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Abstract

This thesis presents a dynamic model of the surge/swab pressure fluctuations in a drilling
well induced by the vertical movement of the drill string. The model is given by a coupled
set of Partial Differential equations describing: 1. the pressure dynamics in the annulus
under unsteady Couette flow with a pressure gradient, 2. The movement of the elastic drill
string coupled with the pressure dynamics through viscous friction and mud displacement.
It is shown how the model can be simplified to a linear system and under what conditions
this simplification hold. Using the Laplace transform and appropriate boundary conditions
the transfer function of the linear model is derived. The model uses the heave disturbance
and controlled flow into the drilling well as inputs, and the measured topside pressure
and controlled down-hole pressure as output. It is also shown how the system may be
discretized to obtain a dynamic system given by a set of Ordinary differential equations.
The error introduced by the discretization is analysed in the frequency domain. Then,
the discretized models with varying number of control volumes are used for Kalman filter
design. The performance of the Kalman filter when the well is subjected to the heave
disturbance is compared over different number of control volumes for typical values of
measurement noise and heave velocity. Finally, it is shown that improved performance of
the Kalman filter for a fixed order can be obtained by designing the Kalman filter on a
high order discretization and then utilizing frequency weighted model reduction.



Abstract

Denne hovedoppgaven presenterer en dynamisk modell av trykkendringer i en borebrgnn
laget av vertikal bevegelse av borestrengen. Modellen er gitt av et sett av koblede PDEer
som beskriver: 1. trykkdynamikken i brgnnens annulus under ustgdig Couette flyt med
en trykkgradient, 2. Bevegelsen til den elastiske borestrengen som er koblet med trykkdy-
namikken gjennom viskes friksjon og fortrengning av boreslam. Det blir vist hvordan mod-
ellen kan forenkles til et linesert system og under hvilke forutsetningen denne forenklingen
holder. Ved bruk av Laplacetransformen og innsetting av hensiktsmessige grensebetingelser
sa utledes transferfunksjonen til det linesere systemet. Den resulterende modellen bruker
hiv forstyrrelsen og kontrollert flyt inn i borebrgnnen som inngang, og det malte trykket
i toppen av brgnnen, samt trykket i bunnen av brgnnen som utgang. Det blir sa vist
hvordan modellen kan diskretiseres for a oppna et system gitt ved et sett av ordinsere
differensialligninger. Modellfeilen som blir introdusert av diskretiseringen blir analysert i
frekvensdomenet. Det diskretiserte systemet, med varierende antall kontrol volum, blir sa
brukt til a designe Kalmanfiltre. Kalmanfiltrenes ytelse blir sammenlignet og det blir vist
hvordan man kan bruke frekvensvektet modellreduksjon for & oppna et Kalmanfilter av
lav orden med bedre ytelse enn om de skulle veert designet direkte med en modell med fa
kontrol volum.
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Abbreviations

Nomenclature: The Hydraulic Well Model

A, = Annulus cross-sectional area[m?]
A, = Drill String cross-sectional area[m?]
A, = Openhole section cross-sectional area[m?]
AA, = change in annulus cross-sectional area around the BHA[m?]
AA, = change in drill string cross-sectional area[m?]
£ = Bulk modulus of the drilling mud
Bp = Youngs modulus of the drill string

Ba = Effective bulk modulus in the annulus

3, = Effective bulk modulus in the openhole section

¢, = Sonic velocity of the mud in the annulus [m/s]

¢ = Sonic velocity of the mud in the openhole[m/s]

¢, = Sonic velocity of the mud in the drill string[m/s]

Cy = Discharge coefficient, dimensionless

E; = Youngs modulus of the drill string [Pa]

E, = Youngs modulus of the formation around the well [Pa]
fa(Va, v,) = Viscous drag acting on the mud in the annulus [Pa/m]

fo(vp) = Viscous drag acting on the mud in the openhole section [Pa/m)]

fp(Va,vp) = Viscous drag acting on the drill string [Pa/m]|

F, = Forces acting on the mass in a control volume[N]

g = Acceleration of gravity [m/s?]
k., = Linear viscous friction coefficient of mud in annulus w.r.t. mud

kg ]
m3xs

velocity |

ky, = Linear viscous friction coefficient of mud in openhole [-5-]

k, = Linear viscous friction coefficient of mud in annulus w.r.t. pipe

kg
m3*s

velocity |
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k, = Linear viscous friction coefficient of drill string w.r.t. mud

kg
mS*S

velocity |
K, = Hoop-strain coefficient, dimensionless
I’ = Length of the jth control volume of the annulus and drill string [m)]

I = Length of the jth control volume of the openhole section [m]
L = Length of the annulus and drill string [m)]
L, = Length of the openhole section [m)]

N = Number of control volumes in the annulus and drill string
N, = Number of control volumes in the openhole section
P = Annulus mud pressure [Pa]
p» = Openhole mud pressure [Pa]
pp = Drill string pressure [Pa]
pe = Mud pressure at the top of the annulus [Pal]
pr = Mud pressure around the BHA [Pd]

g. = Volumetric flow into the top of the annulus: ¢. = qypp — Genore[m”/s]

