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ABSTRACT
The blockchain technology has gained tremendous attention thanks
to its decentralized structure, immutability, and enhanced security
and privacy guarantees. Blockchain has the potential to address se-
curity and privacy challenges of Internet of Things (IoT). By hosting
and executing smart contracts, blockchain allows secure and flexible
message communication between IoT devices and traceability in
IoT applications. The unique characteristics of IoT systems, such
as heterogeneity and pervasiveness, pose challenges in designing
smart contracts for IoT systems. In this paper, we study those chal-
lenges and propose a microservice-based approach to the design
of IoT smart contracts. The proposed service model is aimed to
encapsulate functionalities such as contract-level communication
between IoT devices, access to data-sources within contracts, and
supporting interoperability of heterogeneous IoT smart contracts.
The flexibility, scalability and modularity of the microservice ar-
chitecture model make it an efficient approach for developing IoT
smart contracts.
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1 INTRODUCTION
Smart devices have facilitated the pervasive presence of a variety
of things, interacting and cooperating with each other through
unique addressing schemes—Internet of Things (IoT). Smart IoT
devices often exchange a huge amount of security, safety-critical
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and privacy-sensitive data. This makes them appealing targets of
various cyber attacks. Equipping such devices with appropriate
security and privacy support mechanisms is a challenging issue
due to their resource limitations, such as energy and computation.
Besides resource scarceness, state-of-the-art security solutions are
highly centralized and not well-suited for IoT systems due to the
lack of scalability, many-to-one nature of the traffic, and single
point of failure [? ]. Considering privacy, existing privacy preserv-
ing methods rely on revealing noisy or summarized data to the
data requester, while many IoT applications require users to reveal
precise data in order to receive personalized services [? ]. Therefore,
IoT demands a lightweight, scalable, and distributed security and
privacy solution. The blockchain technology has the potential to
tackle the above challenges thanks to its decentralized, secure, and
private nature [? ].

The blockchain treats message exchanges between IoT devices
similar to financial transactions in a bitcoin network. To enable
message exchanges, the IoT devices leverage smart contracts to
model the agreement between the two parties [? ]. IoT systems can
also benefit from smart contracts for other purposes such as tracing
consumer-to-machine and machine-to-machine transactions. The
unique characteristics of IoT systems, such as heterogeneity and
pervasive communication, make the design and development of
smart contracts challenging. There exists a number of smart con-
tract programming models such as Solidity [? ] which are suitable
for conventional blockchain systems. Moreover, their design is fo-
cused on simple function-based programming, without high-level
abstractions for better engineering of smart contract code which is
required for pervasive and heterogeneous systems like IoT.

In this paper, we study the challenges in the design of smart
contracts for blockchains integrated with IoT systems, such as au-
tonomous operations of smart devices, heterogeneity of contract
terms, and intermittent communication between devices involved
in a transaction. To address these challenges, we propose a generic
microservice-based design approach for developing IoT smart con-
tracts. Flexibility, scalability, and technology diversity of microser-
vices make them an efficient design solution for IoT smart contracts.
The proposed service model is aimed to encapsulate functionalities
specific to IoT smart contracts, such as contract-level communica-
tion between IoT devices, access to external data-sources within
contracts, and supporting interoperability of heterogeneous IoT
smart contracts. The initial implementation of these functionalities
is focused on tacking issues caused by the secured and isolated
sandboxed runtime environment of smart contracts.
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The rest of this paper is organized as follows. In Section 2, an
overview of integration of IoT and blockchains is provided. The
design aspects of smart contracts in IoT systems are discussed
in Section 3, along with a microservice-based design model for
developing IoT smart contracts. In Section 4, the implementation
highlights and challenges are presented. The related work and the
conclusions are presented in Sections 5 and 6, respectively.

2 BLOCKCHAINS AND IOT: AN OVERVIEW
Current digital economy mostly relies on a third-party trusted
authority for handling financial or operational transactions. For
example, it can be an email server or a bank which confirms the
delivery of emails or money to a person, respectively. This means
that for ensuring the security and privacy of our digital assets we
need to rely on a third entity. However, these third parties control
and manage all data and information and use typically a centralized
costly system for transaction processing. Moreover, they can be
hacked, compromised or administered by malicious agents. This
is where the blockchain technology is introduced to solve these
issues by creating a decentralized system without the need for such
third parties. A blockchain is basically a distributed data structure,
or public ledger of all transactions or digital events executed and
shared among participating parties [? ]. Each transaction in the
public ledger is immutable and verified by consensus of a majority
of the participants in the system. Blockchain makes trustless, peer-
to-peer messaging possible without the need for third-party brokers,
like its realization for financial services through cryptocurrencies
such as bitcoin [? ].

