happened, a normal pattern would be that
E should happen shortly after. An illustration of this could be that when the test
subject is going to bed, doors will be closed and the bathroom will be used before
going into the bedroom to go to sleep. The pattern may not be the same every
evening, and this is accounted for with the IAR.

36

7.2. Anomaly detection

7.2 Anomaly detection
IAR can also be used to detect anomalities from the recongnized patterns. A
method for detecting abnormal values in a discrete dataset on the other hand, is
presented in Seem[49]. In this paper, the method is used for detecting abnormal
energy consumption in buildings, but could be adapted for use in smart homes
as well, by using the method on the amount of time spent in separate zones in a
house. This would require an in advance analysis of the smart home, to decide
upon which rooms should be analyzed.

This method is based upon sorting power consumption for days into groups
with theoretically similar consumption, such as weekends and weekdays. It then
finds abnormalities by outlier identification. Outliers are data points that appear
as inconsistent with the rest of the data in a set. The procedure for identifying
outliers can be seen in Figure 7.1. An upper bound (nu) on the number of potential
outliers must be set, and the flowchart is looped through the same number of times
as possible outliers. The upper bound can be found from the inequality 7.1:

nu ≤ 0.5 (n− 1) (7.1)

Where n is number of entries in the data set. Average value and standard deviation
for the data set are calculated with Equation 7.2 and 7.3:

x̄ =
1

n

n∑
i=1

xi (7.2)

σ =

√√√√√ n∑
i=1

(xi − x̄)
2

n− 1
(7.3)

If the standard deviation is zero, all values in the data set are the same, and no
abnormality is detected. If not, the value furthest from the average value is found
and removed from the data set. The extreme studentized deviate of the removed
value is computed with Equation 7.4:

Ri =
|xe,i − x̄|

σ
(7.4)

The critical value λi is then computed from Equation 7.6, developed by Rosner[67]:

λi =
(n− i)tn−i−1,p√

(n− i+ 1)(n− i− 1 + t2n−i−1,p)
(7.5)

Where tn−i−1,p is Student’s t-distribution with (n-i-1) degrees of freedom, and
probability p is determined from 7.6:

p =
α

2(n− i+ 1)
(7.6)

37

CHAPTER 7. AUTOMATED REASONING

Figure 7.1: Flow chart for implementing many-outlier procedure. From [49]

α is provided by the user, and is the probability of incorrectly declaring outliers
when none exists.

If the extreme studentized deviate is larger than the critical value, the data
element is marked as an outlier, and in any case, it is removed from the data set,
before the process is started all over. If i equals the number of potential outliers,
the procedure is finished, and extreme values or outliers are found.

The method also proposes a way of using a modified z-score to determine the
severity of a an outlier, which will not be covered here.

38

8
Mobile Development

The two dominating operating systems for smart phones and tablets as of 2012
are Android from Google Inc. and iOS from Apple Inc. Together, these two have
82% market share[4]. Several other operating systems are also available at the
market, common platforms include BlackBerry OS from RIM, Windows Phone
from Microsoft and Symbian OS from the Symbian Foundation.

An IDE1 with an SDK2 targeting the platform is normally used to develop
applications for these operating systems. Tools for writing, testing and deploying
applications for the platform are provided from different vendors. These often
include an emulator or a simulator, to eliminate the need for a physical device at
the beginning of the development process. After an application is developed and
has been tested, it is possible to publish it in an online application store. The
processes for doing this are varying, and depends on the platform.

In this chapter, iOS will be presented. For a presentation on Android, see
Appendix B.

8.1 iOS
The information in this section is gathered from the books Programming iOS 4[65]
and iOS 5 Programming Cookbook[64] as well as the iOS Developer Library3.

iOS is Apple’s mobile operating system, and runs on iPhone, iPod Touch and
iPad. It’s derived from Mac OS X, and is a Unix-like operating system.

Apple’s IDE is called Xcode, and provides debugging and a simulator. The
coding is carried out in Objective-C. It is possible for anyone to develop applications
and run them on the simulator, but to run applications on an actual iOS device,
an iOS Developer Account is needed. This costs 99$ a year. With a Developer
Account, up 100 different devices can be used for testing applications.

1Integrated Development Environment
2Software Development Kit
3iOS Developer Library available at http://developer.apple.com/library/ios/navigation/

39

http://developer.apple.com/library/ios/navigation/

CHAPTER 8. MOBILE DEVELOPMENT

iOS supports a limited form of multitasking from iOS 4 onwards, which means
that as a developer, you can let some applications run in the background. These
background applications are limited to playing audible content, navigating, Voice
over Internet Protocol or receiving regular updates from external accessories.

8.1.1 Objective-C

Objective-C is an object-oriented language layered upon C, which means that C
code can be used in Objective-C applications. To invoke a method on an object, a
message is sent to the object by using the Objective-C syntax with brackets:
[object method:argument]

As any object oriented language, Objective-C is modularize into classes. A
basic example of a class header file can be seen in Listing 8.1.

Listing 8.1: Class interface

1 @interface class:superclass
2 - (return type) method:(argument type)argument;
3 + (return type) method2;
4 @end

The class is declared between the @interface and @end compiler directives. Meth-
ods declared with a - sign are instance methods and can only be invoked on a par-
ticular instance of the class. Methods declared with a + sign are methods that can
be called on the class itself, without any instance of it. Implementation of a class
is done in a file with a .m extension between @implementation and @end compiler
directives.

Properties

Objective-C allows for adding variables to classes which can be addressed via dot
notation. Calling class.property does not really directly address the variable,
but invokes getter and setter methods for the property. Properties are declared
in the interface with the @property keyword, and in the implementation with
@synthesize. @synthesize makes the compiler automatically generate getter and
setters.

Properties can be defined with several attributes:

• nonatomic - For properties that are not meant to be accessed by several
threads at the same time. Unless this attribute is specified, any property is
accessed with locking to ensure that it is thread-safe.

• strong - This property will be valid until the end of its scope and then
automatically released.

• weak - When the object this property points to gets deallocated, the property
is set to nil.

• unsafe unretained - Points one property variable to another, and if the
other variable is released, this will point to a point in memory which might
make the application crash if it is referenced.

40

8.1. iOS

• getter=gname, setter=sname - Can be used to give the getter and the setter
methods of a property different names than the default names.

• readonly, readwrite - Readonly can be used to not create a setter for the
propery, while readwrite is the default property.

ARC

Automatic Reference Counting (ARC) was introduced in Xcode 4.2[35]. ARC
provides automatic memory management of Objective-C objects. Previously, all
objects needed to be deallocated by the programmer. This is now taken care of by
ARC, and calling dealloc on an object will result in a compiler error[41]. To make
sure ARC is able to clean up correctly, all resources should be set to nil when a
view is unloaded.

8.1.2 Application Life Cycle
The states an application may be in are shown in Figure 8.1. Any app that has
not yet been launched or has been terminated, is in the not running state. When
an app is being brought to the foreground or background, it transitions through
the inactive state. In this state it is not receiving any events. In the active state,
the application is in normal running mode and responds to events. If an applica-
tion is getting suspended, or will run in the background, it will transition to the
background state. It is also possible to launch an application directly into the back-
ground state. In the suspended state, the application is still in memory, but it is
not executing any code. Suspended applications will be automatically terminated
by the system[21].

Figure 8.1: Life cycle states of an iOS app [26]

41

CHAPTER 8. MOBILE DEVELOPMENT

8.1.3 Intra-Application Communication

Protocols and Delegates

A protocol is a list of method declarations that can be implemented by any class[33].
The class declaring the protocol, can use this to invoke the methods in another
class, adopting to the protocol. The class adopting the protocol is responsible for
implementing the methods.

When a class is adopting a protocol, it is said to be a delegate of it. It must thus
register itself as a delegate of the protocol-declaring class, which in turn can invoke
methods by sending a message to its delegate(s). In this way, the class declaring
the protocol won’t need any knowledge of the delegate.

Declaring a protocol is done by using the @protocol compiler directive, and
the protocol’s methods can be marked as either optional or required by using the
@optional or @required keywords. To adopt to a protocol, the adopting class
must list the protocol in angle brackets after its superclass name:
Class: Superclass 〈Protocol〉

Notifications

NSNotifications[24] can be used to broadcast events with or without encapsu-
lated information. Any object may register to the notifications and use it to take
action. It is also possible for an object to register to notifications from outside its
application, such as notifications for the music playing in the background etc.

It is not possible to guarantee the delivery time of a notification, delays from a
few milliseconds up to seconds may occur. Notifications should thus not be used
in time critical applications.

Passing Data Between Scenes

By using an object called UIStoryboardSegue[28], it is possible to pass data from
one scene to another. These objects are created by the storyboard runtime and are
used to prepare for transitions between view controllers. They also contain infor-
mation about the view controllers. This information can be used to call methods on
the view controller that is about to appear, and thereby passing data to it. When
a transition is about to happen, the prepareForSegue method is called, and this
method must be implemented to call methods on the destination view controller.

8.1.4 Application Files

When a new project is created in Xcode, several files are also automatically created
and added to the project. These include the application delegate, the storyboard
and one or more view controllers. These will be more thoroughly explained in this
section.

42

8.1. iOS

Application Delegate

The application delegate implements the UIApplicationDelegate protocol[27]
which provides information about important events in the application’s life cycle.
Important methods to implement are:

• didFinishLaunchingWithOptions - Tells when the application has launched.

• applicationDidEnterBackground - Tell that an application that supports
background exectution will enter background. This method should release
shared resources, save user data and stop updating of user interface.

• applicationWillEnterForeground Tells that the application is about to
move from the background state to inactive state.

• applicationDidBecomeActive - Tells that the application has moved from
the incative to the active state.

• applicationWillResignActive - Tells that the application will move from
the active to the inactive state. This could be due to an incoming phone call,
or when the application is quitted by the user.

• applicationWillTerminate - The application will terminate. This method
should release all shared resources as well as saving user data etc. If this
method is not returned before five seconds have passed, the process may be
killed by the system.

View Controller

A view controller manages a single screen, and all its subviews [31]. It implements
how the program should respond to user interaction. Important functions of the
view controller to be overridden when subclassing it are presented below:

• viewDidLoad - Called when the view is loaded into memory. Typically the
first time in the application it is shown on the screen.

• viewDidUnload - Called when the view has been released, and where any
final cleanup should happen.

• viewWillAppear - Called every time the view is about to appear on the
screen.

• viewWillDisappear - Called every time the view is about to disappear from
the screen.

Storyboard

The storyboard lets the developer create the entire UI4 of the application, as well
as specify the connections between the different scenes. A scene is a single screen
on the iOS device, and each scene is controlled by a view controller.

In the different scenes, it’s possible to drag and drop different types of views,
such as labels, buttons, images etc. to the screen. These can then be connected to

4User Interface

43

CHAPTER 8. MOBILE DEVELOPMENT

properties in the scene’s view controller, which gives easy access to them progra-
matically. It is also possible to connects events from e.g. buttons to methods that
will be called when a user interacts with them.

A screenshot from Xcode with the storyboard builder can be seen in Figure 8.2.
Here, a tabbed application with three scenes is shown. The transitions between
the scenes is managed by a tab controller, and are marked with arrows. On the far
right, all the outlets of a scene and the properties or methods they are connected
to can be seen. The header file of the view controller controlling one of the screens
and containing outlet properties is at the bottom.

Figure 8.2: Storyboard in Xcode

A storyboard is automatically created when creating a new project, with cor-
responding view controllers depending on what kind of template is used.

8.1.5 Bluetooth in iOS

Apple only provides use of Classic Bluetooth for developers via the Game Kit[22].
This is a framework ment to create social games which can be played by two players
over a Bluetooth or WiFi connection. It can also be used for other applications
to exchange data, but can only be used to connect between iOS devices. There
are Bluetooth frameworks available online, but these require that the iOS device
is jailbroken5, and the application could then not be published in the Apple App

5Jailbreaking an iOS device means to gain root access to the operating system, thereby re-
moving the limitations set by Apple and being able to install applications not authorized by
Apple[43]

44

8.1. iOS

Store.
Newer versions of iOS products (such as the new iPad and iPhone 4s) supports

BLE as well, which can be used in master-mode to connect to peripherals[17], such
as pulse monitors, without any restriction.

8.1.6 Health in iOS
There are several applications related to health and medicine available for iOS.
This includes first aid applications and symptom checkers as well as sleep cycle
analyzers that wake the user up at the most appropriate time in their sleep. These
are all available from the Health and Fitness section in Apple’s AppStore.

45

CHAPTER 8. MOBILE DEVELOPMENT

46

Part III

Implementation

Chapter 9 . 49
Evaluation and selection of wireless sensor-node platforms

Chapter 10 . 55
Development and nature of a body-worn step and orientation
sensor

Chapter 11 . 59
Test environment setup, installation of sensors

Chapter 12 . 66
Local data concentration, -storage and -serving on minimal
Linux-capable hardware

Chapter 13 . 71
Interception and parsing of wireless sensor data

Chapter 14 . 84
Classification and interpretation of acquired data

Chapter 15 . 99
Presentation of real-time-, aggregated- and interpreted data
on the iOS platform

Overview of the total implemented system
The figure below shows an overview of the structure and data flow in the system.
The leftmost box shows that in the house used as test-environment, there is a
processor board running Linux which works as a concentrator for various wireless
sensor data. This data is stored in a database and can be processed locally at the

Figure 8.3: General structure of data flow from sensor nodes through a concentrator,
through an internet gateway, through an interpreting mechanism to a presentation
platform.

user’s home, or can be sent via a gateway to an interpreting process running on a
remote machine. These topics will be covered in Chapters 9 through 13.

The middle box gives a taste of how the further sensor interpretation is performed,
taking advantage of concepts discussed in the background chapters. This interpre-
tation framework is presented in Chapter 14.

Chapter 15, the last chapter of the implementation, will describe the presenta-
tion platform for the data, an Apple iOS application named bHome.

48

9
Sensor Types and Wireless Stack Selection

In a Wireless Sensor Network(WSN), sensors and wireless network are needed. The
selection of sensor types and wireless solution for a node are however somewhat
intertwined. Ideally, components like the antenna, radio, processor and sensor
should be independently selectable. But using available off-the-shelf products while
maintaining interoperability often means compromising either on the radio stack
quality or on sensor type diversity within a given stack. Three possible roads to
an implemented WSN can be classified:

Figure 9.1: Generic Wireless Sensor Node

Fully Customized First of all it is eminently possible to make a fully customized
node where the entire chain of components seen in fig 9.1 are chosen from a catalog
of components and assembled.

Existing WSN Platform Secondly, one can buy a wireless board where host MCU,
wireless communication protocol stack and antenna are alerady provided and tuned,
then simply add various sensors.

49

CHAPTER 9. SENSOR TYPES AND WIRELESS STACK SELECTION

Existing System Finally it is possible to use complete wireless sensor node sys-
tems and redirect the sensorial output into an application.

What we must consider then, are the following questions:

• What types of sensors give relevant context information

• What combinations of the above solutions exist and how do they compare in
terms of:

- Price
- Reliability
- Integration cost

9.1 Sensor Type Selection
Different sensor types are discussed in Chapter 5 on page 24, and the sensor types
required for the implementation are given from what we would like to know about
the subject’s state, namely:

• Location — Because stays in different rooms have different significance.

• Activity level — To perhaps correlate with overall health.

• Activity — What the subject is doing and interacts with.

9.1.1 Location
For location, two main categories are defined in Chapter 5: Stationary and ambulant/body-
worn.

Stationary

With regards to robustness, it is obvious that stationary systems are easier to
implement and maintain, and has the advantage that it’s impossible to forget
wearing them. Stationary sensors are also the most common type commercially
off the shelf, as they are widely used in alarm systems et cetera.

Body-Worn

Aside from the fact that body-worn sensors are more obtrusive and easy to forget, as
will be discussed in the results chapter, they offer a couple of significant advantages:

• Higher spatial resolution — In that while the calculated location may be a bit
fuzzy, it is distributed around a point. On the other hand, infrared sensors
can only define zones equal to their field of view with uniform probability
distribution.

• Scalability — If more than one person inhabits a domicile, it is impossible
to know which person triggered an infrared-sensor event, but an arbitrary
number of active tags may co-exist in close proximity.

50

9.2. Wireless Properties of the Stacks

9.1.2 Activity Level

The same distinction can be made between stationary and ambulant systems for
detecting activity level, with the same reservations. Activity level can further be
divided into locomotion or activity in-place.

Stationary

Stationary systems typically have low – e.g. infra-red – and/or discontinuous – e.g.
pressure sensors and switches – spatial sensing capability. As such they are not
well suited to differentiate between transitive and intransitive activity except for
zone crossings or switch activation.

Body-Worn

With body-worn systems, one can either differentiate the location with respect
to time to establish movement, or one may use an accelerometer or a vibration-
sensing ball-switch to realize a pedometer. Both location and activity sensing can
be implemented on the same device, thus offering superior data-quality compared
with stationary systems.

9.1.3 Environment Interaction/Activity

Activity in this regard corresponds to interpreted context as described in Chapter 6,
and may be derived from a variety of sources. Aspects of different sensors is
described in Chapter 5. For an implementation it could be interesting to look at
activities of daily life, such as:

• Refrigerator use.

• Kitchen appliance use.

• Washing machine use.

• Sitting or lying down.

It could be helpful to instrument all appliances to monitor their use, and for in-
stance add pressure mats to furniture, but cost permits only a selection of activites
to be monitored in this project.

9.2 Wireless Properties of the Stacks

From the discussion on radio- and protocol properties in chapter 4 it is clear that
from a robustness and scalability perspective, two-way solutions with a proper
media access layer are superior to a näıve transmitter-only solution such as one
from Nexa.

Secondly it is clear that from a topology perspective, Bluetooth is less well
suited for a wireless sensor network than are for instance Z-wave or Zigbee.

51

CHAPTER 9. SENSOR TYPES AND WIRELESS STACK SELECTION

9.2.1 Diversity and Cost

There are currently no Bluetooth or Bluetooth Low Energy sensors usable for
home-automation. Below is a rough price comparison between systems:

Component Zigbeea Z-Waveb Nexac Efergyd

Motion sensor 25£ 39e 229 NOK
Magnet switch 25£ 39e 161 NOK

Powermeter 29£ 49e 699 NOK
Lightswitch 20£/ 80$ 40e 199 NOK

Relay 25£ 35e 70 NOK
Interface dongle Supplied 54e 450 NOK

Table 9.1: Sample component costs from various vendors

With a setup with 9 motion sensors, 16 magnet switches, 4 light switches with
relays and one powermeter, the cost including import taxes adds up to:

• ZigBee: 9,830 NOK

• Z-Wave: 12,600 NOK + 18,000 NOK for API documentation

• Nexa+efergy: 6,400 NOK

9.2.2 Availability and Ease of Integration

ZigBee

The ZigBee market is not as mature as for instance Z-Wave, and the components
and vendors we found were few, with unique centrally managed solutions, developed
separately by each vendor.

The ZigBee Home Automation standard states that certified products are in-
teroperable, but we have found no instances in literature or on hobby forums where
anyone have intercepted data from or combined sensors from different vendors.

In addition, most vendors have British or American sockets, including the ven-
dor used in the example above which had the widest selection of products.

Z-Wave

There is a plethora of vendors using this protocol, including many with European
wall plugs. There is also a hobbyist community dedicated to this technology, but
the protocol is proprietary, the official software runs only on Windows and open-
source attempts to reverse engineer the protocol are at best imperfect.

ahttp://www.alertme.com
bstore.zwaveeurope.com
cclasohlson.no, elektroimportoren.no
dclasohlson.no

52

9.3. Final System

The computer-interface is simply serial communication with special packets.
These packets are easily created with access to the API documentation and a
developer kit which costs 3,000 USD.

Nexa/Efergy

While the simplicity of these protocols have a decidedly negative impact on relia-
bility and scalability, it opens the door for a wide hobbyist community.

Open-source projects such as Teldus TellStick have implemented parsing of
many commercial systems using OOK modulation, including Nexa, and private
enterpreneurs like Jon Petter Skagmo offer similar bundles of radio receiver dongle
and decoding software.

9.3 Final System

Price, sensor diversity, ease of integration and availabilty all considered, the system
from Nexa is the preferred choice for stationary nodes in a pilot-study such as this
thesis. Passive infrared activity sensors where bought at Clas Ohlson, and magnet
switches for doors etc were bought on elektroimportoren.no.

For monitoring power consumption and detecting appliance use, an Efergy e2
powermeter was also bought at Clas Ohlson.