Qpp = Volumetric flow through the back-pressure pump [m?/s]
Qehoke = Volumetric flow through the topside choke [m?/s]

r; = Inner radius of the annulus [m)]

r, = Outer radius of the annulus [m)]

t = Time, seconds

u; = Displacement of the inner radius of the annulus [m]
u, = Displacement of the outer radius of the annulus [m]
v, = Velocity of the mud in the annulus [m/s?]

v, = Velocity of the mud in the openhole section [m/s]
vg = Velocity of the drill string at the top of the well [m/s?]
v, = Velocity of the drill string [m/s?]

v, = Velocity of the mud around the BHA [m/s?]

x = Position in the annulus and drill string, = 0 is at the BHA
xp = Position in the openhole section, = 0 is at the bottom-hole

Q, aq, (g, i3, ay, 5 = Parameters dependent on the annulus diameter ratio

= Mud viscosity[m/s]
i = Poissons ratio for drill string
1o = Poissons ratio for formation

p = Mass density of the mud [kg/m®]
pp = Mass density of the drill string [kg/m?]
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Subscripts

a = properties in the annulus
b = properties in the openhole section

p = properties in the drill string

Superscripts

7 = properties of the jth control volume in the discretized model
s = the steady state value of the property at t =0
— = upstream properties

+ = downstream properties

Nomenclature: Analysis of Simplified Model

(1, Cy = Constants of integration for the one dimensional damped wave equation
i= V-1
prit = Pressure in the annulus at the BHA [Bar]
p. = Pressure in at the top of the annulus [Bar]
s = The laplace transform variable
y, = Particular solution of the inhomogeneous damped one dimensional wave equation

= Convenience variable in the solution of the damped one dimensional wave equation

)

w = Frequency [rad/s]

wy; = Frequency of the jth resonance peak [rad/s]

Subscripts

t = shorthand for 0/0t
x = shorthand for 9/0z

X



Nomenclature: Estimator Design

A, by, C1,Cs, D;; = System matrices of the discretized plant
A, = Modified schur system matrix
FY = Kalman filter designed with PV
P = TIrrational transfer function matrix
Py, Py, Py1, Py, = Irrational transfer functions
P — Transfer function matrix of realization of the discretized LTI system

P =

() = Covariance of the unweighted disturbance
R = Covariance of the measurement noise

S =

Cross-covariance of the measurement noise with the disturbance
T;,

vy, Vg, v3 = Measurement noise in the Kalman filter design

= Transfer function matrix from inputs j to outputs ¢

w = Weighted disturbance input vector in the Kalman filter design
w = Unweighted disturbance input vector in the Kalman filter design
W4 = Disturbance frequency weighting function
y = Vector of measurement signals available to the Kalman Filter
z = Estimated variable in the Kalman filter design
Y. = Controllabillity Grammian
Yo = Observabillity Grammian

Superscripts

N = number of control volumes in discretization
n = order of LTI system

= estimation of variable

x = the complex conjugate transpose

"= the transpose



Glossary

BHA
cosh

(GAY

LTI

MPD
ODE
Openhole
PDE

sinh

tanh

Bottom Hole Assembly, the end of the drill string
Hyperbolic cos, cosh(z) = <=

Control Volume

Expected value of x

Linear Time Invariant

Managed Pressure Drilling

Ordinary Differential Equation

The part of the well that is below the drill string.
Partial differential equation

Hyperbolic sin, sinh(z) = £=£—
Hyperbolic tan, tanh(z) = 7=
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Chapter 1

Introduction

1.1 MPD and the Heave Attenuation Problem

In drilling operations performed in the oil and gas industry a fluid called mud is pumped
down through the drill string and flows through the drill bit in the bottom of the well, see
Fig. 1.1.

If the pressure in the mud at the bottom of the well is too low the well can collapse
trapping the drill string, and if the pressure exceeds a certain threshold it can fracture
the well. Hence, it is important to control the mud pressure in the well. In Managed
Pressure Drilling (MPD) operations this is achieved by sealing the well and releasing mud
from the well through a control choke. A back pressure pump allows the pressure to be
controlled even when the main pump is stopped. Thus, the pressure in the bottom of the
well can be regulated to a desired set-point. This approach has proven successful when
drilling from stationary platforms and results on MPD control can be found in papers such
as [20],[7]. MPD from floating drilling rigs, however, still face significant challenges due
to the wave induced vertical motion of the floating drilling rig (known as heave). During
normal drilling the heave motion of the drilling rig is decoupled from the drill string by
compensation techniques. However, when the drill string is to be extended by a drill string
connection it is rigidly connected to the floater. It will then act as a piston in the well
creating pressure oscillations which may exceed the upper or lower pressure thresholds one
wishes to enforce. It is therefore desirable to utilize active control of the topside choke to
compensate for the pressure changes due to the heave motion. In this scenario, the main
pump is disconnected and there is no flow between the annulus and the drill string (the
drill bit is equipped with a one-way valve which prevents back flow from the annulus into
the drill string.) Hence the dynamics of interest is the pressure dynamics in the annulus.

