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Abstract

This thesis presents a dynamic model of the surge/swab pressure fluctuations in a drilling
well induced by the vertical movement of the drill string. The model is given by a coupled
set of Partial Differential equations describing: 1. the pressure dynamics in the annulus
under unsteady Couette flow with a pressure gradient, 2. The movement of the elastic drill
string coupled with the pressure dynamics through viscous friction and mud displacement.
It is shown how the model can be simplified to a linear system and under what conditions
this simplification hold. Using the Laplace transform and appropriate boundary conditions
the transfer function of the linear model is derived. The model uses the heave disturbance
and controlled flow into the drilling well as inputs, and the measured topside pressure
and controlled down-hole pressure as output. It is also shown how the system may be
discretized to obtain a dynamic system given by a set of Ordinary differential equations.
The error introduced by the discretization is analysed in the frequency domain. Then,
the discretized models with varying number of control volumes are used for Kalman filter
design. The performance of the Kalman filter when the well is subjected to the heave
disturbance is compared over different number of control volumes for typical values of
measurement noise and heave velocity. Finally, it is shown that improved performance of
the Kalman filter for a fixed order can be obtained by designing the Kalman filter on a
high order discretization and then utilizing frequency weighted model reduction.



Abstract

Denne hovedoppgaven presenterer en dynamisk modell av trykkendringer i en borebrønn
laget av vertikal bevegelse av borestrengen. Modellen er gitt av et sett av koblede PDEer
som beskriver: 1. trykkdynamikken i brønnens annulus under ustødig Couette flyt med
en trykkgradient, 2. Bevegelsen til den elastiske borestrengen som er koblet med trykkdy-
namikken gjennom viskøs friksjon og fortrengning av boreslam. Det blir vist hvordan mod-
ellen kan forenkles til et lineært system og under hvilke forutsetningen denne forenklingen
holder. Ved bruk av Laplacetransformen og innsetting av hensiktsmessige grensebetingelser
s̊a utledes transferfunksjonen til det lineære systemet. Den resulterende modellen bruker
hiv forstyrrelsen og kontrollert flyt inn i borebrønnen som inngang, og det m̊alte trykket
i toppen av brønnen, samt trykket i bunnen av brønnen som utgang. Det blir s̊a vist
hvordan modellen kan diskretiseres for å oppn̊a et system gitt ved et sett av ordinære
differensialligninger. Modellfeilen som blir introdusert av diskretiseringen blir analysert i
frekvensdomenet. Det diskretiserte systemet, med varierende antall kontrol volum, blir s̊a
brukt til å designe Kalmanfiltre. Kalmanfiltrenes ytelse blir sammenlignet og det blir vist
hvordan man kan bruke frekvensvektet modellreduksjon for å oppn̊a et Kalmanfilter av
lav orden med bedre ytelse enn om de skulle vært designet direkte med en modell med f̊a
kontrol volum.
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Chapter 1

Introduction

1.1 MPD and the Heave Attenuation Problem

In drilling operations performed in the oil and gas industry a fluid called mud is pumped
down through the drill string and flows through the drill bit in the bottom of the well, see
Fig. 1.1.

If the pressure in the mud at the bottom of the well is too low the well can collapse
trapping the drill string, and if the pressure exceeds a certain threshold it can fracture
the well. Hence, it is important to control the mud pressure in the well. In Managed
Pressure Drilling (MPD) operations this is achieved by sealing the well and releasing mud
from the well through a control choke. A back pressure pump allows the pressure to be
controlled even when the main pump is stopped. Thus, the pressure in the bottom of the
well can be regulated to a desired set-point. This approach has proven successful when
drilling from stationary platforms and results on MPD control can be found in papers such
as [20],[7]. MPD from floating drilling rigs, however, still face significant challenges due
to the wave induced vertical motion of the floating drilling rig (known as heave). During
normal drilling the heave motion of the drilling rig is decoupled from the drill string by
compensation techniques. However, when the drill string is to be extended by a drill string
connection it is rigidly connected to the floater. It will then act as a piston in the well
creating pressure oscillations which may exceed the upper or lower pressure thresholds one
wishes to enforce. It is therefore desirable to utilize active control of the topside choke to
compensate for the pressure changes due to the heave motion. In this scenario, the main
pump is disconnected and there is no flow between the annulus and the drill string (the
drill bit is equipped with a one-way valve which prevents back flow from the annulus into
the drill string.) Hence the dynamics of interest is the pressure dynamics in the annulus.

The pressure dynamics in the annulus can be described by a hydraulic transmission
line model given by a set of hyperbolic PDEs. This system is continuous in time and space
and its governing equations include differential relations in both time and space which is
what makes them PDEs. That the PDEs are hyperbolic means that information travels
at a finite velocity which in this case is the sonic velocity of the given medium. The PDEs
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Figure 1.1: Well configuration for MPD. Shown by courtesy of Statoil ASA.
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can be discretized w.r.t. space which yields a set of ODEs. Linearising these yields a finite
dimensional LTI system which allows for the use of standard LTI controller and estimator
design techniques. But, to maintain the property of finite velocity of the information, a
high order discretization may be required which again results in high order estimators and
controllers. This necessitates the use of model reduction techniques to reduced the order
of the designed LTI systems while maintaining performance.

1.2 Contribution
The contribution of this thesis is twofold: one is towards the solution of the heave atten-
uation problem in MPD, and the other is a theoretical contribution in using an irrational
transfer function directly in the performance evaluation of the designed estimator.

Chapter 2 gives the main contribution to the heave attenuation problem. In this chapter
it is shown that the modelling of the pressure dynamics in the well in earlier works on the
heave attenuation problem is incomplete. Then a new and improved model, based on a
seminal work which have been verified in tests and is also used in industry, is proposed.
Potential simplifications of the model are also proposed and the resulting assumptions are
explicitly given.

The other contribution comes from the derivation of the transfer function of the sim-
plified model in closed form. It is shown in chapter 4 how this transfer function is a
valuable tool in evaluating performance of controllers and estimators designed with a LTI
discretization of the model.

1.3 Outline
The Thesis is organized in the following way: the hydraulic well model is presented, and
then discretized in Chapter 2. In chapter 3, the frequency response of the linearised model
is derived. Finally, in chapter 4 the results are applied the design of a low order estimator
of the bottom-hole pressure.
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Chapter 2

The Hydraulic Well Model

2.1 Background
In [21] a simple one control volume was used to develop a controller for attenuating the
disturbance due to floater heave in a drilling well. The model was originally developed in
[14] where it was used for pressure estimation under normal drilling conditions, i.e. it only
had to consider very slow dynamics. The heave dynamics, however, was to fast for the one
control volume model and hence the full scale tests conducted with the controller from [21]
failed.

A general model for the pressure dynamics in the wellbore based on the hydraulic
transmission line from [3] was presented in [16]. This model considered among other things
the heave disturbance, but was not created specifically for controller design. It included
non-linear relations such as a non-newtonian Rheological model and a state machine to
model the thixotropy of the drilling mud. The model did not consider the effect of drilling
mud clinging to the moving drill string (as by the no slip condition). This effect is well
documented in experiments and papers such as in [23] and in [12] where it is concluded
that: “The moving pipe walls greatly influence the mud velocity in the annulus (and, hence,
the pressure surge).” Hence this model should be considered incomplete and will fail in
cases where the drilling mud is thick1.

This model was used in distributed form in [8] and [9], and presented in discretized
form in [10]. It was also used for controller design in [17].

2.1.1 Surge and Swab Pressure Models
Surge and Swab pressure evaluation is a well researched field of petroleum engineering.
The problem is usually presented in the context of running or pulling pipes in a borehole
with an annulus that is open topside, but most of the conclusions should hold for MPD as
well.

1I.e. the mud has a high viscosity, and/or high yield stress in the case of a Bingham Plastic. This is
discussed further in section 3.1.3
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In a seminal paper [12], Burkhardt presented approximate equations to compute surge
pressure for Bingham plastic fluid with comparisons to experimental results. The study
identified the three major causes of surge and swab pressure as: viscous shear, breaking
the gel strength and pipe acceleration. The difficulty of calculating the viscous shear stress
in the non-Newtonian mud due to the moving drill string was noted. Burkhardts model
as well as one due to Fontenot and Clark [4] are so called steady state models, where the
drilling mud is perfectly displaced by the pipe motion and fluid pressures are calculated to
be consistent with frictional pressure drops.

One of the early studies on the unsteady-state flow model was presented in [18]. The
paper showed that fluid compressibility has a major effect on pressure surge and studied the
effects of the different physical parameters of the well. They concluded that “calculation
of surge pressure on the basis of steady state flow is inadequate”.