To look at the performance of body-worn sensors we have used a demonstration
kit from Texas Instruments which uses Bluetooth Low Energy, runs on a coin-cell
battery, has an on-board accelerometer and comes with a transceiver USB-dongle.

For reception of Nexa sensor data, we looked at TellStick1, but they were sold
out at the time of implementation, so the MultiTRX USB-dongle produced by Jon
Petter Skagmo was used for data reception. MultiTRX will be described further
in Chapter 13 on page 71.

The actual test-setup will be described in Chapter 11 on page 59, while the
price of the entire system can be seen in Table C.1 in the Appendix.

9.3.1 Discussion

As already mentioned, most wireless solutions outperform the ones used by Nexa
and Efergy. However, pricing weighed heavily in our decision. It was also important
to get a system working within the time constraints of the thesis, and knowing that
at least Nexa is widely used in hobby projects gave us a measure of confidence. It
was incorrectly assumed that Efergy used the same modulation and frequency as
Nexa, and this will be discussed in Chapter 13.

Because “System Nexa” devices don’t have any media access control, we decided
against using wireless power switches from this system for monitoring e.g. use of
lighting because of the almost certainty of collision. Even though they would give
interesting information on the subject’s behaviour, the interference between sensor

1www.telldus.se, an USB interface to Nexa and other OOK-based systems

53

CHAPTER 9. SENSOR TYPES AND WIRELESS STACK SELECTION

transmissions and user appliance control would at some point frustrate the user
and hinder daily activites.

54

10
KeyFob “Smart Sensor”

To get a better understanding for how body-worn sensors perform compared to
stationary sensors and to attempt an implementation of a smart sensor, a com-
bined orientation sensor and pedometer was realized. A Texas Instrument CC2540
KeyFob evaluation board was used, as the previously developed sensor platform
mentioned in the introduction was unfortunately lost in an administrative oversight
after evaluation.

Figure 10.1: Texas Instruments’ Bluetooth LE evaluation kit. Displayed here:
Debugger, KeyFob and USB transceiver dongle. Picture from ti.com.

The details of the Bluetooth LE stack, device profiles and programming with
the TI framework are covered in Section 4.5 and in Normann/Skjønsfjell[66]. This
chapter will describe:

• TI’s example project “KeyfobDemo” which this sensor is based on

• Modifications and additions to the TI’s project

• Developed pedometer GATT profiles and characteristic values

• Step detection algorithm

55

CHAPTER 10. KEYFOB “SMART SENSOR”

10.1 KeyfobDemo Project
To the outside, this application exposes GATT profiles which a Bluetooth LE
master device can use to read the accelerometer status and turn the accelerometer
on and off:

UUIDa Description Type

0xFFA1 Enable/disable Accelerometer Read/write
0xFFA3 X-axis value Notification
0xFFA4 Y-axis value Notification
0xFFA5 Z-axis value Notification

Table 10.1: KeyfobDemo GATT profile parameters relevant to accelerometer

After enabling the accelerometer, the master device must then register for noti-
fications. When this is done, the KeyFob will transmit accelerometer values every
connection event1 if the values have changed by more than a defined threshold.

Internally in KeyfobDemo, the accelerometer is polled over SPI every 50ms by an
OSAL2 timer callback. The timer event callback calls a function accelRead that
reads the accelerometer’s registers and decides whether or not to post notifications
to the GATT layer in the framework.

10.2 Modifications and Additions
A new GATT profile was implemented (movement.h, movement.c on the CD) to
handle input and output between Bluetooth master devices and our smart sensor
implementation. Table 10.2 shows the GATT UUIDs which act as gateways to the
program.

The accelerometer GATT profile was changed to let the X-, Y- and Z-axis values
be of Readable- instead of Notification type. In addition, accelRead was changed
to update the characteristic values associated with each UUID instead of sending
notifications.

At the end of accelRead, a step detection algorithm was added which then is
run every time new data is received from the accelerometer.

10.2.1 “Movement” GATT Profile
Table 10.2 on the facing page shows the values the Movement profile exposes to a
host device. The “acceleration magnitude” thresholds affect the performance of
the step detection algorithm, while the “Steps taken” value is incremented on each
detected step and reset when read by a master.

aUniversally Unique Identifier
1Connetion events take place every 100ms by default even if no data is scheduled for transfer.

This is used by some applications for proximity detection.
2Operating System Abstaction Layer

56

10.2. Modifications and Additions

UUID Description Type

0xFFF1 Step magnitude low threshold R/W
0xFFF2 Step magnitude high threshold R/W
0xFFF3 Steps taken R
0xFFF4 Acceleration magnitude R

Table 10.2: Values available in the developed Movement GATT profile

“Acceleration magnitude” is included for debugging purposes, as the length

|~a| =
√

accx2 + accy2 + accz2 (10.1)

should according to the accelerometer datasheet be approximately 54, correspond-
ing to 1 g when the KeyFob is at rest.

10.2.2 Movement Detection
In the specialization project[66] every accelerometer sample was sent to a host
device via Bluetooth LE. Hatlevoll[46] showed in his master’s thesis that radio
transmissions take a big toll on battery life.

To mediate this and to conform to the “Smart Sensor” ideal briefly described
in Chapter 6 – sometimes called In-network processing – a peak detector was im-
plemented to count the number of sharp movements experienced by the sensor.

(a) Movement detection states (b) Illustration of magnitude over time

Figure 10.2: Design of step detection

This approach has several advantages:

• Data is not lost if a connection is broken, because the receiving party is not
dependent on a continuous stream of samples.

57

CHAPTER 10. KEYFOB “SMART SENSOR”

• As a corollary, recipients can poll data when they are ready for it.

• Emulating the cue-principle in chapter 6, much complexity is transparent to
the recipient.

• Battery life is improved because processor time is much cheaper than trans-
mission time.

Figure 10.2a on the previous page shows the structure of the peak detector. A
state machine structure was used to be able to emit only one signal every time the
magnitude of the acceleration had risen above and fallen below some set thresholds.

Figure 10.2b on the preceding page shows an illustration of the magnitude over
time crossing the thresholds, the first sample causing a state change marked in red.

Fewer states would also have been a workable solution, but we need to at least
know if we are on the way up or the way down, and more states have the effect
of working like a low pass filter that helps ensure us that the signal rises and falls
“intentionally”, if not entirely monotonically.

Peaks are only calculated on the projection of ~a onto a calculated ~gb representing
the assumed up-direction of the body-frame with respect to gravity. This is done
to ignore sideways jerks. The formula used to get the acceleration only in the
up/down direction with respect to the gravity field is then:

aĝ =
~a~̂g

~̂g~̂g
(10.2)

where ~̂g is made by averaging the received samples over some seconds, and also
give us a stable measure of the subject’s orientation in space.

10.3 Discussion
The intention with this node is, as mentioned, primarily testing the actual use of a
body-worn sensor on a subject. Some other measure of activity than steps, such as
simply summing the difference between instantaneous and low-passed acceleration,
could have been better overall. Step detection was chosen as a measure of activity
because it is something everyone is familiar with, and orientation sensing comes
naturally from the use of an accelerometer.

As we had only an accelerometer available on the board and not, for instance,
a mechanical vibration sensor, we had to power the accelerometer continuously for
accurate data. Low battery life considerably limits the usefulness of this particular
sensor, but nevertheless gives insight into the type and quality of data available.

58

11
Test-Case Setup

11.1 Test Subject

The system was installed at the house of the test subject. The test subject is an
86 year old male, living alone in his own house. The test subject is in good health,
and is able to do everyday chores by himself. He is the father of our supervisor,
and volunteered to let his house be used for this pilot-study.

Figure 11.1: 3D model of test subject’s house, showing the field of view of one of the
livingroom sensors

59

CHAPTER 11. TEST-CASE SETUP

11.1.1 Description of the House

A 3D model of the house was created using Google Sketchup and can be seen in
Figure 11.1. This figure also illustrates the coverage area of a motion detector.
A not in scale floor plan was also created, using an online floor plan tool1 and
can be seen in Figure 11.2. Here, all the main rooms of the house are numbered
according to their zone id in the database, and Table 11.1 sums up the names of
the rooms. The rooms not numbered are extra bedrooms and storage, which are
not in frequent use.

Room

1 Hallway

2 Living room

3 Bathroom

4 Small toilet

5 Bedroom

6 Washing room

7 Kitchen

8 Airlock

9 Outside

10 Freezer room

11 Basement staircase

Table 11.1: Room description

11.2 Placement of Sensors
The sensors chosen to be placed in the house were motion detectors and magnet
switches from System Nexa, as well as an electricity monitor from Efergy. To
investigate where the different sensors should be placed, the 3D model of the house
was examined and the following considerations were made:

• Decide what doors and rooms should be monitored.

• Find a suitable place for the concentrator to be unobtrusive, but in range of
all sensors.

• Place sensors to avoid collision between sensor packets.

It was decided upon placing magnet switches on all the most commonly used
doors. This excludes the doors to the unused bedrooms and storage room. Motion
detectors were chosen to be placed in the same rooms as the magnet switches, apart
from in the basement staircase, airlock, washing room and freezer room as well as

1Autodesk Homestyler, can be found athttp://www.homestyler.com/designer

60

http://www.homestyler.com/designer

11.2. Placement of Sensors

Figure 11.2: Floor plan of test subject’s house

61

CHAPTER 11. TEST-CASE SETUP

outside. These rooms were omitted as it was considered that they were either so
rarely used that the cost/use ratio was not defendable, or that the normal stays
in these rooms would be of such transient nature that the transmission from other
sensors would be compromised.

Placement of the motion detectors also try to make sure that their detection area
does not overlap with another motion detector. This is done to reduce the amount
of interfence from the sensors. But as the motion detectors always send a “False”
message a few seconds after detecting action, some interference is inevitable. An
exception has been done for the living room, which includes two sensors, as the
shape of the room makes it hard for one sensor to cover the entire zone.

The range of the signals sent from the sensors where tested in the hallway at
the university before placement, and it was discovered that the range was approx-
imately 16 meters. Packets were still received from a larger distance, but with a
very limited and undeterministic amount of packets. From this, it was decided that
the concentrator should be placed as close to the center of the house as possible.

A figure of the house marked with sensor placement can be seen in Fig 11.2.
Note that the upper part of the house where no sensors are placed have been
removed to scale the image better. The red lines are doors equipped with magnet
switches and the red dots are motion detectors with their approximate direction.
The pink dot is the Efergy energy monitor.

The blue dot is the concentrator, which is placed behind the television in the
living room. This location was chosen as it is close to the center of the house in
addition to be hidden from view.

11.2.1 Motion Detectors
Eight motion detectors were placed in the house. They were mounted on the wall
either by screwing them directly onto the surface, or by screwing the detector onto
a piece of wood and glue this on by using double-sided adhesive tape. The motion
detector mounted in the bathroom, together with its approximate detection area
is shown in Figure 11.4

During the installation, two motion detectors were placed in the bathroom. One
covering the toilet, and one covering the shower. After initial testing, it became
evident that the sensor covering the shower was affected by the opening of the
door, and that it had problems detecting movement inside the shower. This could
be due to the fact that the shower is covered inn glass, or that it was placed too
high. However, it was decided to remove this sensor, as two of the other sensor’s
bought was not functioning, so this replaced one of them.

11.2.2 Magnet Switches
13 magnet switches were mounted on the doors by using the double-sided adhesive
tape that came with the sensor. A magnet switch placed on the bedroom door can
be seen in Figure 11.5.

Magnet switches are placed on most doors, as well as on the refrigerator door
and washing machine lid. It was also made an effort to place a magnet switch on

62

11.2. Placement of Sensors

Figure 11.3: Floor plan of house with sensors

63

CHAPTER 11. TEST-CASE SETUP

(a) Motion detector on wall (b) Coverage area

Figure 11.4: Motion detector in bathroom

Figure 11.5: Magnet switch on bedroom door

the the microwave oven lid, but this did not attach and is therefore not included
in the analysis.

11.2.3 Efergy

The Efergy energy monitor was attached to the extension cord the microwave oven,
coffee boiler and water heater was plugged into. The attachment of the transformer

64

11.3. Discussion

clamp can be seen in Figure 11.2.3. The plastic isolation of the cord is opened, and
the clamp if fastened around one of the conductors inside. This is done because the
transformer measures the current induced by the magnetic field, and if the clamp
is fastened around the entire cable, the opposite polarities of the conductors inside
cancel out the magnetic field, leaving no magnetic field to measure.

Figure 11.6: Efergy transformer clamp attached to extension cord

11.3 Discussion
To get a more general coverage of the house, more sensors could be beneficial. But
more sensors might leed to more packets being dropped and thereby resulting in a
less accurate set of data. It was therefore regarded as better to get more accurate
readings from fewer sensors and work with this data.

65

12
Local Concentrator and Communication Node

In a deployed sensor system, some device needs to concentrate and store the various
sensor data. This could essentially be any device with an interface to a storage
medium and wireless communication. For wide adoptation, it is not cost-effective
to use a fully fledged personal computer, and developing a custom device e.g. using
an 8-bit architecture would take time and be error prone, even though many OS
frameworks are available for free.

Figure 12.1: PandaBoard: 11cm x 10cm includes dual-core 1 GHz ARM Cortex A9,
Ethernet, USB, 1GB RAM, SD-card slot, 1080p HDMI out, runs OS from SD-card.

Luckily, the last couple of years have seen much development on the mobile
device front, with some of the effort spilling over into the embedded computing
field. Two examples of off the shelf Linux-capable devices are Raspberry Pi1; a
25$ device with HDMI, Ethernet, USB, 256 MB RAM and a Broadcom SoC based
on ARM, and PandaBoard2; a 175$ device with more RAM, more connectors, a
wireless IEEE 802.11 interface and a dual-core ARM SoC from Texas Instruments

1http://www.raspberrypi.org
2http://pandaboard.org

66

12.1. Getting Started

Figure 12.2: The concentrator as deployed. (a) Xplain board connected to a test pad
on the (b) Efergy display module, (c) BLE dongle, (d) PandaBoard, (e) MultiTRX
transceiver, (f) Mobile Wifi-Hotspot

originally developed for Android tablets.

A PandaBoard was made available to us by the Department of Engineering
Cybernetics. During development, a serial cable was attached to the D-sub con-
nector which offers terminal output during and after boot of the device. A monitor
was connected via DVI, and a USB keyboard and mouse were also attached. For
network access, an TP CAT5-cable was inserted until the wireless interface was
configured and working.

During deployment, only the receptor dongles were attached to the board and
communication was done via Wi-Fi to a portable gateway. The deployed setup can
be seen in Figure 12.2.

12.1 Getting Started

There are guides for getting started on the PandaBoard website which describe how
a kernel image is written to a SD-card starting at a known offset. When inserted
in the PandaBoard, the bootloader starts executing from there.

67

CHAPTER 12. LOCAL CONCENTRATOR AND COMMUNICATION NODE

12.1.1 Linux Distributions

The kernel image may be any executable code, but is usually a Linux kernel.
Many Linux distributions have been ported to the ARM architecture, including
Angstrom, Ubuntu and Android. Angstrom is a very minimal distribution with a
following in the scientific community, whereas Ubuntu can be configured as any-
thing from a bare-bones server to a desktop workstation.

Both Angstrom and Ubuntu were tested, but at the time of development,
Ubuntu had the widest repository of software packages and is currently the Linux
distribution with the biggest user base and support forums. Ubuntu was therefore
used as a base for our concentrator.

Canonical, the maintainers of Ubuntu, have made an OMAP3-specific version
of Ubuntu available on their website, but it was discovered that it did not work
correctly with some of the modules on the PandaBoard, most notably the Wi-Fi
and Bluetooth module. A developer called Robert C. Nelson4 maintains a fork of
the Ubuntu kernel specifically targeting the PandaBoard.

Using his patches we were able to take advantage of the WiFi-module, and
through collaboration with us he was able to implement a patch to get the Blue-
tooth module working. It turned out, however, that the PandaBoard did not sup-
port Bluetooth Low Energy as was initially assumed. For BLE support, a newer
version of the board called PandaBoard ES is available.

12.1.2 Software Packages

On top of the base installation, some additional packages were installed from the
Ubuntu Universe repository, most notably:

• openssh – Secure Shell, encrypted terminal server and client that communi-
cates over TCP/IP, allowing remote access to the device.

• python with third party serial and mysql packages for logger execution.

• samba – Windows file-sharing service, allowing drag and drop file exchange
with our development workstations.

• mysqld – MySQL server deamon, used for database access.

• ntpd – Network Time Protocol daemon, a service which synchronizes the
device’s real-time clock with official time servers.

• autossh – A software package designed to keep ssh-connections alive, and
reestablish them if necessary.

12.2 Concentration and Storage
Each of the three different wireless dongles (MultiTRX, Xplain-Efergy bridge and
TI Bluetooth LE) appear as character block device nodes under /dev/ in the
file system. As will be described later, each of these are accessed separately by

3TI’s brand of mobile ARM SoCs
4https://github.com/RobertCNelson/stable-kernel

68

12.3. Communication

individual Python programs that parse the serial data and store the output in the
MySQL server via local TCP/IP connections.

12.3 Communication
During development, the PandaBoard was connected to the internet via an ethernet
drop point at NTNU, and communication with the device was done via SSH, SCP5

and Microsoft Windows file sharing.

Figure 12.3: Connecting to the PandaBoard externally. Android Wi-Fi hotspot only
allows outgoing connections, and an external server acting as bridge must be used.

However, our test-subject did not have internet service in his house, so during
deployment a mobile 3G-device running Android 2.3 was used as a Wi-Fi hotspot.
Figure 12.3 shows the local network, and how connections can be made through
the firewall in the mobile hotspot.

The main obstacle in connecting remotely to the PandaBoard is that the hotspot
service on Android doesn’t allow incoming connections to clients from the internet.
Instead, a reverse tunneling approach must be used where the device on the local
network connects to a predetermined host and creates a TCP socket on the host
that allows reverse connection.

ssh -f -N -R 19022:localhost:22 tunnel@imbesil.ed.ntnu.no

Shell Code 12.1: Arguments force background mode and creates a reverse tunnel
socket on the remote host.

Shell Code 12.1 shows the command that must be executed on the Pand-
aBoard to establish a reverse tunnel. The arguments are <remote port>:<local

endpoint:port> and <remote user>@<remote host>, meaning that localhost:22
on the PandaBoard appears as localhost:19022 on the remote machine. The re-
verse connection is routed through the connection initiated by the PandaBoard,
indicated by dotted lines in Figure 12.3.

5Secure Copy, an encrypted file transfer protocol

69

CHAPTER 12. LOCAL CONCENTRATOR AND COMMUNICATION NODE

This has two implications: A host machine with a fixed address must be avail-
able, and most importantly, the PandaBoard must autonomously connect and if
necessary reconnect to the remote host.

12.3.1 Maintaining a Persistent Connection
Several layers of the communication stack must be configured on the PandaBoard
for the WiFi to remain connected. Two separate mechanisms were used to ensure
a connection.

On the lowest level, a shell script was made which runs at boot-time and at
regular intervals to set up the wlan0 wireless base interface, configure and run the
wpa supplicant service which is needed for encrypted Wireless LAN connections.
Finally it establishes a reverse tunnel as needed. For redundance, the autossh

package, which automagically monitors an established tunnel was used on a sec-
ondary socket.

For security, outside network access was made by a designated user, tunnel,
with restricted access privileges, relying on the operating system to prevent esca-
lation of privilege attacks.

70

13
Sensor Data Reception

As discussed in Chapter 9, a PIR sensor of the Nexa code-wheel type, a magnet
switch of the Nexa self-learning type, an Efergy clamp-type amperemeter and a
Bluetooth LE “KeyFob” demo-kit from Texas was chosen for instrumenting the
home in our test-case.

Figure 13.1: General signal path for the intercepted OOK and FSK sensor node data

In this chapter we will consider the reception, packet parsing and storage for
these four sensor types, along with their specific software and firmware implemen-
tations. Figure 13.1 shows the general structure used in each case.

13.1 Nexa PIR and Magnet Using MultiTRX

Interception of packets from the Passive Infra-Red (PIR) motion detector and wire-
less magnet switch is accomplished using an USB-dongle called MultiTRX, pro-
duced and sold by Jon Petter Skagmo, currently a Master’s student in Electronics
at NTNU.

This device corresponds to the first two blocks in Figure 13.1.

13.1.1 MultiTRX

An overview of the device is shown below in Figure 13.2. The RF-IC performs
an envelope detection similar to Figure 3.3a on page 12 and outputs the resulting
waveform and an analog voltage representing the Received Signal Strength Indica-
tor (RSSI) to the PIC microcontroller on the MultiTRX board.