The pressure dynamics in the annulus can be described by a hydraulic transmission
line model given by a set of hyperbolic PDEs. This system is continuous in time and space
and its governing equations include differential relations in both time and space which is
what makes them PDEs. That the PDEs are hyperbolic means that information travels
at a finite velocity which in this case is the sonic velocity of the given medium. The PDEs
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Figure 1.1: Well configuration for MPD. Shown by courtesy of Statoil ASA.



can be discretized w.r.t. space which yields a set of ODEs. Linearising these yields a finite
dimensional LTI system which allows for the use of standard LTT controller and estimator
design techniques. But, to maintain the property of finite velocity of the information, a
high order discretization may be required which again results in high order estimators and
controllers. This necessitates the use of model reduction techniques to reduced the order
of the designed LTT systems while maintaining performance.

1.2 Contribution

The contribution of this thesis is twofold: one is towards the solution of the heave atten-
uation problem in MPD, and the other is a theoretical contribution in using an irrational
transfer function directly in the performance evaluation of the designed estimator.

Chapter 2 gives the main contribution to the heave attenuation problem. In this chapter
it is shown that the modelling of the pressure dynamics in the well in earlier works on the
heave attenuation problem is incomplete. Then a new and improved model, based on a
seminal work which have been verified in tests and is also used in industry, is proposed.
Potential simplifications of the model are also proposed and the resulting assumptions are
explicitly given.

The other contribution comes from the derivation of the transfer function of the sim-
plified model in closed form. It is shown in chapter 4 how this transfer function is a
valuable tool in evaluating performance of controllers and estimators designed with a LTI
discretization of the model.

1.3 Outline

The Thesis is organized in the following way: the hydraulic well model is presented, and
then discretized in Chapter 2. In chapter 3, the frequency response of the linearised model
is derived. Finally, in chapter 4 the results are applied the design of a low order estimator
of the bottom-hole pressure.






Chapter 2

The Hydraulic Well Model

2.1 Background

In [21] a simple one control volume was used to develop a controller for attenuating the
disturbance due to floater heave in a drilling well. The model was originally developed in
[14] where it was used for pressure estimation under normal drilling conditions, i.e. it only
had to consider very slow dynamics. The heave dynamics, however, was to fast for the one
control volume model and hence the full scale tests conducted with the controller from [21]
failed.

A general model for the pressure dynamics in the wellbore based on the hydraulic
transmission line from [3] was presented in [16]. This model considered among other things
the heave disturbance, but was not created specifically for controller design. It included
non-linear relations such as a non-newtonian Rheological model and a state machine to
model the thixotropy of the drilling mud. The model did not consider the effect of drilling
mud clinging to the moving drill string (as by the no slip condition). This effect is well
documented in experiments and papers such as in [23] and in [12] where it is concluded
that: “The moving pipe walls greatly influence the mud velocity in the annulus (and, hence,
the pressure surge).” Hence this model should be considered incomplete and will fail in
cases where the drilling mud is thick?.

This model was used in distributed form in [8] and [9], and presented in discretized
form in [10]. It was also used for controller design in [17].

2.1.1 Surge and Swab Pressure Models

Surge and Swab pressure evaluation is a well researched field of petroleum engineering.
The problem is usually presented in the context of running or pulling pipes in a borehole
with an annulus that is open topside, but most of the conclusions should hold for MPD as
well.

T.e. the mud has a high viscosity, and/or high yield stress in the case of a Bingham Plastic. This is
discussed further in section 3.1.3



In a seminal paper [12], Burkhardt presented approximate equations to compute surge
pressure for Bingham plastic fluid with comparisons to experimental results. The study
identified the three major causes of surge and swab pressure as: viscous shear, breaking
the gel strength and pipe acceleration. The difficulty of calculating the viscous shear stress
in the non-Newtonian mud due to the moving drill string was noted. Burkhardts model
as well as one due to Fontenot and Clark [4] are so called steady state models, where the
drilling mud is perfectly displaced by the pipe motion and fluid pressures are calculated to
be consistent with frictional pressure drops.

One of the early studies on the unsteady-state flow model was presented in [18]. The
paper showed that fluid compressibility has a major effect on pressure surge and studied the
effects of the different physical parameters of the well. They concluded that “calculation
of surge pressure on the basis of steady state flow is inadequate”.

In [23], Mitchell presented a dynamic flow model to predict surge pressure. The model
showed good agreement when compared to field data. In this study factors such as elasticity
of the drill string and borehole formation was considered. It was also concluded that:In deep
wells, fluid compressibility is important. In [24], it was concluded that Mitchells dynamics
Surge/Swab model “demonstrates excellent agreement with the [..] measurements collected
during field tests”. This model has also been adapted by industry [1].