In [23], Mitchell presented a dynamic flow model to predict surge pressure. The model
showed good agreement when compared to field data. In this study factors such as elasticity
of the drill string and borehole formation was considered. It was also concluded that:In deep
wells, fluid compressibility is important. In [24], it was concluded that Mitchells dynamics
Surge/Swab model “demonstrates excellent agreement with the [..] measurements collected
during field tests”. This model has also been adapted by industry [1].

A complicating issue with unsteady flow models have been the viscous friction between
the moving drill string and a non-Newtonian drilling mud. In [25] it were stated that
“There has been no reported simple analytical solution and application of the unsteady
Couette flow phenomena to solve fluid flow problems when a concentrically placed cylinder
is in motion.” Although the motion equations were analytically solved for non-Newtonian
power-law fluids in this paper, the pressure gradient were given by an implicit relation
with regards to the velocity of the fluid and the drill string. This means that the equations
of motion are given in a so-called semi-analytical form, and could therefore not be used
directly in ODE-based dynamic models [6]. In [6] a single flow equation, explicit in the
pressure gradient, that approximates the analytical solutions for Bingham Plastic-fluids
in the annulus were given. In figure 2.1 taken from [6], the difficulty of linearising the
pressure loss, without considering the range of the fluid velocity, can be seen. It is the
authors opinion that the effect of non-Newtonian drilling mud in the heave disturbance
problem in MPD needs further investigation.

2.2 Well Model
The well model that will be presented here is based on the one presented in [23]. It
incorporates appropriate changes due to the following properties of the MPD configuration
:

• The well is sealed at the top.

• There is no flow through the BHA. Based on this we use the assumption that there
is no flow in the fluid in the Drill String, and that the pressure in the drill string fluid

6



Figure 2.1: Dimensionless friction pressure gradient, P , vs dimensionless effective flow
velocity, ūe for plane Couette-Poiseuille flow. ūe is a function of the mud average flow
velocity and the drill string velocity. Figure is taken from [6].
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is constant.

In deriving the governing equations of the well model we will use the following assump-
tions [11]:

• The flow is laminar, i.e., the Reynolds number is 2300 or less.

• The flow is axisymetrical. This assumption implies that the conduit is straight, al-
though the equations works when the well have a relatively small radius of curvature.

• Motions in the radial direction is negligible. This implies that the longitudinal ve-
locity component is much greater than the radial component and that pressure is
constant across the cross section.

• Non-linear convective acceleration terms are negligible. This assumption is valid
when the mud velocity is much smaller than the speed of sound in the mud.

• Material properties are constant.

• Thermodynamic effects are negligible.

The well model is divided into three sections (see Fig. 2.2), given by three sets of
Partial differential equations: The ’Openhole Model’, ’Annulus Model’ and ’Elastic Drill
String Model’. The PDEs describing the ’Annulus Model’ and the ’Elastic Drill String
Model’ is coupled through the terms describing the viscous friction, and these two are
again connected to the ’Openhole Model’ through boundary conditions. Properties and
functions related to the ’Openhole Model’, ’Annulus Model’ and ’Elastic Drill String Model’
are denoted with the subscripts b, a and p respectively. Pressure and velocity p, v in the
annulus and drill string are functions of time t and position x, where x = 0 is at the
drill bit. Position in the openhole is denoted by xb, where xb = 0 is at the bottom of the
openhole section and x = Lb is at the top. p is defined as deviation from the steady state
pressure, ps at t = 0.

All the model sections are derived based on the one dimensional balance of mass and
momentum [3]. For the one dimensional mass balance of a control volume of length dx we
have that the change of mass in the control volume equals the flow inn minus the flow out
of the volume

dx
dρ

dt
= −ρdv (2.1)

Using the constitutive equation for a compressible mass with longitudinal2 elasticity β:
dp = (β/ρ)dρ, gives

1
β

dp

dt
= −∂v

∂x
(2.2)

2Longitudinal elasticity because we are only interested in longitudinal waves (also known as compression
waves).
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Figure 2.2: Schematic showing the three section of the well model.
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For the one dimensional balance of momentum for the same control volume we have∑
F = d

dt
ρv dx (2.3)

Linearising the equation by using a constant mass density, ρ, and pulling out of the ∑
F

term the pressure force acting on the sides of the control volume gives

ρ
d

dt
v = −∂p

∂x
+ Fa (2.4)

where Fa are the forces acting on the mass in the control volume aside from the pressure.
Together equations (2.2),(2.4) gives the unsteady pressure and velocity dynamics of an
elastic medium.

2.2.1 Openhole Model
This is the section of the well that is below the BHA. The model is given by the balance
of mass and momentum relations (2.2),(2.4)

1
β̄b

dpb

dt
= −∂vb

∂x
(2.5)

ρ
∂vb

∂t
= −∂pb

∂x
− fb(vb) (2.6)

Here β̄b is the effective bulk modulus of the fluid in the borehole which takes into account
the expansion of the hole caused by internal fluid pressure, dA/dp. β̄b is derived in section
2.2.5. fb(vb) is the drag on the fluid caused by viscous forces.

2.2.2 Annulus Model
Using mass and momentum balance

1
β̄a

dpa

dt
= −∂va

∂x
(2.7)

ρ
∂va

∂t
= −∂pa

∂x
− fa(va, vp) (2.8)

Note the inclusion of the pipe velocity vp in the viscous friction term. This term will be
discussed in section 2.2.6.

When the flow cross section area of the annulus Aa changes this is enforced by splitting
up the model describing the annulus dynamics into two and connecting them through the
boundary conditions. To do this we use the mass balance, using +, − to denote upstream
and downstream respectively (see Fig. 2.3)

A+
a v+

a = A−
a v−

a + ΔApvp (2.9)
p+

a = p−
a (2.10)

where ΔAp is the change in pipe cross section area. Pressures can be considered constant
across the area changes if the irreversible pressure loss due to the area change is negligible.
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Figure 2.3: Schematic showing balance of mass for cross-sectional area changes.

2.2.3 Elastic Drill String
Again, using mass and momentum balance,

1
βp

dpp

dt
= −∂vp

∂x
(2.11)

ρp
∂vp

∂t
= −∂pp

∂x
+ K1

∂

∂x
pa − fp(va, vp) (2.12)

Here βp is the Youngs modulus of the pipe. The second term on the right side of equation
2.12 is due to the Hoop Stress effect. This is the effect of the pipe extending when being
squeezed by high mud pressures. The last term is the viscous drag of the drill mud on the
pipe.

2.2.4 Boundary Conditions
The topside boundary conditions

For the annulus we can choose either the topside pressure or the topside flow to be exoge-
nous. I. e. only one of the following equations can be enforced

pa(x = L) = pc, topside pressure in the annulus.
Aava(x = L) = qchoke − qbpp, flow through the choke and the back-pressure pump.

For the drill string we can choose either the force or the velocity at the top of the drill
string to be exogenous. I.e. only one of the following equations can be enforced

11



Figure 2.4: Schematic showing the coupling in the boundary conditions of the three model
sections.
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vp(x = L) = vd, topside movement of the pipe.
Appp(x = L) = Fd, topside force on the pipe.

The bottomhole boundary conditions

Assuming rigid bottom-hole, vb(xb = 0) = 0 should be enforced.

Annulus to below drill string boundary condition

Letting ΔAa be the change in the cross section area of the annulus around the drill bit,
pr be the pressure in the mud around the drill bit and vr the velocity around the drill bit
(see Fig. 2.4). Using mass balance

Aava = (Aa − ΔAa)vr + ΔAavp (2.13)
Abvb = (Aa − ΔAa)vr + (ΔAa + Ap)vp (2.14)

For the pressures, we use nozzle-pressure relations

pr − pb = ρ

Cd
(v2

b − v2
r) (2.15)

pa − pr =
ρ

Cd
(v2

r − v2
a) (2.16)

Where Cd is the discharge coefficient. Note that the coefficient Cd is different for flow into
a restriction and flow out of a restriction.