IoT systems are often distributed at a large scale with heteroge-
neous smart devices interacting each other or with other networks
and platforms such as clouds. The massive data generated by IoT
is characterized by the following special attributes: i) sensitivity
of data: as it is originated from physical devices of the environ-
ment, the data can spread sensitive personal information and reveal
behaviors and preferences of device owners; and ii) coordination
and interrelation of IoT data generated by devices with different
nature and context, e.g., geographically spread nodes. To preserve
the security and privacy of IoT data and coordinate the flow of IoT
data among different devices and systems, several security frame-
works have been proposed which are highly centralized. They are
therefore not necessarily well-suited for IoT systems due to the
difficulty of scale, many-to-one nature of the IoT data traffic, and
single point of failure [? ? ].

To eliminate single point of failure and centralized management
of sensitive data by a third party, the decentralized and trustless
nature of the blockchain makes it an ideal solution to provide a
secure tamper-proof IoT network. Moreover, the blockchain tech-
nology can enable the processing of transactions and coordination
between millions of smart devices and creating a more resilient
and unified ecosystem for devices to interact and transfer data.
More importantly, by enabling secure and trustless messaging be-
tween devices in an IoT network, the blockchain treats message
exchanges between IoT devices similar to financial transactions in a
bitcoin network. To enable message exchanges, the IoT devices will
leverage smart contracts to model the agreement between the two
parties [? ]. Smart contracts are scripts stored on the blockchain

with a unique address, and triggered by addressing a transaction to
it. Then, they execute automatically on every node of the network
with input data provided by the associated transactions.

3 SMART CONTRACTS DESIGN FOR IOT
In this section, we focus on the design concerns of integrating
smart contracts with IoT systems. The concerns are essentially
originated from the nature of IoT data presented in the previous
section, the IoT network architecture, and the unique properties of
IoT applications.

The concept of smart contract was first introduced by Nick Szabo
in 1993 as “a computerized transaction protocol that executes the
terms of a contract". Blockchain is considered an ideal technology
for supporting smart contracts. Exchanging parties can directly
deal with one another without any interruption and the need to a
central system. Additionally, smart contracts are stored in blocks
that are electronically linked to one another in a blockchain and all
the users have a copy of the stored contracts, preventing all kinds of
exploits and contract tampering. IoT systems can benefit from smart
contracts for different purposes such as consumer-to-machine and
machine-to-machine transactions, developing traceability applica-
tions, etc. For example, in cloud-based manufacturing platforms,
smart contracts act as agreements between the service consumers
and the manufacturing resources to provide on-demand manufac-
turing services [? ]. As another example, in supply chain systems,
smart contracts can maintain a registry of products and track their
position through different points in a supply chain through cryp-
tographically verifiable receipts for product delivery [? ]. In the
following, we discuss the main concerns in designing IoT smart
contracts.
Autonomous execution. This feature enables the autonomous
operation of smart devices without the need for a centralized au-
thority. The autonomy of smart contracts in typical blockchains is
limited to automatic execution of contract terms, while triggering
the execution of a smart contract function is basically performed
through a user transaction in the blockchain. In the case of IoT,
a higher level of autonomy is required as in many applications
the functions in a smart contract are triggered and executed based
on the contextual situation of devices in the environment, e.g., a
3D printing transaction from one machine to another machine for
manufacturing a product.
Heterogeneous contracts. A key player in smart contracts for
IoT systems are smart devices themselves. They may directly inter-
act each other to fulfill a requirement or take part in executing a
workflow, e.g., in logistics management systems. In a wider scale,
in a manufacturing scenario, plenty of smart devices may need
to communicate, where each device possesses its own settings in
terms of semantics for describing blockchain transactions and pro-
gramming smart contracts and their dependencies (e.g., database
access or network communication). This indicates that we can not
rely on a pre-defined smart contract realization model that serves
as a general model for designing and developing smart contracts
for IoT systems. Therefore, a high-level heterogeneity support is
required to enable developing and deploying IoT smart contracts
with different semantics for describing blockchain transactions.
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Figure 1: Overall integration model for IoT and blockchain with smart contracts as microservices

Intermittent information flow. IoT devices communicate inter-
mittently. Thus, when a device is granted and verified to perform
a transaction, we should not expect that the device is necessarily
online. This may lead to a temporary halt in the information flow
that involves smart contracts. For example, in the case of supply
chain, the lack of network connectivity during the delivery of a
shipment may result in the lack of delivery confirmation, and con-
sequently no payment to the supplier will be made. Smart contracts
for IoT systems should be designed in such a way to minimize the
effect of intermittent IoT communication on their execution and
the information flow.