A complicating issue with unsteady flow models have been the viscous friction between
the moving drill string and a non-Newtonian drilling mud. In [25] it were stated that
“There has been no reported simple analytical solution and application of the unsteady
Couette flow phenomena to solve fluid flow problems when a concentrically placed cylinder
is in motion.” Although the motion equations were analytically solved for non-Newtonian
power-law fluids in this paper, the pressure gradient were given by an implicit relation
with regards to the velocity of the fluid and the drill string. This means that the equations
of motion are given in a so-called semi-analytical form, and could therefore not be used
directly in ODE-based dynamic models [6]. In [6] a single flow equation, explicit in the
pressure gradient, that approximates the analytical solutions for Bingham Plastic-fluids
in the annulus were given. In figure 2.1 taken from [6], the difficulty of linearising the
pressure loss, without considering the range of the fluid velocity, can be seen. It is the
authors opinion that the effect of non-Newtonian drilling mud in the heave disturbance
problem in MPD needs further investigation.

2.2 Well Model

The well model that will be presented here is based on the one presented in [23]. It
incorporates appropriate changes due to the following properties of the MPD configuration

e The well is sealed at the top.

e There is no flow through the BHA. Based on this we use the assumption that there
is no flow in the fluid in the Drill String, and that the pressure in the drill string fluid
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is constant.

In deriving the governing equations of the well model we will use the following assump-
tions [11]:

e The flow is laminar, i.e., the Reynolds number is 2300 or less.

e The flow is axisymetrical. This assumption implies that the conduit is straight, al-
though the equations works when the well have a relatively small radius of curvature.

e Motions in the radial direction is negligible. This implies that the longitudinal ve-
locity component is much greater than the radial component and that pressure is
constant across the cross section.

e Non-linear convective acceleration terms are negligible. This assumption is valid
when the mud velocity is much smaller than the speed of sound in the mud.

e Material properties are constant.
e Thermodynamic effects are negligible.

The well model is divided into three sections (see Fig. 2.2), given by three sets of
Partial differential equations: The 'Openhole Model’, "Annulus Model’ and ’Elastic Drill
String Model. The PDEs describing the "Annulus Model” and the "Elastic Drill String
Model’ is coupled through the terms describing the viscous friction, and these two are
again connected to the ’'Openhole Model” through boundary conditions. Properties and
functions related to the ’‘Openhole Model’, ’Annulus Model” and ’Elastic Drill String Model’
are denoted with the subscripts b, a and p respectively. Pressure and velocity p,v in the
annulus and drill string are functions of time ¢ and position x, where x = 0 is at the
drill bit. Position in the openhole is denoted by x;, where x;, = 0 is at the bottom of the
openhole section and x = L is at the top. p is defined as deviation from the steady state
pressure, p® at t = 0.

All the model sections are derived based on the one dimensional balance of mass and
momentum [3]. For the one dimensional mass balance of a control volume of length dz we
have that the change of mass in the control volume equals the flow inn minus the flow out
of the volume

dp
do— = —pd 2.1
v = —pdv (2.1)

Using the constitutive equation for a compressible mass with longitudinal® elasticity f:
dp = (B/p)dp, gives
Ldp  Ov

2Longitudinal elasticity because we are only interested in longitudinal waves (also known as compression
waves).
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Figure 2.2: Schematic showing the three section of the well model.



For the one dimensional balance of momentum for the same control volume we have

d
Y F= il dx (2.3)

Linearising the equation by using a constant mass density, p, and pulling out of the }_ F
term the pressure force acting on the sides of the control volume gives

d
PV = _a_;; + I, (2.4)

where F, are the forces acting on the mass in the control volume aside from the pressure.
Together equations (2.2),(2.4) gives the unsteady pressure and velocity dynamics of an
elastic medium.

2.2.1 Openhole Model

This is the section of the well that is below the BHA. The model is given by the balance
of mass and momentum relations (2.2),(2.4)

1 dpb . c%b

0 0
P = e~ hlw) (2:6)

Here B, is the effective bulk modulus of the fluid in the borehole which takes into account
the expansion of the hole caused by internal fluid pressure, dA/dp. 5, is derived in section
2.2.5. fy(vp) is the drag on the fluid caused by viscous forces.

2.2.2 Annulus Model

Using mass and momentum balance
1 dp, v,

B, dt ~ T or (2.7)
dvg  Opa
p at - ax - fa(vavvp) (28)

Note the inclusion of the pipe velocity v, in the viscous friction term. This term will be
discussed in section 2.2.6.

When the flow cross section area of the annulus A, changes this is enforced by splitting
up the model describing the annulus dynamics into two and connecting them through the
boundary conditions. To do this we use the mass balance, using +, — to denote upstream
and downstream respectively (see Fig. 2.3)

Atot = AJv; + AAy, (2.9)
Pa =Da (2.10)

where AA, is the change in pipe cross section area. Pressures can be considered constant
across the area changes if the irreversible pressure loss due to the area change is negligible.