2.2.5 Borehole Expansion
The cross section area of the annulus is

Aa = π
(
(ro + uo)2 − (ri + ui)2

)
(2.17)

Where ri, ro is the inner and outer radius of the annulus, and ui, uo is the displacement of
the inner and outer radius of the annulus. We want to find the displacement of the inner
and outer annulus radius caused by the pressure in the annulus.

ui = ri

Ei

(1 − μi)pa (2.18)

uo = − ro

Eo

(1 + μo)pa (2.19)

where Ei, Eo and μi, μo is the Youngs modulus and Poissons ratio of the pipe and formation
respectively. From these equations the relative expansion of the annulus cross section area
can be determined (assuming that ui, uo is small compared to ri, ro):

1
Aa

dAa

dPa
=

2r2
o(1 + μo)

Eo(r2
o − r2

i )
+

2r2
i (1 − μi)

Ei(r2
o − r2

i )
(2.20)
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And the effective bulk modulus of the drilling mud in the annulus β̄a becomes

1
β̄a

:=
∣∣∣∣2r2

o(1 + μo)
Eo(r2

o − r2
i )

+
2r2

i (1 − μi)
Ei(r2

o − r2
i )

+
1
β

∣∣∣∣ (2.21)

where β is the bulk modulus of the drilling mud.
For the openhole section the relation simplifies to

1
β̄b

:=
∣∣∣∣2(1 + μb)

Eo

+ 1
β

∣∣∣∣ (2.22)

2.2.6 Viscous Friction
Calculating the viscous friction for a dynamic model becomes very involved for the case of
non-Newtonian fluids (see Fig. 2.5). Depending on the pressure gradient, the velocity of the
drill string and mud rheology, the velocity profile may have one, two or three flow regions
for a Bingham Plastic [6], and the analytical solution for pressure loss w.r.t. velocity is
implicit. An explicit approximation of the pressure gradient for a Bingham plastic is given
in [6], and the analytical (and implicit) solution for unsteady flow in Power Law fluids are
given in [25].

For the case of Newtonian drilling mud, the viscous friction becomes a linear function
of the average velocity and drill string velocity. Using ri, ro to denote the inner and outer
radius of the annulus. From [6] we have

fa(va, vp) = −12 μ

(ro − ri)2 va + 6 μ

(ro − ri)2 α1vp, (2.23)

α = ri

ro

, (2.24)

α1 = 8α4 ln(α)2 + α4α5 ln(α) + 2α2α2
5

−α2α3α5
, (2.25)

α2 = 2 ln(α) + 1 − α2, (2.26)
α3 = 2α2 ln(α) + 1 − α2, (2.27)
α4 = 3α4 + 6α2 − 1, (2.28)
α5 = (1 − α)2 (2.29)

where μ is the viscosity of the fluid. Defining

ka := 12μ/(ro − ri)2, (2.30)
kd := 6μα1/(ro − ri)2, (2.31)

kp := Ap

Aa
kd, (2.32)

kb :=
4μπ

Ab
(2.33)
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va va

-vp

ro

ri

Figure 2.5: Schematic showing the velocity distribution of pressure driven couette flow in
an annulus.

we obtain for Newtonian drilling muds

fa(va, vp) = kava − kdvp, (2.34)
fp(va, vp) = kp(vp − va), (2.35)

fb(vb) = kbvb (2.36)

2.2.7 Implementation
In [23] the well model is implemented in simulations in the following way. The inter-
polated method of characteristics is used to solve the fluid-flow part of the coupled drill
string/annulus model and the openhole model [2]. The elastic drill string motion is solved
by use of finite elements to determine the equations which are solved by use of the tridi-
agonal algorithm [13]. For nonlinear boundary conditions, Newtons method is used.

2.3 Model Simplification
The well model derived in section 2.2 is complex with the model sections coupled by implicit
relations in the boundary conditions, and for non-Newtonian fluids the flow equations also
becomes implicit. Thus it is difficult to implement in simulations and controller design.
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We will in the following discuss how the model can be simplified, under what assumptions
these simplifications may hold as well as to what end they may be performed.

2.3.1 Explicit/Linear Model

To obtain a model where all relations are explicit, two simplifications must be made. The
nozzle pressure relations must be discarded3 and in the case of non-Newtonian fluid the
viscous friction coupling the annulus flow and the drill string movement must be substituted
with an explicit approximation, such as the one given in [6]. Obtaining an explicit model
makes it easier to simulate and analyse for controller design.

To obtain a linear model, we need the same simplifications as above, with the addition
that the explicit approximation of the viscous friction is linear w.r.t. both the drills string
and annulus flow velocity. We note that this is true for laminar flow of a Newtonian drilling
mud. Obtaining a linear model allows for superposition of the response of the system with
regards to both time and inputs. This means that we can analyse the behaviour of the
system by studying the impulse response from the different exogenous inputs since the
response of a linear system is the convolution of the input signal with the impulse response.
This again allows for frequency domain techniques to be employed.

The model can be discretized by approximating the hyperbolic PDEs by finite number
of ODEs. This is done by letting the control volumes be of some finite, non-zero length.
This allows for easier implementation in simulations and allows for using the theory of non-
linear ODE systems for analysis and controller design. If the discretization is combined
with a the linear approximation the resulting system becomes a a finite dimensional LTI
system which allows for employing standard LTI control methods and frequency domain
analysis.

2.3.2 Caveats of Model Simplification

When heave and surge models have been compared with data from field tests in the lit-
erature ([24], [23]) it have been found that effects which are negligible in some wells are
dominating in others. Hence the author wish to stress that the simplification of the model
given in section 2.2 should be done on a case by case basis and after due consideration
of properties such as well geometry and mud rheology: A linear relation for the viscous
friction will is correct for a Newtonian drilling mud, but not for a Bingham Plastic with
high yield stress, etc..

3Discarded or substituted by an explicit relation but it may be difficult to obtain a bidirectional explicit
relation of a set of nozzle equations.
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2.4 Implementation a of Finite Dimensional LTI Well
Model

We will now describe how a finite dimensional LTI approximation of the model can be
implemented.

2.4.1 Linear distributed system
We will use the simplifications discussed above; assuming a Newtonian drilling mud and
ignoring the implicit nozzle pressure relations so that we obtain a linear model. For the
viscous friction we will use the relations found in 2.2.6. The governing equations becomes

dpa

dt
+ β̄a

∂va

∂x
= 0 (2.37)

ρ
∂va

∂t
+

∂pa

∂x
+ kava − kdvp = 0 (2.38)

dpb

dt
+ β̄b

∂vb

∂x
= 0 (2.39)

ρ
∂vb

∂t
+

∂pb

∂x
+ kbvb = 0 (2.40)

dpp

dt
+ ρp

∂vp

∂x
= 0 (2.41)

ρ
∂vp

∂t
+ ∂pp

∂x
+ kp(vp − va) + K1

∂

∂x
pa = 0 (2.42)

These equations have a total of six integrations which means six boundary conditions have
to be specified. Recall that the nozzle pressure relations have been ignored to achieve
linearity.

Aava(x = L) = qc − qbpp (2.43)
pa(x = 0) = pb(xb = Lb) (2.44)
vp(x = L) = vd (2.45)
pp(x = 0) = pb(xb = Lb) + ps

b(xb = Lb) (2.46)
Abvb(xb = Lb) = Aava(x = 0) + Apvp(x = 0) (2.47)

vb(x = 0) = 0 (2.48)

where qc, qbpp, vd are exogenous inputs to the system, and ps
b is the steady state pressure

at t = 0 which again equals the hydrostatic pressure plus the steady state pressure at the
choke at t = 0.

If there are changes in the flow-area in any of the three sections, the section has to be
split up and appropriate boundary conditions between the two resulting parts enforced as
discussed in section 2.2.2.
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2.4.2 Discretization
We use N control volumes to describe the dynamics in the annulus and the drill string. To
maximize performance for a given order of the system the annulus should use more control
volumes than the drill string because of the lower wave speed in the annulus, but it is much
easier to describe the coupling in the viscous friction when the number of control volumes
are the same. We use Nb control volumes to describe the dynamics in the borehole below
the drill string. Define volume 1 to be at the bottom of the section and volume N, Nb to
be at the top. The lengths of the sections are

N∑
j=1

lj and
Nb∑
j=1

lj
b for the annulus/drill-string

and drill string to bottom-hole section respectively. The dynamic order of the resulting
system is 4N + 2Nb.

ṗj
a =

β̄j
a

lj
(vj−1

a − vj), j = 1, . . . , N (2.49)

ρv̇j
a = 1

lj
(pj

a − pj+1
a ) − kj

avj
a + kj

dvj
p, j = 0, . . . , N − 1 (2.50)

AN
a vN = qc, p0

a = pNb
b , (2.51)

ṗj
p =

ρj
p

lj
(vj−1

p − vj
p), j = 1, . . . , N (2.52)

ρpv̇j
p =

1
lj

(pj
p − pj+1

p ) − kj
p(vj

p − vj
a) +

K1

lj
(pj

a − pj+1
a ), j = 0, . . . , N − 1 (2.53)

vN
p = vd, p0

p = pNb
b , (2.54)

ṗj
b =

ρ̄b

lj
b

(vj−1
b − vb), j = 1, . . . , Nb (2.55)

ρv̇j
b =

1
lj
b

(pj
b − pj+1

b ) + kj
bvj

b , j = 0, . . . , Nb − 1 (2.56)

v0
b = 0, Abv

Nb
b = Aav0

a + Apv
0
p (2.57)

when there is a change in the cross sectional flow area of the annulus, the equations should
be modified. For a change in the cross sectional area between control volume j and j − 1,
the modification is as follows (see Fig. 2.6)

ṗj
a = 1

Aj
a

(Aj−1
a vj−1

a + ΔApvj−1
p ) − vj

a (2.58)
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Figure 2.6: Schematic showing the balance of mass for cross sectional-area changes in the
discretized model.
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Chapter 3

Analysis of Simplified Model

Analysis of the simplified model and the error introduced by the discretization of the
model. To keep this chapter as clear as possible, the drill string to bottom-hole section of
the model is not included in this analysis, i.e. the drill string is assumed to be close to the
bottom of the well. Further it is assumed that the drill string is inelastic, i.e. vp = vd, ∀x.
The reason for this assumption is that if vp is dependent on x then finding the particular
solution of equation (3.8) becomes difficult.