71

CHAPTER 13. SENSOR DATA RECEPTION

The firmware already includes parsing for Nexa self-learning code used by the
chosen magnet switch, along with several other protocols.

(a) MultiTRX dongle (b) Simplified diagram

Figure 13.2: MultiTRX wireless 433.92 MHz OOK Tranceiver

The firmware-code is proprietary, but was graciously made available to us for
this thesis. Programming is done in C, using MPLAB IDE which is freely available
from Microchip Technology Inc.

Aside from device, the firmware consists of a loop which monitors pin change
from the Linx chip seen in Figure 13.2b and sends the duration of the previous
high or low period to all the included parser routines, which in turn call a serial
transmit function if a packet has been correctly received.

13.1.2 PIR
A parser for this type of device was not included with MultiTRX and had to be
developed. The PIR sensor uses two user-changeable code-wheels each with 16
values to determine the identification the sensor will send out.

Development consisted of:

1. Adding continuous RSSI readings during the program loop.

2. Sending the RSSI value as an argument to the parsing routines.

3. Making a skeletal parsing routine that sent every high/low duration with a
high RSSI value (to exclude noise) serially to a Python program.

4. Visually identifying the waveform patterns.

5. Sketching and testing waverform parsing in Python.

6. Creating a firmware parser for the protocol.

Waveform

Looking at the code for other protocols supported by MultiTRX and observing the
captured waveform, it was likely that this one used two periods for each bit, the
periods differentiated by having a low or a high duty-cycle.

Figure 13.3 on the next page shows the identified bit-patterns sent by the PIR
sensor. Figure 13.4 on the facing page shows how a byte-nibble is constructed from
the bits.

Each packet is separated by a delay much larger than the bit-lengths. When
all bits from a packet are combined, they form a message of 12 bits, as seen in
figure 13.6 on page 74.

72

13.1. Nexa PIR and Magnet Using MultiTRX

(a) 0-bit (b) 1-bit

Figure 13.3: Nexa Code Wheel bit-patterns. RF-signal simulated with Matlab. Value
is arbitrarily assigned.

Figure 13.4: A bitstream translated to hexadecimal 0xA.

Parsing

The bit- and packet parsing is implemented in C as shown in figure 13.5.

Figure 13.5: Flowchart describing the parsing routine for Nexa Code Wheel.

The C-code is available in on the enclosed CD as nexa codewheel.c in the
MultiTRX folder. Through observation it became evident that the first two nibbles

73

CHAPTER 13. SENSOR DATA RECEPTION

correspond to the house and device code selectable on the sensor device, and that
the last byte contains the sensor value.

Figure 13.6: A complete packet as received from the sensor.

During testing, only the LSB of the data nibble changed in response to forced
sensor input. The remaining bits were constant, and may be battery life indication
or something completely different.

13.1.3 Magnet

The waveform parsing for all Nexa self-learning code products is already provided
and implemented by Jon Petter Skagmo. For self-learning products, each sensor
transmits a longer 28-bit factory-set identification that receiving products must
“learn” by going into a special mode of operation where it will associate its be-
haviour with the next received packet.

13.1.4 Concentration and Storage

The MultiTRX uses a chip from FTDI to create a USB CDC1 end-point that
appears as a virtual serial port on host devices.

A receiver program was developed in Python (serialserver.py on the enclosed
CD) with the following components:

• TCP server to allow outside communication with the MultiTRX dongle

• Serial communication thread that routes received data to listening classes
and writes queued outgoing data.

• A packet parser responsible for checking and handling self-learning and code-
wheel packets.

• A database wrapper responsible for inserting records into a MySQL database.

The data received from the MultiTRX has the following format:

iiiiiiigsp iip

Self-learning: $N1986132091 Code Wheel: $C247

Message Format 13.1: Nexa message formats. i: identifier, p: power on/off, g: group
mode, s: subgroup

1Communication Device Class

74

13.2. Efergy e2 Wireless Electricity Monitor

Where $ denotes the start of a message, N and C signify a self-learning and
codewheel packet respectively. The g,s,p entries are actually sigle bits extracted
from the message frame signifying group mode on, group sub-id and power on/off.

For Code Wheel-device packets the message is transmitted as received from the
RF-chip. It should be noted that although the PIR and Magnet sensors transmit
data differently, they both employ a blind spray and pray method for media access,
transmitting around 50 and 30 packets per event respectively.

13.2 Efergy e2 Wireless Electricity Monitor
The e2 was purchased on the assumption that it transmitted using OOK on the
433.92 MHz frequency and could be used with the MultiTRX directly.

This turned out to be wrong, as it transmits using FSK on a different frequency.
An attempt was made to intercept this data with another tranceiver before finally
listening to the output of the data-pin on the wireless display unit that comes in
the e2 package.

13.2.1 Attempted RF Interception

Identifying the transmitter used in the e2 power meter as an A7201A from Amicom,
the configuration of the chip on the PCB suggests according to the datasheet that
it is set up in the default mode without SPI enabled.

This means it will transmit using FSK on the 434 MHz band with center fre-
quency Frf = Fcrystal × 1023

32 and the default IF2 bandwidth of 200khz[3]. With
the crystal being 13.457 Mhz, FRF = 430.2034 MHz.

Figure 13.7: e2 Power Meter and RFM12B tranceiver connected via SPI to an
Xmega128A1 Xplained board used for attempted interception of power meter data.

An attempt was then made to calibrate an RFM12B module produced by Hope
RF to this frequency over SPI from an Xplain board. Reading back the configu-

2Intermediate Frequency, how much the carrier is offset

75

CHAPTER 13. SENSOR DATA RECEPTION

ration registers on the RFM12B module indicated that it was operating, but no
discernible signal could be observed over the noise on the module output pin.

The cause could not be determined, but is assumed to be because the RFM
couldn’t be configured to the correct frequency as it uses a (more standard) 13.56
MHz oscillator, and the selectable steps don’t quite match the calculated frequency
of the e2 meter. The attempt was then abandoned for lack of time.

13.2.2 Implemented Interception

Inside the display unit in the Efergy e2 package, a fairly large test-pad is laid out
that is connected to the output from the RF chip.

A wire was soldered to the test-pad, and then attached to an analog comparator
pin on an Xmega128A1 MCU as shown in the figure below.

Figure 13.8: Diagram of the connection between the Efergy e2 display-unit and an
Xplain board used for listening to the receiver output.

The Xplain board was programmed in C using AVR Studio. The program uses a
hardware timer and analog interrupt to detect pin state transitions, then transmits
the last state and duration serially to an attached host device.

Waveform

As with the Nexa waveform decoding, this was read into a Python program. The
Xmega uses a 16 bit integer to store each timer value, shifts this left by one and
adds the pin state as the LSB of each high or low duration. This is sent serially as
hexadecimal ASCII characters3 to a Python program. The value is then converted
to a tuple of duration and state in Python for further parsing.

3ASCII characters were used to make debugging easier.

76

13.2. Efergy e2 Wireless Electricity Monitor

Figure 13.9: Output from the Efergy receiver IC displayed by Saleae Logic. Seen here
one complete transmission of a 62W reading comprised of 1. Noise before the gain
control is tuned to the preamble, 2. Preamble, 3. Sync sequence and 4. Data.

Through observation, it became apparent that each bit is sent as one period
with long or short duty cycle. The short duty cycle periods were interpreted as
0-bits, as this resulted in a value of zero in what was believed to be the value-part
of the message frame when no power was measured.

After the system was deployed, a custom parser plugin was written in C for the
Saleae Logic Analyzer4 (SuperAnalyzer under Saleae on the enclosed CD). The
parsed result is identical to the Python implementation, and can be seen with the
captured waveforms in Figures 13.9 and 13.10, showing the output of the developed
Saleae Logic parser plugin.

Figure 13.10: End of sync sequence and two first bytes. Low duty cycle is around
34-38% and high is around 70-74%

Parsing

After manipulating the input to the sensor and reading the value of the accompa-
nying display unit, a picture of how the message frames are constructed emerged.

In figure 13.2 we can see that the value-part of the message from byte 4 to
6 behaves like a floating point number. Note that the byte designated e changes
slower than the bytes comprising f. Between 50W and 62W we see that the fraction
wraps around its maximum value of +215 and the exponent increases.

As the fraction (or mantissa) is 16 bits, and the exponent seems to be stored in
two’s complement form we can convert both to signed integers and try to calculate:

Value =
Fraction

215
∗ 2Exponent (13.1)

4A cheap logic analyzer privately purchased for another project, which allows and encourages
third party parsing plugins, available at http://www.saleae.com/logic

77

CHAPTER 13. SENSOR DATA RECEPTION

byte# 0 1 2 3 4 5 6 7

iiiiiippffffeecc

0.00W 07DADC40000000FD, ID: 0x07DADC, period 6s

29.00W 07DADC40428CFEC9 - f: 17036, e: -2 (frac and exp as int)

36.79W 07DADC4051E8FE34 - f: 20968, e: -2

50.60W 07DADC4070A0FE0B - f: 28832, e: -2

62.10W 07DADC40451EFF5F - f: 17694, e: -1

2760.00W 07DADC4060000461 - f: 24576, e: 4

Message Format 13.2: i: node identifier(assumed), p: transmit period (6, 12 or 18
seconds), f: fraction, e: exponent, c: checksum

Which does not give us the average wattage, but the average amperage during
the previous measuring period. Multiplying this by 230 (which was the setting on
the display unit) we get our final value which matches up perfectly with the value
displayed by the Efergy device.

Wattage[W] = 230[V]× Fraction

215
∗ 2Exponent[A] (13.2)

13.3 Bluetooth LE Dongle
As previously mentioned, the version of the PandaBoard used to run the code was
unfortunately not equipped for Bluetooth LE. Therefore, a BLE dongle from Texas
Instruments is used to connect to the body-worn KeyFob.

A Python program (bledongle.py) was developed to communicate with the
dongle via a serial interface. The program sends commands to the dongle for
connecting to and requesting data from the KeyFob, as well as adding the received
data to the database.

This program will initialize the dongle, connect to the KeyFob and turn on the
on-board accelerometer. Thresholds for the pedometer application on the KeyFob
are set, and data is then periodically requested from the KeyFob and placed in the
database. The source code for bledongle.py can be found on the enclosed CD.

Figure 13.11: HCI packet types, image from [40]

Commands for operating the dongle was found in the TI BLE Vendor Specific
HCI Reference Guide[40]. TI’s PC application for testing BLE applications, BTool,

78

13.3. Bluetooth LE Dongle

was also used to examine the commands sent back and forth, especially in error
situations, which were not discussed very thoroughly in the reference guide. Using
BTool for testing purposes made it possible to make the program more robust by
helping interpretation of error situations, allowing the developed program to take
appropriate measures to maintain the connection to the KeyFob.

There are four types of packets supported by the HCI layer as seen in Fig-
ure 13.11; Command Packet, Asynchronous Data Packet, Synchronous Data Packet,
and Event Packet. The packet type is determined by a byte value preceding the
packet.

The packets sent to the dongle are command packets. These include an Op-
code, length of the following parameters and the parameters themselves as seen in
Figure 13.12.

Figure 13.12: Command packed, image from [40]

Packets from the BLE dongle are event packets. These are sent from the dongle
as acknowledgements and replies to command packets such as read requests. The
event packet format can be seen in Figure 13.13 and consists of an event code,
length of the following event parameters and the parameters.

Figure 13.13: Event packet, image from [40]

With this knowledge, it’s possible to distinguish the different messages received
from the dongle and handle them appropriately.

79

CHAPTER 13. SENSOR DATA RECEPTION

Both receipt of messages through the serial port and handling of the messages
are implemented as simple state machines, and the receipt of messages is done
in a separate thread. The dongle replies with an ACK event for each command
sent to it, and these are used to make sure a transition to the next state is safe.
If no ACKs are received, the process that failed is aborted, and initialization of
the dongle or the connection to the KeyFob is restarted as necessary, depending
on which state the system is in. The state machine for handling messages from
the dongle is seen in Figure 13.14 and the state machine for receiving messages is
shown in Figure 13.15

Figure 13.14: Main state machine of bledongle.py

In Listing 13.1 the initialization process of the dongle is shown. Before entering
the while-loop containing the state machine, the initDevice function is called.
If the acknowledgement for the init command is not received within 40 seconds,
or an error message is sent from the dongle, the initialization is restarted. When
the init acknowledgement is received, the state is changed to WAIT INIT, where
a message from the dongle signaling that the initializing is done as expected. If
this is not received within 40 seconds, the initialization is restarted. When the
expected message is received, connection attributes such as connection interval for
the dongle are set and when the dongle has acknowledged the setting of all of these,

80

13.3. Bluetooth LE Dongle

Figure 13.15: Message receiving state machine of bledongle.py

the state is changed to CONNECTING, and a connect request message is sent to the
dongle to connect to the KeyFob.

81

CHAPTER 13. SENSOR DATA RECEPTION

Listing 13.1: Initialization of BLE dongle

1 if state is States.START:
2 if msg == const.initCmdAck:
3 state = States.WAIT_INIT
4 else:
5 ble.initDevice()
6 elif state is States.WAIT_INIT:
7 if msg[0:3] == const.deviceInitDone:
8 #Dongle initialized, set connection attributes
9 ble.setMinConInt(const.ms500)

10 ble.setMaxConInt(const.ms500)
11 ble.setSlaveLatency(const.latency5)
12 #Number of connection attributes acked:
13 connAttr = 0
14

15 elif msg == const.gapSetConnAttrAck:
16 #Connection attribute ack, wait for three
17 connAttr += 1
18 if connAttr == 3:
19 state = States.CONNECTING
20 ble.deviceConnect()
21 else:
22 ble.initDevice()
23 state = States.START

The dongle connects directly to the KeyFob worn by the test subject, but func-
tionality for scanning for and connecting to an arbitrary device is added to the
program, and can easily be reimplemented.

When the dongle is connected to the KeyFob, it will ask for set up the Movement
profile, enable the accelerometer, and request accelerometer, battery, pedometer
and rssi values every 5 seconds and insert this into the database. Requesting this
data is done by sending the byte sequence: 0x01, 0x8E, 0xFD, 0x0C, 0x00, 0x00,
0x39, 0x00, 0x3D, 0x00, 0x41, 0x00, 0x51, 0x00, 0x2F, 0x00. The meaning of the
different bytes is presented in Table 13.1.

Description

0x01 Message type: Command

0xFD8E Opcode: GATT ReadMultiCharValues

0x0A Data length: 10 bytes

0x0000 Connection Handle: 0

0x3900 Accelerometer X characteristic value handle

0x3D00 Accelerometer Y characteristic value handle

0x4900 Accelerometer Z characteristic value handle

0x5100 Pedometer characteristic value handle

0x2F00 Battery characteristic value handle

Table 13.1: Byte sequence sent to BLE dongle to read characteristic values

The handles for the different characteristic values can be found by sending a
“Discover characteristics by UUID” command to the KeyFob. The UUIDs are
determined by the software on the KeyFob as described in Chapter 10 on page 55.

82

13.3. Bluetooth LE Dongle

If the KeyFob is disconnected from the dongle for any reason, such as being out
of reach, the dongle will retry to connect until it is reconnected.

83

14
Interpretation of Sensor Data

This chapter first describes the framework developed for routing sensor events to
classifiers and aggregators, then each classifier and aggregator is described in detail.

Figure 14.1: Overview of framework class interconnections

84

14.1. Framework

14.1 Framework

The glue that binds the different parts together consists of three main ingredients,
the Interpreter class, written in Python, the logdb relational database which
contains the sensor log and sensor- and room metadata, and a heavy reliance on the
Observer pattern, a classic design pattern that facilitates weak coupling between
class-instances.

In Figure 14.1 on the preceding page we see how information passes through
each of the developed classes, roughly divided into layers. On the top we see the
Interpreter class which is responsible for database communication and instanti-
ating and polling the context-acquiring classes.

The GUI Server, further described in Chapter 15 on page 99, polls the aggre-
gators to present data, and even subscribes to the SubjectTracker class for a
live-feed of the action.

14.1.1 Observer Pattern

Most classes which consume or emit data inherit from the Subscriber and/or
Publisher class defined in observerpattern.py, available on the enclosed CD.

Figure 14.2: Observer pattern class inheritance

Using the pattern defined by ObserverPattern allows for a separation of con-
cern between producers and consumers of information, because they do not need
to know about each other and are not dependent on other facilites than post and
publish to communicate.

Listing 14.1 on the next page shows a minimal use-case:

85

CHAPTER 14. INTERPRETATION OF SENSOR DATA

Listing 14.1: Example usage of ObserverPattern.py

1 from ObserverPattern import Publisher, Subscriber
2

3 class RandomDataEmitter(Publisher, Thread):
4 def __init__(self):
5 Publisher.__init__(self)
6 def __run__(self):
7 while 1:
8 time.sleep(4)
9 self.publish(random.randint(0,100))

10

11 class AnyDataPrinter(Subscriber):
12 def __init__(self):
13 Subscriber.__init__(self)
14 def post(self, sender, data):
15 print ”Got this data:”, data
16

17 >>> # Some agent has to instantiate and tie the classes together. Here we show it in the
REPL prompt.

18 >>> em = RandomDataEmitter(); em.start()
19 >>> # Nothing happens
20 >>> AnyDataPrinter(em)
21 4 # Value emitted by RandomDataEmitter and printed by AnyDataPrinter.
22 46

In this manner a class instance responsible for detecting occupance of a room
will subscribe to sensor events, and a class responsible for keeping track of e.g.
sleeping habits will subscribe to classified context cues, conforming to the require-
ments laid out by Dey et. al. described in Section 6.2.1.

This pattern makes the interpretation system event-driven, in that the objects
do not themselves seek information, but can act only on received events.

14.1.2 Database

MySQL was used for database storage as it is free, mature and platform inde-
pendent. The database can roughly be divided into sensor logs, metadata and
parsed data, and is shown in Figure 14.3 on the facing page.

Sensor Logs

• events – Stores data received from the PIR and Magnet sensors used for
location tracking.

• wattage – Stores instantaneous power consumption as recorded by the e2
meter. In case of lost packets, delta t is increased appropriately.

• movements – Stores orientation and movement data from the wearable ac-
celerometer.

Metadata

Data about which sensors are placed where, and how the house is structured is
kept in these tables.

86

14.2. Classifiers

Figure 14.3: Database table overview

• nodes – Keeps track of all sensor nodes and their type. Each node is associ-
ated with one Zone.

• type – Type of sensor, here either PIR or magnet.

• door – Logical entity for a door. Is associated with two zones and a sensor-
node.

• zone – Denotes a logical room or part of a room. Is connected to other rooms
via doors.

• a has b – Relationships / graph edges between a and b

Parsed Data

Is only populated by zones day summary which stores accumulated time spent in
each zone for each day. Ideally all aggregated data should be stored in the database,
but during development it didn’t remain constant, and this was therefore not done.

14.2 Classifiers
Classifier should here be understood as any object that consumes sensor events and
emits some interpreted context information without storing history. In Figure 14.1
on page 84 these are shown in light blue. In a sense, ActivityCounter could also

87

CHAPTER 14. INTERPRETATION OF SENSOR DATA

be seen as a classifier, but as it contains a history it’s marked as an aggregator.

The Classifier classes roughly correspond to Dey’s Widgets and Henricksen/In-
dulska’s Interpreters from Chapter 6, and are available in classifiers.py on the
enclosed CD.

14.2.1 Location Classifiers

Location data is provided by the passive infrared and magnet sensors located
throughout the house. Chapter 11 shows a map of sensor placements, and Fig-
ure 14.4 shows a graph of all the rooms and doors that is generated by Interpreter

from the metadata in the database.

Figure 14.4: Graph of rooms and doors automatically generated from available
metadata, rendered with GraphViz.

This graph is a representation of Zone and Door objects as they are represented
in memory. Each room and door object is further associated with a classifier to
interpret raw data and an aggregator for keeping track of the history.

Characteristics of the Sensor Sata and Placement

As discussed in Chapter 5 and 13, the data that is received show some character-
istics which must be taken into account:

• Packets may be lost due to interference/collisions.

• PIR-sensors transmit both True and False, but never send False if a True was
not immediately preceding.

88

14.2. Classifiers

• True-packets from the PIR sensor are not ambiguous, but False packets are
sent after movement has stopped, and may not imply zone presence e.g. after
changing rooms.

• Door events give us somewhat precise location, but doesn’t tell us on which
side the subject is.

• Door events may tell us something about the intention of the subject.