10
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Figure 2.3: Schematic showing balance of mass for cross-sectional area changes.

2.2.3 Elastic Drill String

Again, using mass and momentum balance,

1 dp, vy,

— = ——= 2.11

By dt Ox (2.11)
dv,  Opy 0

ppﬁ - 81‘ + Kl axpa fp(Um Up) (212)

Here (3, is the Youngs modulus of the pipe. The second term on the right side of equation
2.12 is due to the Hoop Stress effect. This is the effect of the pipe extending when being
squeezed by high mud pressures. The last term is the viscous drag of the drill mud on the

pipe.

2.2.4 Boundary Conditions
The topside boundary conditions

For the annulus we can choose either the topside pressure or the topside flow to be exoge-
nous. . e. only one of the following equations can be enforced

pa(z = L) = pe, topside pressure in the annulus.
Agva(r = L) = Gehoke — Qopp, flow through the choke and the back-pressure pump.

For the drill string we can choose either the force or the velocity at the top of the drill
string to be exogenous. I.e. only one of the following equations can be enforced

11



...I_.“....l.“....l.“
'6%0 o e P 0% o e #0% o' @
'a® o a%g0 9 a®%ge 0o s
00%e® 000%6% g0e®ee
00,% g0 ,00,% 30,00,%,¢
-"ooﬂon...cﬂoooc

[ ] L [ ] L ] .
rleg teele e,
- .O - L] .0 - L] l. - [ ]

Figure 2.4: Schematic showing the coupling in the boundary conditions of the three model
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vp(z = L) = vy, topside movement of the pipe.
A,p,(x = L) =F;, topside force on the pipe.
The bottomhole boundary conditions

Assuming rigid bottom-hole, v,(x, = 0) = 0 should be enforced.

Annulus to below drill string boundary condition

Letting AA, be the change in the cross section area of the annulus around the drill bit,
pr be the pressure in the mud around the drill bit and v, the velocity around the drill bit
(see Fig. 2.4). Using mass balance
A, = (A — AAL)v, + AAyu, (2.13)
Ayoy = (Ag — AA)v + (AA, + A, (2.14)

For the pressures, we use nozzle-pressure relations

p

pr == (v =) (2.15)
d

Do — Dy = Cﬁd@f ) (2.16)

Where C}y is the discharge coefficient. Note that the coefficient Cjy is different for flow into
a restriction and flow out of a restriction.

2.2.5 Borehole Expansion

The cross section area of the annulus is
Ag = 7((r0 +u0)” = (ri + u;)?) (2.17)

Where r;, r, is the inner and outer radius of the annulus, and u;, u, is the displacement of
the inner and outer radius of the annulus. We want to find the displacement of the inner
and outer annulus radius caused by the pressure in the annulus.

i
i = —(1 — 1;)pa 2.18
u Ei( )P (2.18)
,
o= ——(14 11o)Pa 2.19
o = =5 (1+ o)y (2.19)

where E;, E, and p;, 11, is the Youngs modulus and Poissons ratio of the pipe and formation
respectively. From these equations the relative expansion of the annulus cross section area
can be determined (assuming that u;, u, is small compared to r;,7,):

1 dA, 20204 pe) | 2rf(1 — )
A, dP, Eo(r2 —r?)  E{(r2—r?)

7 7

(2.20)
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And the effective bulk modulus of the drilling mud in the annulus £, becomes

1

2r2(1 o 2r2(1 — p; 1
- To( + M2) Tz( MQ) _‘ (2'21)
Ba  NE(ri—ri)  Ei(ri—ri) B
where £ is the bulk modulus of the drilling mud.
For the openhole section the relation simplifies to
1 2(1 1
— = ‘M+_‘ (2.22)

K, B

2.2.6 Viscous Friction

Calculating the viscous friction for a dynamic model becomes very involved for the case of
non-Newtonian fluids (see Fig. 2.5). Depending on the pressure gradient, the velocity of the
drill string and mud rheology, the velocity profile may have one, two or three flow regions
for a Bingham Plastic [6], and the analytical solution for pressure loss w.r.t. velocity is
implicit. An explicit approximation of the pressure gradient for a Bingham plastic is given
in [6], and the analytical (and implicit) solution for unsteady flow in Power Law fluids are
given in [25].