Since we are only considering annulus dynamics in this simplified model, we will drop
the a subscripts of the velocity, pressure and cross section area in the annulus, i.e. v :=
va, p := pa, A := Aa.

3.1 Transfer Function of the Simplified Model
Writing the linear model of the annulus dynamics in distributed form

∂p

∂t
= −β

∂v

∂x
(3.1)

∂v

∂t
= −1

ρ

∂p

∂x
− kav + kdvd+ (3.2)

As (3.1)-(3.2) is linear the constant term due to the gravitational force will not effect the
dynamics of the system, only the steady state and so it has been discarded.

3.1.1 Laplace Transformed System
Using subscript notation to denote partial derivatives, (3.1)-(3.2) can be written as

pt + βvx = 0 (3.3)

vt + A

ρ0
px + kav − kdvd = 0 (3.4)
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Differentiating (3.3) w.r.t. to x and (3.4) w.r.t. t;

ptx + βvxx = 0 (3.5)

vtt + 1
ρ

pxt + kavt − kdv̇d = 0 (3.6)

Inserting (3.5) for pxt in (3.6). This gives

vtt − c2vxx + kavt = kdv̇d, c =
√

β

ρ0
(3.7)

This is the one dimensional wave equation with dissipation driven by the heave motion,
and c is the speed of sound. By utilizing the Laplace transform we want to derive the
transfer function of the system. Taking the Laplace transform of (3.7), denoting the Laplace
transformed functions by v̂, p̂, and assuming steady-state at t = 0 (i.e. that v(x, 0) = 0),
we get

v̂xx − v̂
1
c2 (s2 + ska) = −kd

c2 sv̂d (3.8)

This is a inhomogeneous second order Ordinary Differential Equation in x and can be
solved for v̂(x, s). Defining γ2 := 1

c2 (s2 + sk), the homogeneous solution is

v̂h(x, s) = C1 sinh(γx) + C2 cosh(γx) (3.9)

where C1, C2, are integration constants that have to be solved from the boundary condi-
tions. The particular solution is

ŷp = kd

γ2c2 svd = kd

s + ka

v̂d (3.10)

The general solution is

v̂(x, s) = C1 sinh(γx) + C2 cosh(γx) + ŷp (3.11)

3.1.2 Solving for Boundary Conditions

The boundary conditions are the flow into the bottom of the well, and flow out of the top of
the well. Assuming that the movement of the drilling bit can be modelled as a volumetric
flow into the bottom of the well, we have Av̂(0, s) = Adv̂d(s), where Ad is the cross section
area of the drilling bit. Denoting the flow through the choke at the top of the well by qc,
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we have Av̂(L, s) = q̂c(s). Enforcing these boundary conditions on (3.11), we get

v̂(x = 0, s) = C2 + ŷp = Ad

A
v̂d(s) (3.12)

=⇒ C2 = Ad

A
v̂d − ŷp (3.13)

v̂(x = L, s) = C1 sinh(γL) + C2 cosh(γL) + ŷp = q̂c

A
(3.14)

=⇒ C1 =
q̂c

A

1
sinh(γL)

− C2
cosh(γL)
sinh(γL)

− ŷp

sinh(γL)
(3.15)

= q̂c

A

1
sinh(γL)

− Ad

Aa

v̂d
cosh(γL)
sinh(γL)

(3.16)

+ ŷp

(cosh(γL)
sinh(γL)

− 1
sinh(γL)

)
(3.17)

Substituting C1 and C2 into (3.11) we get

v̂(x, s) = v̂c(s) sinh(γx)
sinh(γL)

(3.18)

+ Ad

A
v̂d

(
cosh(γx) − sinh(γx)

tanh(γL)

)
(3.19)

+ ŷp

( sinh(γx)
tanh(γL)

− sinh(γx)
sinh(γL)

− cosh(γx) + 1
)

(3.20)

Differentiating with respect to x, we get

v̂x(x, s) = q̂c(s) γ

A

cosh(γx)
sinh(γL)

(3.21)

+ Ad

A
v̂dγ

(
sinh(γx) − cosh(γx)

tanh(γL)

)
(3.22)

+ ŷpγ
( cosh(γx)

tanh(γL)
− cosh(γx)

sinh(γL)
− sinh(γx)

)
(3.23)

and inserting into the Laplace transform of (3.3), we obtain

p̂(x, s) = −β

s
v̂x(x, s) (3.24)

where p(x, 0) = 0 assuming the well dynamics are at steady state at t = 0 (i.e. p(x, t) = 0).
(3.24) can be solved for p(x = 0, s) and p(x = L, s) to obtain pbit and pc respectively, and
because the system is linear the inputs vd, qc can be considered separately. We can write
the well model as a system with inputs vd, qc and outputs pbit, pc[

pbit

pc

]
= P

[
vd

qc

]
(3.25)
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where P is a two by two transfer function matrix

P =
[

P11 P12
P21 P22

]
(3.26)

3.1.3 Mud Clinging Effect vs Mud Displacement Effect
We see from the solution of the Laplace-transformed linearised system that the effects
affecting pressure distribution of the well can be decomposed into three parts. The three
effects are due to the flow into the top of the annulus, the mud displacement of the drill
string moving into the annulus and mud clinging to the moving drill string, given by the
equations (3.21), (3.22) and (3.23) respectively. These equations evaluated along s = iω is
shown in Fig. 3.1 for the physical properties given in table 3.1, and shows the magnitude
of the effects for different input frequencies. It can be seen that the mud clinging effect
relative to the other two effects increases with increased mud viscosity and well length. We
denote the frequency of the first resonance peak as ωr,1. It can be seen that when the mud
viscosity is 88cP the mud clinging effect has a higher magnitude than the other effects for
frequencies over ωr,1/4. For a mud viscosity of 12cP (and lower) the mud clinging effect
will not be significant when the input frequency are less than ωr,1/2.

We also note that the resonance frequencies occur at lower frequencies when the length
of the well is increased.

3.2 Comparison with the Discretized System
As the PDE is hyperbolic, information travels with a finite velocity given by the speed of
sound in the mud. To maintain this property a large number of Control Volumes may be
needed in the discretization.

In the following, a typical drilling well is considered, again with the physical properties
shown in Table 3.1. The frequency response of P11 is plotted in In Fig. 3.2 and Fig. 3.3
together with the discretized version. The frequency response of P21 is shown in appendix
A.1. In Fig. 3.2 and Fig. 3.3 it can be seen how the discretization based on 2 control
volumes quickly deteriorates in accuracy as frequency increases. The 50 control volumes
discretization shows that high accuracy can be achieved at the cost of increased model
complexity. We also note that when the length of the well increases accuracy deteriorates
as the length of each control volume increases.

3.2.1 Resonance Frequencies
The irrational transfer functions in the transfer function matrix P defined in (3.25) have
damped resonance peaks at their Resonance frequencies which occurs when sinh(γL) is
zero. Using the approximation

L

c

√
−ω2 + kaωi ≈ L

c

(
ωi + ka

2
)

(3.27)
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Figure 3.1: Comparison of the 3 effects affecting the down-hole pressure for different well
lengths and mud viscosities.
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Table 3.1: The physical properties of the well
Parameter Value

Length of well L 2000, 5000[m]
Annulus outer radius ro 0.113[m]
Annulus inner radius ri 0.0635[m]

Cross section area of drilling bit Ad 0.0148[m2]
Effective Bulk Modulus β̄a 1.4 ∗ 109[P a]

Drilling Mud Mass Density ρ 1420[kg/m3]
Mud Viscosity μ 12, 88[cP ]

which is valid when ω is not close to 0, we can write

sinh
(L

c

(
ωi +

ka

2
))

= (3.28)

sinh
(Lk

2c

)
cos

(Lω

c

)
+ i cosh

(Lk

2c

)
sin

(Lω

c

)
(3.29)

It can be seen that the damped resonance frequencies occurs at ωr,j = jπc
l

, j = 1, 2, . . . ,
and that as Lk

c
becomes larger the resonance decreases in magnitude.