In the next section, we propose a software design model for
smart contracts which is aimed to address the above concerns for
the design and development of smart contracts in IoT systems.

3.1 IoT Smart Contracts as Microservices
The microservice architecture is one of the recent methods of devel-
oping software systems that is focused on building single-function
modules with well-defined interfaces and operations. In a mono-
lithic application, built as a single unit of software, a change made
to a small section of code might require building and deploying
entirely new version of software, leading to low flexibility and scal-
ability in engineering applications. The microservice architecture
is defined as a design approach to develop a monolithic application
as a suite of small services, each running in its own process and
communicating with lightweight mechanisms. These services are
small, independently deployable, highly decoupled and aimed to
do small tasks [? ].

Microservices may be developed in different languages and use
different data storage techniques, while they promise scalable and
flexible development of systems. Microservices has been recently
introduced for IoT systems because of the continuous evolvement of
IoT applications and growth in the scale of monolithic applications
with more complexity in their structure [? ]. The advantages of
microservices make them an efficient design choice for building
IoT smart contracts, considering their unique characteristics and
challenges discussed earlier in this section.

Figure 1 shows the main elements of the model for integrating
IoT and the blockchain, which encompasses our proposal for de-
signing smart contracts as microservices. On the right side, there is
a peer-to-peer network for hosting and maintaining the blockchain,
where each node has a copy of the blockchain. Each block in the
blockchain can contain normal transactions and/or the bytecode
of smart contracts. Having the address of the smart contract code
available, other transactions can execute a smart contract func-
tion and create new transactions. On the other hand, IoT devices
should be equipped with client code to interact with the blockchain.
The interaction can be either a normal transaction or a smart con-
tract transaction. The former refers to creating typical transactions
which should be stored in a block, e.g., transferring digital assets
like bitcoin from an account to another account when a delivery
is performed in the supply chain application. The latter can be
either creating and posting a new smart contract to the blockchain,
or invoking a function of a given smart contract deployed on the
blockchain.

As mentioned before, smart contracts are computer code stored
in blocks, containing a set of functions implementing the terms
of a contract—Contract Functions. The top right part of Figure 1
includes three sample smart contracts for the logistic and supply
chain applications. In their traditional design, each one includes
only Contract Functions, e.g., functions implemented using Solidity
language in the Ethereum blockchain platform [? ]. The top left part
shows our proposal for implementing smart contracts as microser-
vices. A microservice, in this model, contains not only the Contract
Functions, but also functionalities that are essentially specific to a
smart contract, addressing the aforementioned IoT smart contract
design concerns. All of them are encapsulated in a microservice
along with the Contract Functions. In the rest of this section, we
discuss these functionalities.

Thing Communication is a key functional requirement, arising
from the fact that smart contracts cannot access and fetch directly
the data they require, e.g., traffic-related information for estimating
cost in the workflow of goods delivery. For that, the smart con-
tract requires to communicate with a third-party system or another
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IoT device to complete the execution. For example, it can estab-
lish a RESTful communication to an IP-enabled device to fetch the
required information. This functionality also handles failures in
communication with other devices to overcome the issue of in-
termittent information flow. Additionally, Thing Communication
encompasses logic for autonomous execution of contract functions
based on different contextual situations of the IoT application, e.g.,
in the asset tracking use case, the sendMoney function will be exe-
cuted if a container and a retailer share the same location [? ]. To
this end, every stakeholder carries a BLE, GSM or LTE radio and
then the IoT application triggers the blockchain Client on devices
that are co-located.

Contract Database allows a contract to communicate with a
trusted data provider. For example, the data source can be a secure
application running on an hardware-enforced Trusted Execution
Environment (TEE) such as Industrial IoT TEE for Edge Devices
(IIoTEED) [? ]. Contract Database serves as a data access point for
an individual smart contract. A relevant example of data source is
IPFS (Interplanetary File System). IPFS files are content-addressed,
identified by their hashes. In order to fetch a data file, the entire net-
work is searched for a file corresponding to a particular hash. Thus,
it is an ideal file storage and sharing technology for developing
decentralized IoT access control models [? ].