For the case of Newtonian drilling mud, the viscous friction becomes a linear function
of the average velocity and drill string velocity. Using r;,r, to denote the inner and outer
radius of the annulus. From [6] we have

1

1
fa(Ua, Up) = —12mva + 6m0&11}p, (223)
T,
= 2.24
a1 220
o — 8atIn(a)? + ayas In(a) + 2042&%7 (2.25)
—Q305
g = 2In(a) + 1 — a?, (2.26)
as = 2a’In(a) + 1 —a?, (2.27)
oy = 3a* + 60 — 1, (2.28)
as = (1 —a)? (2.29)
where p is the viscosity of the fluid. Defining
ko = 12u/ (1o — 14)?, (2.30)
kq = 6pay/(ro —1:)% (2.31)
A
k, = A—pkd, (2.32)
dum
ky == —— 2.33
Ty (2.33)
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Figure 2.5: Schematic showing the velocity distribution of pressure driven couette flow in
an annulus.

we obtain for Newtonian drilling muds

fa(vaa Up) - kava - k’dUp, (234)
fo(va, vp) = kp(vp — va), (2.35)
fo(vp) = kpvy (2.36)

2.2.7 Implementation

In [23] the well model is implemented in simulations in the following way. The inter-
polated method of characteristics is used to solve the fluid-flow part of the coupled drill
string/annulus model and the openhole model [2]. The elastic drill string motion is solved
by use of finite elements to determine the equations which are solved by use of the tridi-
agonal algorithm [13]. For nonlinear boundary conditions, Newtons method is used.

2.3 Model Simplification

The well model derived in section 2.2 is complex with the model sections coupled by implicit
relations in the boundary conditions, and for non-Newtonian fluids the flow equations also
becomes implicit. Thus it is difficult to implement in simulations and controller design.
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We will in the following discuss how the model can be simplified, under what assumptions
these simplifications may hold as well as to what end they may be performed.

2.3.1 Explicit/Linear Model

To obtain a model where all relations are explicit, two simplifications must be made. The
nozzle pressure relations must be discarded® and in the case of non-Newtonian fluid the
viscous friction coupling the annulus flow and the drill string movement must be substituted
with an explicit approximation, such as the one given in [6]. Obtaining an explicit model
makes it easier to simulate and analyse for controller design.

To obtain a linear model, we need the same simplifications as above, with the addition
that the explicit approximation of the viscous friction is linear w.r.t. both the drills string
and annulus flow velocity. We note that this is true for laminar flow of a Newtonian drilling
mud. Obtaining a linear model allows for superposition of the response of the system with
regards to both time and inputs. This means that we can analyse the behaviour of the
system by studying the impulse response from the different exogenous inputs since the
response of a linear system is the convolution of the input signal with the impulse response.
This again allows for frequency domain techniques to be employed.

The model can be discretized by approximating the hyperbolic PDEs by finite number
of ODEs. This is done by letting the control volumes be of some finite, non-zero length.
This allows for easier implementation in simulations and allows for using the theory of non-
linear ODE systems for analysis and controller design. If the discretization is combined
with a the linear approximation the resulting system becomes a a finite dimensional LTI
system which allows for employing standard LTI control methods and frequency domain
analysis.

2.3.2 Caveats of Model Simplification

When heave and surge models have been compared with data from field tests in the lit-
erature ([24], [23]) it have been found that effects which are negligible in some wells are
dominating in others. Hence the author wish to stress that the simplification of the model
given in section 2.2 should be done on a case by case basis and after due consideration
of properties such as well geometry and mud rheology: A linear relation for the viscous
friction will is correct for a Newtonian drilling mud, but not for a Bingham Plastic with
high yield stress, etc..

3Discarded or substituted by an explicit relation but it may be difficult to obtain a bidirectional explicit
relation of a set of nozzle equations.
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2.4 Implementation a of Finite Dimensional LTI Well
Model

We will now describe how a finite dimensional LTI approximation of the model can be
implemented.

2.4.1 Linear distributed system

We will use the simplifications discussed above; assuming a Newtonian drilling mud and
ignoring the implicit nozzle pressure relations so that we obtain a linear model. For the
viscous friction we will use the relations found in 2.2.6. The governing equations becomes

d(f: + @L% ~0 (2.37)

pa;f + aap“ + kqva — kqvp = 0 (2.38)

dp b Bba“b - (2.39)

o % Tk = 0 (2.40)

d(zp + ppé;j;’ —0 (2.41)

aa? + %p,, + kp(vp — Vg) + Kla%pa =0 (2.42)

These equations have a total of six integrations which means six boundary conditions have
to be specified. Recall that the nozzle pressure relations have been ignored to achieve
linearity.

Ava(x = L) = g — Qopp (2.43)
Pa(x =0) = pp(xp = Lyp) (2.44)
vp(r =L) =y (2.45)
pp(z = 0) = py(zp = Ly) + py (a1 = Ls) (2.46)

Apvp(xp = Lpy) = Agva(z = 0) + Apvy(z = 0) (2.47)
u(x=0)=0 (2.48)

where q., gypp, Va are exogenous inputs to the system, and pj is the steady state pressure
at t = 0 which again equals the hydrostatic pressure plus the steady state pressure at the
choke at t = 0.