For comparison, the resonance frequencies of the discretized system can be found by
calculating the eigenvalues of the system matrix. The system matrix has an eigenvalue in
0 and N − 1 pairs of complex conjugated eigenvalues with real part −ka

2 and complex part
equal the resonance frequency in rad/s of the corresponding damped resonance peak. The
resonance frequencies of the discretized systems of 2 to 5 control volumes can be found
in Table 3.2. We note that the accuracy of the discretization increases significantly when
increasing the number of control volumes also for low frequencies. This is also seen in Fig.
3.2 and Fig. 3.3.
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Figure 3.2: Gain and phase of the irrational transfer function P11 evaluated on the imagi-
nary axis compared with transfer function of the discretized version of the same PDE with
2 and 50 Control Volumes Respectively. The length of well is 2000 meters.
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Figure 3.3: Gain and phase of the irrational transfer function P11 evaluated on the imagi-
nary axis compared with transfer function of the discretized version of the same PDE with
2 and 50 Control Volumes Respectively. The length of the well is 5000 meters.

29



30



Chapter 4

Estimator Design

4.1 Implementation

4.1.1 State Space Configuration
Now we consider the task of designing an observer for the down-hole pressure. We will
utilize measurements of the choke flow qc, heave disturbance vd and topside pressure pc. As
inputs we consider the choke flow and heave disturbance as frequency weighted disturbances
with the frequency weight Wd, and white measurement noise.

ẋ = Ax + B1w(t), x(0) = 0 (4.1)
z = C1x (4.2)
y = C2x + D11w(t) + v(t) (4.3)

w̃ =
[

vd

qc

]
, v =

⎡
⎢⎣

v1
v2
v3

⎤
⎥⎦ , y =

⎡
⎢⎣

vd + v1
qc + v2
pc + v3

⎤
⎥⎦ , z = pbit, w = Wdw̃ (4.4)

4.1.2 Input Weighting
As frequency weight for the disturbance input we use a function Wd fitted to the empirical
frequency spectrum of floater heave as can be seen in Fig. 4.1.

Wd = 0.12(s − 0.01)
(s2 − 0.02s + 0.0251)(s − 1)

(4.5)

For the measurement noise standard deviation we use the values in table 4.1.2 which
are typical in a MPD system.

4.1.3 Kalman Filter Design
Let a 2N − 1th order discretization, made using N control volumes, of the of model be
denoted P̃ N , and the 2N + 5th order Kalman filter designed with this model be denoted
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Measurement Noise Standard Deviation
Heave disturbance: v1 0.1 [m]

Choke flow: v2 50 [liter/min]
Topside Pressure: v3 0.1 [Bar]

Disturbance Standard Deviation
vd 1[m/s]
qc 888[liter/min]

Table 4.1: Standard deviation of noise and disturbance in the Kalman filter design.

z
ỹ ẑ

e

v

w~
P(s)W (s)d

w
F(s)

y

Figure 4.2: Kalman filter with weighted disturbance block diagram.
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F N (six states are added because of the weighting filter). Note that F N ∈ R1×3 as it maps
the three measurements to the estimate of downhole pressure, i.e.

ẑ := p̂bit = F Ny (4.6)

The error dynamics becomes

e = z − ẑ =

⎡
⎢⎣ [P11 P12] − F N

⎡
⎢⎣ 1 0

0 1
P21 P22

⎤
⎥⎦ , F N

⎤
⎥⎦

[
w
v

]
(4.7)

:= T N
ew,v

[
w
v

]
(4.8)

4.1.4 Computing Performance
As a performance measure, J , we use the standard deviation of the estimation error. We
can compute the standard deviation of the estimation error by using the following relation
[15]

J j := lim
t→∞ E

(
p2

bit(t)
)

(4.9)

=

√√√√√ 1
2π

∞∫
−∞

Trace{T ∗j
ew,v(iω)MT j

ew,v(iω)}dω, (4.10)

M :=
[

Q S ′

S R

]
, (4.11)

Q := E(w̃w̃′), R := E(vv′), S := E(w̃v′) (4.12)

4.2 Obtaining Low Order Kalman Filters
There are three ways of obtaining a lower order filter. They are: First do model reduction
and then filter design, first design the filter and then reduce it, and a direct low order
design.

The reduce first approach is generally considered inferior to the design first approach
[19], and is in particular not well suited in this case because the nominal plant is not
strictly stable, hence it first has to be decomposed into its stable and unstable part before
performing model reduction. This affects the weighting of the modes of the system and
yields bad results which can be seen in appendix A.3. Hence we will here use the design
first model reduction approach.

4.2.1 Balanced Model Reduction
This and the following section on Model Reduction is based on [15] and [22].
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Suppose G =
[

A B
C D

]
is a stable and minimal realization of a system with controllability

Gramian Σc and observability Gramian Σo, i.e.

Σc =
1

2π

∞∫
−∞

Txu(iω)Txu(iω)∗dω, (4.13)

Σo = 1
2π

∞∫
−∞

Tyx0(iω)∗Tyx0(iω)dω, (4.14)

Txu := (sI − A)−1B, Tyx0 := C(sI − A)−1 (4.15)

Note that for there to be a finite solution of 4.13 – 4.14 the system matrix must be strictly
stable. There exists a balancing transformation T and a realization Ğ such that

Ğ :=
[

Ă B̆

C̆ D̆

]
:=

[
TAT −1 TB
CT −1 D

]
(4.16)

yielding equal and diagonal Grammians TΣcT
∗ = T −∗ΣoT

−1 ≡ Σ = diag(σ1, σ2, . . . , σn).
Then Ğ is called a balanced realization of G, and σ1, σ2, . . . , σn are the Hankel singular
values of the system.

Assume that the Hankel singular values of the system is decreasingly ordered so that
Σ = diag(σ1, σ2, . . . , σn), and σ1 ≥ σ2 ≥ · · · ≥ σn. The states corresponding to the small
singular values are less controllable and observable than the states corresponding to the
larger singular values. Therefore, truncating those less controllable and observable states
will yield less information loss than truncating other states.

Now partition the balanced Grammians as Σ =
(

Σ1 0
0 Σ2

)
where Σ1 = diag(σ1, σ2, . . . , σr),

and Σ2 = diag(σr+1, σr+2, . . . , σn) and partition the system accordingly as

Ğ =

⎡
⎢⎢⎣

Ă11 Ă12 B̆1
Ă21 Ă22 B̆2

C̆1 C̆2 D̆

⎤
⎥⎥⎦ (4.17)

Then a reduced order system is the truncated system Gr

Ğr(s) =
[

Ă11 B̆1

C̆1 D̆

]
(4.18)

And it can be shown that the truncated system is balanced and asymptotically stable [15].

4.2.2 Frequency Weighted Balanced Model Reduction
Let y(s) = Wo(s)G(s)Wi(s), with Wi and Wo as input and output weights. The transfer
function matrices becomes

Txu := (sI − A)−1BWi(s) (4.19)
Tyx0 := Wo(s)C(sI − A)−1 (4.20)
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and the frequency weighted Grammians becomes

Σc =
1

2π

∞∫
−∞

Txu(iω)Txu(iω)∗dω, (4.21)

Σo = 1
2π

∞∫
−∞

Tyx0(iω)∗Tyx0(iω)dω, (4.22)

Again, finding a balancing transformation such that the frequency weighted Grammians
Σc, Σo are equal and diagonal, the transformation can be used to obtain the frequency
weighted balanced state space realization and the truncated model can be obtained in the
same way as for the unweighted case. The truncated system is only guaranteed to be stable
if one sided frequency weights are used [15].

4.3 Implementation and Results
Because the discretized model has a pole at the origin it can not be used directly as a
frequency weight because the frequency weighted Grammians will not converge with a
frequency weight that is not strictly stable. Hence the system matrix of the discretized
model is changed by moving all the poles into the left half plane before being used as a
frequency weight:

Aε = A − Iε (4.23)

Frequency weighted model reduction on the Kalman filter is performed with the inputs of
the Kalman filter (i.e. the measurement vector y) weighted by the modified plant and the
disturbance frequency weight. That is, Wi = P̃ε

N(s)Wd(s), and Wo = 1.
Kalman filters are designed for LTI realizations of the discretized model with from

2 to 100 control volumes. The resulting Kalman filters are of order n = 2N + 5, i.e.
F N , N ∈ [2, 100]. Then reduced order Kalman filters of order 1 through 205 are obtained
through frequency weighted model reductions of F 100,F 50 and F 25 corresponding to P̃ 100,
P̃ 50 and P̃ 25 respectively. The performance is computed as explained in section 4.1.4.

The results are shown in Fig. 4.3. The performance of F 100 on P̃ 100, refereed to as
the nominal performance can be viewed as a bound on possible performance increase by
increasing the number of control volumes. It can be seen that to achieve good performance
it is important to start with a sufficiently high order discretization. Then the filter can
be reduced to a low order without compromising performance. We note that when the
Kalman filters are reduced sufficiently the performance is not increased by starting out
with a higher order discretization. I.e. if one are satisfied with a standard deviation in the
estimation error of 0.3[bar] starting out with a 50 control volume discretization is sufficient.
Simulation results are included in the appendix A.2.