• Not all rooms have infrared sensors, so we must rely on assumptions and
degrees of certainty.

Interpreting Location Data

Figure 14.5 shows the interconnection betweeen sensor data, rooms, doors and
higher layers.

Figure 14.5: Communication and connection between Zone- (location) and door
classifiers. Diamond arrows denote strong references.

Each room is represented by a InZoneClassifier class which accepts sensor
events through its post method and emits a ClassifiedEvent to interested parties.

The ClassifiedEvent data type is used by all classifiers, and the data prop-
erty takes on different meanings for each. For zones and doors data contains the
classifier’s state.

Because of the varying quality of data, as discussed in Chapter 6 it is helpful
to introduce a variable which represents how certain we can be of a value. To
implement this, the state is one of the ConfidenceState enumerator values:

• DEFINETIVELY – If data quality is certain.

• PROBABLY – Highest level of confidence when guessing.

89

CHAPTER 14. INTERPRETATION OF SENSOR DATA

• MAYBE – Initial state when making a positive guess.

• MAYBE NOT – Initial state when making a negative guess.

• PROBABLY NOT – Highest level of confidence when guessing.

• DEFINITIVELY NOT – If data quality is certain.

InZoneClassifier

Figure 14.6 shows the states a Zone classifier may have regarding whether the sub-
ject is present in a given zone. Outer transitions are a result of observations we

Figure 14.6: States a Zone-classifier may take. Changes to state or confidence result in
an event being published. Note that this takes place independently and in parallel for
each classifier.

consider certain, while the inner dashed transitions are initiated by the DoorClassi-
fier and sent to its adjacent zones on door events. This algorithm will be described
later.

Considering the sensor and physical characteristics we define the InZoneClassi-
fier such that

• A true PIR sensor event from a sensor associated with the zone means pres-
ence.

• A false event is interpreted as presence, because it must necessarily have
been preceded by a true event, but false is ignored until a delay has passed
after a previous event.

• Events from sensors not in the classifier’s zone are treated as non-presence,
except that:

– Door events connecting to a zone are ignored by that zone’s classifier.
– It may receive hints from other objects that presence is likely.

The reason that false events are not considered as presence immediately is
that they are automatically emitted by the sensor after it has retuned its feedback

90

14.2. Classifiers

gain. Therefore, a false event may be emitted from a zone after the subject has
left it.

It could be possible for a ZoneClassifier to consider whether another ZoneClassifier
has recently reported presence and thereby discard a false from its own sensor.
However, the fact that transition hints may change the current state makes the
determination of whether the subject is entering or leaving dependent on knowl-
edge of the hinting mechanism, which we wanted to avoid to preserve separation
of concerns between classes.

Tick-events are periodically emitted by the Interpreter object, and allows
us to gradually increase confidence of presence in zones when no other activity is
sensed. Most notably this behaviour is used for detecting stays in the Outside

and Bedroom zones as Bedroom did not initially have a working PIR-sensor, and
Outside does not have a PIR-sensor.

DoorClassifier

Aside from translating “True” and “False” to Open and Closed, the door classifier
is responsible for interpreting the intention of the subject when interacting with
doors.

Initally, a stateless approach was tried, where opening a door automatically
transitioned the subject to the other side, and a subsequent close-event was ignored.
However, through testing it became evident that this failed on some occasions where
a door was opened and closed an even number of times before entering, for instance
leaving the subject apparently standing around in the hallway for hours.

Listing 14.2: Hinting algorithm

1 def do_hint(self, sender, tid, state):
2 def activity_in_direction(zone, entrydoor, visited_zones=[], period=1 * 60,

count=0):
3 count += zone.aggregator.sum_time_between(tid - period, tid)
4 for d in [d for d in zone.doors if d is not entrydoor]:
5 visit_zone = d.get_adjacent(zone)
6 if not visit_zone in visited_zones:
7 count += activity_in_direction(visit_zone, d, visited_zones + [

visit_zone], period, count)
8 return count
9

10 def discourage_zones(zone, entrydoor, visited_zones=[]):
11 # (...)
12 # Traverse the graph, hinting zones that may not be occupied
13

14 # On opening and closing, assume that we go to the zone away from
recent activity

15 activity, likely_zone = min([(activity_in_direction(z, self.door, [
self.door.get_adjacent(z)]), z) for z in self.door.get_adjacent
()])

16 # To ensure concurrency, defer hinting until all zones have received this door-
event.

17 sender.defer_post_publish(likely_zone.classifier.hint_transition, tid, True)
18 # Tell the zone opposite the likely zone that it might have been left.
19 unlikely_zone = self.door.get_adjacent(likely_zone)
20 discourage_zones(unlikely_zone, self.door, [likely_zone])

The implemented solution in listing 14.2 has the DoorClassifier traverse the
room graph (fig 14.4) in both directions from the respective door node (line 15),

91

CHAPTER 14. INTERPRETATION OF SENSOR DATA

analyze where time has been spent the last minutes (activity in direction, line
3), and hint that a transition may be imminent in the direction of lowest occupance,
making the respective zones change state to MAYBE and MAYBE NOT and continue
independently.

This effectively builds a one-dimentional gradient through the graph via the
door, allowing us to correctly handle rooms without PIR-sensors or which have
had the door open.

Discussion

We have aimed for as simple a solution as possible that’s still effective. The guesses
are not always correct, but always hinting towards lowest occupance density will
ensure that leaf-nodes such as Bedroom and Outside are preferred, and relies on
either PIR-sensor events or other door-events to correct the guess.

It is clear that walking through closed doors is impossible, so a definitive transi-
tion between zones implies a door must have been opened even though the sensor-
message may have been lost. An implementation of this logic was developed, but
was abandoned because it didn’t work correctly in some instances, and was con-
sidered unimportant in a health-perspective.

The results will show that lost sensor events sometimes lead to seemingly irra-
tional behaviour from the subject, and could even falsely indicate serious medical
problems. If the subject leaves the home, but seems to remain still in a room, the
system could either report the facts as recorded, albeit incorrectly, or could try to
guess that the subject has left the house.

As this is intended for medical surveillance, it was decided to not hazard any
guesses based on the absence of sensor data, but this could be a topic for debate.

14.2.2 Appliance Classifier

This classifier receives events when the power meter transmits data. For simplicity,
we assume that only one appliance is used at a time. The connected appliances are
a microwave, a coffee maker and a water boiler.

Below some logged sample-series are plotted against time and have been iden-
tified manually.

The coffee maker can in some cases seem to turn off, but with five-minute
intervals turn back on to re-heat the contents (not shown), and the microwave
switches between maximum and low power with a duty-cycle depending on the
chosen power-level.

Identifying appliances by looking at individual powermeter samples is easy for
the water boiler as its power consumption is much higher than the two others. For
the microwave and coffemaker, individual samples may cross a chosen separation
threshold.

Instead of looking at individual samples, it is assumed that when an appliance is
turned on, the next samples in the series belongs to the same individual appliance.

With this, we can then average each series for more reliable classification, and
use the noise caused by the power-characteristics of each appliance measured by

92

14.2. Classifiers

Figure 14.7: Two sample runs of each appliance. One microwave-series shows a
lower-than maximum power setting realized by a reduced duty-cycle, continuing
off-screen.

Figure 14.8: Vertically zoomed view of only microwave and coffe-brewer.

standard-deviations and distance between maximum and minimum power to fur-
ther differentiate each appliance.

Figure 14.9: Series characteristics; average power vs standard deviation. Cluster
centroids from table 14.1 on the following page marked in red.

Figure 14.9 shows a few series with average power plotted against series standard
deviation. The centroids are found via a clustering algorithm called K-means. For
the microwave, the low duty-cycle periods are ignored, as we do not have enough

93

CHAPTER 14. INTERPRETATION OF SENSOR DATA

sample series to classify each power-level.

Clustering

The K-means algorithm[56] is implemented by a Python package called scipy,
and is a relatively simple iterative algorithm that finds the centroids which most
differentiate a given set of clusters.

Using this algorithm, samples are read from the database and split into series,
and the mean average, standard deviation and distance between maximum and
minimum outliers for each series are calculated and stored as features in a feature-
vector.

This feature-vector is then passed to the K-means algorithm along with the
desired number of clusters, and a set of centroids is returned. The result of
such a classification can be seen in Table 14.1, showing the values used in the
ApplianceClassifier class.

Appliance Centroid N series
Power Standard deviation Outlier difference

Boiler 1898.62 28.38 88.03 26
Coffee-brewer 1125.27 13.15 82.66 5

Microwave 1032.14 21.15 93.44 4

Table 14.1: Appliance cluster centroids found during offline analysis.

Classifying Sample Series

On reception of powermeter readings, the classifier makes a new ApplianceEvent

if one is not active and stores the samples in an array.
When no power has been consumed within a given time, the event is ended,

the features mentioned above are calculated, and is passed to a reverse-lookup
method scipy.vq (Vector Quantization). The closest matching centroid index and
a distortion score is returned, the index is mapped to an appliance and the event
is published inside a ClassifiedEvent to higher layers.

Discussion

Assuming that only one appliance is used at a time is a severe limitation. It
should be possible with this implementation to create a cluster centroid for each
combination of appliances. Considering the variation seen in the samples here, it
seems like a difficult limitation to overcome however, as a low-powered appliance
could easily drown in the combined variance from high-powered appliances.

A better, or at least easier way to classify appliance use on a large scale might
be using one power-meter per appliance or inserting power-buttons with radio
transmitters.

94

14.2. Classifiers

For detecting abnormal power consumption patterns however, it is not necessary
to differentiate appliances and this is described in Chapter 7.2.

14.2.3 Movement Classifier
Steps As the classification has already been done on the sensor, step count is
simply wrapped in a ClassifiedEvent and published. Steps represent a count
of peaks on a high-passed series of accelerometer values. The bottom graph in
Figure 14.10 from Normann/Skjønsfjell[66] shows approximately what the step
counter on the KeyFob sees, although it is not the same brand of accelerometer.

Orientation The top three graphs in Figure 14.10 show how ~g affects the X-, Y-
and Z-acceleration measured when a subject moved around in different positions.

Figure 14.10: Chest-worn sensor: 1) Sitting, then leaning back, 2) Standing up,
walking, standing, walking, 3) Lying down, 4) Standing up, walking, sitting down

An attempt at interpreting the physical orientation of our test-subject was
made using X-, Y- and Z-value thresholds and assuming a constant orientation of
the sensor with respect to the body. The results will show that this assumption did
not hold, as the sensor appears to dislocate over time and the distinction between
orientations was therefore ambiguous at times.

95

CHAPTER 14. INTERPRETATION OF SENSOR DATA

Figure 14.11: Using the influence of ~g on accelerometer values to determine tilt. Axis
are fixed on the body-frame. Y and Z are combined to ignore direction of tilt.

Location The sensor is configured with a connection timeout of 20 seconds. If
no sensor data is logged within this time, it is assumed the connection has been
lost and an ActionTypes.OUT OF RANGE message is published. If the sensor comes
back into range, IN RANGE is published.

14.3 Aggregators
The aggregator classes (seen in Figure 14.1 on page 84) as implemented can be
divided into two categories: Those that only log events and provide historical
context to the application, and those that combine multiple lower level events.
The code is available in aggregators.py on the CD.

14.3.1 Context History
As mentioned, all Zone objects have reference to a classifier and an aggregator. In
this way we satisfy the requirement of persistent historical access described by Dey
et. al.

WattAccumulator Logs power-consumption; is identical to the wattage table in
the database. Used mainly to avoid bottlenecks in the SQL server during testing.

ActivityCounter Sums total PIR activation events into periods of variable size.
Serves as a cognitive wrapper for the database contents of the events table.

MovementCounter Identical to ActivityCounter, but stores steps/high-passed
accelerometer activity.

ApplianceAggregator Stores the ApplianceEvent objects published by
ApplianceClassifier.

ZoneAccumulator Stores all published state changes pertaining to a zone. When
polled, iterates through the log and calculates time spent in a zone based on level
of confidence desired.

96

14.4. Discussion

14.3.2 Combination Aggregators

SubjectTracker

This class is referenced and managed by Interpreter, and listens to all classified
events. Every time the subject enters a new zone, a Stay object is instantiated
and a reference is stored in a log.

The intent of SubjectTracker is to organize the subject’s actions in a meaning-
ful way, i.e. to say that when the subject was in that zone for that long, these other
actions were taken and are therefore both spatially and temporally associated.

As can be seen from Figure 14.6 on page 90, the state changes emitted from
zone classifiers are not always symmetrical. It can and does happen for instance
when walking through a zone without a PIR sensor that one zone is certainly not
occupied, whereas another zone has received a hint that it may be occupied.

SubjectTracker resolves the ambiguity by only acting on positive occupance
of a certain confidence level. If and when a client such as a GUI-server serving
an iPad is connected and has registered for real-time data, SubjectTracker will
publish these events for display on the client.

TranquilityAggregator

This class is mainly intended for sleep pattern analysis, in that it only stores
TranquilStays, defined as stays lasting more than 20 minutes with breaks no
longer than 10 minutes. If a break has lasted more than 10 minutes the stay is
ended.

Only activity occuring in the designated zone in the time-frame of the “tranquil
stay” will be logged, and so the output from this class will give us some measure
of the restfulness of sleep both from the activity level and from the number and
duration of nightly errands.

14.4 Discussion

In translating sensor data to knowledge, the concept of which is shown in Fig-
ure 6.1 on page 30, metadata and domain knowledge is required. In Henricksen[59],
Guha[52] and other papers on the subject of context, much effort is devoted to for-
mally expressing knowledge, building repositories of knowledge and automatically
abstracting and lifting1 contexts.

This implementation does not keep a separate repository for what can be called
domain knowledge, but rather has this knowledge implicit in the programming of
classifiers and aggregators. The reason for this is that if a such a repository, that is
not simply ad-hoc, were to be used, it would require much more work in a direction
that was deemed as less important for the problem at hand.

It has not been a primary concern to conform to specifics in the “Context
Toolkit” and “Java framework” described in Chapter 6, but they have been helpful

1Mapping specific information to generalized patterns, identifying variable parameters

97

CHAPTER 14. INTERPRETATION OF SENSOR DATA

in providing guidelines for an implementation. Looking back to Dey et al’s require-
ments however, we claim that they are for the most part satisified as understood
by the candidates.

During testing and development, extracted information was not committed to
persistent storage. Once the quality and format of the classifiers is established, this
should be done to avoid re-interpreting the whole database if for instance power is
lost. Once this is done we have the option of erasing detailed logs and only keeping
aggregated information to provide more privacy for users.

98

15
iOS Application - bHome

An application to graphically show current and past behavior of the test subject was
developed for an iPad and will be presented in this chapter. An iPad running the
bHome application can be seen in Figure 15.1, and was chosen due to availability,
the size of its screen as well as a desire to learn more about programming for iOS.
Source code for the project can be found on the enclosed CD.

Figure 15.1: iPad running the bHome application

A Mac with the Xcode IDE was provided by the Department of Engineering
Cybernetics and was used for the development of the application. The application
is called bHome, which is a wordplay on “be home” to reflect the motivation of
allowing the aging population live at home as long as possible.

An Apple Developer account was acquired by our supervisor, which made it
possible to deploy the application both on the simulator and on an actual iPad. All
the application screenshots in this chapter are taken from the iPad. The application

99

CHAPTER 15. IOS APPLICATION - BHOME

is based on a Tabbed Application template, which provides a new project with a
storyboard that includes a Tab Bar controller for easy navigation between the
different tabs. The template can then be modified to include the number of tabs
needed.

The application is intended to be used by health personnel or relatives of the
person under observation. If the iPad is placed in the home of the observed person,
it could also be used for recreational purposes, such as talking to family members
via Skype, which could be beneficial for mental health. This is one of the reasons
why the size of the screen was of particular interest, as a large screen is easier for
elderly to interact with. The fact that a lot of information was to be presented on
the screen also favored a tablet over a smart phone.

Most of the implemented classes and their application are presented in Ta-
ble 15.1, and the means of communication between the main classes are shown in
Figure 15.2 on the facing page.

Class Description

BHAppDelegate Global state of the application

BHHouseRealTimeViewController Responsible for the real time tab

BHTrendViewController Responsible for history tab

BHStatsViewController Responsible for the stats tab

BHNetworkController Handles the connection to the
server, as well as sending and re-
ceiving messages

BHMessageWriter Converts message data to the
same format as the server

BHMessageReader Extracts message data

BHBarView A view that contains a bar chart
and a color coded list

BHBar A view that contains one bar

BHActivityView A view that contains a line chart

BHStatsView A view that contains a line chart
with statistical values

BHDrawDoorHori Handles drawing of the horizon-
tal doors

BHDrawDoorVert Handles drawing of the vertical
doors

BHConstants Includes string constants for the
rooms

Table 15.1: Some of the main classes comprising the bHome Application

The rest of this chapter will introduce the different parts of the application as
well as the GUI server followed by a brief discussion.

100

15.1. Network Connection

Figure 15.2: Communication methods between the main classes

15.1 Network Connection

The iPad connects to a GUI server used to communicate with the framework dis-
cussed in the last chapter via a TCP/IP connection. The connection and message
sending to the server was based on a tutorial for making a multiplayer game[37].
From this, a network controller (BHNetworkController) that handles setup of the
connection and receipt and sending of messages was implemented. The network
controller declares a protocol that is implemented by the BHAppdelegate and used
for the controller to communicate with the app delegate.

Classes for reading and writing the messages to the GUI server (BHMessageWriter
and BHMessageReader) were created directly from the tutorial. Messages between
the server and the application are sent as message strings together with a byte to
determine the message type. The packets sent are seen in Figure 15.3 and consist
of an integer, describing how long the message is followed by a byte that identifies
the type of message, then another integer, telling length of the following string, and
finally the message string. This information is used by the network controller to
distinguish one packet from another and separate the message string and the byte
identifier. The byte identifier is then used to call the appropriate protocol function
in the app delegate.

Figure 15.3: Structure of packets

15.2 BHAppDelegate

The app delegate is responsible for initializing the network controller, as well as
communicating with it and the different view controllers. The BHAppDelegate

communicates with BHNetworkController via method calls, while the other way
around is done by adopting the BHNetworkControllerDelegate protocol. Ini-
tialization of the BHNetworkController and declaring the BHAppDelegate as a
BHNetworkControllerDelegate is shown in listing 15.1.

101

CHAPTER 15. IOS APPLICATION - BHOME

Listing 15.1: Code snippet from didFinishLaunchingWithOptions

1 - (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(
NSDictionary *)launchOptions

2 {
3 networkController = [[BHNetworkController alloc] init];
4 [networkController setDelegate:self];
5 return YES;
6 }

Communication to and from the view controllers are done via notifications.
Registration for and posting of a notification when a connect message is received
from the server is shown in Listing 15.2.

Listing 15.2: Registration for and posting of notifications after connect message is received

1 - (void) connectMsgReceived:(NSString *) string {
2 [[NSNotificationCenter defaultCenter] addObserver:self selector:@selector(

sendRTDataRequest) name:@”rtDataReq” object:nil];
3 [[NSNotificationCenter defaultCenter] postNotificationName:@”connectMsgRecv”

object:nil];
4 }

15.3 Real Time Tab
The Real Time Tab is the first tab shown to the user when the application starts,
and features an image of the floor plan of the house. When the application is
connected to the server all doors will be drawn in their current state (opened or
closed). Whenever a message indicating movement in the house is received, the
corresponding door will be updated or a room will be highlighted. This can be
seen in Figure 15.4 on the next page. It is also possible for the user to long press
on any room to get a list of the last ten visits in that room with the date, time
and duration of the stay as seen in Figure 15.5 on page 104. Each stay in a room
corresponds to a Stay object in the SubjectTracker as presented in Chapter 14.

The BHRealTimeViewController is responsible for this scene. When it re-
ceives a notification from the BHAppDelegate that the connection to the server is
established, it sends a notification back to request real time data from the server.
Whenever a real time data message is received in the BHNetworkController, it is
passed on to the view controller which in turn extracts the name of the door or the
room and updates the view according to the state of it.

All rooms are rectangular UIViews[30], placed in the appropriate place on top
of the floor plan image. These are then hidden behind the floor plan, and brought
to front when they are active. When a room is active, its view is filled with a
transparent color to highlight it. When the room is no longer active, but was
the last room active, it is made more transparent to make it easier to track the
movement of the subject.