If there are changes in the flow-area in any of the three sections, the section has to be
split up and appropriate boundary conditions between the two resulting parts enforced as
discussed in section 2.2.2.
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2.4.2 Discretization

We use N control volumes to describe the dynamics in the annulus and the drill string. To
maximize performance for a given order of the system the annulus should use more control
volumes than the drill string because of the lower wave speed in the annulus, but it is much
easier to describe the coupling in the viscous friction when the number of control volumes
are the same. We use IV, control volumes to describe the dynamics in the borehole below
the drill string. Define volume 1 to be at the bottom of the section and volume N, N, to

be at the top. The lengths of the sections are Z l; and Z I for the annulus/drill-string

and drill string to bottom-hole section respectlvely The dynamlc order of the resulting
system is 4N + 2N,,.

=700 =), j=1,...,N (2.49)
J
Pt = 75 (pe = pi") — Rovg + k), j=0,...,N—-1 (2.50)
Aoy =qe, PL=p3" (2.51)
P :
By =77 =), j=1,...,N (252
R Ky, ,
iy =350y =) — Ky — D) + -, i=0. N—1  (253)
UI])V = vy, pg = pévb, (2.54)
P = ?Jb (i — ) j=1,...,N, (2.55)
g 1. .
p?)i l] (p] p{)Jrl) + kbvba J = 07 e Nb -1 (256)
v =0, At = A0 + Apvg (2.57)

when there is a change in the cross sectional flow area of the annulus, the equations should
be modified. For a change in the cross sectional area between control volume j and j — 1,
the modification is as follows (see Fig. 2.6)

pfl— (Aj It AT =) (2.58)

a
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Figure 2.6: Schematic showing the balance of mass for cross sectional-area changes in the

discretized model.
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Chapter 3
Analysis of Simplified Model

Analysis of the simplified model and the error introduced by the discretization of the
model. To keep this chapter as clear as possible, the drill string to bottom-hole section of
the model is not included in this analysis, i.e. the drill string is assumed to be close to the
bottom of the well. Further it is assumed that the drill string is inelastic, i.e. v, = vq, Vz.
The reason for this assumption is that if v, is dependent on z then finding the particular
solution of equation (3.8) becomes difficult.

Since we are only considering annulus dynamics in this simplified model, we will drop
the a subscripts of the velocity, pressure and cross section area in the annulus, i.e. v :=
Vg, P := Pa, A == A,.

3.1 Transfer Function of the Simplified Model

Writing the linear model of the annulus dynamics in distributed form

dp ov
327 1
ot 6095 (3.1)
ov 10p
E = —;% — ka/l) + kd/l)d—i— (32)

As (3.1)-(3.2) is linear the constant term due to the gravitational force will not effect the
dynamics of the system, only the steady state and so it has been discarded.

3.1.1 Laplace Transformed System

Using subscript notation to denote partial derivatives, (3.1)-(3.2) can be written as

A
Vg + —Pr + ka’U — l{d’l}d =0 (34)
Po
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Differentiating (3.3) w.r.t. to x and (3.4) w.r.t. ¢;

1
(e ;pxt + kovy — kqig = 0 (3.6)
Inserting (3.5) for p,; in (3.6). This gives
Vgt — Uy + kovy = kg, ¢ == (3.7)
L0

This is the one dimensional wave equation with dissipation driven by the heave motion,
and c is the speed of sound. By utilizing the Laplace transform we want to derive the
transfer function of the system. Taking the Laplace transform of (3.7), denoting the Laplace
transformed functions by 0, p, and assuming steady-state at t = 0 (i.e. that v(x,0) = 0),
we get

1
2

ka
(5% + skq) = —C—;svd (3.8)

Vgg — O

This is a inhomogeneous second order Ordinary Differential Equation in x and can be
solved for 9(z, s). Defining 7* := %(s + sk), the homogeneous solution is

Op(x,s) = Cysinh(yz) + Cycosh(yz) (3.9)

where C7, Cs, are integration constants that have to be solved from the boundary condi-
tions. The particular solution is

" ka ka
= — SV =
Yp 227N stk

B4 (3.10)

The general solution is

0(x,s) = Cysinh(yx) + Cycosh(yz) + 7, (3.11)

3.1.2 Solving for Boundary Conditions

The boundary conditions are the flow into the bottom of the well, and flow out of the top of
the well. Assuming that the movement of the drilling bit can be modelled as a volumetric
flow into the bottom of the well, we have A9(0,s) = Az04(s), where A is the cross section
area of the drilling bit. Denoting the flow through the choke at the top of the well by g,
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we have A0(L, s) = ¢.(s). Enforcing these boundary conditions on (3.11), we get