It should be noted that, according to the general specification
of smart contracts, their communication with the off-chain world
is either limited (i.e., to other smart contracts) or not allowed. For
example, Ethereum Virtual Machine (EVM) [? ] is only sandboxed
but completely isolated, meaning that the code running inside the
EVM has no access to the network, file system or other processes.
To communicate with other parties like a data source, we need to
make sure that the data fetched from the original data-source is
genuine and untampered. One solution, developed by Oraclize [? ],
is to accompany the returned data together with a document called
authenticity proof, which can be built using technologies such as
auditable virtual machines and TEE. In the next section, we discuss
this issue in detail.

Interoperability Support is proposed to support heterogeneity
among devices interacting with a smart contract. The most common
type of heterogeneity appears in the semantics for describing the
transactions added to the blockchain by executing different smart
contracts. For example, high diversity of IoT devices in logistic
applications can lead to workflow transactions that are semanti-
cally heterogeneous. Interoperability Support encompasses mecha-
nisms for interpreting transactions produced by the corresponding
smart contract to a general form interpretable and traceable by the
blockchain.

4 IMPLEMENTATION HIGHLIGHTS
There are a number of well-known blockchain platforms featuring
smart contract functionality, such as Ethereum [? ], Hyperledger
Fabric [? ], and NEO [? ]. In this paper, we adopt Ethereum as
the smart contract development framework. The main advantage
of Ethereum’s smart contract platform is the high degree of stan-
dardization and support it offers. Additionally, Ethereum comes
with a set of well-defined rules for developers for how to develop
smart contracts and make the development less risky. It is because,

in Ethereum, extensive effort has been made to improve the de-
velopment and operation of smart contracts. Moreover, Ethereum
features its own smart contract programming language, Solidity,
which facilitate development and setting up smart contracts [? ].
Solidity is a high-level language for implementing smart contracts.
It is influenced by C++, Python and JavaScript and is designed
to target EVM. Solidity is statically typed, supports inheritance,
libraries and complex user-defined types.

The main implementation goal is to provide a programming
framework which enable the developer to encapsulate the contract
functions and functionalities in a microservice. This requires to un-
derstand the runtime environment of smart contracts in Ethereum.
In particular, we need to investigate the features and limitations of
the secured runtime environment of smart contracts. As mentioned
before, Ethereum smart contracts run on the Ethereum Virtual Ma-
chine (EVM). The EVM is a sandboxed, completely isolated runtime
for smart contracts. This means that every smart contract hosted
by the EVM has no access to the network, file system, data sources,
or other processes running on the computer hosting the EVM. This
makes the implementation of the proposed microservice model
challenging, in particular with respect to the functionalities that
need interaction with one of more of the aforementioned sources.
To tackle this issue, we first need to look into the architectural
design of the EVM.

Figure 2 depicts the main architectural element of the EVM. The
EVM code (i.e., the byte code of the smart contract) is hosted in
an immutable virtual ROM within the EVM. The EVM manages
different kinds of data depending on their context. There are three
main types of data: memory, stack and storage. Memory and stack
are volatile spaces used to store data during execution and small
local variables, respectively, e.g., passing arguments to internal
functions. Storage is a persistent read-write word-addressable space
in which the contract stores its persistent information. The amount
of gas required to save data into the storage is considerably high,
as compared to other operations of the EVM.
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Figure 2: The main architectural elements of the EVM

The inside architecture of EVM shows that smart contracts have
the capability to communicate with the storage for storing and
retrieving data, even though this space is limited to some extent
because it is structured as a key-value mapping of 2256 slots of 32
bytes each. Moreover, there is no possibility to communicate with
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entities out of the EVM. Considering the proposed microservice
design, the storage of the EVM can serve as Contract Database.
In this way, for smart contract C we can create a new database
contract Cd which is used only for storing and retrieving data of
C . By separating the contract database from the contract itself, the
deployment and management of new versions of the contract in
the blockchain will become less costly. In order to get access to Cd
from C , cross-contract message calls can be leveraged. Contracts
can call other contracts through message calls. To call a function of
another contract in Solidity, external functionals should be defined.
As an example, the following code snippet shows the structure of
database contract Cd :
pragma solidity ^0.4.0;
contract MyContractDB {

uint public dataA = valueA;
uint public dataB = valueB;
....
function setDataA(uint value) external returns (uint) {

dataA = value;
return dataA;

}
function getDataA(uint value) external returns (uint) {...}

}

Using contract Application Binary Interface (ABI), other con-
tracts in Ethereum can interact with Cd .