The doors are instances of the BHDrawDoor classes, one for horizontal doors
and one for vertical doors. These classes subclass the UIView class, and implement
the drawing a colored line with direction determined by whether a door is open

102

15.3. Real Time Tab

Figure 15.4: Screenshot from Real Time Tab

or closed. Any UIView will redraw itself when the setNeedsDisplay method is
invoked. How a door view is updated after receipt of a string from the server can
be seen in Listing 15.3. The string from the server is on the form:
Door:DoorState:DoorNumber

Where DoorState is either True (open) or False (closed) and DoorNumber is the id
of the door in the database.

103

CHAPTER 15. IOS APPLICATION - BHOME

Figure 15.5: Screenshot from real time tab with historical data from a room

Listing 15.3: Updating a door view

1 if (doorNum == DoorBathroom) {
2 if ([value isEqualToString:@”True:”]) {
3 bathroomDoor.color = green;
4 bathroomDoor.open = TRUE;
5 [bathroomDoor setNeedsDisplay];
6 } else {
7 bathroomDoor.color = green;
8 bathroomDoor.open = FALSE;
9 [bathroomDoor setNeedsDisplay];

10 }
11 }

When the user presses a room on the screen, a touch event is registered and a
performSelector[25] method is called, which will run a specified method after a

104

15.4. History Tab

delay of one second, thereby implementing the long press function as seen in List-
ing 15.4. If the press is ended before the delay, the performSelector method is
cancelled and nothing happens.

Listing 15.4: React to touches on screen

1 - (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
2

3 UITouch *touch = [touches anyObject];
4 [self performSelector:@selector(fireLongPress:) withObject:touch afterDelay:1.0];
5 }

The fireLongPress method compares the touch location with the location of
the different room rectangles, and if the touch is inside any of these, a request to
get historical data for that room is sent to the server. When the data is received,
the data is added to a UITableView[29] which in turn is added to a background
view that contains a close button and a label stating which room the information
is for. This is then brought to the top of the view hierarchy which shows it to the
user. When the close button is pressed, the view is hidden again.

15.4 History Tab

The second tab is the History Tab, which will give the user information of the
amount of time each day the user has spent in the different rooms in a bar chart.
The screen has a date picker where the user can select the start date, a slider bar to
select the number of days to display and a button to request the data. The screen
also consists of two empty BHBarViews, referenced in the code as barView and
dayBarView, as well as an empty BHActivityView referenced as actView. This
tab is controlled by the BHTrendViewController. How the different views are
organized inside each other and inside the main view of the view controller can be
seen in Figure 15.6.

When the user presses the “Get Data” button, a request for information about
the selected dates are sent to the server. When data is received, it is added to the
NSMutableArray[23] data property of the BHBarView named barView which will
draw the bar chart. The screen with the bar chart displaying information about 9
days is shown in Figure 15.7.

After the bar chart is drawn, it is possible for the user to long press on any bar,
to get a detailed overview of the day divided into 15 minute intervals together with
a line chart of movement, sensor activity and energy use of kitchen appliances as
shown in Figure 15.8.

When a touch event is registered, the view controller checks if it inside the
barView rectangle. If it is, the touch location is mapped to the coordinate system
of the barView as seen in Listing 15.5 and passed on to the subview.

105

CHAPTER 15. IOS APPLICATION - BHOME

Figure 15.6: Views inside the BHTrendViewController

Listing 15.5: Detecting a touch event in the barView

1 if (CGRectContainsPoint(barViewRect, touchLocation)) {
2 touchLocation.x -= barViewRect.origin.x;
3 touchLocation.y -= barViewRect.origin.y;
4 [barView handleTouch:touchLocation];
5 }

barView will compare the touch location with its bars to find the date of the
pressed bar, and send a notification containing the date back to the view controller,
which in turn forwards the request to the server.

Upon receipt of the data, depending on whether it is for the line chart or the
bar chart, the data is added to the data property of the BHActivityView actView

or the BHBarView barDayView, and both views are drawn when all the data has
arrived.

15.4.1 BHBarView

The BHBarView class is a subclass of UIView and draws bars to the screen. This
is done by making a list of all the different time intervals that are to be presented
as bars and a list of all the rooms with a separate color assigned. Depending on
the number time intervals, the width of each bar and the offset between them is
calculated.

For each time interval, a label with and a BHBar element is created at the

106

15.4. History Tab

Figure 15.7: Screenshot from the history tab a presentation of 9 days

appropriate location, and amount of time spent in each room and the corresponding
color is added to the NSMutableArray data property of the BHBar. The fact that
each bar is created runtime, lets the BHBarView display an arbitrary amount of
bars and rooms.

After creating the bars, a view with a list of the rooms together with a box of
the corresponding color is added to the far right of the BHBarView.

This class also has a boolean property called showRoomList, which decides
whether the list of rooms should appear or not. If this is set to false, as in
barDayView, the bars will take up all the space inside the view, and labels for
bars will only be made at every 8th bar to accommodate to a larger set of bars.

107

CHAPTER 15. IOS APPLICATION - BHOME

Figure 15.8: Screenshot from history tab with extended info about a day

BHBar The BHBar class is also subclassing UIView, and when drawn, each bar item
first loops through its array of amount of time spent in each room and calculates
the total number of seconds. This is used to scale the size of each color box so that
the entire bar is filled, as well as to make the class flexible to present any amount
of time in a bar.

After calculating the total amount, the amount for each room is drawn under
the next as a color-filled subview with the specified color and the correct height.
The creation of a new bar can be seen in Listing 15.6. Here, the scaling of the
height of the view, initalizing the view in the right position and adding of color can
be seen.

108

15.4. History Tab

Listing 15.6: Drawing of a BHBar

1 for (int i = 0; i < data.count; i++) {
2 height = (((BHBarData *)[data objectAtIndex:i]).duration) * self.frame.size.height/

seconds;
3

4 [barItems addObject:[[UIView alloc] initWithFrame: CGRectMake(x, y, width, height)
]];

5 itemColor = ((BHBarData *)[data objectAtIndex:i]).color;
6 [((UIView *)[barItems objectAtIndex:i]) setBackgroundColor:itemColor];
7

8 [self addSubview:((UIView *)[barItems objectAtIndex:i])];
9 [self bringSubviewToFront:((UIView *)[barItems objectAtIndex:i])];

10 y += height;
11 }

All the allocated view objects are added to arrays, to be able to remove them
when the view is to be updated.

15.4.2 BHActivityView

This class is also subclassing UIView and draws a line chart to the screen. It has
several properties that can be set by the view controller, such as an array of data
points, number of days, maximum value of the incoming data as well as labels to
place in the chart. The activity view starts by creating a list of the points on the
x-axis (e.g. 15 minute intervals), and calculates the width between each data point
depending on the number of points to draw. It then creates any labels that has
been added by the view controller at the appropriate place on the x-axis found by
the name of the point it’s correlated with.

The view goes through all the items in the data array and makes a list of the
different lines that should be drawn. In this application, this is the amount of
activity from the sensors in the house, movements from the body-worn sensor as
well as activity from the kitchen appliances. The name of each line is also mapped
with a color. A simplified code listing of the drawing of each line can be seen in
Listing 15.7. In reality, the x and y-values for each line are accessed from an array,
to accommodate that these are normally different for each line as the data is not
sorted. The height of each line is scaled according to its maximum value to improve
readability, as the values of the different items may be very different.

109

CHAPTER 15. IOS APPLICATION - BHOME

Listing 15.7: Drawing of lines in BHActivityView

1 // Scale amount
2 amount = actData.duration/maxVal;
3

4 CGContextRef context = UIGraphicsGetCurrentContext();
5 CGContextSetStrokeColorWithColor(context, color.CGColor);
6

7 CGContextSetLineWidth(context, 2.0);
8 // Start point of drawing
9 CGContextMoveToPoint(context, x, self.frame.size.height - y);

10 x += width;
11 y = amount*height;
12 // End point of drawing
13 CGContextAddLineToPoint(context, x, self.frame.size.height - y);
14 CGContextStrokePath(context);

Lastly, the BHActivityView creates a new subview with a list of the items
represented by the different lines shown with color codes in the same way as in the
BHBarView.

15.5 Stats Tab

The third tab is the Stats Tab, which gives the user information on how the amount
of times spent sleeping, in the bathroom or outside for a selected number of days
deviates from the last month, week or year. At the moment, one can only compare
with last month or last week because of the limited amount of data available to
the system. This screen also consists of a date picker where the user can select
the start date, as well as slider buttons to select what to compare and what to
compare with and a button to request the information from the server. The class
BHStatsViewController is in control of this tab. The third tab is the Stats Tab,
which gives the user information on how the amount of times spent sleeping, in the
bathroom or outside for a selected number of days deviates from the last month,
week or year. At the moment, one can only compare with last month or last week
because of the limited amount of data available to the system. This screen also
consists of a date picker where the user can select the start date, as well as slider
buttons to select what to compare and what to compare with and a button to
request the information from the server. The class BHStatsViewController is in
control of this tab.

The screen also has three empty BHStatsViews, referred to programmatically
as sleepView, bathView and outView. Whenever a message is received, the view
controller checks the type of message (data, maximum value of data, average value
or standard deviation), extracts the data according to type and then adds the
incoming data to the appropriate subview. Adding data values to the right view
can be seen in Listing 15.8. After all the data has been received, setNeedsDisplay
is called on the BHStatsViews to make them redraw themselves.

This tab is intended to let the user compare data with the mean and standard
deviations to see if anything abnormal has occurred. There can also be displayed
exclamation marks at data that are rated as outliers from the server.

110

15.5. Stats Tab

Figure 15.9: Screenshot from stats tab

Listing 15.8: Mapping a message to the right view in BHStatsViewController

1 if ([valueType isEqualToString:@”Stats”]) {
2

3 range = [msg rangeOfString:@”!”];
4 NSString *date = [msg substringToIndex:NSMaxRange(range)-1];
5 msg = [msg substringFromIndex:NSMaxRange(range)];
6 float value = 0;
7 [[NSScanner scannerWithString:msg] scanFloat:&value];
8 BHBarViewData *data = [[BHBarViewData alloc] initWithData:date room:@”” duration:

value];
9

10 if ([room isEqualToString:roomBedroom]) {
11 [sleepView.data addObject:data];
12 } else if ([room isEqualToString:roomBathroom]) {
13 [bathView.data addObject:data];
14 } else if ([room isEqualToString:roomOutside]) {
15 [outView.data addObject:data];
16 }
17 } 111

CHAPTER 15. IOS APPLICATION - BHOME

BHStatsView This view draws itself in a similar manner to the BHActivityView,
with the main difference being that it also draws lines for the mean value of the
selected compare time and the standard deviations above and below the mean
value. In contrast to the BHActivityView, it does not draw lines between all data
points, only the ones not going to and from zero. A small circle is also added to
each point, for better visibility. Exclamation marks inside the corresponding data
point can also be displayed on top of detected outliers to mark these.

15.6 Python GUI Server

The Python server, server.py, starts an instance of the Interpreter class which
is descriped in Section 14.1 on page 85. An instance of the Stats class and the
SocketListener class are also started. These classes will be presented later in this
section. An overview of the classes used by the server can be seen in figure 15.10.

Figure 15.10: Overview of classes in the server

15.6.1 SocketListener

The SocketListener listens for connections at a specified port. Whenever a
new connection in accepted, it creates a TCPConnection with a corresponding
MessageProcessor, and adds these to its lists of connections and message proces-
sors. It also adds the MessageProcessor to the TCPConnection’s list of subscribers,
and starts the TCPConnection thread.

112

15.6. Python GUI Server

15.6.2 TCPConnection

The TCPConnection has a thread that handles sending and receiving of data in the
connection. The message format is as described in Section 15.1 on page 101, and
a MessageReader and MessageWriter was implemented for Python as well based
on the tutorial[37].

In Listing 15.9, the process extracting the incoming message can be seen. When
a message of the specified length has been received, the processMessage function
is called, which reads the type byte and the message string from the message object,
and calls the corresponding function in the MessageProcessor with the string as
a parameter.

Listing 15.9: Receipt of messages in TCPConnection

1 def dataReceived(self, data):
2 self.inBuffer = self.inBuffer + data
3 while(True):
4 if (len(self.inBuffer) < 4):
5 return;
6 msgLen = unpack(’!I’, self.inBuffer[:4])[0]
7 if (len(self.inBuffer)) < msgLen:
8 return;
9 messageString = self.inBuffer[4:msgLen+4]

10 self.inBuffer = self.inBuffer[msgLen+4:]
11 message = MessageReader(messageString)
12 self.processMessage(message)

Messages are appended with the message length and added to the send queue
by any object calling the connection’s post function, and are sent from the thread.
If an exception is thrown while sending, the bytes that were not sent are resent
as seen in Listing 15.10. This ensures that the correct message is received at the
other end.

Listing 15.10: Sending a message

1 try:
2 bytes = c.send(out)
3 except:
4 self.outq.appendleft(out[bytes:len(out)])

15.6.3 MessageProcessor

The message processor is responsible for handling the requests from the iPad ap-
plication, and to create the data responses containing data from the Interpreter.
It consists of functions for handling all the different messages types and is called
from the TCPConnection when the message type has been determined.

Real Time Data

In Listing 15.11 the function called when the bHome application requests real time
data can be seen.

113

CHAPTER 15. IOS APPLICATION - BHOME

Listing 15.11: Real time request received

1 def rtMsg(self, data):
2 doors = inter.get_all_door_states()
3 for d in doors:
4 door, conf_state = d
5 if conf_state == ConfStates.DEFINITIVELY or conf_state == ConfStates.

PROBABLY or conf_state == ConfStates.MAYBE:
6 msg = MessageWriter()
7 string = ”Door:True:” + str(door.id)
8 msg.writeString(string, 0x01)
9 self.connection.post(msg)

10

11 elif conf_state == ConfStates.DEFINITIVELY_NOT or conf_state == ConfStates.
PROBABLY_NOT or conf_state == ConfStates.MAYBE_NOT:

12 msg = MessageWriter()
13 string = ”Door:False:” + str(door.id)
14 self.inter.tracker.add_client(self)

The states of all the doors in the house is fetched from the Interpreter, and sent
to the application. The message starts with “Door:”, a “True” or “False” to indi-
cate whether the door is open or closed and finally the database id of the door. The
colons are used to make it simple to create substrings to distinguish the different
parts of the command. Each door state is sent as a separate message by using the
post function in the TCPConnection.

After sending all the door states, the MessageProcessor is added as a client to
the SubjectTracker in the Interpreter. Whenever the tracker registers move-
ments in the house, it posts to the MessageProcessor, which forwards the infor-
mation to the bHome application as seen in Listing 15.12. The sending of door
messages has been removed from the listing for readability, as this is handled much
in the same manner as in Listing 15.11.

Listing 15.12: Sending of real time data to application

1 def post(self, sender, data):
2 msg = MessageWriter()
3 ev_type, ev_data = data
4 if ev_type is EventTypes.ZONE:
5 stay = ev_data
6 string = stay.zone.name + ”:True”
7 msg.writeString(string, 0x01)
8 self.connection.post(msg)

History Data

When the bHome application requests history data for a set of days, the barMsg

function is called. This can be seen in Listing 15.13.

114

15.6. Python GUI Server

Listing 15.13: Sending of history data to application

1 def barMsg(self, data):
2 index = data.find(’:’)
3 starttime = int(data[0:index])
4 endtime = int(data[index+1:len(data)])
5 msg = MessageWriter()
6 roomsAdded = False;
7 dateAdded = False;
8 i = 0
9

10 for row in self.inter.get_sumtime(starttime, endtime):
11 if not roomsAdded:
12 roomlist = row
13 roomsAdded = True
14 else:
15 dateAdded = False
16 for entry in row:
17 if not dateAdded:
18 realdate = isotime(time2mktime(entry) + (60*60*24))
19 date = str(realdate[0:10])
20 dateAdded = True
21 i = 0
22 else:
23 string = date + ”!” + roomlist[i] + ”!” + str(entry)
24 msg.writeString(string, 0x04)
25 self.connection.post(msg)
26 msg.reset()
27 i+=1
28

29 msg.writeString(”Finished”, 0x04)
30 self.connection.post(msg)

First, the start- and end time are extracted from the incoming message. Then the
Interpreter function get sumtime is called to return a list of all the zone names,
the dates and the number of seconds spent in each zone that day. The barMsg

function goes through each row, mapping the number of seconds reported to the
correct zone on the given day, and sends the message. 24 hours is added to the date,
as each day is presumed to start at 21.30 instead of 00.00. The date is stripped of
hours, minutes and seconds, to get a readable date to present at the iPad.

Stats Data

Stats data is sent to the iPad from the statsDataMsg function in three steps:

• Standard deviation and average values are calculated and sent.

• Values for each day and zone are retrieved from the database and sent, as
well as their maximum values.

• Outliers for the period is calculated for each room and sent.

These steps rely on the Stats class, which is described below.

15.6.4 Stats

The Stats class consists of a running thread as well as functions to retrieve standard
deviations and average values of a data set. The running thread adds all stays of

115

CHAPTER 15. IOS APPLICATION - BHOME

a day to the zone day summary table of the database. When the simulation is
running, the thread starts by adding all previous days up to the simulation point
to the database, it then waits for a new day, before this is added. When not running
simulation, the thread waits for a new day, and adds this to the database.

The duration values for the zones Small toilet and Bathroom are summed to-
gether and added to the zone ToiletVisits, to be able to detect all toilet activity.

The algorithm for detecting abnormalities as presented in Section 7.2 was im-
plemented and can be seen in Listing 15.14.

Listing 15.14: Implementations of outlier algorithm

1 def get_outliers(self, alpha, tstart, tstop, zone):
2 outliers = []
3 dataset = []
4 dates = []
5 dateoutliers = []
6 zone_id = self.inter.get_zone_by_name(zone).id
7 for d in self.inter.dbr.fetch_dur_day_not_zero_stats(zone_id, tstart[0:10], tstop

[0:10]):
8 dataset.append(int(d[0]))
9 dates.append(str(d[1]))

10

11 num = int((0.5) * (len(dataset) - 1))
12 print ”max number of outliers”, num, len(dataset), zone
13 exval = dataset[0]
14 print dataset, zone
15 for i in range(0, num):
16 n = len(dataset)
17 stdev = float(std(dataset, None))
18 aveg = float(mean(dataset, None))
19 avgex = 0
20 if int(stdev) is 0:
21 return (dateoutliers, outliers)
22 for d in range(0, n):
23 if max(abs(dataset[d] - aveg), abs(avgex)) == abs((dataset[d] - aveg)):
24 exval = dataset[d]
25 outindex = d
26 avgex = exval - aveg
27 r = abs((exval - aveg)) / stdev
28 p = self.probability(alpha, n, i)
29 critval = self.critical_value(n, i, p)
30 if r > critval:
31 dateoutliers.append(dates[outindex])
32 outliers.append(exval)
33 # Remove exval from dataset
34 del dates[outindex]
35 del dataset[outindex]
36 return (dateoutliers, outliers)

Average values and standard deviations are calculated from the dataset. For
the bedroom and bathroom zones, values that are zero are omitted, and for the
outdoors zone, values that are 24 hours are omitted from the calculation. This is
done as these are values for days most likely to not be spent at home, and should
thus not be regarded as outliers.

The t-distribution values in the critical value function are calculated with
the stats.t.ppt function from the scipy package.

116

15.7. Discussion

15.7 Discussion
Another proposed solution for connecting to the GUI server would have been to
connect via Bluetooth, but as the iPad would have to be jailbroken as discussed in
Chapter 8, this was disregarded. However, if Bluetooth framworks should become
available from Apple at a later time, it would be possible to change the connection
type in the application without having to do any big changes.

When the user requests data from the server, it takes several seconds before
the screen is updated. The amount of time depends on how much information
has been requested from the server. There are two time consuming processes that
causes this. Firstly, it’s the sending of the data from the server, which is depend-
ing on the internet connections of both of the server and the iPad. Secondly, it
is the draw rect function of the views that takes a long time. These functions
loop through all the data several times, to determine the size and placement of the
views to draw, as well as what data to map to each view. A way to speed things
up could be to do more of the processing of the data on the server, and send data
in the order it is shown on the screen.

No means have been taken to make the connection secure. If the WLAN op-
tion is to be used in a commercial setting, the data would obviously need to be
encrypted. Providing a user name and password from the application to the server
should also be considered. A Bluetooth option would provide more privacy, as this
means that the iPad could only display the personal data when in the near vicinity
of the server, which should be placed at the subject’s home. For testing purposes,
the WLAN option was the most obvious and achievable solution, but in further
development, security should be taken into account.