In the implementation of the frequency weighted model reduction the WOR-toolbox
for MATLAB [26] was used.
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Chapter 5

Conclusions and Further Work

In this thesis it was shown that the earlier work done on the attenuation of the periodic
heave disturbance have been done based on an incomplete model, in that it did not include
the effect of mud clinging to the drill string. By presenting a new model that includes
this effect and deriving the frequency response of this model in the case of Newtonian drill
mud, it was shown that the mud clinging effect becomes significant for drill muds with
high viscosity, but that the old model will work for low viscosity drill muds.

The effect of non-Newtonian drill muds was also discussed. Analytical solutions for this
case exists but they are given by implicit relations which are difficult to use in controller
and estimator design. In what cases the viscous friction of non-Newtonian drill muds can
be approximated with a linear relation should be investigated further.

For the case of Newtonian drill muds, the well model can effectively be approximated
by a finite dimensional LTI system through spatial discretization. It was shown that to get
good performance of an estimator designed based on such an approximation, it is important
to start out with a high order discretization. The same is true for controller design. It
was also shown that the estimator can be reduced to order 20 without significant loss in
performance through the use of frequency weighted model reduction techniques.

The reduced order estimator of order 20 had a standard deviation in the estimation
error of 0.32 [Bar] for typical magnitudes of measurement noise and heave disturbance in
a MPD configuration. Employing this estimator in feedback loop with a controller will
yield a theoretical bound on performance of the regulation error standard deviation of 0.32
[Bar]. In practice model uncertainty must also be taken into account which is something
that has not yet been investigated.

Performance can be improved by increased knowledge of the frequency of the heave
disturbance. The estimator designed in this thesis considered the full frequency spectrum
calculated by three hours of floater heave data and therefore uses a broad frequency weight
on the disturbance. To what degree the frequency weight of the heave disturbance can be
narrowed, which would yield increased performance, should be investigated further.
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Appendix A

Additional Figures

A.1 Frequency Response Functions
The frequency response of P12 (i.e. from vd to pc) is plotted in Fig. A.1 and Fig. A.2 with
the physical properties shown in Table 3.1

A.2 Simulation Results
In this simulation the length of the well was 2000 meters and viscosity was μ = 88cP . The
simulation was performed with white measurement noise with standard deviations:

• Heave measurement noise standard deviation: 0.1 [m/s]

• Choke flow measurement noise standard deviation: 50 liters/min [m3/s]

• Topside pressure measurement noise standard deviation: 0.1 [Bar]

It can be seen that there is a significant loss in performance between the 20th order
estimator shown in Fig. A.3 and 6th order estimator shown in Fig. A.4. The estimation
error corresponds well with the standard deviation of the error predicted by Fig. 4.3.

A.3 Unweighted Reduction and Reduce First Approach
In Fig. A.5 it can be seen how the reduce first model reduction approach yields bad results
for the considered system and application. It can also be seen that the design first approach
fails when appropriate weights are not used.
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Figure A.1: Gain and phase of the irrational transfer function P21 evaluated on the imagi-
nary axis compared with transfer function of the discretized version of the same PDE with
2 and 50 Control Volumes Respectively. The length of well is 2000 meters.
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Figure A.2: Gain and phase of the irrational transfer function P22 evaluated on the imagi-
nary axis compared with transfer function of the discretized version of the same PDE with
2 and 50 Control Volumes Respectively. The length of the well is 5000 meters.
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Figure A.3: Frequency reduced Kalman filter of order 20 simulated on a discretized model
with 100 Control Volumes.
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Figure A.4: Frequency reduced Kalman filter of order 6 simulated on a discretized model
with 100 Control Volumes.
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Conference Paper
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Quantifying Error Introduced by Finite Order Discretization of a

Hydraulic Well Model*

Ulf Jakob F. Aarsnes1, Ole Morten Aamo1 and Alexey Pavlov2

Abstract— A model of a hydraulic transmission line used to
model the pressure fluctuations in a drilling well caused by
vertical movement of the drill string (heave) is presented. Using
the Laplace transform and appropriate boundary conditions
the transfer function of the model is derived. The model uses
the heave disturbance and controlled flow into the drilling well
as inputs, and the measured topside pressure and controlled
downhole pressure as output. A rational approximation of the
system using spatial discretization is obtained using the Control
Volume method. The error introduced by the discretization is
analysed in the frequency domain. Then, the discretized models
with varying number of control volumes are used for Kalman
filter and LQG design. The performance of the Kalman filter
and LQG when the well is subjected to the heave disturbance
is compared over different number of control volumes and well
lengths. Finally, it is shown how the robust performance of the
LQGs can be checked w.r.t. the plant uncertainty introduced
by the discretization.

I. INTRODUCTION TO MPD AND THE HEAVE

ATTENUATION PROBLEM

In drilling operations performed in the oil and gas industry

a fluid called mud is pumped down through the drill string

and flows through the drill bit in the bottom of the well,

see Fig. 1. If the pressure in the mud at the bottom of

the well is too low the well can collapse trapping the drill

string, and if the pressure exceeds a certain threshold it can

fracture the well. Hence, it is important to control the mud

pressure in the well. In Managed Pressure Drilling (MPD)

operations this is achieved by sealing the well and releasing

mud from the well through a control choke. A back pressure

pump allows the pressure to be controlled even when the

main pump is stopped. Thus, the pressure in the bottom

of the well can be regulated to a desired set-point. This

approach has proven successful when drilling from stationary

platforms and results on MPD control can be found in papers

such as [8],[1]. MPD from floating drilling rigs, however,

still face significant challenges due to the wave induced

vertical motion of the floating drilling rig (known as heave).

During normal drilling the heave motion of the drilling rig is

decoupled from the drill string by compensation techniques.

However, when the drill string is to be extended by a drill

string connection it is rigidly connected to the floater. It will

then act as a piston in the well creating pressure oscillations

*This work was supported by Statoil ASA
1U. J. F. Aarsnes and O. M. Aamo are with the Department of Engi-

neering Cybernetics, Faculty of Information Technology, Mathematics and
Electrical Engineering, Norwegian University of Science and Technology
(NTNU), Trondheim, Norway ulfjakob at stud.ntnu.no,
aamo at ntnu.no

2A. Pavlov is with the Department of Intelligent Well Contruction, Statoil
Research Centre, Porsgrunn, Norway.

Fig. 1. Well configuration for MPD. Shown by courtesy of Statoil ASA

which may exceed the upper or lower pressure thresholds

one wishes to enforce. It is therefore desirable to utilize

active control of the topside choke to compensate for the

pressure changes due to the heave motion. In this scenario,

the main pump is disconnected and there is no flow between

the annulus and the drill string (the drill bit is equipped with

a one-way valve which prevents back flow from the annulus

into the drill string.) Hence the dynamics of interest is the

pressure dynamics in the annulus. In [3] a simple hydraulic

model, developed in [7] using a single control volume, was

used for controller design. However, in full scale testing it

was shown that the controller was unable to successfully

compensate for the heave disturbance. In [2] it was suggested

(and shown in simulations) that a higher order discretization

of the model can be used to improve accuracy. But, since the

order of the controllers and observers depend on the order of
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the model, it is desirable to have the model of as low order

as possible. Therefore we would like to be able to determine

what order of the model is required to achieve the required

accuracy.

In this paper we will show how accuracy is improved by

increasing the number of control volumes. The result allows

one to quantify the accuracy of the discretized model as a

function of the discretization order, for a given set of physical

well properties. The result can be used in open loop, with an

estimator and in closed loop with a controller. Since the error

introduced by the discretization is quantified, we can also

check the robust stability properties for a given controller.

Thus one can use this result to determine the lowest order

of the model which results in a controller with sufficient

accuracy and robustness.

The paper is organized in the following way: the hydraulic

well model is presented in Section II. The discretized model

is presented in Section III. Finally, in Section IV it is

shown how the error resulting from the discretization can be

calculated when the discretized model is used for controller

or estimator design.