As mentioned above, the size of storage is somewhat limited and,
beyond this, the gas cost of interacting with the storage is quite
high. A complementary solution to the above data access model is
using Oraclize [? ]. it supports various types of data sources, such
as URL (to get access to any webpage or HTTP API endpoint) and
IPFS (to get access to any content stored on an IPFS file). To read
data from these data sources, queries should be created. A query
is an array of parameters which needs to be evaluated in order to
complete a specific data source type request. For example, in the
case of sample smart contracts in Figure 1, the Shipping contract
requires to communicate with a device-specific locally-deployed
service that calculate the shipment cost of a specific IoT device
category. Using Oraclize, the query is described as:
oraclize_query("URL", "http://127.0.0.1/ShipmentCost

?device=VerticalPump")

The result of executing the query will be broadcast as a transac-
tion carrying the result. In the default configuration, the transaction
will execute the _callback function which is implemented by the
developer in the smart contract .

To conclude, the Contract Database can be either realized as
a new contract co-located with the main contract in the EVM or
deployed as a separate data-source service external to the contract
deployed in the EVM. In the latter case, the service will be accessible
through a REST API or IPFS, using Oraclize libraries. Likewise, for
functionalities related to Thing Communication, Oraclize can be
leveraged to communicate with IoT services that are external to
Ethereum nodes. For implementing Interoperability Support, simi-
lar to Cd , we propose developing new smart contracts with a set
of well-defined external functions that merely perform semantics
analysis and mapping. In this way, such functionality will serve as
a reference for semantic interoperability between heterogeneous

IoT smart contracts. Shared by all above three functionalities, the
implementation approach, proposed in this section, meet the essen-
tial programming requirements for developing IoT smart contracts
as microservices.

5 RELATEDWORK
Although smart contracts have recently received considerable atten-
tion by the research community and industry, Most existing work
on IoT smart contracts has so far focused on the issues in integrat-
ing blockchains and IoT, such as designing lightweight blockchains
for IoT.

In [? ], a smart contract-based framework is proposed to imple-
ment distributed and trustworthy access control for IoT systems.
The authors use the Ethereum smart contract platform to provide
an access control method for static and dynamic access rights vali-
dation. In [? ], a blockchain-based solution is proposed to address
scalability in managing access in large-scale IoT systems. From a
different view to scalability, A. Dorri et al. in [? ] propose a light-
weight scalable blockchain model to overcome the concerns of
limited scalability, significant bandwidth overheads and delays for
blockchains integrated with IoT. EdgeChain [? ] uses a credit-based
resource management system to control the IoT devices’ resources
obtainable from the edge server. The authors propose using smart
contracts to regulate IoT devices’ behavior and enforce policies. The
above approaches are mainly focused on addressing the scalability
issue in IoT smart contracts.

K. Christidis et al. in [? ] discuss how smart contracts allow auto-
mated complex multi-step IoT processes. The authors indicate that
smart contracts enable cryptographic verifiability of IoT workflow
and significant cost and time savings in IoT workflow execution.
As an example, in [? ], a decentralized, peer-to-peer blockchain
platform for industrial IoT is proposed to enable cloud-based manu-
facturing and on-demand access to manufacturing resources. Both
above works are mainly about the usefulness of smart contracts
in executing IoT workflows. In [? ], a microservice architecture is
proposed to develop scalable and secure smart surveillance systems.
For data protection and synchronization, the proposed framework
uses the blockchain and smart contracts. However, in this work,
microservices are proposed for the components of the surveillance
systems, not for design of smart contracts.

6 CONCLUSIONS AND FUTUREWORK
The blockchain technology and smart contracts have great poten-
tial in automating, securing and scaling message communication in
IoT systems. In this paper, we studied the design concerns in using
smart contracts for IoT systems and proposed a microservice-based
approach for developing IoT smart contracts. The adoption of mi-
croservice design model tackles challenges such as heterogeneity
and pervasiveness in designing IoT smart contracts. However, im-
plementing IoT smart contracts as microservices with the proposed
functionalities comes with some programming challenges that we
explored in this paper. The future work includes further investi-
gation on contract interoperability and requirements for container
platforms that can host smart contracts.
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