To make the application universal to any house implemented with the system,
the application could be modified to let the user do the set up of the floor plan
and the rooms. This could be done by letting the user upload their own floor plan,
and giving the user a list of all the zone names from the database. This could be
used to let the user create the different zones by dragging and dropping, as well as
sizing views, to the right place in the floor plan.

The history tab is already unaware of what rooms the house consists of, and
uses only information from the server to draw its views. The stats tab on the
other hand relies on getting information about the amount of time spent sleeping,
outside or in the bathroom. This could be an appropriate solution, but further
investigation into what data have signinficance for detecting deteroration of health
must be conducted.

15.7.1 Detecting Outliers
The outlier algorithm presented in Chapter 6 on page 30 proved to not be directly
transferable without a better classification of the days. There is a large variety
in the data, and after removing outliers, the average value of the new data set is

117

CHAPTER 15. IOS APPLICATION - BHOME

Figure 15.11: Outside zone outliers

changed rather drastically. This phenomenon can be seen in Figure 15.11 where a
lot of zero (not shown with green points) and low values were present. When the
most extreme value is removed, the average will fall, and the next extreme values
will lower the average value even more. In the end, this leads to almost all days
not being very close to zero being identified as outliers, when they in reality are
normal variations in outside movement for the test subject.

It seems apparent that the days need to be classified to achieve a better result
from the outliers. This could be by amount of time spent outdoors for example.

This also indicates that for the zones with a high variety in the amount of
activity, comparing with the average and standard deviation of last week, month
or year may not give a clear indication of something being wrong. For the sleep
cycle on the other hand, which is much more stable, comparing with the last month,
week or year could detect changes that have happened in the sleep cycle.

118

Part IV

Results

16
Results

In this chapter, the findings of the developed system will be presented. Graphs and
tables showing the output of the system will be presented both overall for the test-
period and for a selection of intervals where appropriate. Results will be explained
and discussed in the same section, as the findings are of a varied nature and we
considered it the easiest form of presentation. All timestamps are in Coordinated
Universal Time (UTC, local time -2 hours) unless otherwise stated.

16.1 Produced Code

A variety of languages were used in this thesis. Table 16.1 shows a summary for
each language. We use a free utility called CLOC to calculate lines of code, and if

Language files blank comment code scale 3rd gen. equiv

Python 16 751 738 2940 x 4.20 = 12348.00
Objective C 19 484 253 2231 x 2.96 = 6603.76
C 5 411 773 1287 x 0.77 = 990.99
C/C++ Header 24 149 220 383 x 1.00 = 383.00
C++ 3 76 6 273 x 1.51 = 412.23
MATLAB 2 13 3 47 x 4.00 = 188.00
Bourne Shell 2 5 3 38 x 3.81 = 144.78

SUM: 71 1889 1996 7199 x 2.93 = 21070.76

Table 16.1: Produced code lines calculated by a free utility called CLOC. Languages
are scaled to third generation (C/++, Java, Fortran) equivalents to show the
expressiveness of e.g. Python.

we use CLOC’s estimation of how many lines of code an equivalent implementation

120

16.2. Wireless Network Performance

in a third generation language would take1 as a guideline, we can see that using
Python as the main implementation language may have saved considerable effort
with regards to coding. The fact that the produced Python code executed without
modification both under Linux and Windows also made development easier.

16.2 Wireless Network Performance
Each of the three wireless systems used will be evaluated in the following subsec-
tions as far as this is possible from recorded data.

16.2.1 Nexa
In the period between April 24th and June 1st a total of 37,877 entries were logged
as originating from a Nexa sensor. Of these, 35,791 entries correspond to a known
sensor identificator. Table 16.2 shows an overview and tables 16.3 and 16.4 split
up events and packets received on a per-sensor basis.

Identified Unknown % unknown

Log entries 35,791 2,086 5.83
Packets 1,250,173 380 0.03

Table 16.2: Logged events, total packets received and their origin.

As can be seen from the database diagram in figure 14.3 on page 87, each sensor
event row consists of time, node id, data and number of packets in the transmission.
Considering that the sensors must by nature transmit alternating True and False

messages we can estimate the packet loss by counting consecutive events with the
same content.

We can see from Table 16.2 that spurious packets, i.e. packets which have been
falsely generated or falsely parsed, constitute only 0.03% of the total. Curiously,
1,355 (65%) of the events with unknown origin exactly match a PIR sensor address
with the most significant bit cleared. The cause of this is not known.

The event loss seen in Table 16.3 on the following page can in most cases
be explained by the sensors’ placement in relation to each other, i.e. that their
transmissions overlap and drown each other out, as for example the door between
the hallway and the living room which is directly in view of an infrared sensor.

An instructive observation can be made by comparing Table 16.3 on the next
page with Table 16.4 on page 123. We can see that while the door between the
hallway and the airlock had 41% more events than the entrance door, the entrance
door successfully sent 4% more packets. When seen against the estimated event
loss for the airlock door, the number of events receiving less than five packets and
the fact that the hallway PIR sensor is directly in view of the airlock door, we
can conclude that a significant amount of collision has occurred between them.

1CLOC uses numbers from http://softwareestimator.com/IndustryData2.htm

121

CHAPTER 16. RESULTS

Node Where Events Wrong data % loss

D 3 Bedroom 596 79 13.26
D 7 Airlock 567 81 14.29
D 1 Entrance 400 23 5.75
D 6 Bathroom 393 29 7.38
D 4 Laundry rooom 309 24 7.77
D 15 Fridge 234 17 7.26
D 8 Hall to Livingroom 56 7 12.50
D 13 Freezerroom 35 2 5.71
D 5 Cellar 24 1 4.17
D 9 Kitchen, Livingroom 17 6 35.29
D 12 Small toilet 11 1 9.09
D 16 Washing machine 9 0 0.00
D 17 Microwave 7 3 42.86
D 11 Kitchen 0 0 0.00
Z 7a Kitchen by table 11,735 382 3.26
Z 1 Hallway 9,498 425 4.47
Z 3a Bathroom 3,488 173 4.96
Z 2a Livingroom by piano 3,291 141 4.28
Z 5 Bedroom 2,598 84 3.23
Z 2b Dining table and sofa 1,323 70 5.29
Z 7b Kitchen unit 985 32 3.25
Z 4 Small toilet 137 6 4.38
Z 3b Shower 56 7 12.50

Overall 35,791 1,593 4.45

Table 16.3: Events logged per Nexa-sensor. Doors are marked with Dx, Zones with Zx.

Similarly we can assume that the high event loss and low packet throughput for
the bedroom door has a similar explanation.

However, it was found during installation that one of the PIR sensors didn’t
transmit at all, and another (shower) only intermittently, so it may well be that
there are individual differences in the behaviour of the sensors.

Of all correctly received events, 6.83% had less than five received packets to
confirm it. One correct packet is enough, but this can be seen as a measure of
robustness, and is distributed very unevenly across sensors as can be seen in Ta-
ble 16.4. As the sensors were not tested in a controlled environment, it’s hard to
tell whether poor perfomance is caused by poor placement or poor production.

16.2.2 Efergy

Between installation on May 1st and June 1st, 27,387 samples were received, with
929 samples measuring other than zero watts. From May 2nd, zero-samples were
no longer logged to conserve space, but they are included here to increase statistical

122

16.2. Wireless Network Performance

Node Where Packets Median Max <5 (%)

D 3 Bedroom 10,576 18.0 62 16.11
D 1 Entrance 10,042 29.5 62 5.00
D 7 Airlock 9,630 17.0 60 17.81
D 6 Bathroom 8,669 26.0 52 7.89
D 4 Laundry room 8,058 30.0 62 7.77
D 15 Fridge 4,469 18.0 78 8.55
D 8 Hall to Livingroom 1,123 23.5 31 14.29
D 13 Freezerroom 931 30.0 46 2.86
D 5 Cellar 817 31.0 62 0.00
D 9 Kitchen, Livingroom 423 28.0 49 0.00
D 12 Small toilet 261 30.0 31 0.00
D 16 Washing machine 230 30.0 31 0.00
D 17 Microwave 146 25.0 30 0.00
D 11 Kitchen 0 0.0 - -
Z 7a Kitchen by table 359,515 34.0 139 9.50
Z 1 Hallway 281,470 30.0 170 15.17
Z 5 Bedroom 177,464 60.0 624 0.77
Z 2a Livingroom by piano 139,565 43.0 574 4.59
Z 3a Bathroom 134,614 35.0 409 13.04
Z 2b Dining table and sofa 47,714 31.0 406 15.95
Z 7b Kitchen unit 45,140 50.0 247 3.65
Z 4 Small toilet 8,185 55.0 295 3.65
Z 3b Shower 809 7.5 61 32.14

Table 16.4: Packets received from each Nexa-sensor, median per event, maximum
received for one event and percentage of events with less than five packets received.

confidence.

Of samples received, 2,282 had a longer inter-sample period than the expected
6 seconds, indicating a dropped packet. Of these 1,957 indicate one missed sample
period, 266 two periods, and 59 three or more periods. Combined, this results in
approximately 9.74% packet loss.

16.2.3 Keyfob

The accelerometer was consistently connected to the concentrator with breaks of
no more than five minutes for very nearly five days. Two breaks larger than one
hour were recorded, and four between half an hour and an hour, all coinciding with
presence in the Outside zone.

The logger polled the device every five seconds. Of 82,456 transmissions, 68.27%
were received within 5 seconds and 99.93% were received within 10 seconds of the
previous transmission. It is not known if any data was lost, but as Bluetooth LE
features reception acknowledgement loss is unlikely to have been high.

123

CHAPTER 16. RESULTS

16.3 Information from Accelerometer vs PIR

Figure 16.1 on the next page shows the activity level recorded from the accelerom-
eter (steps) and passive infrared sensors against the subject’s location in the house.

Looking at the figure, we can see that the subject got up once during the night,
got up again around 6:15, moved the accelerometer attached to the cell-phone
holder twice before attaching it to the belt at around 7:45. During this time, the
PIR sensors may have told us about uneasy sleep. Around 8:45, the cellphone
casing is detached and laid down as the subject goes outside. It can be seen from
the log that the accelerometer is lying flat during the time the subject is outside.

Around 13:40 the subject reattaches the accelerometer and is inactive for about
two hours in the living room. The orientation log shows the subject was lying
partially sideways, indicating rest. Around 17:00 there is a discrepancy between
accelerometer-data and PIR values. This could be because the sensitivity selected
for the movement detection was set too high, or considering the implementation of
the pedometer, that a rocking chair or something like it was used. Regardless, it’s
informative that the accelerometer picks up on movement too small for the passive
sensors.

Note that during activity high enoguh to be picked up by passive sensors, such
as zone transitions, the correlation between sensor types seems very high. Overall
for this day, the correlation between PIR activity and reported steps as given by
covariance over the product of the standard deviations is calculated to 0.44. For the
period after the subject starts wearing the accelerometer, the correlation coeffecient
is 0.52.

16.4 Appliance Classification

None of the recorded series of appliance use show multiple appliances used at
the same time. The appliance-feature centroids found early on also held when
classifying later use, with the total recorded instances shown in Table 16.5.

The iPad user interface in Figure 16.2 would have been a natural place to also
display refrigerator and washing machine use as well as other activities if classifiers
had been implemented.

Uses Avg. time Std. dev

Boiler 34 2:21 0:27
Coffee maker 12 10:30 7:27
Microwave 9 4:39 3:59

Table 16.5: Identified appliance uses. Two series were too short (<10s) to identify.

Boiler use was most prevalent during the morning (61%) and could perhaps
be used as an indication that the subject has gotten out of bed for the day. One
particular instance at 1:45am is around five hours earlier than normal and coincides

124

16.4. Appliance Classification

F
ig
u
re

1
6
.1
:

A
ct

iv
it

y
lo

g
g
ed

o
n

M
ay

2
n
d

2
0
1
2
.

T
o
p
:

A
m

o
u
n
t

o
f

ti
lt

a
lo

n
g

th
e

h
o
ri

zo
n
ta

l
p
la

n
e,

i.
e.

a
va

lu
e

o
f

1
m

ea
n
s

ly
in

g
o
n

th
e

si
d
e

o
r

b
a
ck

.
M

id
d
le

:
A

ct
iv

it
y

co
u
n
t

fo
r

P
IR

a
n
d

p
ed

o
m

et
er

.
B

o
tt

o
m

:
L

o
ca

ti
o
n

in
th

e
h
o
u
se

.

125

CHAPTER 16. RESULTS

Figure 16.2: (iPad) June 7th shows use of all three appliances during the course of the
day. Bottom bars show room occupance, color legend in Figure 16.3 on the next page.
It’s likely there are visitors as rooms change rapidly.

with a period of illness reported by the subject. Coffee maker on-time variance is
due to the re-heat function whenever the appliance was not turned off immediately.

16.5 Zone Occupance
From Figure 16.3 on the next page we can see how the location classification per-
formed. Some glaring errors are obvious and are listed in Table 16.6. In general all
lost events lead to some deviance from the truth, but as the zones with PIR sensors
will recieve events throughout a stay, some loss can be tolerated while maintain-
ing an adequate degree accuracy. The same is not true for lost door events for
doors leading to zones without PIR sensors, as they are responsible for most of the
obvious errors shown in Table 16.6.

Date Error Result

25.04 Lost bedroom door event Sleeping in hallway
01.05 Lost bedroom door event Sleeping in hallway
07.05 Lost entrance door event Vacation in laundry room
15.05 Pandaboard reset One day extra vacation
16.05 Logger hangup Long stay in kitchen
25.05 Lost entrance door event Hallway instead of outside
26.05 Lost entrance door event Hallway instead of outside
30.05 Lost entrance door event Hallway instead of outside

Table 16.6: Obvious location report errors seen in Figure 16.3.

On the other hand, it can be seen for Outside – and Bedroom before May 2nd
when a working PIR sensor was installed – that the implemented hinting algorithm

126

16.6. Orientation and Pedometer Data

Figure 16.3: iPad screenshots. Location summary per day for May 25th until June
11th.

used when doors are opened or closed works as intended as long as the necessary
events reach the interpreter.

16.6 Orientation and Pedometer Data

Figure 16.1 on page 125 shows a plot of the orientation and pedometer count for
May 2nd. Before the subject goes outside in the morning it’s quite clear when the
subject is sitting or standing up. We can also see that the subject reattaches the
sensor and lies down on the side or back.

If we look at stable periods with medium tilt (red rings), it’s safe to assume

127

CHAPTER 16. RESULTS

that the subject is sitting down, because a belt is naturally tilted at an angle when
sitting, and an absence of activity can often be observed. However, we note that
the degree of tilt varies wildly between the assumed sitting periods.

Whether this is a result of varied sitting positions or a shift in sensor position
is difficult to determine. The subject has a wide variety of chair and sofa types,
and there are an infinite number of ways to sit, so a combination is likely.

16.7 Presentation
As seen from the screenshots in the previous chapter and the excerpts from screen-
shots in this chapter, the iPad application gives a fairly clear and intuitive overview
of the subject’s movements and history. For health personnel, this can be used to
manually get an indication of past and present activity of a subject.

16.7.1 Statistics

Looking at the amount of time spent in the bedroom, outside and in the bathroom it
is clear that the time spent outside, as well as time spent in the bathrooms varies
unpredictably and are somewhat inversely correlated. Figure 16.6 on page 130
shows the relationship between time spent outside, and total activity inside the
house per day. The time spent asleep on the other hand is much more stable, and
here it is easier to see and draw conclusions from deviations from the norm.

Figure 16.4 shows graphs from the application for May 28th till June 6th. In
this time period, the test subject came down with pneumonia, and had to get
medical treatment. In the graph, a few days of interest are marked. June 1st is
marked with red circles, and on this day, it can be seen that the test subject slept
less than the days before and after. In Figure 16.5, the specifics of this day is
shown. We see that the test subject went to bed before 21:30, and that he had
a short bathroom break around 00:15. Then, the test subject got up again some
time close to 01:45, and this time he turns on the boiler and starts his day.

On June 4th and 5th, marked with blue circles, it can be seen that the test
subject slept for a very limited amount of time. This is not completely accurate, as
examining the days more carefully, showed that there were breaks in the bedroom
stays both nights for approximately 30 minutes. The sleep classifier as implemented
considers any break for more 10 minutes as a sign of the sleep being finished, and
any stays in the bedroom after this are regarded normal day activity and thus not
added to the sleep. This means that the blue circles don’t necessarily marks days
with very little sleep, just a sleep that is more disturbed.

The orange circles mark June 9th and 10th. On the 9th, the test subject went
on a trip, and didn’t get home before the evening on the 10th. This can be seen as
there is no sleep the 10th, and that the amount of time spent outside was rather
large on the 9th, and very large on the 10th.

In Figure 16.6 the ratio of sensor activity is plotted against time spent outside.
The main trend is that the more time spent outside, the less activity from the indoor
sensors. This is to be expected, but it can also be seen that the activity varies a lot,

128

16.7. Presentation

Figure 16.4: Activity from May 28th to June 6th. Circles marks days of special
interest

Figure 16.5: Detailed overview of June 1st

and that it does not follow the predicted (red line) value very consistently when
much time is spent inside. This could well be a result of visitors in the house.

Assuming that the relationship is really linear may not hold, as there could be a
set of discrete day types instead of a linear dependence. However, normalizing the

129

CHAPTER 16. RESULTS

Figure 16.6: Sensor event count vs time spent outside for April 25th to May 12th. Red
line denotes prediction from linear regression.

measured activity level against the amount of time spent in the sensors’ field of view
by some mechanism makes sense intuitively, and a deviance from the prediction
could give us another indication of a subject’s general condition. For activity sensed
with infra-red sensors, this may hold only if activity goes down because activity
from visitors can mask inactivity on the part of the subject under observation.

16.8 Experience of the Test Subject
The test subject was asked a few questions about his experience and how he per-
ceived the monitoring.

He claimed that he did not feel uncomfortable being monitored, and that his
acitivity level had not been reduced or increased due to the sensors in the house.
We did particularly ask about how he felt regarding the sensors in private areas
such as bathroom and bedroom, and he said that he had no hesitations to these,
as he was well aware that the sensors only detected movement. He did mention
that others might be more sceptical to this, as the sensors can remind a little of
cameras.

When it came to the sensors, he said that he didn’t mind them being in the
house, and that the only time he paid any special interest to them was when some
of them fell down from time to time. The sensors were not preceived as unsigthly
either, and he got used to them pretty quickly. On the other hand, this could also
be because he knew they were only there for a limited period of time.

The accelerometer, he tried to use as much as possible and it was not bothering
to wear. He did think that in time bringing it with him it could become a part of
the daily routine such as wearing his hearing aid and taking his cell phone with
him.

If a health care worker would be monitoring the behavior, he thought it might
increase the feeling of security at home in case something happened, such as feeling
indisposed with his safety alarm out of reach.

130

Part V

Discussion, Further Work and
Conclusion

17
Discussion

In this thesis we have tried to give an overview of the current state of the art in
consumer-grade wireless sensor technologies, their possible application in health
monitoring, and to implement techniques for handling, combining and presenting
sensor data from a variety of sources typical, in our opinion, of the smart homes of
the near future.

In hindsight, the scope of the thesis could have been narrowed down somewhat,
giving more attention to only one or a few parts of the chain from real-world fact
through observation to presentation. However, as this to our knowledge is one of
the first ventures for the Department of Engineering Cybernetics into the world of
domestic surveillance, we felt it pertinent to stake out the area in its entirety to the
best of our abilities, shining a light wherever we could, and see how far we could
take it. This in the hope that where we have tread wrong, others might learn from
our experience and tread with more confidence.

17.1 Wireless Solution

Choices we have made in this regard in the implementation are, as previously
discussed, not technically superior. The choices reflect a need for compromise
between technical optimality on the one hand and concerns with regards to risk
and cost on the other, with the goal being to get enough nodes of enough types
running soon enough to evaluate the entirety of the solution.

Our results and experience lead us to recommend more robust wireless stacks
for further work. As stated earlier, while there can be a significant amount of slack
with regards to timing and precision without degrading the quality of the data,
the data reported to health personnel or caregivers should not be inaccurate, i.e.
reporting someting that is completely false such as an observand staying for days
in a laundry room.

132

17.2. Data Concentration

17.2 Data Concentration

As the results show, the local concentrator node had a high percentage of uptime.
One unexplained reset occured, but remote access was reestablished automatically.
It is therefore in our opinion a good choice to rely on tried and tested platforms
such as Linux running on relatively cheap hardware is for future implementations
and even full scale deployment.