II. THE HYDRAULIC WELL MODEL

Considering a single phase flow in the annulus, the pres-

sure dynamics can be modelled as a hydraulic transmission

line. Following the derivation in [4], the dynamic model

is developed from the mass and momentum balance of a

differential control volume Adx. x is distance along the well

with x = 0 being at the bottom, and t is time. Linearising

around q = 0 and ρ = ρ0 the model becomes

∂p(x, t)

∂t
= −

β

A

∂q(x, t)

∂x
(1)

∂q(x, t)

∂t
= −

A

ρ0

∂p(x, t)

∂x
−

F

ρ0
+Ag cos

(

α(x)
)

(2)

where p(x, t), q(x, t) are mean pressure and flow rate and

A, β, α are the cross section area of the well, bulk modulus

of the drilling mud and well inclination respectively. In the

following we will omit the (x, t) where the dependency is

obvious. Continuing the assumption that the flow is small

(i.e. q is close to zero) and referring to tests done in [2],

we assume linear friction: F = kq. As (1)-(2) is linear the

constant term due to the gravitational force will not effect

the dynamics of the system, only the steady state. By taking

p to be defined as deviations from the steady state pressure at

t = 0, we can discard the term due to gravity. This distributed

parameter system is based on the following assumptions [5].

• The fluid obeys Stokes’ law, i.e. the fluid is Newtonian.

• The flow is laminar, i.e., the Reynolds number is 2300

or less.

• The flow is axisymetrical. This assumption implies that

the conduit is straight, although the equations works

when the well have a relatively small radius of curva-

ture.

• Motions in the radial direction is negligible. This im-

plies that the longitudinal velocity component is much

greater than the radial component and that pressure is

constant across the cross section.

• Nonlinear convective acceleration terms are negligible.

This assumption is valid when the mud velocity is much

smaller than the speed of sound in the mud.

• Material properties are constant.

• The pipe walls are rigid. This assumption is likely to

be incorrect so β should be increased to some effective

bulk modulus of the mud in the annulus to reflect the

elasticity of the walls.

• Thermodynamic effects are negligible.

• Friction is a linear function of flow.

A. Laplace Transformed System

Using subscript notation to denote partial derivatives , (1)-

(2) can be written as

pt +
β

A
qx = 0 (3)

qt +
A

ρ0
px + kq = 0 (4)

Differentiating (3) w.r.t. to x and (4) w.r.t. t;

ptx +
β

A
qxx = 0 (5)

qtt +
A

ρ0
pxt + kqt = 0 (6)

Inserting (5) for pxt in (6). This gives

qtt − c2qxx + kqt = 0, c =

√

β

ρ0
(7)

This is the one dimensional wave equation with dissipation,

and c is the speed of sound. By utilizing the Laplace

transform we want to derive the transfer function of the

system. Taking the Laplace transform of (7), denoting the

Laplace transformed function by q̂, and assuming steady-

state at t = 0 (i.e. that q(x, 0) = 0), we get

q̂xx − q̂
1

c2
(s2 + sk) =: 0 (8)

This is a second order Ordinary Differential Equation and

can be solved for q̂(x, s). Defining γ 2 := 1

c2 (s
2 + sk), the

solution is

q̂(x, s) = C1 sinh(γx) + C2 cosh(γx) (9)

where C1, C2, are integration constants that have to be solved

from the boundary conditions.

B. Solving for Boundary Conditions

The boundary conditions are the flow into the bottom of

the well, and flow out of the top of the well. Assuming

that the movement of the drilling bit can be modelled as

a volumetric flow into the bottom of the well, we have

q̂(0, s) = Adv̂d(s), where Ad is the cross section area of

the drilling bit. Denoting the flow through the choke at the
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top of the well by qc, we have q̂(L, s) = q̂c(s). Enforcing

these boundary conditions on (9), we get

C2 = Adv̂d(s) (10)

C1 =
q̂c

sinh(γL)
−

Adv̂d(s)

tanh(γL)
(11)

Substituting C1 and C2 into (9) we get

q̂(x, s) = q̂c(s)
sinh(γx)

sinh(γL)
(12)

+ Adv̂d

(

cosh(γx)−
sinh(γx)

tanh(γL)

)

(13)

Differentiating with respect to x, we get

q̂x(x, s) =q̂c(s)γ
cosh(γx)

sinh(γL)
(14)

+ Adv̂d(s)γ
(

sinh(γx)−
cosh(γx)

tanh(γL)

)

(15)

and inserting into the Laplace transform of (3), we obtain

p̂(x, s) = −
β

sA
q̂x(x, s) (16)

where p(x, 0) = 0 assuming the well dynamics are at steady

state at t = 0 (i.e. p(x, t) = 0). Now, defining

P1(s) :=
βγ

As tanh(γL)
(17)

P2(s) :=
βγ

As sinh(γL)
(18)

we can write the well model as a system with inputs vd, qc
and outputs pbit, pc.

[

pbit
pc

]

=

[

P1Ad P2

P2Ad P1

] [

vd
qc

]

(19)

III. DISCRETIZED MODEL

In the above section the hydraulic transmission line was

described as a distributed parameter model, and its corre-

sponding irrational transfer function was derived. For simu-

lation and design purposes it is often necessary to have the

system modelled by a set of ordinary differential equations

(ODEs). One way of doing this is by truncating the series

expansions of the irrational transfer function (19) which is

discussed in [5]. Here we will instead consider the discretized

model derived by considering a series of control volumes.

This approach is popular since it is intuitive and it is easy

to model wells where the physical properties, such as cross

section area and bulk modulus, changes over the length of

the well. Such a model based on the Helmholtz resonator

model will be used here, following the derivation from [4].

A. Impedance Model

Using the same boundary conditions as in (10)–(11) the

input variables at the top and the bottom of the well is qc
and vd respectively. Define volume 1 to be at the bottom of

the well, volume N to be at the top of the well and volume

i centered at xj−1/2 = (j− 1/2)l. The volumes have length

TABLE I

THE PHYSICAL PROPERTIES OF THE WELL

Parameter Value

Length of well 2000, 5000, 10000[m]
Cross section area of well 0.0273[m2]

Cross section area of drilling bit 0.0148[m2]
Bulk Modulus 1.4 ∗ 109[Pa]

Drilling Mud Mass Density 1420[kg/m3]
Linear Friction Coefficient 0.4684[kg/(m3s)]

l, and the well has length L = Nl. The dynamic order of

the resulting systems is 2N − 1. The model is

ṗj =
β

Al
(qj−1 − qj), j = 1, . . . , N

q̇j =
A

lρ0
(pj − pj+1)− kqj , j = 1, . . . , N − 1

q0 = Advd, qN = qc

In this model pj for j = 1, . . . , N is defined as deviation

from the steady state pressure distribution at t = 0. Note

that when N tends to infinity, l will tend to zero and the

model will converge to the PDE (1)–(2).

B. Comparison to the PDEs Frequency Response

In the following, a typical drilling well is considered with

the physical properties shown in Table I. To save space, only

the frequency response of P1 is plotted in In Fig. 2 and Fig.

3, but the analysis is qualitatively the same for P2. In Fig.

2 and Fig. 3 it can be seen how the discretization based

on 2 control volumes quickly deteriorates in accuracy as

frequency increases. The 50 control volumes discretization

shows that high accuracy can be achieved at the cost of

increased model complexity. We also note that when the

length of the well increases, accuracy deteriorates as the

length of each control volume increases.

C. Resonance Frequencies

The irrational transfer functions (17) and (18) have

damped resonance peaks at their Resonance frequencies

which occurs when sinh(γl) is zero. Using the approxima-

tion
L

c

√

−ω2 + kωi ≈
L

c

(

ωi+
k

2

)

(20)

which is valid when ω is not close to 0, we can write

sinh
(L

c

(

ωi+
k

2

))

= (21)

sinh
(Lk

2c

)

cos
(Lω

c

)

+ i cosh
(Lk

2c

)

sin
(Lω

c

)

(22)

It can be seen that the damped resonance frequencies occurs

at ωr,j =
jπc
l , j = 1, 2, . . . , and that as Lk

c becomes larger

the resonance decreases in magnitude.

For comparison, the resonance frequencies of the dis-

cretized system can be found by calculating the eigenvalues

of the system matrix. The system matrix has an eigenvalue

in 0 and N−1 pairs of complex conjugated eigenvalues with

real part − k
2

and complex part equal the resonance frequency

in rad/s of the corresponding damped resonance peak. The
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TABLE II

RESONANCE FREQUENCIES EVALUATED FOR THE PROPERTIES GIVEN IN TABLE I WITH L = 2000m

ωr,1 ωr,2 ωr,3 ωr,4

P π
L

√

β
ρ0

= 1.56 2 π
L

√

β
ρ0

= 3.12 3 π
L

√

β
ρ0

= 4.68 4 π
L

√

β
ρ0

= 6.24

P̃ 2 2

√

8β
ρ0

−

k2L2

22

2L
= 1.38

P̃ 3 3

√

4β
ρ0

−

k2L2

32

2L
= 1.47 3

√

12β
ρ0

−

k2L2

32

2L
= 2.57

P̃ 4 4

√

4(2−
√

2)β
ρ0

−

k2L2

42

2L
= 1.50 4

√

8β
ρ0

−

k2L2

42

2L
= 2.80 4

√

4(2+
√

2)β
ρ0

−

k2L2

42

2L
= 3.66

P̃ 5 5

√

2(3−
√

5)β
ρ0

−

k2L2

52

2L
= 1.52 5

√

2(5−
√

5)β
ρ0

−

k2L2

52

2L
= 2.91 5

√

2(3+
√

5)β
ρ0

−

k2L2

52

2L
= 4.01 5

√

2(5+
√

5)β
ρ0

−

k2L2

52

2L
= 4.72

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

[B
a
r]

Frequency [rad/s]

 

 

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

P
h
a
s
e
 [
d
e
g
]

Frequency [rad/s]

 

 

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20
Error

[B
a
r]

Frequency [rad/s]

 

 

PDE

50 CV Discretization

2 CV Discretization

PDE

50 CV Discretization

2 CV Discretization

PDE

Error, 50 CV Discretization

Error, 2 CV Discretization

Fig. 2. Gain and phase of the irrational transfer function P1 evaluated
on the imaginary axis compared with transfer function of the discretized
version of the same PDE with 2 and 50 Control Volumes Respectively. The
length of well is 2000 meters.

resonance frequencies of the discretized systems of 2 to 5

control volumes can be found in Table II.