A
d(z=0,5)=Ch+ 7, = f@d(s) (3.12)
A
= Cy= {01, (3.13)
0(z = L,s) = Cy sinh(yL) + Cy cosh(yL) + g, = qz (3.14)
g 1 cosh(yL) Uy
1
= = Asinh(vL) — G sinh(yL)  sinh(yL) (3:15)
1 A h(yL
_&_ 1 As, cosh(hl) (3.16)
Asinh(yL) A, smh(’yL)
. (cosh(yL) 1
— 1
* p(sinh(”yL) sinh(’yL)) (3.17)
Substituting C; and C5 into (3.11) we get
. ., . sinh(yx)
_ 1
Ay sinh(yx)
— h - 1
+ — b ( cosh(yx) tanh(’yL)) (3.19)
. (sinh(yz)  sinh(yz) )
— — cosh 1 2
p(tanh(vL) sinh(yL) cosh(yz) + (3:20)
Differentiating with respect to x, we get
. 7 cosh(yz)
= — 21
Ux(l',S) ( )ASIHh("}/L) (3 )
Ay , cosh(yx)
—0 h - —= 22
+ vd’y(sm (vz) tanh(’yL)) (3.22)
. (cosh(yz)  cosh(yx) | )
- — sinh 2
* ypv(tanh(vL) sinh(yL) sinh(72) (3:23)
and inserting into the Laplace transform of (3.3), we obtain
. _ B
p(z,s) = —gvx(x, s) (3.24)

where p(z,0) = 0 assuming the well dynamics are at steady state at ¢t = 0 (i.e. p(z,t) = 0).
(3.24) can be solved for p(z = 0, s) and p(z = L, s) to obtain py; and p. respectively, and
because the system is linear the inputs v4, ¢. can be considered separately. We can write
the well model as a system with inputs vg, ¢. and outputs ppis, pe

lpb“ ] =P l v ] (3.25)

Pe dc
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where P is a two by two transfer function matrix

Pll P12
P = 3.26
[ Py Pa ] (3.26)

3.1.3 Mud Clinging Effect vs Mud Displacement Effect

We see from the solution of the Laplace-transformed linearised system that the effects
affecting pressure distribution of the well can be decomposed into three parts. The three
effects are due to the flow into the top of the annulus, the mud displacement of the drill
string moving into the annulus and mud clinging to the moving drill string, given by the
equations (3.21), (3.22) and (3.23) respectively. These equations evaluated along s = iw is
shown in Fig. 3.1 for the physical properties given in table 3.1, and shows the magnitude
of the effects for different input frequencies. It can be seen that the mud clinging effect
relative to the other two effects increases with increased mud viscosity and well length. We
denote the frequency of the first resonance peak as w,;. It can be seen that when the mud
viscosity is 88cP the mud clinging effect has a higher magnitude than the other effects for
frequencies over w,;/4. For a mud viscosity of 12cP (and lower) the mud clinging effect
will not be significant when the input frequency are less than w,.;/2.

We also note that the resonance frequencies occur at lower frequencies when the length
of the well is increased.

3.2 Comparison with the Discretized System

As the PDE is hyperbolic, information travels with a finite velocity given by the speed of
sound in the mud. To maintain this property a large number of Control Volumes may be
needed in the discretization.

In the following, a typical drilling well is considered, again with the physical properties
shown in Table 3.1. The frequency response of Pj; is plotted in In Fig. 3.2 and Fig. 3.3
together with the discretized version. The frequency response of Py; is shown in appendix
A.1. In Fig. 3.2 and Fig. 3.3 it can be seen how the discretization based on 2 control
volumes quickly deteriorates in accuracy as frequency increases. The 50 control volumes
discretization shows that high accuracy can be achieved at the cost of increased model
complexity. We also note that when the length of the well increases accuracy deteriorates
as the length of each control volume increases.

3.2.1 Resonance Frequencies

The irrational transfer functions in the transfer function matrix P defined in (3.25) have
damped resonance peaks at their Resonance frequencies which occurs when sinh(vL) is
zero. Using the approximation

5,/—w2 + kowi = %(m + %) (3.27)

C
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Figure 3.1: Comparison of the 3 effects affecting the down-hole pressure for different well
lengths and mud viscosities.

25



Table 3.1: The physical properties of the well

Parameter Value
Length of well L 2000, 5000[m]
Annulus outer radius 7, 0.113[m]
Annulus inner radius r; 0.0635[m)]
Cross section area of drilling bit Ay || 0.0148[m?
Effective Bulk Modulus 3, 1.4 % 10°[ Pa]
Drilling Mud Mass Density p 1420[kg/m?]
Mud Viscosity p 12, 88[cP]

which is valid when w is not close to 0, we can write

sinh (%(wz + %)) = (3.28)
sinh (g—f) cos (LTW) + i cosh (g—lj) sin (LTM) (3.29)

It can be seen that the damped resonance frequencies occurs at w, ; = j%, 1=1,2,...
and that as %’“ becomes larger the resonance decreases in magnitude.

For comparison, the resonance frequencies of the discretized system can be found by
calculating the eigenvalues of the system matrix. The system matrix has an eigenvalue in
0 and N — 1 pairs of complex conjugated eigenvalues with real part —%“ and complex part
equal the resonance frequency in rad/s of the corresponding damped resonance peak. The
resonance frequencies of the discretized systems of 2 to 5 control volumes can be found
in Table 3.2. We note that the accuracy of the discretization increases significantly when

increasing the number of control volumes also for low frequencies. This is also seen in Fig.
3.2 and Fig. 3.3.
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