Using a database server for persistent storage made attaching different logger-
processes storing data simultaneously a walk in the park, while at the same time
giving an arbitrary number of processes access to historical data. Creating a sec-
ondary channel for sending real-time sensor data directly to interpreting and dis-
playing processes is a possible improvement, but considering the relatively slow
dynamics of human behaviour this was not considered worth the increased com-
plexity.

17.3 Privacy

As has been observed in the public debate surrounding electronic patient journals,
privacy and security are paramount in gaining and keeping the trust of users. We
believe that the use of restricted local access and public-key encrypted end-to-end
remote connections as has been used in this implementation is sufficient regardless
of the security of the local network.

However, depending on the dedication of an attacker it has been noted that
wireless sensor signals are easily intercepted – indeed this has been the premise of
our implementation and should therefore be considered a well proven point. Should
such a system ever be widely deployed, this aspect must be taken into consideration.

Technically, securing stored data and restricting access is easily done. The
challenges in this regard are more of an administrative nature, and has not been a
focus in this thesis.

17.4 Event Routing and Interpretation Framework

This is perhaps the most important design decision to make except for how data
is presented to the user, as it will greatly affect development and maintainance
cost, as well as runtime performance. We studied some previous work, and as
discussed used concepts and recommendations from these in our implementation.
Our experience is that an emphasis on weak coupling between components and
layers and a separation of concerns made it easy to develop and test each component
separately. The effect of abstracting sensor data as context cues made it easy to
develop higher order interpreting routines, but this effect was perhaps not fully
utilized as time constraints required the development to stop before more classifiers
could be implemented.

Although letting each context classifier process data independently means it
takes some minutes to classify a month of raw data on a modern computer, we

133

CHAPTER 17. DISCUSSION

find the performance acceptable considering the reduction in complexity. The
interpretation of sensor data is intended to run continuously and to persistently
store generated information, making the performance more than adequate in a
deployed system.

17.5 Presentation
As already mentioned in Chapter 15, a deeper evaluation is needed to decide which
rooms should be presented as graphs with statistics. The amount of sleep, time
spent in the bathroom and time spent outdoors all seem as good indicators of a
subjects health condition, but need to be classified into groups of similar days to
give a clearer view of anomalities.

With a larger data set, it would be interesting to compare a recent time interval
with the same time interval last year, as this can give a better indication of e.g.
sleep routines having changed over the last 12 months. Human behavior is as
previously mentioned unpredictable, and this is clearly seen from the results. This
is why intelligent systems need to be implemented to detect abnormalities, as simple
statistics isn’t necessarily enough.

17.6 Usefulness in a Health Context
When it comes to the usefulness of the implemented system in a health context,
a more thorough examination in cooperation with health personnel or relatives is
required. As discussed in the introduction, insomnia and appetite loss can be a
symptom of deterorating health, and having a system for seeing what a patient has
done since the last visit from health personnel might help detect this at an early
stage.

Incipient dementia or similar diseases could also be captured by health personnel
by seing small signs of a patient being disorientated e.g. by getting up in the
middle of the night, cooking at unseemly times or wandering outside. These are
symptoms that may not normally be seen before the disease is more developed, but
by picking these up at an earlier stage, the medical treatment of the patient could
be accomodated to allow the patient to stay safely at home as long as possible.

The sensor types we have looked at in this experiment record parameters related
to behaviour and activity. While this can be interesting both for emergencies and
as a diagnostic tool, more targeted sensor types such as for instance blood sugar
measurements or lung capacity could also be integrated to perhaps avoid hospital
visits simply for routine monitoring.

134

18
Further work

Suggestion: Improve or perfect one aspect of the chain data must pass through,
be it a specific type of information from a sensor, or a way to present data clearly
and usefully.
Rationale: A useful monitoring system must necessarily rely on accurate and pre-
cise reports, interpreted intelligently and presented in a useful manner. Focusing
on just one aspect will make it more likely to achieve solid results.

Suggestion: Consider focusing on data from body-worn sensors, both activity
level, orientation, location or specific sensor parameters like pulse etc.
Rationale: Body-worn sensors uniquely identify the individual wearer, unlike
zone-based systems, thus scaling better, allowing cohabitation and delivering cleaner
data on a subject.

Suggestion: Gather longitudinal data on a significant number of individuals. Try
to determine a correlation between features extracted from the data and indepen-
dently measured health parameters.
Rationale: As a step to wide scale deployment, it is necessary to assess the use-
fulness and quality of gathered data.

Suggestion: Interview practitioners and research the current state of out-patient
programs. Determine what stops some patient groups from living at home and
what can be done.
Rationale: Defining clear problems makes it easier to develop a targeted solution.

Suggestion: Develop a user interface in collaboration with practitioners, find
out what they would need to identify problems and evaluate how they use the
presented information.
Rationale: The target audience should be included at an early stage to evaluate
the usefulness of data and clarity of presentation.

135

19
Conclusion

In this thesis, a platform for monitoring elderly in a domestic environment has
been researched and developed. A full system has been implemented, presented
and evaluated, from choosing and placing sensors, to receiving, interpreting and
presenting the data to an end-user.

The system presented is directly reusable in any home environment by modifying
metadata, is built upon cited design concepts and can serve as a firm foundation
for further work in various directions.

Relevant background theory has been studied and presented, and different areas
of applicaton of remote monitoring in a health context have been proven or made
plausible.

It has been shown that is it possible to develop such a system with limited funds
and simple sensors, and that useful information can be extracted from the system
and presented intelligently to users.

We believe the presented platform as-is could benefit health personnel and care-
givers in a diagnostic capacity as a tool for assessing objective data. With further
work aimed at identifying abnormal behaviour or targeting specific health param-
eters, such a system could increase comfort and security and potentially save lives
by assisting detection of critical situations or deteroration of health at an early
stage.

136

Bibliography

[1] AlertMe - Smart Monitoring. www.alertme.com/. Retrieved February 16th,
2012.

[2] Ambient Assistant Living Joint Programme. www.aal-europe.eu. Retrieved
March 3rd, 2012.

[3] Amicom a7201a datasheet. http://electrohome.pbworks.com/f/A7201+

Datasheet+v0.5+(1).pdf. Retrieved March 20th, 2012.

[4] Android & iOS: 82% Market Share in 1Q 2012. http://www.

gpsbusinessnews.com/Android-iOS-82-Market-Share-in-1Q-2012_

a3658.html. Retrieved June 2nd, 2012.

[5] Android developers: Activity lifecycle figure. http://developer.android.

com/images/activity_lifecycle.png. Retrieved December 11th, 2011.

[6] Android developers guide: Activities. http://developer.android.com/

guide/topics/fundamentals/activities.html. Retrieved October 22nd,
2011.

[7] Android developers guide: Content providers. http://developer.android.

com/guide/topics/providers/content-providers.html. Retrieved Octo-
ber 22nd, 2011.

[8] Android developers guide: Intents and intent filters. http://developer.

android.com/guide/topics/intents/intents-filters.html. Retrieved
October 22nd, 2011.

[9] Android developers guide: Services. http://developer.android.com/

guide/topics/fundamentals/services.html. Retrieved October 22nd,
2011.

137

www.alertme.com/
www.aal-europe.eu
http://electrohome.pbworks.com/f/A7201+Datasheet+v0.5+(1).pdf
http://electrohome.pbworks.com/f/A7201+Datasheet+v0.5+(1).pdf
http://www.gpsbusinessnews.com/Android-iOS-82-Market-Share-in-1Q-2012_a3658.html
http://www.gpsbusinessnews.com/Android-iOS-82-Market-Share-in-1Q-2012_a3658.html
http://www.gpsbusinessnews.com/Android-iOS-82-Market-Share-in-1Q-2012_a3658.html
http://developer.android.com/images/activity_lifecycle.png
http://developer.android.com/images/activity_lifecycle.png
http://developer.android.com/guide/topics/fundamentals/activities.html
http://developer.android.com/guide/topics/fundamentals/activities.html
http://developer.android.com/guide/topics/providers/content-providers.html
http://developer.android.com/guide/topics/providers/content-providers.html
http://developer.android.com/guide/topics/intents/intents-filters.html
http://developer.android.com/guide/topics/intents/intents-filters.html
http://developer.android.com/guide/topics/fundamentals/services.html
http://developer.android.com/guide/topics/fundamentals/services.html

BIBLIOGRAPHY

[10] Android developers reference: BroadcastReceiver class. http://developer.

android.com/reference/android/content/BroadcastReceiver.html. Re-
trieved October 22nd, 2011.

[11] Android developers reference: Context class. http://developer.android.

com/reference/android/content/Context.html. Retrieved October 22nd,
2011.

[12] Bluetooth core specifications. https://www.bluetooth.org/Technical/

Specifications/adopted.htm. Retrieved October 25th, 2011.

[13] Bluetooth fast facts. http://www.bluetooth.com/Pages/Fast-Facts.aspx.
Retrieved October 25th, 2011.

[14] CARE - Safe Private Homes for Elderly Persons. http://care-aal.eu/.
Retrieved March 3rd, 2012.

[15] COGNITA FALLOFON, fall sensor with GPS. http://www.

hjelpemiddeldatabasen.no/r11x.asp?linkinfo=21482/. Retrieved
June 1st, 2012.

[16] A comparison between ook/ask and fsk modulation techniques for radio
links. http://cirronetinc.com/products/apnotes/ookvsfsk.pdf. Re-
trieved March 15th, 2012.

[17] Core Bluetooth Framework Reference. https://developer.apple.com/

library/ios/documentation/CoreBluetooth/Reference/CoreBluetooth_

Framework/CoreBluetooth_Framework.pdf. Retrieved May 13th, 2012.

[18] For 2012-01-19 nr 77: Forskrift om generelle tillatelser til bruk av frekvenser
(fribruksforskriften). http://www.lovdata.no/cgi-wift/ldles?doc=/sf/

sf/sf-20120119-0077.html. Retrieved February 25th, 2012.

[19] H@H - Health at Home. www.health-at-home.eu/. Retrieved March 3rd,
2012.

[20] HOPE - Smart Home for Elderly People. http://www.hope-project.eu/.
Retrieved March 3rd, 2012.

[21] iOS Developer Library: App States and Multitasking. https://developer.

apple.com/library/ios/#documentation/iPhone/Conceptual/

iPhoneOSProgrammingGuide/ManagingYourApplicationsFlow/

ManagingYourApplicationsFlow.html#//apple_ref/doc/uid/

TP40007072-CH4-SW3. Retrieved April 26th, 2012.

[22] iOS Developer Library: Game Kit. https://developer.apple.com/

library/ios/#documentation/NetworkingInternet/Conceptual/

GameKit_Guide/Introduction/Introduction.html#//apple_ref/doc/

uid/TP40008304-CH1-SW1. Retrieved May 13th, 2012.

138

http://developer.android.com/reference/android/content/BroadcastReceiver.html
http://developer.android.com/reference/android/content/BroadcastReceiver.html
http://developer.android.com/reference/android/content/Context.html
http://developer.android.com/reference/android/content/Context.html
https://www.bluetooth.org/Technical/Specifications/adopted.htm
https://www.bluetooth.org/Technical/Specifications/adopted.htm
http://www.bluetooth.com/Pages/Fast-Facts.aspx
http://care-aal.eu/
http://www.hjelpemiddeldatabasen.no/r11x.asp?linkinfo=21482/
http://www.hjelpemiddeldatabasen.no/r11x.asp?linkinfo=21482/
http://cirronetinc.com/products/apnotes/ookvsfsk.pdf
https://developer.apple.com/library/ios/documentation/CoreBluetooth/Reference/CoreBluetooth_Framework/CoreBluetooth_Framework.pdf
https://developer.apple.com/library/ios/documentation/CoreBluetooth/Reference/CoreBluetooth_Framework/CoreBluetooth_Framework.pdf
https://developer.apple.com/library/ios/documentation/CoreBluetooth/Reference/CoreBluetooth_Framework/CoreBluetooth_Framework.pdf
http://www.lovdata.no/cgi-wift/ldles?doc=/sf/sf/sf-20120119-0077.html
http://www.lovdata.no/cgi-wift/ldles?doc=/sf/sf/sf-20120119-0077.html
www.health-at-home.eu/
http://www.hope-project.eu/
https://developer.apple.com/library/ios/#documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/ManagingYourApplicationsFlow/ManagingYourApplicationsFlow.html#//apple_ref/doc/uid/TP40007072-CH4-SW3
https://developer.apple.com/library/ios/#documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/ManagingYourApplicationsFlow/ManagingYourApplicationsFlow.html#//apple_ref/doc/uid/TP40007072-CH4-SW3
https://developer.apple.com/library/ios/#documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/ManagingYourApplicationsFlow/ManagingYourApplicationsFlow.html#//apple_ref/doc/uid/TP40007072-CH4-SW3
https://developer.apple.com/library/ios/#documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/ManagingYourApplicationsFlow/ManagingYourApplicationsFlow.html#//apple_ref/doc/uid/TP40007072-CH4-SW3
https://developer.apple.com/library/ios/#documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/ManagingYourApplicationsFlow/ManagingYourApplicationsFlow.html#//apple_ref/doc/uid/TP40007072-CH4-SW3
https://developer.apple.com/library/ios/#documentation/NetworkingInternet/Conceptual/GameKit_Guide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40008304-CH1-SW1
https://developer.apple.com/library/ios/#documentation/NetworkingInternet/Conceptual/GameKit_Guide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40008304-CH1-SW1
https://developer.apple.com/library/ios/#documentation/NetworkingInternet/Conceptual/GameKit_Guide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40008304-CH1-SW1
https://developer.apple.com/library/ios/#documentation/NetworkingInternet/Conceptual/GameKit_Guide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40008304-CH1-SW1

Bibliography

[23] iOS Developer Library: NSMutableArray Class Reference. https:

//developer.apple.com/library/mac/#documentation/Cocoa/

Reference/Foundation/Classes/NSMutableArray_Class/Reference/

Reference.html. Retrieved May 4th, 2012.

[24] iOS Developer Library: NSNotification Class Reference. https://developer.
apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/

Classes/NSNotification_Class/Reference/Reference.html. Retrieved
May 4th, 2012.

[25] iOS Developer Library: NSObject Class Reference. https://developer.

apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/

Classes/nsobject_Class/Reference/Reference.html. Retrieved May 4th,
2012.

[26] iOS Developer Library: State changes in an iOS app. https://

developer.apple.com/library/ios/documentation/iPhone/Conceptual/

iPhoneOSProgrammingGuide/Art/high_level_flow.jpg. Retrieved April
26th, 2012.

[27] iOS Developer Library: UIApplicationDelegate Protocol Reference. https://
developer.apple.com/library/ios/#documentation/UIKit/Reference/

UIApplicationDelegate_Protocol/Reference/Reference.html. Retrieved
April 26th, 2012.

[28] iOS Developer Library: UIStoryboardSegue Class Reference.
https://developer.apple.com/library/ios/#documentation/UIKit/

Reference/UIStoryboardSegue_Class/Reference/Reference.html. Re-
trieved April 26th, 2012.

[29] iOS Developer Library: UITableView Class Reference. http://

developer.apple.com/library/ios/#documentation/uikit/reference/

UITableView_Class/Reference/Reference.html. Retrieved May 4th, 2012.

[30] iOS Developer Library: UIView Class Reference. http://developer.apple.
com/library/ios/#documentation/uikit/reference/uiview_class/

uiview/uiview.html. Retrieved April 26th, 2012.

[31] iOS Developer Library: UIViewController Class Reference. http://

developer.apple.com/library/ios/#DOCUMENTATION/UIKit/Reference/

UIViewController_Class/Reference/Reference.html. Retrieved April
26th, 2012.

[32] Lov 2000-04-14 nr 31: Lov om behandling av personopplysninger (person-
opplysningsloven). http://www.lovdata.no/all/nl-20000414-031.html/.
Retrieved March 3rd, 2012.

[33] Mac OS X Developer Library: Protocols. https://developer.apple.com/

library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/Chapters/

ocProtocols.html. Retrieved April 26th, 2012.

139

https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSMutableArray_Class/Reference/Reference.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSMutableArray_Class/Reference/Reference.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSMutableArray_Class/Reference/Reference.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSMutableArray_Class/Reference/Reference.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSNotification_Class/Reference/Reference.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSNotification_Class/Reference/Reference.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSNotification_Class/Reference/Reference.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/nsobject_Class/Reference/Reference.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/nsobject_Class/Reference/Reference.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/nsobject_Class/Reference/Reference.html
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Art/high_level_flow.jpg
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Art/high_level_flow.jpg
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Art/high_level_flow.jpg
https://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIApplicationDelegate_Protocol/Reference/Reference.html
https://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIApplicationDelegate_Protocol/Reference/Reference.html
https://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIApplicationDelegate_Protocol/Reference/Reference.html
https://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIStoryboardSegue_Class/Reference/Reference.html
https://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIStoryboardSegue_Class/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UITableView_Class/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UITableView_Class/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UITableView_Class/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/uiview_class/uiview/uiview.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/uiview_class/uiview/uiview.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/uiview_class/uiview/uiview.html
http://developer.apple.com/library/ios/#DOCUMENTATION/UIKit/Reference/UIViewController_Class/Reference/Reference.html
http://developer.apple.com/library/ios/#DOCUMENTATION/UIKit/Reference/UIViewController_Class/Reference/Reference.html
http://developer.apple.com/library/ios/#DOCUMENTATION/UIKit/Reference/UIViewController_Class/Reference/Reference.html
http://www.lovdata.no/all/nl-20000414-031.html/
https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocProtocols.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocProtocols.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocProtocols.html

BIBLIOGRAPHY

[34] Maxim application note 4439. http://www.maxim-ic.com/app-notes/

index.mvp/id/4439. Retrieved April 14th, 2012.

[35] New features in Xcode 4.2. http://developer.apple.com/library/mac/

#releasenotes/ObjectiveC/RN-TransitioningToARC/Introduction/

Introduction.html#//apple_ref/doc/uid/TP40011226. Retrieved April
16th, 2012.

[36] Pressure mats for the elderly. http://www.pressuremat.com/. Retrieved
May 19th, 2012.

[37] Ray Wenderlich: How to make a simple multiplayer game with
game center tutorial. http://www.raywenderlich.com/3276/

how-to-make-a-simple-multiplayer-game-with-game-center-tutorial-part-12.
Retrieved April 13th, 2012.

[38] Studenter fikk ulovlig tilgang p pasientjournaler. http://www.vg.no/helse/
artikkel.php?artid=560054. Retrieved March 14th, 2012.

[39] Texas Instruments CC2540 Bluetooth Low Energy Software Developers Guide
v1.1. http://www.ti.com/lit/ug/swru271a/swru271a.pdf. Retrieved Sept
28th, 2011.

[40] TI BLE Vendor Specific HCI Reference Guide. http://www.ti.com/tool/

ble-stack. Retrieved April 13th, 2012.

[41] Transitioning to ARC release notes. http://developer.apple.com/

library/mac/#releasenotes/ObjectiveC/RN-TransitioningToARC/

Introduction/Introduction.html#//apple_ref/doc/uid/TP40011226.
Retrieved April 16th, 2012.

[42] Velferdsteknologi for hjemmeboende - Bærum kommune. https:

//www.baerum.kommune.no/Organisasjonen/Pleie--og-omsorg/

Velferdsteknologi/. Retrieved June 1st, 2012.

[43] Wikipedia: iOS jailbreaking. http://en.wikipedia.org/wiki/IOS_

jailbreaking. Retrieved May 18th, 2012.

[44] Z-Wave Protocol Overview. http://www.eilhk.com/en/product/

Datasheet/Zensys/SDS10243-2%20-%20Z-Wave%20Protocol%20Overview.

pdf. Retrieved February 16th, 2012.

[45] Hjemme hos fru Paulsen. NHO magasinet, 2011.

[46] Daniel Berkvam Hatlevoll. Using bluetooth low energy in sensor devices. Mas-
ter’s thesis, Norwegian University of Science and Technology, 2011.

[47] Shane Conder and Lauren Darcey. Android Wireless Application Development.
Addison-Wesley, 2nd edition, 2010.