IV. EXAMPLES ON ESTIMATOR AND CONTROLLER

DESIGN

Now we will show two examples of how to quantify the

error introduced by the discretization in closed loop.

A. The Heave Disturbance

As was seen in Fig. 2 and 3, the accuracy of the discretized

model is dependent on the required bandwith of the system.
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Fig. 3. Gain and phase of the irrational transfer function P1 evaluated
on the imaginary axis compared with transfer function of the discretized
version of the same PDE with 2 and 50 Control Volumes Respectively. The
length of the well is 5000 meters.

The velocity of the heave motion of a floating rig will

in a given situation have its energy centered around a

main frequency component in the frequency spectrum. The

frequency spectrum of the heave motion of a floating rig

based on 3 hours of logged data can be seen in Fig 4. The

main frequency component is located at 0.5[rad/s].

B. Quantifying Error in Estimator Design

In this application we are considering a disturbance with

known frequency. The estimator is designed as a Kalman

filter with an internal model of the heave disturbance so as
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Fig. 4. Blue line is the empirical amplitude spectrum of the heave of a
floater measured over three hours. The red line is the amplitude spectrum
of the floater speed.

to be able to estimate the downhole pressure based on the

measurement of the topside pressure. In the Kalman filter

design, the relative disturbance to noise weighting is based

on the following typical values for the heave disturbance and

pressure measurement noise standard deviation

Max heave velocity: 1[m/s]
Noise Standard Deviation: 0.1[Bar]

The design and error calculations are carried out in the

following way. A state space realization P̃N (s) is made of

the discretized model with N Control Volumes. A Kalman

filter FN (s) with an internal model of the disturbance at the

assumed known frequency is designed for the discretized

model. Recall that the irrational transfer functions were

denoted by P1(s), P2(s), i.e.

pbit = P1(s)Advd (23)

pc = P2(s)Advd (24)

We evaluate the performance of the estimator p̂bit = Fi(s)pc
by looking at the transfer function of the estimation error

e = pbit − p̂bit = (P1(s)− FN (s)P2(s))Advd (25)

By calculating the complex values of P1(s = iω), P2(s =
iω), the frequency response of the estimation error can be

calculated by using (25). Plots of the performance of the

resulting filters can be seen in Fig. 5 and Fig. 6. It can be

seen that the estimation error decreases as the number of

control volumes in the discretized model is increased. We

also note that for the considered disturbance frequency of

0.5[rad/s] the estimation error increases significantly as the

length of the well is increased. Both of these conclusions is

as expected for the discretization procedure used.

Some controller and estimator designs may be difficult

for high order models. For long wells in particular, this

may necessitate the use of model reduction procedures as

suggested in [2], or alternatively, doing controller/estimator

design directly on the distributed system (1)-(2). This last

approach is investigated in [9] and [10].

C. Quantifying Error in Controller Design

In this section we will show how the error dynamics of the

irrational transfer function can be computed in closed loop
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Fig. 5. Frequency response plot of the estimation error of downhole
pressure for a sinusoidal heave disturbance with peak velocity of 1 meters
per second. The estimators have been design to yield perfect estimation at
0.5 [rad/s] for the discretized model. The length of the well is 2000 meters.
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Fig. 6. Estimation error of the downhole pressure for a sinusoidal heave
disturbance with peak velocity of 1 meters per second and frequency of
0.5 rad per second. The estimators have been designed to yield perfect
estimation for this frequency for the corresponding discretized model.

with a controller. For this purpose we may design an LQG

controller KN for the N th control volume discretization of

the system; P̃N . For the Kalman filter part of the LQG we

use the same values for measurement noise and disturbance

variance as in section IV-B. For the LQR state feedback,

we want a state feedback which minimizes the cost function

J =
∞
∫

0

p2bit + ρq2cdt. Through trial and error a weighting of

ρ = 1e4 was found to result in expected performance and a

stable controller.

To analyze the performance of the LQG in more realistic

conditions, the following frequency weight is used for the

heave disturbance.

Wd(s) =
0.12(s− 0.01)

(s2 − 0.02s+ 0.0251)(s− 1)
(26)

The frequency response of Wd is shown in Fig. 7. The

resulting configuration is shown in Fig. 8.
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Fig. 8. Weighted feedback interconnection for LQG design.

The closed loop system can be written as

P (s) =:

[

P1Ad P2

P2Ad P1

]

(27)

[

pbit
pc

]

= P (s)

[

vd
qc

]

(28)

qc = KN (s)pc (29)

With this interconnection it can be shown that the transfer

function of the downhole pressure from the heave disturbance

is

pbit =
(

P1 +KN
P 2
2

1− P1KN

)

Advd =: TN
zwvd (30)

The performance of this controller designed for N = 2, 5, 20
can be seen in Fig 9. It is clear that when too few control

volumes are used in the discretization, the controller is

unable to attenuate the disturbance at the correct frequency.

The weighted H2 norm of the closed loop system can also

be computed. It can be interpreted as the standard deviation

of the downhole pressure when the disturbance has the

amplitude spectrum of Wd. We have

Standard deviation pbit = ||TN
zwWd||2 (31)

Values of the computed standard deviation of p bit for differ-

ent number of control volumes and well lengths are shown

in Fig. 10. In managed pressure drilling operations we wish

to keep the downhole pressure within ±2.5[Bar] of the

setpoint. We can see that this is achieved for N ≥ 3 for a

well of 2000 meters. When the length of the well is increased

to 5000 meters a significant increase in N is required to

maintain acceptable performance. For the 10000 meters long
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Fig. 9. Unweighted Frequency response plot of pbit with vd as input for
LQGs designed with discretized models with different number of CVs. vd
has a peak amplitude of 1 meters per second. Lenght of the well is 2000
meters.
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Fig. 10. Weighted H2 norm of the closed loop system. The system is
closed with LQG controllers designed with different number of Control
Volumes.

well, acceptable performance is not achieved for N ≤ 50.

Performance can still be improved by reducing ρ, but this

will decrease the robustness of the closed loop system. This

is discussed in the next section.

D. Closed Loop Stability

For internal stability of the close loop system, it is enough

to consider the feedback system

pc = P1qc. (32)

qc = KNpc (33)

Now define the nominal open loop plant; GN
nom(s), mul-

tiplicative uncertainty; ∆N (s), and the sensitivity transfer

function TN(s) s.t.

GN
nom(s) = P̃N

1 (s)KN (s) (34)
(

1 + ∆N (s)
)

P̃N
1 (s) = P1(s) (35)

TN (s) =
GN

nom(s)

1 +GN
nom(s)

(36)

Then a sufficient condition for robustness is [11]

|TN(iω)| ≤
1

|∆N (iω)|
, ∀ω (37)

To check this condition |TN (iω)| and 1/|∆N(iω)| is plotted

for N = 10, 20 in Fig. 11 and 12. It can be seen that there is a

potential lack of robustness for K10 as the discretized model
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|T (iω)| and 1/|(∆(iω))|. For this controller, N = 10, there is a potential
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insufficiently accounts for the resonances around 10 rad/s.

When doing controller design with the discretized model it

is important to ensure low gain at high frequencies for the

nominal open loop plant GN
nom so as to ensure robustness

against the un-modelled high frequency resonances in the

system. There are a few ways to make the LQG closed loop

system more robust. Here we will mention two:

• Reduce the gain of GN
nom at high frequencies by using

Frequency shaped LQR with a high pass cost function:

ρ(iω). (Obviously just increasing ρ without using fre-

quency weighting would also work but may compromise

performance).

• Reduce uncertainty by increasing the number of control

volumes.

The last point is verified in Fig. 12 where K20 is shown to

be robust w.r.t. the uncertainty due to the discretization.
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