140

http://www.maxim-ic.com/app-notes/index.mvp/id/4439
http://www.maxim-ic.com/app-notes/index.mvp/id/4439
http://developer.apple.com/library/mac/#releasenotes/ObjectiveC/RN-TransitioningToARC/Introduction/Introduction.html#//apple_ref/doc/uid/TP40011226
http://developer.apple.com/library/mac/#releasenotes/ObjectiveC/RN-TransitioningToARC/Introduction/Introduction.html#//apple_ref/doc/uid/TP40011226
http://developer.apple.com/library/mac/#releasenotes/ObjectiveC/RN-TransitioningToARC/Introduction/Introduction.html#//apple_ref/doc/uid/TP40011226
http://www.pressuremat.com/
http://www.raywenderlich.com/3276/how-to-make-a-simple-multiplayer-game-with-game-center-tutorial-part-12
http://www.raywenderlich.com/3276/how-to-make-a-simple-multiplayer-game-with-game-center-tutorial-part-12
http://www.vg.no/helse/artikkel.php?artid=560054
http://www.vg.no/helse/artikkel.php?artid=560054
http://www.ti.com/lit/ug/swru271a/swru271a.pdf
http://www.ti.com/tool/ble-stack
http://www.ti.com/tool/ble-stack
http://developer.apple.com/library/mac/#releasenotes/ObjectiveC/RN-TransitioningToARC/Introduction/Introduction.html#//apple_ref/doc/uid/TP40011226
http://developer.apple.com/library/mac/#releasenotes/ObjectiveC/RN-TransitioningToARC/Introduction/Introduction.html#//apple_ref/doc/uid/TP40011226
http://developer.apple.com/library/mac/#releasenotes/ObjectiveC/RN-TransitioningToARC/Introduction/Introduction.html#//apple_ref/doc/uid/TP40011226
https://www.baerum.kommune.no/Organisasjonen/Pleie--og-omsorg/Velferdsteknologi/
https://www.baerum.kommune.no/Organisasjonen/Pleie--og-omsorg/Velferdsteknologi/
https://www.baerum.kommune.no/Organisasjonen/Pleie--og-omsorg/Velferdsteknologi/
http://en.wikipedia.org/wiki/IOS_jailbreaking
http://en.wikipedia.org/wiki/IOS_jailbreaking
http://www.eilhk.com/en/product/Datasheet/Zensys/SDS10243-2%20-%20Z-Wave%20Protocol%20Overview.pdf
http://www.eilhk.com/en/product/Datasheet/Zensys/SDS10243-2%20-%20Z-Wave%20Protocol%20Overview.pdf
http://www.eilhk.com/en/product/Datasheet/Zensys/SDS10243-2%20-%20Z-Wave%20Protocol%20Overview.pdf

Bibliography

[48] Anind K. Dey, Gregory D. Abowd, and Daniel Salber. A conceptual framework
and a toolkit for supporting the rapid prototyping of context-aware applica-
tions. HUMAN-COMPUTER INTERACTION, 16, 2001.

[49] John E. Seem. Using intelligent data analysis to detect abnormal energy
consumption in buildings. Energy and Buildings, 39(01), 2007.

[50] Marko Gargenta. Learning Android. O’Reilly, 1st edition, 2011.

[51] Francine Gemperle, Chris Kasabach, John Stivoric, Malcolm Bauer, and
Richard Martin. Design for Wearbility. In IEEE International Symposium
on Wearable Computers, 1999.

[52] Guha, R. and McCarthy, J. Varieties of contexts. Modeling and Using Context,
pages 164177, 2003.

[53] H. Karl und A. Willig. Protocols and Architectures for Wireless Sensor Net-
works. Wiley and Sons, 2005.

[54] Hedda Schmidke. Introduction, context sensitive systems (lecture notes).
http://www.teco.edu/lehre/ctx/lecture/slides/CSS-1_Introduction.

pdf. Retrieved Feb 8th, 2012.

[55] Aina Beate Indreiten. Robotselen Paro kjenner igjen Sverre. http://www.nrk.
no/nyheter/distrikt/ostafjells/vestfold/1.7769505, 2011. Retrieved
June 1st 2012.

[56] J. B. MacQueen. Some Methods for classification and Analysis of Multivari-
ate Observations. Proceedings of 5-th Berkeley Symposium on Mathematical
Statistics and Probability, (1), 1967.

[57] J. F. Kurose and K. W. Ross. Computer Networking: A Top-Down Approach.
Pearson Education, 5th edition, 2009.

[58] Kamol Kaemarungsi. Design of Indoor Posistioning System Based on Location
Fingerprinting Technique. PhD thesis, University of Pittsburgh, 2005.

[59] Karen Henricksen, Jadwiga Indulska. Developing context-aware pervasive
computing applications: Models and approach. Pervasive and Mobile Com-
puting, 2, 2006.

[60] Patrick Kinney. Zigbee technology: Wireless control that simply
works. http://www.zigbee.org/imwp/idms/popups/pop_download.asp?

contentID=5162. Retrieved September 8th, 2011.

[61] Sebastian Lhr. Recognition of emergent human behaviour in a smart home:
A data mining approach. Pervasive and Mobile Computing, 03(02), 2007.

[62] Hui Liu, Houshang Darabi, Pat Banerjee, and Jing Liu. Survey of Wireless
Indoor Positioning Techniques and Systems. IEEE Transactions on systems,
man, and Cybernetics, 37(6), 2007.

141

http://www.teco.edu/lehre/ctx/lecture/slides/CSS-1_Introduction.pdf
http://www.teco.edu/lehre/ctx/lecture/slides/CSS-1_Introduction.pdf
http://www.nrk.no/nyheter/distrikt/ostafjells/vestfold/1.7769505
http://www.nrk.no/nyheter/distrikt/ostafjells/vestfold/1.7769505
http://www.zigbee.org/imwp/idms/popups/pop_download.asp?contentID=5162
http://www.zigbee.org/imwp/idms/popups/pop_download.asp?contentID=5162

BIBLIOGRAPHY

[63] Magnus Glendrange, Kristian Hove, Espen Hvideberg. Decoding gsm. Master’s
thesis, Norwegian University of Science and Technology, 2010.

[64] Vandad Nahavandipoor. iOS 5 Programming Cookbook. O’Reilly, 1st edition,
2012.

[65] Matt Neuburg. Programming iOS 4. O’Reilly, 1st edition, 2011.

[66] Aslak Ringvoll Normann and Marte Elisabeth Bakken Skjønsfjell. An Ap-
proach to Networked Welfare Sensing, December 2011.

[67] Bernard Rosner. Percentage Points for a Generalized ESD Many-Outlier Pro-
cedure. Technometrics, 25(02), 1983.

[68] Studenski S, Perera S, and Patel K et al. Gait Speed and Survival in Older
Adults. Jama, 305(01), 2011.

[69] Schmidt et. al. Advanced interaction in context. HUC, pages 89101, 1999.

[70] Claire Weeks and Andrew Butterworth. Measuring and Auditing Broiler Wel-
fare. CABI Publishing, 2004.

142

Part VI

Appendix

A
Enclosed CD

A.1 Contents
• Code — Includes all the code used and developed in this project:

– Concentrator

– Interpreter

– bHome

• Background — Includes the candidates specialization project, as well as
datasheets and reference guides.

A.2 Deploying the Code
How to deploy as well as what to change in the different parts of the code is
described in the section below.

A.2.1 bHome
In the bHome/bHome.xcodeproj folder, the Xcode project for the application can
be found. This can be opened and edited in Xcode and be deployed on an iPad
or the simulater. Note that to deploy the application, a Developer Account is
required.

For connectivity, the server.py must be running on a computer, and the address
for this computer must be modified in the connect method in BHNetworkCon-
troller.m file on line 100.

A.2.2 Concentrator
Users may log in locally on the pandaboard with the user root and password
Ekstremt Brun Saus. When the device is powered, it will initiate a connection to

144

A.2. Deploying the Code

imbesil.ed.ntnu and set up a reverse tunnel on port 19022. This can be changed
by modifying files in the /home/tunnel folder, which are run at startup. Remotely,
the user tunnel can be used with the password meget brun saus.

Python programs which receive wireless data are in /home/logger, and logger

has the password tomatsuppe. The relevant programs are

• serialserver.pyw — started with /dev/multitrx as argument

• decode efergy.py — /dev/efergy

• bledongle.py — /dev/ACM0 or 1

The /dev/multitrx and efergy node are aliases created by rules in /etc/rules.d/.
Normally these programs were run inside of a screen session. The MySQL database
starts on power-up and can be accessed with the command mysql -u root -p"brun

saus".

A.2.3 Interpreter
server.py will run the GUI server as well as the framework. Modifications need
to be done in databasereader.py, line 20, where the connection parameters of the
database are set.

interpreter.py can be run independently by invoking it on the command
line, but this functionality is used mainly for development and debugging and will
probably not produce anything useful as presented on the CD.

A.2.4 KeyFob
The KeyFob device may be programmed using IAR Embedded Workbench. The
project file for the firmware used in this thesis is found on the CD under Code/

BLE-CC254x-1.2/ Projects/ ble/KeyFob/ CC2540DB/KeyFobDemo.eww. The Move-
ment profile is similarly under Projects/ble/Profiles/MovementProfile and is
included in the above project.

145

B
Android

This section was first featured in Normann/Skjønsfjell[66].
Most of the information in this section is gathered from Android Wireless Ap-

plication Development[47] and Learning Android[50].
For developing Android applications, a Java IDE, such as Eclipse, is often used.

Android Develoment Tools (ADT) is a plug-in for Eclipse to facilitate development
and includes the Android SDK , which provides a lot of APIs1.

Android applications are written in Java, but a Native Development Kit (NDK)
can be used to build performance-critical portions of apps in native code languages
such as C or C++.

ADT together with Eclipse provides tools for debugging the application, either
with a physical device connected to the computer, or by using an Android Virtual
Device (AVD) on the provided emulator (seen in Figure B.1).

When the Android application is written, the Android SDK compiles the code
and data and resource files into an Android package with the .apk suffix. One
single package is one application and can be deployed to an Android device.

Android Platform

The operating system is based on a Linux 2.6 kernel which handles core system
services and acts as a HAL2 between hardware and the Android software stack.
Each application has it’s own virtual machine (Dalvik3), runs in a separate process
and has its own unique user ID. Several instances of the Dalvik virtual machine
can run concurrently on a device. This can be seen in Figure B.2.

The fact that each application has its own user ID provides security in the
Android system. This is because each application can only access its own files,
so any user names and passwords stored by one application are not accessible by
other applications, much like iOS’ sandbox.

1Application Programming Interfaces
2Hardware Abstraction Layer
3Dalvik is the process virtual machine in Android.

146

Figure B.1: Emulator

Application Building Blocks

Android has its own terminology for the main building blocks of an application:

• Context: This is the interface to global information about an application
environment and it allows access to application-specific functionality such as
data and resources[11].

• Activity: A single focused task in an application is called an Activity, and an
application is usually a collection of activities. This can be seen as a single
screen that the user can see and/or interact with[6].

• Intent: This is Android’s asynchronous messaging system and may be used
to launch activities and communicate with background services[8].

• Service: Tasks that do not interact with the user or tasks that supply func-
tionality for other applications may be encapsulated into a service. However,
services are not separate processes, but a part of an application, and run in
the background without any user interface[9].

147

APPENDIX B. ANDROID

Figure B.2: The Android Platform. From Android Wireless Application
Development[47]

• Broadcast Receiver: This is the system wide publisher/subscriber mechanism.
A broadcast receiver will receive any broadcast intents it has subscribed to,
and react in a predefined manner, such as starting an activity or notifying
the user[10].

148

• Content Provider: To share data between applications, a Content Provider
must be used[7]. Severeral Content Providers for common data types such as
audio, video and images are provided in Android.

Activity Lifecycle

The lifecycle of an Android activity consists of five states which are shown in Figure
B.3:

• Starting: When an activity does not exist in memory it goes into the starting
state and performs several callback methods going into the running state.
This transistion is expensive in terms of computing time, and therefore ac-
tivities are not destroyed from memory as a rule when they are no longer
shown to the user.

• Running: Here the activity is in focus (which means that the user can interact
with it) on the screen and is given priority of memory and resources. Only
one activity at a time can be in the running state.

• Paused: The activity is still visible on the screen, but is not in focus. All
activities must go through this state to be stopped.

• Stopped: Here the activity is not visible, but it is still in the memory, and
could be restored to running again.

• Destroyed: When an activity is destroyed, it is no longer in memory.

It is the system that decides when an activity should be destroyed, and this is
usually when the user has not interacted with a task for a long time, or when the
system needs to free more memory for other more recent tasks.

There are several callback methods that are always called whenever an activity
changes states as seen in Figure B.3. These methods must be implemented by the
programmer:

• onCreate(): Where the activity is initialized, and where static activity data
should be set up.

• onRestart(): Called if the activity is being displayed to the user from the
Stopped state.

• onStart(): When the activity is becoming visible to the user, this method is
called.

• onResume(): Called when the activity is entering the Running state. This is
where retrieval of instances to resources should happen.

• onPause(): Called when the activity is placed in the background. This is a
good place to release and save activity resources, as well as stopping CPU
intensive processes, such as threads, audio playing etc. The more resources
released here, the less likely the activity is to be killed while in the back-
ground.

149

APPENDIX B. ANDROID

aFigure modified from [5]

Figure B.3: Activity life cycle a

• onStop(): Called when the activity is no longer visible to the user.

150

• onDestroy(): Called when the activity is being destroyed, either because it
has completed its lifecycle, or it’s being killed by the system to free memory.
Here, all static activity data should be released.

Both the onPause(), onStop() and onDestroy() methods are killable, which means
that the system could kill the hosting process after any of these methods have
returned, without executing the remainding methods. Therefore, all saving of user
data must be done on the onPause() method to be sure this is done.

Resources

Android resources consist of everything that is not code. This could be images,
audio and xml files.

Layout The layout of a screen is specified in a layout xml file.

Drawables In Eclipse, images can simply be added to the res/drawable directory.
Preferred file format is PNG (Portable Network Graphics). Graphics that are
indepentent of screen density can be but into this folder, but there are three other
folders to add graphics to:

• /res/drawable-hdpi: For high-density screen devices

• /res/drawable-mdpi: For medium-density screen devices

• /res/drawable-ldpi: For low-density screen devices

Values Constant values to be used in the application can be added in xml files
located in a res/values directory in the application project. This could be strings,
integers, colors etc.

Providing strings as resources, in contrast to hardcoding them, makes it easier
to extend the application to different languages for instance. This can be done by
adding another string.xml file to a folder named values- and then a two-letter ISO
639-1 language code4. If the file is located in a res/values-fr/ folder, this file will
be used if the device language is set to French. If the device language is something
else, the default values from res/values will be used instead.

Menu Menus can be defined in a menu resource to separate the content for the
menu from application code. The different types of menus that can be defined are

• Context menu: A floating list of menu items that inflates when an item is
long-clicked

• Options menu: A menu that inflates when the menu button is pushed

• Submenu: A menu that inflates when a menu item that contains a nested
menu is selected

4ISO 639-1 language codes can be found here: http://www.loc.gov/standards/iso639-2/

php/code_list.php

151

http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.loc.gov/standards/iso639-2/php/code_list.php

APPENDIX B. ANDROID

R.java The R.java file is an index into all the resources defined in the xml files
and allows the resources to be accessed programatically. This file is automatically
generated by Eclipse whenever a resource xml file is updated, or a drawable is
added.

Manifest Each Android application needs a manifest. This is an xml configura-
tion file that glues the application together. It presents essential information about
the application to the Android system and includes application name and compo-
nents (such as activities, services, broadcast receivers and content providers), per-
missions the application requires, libraries to be linked against, hardware required,
as well as the minimum level of the Android API required by the app.

The information in the manifest is also used by the Android Market to select
which applications to display to different devices based on the minimum level of
Android API required and hardware requirements.

152

C
Cost of the System

Product Price Amount

Nexa PIR motion detector 229,- 9
Nexa magnet switch 161,- 13
Efergy Energy monitor 600,- 1
MultiTRX 450,- 1

Total 5204,-

Table C.1: Price of the implemented system

153

	Title Page
	List of Figures
	List of Tables
	List of Listings
	List of Abbreviatons
	I Introduction
	Introduction
	Motivation
	Aim of This Thesis
	Wireless
	Implementation of a Total System
	Presentation
	To the Reader

	II Background
	Welfare Technology
	Welfare Technology in Norway
	Ambient Assisted Living
	Exisiting Projects
	H@H - Health at Home
	HOPE - Smart Home for Elderly People
	CARE - Safe Private Homes for Elderly Persons

	Safety and Privacy
	Electronic Patient Journals

	Wireless Technologies
	Physical Layer
	Frequency Bands
	Modulation Techniques
	Amplitude Shift Keying
	Frequency Shift Keying
	Phase Shift Keying
	Direct Sequence Spread Spectrum
	Frequency Hopping Spread Spectrum

	Media Access Layer
	Network Layer
	Security
	Encryption
	Limitations of Symmetric Encryption
	Out of Band

	Privacy

	Existing Wireless Communication Solutions
	ZigBee
	System NEXA
	Z-Wave
	Efergy
	Bluetooth
	Classic Bluetooth
	Bluetooth 4.0

	Sensors
	Indoor Positioning
	Positioning with Ambulant/Body-Worn Transceivers
	Determining Position

	Positioning with Stationary Transceivers
	Video
	Motion detectors
	Magnet Switches
	Pressure Mats

	Other Means of Tracking Activity
	Body-Worn Sensors
	Gait Speed
	Interaction with the Environment

	Characteristics of Reported Location
	Precision and Accuracy of Sensors

	Context-Aware Processing
	Interpretation
	Context Extraction
	Context Toolkit
	Components of the ``Context Toolkit''

	Henricksen/Indulska framework
	Framework Components

	Considerations

	Automated Reasoning
	Pattern and Behaviour
	Anomaly detection

	Mobile Development
	iOS
	Objective-C
	Properties
	ARC

	Application Life Cycle
	Intra-Application Communication
	Protocols and Delegates
	Notifications
	Passing Data Between Scenes

	Application Files
	Application Delegate
	View Controller
	Storyboard

	Bluetooth in iOS
	Health in iOS

	III Implementation
	Sensor Types and Wireless Stack Selection
	Sensor Type Selection
	Location
	Stationary
	Body-Worn

	Activity Level
	Stationary
	Body-Worn

	Environment Interaction/Activity

	Wireless Properties of the Stacks
	Diversity and Cost
	Availability and Ease of Integration
	ZigBee
	Z-Wave
	Nexa/Efergy

	Final System
	Discussion

	KeyFob ``Smart Sensor''
	KeyfobDemo Project
	Modifications and Additions
	``Movement'' GATT Profile
	Movement Detection

	Discussion

	Test-Case Setup
	Test Subject
	Description of the House

	Placement of Sensors
	Motion Detectors
	Magnet Switches
	Efergy

	Discussion

	Local Concentrator and Communication Node
	Getting Started
	Linux Distributions
	Software Packages

	Concentration and Storage
	Communication
	Maintaining a Persistent Connection

	Sensor Data Reception
	Nexa PIR and Magnet Using MultiTRX
	MultiTRX
	PIR
	Waveform
	Parsing

	Magnet
	Concentration and Storage

	Efergy e2 Wireless Electricity Monitor
	Attempted RF Interception
	Implemented Interception
	Waveform
	Parsing

	Bluetooth LE Dongle

	Interpretation of Sensor Data
	Framework
	Observer Pattern
	Database
	Sensor Logs
	Metadata
	Parsed Data

	Classifiers
	Location Classifiers
	Characteristics of the Sensor Sata and Placement
	Interpreting Location Data
	InZoneClassifier
	DoorClassifier
	Discussion

	Appliance Classifier
	Clustering
	Classifying Sample Series
	Discussion

	Movement Classifier

	Aggregators
	Context History
	Combination Aggregators
	SubjectTracker
	TranquilityAggregator

	Discussion

	iOS Application - bHome
	Network Connection
	BHAppDelegate
	Real Time Tab
	History Tab
	BHBarView
	BHActivityView

	Stats Tab
	Python GUI Server
	SocketListener
	TCPConnection
	MessageProcessor
	Real Time Data
	History Data
	Stats Data

	Stats

	Discussion
	Detecting Outliers

	IV Results
	Results
	Produced Code
	Wireless Network Performance
	Nexa
	Efergy
	Keyfob

	Information from Accelerometer vs PIR
	Appliance Classification
	Zone Occupance
	Orientation and Pedometer Data
	Presentation
	Statistics

	Experience of the Test Subject

	V Discussion, Further Work and Conclusion
	Discussion
	Wireless Solution
	Data Concentration
	Privacy
	Event Routing and Interpretation Framework
	Presentation
	Usefulness in a Health Context

	Further work
	Conclusion

	VI Appendix
	Enclosed CD
	Contents
	Deploying the Code
	bHome
	Concentrator
	Interpreter
	KeyFob

	Android
	Android Platform
	Application Building Blocks
	Activity Lifecycle
	Resources

	Cost of the System

